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Title of Dissertation: Approximate Factorization for
Incompressible Flow

Directed by: Dr., Joe F. Thompson

Pages in Dissertation: 92 Words in Abstract: 250

Abstract

The technique of approximate factorization (AF) , as formulated
by Beam and Warming, is employed for computational solution of the
incompressible Navier-Stokes equations. In each time step, the AF
algorithm is used to solve the vectorized momentum equation in delta
form, based on the pressure calculated in the previous time step. The
newly-calculated velocities are substituted into the pressure equation
(obtained frem a linear combination of the continuity and momentum
equations), which is then solved by means of line SOR.

The combined AF/SOR algorithm is developed for arbitrary curvi-
linear coordinates in two dimensions, but can easily be extended to
three, The coordinates used for computation are the body-fitted coor-
dinates of Thompson et al., generated numerically by the more recent
method of Thompson and Mastin.

Computational results are presented for the NACA 663018 airfoil
at Reynolds numbers of 1000 and 40,000 and attack angles of 0 and 6 de-
grees. Comparison with wind-tunnel data for Re = 40,000 indicates
good qualitative agreement between measured and calculated pressure

distributions. Quantitative agreement is only fair, however, with the
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% calculations somewhat displaced from the measurements. Furthermore, .

oo

the computed velocity profiles are unrealistically thick around the

airfoil, due to the excessive amount of artificial viscosity needed

for stability.

BRSO

4 ‘ . ‘ ;
-4 Based on the performance of the algorithm with regard to stability,
d
E it is concluded that AF/SOR is suitable for caleulations at Reynolds
f? numbers less than 10,000, Speedwise, the method is faster than point
3
% SOR by at least a factor of two,
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CHAPTER I

INTRODUCTION

Since the late 1960's, computational £luid dynamics (CFD) has
evolved as a distinct branch of fluid mechanics, due to numerous advan-
ces in computer technology and numerical methodology. Now, with the
increasing cost of fuel and hardware and the decreasing cost of elec~
tronic calculation, CFD offers a viable alternative to laboratory
testing. Chapmén [1] gives a concise overview of the state-of-the-art
(as of 1979), summarizing its past development as well as its progno-
sis for the future.

Computational solutions of the Reynolds~averaged Navier-Stokes
equations date back to the early 1970's. At first the machine-time re~-
quirement was prohibitive, and calculations were restricted to simple
geometries and low Reynolds numbers., These initial limitations were
greatly reduced, however, with the development of improved algorithms
such as MacCormack's rapid solver [2] and effective grid-generation
techniques such as the body-fitted coordinates of Thompson et al. [3].
Further reduction of the machine-time requirement was achieved when
Beam and Warming [4] and Briley and McDonald [5] independently formu-
lated the technique of approximate factorization (AF).

The AF algorithm is an alternating-direction implicit (ADI) scheme,
suitable for partial differential equations of the parabolic/hyperbolic
type. Although it requives more computer storage than other methods,
it is also much faster, maintaining second-order accuracy with one iter-
ation per time step. Furthermore, since it is fuily implicit, AF is not

subject to the restrictive time-step limitation that impedes explicit
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methods.

To date, approximate factorization has been successfully employed
in a number of applications involving supersonic, transonic, and com-
pressible subsonic flow [6, 7, 8]. Except for the work of Steger and
Kutler [9], however, there seems to have been no published calculation
for incompressible flow. This 1is not surprising, since the incompres-
gible equations of motion are not amenable to the AF algorithm, at
least not without some modification,

The spatial factorization used in the ADI scheme requires that
each of the governing equations contain a time derivative. Unfortu-
nately, the time derivative in the continuity equation is lost in the
incompressible limit, Steger and Kutler circumvent this difficulty
artificially by adding a pressure time derivative to the continuity

equation:

3Lt vy =0 (1.1)

where B>>1 so that Veu » 0 as the flow approaches the steady state.

The calculated transient flow is, however, only asymptotically correct,
since Eq., (l.1) is a fabrication and not a true equation of motion.

Available methods for caleculating transient incompressible flow

seem expensive and inefficient compared to those for the compressible
case, especially considering that the incompressible equations are
"simpler". One is forced to choose between explicit techniques, lim-
ited to small time steps, and implicit techniques, requiring many iter-
ations. The very existence of an efficlent algorithm such as approxi-

mate factorization prompts omne to think that an equally efficient recipe

o
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might be possible for incompressible flow, That, at least, was the
motivation for the investigation xreported herein.

The AF technique will not accomodate the incompressible continudty
equation without a time derivative., Nevertheless, it is quite appli-
cable for the incompressible momentum equation as long as the pressure
is specified by some other means. The implementation of separate al-
gorithms for the momentum and continuity equations allows onc to take
advantage of approximate factorization for the velocity calculation but
still requires some sort of iterative solver for the pressure. This
also precludes the simultaneous calculation of velocity and pressure,
so that the combined method is not fully implicit.

In order to investigate the utdility of a two~phase solver based on
approximate factorization, the two-dimensional incompressible momentum
equation+ in conservative form is first transformed from cartesian co-
ordinates to arbitrary curvilinear coordinates. The transformed
equation is discretized by means of a three-point backward difference
in time and central difference in space, so that the difference oper-
ator can be factored into a product of two unidirectional operators.
The factored difference equation is then solved in an ADI sequence with
the aid of a direct inversion for each of the two coordinate directions.
Throughout this entire process, the pressure is assumed to have been
previously calculated.

A Poisson equation for the pressure is obtained from a linear com-

bination of the continuity and momentum equations. After discretization

+ The terms "momentum equation' and "Navier-Stokes equations' are inter-

changeable for incompressible flow.
3




with central difference approximations, successive over-relaxation

by lines (line SOR) is used to solve the pressure equation. Line

SOR was chosen as the pressure algorithm because it facilitates the
implicit treatment of Neumann boundary conditions.

The body-fitted coordinate system is generated numerically for
a single-element airfoil using the method described in Thompson
and Mastin [10]. Subsequent calculations for the velocity and pres-
sure are executed in the transformed plane, rather than the physical

plane, on a 113 x 51 rectangular grid with unit mesh spacing., Due to

the one-to-one mapping between the physical and transformed planes, the
i recovery and presentation of results in the physical plane is straight-
B forward.

A linear gradual start, equivalent to a uniform body force or stat-
ic pressure gradient, is used to accelerate the flow from rest to its

ultimate freestream velocity. At each time step the (explicit) pres-

sure solver is executed first, based on velocities from the previous
J
time step. Then the (implicit) AF momentum solver is executed, gener- |
i
L ating velocity increments for the current time step.

An algebraic turbulence model, formulated by Baldwin and Lomax

momeéntum equation. In addition, an artificial viscosity, proportional

|

|

i

i

i [14], is employed for calculating eddy viscosity in the Reynolds-averaged 1
1

3

to the divergence of the velocity, is appended to the physical viscos- i

1

1

~ ity in order to help dissipéte numerical oscillations,

The foregoing paragraphs summarize the form and content of the

AF/SOR method. The questions to be addressed are:'

PEPNEEE S
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Is this method stable and accurate for the same Reynolds
numbers and time increments attainable with conventional
implicit methods such as point SOR?

What are its limitations in terms of high Reynolds
number, time-step size, and boundary conditions?

Under what circumstances is the method preferable to
conventional implicit methods?

The answers are given in Chapter IX.




CHAPTER I

,4 EQUATTONS OF MOTION IN CARTESIAN COORDINATES

2.1, Navier-Stokes Equations

Newton's Second Law (conservation of momentum), applied to the

fluid inside an arbitrary material volume V, takes the mathematical

L

form

. ) Ji(pu )av + f (puy)u;n
, T 3"39®
‘ (2.1)
= [(5,, - pS, )n,dS + dv
B S( ij = PEyyIy fpgi
l ;
i Equation (2.1) represents the well-known Navier-Stokes equations in
I R their integral form. The index "i" denotes any of the three cartesian
]
| { directions, xl,xz,x3, and the Einstein summation convention has been
li 272
; ' employed for the index "j". The dimensional variables are
| p = density
u = velocity
§ = material surface
’ n, = unit vector, normal to S
' Sij = shear stress tensor
P = pressure
13 = Kronecker delta
gy = body-force acceleration, due to
, gravity, non-inertial coordinate
S S system, etc.
i
The divergence theorem transforms Eq. (2.1) to
¢

PN
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(pui)dv + f (puiuj)dv

’ V ™y (2.2)
) LoD _ 8p -
g (ij Ly ox, + gy )dv

> T From a computational standpoint, the integral relation (2.2) is prob-

& h? ' ably the most important of the many possible forms of the Navier-Stokes

equations. In order to achieve a meaningful representation of Newton's

second law, numerical simulations should begin with Eq. (2.2), pre-

serving the integral form as accurately as possible. |
Since the volume V is arbitrary, the integral operators can be

b
[ o removed from Eq. (2.2), leaving only the relation between the inte-

I grands, which is
- (o) e (puu,) = X, - R (2.3)
o s GO T e i R P T axl PB4 :
2
]

L ] e BN
5 For an incompressible fluid the density is constant, so Eq. (2.3) be-

Lo comes
‘ da
! i, 9 1,0 B
! e T e ey = o Garr gy ma) o8y (2.4) |
- 3 3 i |
and Stokes's Law gives the shear stress as J%
£ IJG*—“ + 4—41 (2.5)

| j

where u is the viscosity of the fluid.

At this point it is expedient to nondimensionalize Eqs. (2.4) and

o e e S TN e

(2.5). Accordingly, the dimensional variables are now replaced by

their nondimensional counterparts:

e

i ui = ui/Um 7(2,6) z
t . :

i X, = xilﬁ (2.7) :
! E = CUN/-R« (2'8)

]
4
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!
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W= ou/ug (2.9)
p = p/(pU2) (2110)
~ - 2
By = 8y2/U2 (2.11)

The reference quantities are
U, = freestream velocity

% = characteristic length (in this case, airfoil
chord)

u, = freestream viscosity

Combining Eqs. (2.4) and (2.5) with (2.6) = (2.11) the dimensionless

Navier-Stokes equations for incompressible flow are

du * A
—t+Lwu) = -y g a2 [t j)J (2.12)
dt ox 09X, i Re ax~ ax ax
3 i ] ] i
where Re is the Reynolds number, given by
[IUR
Re = — (2.13)
Hy

The viscosity is a material constant for incompressible, noncon-
ducting fluids., It is retained here as a variable, however, in order
to facilitate the implementation of an algebraic model for turbulence.

2.2 Continuity Equation

In addition to the Navier-Stokes equations for conservation of mo-
mentum, all fluids must obey the continuity equation, which expresses

conservation of mass:

dV + J pu,n,dS = 0 (2.14)

f

nﬂn

Applying the divergence theorem and eliminating the volume integrals as

before, Eq. (2.14) reduces to

'5-%+--3-(pu ) =0 (2.15)

e d o A :
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which, for incompressible fluids, is simply

ou
5—% -0 (2.16)

Equation (2.16) is unchanged by the introduction of nondimensional
variables.

2.3 NondimensioualyEquations of Motion in Two Dimensions

From this point on, all variables used will be nondimensional, and
the circumflex (+) will be dropped from the notation. Identifying x,
y, u, v with X1y Xgy Uy Uy respectively, the equations of motion for

incompressible flow in two dimensions m:e’r

4 + B D+ ) = pl2Gu) G+ () 1 @.17)

- 2y = L

v, k() + (ptv )y Ré£(uuy)x + ("Vx)x + Z(uvy)yl (2.18)
ux + Vy = ( (2.19)

Equations (2.17) and (2.18) represent the x- and y- components of the
momentum equation (2.12), and Eq. (2.19) replaces the continuity
equation (2.20), The subscripts x, y, and t indicate x-, y-, and t~
derivatives. The conservative form (see section 3.2) has been retained
in (2.17) and (2.18) to preserve the integral relation (2.2) in the

finite~difference algorithm.

+ In the absence of a body force.

P e
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CHAPTER III
CURVILINEAR COORDINATES

3.1 Coordinate Generation

Whenever a physical problem is to be solved by analytical means,
one of the first steps is the choice of an expedient coordinate sys-
tem - preferably one that will exploit any symmetries and keep the
boundary conditions simple. If a problem yields an exact solution, it
is usually because there exists a coordinate system in which the gov-
erning equations are algebraically tractable.

From a computational standpoint, geometry is equally impoxtant.
Moreover, except for some additional bookkeeping, the formulation of
difference equations is no more difficult in curvilinear coordinates
than it is in cartesian coordinates. The practical obstacle is the
fact that engineering problems seldom involve shapes for which coordi-
nate systems can be specified analytically. Thus the difficulty is
mainly one of finding or generating a coordinate system with boundaries
that match the physical boundaries.

Thompson et al. [3] have developed a method of grid generation
whereby coordinate systems can be specified for arbitrary geometries.
Consider, for example, an airfoll cross-section in two dimensions
(Figure 1), The desired curvilinear coordinates, £ and n, should have
the following properties:

1. The c¢coordinates £ and n must be single-valued functions
of the cartesian coordinates x and y.

2. Extrema in £ and n may occur only on the boundaries,or on
a branch cut, where the values of both coordinates are
specified. (In this case n is fixed and £ varies along
the airfoil surface).

10
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Now it happens that the desired properties of £ and n are the
same as those of solutions to elliptic partial differential squations
with Dirichlet boundary conditions. The simplest of these is Laplace's
equation, which allows the values of £ and n to be specified at will
along the boundaries. A more useful equation, however, is Poisson's
equation, which facilitates control of both the mesh spacing and the
cell aspect ratio. Thus lines of constant £ and/or n can be densely
concentrated in reglons where large physical gradients are expected.

In two dimensions, a system of two Poisson cquations must be
solved to obtain £(x,y) and n(x,y):

i\

[
bax T byy ~JcaP(€,n) (3.1)
- Y
¢ ,
) = hevird ",,i“, 302
o ¥y = T 900 (3,2)

Depending on their magnitude and spatial varilation, the attraction
funections P(&,n) and Q(&,n) can be used to concentrate coordinate
lines about a given point or curve. Since the numerical boundary con-
ditions can be incorporated more accurately in the rectangular En-plane
(Figure 1), it is expedient to solve the transformed system of

equations:

ucxgg - ZSGXSn + chnn = - (acx€1 + ycan) (3.3)

O Vpg = 2B Y, F VY T T @Y R Yy O (3.4)

Although Eqs. (3.3) and (3.4) are more complicated than (3.1) and (3.2),
computation is far simpler on the rectangular grid. The coefficients

in Eqs. (3.1) - (3.4) are themselves functions of £ and n, given below:
11
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a, " xyf o+ ;y;’; (3.5)
By = xpx, + ¥y, (3.6)
Yo = xfé? + y% (3.7)
Jo = XYy = X Ve (3.8)

Equations (3.3) and (3.4) are solved by point SOR after the at~

traction functions have been specified. The procedure for Q is [10]:

- r

x(n) = x;+ -g%%-?rf (1~ :;:;‘)b (3.9a)
Qn_:mﬂg
’ b+ rJ J - 1

Gn) = G—=7) (3.9b)

’ J
Ye " r .
Qg,n) = - 3:?5 G:r‘* =) (3.10)

with b clivsen so as to produce a specified value of r'(l).

The first n=-line (n=1) represents the body, and £y is one-half chord
length (the radius of a cirele circumseribing the airfoil cross-section),
The quantity Ty is the radius of a edircle tangent to the outexr bound-
ary, n=J. In the solution of Eq. (3.2), the effect of Q defined by
Eqs. (3.9) and (3.10) is to position the line n=N at a distance roughly

equal to r - Ty from the body. For the second n-line (n=2), this is

N
about 1% of the boundary~1ayer thickness for the Blasius flat plate

solution, i.e.,

T =, - = 0.01(/fl~) (3.11)
vYRe
12
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3,2 Coordinate Transformation

In Chaptexr II, the dimensionless Navier-Stokes equations (2.17)
and (2,18) are given in physically conservative form. That is, deriv-
atives such as (uz)x are not expanded into the analytically equivalent

foom
5 N o
(u )x " Zuux (3.12)

The reason for this decision is that finite-difference approximations
for the conseérvative expressions are consistent with the integral form
of the Navier~Stokes equations (2.2), while those for the nonconserva-
tive expressions are not. Roache demonstrates this at length in his
book [11]. Suffice it here to say that the conservative form is gen-
erally safer for computational work,

A similar consideration arises when the Navier-Stokes equations
are to be transformed from cartesian coordinates to curvilinear coor~

dinates., If the chain rule alone is used to expand derivatives such as
+n, u (3.13)

then the finite-difference equations will be inconsistent with the in-
tegral Navier-Stokes equations., Thus it is important that the trans-

formation rule be geometrically conservative in the sense that Egs.

(2.17) and (2.18) are physically conservative., The transformation given

below has the desired property [8].

Let A;, Ay, Ay be the components of the vector A in cartesian co-

3
ordinates (xl’ Xps x3), Employing the Einstein summatior convention,
the divergence of A in curvilinear coordinates (El, 52’ 53) then takes

the form 13
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where

and J denotes the Jacobian*

9 (xl ,8‘2 ’xs)

- - (3.14)

m == A (3.15)

3(E 1 EyyEL)
17723 (3.16)

In Chapters IV and V the two-dimensional coordinates Xy and gi are

and the Jacobian is

3

X

x

£, = ¢
(3.17)
€y =N
gy
= €xny - Eynx (3.18)
Ny

Applying Eqs. (3.14), (3.15), (3.17), and (3.18) in two dimensions, the

divergence of A becomes

ii: + i:f = J(i:; + iif) (3.19)
where

Ap =35 A+ £, Ay) (3.20)

Ay =2 A+ ny Ay) (3.21)

+ The Jacobian J is not to be confused with the maximum n-value (n=J)

in section 3.1.
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The x~- or y- derivative of a scalar is the same as the divergence of .

a vector with only cne component; for example,

u, J(ug + vn) (3.22) |
- E.u
u = —-3‘— (3.23)
~ n_u

Second "derivatives should be calculated via a combination of the chain

rule (3.13) and the transformation (3.14), as shown in the example be-

low ’
U = (ux)x (3.25)
(up) = :f[(iix>E + @) ] (3.26)
’ u = ngux - %ﬁ(gx ug * 0 u) (3.21) |
:'x = ”xJ“x = %x'(gx ug +ony ) (3.28) | i

Note that Eq. (3.13) has been substituted for u in Eqs. (3.27) and
(3.28), since only the outside derivative in (3.26) need employ the

transformation (3.14) to preserve the integral relation (2.2).

ST
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CHAPTER IV

SOLUTION OF THE NAVIER-STOKES EQUATIONS IN CURVILINEAR CODRDINATES

4,1. Transformed Equations

Using the transformation (3.14) for an arbitrary coordinate sys-
tem, the x~ and y- momentum equations (2.17) and (2.18) can be ex-

pressed as a single vector equation:

)

L %9- A(q) + o7 B(q) = ag[wqg + an] + g%[qu + anJ (4.1)
where
€ = £(x,y) (4.2)
n = nix,y) (4.3)
Jo= g - aynx #0 (4.4)
" u
q = (4-5)
~V
r-'all(q)
A(g) = (4.6)
(q)
b, (@)
B(q) = (4.7)
b, (q) '
Iw W]
W = 11 12 (4.8)
ROTRYE
-‘X X
X 11 12 | 4.9
X1 %22
L. -
y y
_— 11 12 (4.10
‘ Y1 Y22
16
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The individual components of the vectors (4.6) and (4.7) and matrices

(4.8) - (4.11) are as follows:

a, (q) ='%[€X(p + u?) + EyUVJ
a,(q) = %{Exuv + Ey(p + v3)]
b, (@) = é{nx(p + u?) + nyUVJ

b, (q) =-§[nxuv + ny(p + v2)]

3]
L}

N(2E2 4 £2
11 = W(2EL+ ED)

Wip T Wop T HELE

]

« - 2
oo u(&x + 2€y>
X110 591 T u(ZEan + Eyny)

12 T Va1 T My

I

Xo1 = Vi T HEN,

Xpy = Ypp = M(Em, + 26.n)

|

- o (0n2 2
2y = H(2nZ + qy)

~

Z1o T Fpp T HNG,

Tln2 2
Zgo u(nx + Zny)

17

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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where

' - (4.26)

4,2, Temporal Discretization

Following the procedure of Beam and Warming [4], the momentum
equation (4.1) is now discretized in time. Using the superscript '"n"

to denote a particular time step, the time increment of ¢ is
Aqn - qn+1 _ qn 4.27)
The 3-point backward-difference expression for 3q/ot is

n+l n+ 1

Q" | 3d Lo aq™ + ¢
T Y

+ 0(At2) (4.28)

Incorporation of Eqs. (4.27) and (4.28) into (4.1) leads to

n n-1
Ag- _lag © 2, p0 ) n+l
=55 "3 otlgp A + 5- B(@)]

9

2 , n+l
+ = At{== + '
3 {ag[qu an]

1
n+ }

3
+ Bn[YqE + an] (4.29)

+ o(atd)

Since A(q) and B(q) are independent of qg and qn, it follows that

8An+1 BA* n, n 2
SE. A +P Aqg + 0(b6t2) (4.30)
n+l *
9B 9B n, n 2 ,
S0 =%t QMa) +o(ae?) (4.31)
where
*
A" = a@™ 5 p™h (4.32)
*
B" = B(q" 5 p™h) (4.33)
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5A (P @) Ppp(@)]
L921(q) Pyy(a)

2B q5,(@  4,(q)

4y (1) ap,(Q)
- and )
1
Py (@) = F(2E u+ Eov)
e
P1p(@) =5
E v
o X
Py @) = =5
Pyr(q) = l(& u + 26 v)
22 Jx y
! 1
n.u
. = e

nxv
9910 = 5~

_ 1 .
qzz(q) = J(nxu + ZnYV)

admissible to replace Eq. (4.29) by

n n-=1 9

C ; Aq _ 1 Ag 2, 9drmn 0 n, n_ pn .n
o =57 +3 ot ag[w Aqg + X'8q - Paq ]
| + 2 pe 20y"aq™ + 2" - QPaq™]
e ' 3 an q&; qn eq d
2 3,0 N n.n * 3 ronm nn *
~ + £ ae{Z[w"q + - A =y + 7 - B
. 3 {ag[w q; + X'q, 1+ an[ qg a, I
r) |
+ 0(at3)
19

(4.34)

(4.35)

(4.36)

4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4,42)

(4.43)

Now, assuming that Hop is a slowly vaiylng function of time, it is

(4.44)

T ENARY FE =
B




Following Beam and Warming, the cross derivatives are time-lagged

in Eq. (4.44) using the substitutions

D ogna® = 2 exaqhl 2

QE(XAqn) BE(XAqn ) + 0(At=) (4.45)
S 2 (vaq™) = 2-(vaq™ Ly + o(at?) (4.46)
T AR T - ’

The other derivatives of Aqg, Aqﬁ, and Aqn are moved to the left side

of (4.44), resulting in

|
]
) n
] A 2, Bm_oniny 2, 3,0 _ om0
| 3 3 At az(WAqg PAq) 3 At an(ZAqn Q'Aq)
-1
| LAt 2, 8 e m Kk
353 + 3 At as(qu + an A) (4.47)

| ' 2 9 * n * 3
‘ + = At —(Yq, + 2 - B o(At
; 3 0t 35 ¢ 9 + 24, ) + 0(At®)

]
’ ‘ where
)

* - o
q" = g+ a7t (4.48)

4.3. Approximate Spatial Factorization

After multiplying through by J, the left side of (4.47) is factored
' into a product of £- and n- operations, leaving the following sequence

of equations to be solved:

— n . 9.— _ 1 n-l n k%
: -W-L)2q) = = +D + Xq_ -
| Ag + Dg((P Wap)te) =3 M ¢Wag + Xq - A )
: | | (4.49)
‘ ¥ +D (g + 2¢% - B
: | ntrdg T 24y
i
» s +0_((Q° - 2 2yaq™) = Bq + 0@ae?) (4.50)
! where
A D =3 Jbt 5% (4,51)
o J2 e 2 SRR
, N Dn =73 JAt ™ (4.52)
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4,4, Spatial Discretization

Spatial discretization of Eqs. (4.49) and (4.50) is accomplished
by means of the central-difference expressions given in Appendix A.
After some regrouping of terms, the spatial difference equations rep-

resenting (4.49) and (4.50) take the form:+

on n o ~n ~ —
"By, t Wy g Vg 0y g F LT A0, Wia1, 1) T4y
| ot —
+(P1+1,j Mivr,y ™ Wi-1,12%9441,3

~

l A A * ~% ~R
= g oa5y Gy = Ay, 2By g T By
“n n n n n n
Wy g Ve, 109000, 7 400y 4 1+1,j)q13*'(3w:+1,3 i—l,j)qi+1,j

o Sn i n
+32] ‘4(Zi,j-1*'zi.j+1) b9 O, g 230, g

on n
i,3-1 i,j+1)qi,j-1

FX L (a) ) - ( )
1+1,3 3441, 541~ qi+1 yi-1 X -1,j qi 1,541 = %1-1,5-1

+ 90 * * o ( * * ) (4.53)
1,418 b T 9Gq, 5400 7 Yi,5-109041,5-1 7 Y4-1,3-1
and
“n n on n “n n
~QF 5oy ¥ g gen ¥ By )09y, LT 42 gy * 73,54 100
~. ~ ~ (4-54)
n Al _on n v
Qg4 7 324 541 T Py, 3-1789 341 T Y94y
where
on o _ At n
P = 0y, P (4.55)
Q" = %f Jian (4.56)

+ The subscripts "i'" and "j" are indices for finite-difference mesh

points, with &=1i, n=j, ahd At=An=1,
21
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o At n «
W = 6 Jijw ([0057)
wn At n
X 6 Jijx (4.58)
on At . n
Y o= Jin (4.59)
S0 At n
2 3 Jijz (4.60)
1 0
10 1
Note that in Eqs. (4.55) - (4.60) the indices of Jij are held fixed;
elg.,
“n At n
Pir1,5 = 3 Ji3Pi41, 4 (4.62)

4.5, ADI Sequence

Equations (4.53) and (4.54) in sequence resemble one iteration

of an alternating-direction implicit (ADI) scheme. First Eq. (4.53) is
solved on each line of constant n (constant j); then Eq. (4.54) is
solved on each line of constant £ (constant i). Actually, Eq. (4.53)
represents a set of linear equations for the valﬁes of Zalj’ where j is
specified and i varies from 1 to Imax' The same applies to Eq. (4.54)
for Aqgj, but with i specified and j varying. In both cases the matrix
operatofs occur in block-tridiagonal form, and the solutions can be ob-

tained directly (i.e., without iteration) using the well-known Thomas

algorithm [8,12]. For a known pressure distribution, only one ADI iter-

ation is necessary to obtain the velocity distribution, correct to

second order in time.
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CHAPTER V

FORMULATION AND SOLUTION OF THE PRESSURE EQUATION

5.1. Conservation of Mass

There often arise situations in which volume changes are neglig-
ible compared with other phenomena. In particular, liquids and gases
flowing at low Mach numbers exhibit essentially the same behavior as
incompressible flow.

From a mathematical standpoint, incompressibility eliminates the
equation of state, which relates pressure, volume, and temperature. As
a result, the thermal and kinetic energies are decoupled, and the flow
can be analyzed on a purely mechanical basis, without reference to
thermodynamic effects.

Unfortunately, the incompressible equations of motion are somewhat
inconvenient for computaticnal solution because nowhere does there ap-
pear a time derivative of the pressure. Since there is no direct way
of advancing the préssure in time, an indirect method must be formulated
such that conservation of mass is always satisfied. In this regard, the
continuity equation is a constraint that determines the instantaneous
distribution of pressure throughout the flow field.

5.2. Formulation of the Pressure Equation

Taking the divergence of the momentum equat:ion+ in cartesian coor-

dinates leads to

4+ The x-derivative of (2.17) plus the y-derivative of (2.18).

23
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S + Pyy + By Ul Ve + 20,
2 ,
Ezfux(uxx + uyy) + py(vxx + Vyy) + o u (5.1)
+ + + v
My (y + ¥ F gy vy
where
§ = ux\+ v‘y =0 (5.2)

In obtaining Eq. (5.1), it is assumed that &§=0, but that tho. The 6t
is a correction term (ideally zero) recommended by Hirt and Harlow [13].
Note that Eq. (5.1) has been developed in nonconservative form, and §
has been extracted and set equal to zero. Following Roache [11], this

can be taken one step further:
z 2 2 .
u? + vy = § 2uxvy (5.3)

Combining Eqs. (5.2) and (5.3) with (5.1), the pressure equation in

cartesian coordinates then becomes

P

xx + pyy = - St + 2(uxvy - uyvx)

2
+'§g[ux(uxx + uyy) + ”y(vxx + vyy) (5.4)

+ uxxux + uxy(uy + vx) + pyyvy]

Equation (5.4) is an elliptic partial differential equation (PDE)
that establishes the instantaneous relation between pressure and veloc-
ity everywhere in the fluid. Representing a linear combination of Eqgs.
(2.17) - (2.19), it is a restatement of conservation of mass, contin-
gent upon conservation of momentum. Ideally it should be solved simul-

taneously with Eqs. (2.17) and (2.18), but the approach taken herein is
24
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to solve the momentum and pressure equations separately. The vector
momentum equation is of the parabolic type, and the approximate-
factorization algorithm described in Chapter IV is currently the most
efficient technique available for parabolic-hyperbolic PDE's. On the
other hand, the pressure equation is elliptic and is unsuited to the
method of Chapter IV because it lacks a time derivative.

5,3, The Pressure Equation in Curvilinear Coordinates

Since Iq. (5.4) is an auxiliary constraint and not a conservation
equation per se, some leeway is admissible concerning its transformation
to curvilinear coordinates. Accordingly, the left-hand side is ex~
pressed in geometrically conservative form (section 3.2.), but the
right-hand side is expressed in geometrically nonconservative form,

using the chain rule. The resulting equation is:
32 lip, + X 1+ =[Xp, + 2p 1)
CLA n" g n

= = St + 2(uxvy - uyvx)

(5.5)
2 ,
+ Re[ux(uxx 4 uyy)v+ uy(vxx + vyy)
+pu t uxy(uy + Vx) + vyyvy]
where
coe Lep2 4 p2 :
X =S n +En) (5.7)
JVx 'k y'y '
7 = L2 2 '
Z J(nx + ny) - (5.8)

and the derivatives on the right-hand side of (5.5) are evaluated as

follows

25
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£, = Exﬁg + nxfn (5.9)

fy - Eyfs + nyfn (5,10)

Fax = Sl * Ml (5.11)

Ly = 2Ey (8D, + (8 + I ENCOR (5.12)
fyy - gy(fy)g + ny(fy)n (5.13)

Note that Eq. (5.12) is written such that £ = £ ,
Ry yX

5.4, Temporal Discretization

Using a two-point backward-difference approximation for the time
derivative,+

n+l - 5n+1‘_‘6n

Gt At

+ 0(at) (5.14)

the desired velocity field (u,v) at time level "n+1" must satisfy con-

tinuity, i.e.,

6n+1 -

0 (5.15)
Due to numerical error, however, s" 1s never precisely zero. Thus the

two~-point backward-time approximation for Eq. (5.5) is

t Strictly speaking, a three-point (second-order) expression should

be used to restrict the truncation error to 0(At2), as in Chapter IV.
This, in fact, was the original approach., After some computer experi-
ments, however, it was found that the first-order pressure equation is

much more stable, making truncation-error considerations academic.
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- Qi o ntl
et 2(uxvy - uyvx)
Re[”x e T u, ) e My (v + Vyy) (5,16)

. v . Wy ol
Tl Uy “xy(uy+ Vx) + uyyvy]

+ 0(AtL)

In order to solve Eq. (5.16) for pn+1, the velocity distyibution

(u,v)n+l must be known, Noting that

G o G ocae) (5.17)
VLGP o) (5.18)
The velocity distribution (u,v) can be substituted for (u, v)m'1 in

Eq. (5.16), prescrving the instantaneous truncation error 0(At).

5,5, Spatial Discretization

As in Chapter IV, the viscosity i is regarded as a slowly varying
functdion of time, so that “n+1 £ un. Using central-difference approx-
imations for the spatial derivatives (Appendix A), the difference

equation representing Eq. (5.16) is

" n+l > ntl ikl ~ nl s nt+l
AgPict g * BygPly * CygPivns * PagPigon * Bagfh g
o n+l * ol s nt+l » nt+l
igpi+l,;]+l tH Py s T RegPan g-1 B Paen, g1 T Ty
where
A 1 W
Byy = <3 Wya1,5 i+l_,j) (5.20)
27
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B, = -J,. (W + W + 2 +7 .
13" T Ty Mo,y P Van,g Y B o A ) (5.21)
¢ =L1 (3 + W, L) (5.22)
19 " % J13 40,5 F Wi,y -
A - -L A » -
Dyy = g Ty (32 4y + 2y g0 (5.23)
~ 1 ~ Fal
By =7 T4y %y go1 + 24 400 (5.24)
- _ _l; A A
Gy =% T3y Ry 5+ Xy g4 (5.25)
Hij = -7 Jij(xi-l,j + xi,j+1) (5.26)
Ky = = 5 945Gy + Xy go) (5.27)
LR R, e |
Lis =% 915 Ri1,5 + Xq,5-0) (5.28)
andT
én
='_ii n.on_n._n

Fij At + 2(ux Vy uy vx)ij

T SRS CANE S (5.29)
Pet % Txx Yy XX yy

., n n n ,n n n _n

+ Mo Uy + uxy(uy + Vx) + uyy vy]ij

The x~- and y-derivatives in Eq. (5.29) are evaluated using Eqs. (5.9) -
(5.13), and the £~ and n~- derivatives appearing therein are calculated

numerically from Eq. (A.1).

1+ Note that the quantity Sij represents here the divergence of velocity
evaluated at §=i, n=j, and is not to be confused with the Kronecker

delta used in Eq. (2.1).
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5.6, JTterative Solutdion

. Equation (5.19) represents a set of N linear equations in N un-

ntl

knowns (pij ), where N is the total number of finite-difference node

points in the flow field, For large N, direct solution is impractical

and inaccurate, leaving indirect (iterative) methods as the more viable
k class of alternatives. Of the latter, successive over-relaxation by
lines (line SOR) has been chosen as the mefhod of preference, because
it converges rapidly for elliptic equations with both Neumann and

Dirichlet boundary conditions (see Chapter VI).

T
e iad

Dropping the superseript "n+l" and replacing it with "(m)", to de-

‘ note the mEll iteration, the following equation is solved on each line

of constant £ (constant i):

A ~ * ~ *

»' :
3 | " DygPy g1 7 BigPiy 7 BygPy

(m=1) , & (m~1)
14P4-1,5 F Ci3Pit1, ]

= - Fy A

(5.30)

~(m-1) o (m-1)

, | F P, g1t HigPao, el

(m-1) > (m-1)

+ K * Ly gPity Sl

R A
| 13P4+1, 3-1
Equation (5.30) actually represents a set of linear equations for the

0 ,
value of p;j at each value of j. The matrix operator for the left-hand

r side is point tridiagonal, so that Eq. (5.30) can be solved directly

. %
* using the Thomas algorithm. Once the values of p;j have been found on
a given &-line, the values of pi?)are calculated from
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(m) _ % (m-1) .,
Pyy" = wpyy + (1 - wlpyy (5.31)
where the acceleration parameter w must lie between 0 and 2 for con-
vergence,

The foregoing procedure is repeated for each g-line in succes-
sion, until the entire field has been swept. One sweep of the field

constitutes a single iteration of line SOR.
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CHAPTER VI

INITTAL VALUES AND BOUNDARY CONDITIONS

6.1. General Requirements

In order to obtain a unique solution for a system of partial dif-
ferential equations, it 1s necessary to specify certain initial and
boundary values for the unknown functions and their derivatives, de-

pending on the type(s) of equations involved. In particular, for the

incompressible Navier~Stokes equations, the initial velocity and pres-

sure distributions must be given, and the velocity (or a spatial de-

rivative thereof) must be specified on the physical boundaries at all
times.

The no-slip condition for viscous flow sets the relative velocity
at zero on all fixed impermeable boundaries (in this case the airfoil

surface). Freestream velocities may be specified at will, subject to

conservation of mass and momentum.

There is no self-evident boundary condition for the pressure, nor
is one required’in the strict sense. In fact, the pressure can be elim-
inated entirely by using a stream-function/vorticity formulation in two
dimensions [11]. Nevertheless, when the primitive variables (u,v,p)
are retained in the Navier-Stokes equations, and a Poisson equation is
to be solved for the pressure, then a pressure boundary condition is re-
quired, |

6.2. Freestream Boundary

Ideally, the freestream (inflow/outflow) boundary lies an infinite
distance from any obstacles in the flow. On a computational grid,

"infinite' means Zar enough away that their effect on the flow is weak.
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Here a freestream velocity or a freestream pressure gradient can be
specified (one implies the other due to conservation of momentum) and
the flow 1s usually presumed to be inviscid., When the upstream con-
dition is that of uniform flow, it is customary to hold the velocity
and pressure constant on the inflow boundary. On the outflow boundary,
either the flow variables or their gradients may be specified.

6.3. Gradual Start

The inflow is accelerated from zero to its final velocity
(Ig]m = 1) by imposing a uniform body force on the entire flow

field. During this phase, the inflow velocity is given by

= fgdt (6.1)

~on 2

and the outflow boundary condition is

(nevy), = 0 (6.2)
where n ~ is a vector normal to the outflow boundary. The freestream
pressure condition is

Vp,s 0 1 (6.3)

and g is a vector of uniform magnitude and direction, so that

-~

Veg = 0 (6.4)

Thus the pressure equation (5.5) is unaltered by the presence of g .

When the acceleration phase is complete, the body force is of course

g=0 (6.5)

~

32

5,

BPRCIF R

RO i o S

SSERIER 2 SO Rk M T A Y B S SEARTE IR SR .




]

Since the freestream boundary is far from the airfoil, Eq. (6.3) can be

replaced by the condition
p, =0 (6.6)

The inflow velocity condition after the gradual start is
u, = cos a (6.7)
v, = sin a (6.8)

where o is the angle of attack.

The body force is equivalent to a freestream pressure gradient
acting on the fluid, and it can be treated as such, both analytically
and computationally. Thus the flow could be accelerated by adding a
static pressure gradient to the right-hand side of the momentum
equation. In any case, the body force influences the field pressure
through the pressure boundary condition on the airfoil surface, regard-

less of the interpretation.

6.4. Pressure Boundary Condition
The no-slip condition requires that u = 0 on the body surface, so
that the normal component of the momentum equation (including the body
force) reduces to the nonconservative form
0e9p = ne (g + == 92u) (6.9)
- DM T Re VW

This equation is simplified further by the boundary-layer approximation,

B-Vp -] g-g (6.10)
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which eliminates the coupling between the pressure boundary condition
and the velocity field.’

In curvilinear coordinates, the airfoil surface is a line of con-
stant n, and Vn is a vector normal thereto. Thus Eq. (6.10) is equiva-

lent to
VneVp = g+Vn (6.11)
Using the chain rule to expand Vn and Vp, Eq. (6.11) becomes
Eeny + 60 )P, + (02 4 n2p = ng + e, (6.12)

where 8y and g, are the x~ and y~-components of ge

Equation (6.12) constitutes a Neumann boundary condition for the
pressure on the body surface. In order for the line-SOR calculation of
the pressuve to converge, Eq. (6.12) must be incorporated into the dif-
ference equation (5.19) evaluated either on’the body or one line off
the body. As Roache [li] emphatically points out, it is insufficient
simply to extrapolate the body values from the field without first mod-
ifying the coefficients in Eq. (5.19), subject to Eq. (6.12). The most
straightforward approach, eliminating the need for extrapolation alto-
gether, is to evaluate and solve the pressure equation on the body

simultaneously with that in the field.

1+ ALl attempts to use Eq. (6.9) as the pressure boundary condition
led to divergent pressure solutions, apparently because the pres-

sure and velocity calculations are not done simultaneously.
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Letting the n-line for j=s represent the airfoil surface, and
using central-difference approximations (Appendix A) for pg and pn in
Eq. (6.12), the {following expression is obtained for Py o1}

»
(Eng + Egny)

2 2
(nx + ny)

Py g1 " Pier1 ¥ " (Pygy,s ™ Py1,e)
(6.13)

- 2.8, Y

2 2
g + ny

Using first-order one-sided difference approximations (Appendix A) for
the n-derivatives in Eq. (5.5), and combining the result with Eq.

(6.13), the difference equation for the pressure on the body reduces to

- n+1 " n+l |, 2 n+l
ArsPicl,s 81 s Pis T Cis Pitl,s
(6,14)
o ntl . nt1 - n+l o
By o PyLstl T Ci,s Pitl,ser T Bis Pil, skl T FiLs
where
R = l{sﬁ + & ) + 1»(% + ﬁ )
i,s 4 " 'i-1l,s i+1,s 2 *i-l,s 1,8
(6.15)
+ £ N A
) (Exnx}} yny)/Z .3 )
2( 2 4 n2) ‘*i,s i,5+1
nZ + 2
Bis ™™ Wypy o ¥ Wiy ot 22 o) (6.16)
¢, =Lew +U ) - ax + %)
1,5 = 54,8 T Mi-1,s” T 2VALL,s T M,
(6.17)
E.n, +E0n.) N
A xz yzy (Zi e ¥ 2 s+1)
N f R 1]
2(nx + ny)
Ei,s = ZZi,s+1 (6.18)
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ai.s "%(§m+1,s * ii,s+1) (6.19)
H,  =-Lx . +X ) (6.20)
i,s 2'7-1,8 1,8+l
and
Fi,s = (nxgl - nyg‘?‘) (ii,s + 2i,s-i-l) (6.21)

2 4 2
(nx + ny)

Note that 6: has been set equal to zerxo on the body.

6.5. Re-entrant Boundaries

Re-entrant boundaries occur wherever a branch cut is made in the
physical plane (Figure 1). Velocity and pressure and gradients there-
of must be continuous across these boundaries, so the re-entrant bound~-
ary conditions are periodic in the transformed plane. To avoid extrap-
olating these boundary values from the field, the physical variables on
both sides of the cut are calculated simultaneously. That is, two
£-lines that meet on the cut represent a single £-line as far as the
solution algorithms are concerned, and the n-direﬁtion matrix inversion
1s continuous across the wake.

6.6, Trailing Edge

The body-fitted coordinate system shown in Figure 1 is of the
C-type or wake type, in’which the n-lines begin and end on the outflow
boundary.* If the airfoil surface coincides with the line n=s, then the
two points £=£ and &=t occur at the trailing edge, and the re~-entrant

segments are defined by £ £ & and £ 2 r along n=s.

1+ As opposed to an O-type coordinate system, in which the

n-lines are closed curves.
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At the trailing edge, which is a sharp point in the physical
plane, the surface-normal vector (Vn) is discontinuous, making the
pressure boundary condition (6.11) also discontinuous. This singular-
ity is peculiar to the C-type coordinate system rather than the flow
itself, and it can be circumvented on physical grounds.

The no-slip condition implies that there can be no unbalanced
force on the fluid at the trailing edge. Neglecting the viscous stress,
as in section 6.4., the projection of the momentum equation in an ar-

bitrary direction T reduces to
T°Vp = Teg (6.22)
If t is tangent to the re-entrant segments at £=% and £=r on n=s, then
the pressure boundary condition at the trailing edge becomes
Py = J'l(nyg1 - n.8,) (6.23)

as £+ _ and g*p+.

Computationally, the following substitutions are made in the

line-50R equation (5.30) at the trailing edge.
P = p + 2 g - n.s,) (6.24)
2+l,s &=l,8  J 'yl x°2

2
p’r—l,,'s pr+l,s - ‘J'(T]ygl - nxgz) (6.25)
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CHAPTER VII

COMPUTATIONAL ADJUSTMENTS

7.1. Turbulence Model

3: Baldwin and Lomax [14] have formulated an algebraic turbulence |
r' model for separated flow, which is used herein to include the effects
of small-scale eddies in the Reynolds-averaged Navier-Stokes equations.
This model generates an eddy viscosity o > 0 such that the nondimen~-

sional physical viscosity becomes
W= L4, (7.1)

and My ™ 0 on the body and in the freestream. Transition is set at the
' point of minimum pressure on either side of the stagnation point, with
. the turbulence propagating downstream into the wake.

7.2, Artificial Viscosity

| “ Space-centered differencing leads to algorithms that are algebraic-
ally convenient, second~order accurate, and unfortunately susceptible

r u to dnstability, especially at high Reynolds number. Some form of arti-

ficial dissipation is usually needed to diffuse spurious oscillations,
even with fully implicit methods. This task is accomplished herein by
adding an extra viscous term to the (nondimensional) right-hand side of

) Eq. (2.12); specifically+,

L D S TP R |
| _ LHS(2.12) = RHS(2,12) + 3= ij(axj + a"i) (7.2) h

The additional term is the same as the wviscous term in (2.12), but with

1+ Equation (7.2) uses the Einstein summation convention and the {

| : cartesian coordinates of Chapter II.
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u=1 and Re replaced by the artificial Reynolds number [15],
fdefined by

1 E’V‘gl
i 7.3)

where € > 0 and J is the Jacobian of the coordinate transformation,
given by Eqs. (3.16) and (3.18).

Ideally, the artificial viscous term should vanish wherever the
caleulated flow satisfies continuity. The main advantage of (7.3),
however, is that it behaves like a switched filter, turning on wherever
instabilities are most likely to arise., For situations in which V.u

varies sharply aecross the field, an extended definition of Ra is

1 (E'V'El
'ﬁz = J ) ava (7-4)

where the subscript "ave" indicates a three-point average in the di-

rection of sharp variation. In either case, the additional term in
(7.2) introduces both implicit and explicit artificial viscosity into
the approximate-factorization scheme discussed in Chapter IV.

7.3. Pressure Smoother

The primary source of instability in the calculated flow is the
pressure equation, Regardless of the method of solution or the degree
of convergence, the right-hand side of the difference equation (5.19)
contains only information from the previous time step. As a result,
numerical oscillations in the velocity field are fed directly dinto the
pressure equation, worsening the situation with each time step.

Viscosity, either real or artificial, dissipates oscillations in
both pressure and velocity. The need for artificial viscosity can, how-

ever, be reduced somewhat by smoothlng the right-hand side of the
' 39
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f i pressure equation. Moreover, a three-point average in the direction of
N sharp variation improves results considerably. Specifically, Eq.
(5.19) is replaced by
% »
_ _ = L
o LHS(5.19) 4(Fi+1,j + 2F1j~+ Fi—l,j) (7.5)
= which is more or less equivalent to the addition of a term proportional
‘ to "p in the pressure equation.
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CHAPTER VIII
COMPUTATIONAL RESULTS

8,1, Coordinate System for NACA~663018 AMrfoil

Thompson [15] has generated a body-fitted curvilinear coordinate
system for the NACA 663018 airfoil, based cn an assumed Reynolds num-
ber of 100,000, This coordinate system, shown in Figure 2, is suitable
for calculations at Reynolds numbers within an order cf magnitude or so
of 100,000, If Re »> 100,000, the flow resolution in the viscous region
will be poor, because the mesh spacing is not fine enough next to the
body, On the other hand, if Re << 100,000, round-off problems may
arise because the mesh spacing is too fine, The transformed plane is
a 113 x 51 rectangular grid with unit mesh snsuing.

8.2, Computational Parameters

In all the calculations reported below, the time step is fixed at
At=0,01. The gradual start consists of 100 time steps of uniform accel~

eration, with the x and y body~-force components given respectively by
gy = cos a
8y = sin o

After the first 100 time steps, at t=1,00, the calculation is stopped
and then restarted with the initial condition Au = Av = 0. Since a
three-point backward time difference is used in the AF momentum solver
(section 4.2.), the restart is necessary to avoid overshooting the val~
ues of Au and Av at »=1.0l. Had a nonlinear (e.g., cosine) acceleration
been used, the stop and restart would be unnecessary, because the body

force'would be a continuous function of time. As it is, the body force
41
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for the limear start is a step function, discontinuous at t=0,0 and
t=1.0.

The number of lterations in the line-SOR pressure solver is
fixed at thirty per time step, with the acceleration parameter set at
w=1,85, Thirty iterations are probably more than necessary, although
stability does improve slightly with the iteration count. Reducing the
number to twenty degrades stability and convergence only slightly;
further reduction to ten or fewer seems to promote instability, due to
poor convergence. The w-value of 1.85 is not necessarily optimal, but
rather the result of some experimentation. Values from 1.8 to 0.0
lead to increasingly slower convergence, while the optimum seems to lie
somewhere between 1.8 and 1.9,

‘The artificial viscosity coefficient can be set at any value ¢20,
depending on how stable the undamped calculated flow is. Since this
parameter alters the local Reynolds number (section 7.2.), it is de-
sirable to keep the value of ¢ as low as possible. The pressure
smoother (section 7.3.) is used in all calculations, since it does not
add any fictitious terms directly to the momentum equation, nor does it
affect the spatial truncation error.

8,3, Results for Re = 1000 and a = 6°

Even though the coordinate system (Figure 2) was designed for
Re = 100,000, it is worthwhile to make a calculation at low Reynolds
number, without including the turbulence model and the artificial vis-

cosity. The object here is to examine the qualitative behavior of the

predicted flow field in the absence of artificial stabilizing mechanisms.

The results presented in Figures 3 - 12 were obtained for the con-

ditions
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Figures 3 ~ 6 show sequentially the cvolution of the prassure distrlpu=
tion along the nirfoill_.'b Downstream of the leading edge, the prgssure
on the lower (windward) suvrface gradually falls, while the pressure on
the upper suvface geadually wises. At t=3,0 the two distributions have
begun to overlap, with the point of intorsection moving upstream to
x~0.5 by t=4.0.

Figures 7 = 12 dllustrate the development of the veleelty fioeld
between t=2,0 and t=4.0, Avound the leading edge (Figuves 7 and 8),
there Is harvdly any change in the veleclty profiles. Morcover, exani=
natdon of the entive flow fdeld (Figures 9 and 10) reveals little
change except near the tratling edge (Figures 11 and 12). Here, a vor-
tex Just beginning to form at t=2.0 has grown considerably by t=4.0.

The caleulation was terminated at t=4.3, due to instability asso-
clated with the tralling-edge vortex. A rvestart could have been dniti-
ated at t=4,0, with avtiflelal viscosity added for stabilization, but
this scemed unwarranted. The information generated for t<4.0 gives an

adequate picture of the flow at low Reynelds number; and the dnstabdl-

ity is probably due to the wmesh spacing, which is wuch too fine.

T The leading edge coineddes with x=Q, and the trailing edge with x=1,

The pressure coefficiont G, is defined by Lo h
v d p 1 ua .
FoUL
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8.4. Results for Re = 40,000 and & = 0

Mueller [16] has conducted wind-tunnel tests of the NACA 66,018

airfoil at Reynolds numbers from 40,000 to 400,000. In order to eval-

uate the applicability of the combined AF/SOR scheme for real flow
problems, calculations have been made for comparison with Mueller's
y\ data, The computational results presented in Figures 13 ~ 34 were ob-
tained for the conditions

Re = 40,000

e =1, t=5 1.0

e =10, t » 1.0

T ey e ey v e vy

o = 0° and 6°
Trial calculations with e€=0 became unstable around the leading

’ edge at t~0.8, With e=1, stability problems developed in the wake,

T R T T e

near the trailling edge, at t=1,8. Thus, to maintain stability for
Re = 40,000, it is necessary to increase the artificial viscosity coef-
ficient from 1 to 10 when t>1l. Furthermore, to keep the flow
well-behaved in the wake, it is advisable to activate the turbulence
model prior to t=3.0,1

: ‘ v The computation for a=0 (Figures 13 - 23) was executed from t=0.0

Y

to t=2.0 with p, = 0. The turbulence model was activated at t=2,01,

T
and execution continued until t=5.0 (a total of 500 time steps). The

combined eddy/artificial viscosity kept the flow orderly, and no

4+ Since the turbuilence model increases the local viscosity, it has a

stabilizing effect on the flow, especially in the wake. As a result,

the turbulence helps to suppress the development of unstable trailing-

edge vortices of the kind discussed in section 8.2. (Figure 12).
44

ap ; , o B : L e
&Qﬁ&ﬁﬁ s o " - e rbmi o i o T TR AT R PRI




@
:

—

T

SN R

T W e e—— o p—

Y SR

il

F Y 1 T

A S T .
W PR Y

instabilities were apparent when the calculation was finally stopped.

Figures 13 - 17 indicate the change in the pressure distribution
between t=1,0 and t=5.0, The calculated variation of Cp is symmetric
along the airfoil (as it should be), and the pressure drop at t=3,0,
between x=0.8 and x=1,0, is precipitated by vortices at the trailing
edge (Figure 22). These vortices have begun to damp out by t=5.0,

The agreement between the computed Cp and the wind~tunnel data is
good everywhere except near the leading and trajiling edges. Further
calculation would probably eliminate the discrepancy at the trailing
edge, since the computed pressure seems to be falling there with time.
The leading-edge problem may be {he dndirect result of continuity vio-
lations and artificial viscosity, via Eq. (7.4) ,* and might or might
not be corrected by additional. computation.

Figures 18 — 23 show the change in the velocity field between
t=2,0 and t=5.0. For the most part, the viscous layer around the body
is unrealistically thick, with separation occurring at center chord
(Figure 19)., This is unavoidable with the AF/SOR method in its pres-
ent form, since it is caused by the artificial viscosity, which is nec-
essary for stability at high Reynolds number.

At t=2.0 the leading-edge velocity profiles (Figure 20) are
well-behaved, though getting thicker in the x-direction, By t=5.0.,
the prbfila shapes (Figure 21) have begun to alterhate somewhat, due to

the variation of the artificial viscosity along the body. This

t Experimentation with the AF/SOR method has indicated that the greater
the penetration (continuity violation) around the leading edge, the

gentler the pressure gradient there.
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alternation could be the harbinger of trouble for t> 5.0, but the
velocity and pressure distributions are still symmetric and quite
stable at t=5.0,

8.5. Results for Re = 40,000 and o = 6°

The computation for a=6° (Figures 24 - 34) was executed from
t=0.0 until t=5,0, with the turbulence model activated in the second |
time step (t=0,02). No instabilities were encountered, nor were any
apparent when the calculation was terminated.

The evolution of the pressure distribution along the body
(Figures 24 - 28) is qualitatively the same as for Re = 1000, In this
case, however, the slopes are steeper, and the overlap for the upper ‘
and lower surfaces takes longer to develop. Comparison with the
wind-tunnel data in Figure 28 shows the computed curves to be mysteri-
ously displaced from the experimental curves, but with the same general
shape, including the double overlap. Moreover, in Figures 28 and 17
alike, the calculated pressure distributions appear to be right-shifted
from the experimental results. In the 6-degree case, the shift may be
due to poor resolution of the calculated minimuim pressure on the upper
surface near the leading edge.

Examination of the velocity field (Figures 29 and 30) reveals
substantial change between t=2.0 and t=5.0. The upper- and
lower-surface separation points, located respectively at x= 0.6 and

x= 0.8 when t=2.0, have moved upstream to x=0.3 and x= 0.7 by t=5.0,

The leading-cdge velocity profiles exhibit a gradual thickening

(Figures 31 and 32), and vortices have developed at the trailing edge
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by t=5.0 (Figures 33 and 34). As in the calculation for a=0, the
viscous layer is much too thick around the body.

8.6. Other Calculations

Prior to making the calculations for the 663018 airfoil, a great
deal of personal effort and computer time was invested in calculations
for the NACA 64A010 airfoil at Re = 2,000,000, using a coordinate
system generated by Cooper [8]. In fact, most of the developmental
work for the AF/SOR scheme was done with the 64A010 airfoil.” To main-
tain stability with this coordinate system and Reynolds number, how-
ever, the required values of € were 10 during the gradual start and 100
thereafter. In other words, the amount of artificial viscosity needed
for Re = 2,000,000 was an order of magnitude greater than that for
40,000, making the viscous regilon about three times thicker at the
higher Reynolds number.

The stability proble& is probably related to the coordinate geom-
etry, specifically to the mesh spacing. Equation (3.11) determines the
n-line spacing next to the body; so if Re increases by two orders of
magnitude, the spacing decreases by one order of magnitude., It is com-
mon knowledge that, for explicit methods, the maximum stable time step

decreases with the minimum finite-difference cell dimension. The same

+ The AF/SOR method, as it now stands, represents the last of three at-
tempts to construct an approximate~factorization algorithm for incom-
pressible flow. The first two versions, while invaluable from an ex-

periential standpoint, produced little in the way of communicable re~

sults.
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1s apparently txue for implicit/explicit methods such as AF/SOR, but
the relationship is more difficult to quantify, In either case, it
seems that more viscosity may be needed for stability when the mesh
spacing is reduced with the time step and Reynolds number fixed. Ad-

ditional calculations are needed to verify this for AF/SOR.
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CHAPTER IX
CONCLUSION

9.1. Discussion

The combined AF/SOR algorithm is implicit in its solution of the
momentum equation, but explicit in the sense that the pressure/
continuity solution is lagged in time. As a result, the method is far
less stable than the compressible-flow AF scheme of Beam and Warming.
For a time step At = 0.01, the maximum practical Reynolds number is
probably around Re = 10,000, if the artificial viscosity is to be kept
tolerably low (¢ < 1), Furthermore, since stability may depend on
mesh spacing as well as viscosity, the body-fitted coordinate system
should be generated for the Reynolds number‘in question or for a lower
value, but not a higher. Increasing the Re-value in the coordinate gen-
eration (section 3.1.) reduces the mesh spacing. This, in turn, de-
mands more artificlal viscosity for stability, which contaminates the
numerical results. Since truncation error is preferable to instabil-
ity, it seems advisable to keep the mesh a little on the coarse side.

By way of comparison with conventional implicit methods, point-SOR
calculations can be stabilized at Re = 10% with g=1 and At=0,01.
Thus, at high Reynolds number, point SOR (or some other fully implicit
method) is required for incohpressible flow calculations. On the other

hand, at low Reynolds number (Re < 10%) AF/SOR seems preferable, being

49

e

é




passably stable and faster than point SOR by at least a factor of two.+
Compared with compressible-flow AF calculations, AF/SOR fairs

poorly. Cooper [8] reports a wachine-time expenditure of 4.5 seconds

TTETTRTTRT R e e T SRTEATIERT T

. per time step on the CDC Cyber 203, using the method of Beam and

[ A5

Warming at a freestream Mach number of 0.8 and a Reynolds number of
: two million. The AF/SOR calculations discussed in Chapter VIII aver-
| aged 5.5 seconds per time step on the same computer. While program

optimization could markedly reduce both of these cost figures, the
point is that the compressible-flow algorithm seems to require no more
computer time than the incompressible solution,

‘ In summary, the combination of approximate factorization and line
SOR appears to be suitable only for incompressible flow calculations at

‘ . low Reynolds number (Re < 10%), when used alone. On the positive side,

however, AF/SOR might serve as an initial-guess generator for iterafiVe

methods such as point SOR. It is possible that the latter approach,

employed in each time step, would produce stable high-Reynolds-pumber

solutions in relatively few iterations compared to point SOR alone.

\ | ' t Thirty iterations of line SOR is roughly equivalent to fifty ditera-
tions of point SOR, for a single equation. Ten iterations of the
line~SOR pressure solver takes roughly the same number of operations as
tﬁe AF momentum solver. The net vesult is that AF/SOR, as used herein,
requires between two and three times less work than a 50-iteratiomn

point-SOR solution for u, v, and p.
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9.2, Epilogue

The results presented in Chapter VIII are in some ways disap~-

pointing, but not really surprising. While fully explicit and fully
implicit methods usually have definable (or at least estimable) Limits
of stability, mixed methods can only be evaluated by computational ex-
perimentation. At the outset, one hopes for the best, but in the end
must accept those limitations dictated by the Machine,

Incompressible £low at high Reynolds numbér remains a knotty prob-
lem, requiring expensive, and sometimes questionable, methods of solu- £
tion. At low Reynolds number, AF/SOR offers a means of calculation é
that is relatively efficient. Unfortunately, most engineering problems
involve high Reynolds number, whether they be aerodynamic or hydrody-
namic., Only rarely are calculations needed for molasses or for concen-
trated shampoo.

What is needed is a method that calculates pressure and velocity
simultaneously, but with the same efficiency as approximate factoriza-
tion., A vectorized ADI or SOR scheme$ could meet the simultaneity cri-
terion but would be inefficient, requiring far more than one iteration
per time step for convergence. Perhaps a elever formulation or manipu-
lation of the pressure/continuity equation would allow factorization in

the same fashion as compressible f£low. Except for the method. of Steger

+ That is, an algorithm that inverts a 3 x 3 matrix at each point in
the field to obtain the vector (u,v,p). This‘takes about four.times
as many operations as the’more commonly used approach, which is to cal-
culate u, v, and p in sequencé at each point. The latter method, in

effect, inverts three 1 x 1 matrices.
51
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and Kutler [9], which converges only for the steady state, efforts in
that direction have falled to produce a stable algorithm. Neverthe-
less, the problem is so intriguing, so deceptively simple at a glance,
that it can become an obsession. Fvery day one thinks anew, there

must be a way.

52

R



e R AR SRR L s e SR R DR - - = - Tse

1‘ | 4
o g { r
BRANCH CUT 3,L

Y| a. Physical Plane

Bl
. et A e e e o i B

3,L 3,U

b. Transformed Plane

Figure 1. C-Type Coordinate System

53

e DN Ty T A AR VR . P S 1 T R R R

ik e b ; S o e A . s




Tro3arv 810%99 VOVN lo03 weisks saeurpiosy -7 21an8rg

URIGINAL PAGE IS
OF POOR QUALITY

i e i

w ST s e s R -
ety - v

R - e ot e e

I X %, s e e e~ YT el o o o



A =R e o «1;i!.l,.:iii,!i.,!;esiisi4 ,(., 11;‘ R

’ b
o
i
< L
!
i}
FE
o -
O
o
- " W
@
S ;
(o] H |
-0 [ ] i
) - i
i 1
—m M
b d
@ L
R k.
© 1 W ,.ﬁ
g M
| g - W
. g | ,
, « 2
_ o |
. I ”
v . |
- :
m 2 “M
~§ e |
- K
s ¥
0
[9]
34
3 [=¥]
] o ;,
_ ) |
| o0
2 m
] y e
H 2
3
&0
-4
j<
E
P
* * . - - A "
- - e - - - ———— e —— . -




e e b A e e SR R N

g T T S S e 3 e, Cpeee Y

[
[
k2 o
i *
w, €1
Pt
i

§

[

! »
i

i

JOE

2.0
14
8

2
4

= ) ,
ottt i n b
4 6 8
X
Pressure Distribution -~ Re = 1000, a¢ = 6°, t = 2.0
56
SIS =2 i

0
oA SR pies s

Figure 4.

Ry




Bl CTTREREEL T C T T T T T e ™ “ %?x}ﬁiiaﬁé

g D R o R T e TR . . w . ¥ . . : o LT

AR i s

R

e AR

Pressure Distribution = Re = 1000, o = 6°, ¢ = 3.0
57

s

[N I ST PR YD SURVY SNML IS
ki 4

Figure 5,

i
w
i

- —— e - —— | e g ey -y - PR R -~ e e . e




58

Pressure Distribution - Re = 1000, a = 6°, t = 4.0
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Velocity Field - Re = 40,000, a = 0°, t = 5.0
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APPENDIX A

FINITE-DIFFERENCE APPROXIMATIONS

The difference expressions listed below were useéd in discretizing

the spatial derivatives in the main text (except where otherwise
noted). The grid spacing in all cases is Af = An = 1, Whenever the
forms for the £~ and n-derivatives are identical, only one form is
given. The indices "i" and "j" denote £~ and n-values, respectively,

Second~Order Central Differences:

1.
e =5y - £ (A.1)

£ =f, - 2f +f

A T B L | (A.2)

1 - 4+ 1
WeR) = Wy + Wy Dy =gy F W 8 + g0 ¥ g Ey

(A.3)
) »l‘ - _ v . .
A TR T N TR TSI T AR I DI CRL
: ...}_,- _ _ -
WE) = Z0 g1 Can, g = Fion, g Y51 Fag 0 fi-L,j—l}]
(A.5)
= Ay - - - '
WED L= 05 Caan i ™ Fann gm0 TVaen, 3 Ca e - £i1,5-1]
(A.6)
First-Order One-Sided Differences:
N P
(an)n = 2(32j+1 ‘j)fj+1 2Zj+1fj
(A7)
L,
+ 2(2j+1 + Zj)fj—l
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APPENDTX B
A DIFFERENCING PROBLEM
Cooper [8) points out that the same type of differencing should
be used in the flow calculation as in the numerical calculation of the
metric coefficients, For example, 1f central differences are used to
calculate gx and gy , then the same should be used for “g and Vg , and
so on.
An additional problem has been encountered with respect to the
'? viscous terms. Consider the two possible central-difference expres<
! sions for (Zu_ )
! N n
!
|
» \ = A -
A (Bug) = gLy gy = Gupdy gl
Y
X 1 .
s =702 50 T By ge0Y g
(B.1)
j‘ IR RRULT
4 1
j 302 5o A 50,31
?
i _ |
: (Zug) = Gy gy~ B0y g
= -:-l-(Z +2, Ju
224,541 T %4,37 71,5+
’ ) (B.2)
=730t P2y T 2y 500y
+-£(Z + Z,.)u
2°%,5-1 7 %437 4,31
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For some reason, Eq. (B.l) works and (B,2) does not. The same
problem applies to (Wug)g and, of course, to similar terms involving
the othar velocity component v,

When Eq. (B.1) is used in the AF momentum solver, without ever
calling the pressure solver, the results ave stable and well-behaved
(though crroneous next to the airfoil)., On the other hand, if Eq.
(.2) is used, especially during the gradual start, oscillations arise
in the veloeitices. This happens with or without the pressure solwver,
and the situatien gets worse if the Reynolds number is redused (just
the opposite of what would be expected).

The reason for the instability with Eq. (B.2) is not clear. The
metric quantities n und Ny use values of x and y at j+!1 aund j-1 but
not at j. It is possible that the coefficients in the difference ex-
pression for (Zun) are restricted in the same way. In any case, the

n
remedy 15 to use Eq. (B.1) , not Eq. (B.2).
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