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ABSTRACT

i

ROBERT S. BERNARD, Doctor of Philosophy, 1981
 r

Major: Engineering, Department of Aerospace Engineering

Title of Dissertation: Approximate Factorization for
Incompressible Flow

Directed by: Dr. Joe F. Thompson

Pages in Dissertation: 92 	 Words in Abstract: 250

Abstract

The technique of approximate factorization (AS S') , as formidlated

by Beam and Warming, is employed for computational solution of the

incompressible Navier-Stokes equations. In each time step, the .AF

algorithm is used to solve the vectorized momentum equation in delta

form, 'based on the pressure calculated in the previous time step. The

newly-calculated velocities are substituted into the pressure equation

(obtained firma linear combination of the continuity and momentum

equations), which is then solved by means of line SOR:

The combined Ar/SOR algorithm is developed for arbitrary curvi-

linear coordinates in two dimensions, but can easily be extended to

three. The coordinates used for computation are the body-fitted coor-

dinates of Thompson et al., generated numerically by the more recent

method of Thompson and Mastin.
4

Computational results are presented for the NACA 663018 airfoil

at Reynolds numbers of 1000 and 40,000 and attack, angles of 0 and f de-

grees. Comparison with wind-tunnel data for Re = 40,000 indicates

good qualitative agreement between measured and calculated pressure

distributions. Quantitative agreement is only fair, however, with the

ii



calculations somewhat displaced from the measurements. Furthermore.

the computed velocity profiles are unrealistically thick around the

airfoil, due to the excessive amount of artificial viscosity needed

for stability.

Based on the performance of the algorithm with regard to stability.,,

it is concluded that AV/80R is suitable for ca1c ,,Jations at Rgynolds

numbers less than 10,000. Speedwise, the method is faster than point

FOR by at least a factor of two.

iii
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4.

§Mt2LS,

NOMENCLATURE

C Pressure Coefficient
p

Dody-Force Vector or Froestream, ProAsura Gradient,
Eq.

j Jaeobian of Coordinate Transformation, Eq.	 (3.18)

P Pressure

q Vactorlzed Vplocity ) Eq.	 (4.5)

Re Reynolds Nomber

t Time

u Velocity Vector, Eq.	 (1.1)

u X-Compone"^'t of Velocity

v y-Compone-.1,t of Velocity

Xl y Cartesian Coordinates

Curvilinear Coordinates

Divergenpo of V, unless stated otherwise

jj Dynamic Viscosi^y

11 T Eddy Viscosity

C Artificial Viscosity Coefficient, Eqi	 (7.3)

a Angle of Attack

w Acceleration Parameter for Line SOR

Su2erscri2.^s

n Time-Stop Index

010 Iteration. Count

t This is a list of symbols that appear throughout the text. 	 Special-

ized symbols and definitions are explained in full wb6rever they are

used.
vii



Subscri2ts

{ ) t Partial. Derivative with respect to t

)X '?art al Derivative with respect to x

) y Partial. Derivative with respect to y

:partial, Derivative with respect to 9

(} Parttal. DerlvatiVe with respect to h

) ij Evaluation of ( ) at finite-difference node point,
4-1 and ►1"j, unless stated otherwise

0 orators

A Time-Increment. Operator, Eq.	 (4.27)

G Gradient Operator

v•u Divergence of u
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CHAPTER I

INTRODUCTION

Since the late 1960's, computational fluid dynamics (CFD;, has

evolved as a distinct branch of fluid mechanics, due to numerous advan-

ces in computer technology and numerical methodology. Now, with the

increasing cost of fuel and hardware and the decreasing cost of elec-

tronic calculation, CFD offers a viable alternative to laboratory

testing. Chapman [1] gives a concise overview of the state-of-the--art

(as of 1979), summarizing its past development as well as its progno-

sis for the future.

Computational solutions of the Reynolds-averaged Navier-Stokes

equations date back to the early 1970's. At first the machine-time re-
Y

quirement was prohibitive, and calculations were restricted to simple

geometries and low Reynolds numbers. These initial limitations were

greatly reduced, however, with the development of improved algorithms

such as MacCormack's rapid solver [2] and effective grid-generation

techniques such as the body-fitted coordinates of Thompson et al. [3].

Further reduction of the machine-time requirement was achieved, when

Beam and Warming [4] and Briley and McDonald [5] independently formu-

lated the technique of approximate factorization (AF).

The AF algorithm is an alternating-direction implicit (ADI) scheme,`

suitable for partial lifferential equations of the parabolic/hyperbolic 	
7

type. Although it requires more computer storage than other methods,

it is also much faster, maintaining second-order accuracy with one iter-

ation per time step. Furthermore, since it is fully implicit, AF is not

subject to the restrictivetime-step limitation that impedes explicit

_.wt"^	 s...a.mamas,.,x.x._:,esm...,..e.J..arw,.,fix.: 'fi r:dY.ado^ai," nm,'kw.•a^u., 	'""`s	 m,.	 r.^rr^w,.t.c.,_ ,,..,.._.__.^.	 -



methods.

To date, approximate factorization has been successfully employed

in a number of applications involving supersonic, transonic, and com-

pressible subsonic flow [6, 7, 8].	 Except for the work: of Steger and

Kutler [9], however, there seems to have been no published calculation

t
for incompressible flow.	 This is not surprising, since the incompres-

^

sible equations of motion are not amenable to the AF algorithm, at

t
least not without some modification.

The spatial ;Factorization used in the ADx scheme requires that

r each of the governing equations contain a time derivative. 	 Unfortu-

nately, the time derivative in the continuity equation is lost in the

j incompressible limit. 	 Steger and.Kutler circumvent this difficulty
s

i

artificially by adding a pressure time derivative to the continuity

equation:

a + RV-u	 0	 (1. 1)

' where 0>> 1 so that V •u + O as the flow approaches the steady state.
1

The calculated transient floc is, however, only asymptotically correct:,

since Eq.	 (1,1) is a fabrication and not a true equation of motion.

Available methods for calculating transient incompressible flow

I

seem expensive and inefficient compared to those for the compressible

case, especially corsidering that the incompressible equations are 	 j
q

_j

It s mp'ler".	 One is forced to choose between explicit techniques, lim-

ited to small time steps, and implicit techniques, requiring many iter-

•

ations.	 The very existence of an efficient.: algorithm such as approxi-

mate factorization prompts one to think that an equally efficient recipe

i

(9̂ 121RBiC e,Nbwk

3
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might be possible for incompressible flow. That ) at least, was the

motivation for the investigation reported herein.

The AF technique will not aecomodate the incompressible continuity

equation without a time derivative. Nevertheless, it is quite appli-

cable for the incompressible momentum equation as long as the Vressure

is specified by some other means. The implementation of separate al-

gorithms for the momentum and continuity equations allows one to take

advantage of approximate factorization for the velocity calculation but

still requires some sort of iterative solver for the pressure. This

also precludes the simultaneous calculation of velocity and pressure,

so that the combined method is not fully implicit.

In order to investigate the utility of a two-phase solver based on

I k

	 approximate factorization, the two-dimensional incompressible momentum

equation + in conservative form is first transformed from cartesian co-

ordinates to arbitrary curvilinear coordinates. The transformed

equation is discretized by means of a three-point backward difference

in time and central difference in space, so that the difference oper-

ator can be factored into a product of two unidirectional operators.

The factored difference equation is then solved in an ADI sequence with

the aid of a direct inversion for each of the two coordinate directions.

Throughout this entire process, 
the pressure is assumed to have been

previously calculated.

A Poisson equation for the pressure is obtained from a linear com-

bination of the continuity and momentum equations. After discretization

t The terms "momentum equation" and "Navier-Stokes equations" are inter-

changeable for incompressible flow.
3



F

with central difference approximations, successive over--relaxation

by lines (line SOR) is used to solve the pressure equation. Line

SQR was chosen as the pressure algorithm because it facilit ates the

implicit treatment of Neumann - boundary conditions.

The body-fitted coordinate system is generated numerically for

a single-elementt airfoil using the method described in Thompson
	

i

and Mastin [10]. Subsequent calculations for the velocity and pres-

sure are executed in the transformed plane t rather than the physical

plane, on a 113 x 51 rectangular grid, with unit mesh spacing. Due to

the one-to-one mapping between the physical and transformed planes, the

recovery and presentation of results in the physical plane is straight-

forward.

A linear gradual start, equivalent to a uniform body force or stat-

ic pressure gradient, is used to accelerate the flow from rest to its

ultimate freestream velocity. At each time step the (explicit) pres-

sure solver is executed first, based on velocities from the previous

time step; . Then the (implicit) AF momentum solver is executed, genet-
1

k	 ating velocity increments for the current time ;step.

An algebraic turbulence model, formulated by Baldwin and Lomax

`	 [14], is employed for calculating eddy viscosity in the Reynolds-averaged
4

momentum equation. In addition, an artificial viscosity, proportional 	 1

to the divergence of the velocity, is appended to the physical viscos-

ity in order to help dissipate numerical oscillations.

{	 The foregoing paragraphs summarize the form and content of the

ATE/SQR method. The questions to be addressed are:`

,.	 4
y

1
U.
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I . is this method stable and accurate for the same !Reynolds
.'	 numbers and time increments attainable with conventional

implicit methods such as point SOR?

R
2. What are its limitations in terms of high Reynolds

number, time-step size, and boundary conditions?

3. Under what circumstances is the method preferable to
conventional implicit methods?

t	 mile answers are given in Chapter IX.

i

!i

4
'	 m

1
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CHAPTER lT

t	 EQUATIONS OF MOTION IN CARTESIAN COORDINATES
1
	

z

► 	 2. 1. Navier-Stokes Equations

Newton's Second Law (conservation of momentum), applied to the

fluid inside an arbitrary material volume V takes the mathematical

form 	 f

!^ t̂ (pui )dV + 
S 

(p ui)U n dS

(2.1)

&(Ei^ - pd
i^)njdS + fpg,dV

V

. Equation (2.1) represents the well-known Navier-Stokes equations in

3 their integral Form.	 The index "i" denotes any of the three cartes an

j directions, x1. , x2 , x3 , and the Einstein summation convention has been

employed for the index ''". 	 The dimensional variables are

p	 _ density

ui	 = velocity

S	 = material surface

r n 	 = unit vector, normal to S

E ij = shear stress tensor

p	 = pressure	
s

d	 = Kronecker delta
ij

gi	= body-force acceleration, due to
gravity, non-inertial coordinate

' system, etc.	 1

The divergence theorem transforms Eq. 	 (2.1) to

6'

i



V

I —(Pu )dV +	 (pu u )dVDt	 i	 DXJ	 i V
(2.2)

t - -RP- + p g
i
 ) dV

V -OX	 ij	 D X^' 

From a computational standpoint, the integral relation (2-2) is prob-

ably the most important of the many possible forms of the Navier-Stokes

equations. In order to achieve a meaningful representation of Newton's

second law, numerical simulations should begin with Eq. (2.2), pre-

serving the integral form as accurately as possible.

Since the volume V is arbitrary, the integral operators can be

removed from Eq. (2.2), leaving only the relation between the inte-

grands, which is

T (OU i + -2— (P ujuj )	 + Ps	 (2.3)
a xi 	 ij	 ax	 i

For an incompressible fluid the density is constant, so Eq. (2.3) tie_

Collies

U
OP

+	 (U u	 + S	 (2.4)ia t	 ax	 i	 ij
i

and Stokes l s Law gives the shear stress as
Du	 ;u

i +
ij 	 xi	 ax

where V is 
the 

'viscosity of the fluid.

At this point it is expedient to nondimensionalize Eqs. (2.4) and

(2.5). Accordingly, the dimensional variables are now replaced by

their nondimensional counterparts:

u 
i	

u 
i 

/UW	(2.6)
A

X	 X /Z	 (2.7)

t	 tUCQ/X	 (2.8)

7



(2.9)

P	 P! (p 11,,2,)	 (2:10)

	

Sit/0-	 (2.11)

The reference quantities are

UO w freestreum velocity

t - characteristic length (in this case, airfoil
chord)

IPM = freestream viscosity

Combining Eqs. (2.4) and (2.5) with (2.6) - (2.11) the dimensionless

Navier-Stokes equations for incompressible flow are

dui	
" "	 ^	 1
	

aui	 au

(u u)	 - -- *	 + --- .. [}a (m +)	 (2.1.2)
1 t	 3x

i
 i	 Oxi	 i Re a

^ 	 axe	 ^xi

where Re is the Reynolds number, given by

pU z
Re a ^^	 (2.13)

Jim

The viscosity is a material constant for incompressible, noncon-

ducting, fluids. It is retained Isere as a variable, however, in order

r	 to facilitate the implementation of an algebraic model for turbulence.

2.2 Continuity Equation	 1,

In addition to the Nav er-Stokes equations for conservation of mo-

mentum, all fluids 'must obey the continuity equation, which expresses

conservations of mass:

apV t dV + f pu^n.dS	 D	 (2.14)	 F
S

a

	

	 Applying the divergence theorem and eliminating the volume integrals as

before, Eq. (2.14) reduces to

*	
+ 8x 

(pub ) - 0	 (2.15)

8
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F

r	 ^
i

r--

A:,

FF..	 .

which, for incompressible fluids, is simply

Ou

0	 (2.16)ax 
i

Equation (2.1+6) is unchanged by the introduction of nondi.mensional

variables.

2.3 Nondimensional Equations of Motion in Two Dimensions

From this point on, all variables used will be nondimensional, and

the circumflex (^) will be dropped from the notation. Identifying x,

y u, v with x 1 x20 u 1 , u2, respectively, the equations of motion for

incompressible flow in two dimensions area

ut + (p + u 2 ) + (uv) y n L2( llux) x + (uu ) y + (uvx) y7 (2.17)

vt + (uv) X + (p + V2)y	 1 [(uuy)X + (pv--)X + 2(uvy) ]	 (2,18)
Y

uX + vy = 0	 (2.19)

Equations (2.17) and (2.18) represent the x- and y- components of the

momentum equation (2.12), and Eq. (2.19) replaces the continuity

equation (2.20). The subscripts x y, and t indicate x-, y-, and t-

derivatives. The conservative form (see section 3.2) has been retained

in (2.17) and (2.18) to preserve the integral relation (2.2) in the

finite-difference algorithm.
i
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CHAPTER III

CURVILINEAR COORDINATES

3.1 Coordinate Generation

Whenever a physical problem is to be solved by analytical means,

one of the first steps is the choice of an expedient coordinate sys-

tem preferably one that will exploit any symmetries and keep the

boundary conditions simple. If a problem yields an exact solution, it

is usually because there exists a coordinate system in which the gov-

erning equations are algebraically tractable.

From a computational standpoint, geometry is equally important.

Moreover, except for some additional bookkeeping, the formulation of

I
	

difference equations is no more difficult in curvilinear coordinates

than it is in Cartesian coordinates. The practical obstacle is the

fact that engineering problems seldom involve shapes for which coordi-
► 	 .

nate systems can be specified analytically. Thus the difficulty is

mainly one of finding or generating a coordinate system with boundaries

r
	 that match the physical boundaries.

Thompson et al. [31 have developed a method of grid generation

whereby coordinate systems can be specified for arbitrary geometries.
3

i	 Consider, for example, an airfoil cross-:section in two dimensions

(Figure 1) The desired curvilinear coordinates, F and n , should bave

the following properties:

1. The coordinates and n must be single-valued functions
of the Cartesian coordinates x and y.

G

2. Extrema in & and p may occur only on the boundaries,or on
a branch cut, where the values of both coordinates are
specified. (In this case n is fixed and varies along

i	
the airfoil surface)

i	 10
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Now it happens that the denir4d properties of r,, and al are the

same 
as 

those of solutions to elliptic partial differential aquations,

with Dirichlet boundary conditions. The simplest of these is Laplace's

equation, which allows the values of it and n to be specified at will

along the boundaries. A more useful equation, however, is Voisson's

equation, which facilitates control of both the mesh spacing and the

cell aspect ratio. Thus lines of constant & and/or 1 can be densely

concentrated in regions where large physical gradients are expected,

In two dimensions, a system of two Poisson equations must be

solved to obtain F,(x,y) and n(x,y)-.

+	
c 

P ( r"	 (3.1)
xx	 yy	 Jc?

	

n + 'n	 = — Ya Q	 (3,2)
xx	 yy	 T7-	 Ic

Depending on their magnitude and spatial variation, the attraction

functions P ( , al) and Q(F can be used to concentrate coordinate

lines about a given point or curve. Since the numerical boundary con-

ditions can be incorporated more accurately in the rectangular ^n-plaue

(Figure 1), it 
is expedient to solve the transformed system of

equations:

	

a 
c 

x 

F - 
U x +	 (a x + Y c 

n

	

x Q)	 (3.3)
t'	 0 g n 	 c nil	

c

	

- 25 y + Y yy P +'Y Y Q)	 (3.4)
c r'C	 c an	 C Tin	 c	 c TI

Although 'Eqs. (3-3) and (3.4) are more complicated than (3.1) and (3#2),

J
computation is far simpler on the rectangular grid. The coefficients

j
in Eqs. (3.1)	 (3.4) are themselves functions of C and fl, given below:

.4



01	 yz 	(3.5)

e c:n + yyh	 (3 G)

Yo, %2+y	 ^

ae " Nyn ^ Ny4 	(3-6)

Equations (3,3) and (3.4) are solved by plaint SOR after the at-

traction functions have been specified, The procedure. for Q is (103;

r(n) - r +	 tl)b	 (309a)d
(^)	 i

Jik	
r +

OCn) W '(i`r )	 (3.9b)

i^

(	
r')	

(3.10)do r	 r

with b cliusen so as to produce a specified value of r"(1).

The first n-line (n=1) represents the body, and r l is .one-half chord	 ar	 ^

length (the radius of a circle circumscribing the airfoil cross-section),

l
The quantity rd is the radius of a circle tangent to the outer bound-

jjary, n=.1.	 In the solution of Eq. (3.2), the effect of Q defined by	
1

Eqs. (3.9) and (3. 10) is to position the lino n-N at a distance roughly

equal to r  - ri from the body.. For the second n-line ( n=2), this is

about 11 of the, boundary-layer thickness for the Blasius flat plate 	 1

solution, i.e.,

i

r'(1)	 r2 
^, r i	 0.01(	 )	 (3.1.1)

R
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3.2 Coordinate Transformation

In Chapter II, the dimensionless Navier-Stokes equations (2,17)

and (2,18) are given in physically conservative form. That is, deriv-

atives such as (u2) x are not expended into the analytically equivalent

f O.'M

(u2)x -- 2uu
x	(3.12)

The reason for this decision is that finite-difference approximations

for the ;conservativo expressions are consistent with the integral form

of the Navier"Stokas equations (2.2), while those for the nonconserva-

tive expressions are not, Roache demonstrates this at length in his

book. [11l. Suffice it here to say that the conservative form is gQf,1-

erally safer for computational works

A similar consideration arises when the Navier-$tokes equations

are to be transformed from cartesian coordinates to .curvilinear :coor-

dnates. if the chain rule alone is used to expand derivatives such as

r

U  ffi F'x uc + n  u	 (3.13)

f

	

	 then the finite-difference equations will be inconsistent with the in-

tegral Navies-Stokes equations, Thus it is important that the trans-

formation rule be geometrically conservative in the sense that Eqs.

(2.17) and (2.18) are physically conservative. The transformation given

below has the Jestred property [S]

Let Al , A2 , A3 be the components of the vector A in cartesian co-

ordinates (x1' '21 x3). Employing the Einstein summation . convention,

the divergence of A in curvilinear coordinates (412 , 3) then takes

the form	
13
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A

DA 	 Mi

axi ' '1 a^i

where

1 
ai

Ai = J axi Ai (3.15)

and J denotes the Jacobiant

a(^1r^2r^3)

	

J . a(xl*x2px3)	
(3.16)

In Chapters IV and V the two-dimensional coordinates xi and 
9i 

are

x l	x1
(3.17)

X2 y	 92 =

and the Jacobian is

i

J =	
4x	 ^y	

= 9
x nY	 Y 

T1 	 (3.18)
nX	ny

Applying Eqs. (3.14),- (3.15), (3.17), and (3.18) in two dimensions, the

divergence of A becomes

aA	 aA	 aA	 DA
1 
+	 2 = J( 

1 +	
2)	 (3.19)

ax	 ay	 a^	 an

where	 l

Al 
J(x 

Al + Cy A2 )	 (3.20)

3	 AZ	
J(nx 

Al + ny A2)	 (3.21)

p

}	 t The Jacobian J is not to be confused with the maximum n-value (p=J)

in section 3.1.

-t
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The x- or y derivative of a scalar is the same as the divergence of

a vector with only one component; for example,

	

ux W J (u^ + vq )	 (3.22)

..	 9xu
U ° i.	 (3.23)

n u
V = x	 (3.24)J

Second °derivatives should be calculated via a combination of the chain

rule (3.13) and the transformation (3.14), as shown in the example be-

low

uxx	 (ux) x 	
(3.25)

(ux ) x	 J[(ux) + (vx) n ^ 	 (3.26)

u

uX	
xJ x	

J ( X u
g + nx un )	 (3.27)

nx
vx = Jux
	

J x ug + nX u)	 (3.28)

C

Note that Eq. (3.13) has been substituted for ux
,
in Eqs. (3.27) and

(3.28), since only the outside derivative in (3.26) need employ the

transformation (3.14) to preserve the integral relation (2.2).
1

i

3

i
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CHAPTER IV

SOLUTION OF THE N4VIER-STOKES EQUATIONS IN CURVILINEAR COORDINATES

4.1. Transformed Equations

Using the transformation (3.14) for an arbitrary coordinate sys-

tem, the x- and y- momentum equations (2.17) and (2.18) can be ex-

pressed as a single vector equation;

2& D+	 A(q) + n B (q) _ a [Wq + xqn] + a[Yq + Zq n ] (4.1)

where

4(x,Y)
	

(4.2)

n = n(x)Y)
	

(4.3)

J = gxny — gynx 4 o	 (4.4)
t
P

	

	
qu
	

(4.5)

llv

 

ra2

(q

A(q) =	
1	

(4.6)

 (q)

r

b1 (q)

B (q ) =

	

	 (4.7)

b2(q)

9	 W =	 w11	 w12	 (4.8)

i w21 W22

X	 x11	 x 12	 (4,9)

x21 x22

Y =	 Y11
	 y12	

(4.10)

Y21 Y22

r

16
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.^ n

^zr A
	

Z	
L11 Z12	 (4.11)

}	 X21 z22

The individual components of the vectors (4.6) and (4.7) and matrices
F

t

(4.8) - (4. 11) are as follows:

a1(9) = '[ gx (p + u 2) +	 yuv] (4.12)i,

_	 a2 (q) = J[ suv + gy (n + v2)] (4.13)

b1(n) = J[ nx (p + u2) + nyuv] (4._14)

b 2 
(q) = J[ nxuv + ny (p + v 2)] (4.15)

w11 = U( 2^X + ^y) (4.16)

w12	 w21	 1^	 y (4.17)

w22	 u(42 + 2 g2y ) (4.18)

x11	 y11	
p, (2g+ Cyny) (4-.19)

x1L = Y21 = u ynx (4.20)

X21 = y12 = P^xny
t

(4.21)

x22 - y22 - U (^Xnx + 2gyny) (4.22)

Z11	 U(2n2 + T1 2 )
4

(4.2,3)

Z12	 Z21 = 11nxTjy
(4.24)

"a'	
z	 = U (n 2 + 2n 2)
22	 x	 y

(4.25)

17



where

x	
u	 Re J	

(4.26)

4.2. 'temporal Uiscretization

Following the procedure of Beam and Warming [4], the momentum

equation (4.1) is now discretized in time. Using the superscript "n"

to denote a particular time step, the time increment of q is

Aqn = qn+1 - q 
	 ( 4 .27)

The 3-point backward-difference expression for aq/Dt is

	

q 
11+1	

3q
	 n	 n-1

	

at ) 	2ot(	
= 3g	

q +	
+ o(ot z)	 (4.28)

Incorporation of Eqs. (4.27) and (4.28) into (4.1) leads to

i	 L

	

6q n 
3 Q
	 3 At[
n- 1

 A(q) + a B(q)]n+i
a

{

i

At{ 	 + xgn]
n+1 

+ an[Yq'g + Zg
n ]
n+1 }	

(4.29)

{
+ o(ot3)

Since A(q) and B (q) are independent of q and qT1 it follows that

r	 8	 DAn+1	 aA `+ Pn6gn + o(ot2)	 (4.30)
a	 a^

r	
asn+i _ aB* + QnQgn 

+ o(^t2)	 (4.31)
an	 an	 n

where
f,.
	

A* = A(qn
	

pn+1)	 (4.32)
t

B* = B(qn
	 pn+1^	 (4.33)

18
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P _ 8A	 P11 (q )	 P12(q)

	

8q	
(4.34)

P21 
(q)	

P22 
(q)

	

BB	 g11(q)
	

g12(q)

and	

a^	
'^ ^	 ^

g21(q)	 q 22 (q)
(4.35)

	

P11(q) = J(2gxu +yv)	 (4.36)

P (q ) _ `Y—	 (4.37)	

j

12	 J
v

I 13 (q ) = J	 (4.38)
21 

a

	

P22 (q ) = 1Q .0 + 2 4yv)	 (4.39)

	

g 11 (q) = J(2q u + nYv) 	(4.40)
i

n
q12 (q) = ,
	

(4.41)

ny

q21 (q) = J
	

(4,42)	
9

t

1

	

q22 (q) _̀ 10 u + 2nyv)	 {4.43)

Now, assuming that 
UT 

is a slowly va—Lying function of time, it is
I,

admissible to replace Eq. (4.29) by

	

Aqn_ 
1 

	
2	 0 n n	 n n	 n n

J	
+ 3 At 

a
[W oq n + x Aq n P Aq ]

3 
At 

; n 	 T1
'^ ZnAgn 	4nAgn]

(4.44)

+ 2 At{ 8 [Wngn + Xngn - A* ] fi 3 
[Yngn + Zngn - B*]}

3	 a	 n	 an	 n

+ o(dt3)

19
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Following Beam and Warming, the cross derivatives are time-lagged

in Eq. (4.44) using the substitutions

a^(XAgn) _ a^(XAgn-1) + 0(4t2 )	 (4.45)

an(Y4q^) a an(YAq - 1 ) + o(At 2)	 (4.46)

The other derivatives of Aq n, 4q nn and Aqn are moved to the left side

of (4.44), resulting in

n- 2!	 n	 n n	 2	 a	 n	 n n
J At sJ(WAq - P Aq) -t aq (ZAgD - Q Aq )

1 : -1 + a At (wqn + Xq* - A*)	 (4.47)
3	 3	 DE	 n

+ ^ At a n
 (Yq* + Zqn B*) + 0(At3)

where

q* = q  + 4q n-1	 (4.48)

4.3. Approximate Spatial Factori zation

After multiplying through by J, the left side of (4.47) is factored

into a product of g- and n- operations, leaving the following sequence

of equations to be solved:

{	 Aq + p((Pn - 
W g)Aq)

3 Aqn-1 + D (Wq	 +,Xqn - A*)

(4.49)
+ Dn (Yq* + Zqn - B*)}

4	 n + Dn ((Qn - ZAq —)Aq ) = Aq	 0(At3 ) (4.50)

where

D	 = 3 JAt a (4.51)
t

2 JAt
a

(4.52)D^
3 an

20
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4.4. Spatial Discretization

Spatial discretization of Eqs. (4.49) and (4.50) is accomplished

by means of the central.-difference expressions given in Appendix A.

After some regrouping of terms, the spatial differencr^ equations rep-

resenting (4.49) and (4.50) take the form;

+ 3Wi_l,j + Wi+l,j ) ^gi-1,j + [z + 
4(W

i-1,3 + i+l1j)^Q ij

_._,

+(Pi+1, j - 3Wi+1 1 j 	 Wi-1, j)Agi+1,j
3 Agij l -(Ai+l,j - A3^-l,,j)-(hi'j+l	 $i'j-1)

+(3Wi-11j+C,i+1,j)gi-l,j-4(W	 +W	 )g +(3	 +W	 )i-1 ►ji+l,jij	 i+1,ji-1,,jgi+l,j

+(3 in	
+ in
	 )qn	4 (Zn	 + in	 )qn + (3 in	

+ in
	 )qn

i,
.̂_

 1	 i, j+1 i, j - 1 -	 i, j - 1 	 i, j+1 ij 	 i, j+1	 , j -1 i, j+

+ Xi+l, j (q i+l, j+1	 q i+l, j-1 ) - Xi-1, j (gi-1, j+l	 q i-1 ► j-1)

"n	
^n	 _ (4.53)

	

+ Y i,j +1 (q i+l,j+1 - qi-l,j+1 ) ^ Yi,j-1 (qi+l,j-1	 qi-1,j -1)

and

	(4i,j-1 + 3Zii,j-1 + zi,j+l)agi,j-1 t [Z + 4(Zi,^-1 	Zi,j+l)]Agij

(4.54)

+(Qi,j+1 - 3Z >j+1
- 

Zi,j- 1 )Agi,j+l	 °qij

where

Pn 3 ,7ij pn (4.55)	
? a

Qn	 At	 n	 (4.56)

^' F	
3 J 

Q
1J

t The subscripts "i"`and "j" are indices for finite-difference mesh

t	 points, with ^=i, n=j, and AC=An=1.

21
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t,

t,
"n	 At	 n
Pi+l,j 

C 
3 JijPi+l,j

Xn

(4.62)

	

Wn . 6 Ji jW;n	
(4.57)

	

At- JijXn 	 (4.58)

	

in s 6 Ji Yn	 (4.59)

in . At

	

6 ijz n
	 (4.60)

1	 0
(4.61)

0

Note that in Eqs. (4.55) - (4.60) the indices of 
Jij 

are held fixed;

e.g.,

r

I

I1I' 4.5.	 ADI Sequence

L	 . Equations (4.53) and (4.54) in sequence resemble one iteration

of an alternating-direction implicit (ADI) scheme. 	 First Eq.	 (4.53) is

solved on each line of constant n (constant J); then Eq. 	 (4.54) is

f' solved on each line of constant g (constant i).	 Actually, Eq.	 (4.53)

represents a set of linear equations for the values of dg ij , where ,j is

specified and i varies from 1 to 
I
	 .	 The same applies to Eq,-(4.54)

t max

for Qq	 but with i specified and j varying.	 In both cases the matrixj ,

operators occur in block-tridiagonal form, and the solutions can be ob-

j, tained directly (i.e., without iteration) using the well-known Thomas

algorithm [8,12].	 Fora known pressure distribution, only one ADI iter-



CHAPTER V

FORMULATION AND SOLUTION OF THE PRESSURE EQUATION

5.1. Conservation of Mass

There often arise situations in which volume changes are neglig-

ible compared with other phenomena. In particular, liquids and eases

flowing at low Mach numbers exhibit essentially the same behavior as

incompressible flow.

From a mathematical standpoint, incompressibility eliminates the

equation of state, which relates pressure, volume, and temperature. As

l

	

	 a result, the thermal and kinetic energies are decoupled, and the flow 	 1,

can be analyzed on a purely mechanical basis, without reference to

thermodynamic effects.

Unfortunately, the incompressible equations of motion are somewhat

inconvenient for computational solution because nowhere does there ap-

pear a time derivative of the pressure. Since there is no direct way

of advancing the pressure in time, an indirect method must be formulated

such that conservation of mass is always satisfied. In this regard, the

continuity equation is a constraint that determines the instantaneous

distribution of pressure throughout the flow field.

5.2. Formulation of the Pressure Equation

t

	

	 Taking the divergence of the momentum equation in cartesian coot-

dinates leads to

t The x-derivative of (2.17) plus the y-derivative of (2.18).

23



.W

f at + pxx + pYY + 
u2 + vy + 2uyvx

b

r R [P (u(v
	

+ v) + P x
(uxx + u) + uy	 xx	

yYyy

0Xy (u
Y 
+ vx) 

+ pYY Y,

where

d	 ux + vy	 0	 (5.2)
;..

In obtaining Eq.	 (5.1), it is assumed that 6=0, but that 6 t00.	 The 6 

is a correction term (ideally zero) recommended by Hirt and Harlow [131. }

Note that Eq.	 (5.1) has been developed in nonconservative form, and d

has been extracted and set equal to zero. 	 Following Roache [11], this 4^

can be taken one step further:

ux + vy	 42	 2uxv
y 	

(5.3).

Combining Eqs.	 (5.2) and (5.3) with (5.1), the pressure equation in

cartesian coordinates then becomes

r	 ,
+ 2(uv	 _ u v

-p	 + p	
_ 8 t 	x

xx	 )
yy	 Y	 Y '

+ Re [ux (uXx + uyy) + uy(v'xx + vyy)	 (5.4)

pxxux 
+ uxy (uy + vX) + UyyvY]

s

Equation (5.4) is an elliptic partial differential equation (PDE)

that establishes the instantaneous relation between pressure and veloc-

ity everywhere in the fluid. 	 Representing a Linear combination of Eqs.

(2.17) - (2.19), it is a restatement of conservation of mass, contin-

gent upon conservation of momentum.	 Ideally it should be solved simul-

taneously with Eqs.	 (2.17) and (2.18), but the approach taken herein is

24



to solve the momentum and pressure equations separately. The vector

momentum equation is of the parabolic type, and the approximate-

4 factorization algorithm described in Chapter IV is currently the most

efficient technique available for parabolic-hyperbolic PDE's. On the

other hand, the pressure equation is elliptic and is unsuited to the

method of Chapter IV because it lacks a time derivative.

5.3. The Pressure Equation in Curvilinear Coordinates

Since Eq. (5.4) is an auxiliary constraint and not a conservation

equation 2er se, some Leeway is admissible concerning its transformation

to curvilinear coordinates. Accordingly, the left-hand side is ex-

pressed in geometrically conservative form (suction 3.2.), but the

right-hand side is expressed in geometrically nonconservative form,
0.

using the chain rule. The resulting equation is:

k

jWpr +_ Xp nI + Tn{xp ^ + Zpn1)

= s t + 2 (uXvy — uyvx)	

(5.5)

r	 + t2 [V (uxx -+ u ) + Py (vxx + vyy)

+ }'x ux + 11 (uy + 
°X) + pYyvY ^

where
1

'J x	 y

XJ( xnx +yny)	 (5.7)
L

Z W+ T12)	 (5.8)
1

and the derivatives on the right-hand side of (5.5) are evaluated as

follows
a,	
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r"

f  
a g 

x 
f 
4 
+ 

nxfn
	

(5 =9)

f  - ryf
4 

+ nyfn	 (5.10)

f= M ^x (fx) + nX (fx)
11

fry = 2L y (fx) + ny ( fX) + ^ ( fy> + nX ^f ,>
n	 n

(5.11)

(5.12)

fYy	 y(fy) + ny(fy) n	
(5.13)

Note that Eq. (5.12) is written such that 
fxy 

tm 
fyx'

54. Temporal Discretization

Using a two-point backward-difference approximation for the time

derivative,

an+1 . a n+1	 n6 .+ 000	 (5.14)
t	 At

the desired velocity field (u,v) at time level.. "n+1" must satisfy con-

tinuity, i.e.,

iw	
6n+1

 _ 0	 (5.15)

	

Due to numerical error, however, ¢ n is never precisely zero. Thus the	 {

two-point bacl ,^ward-time approximation for Eq. (5.5) is

t Strictly speaking, a three-point (second-order) expression should

be used to restrict the truncation error to O(At2), as in Chapter IV.

'Phis, in fact, was the original approach. After some computer experi-

ments ., however, it was found that t:he first-order pressure equation is
x

f
much more stable, making truncation-error considerations academic.

i
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O

:r

J ( [Wp +1 + xp `'' 1 I + 
^a^ .^ n+1^`1 

+ Zp + 1)

n
W At + 2 V - uyvx)n+1

+ Re [,tax(uxx + u y) + 1'y(vxx + v y)	 (5 . 1G)

PXMux + Uxy (uy+ 
vX) + 

14yyyyin+1

+ 0(At)

In order to solve Eq. (5.16) for pn+l , the velocity distribution

(u,v) n+1
 must be known. Noting that

un+1 . 
u  + O(At)	 (5.17)

f	 ^- vn+1 „ v  + 00t)	 (5.18)

i The velocity distribution (u,v) n can be substituted for (vv)n+1 in

'	 Est. (5.16), preserving the instantaneous truncation error o(At).

5.5. S atial. Discretization

'	 As in Chapter IV, the viscosity 1j is regarded as a slowly varyin g

function of time, so that tan'1 °^ tin . Using; central.-difference approx-

imations for the spatial. derivatives (Appendix A), thy: difference

equation representing Eq. (5.16) is

F	 11+1 + L pn+1 +	 pn+1 + D pn+1 +	
pn+1

ij
p 
i^-1, j	 ij ij	 ij i+1,3	 ij i, j-1	 ij i,j+1

(5,19)
+	 pn+1	 + H 

pn+1	 + K pn+1 	
+ L p

n+l	 F
ij i+l,j+1	 ij i 1.,j+1	 ij i+1,j_1	 ii 1 l j-1	 ij

where

Aij	
J j (3Wi_l,j 

+ w^.+j , j)	
(5.20)

2

a



A	 A	 A	 A	 R

B	 — 
Jij (Wi-1, j + Wi+l, j + Zi 	+ z	 )	 (5.21)

	

r j 'l 	 i,j+1

C j 	^i Jij (3W^+lob + W3—1,j 	
(5.22)

	

Dij = 4 1 i (32i,i -1 + Zip j+l )	 (5.23)

	

Eij 
= W Jij (3Z

i,j+l + Zi,j`1)	
(5.24)

Gij	 4 Jij (Xi+`l, j + Xip j+i )	 (5.25)

11i j	 4 Jij (Xi-,j + Xi, j+l
) 	(5.26)

4Kij c 	 Jij (Xi+1,j + Xi>j-1)	 (5.27)

Lij — 4 'lij (Xi- 1 ,j + Xi,j-].)	 (5.28)

and

n
1

F	 _	 + 2(un V  - U  vn)ij	 Qt	 x	 y	 y	 x ij
r:

+ e[px^uxx + uyy) + py(vxx + vyy) (5.29)

I^

+	 ux + uxy (uy + vx) +	 yy vy]ijxx

The x'- and y-derivatives in Eq. 	 (5.29) are evaluated using Eqs.	 (5.9)	 -

(5.13), and the C- and n- derivatives appearing therein are calculated

M-
numerically from Eq.	 (A.1).

t Note that the quantity Slj represents here the divergence of velocity
f

evaluated at g=i, n=j, and is not to be confused with the Kronecker

delta used in Eq.	 (2.1).
Vi
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5.G«	 iterative Solution

Equation (5.19) represents a set of N_l.inear equations in N un- 	 j

n+1
kno%nis (pij ), where N is the total number of finite-difference node

points in the .flow field.	 For large 1, direct solution is impractical

,i
and inaccurate, leaving indirect (iterative) methods as the more viable

class of alternatives. 	 Of the latter, successive over-relaxation by

lines (line SOR) has been chosen as the method of preference, because

it converges rapidly for elliptic equations with both Neumann and

Dirichlet boundary conditions (see Chapter VI).

Dropping the superscript "n+l" and replacing it with "(m)", to de-

note the 
mth 

iteration, the following equation is solved on each line

of constant F (constant i):

A	 h	 n

- Dijr	 j-1 - B
ij p ij' - 

Dijpi,j+l

"	 (m-1) " 	(m-1)
=	 1 ij + Aij pi-1, j + Cjpi+l,,j

(5.30)

(m-1)	 (m-1)
r

+ G+ FIijpi+l,j+l	 ijpi-1,j+l	 I3

(III
	 1)

+ Ki j ^^^	 ,^-	
+	 a j	 X1p. 	

rj- 14	 i

Equation (5.30) actually represents a set of linear equations for the	
i

value of p j at each value of j. 	 The matrix operator for the left-hand

side is point tr diagonal, so that Eq.	 (5.30) can be solved directly

using the Thomas algorithm.	 Once the values of pij have been found on

t)a given ^-ll ne, the values of pa	 are calculated from

t
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pCm)	
wp* + (1 - w) p(m-l)	 (5.91)i3 ^

where the acceleration parameter w must lie between 0 and 2 for con-

vergence.

The .foregoing procedure is repeated for each P,-line in succes-

sion, until the entire field has been swept. One sweep of the field

constitutes a single iteration of line SOR-

r



6.1. General Requirements

In order to obtain a unique solution for a system of partial dif-

ferential equations, it is necessary to specify certain initial and

boundary values for the unknown functions and their derivatives, de-

pending on the type(s) of equations involved. In particular, for the

incompressible Navier--Stokes equations, the initial velocity and pres-

sure distributions must be given, and the velocity (or a spatial de-

rivative thereof) must be specified on the physical boundaries at all

times.

The no-slip condition for viscous flow scats the relative velocity

at zero on all fixed impermeable boundaries (in this case the airfoil,
1

surface). Freestream velocities may be specified at will, subject to

conservation of mass and momentum.

There is no self-evident boundary condition for the pressure, nor

is one required in the strict sense. in fact, the pressure can be elim-

inated entirely by using a stream-function/vorticity formulation in two

i
	 dimensions [11]. Nevertheless, when the primitive variables (u,v,p)

are retained in the Navier-Stokes equations, and a Poisson equation is

to be solved for the pressure, then a pressure boundary condition is re
j

quired.

1	
6.2. Freestream Boundary

r

Ideally, the :freestream (inflow/outflow) boundary lies an infinite

".	 distance from any obstacles in the flow. On a computational. grid,

"infinite" means lar enough away that their effect on the flow is weak.

31

w.,



(UR

Mere a freestream velocity or a freestream pressure gradient can be

specified Gone implies the other due to conservation of momentum) and

the flow is usually presumed to be inviscid.	 When the upstream con-

dition is that of uniform flow, it is customary to hold the velocity
a

and pressure constant on the inflow boundary. 	 On the outflow boundary,

^x
either the flow variables or their gradients may be specified.

63.	 Gradual Start

l The inflow is accelerated from zero to its Final velocity

1) by imposing a uniform body force on the entire flow

I field.	 During this phase, the inflow velocity is given by

uCq
	 jg d 	 (6.1)

r

and the outflow boundary condition is

(n•9u)CO = 0	 (6.2)

where n ., is a vector normal to the outflow boundary.	 The freestream

pressure condition is

l

vp	 U	 (6.3)

and g is a vector of uniform magnitude and direction, so than

r
4 • g = 0	 (6.4)

9

Thus the pressure equation (5.5) is unaltered by the presence of g.

When the accelerationhase is complete, the body force is of courseP	 F	 ^	 y

g0	 (6.5)
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Since the freestream boundary is far from the airfoil, Eq. (6.3) can be

replaced by the condition

Poo = 0	 (6.6)

The inflow velocity condition after the gradual start is

u 
CO 

= cos a
	

(6.7)

v ,
00 - 

sin a
	

(6.8)
,

where a is the angle of attack.

The body force is equivalent to a freestream pressure gradient

acting on the fluid, and it can be treated as such, both analytically

and computationally. Thus the flow could be accelerated by adding a

static pressure gradient to the right-hand side of the momentum

equation. In any case, the body force influences the field pressure

through the pressure boundary condition on the airfoil surface, regard-

less of the interpretation.

6.4. Pressure Boundary Condition

The no-slip condition requires that u 0 on the body surface, so

that the normal component of the momentum equation (including the body

force) reduces to the nonconservative form

n•Vp = n- (g + -L V 2-u)	 (6.9)
Re

This equation is simplified further by the boundary-layer approximation,

TM	 n•Vp	 1 • g	 (6.10)
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which eliminates the coupling between the pressure boundary condition

and the velocity field.t

In curvilinear coordinates, the airfoil surface is a line of con-

stant n, and Dn is a vector normal. thereto. Thus Eq. (6.10) is equiva-

lent to

Vn•4p = g •a n	 (6.11)

i
Using the chain rule to expand Dn and Op, Eq. (6.11) becomes

1

( xnx + ^ ny ) p + W + ny)pn = nx9 1 + nyg 2 	(6.12)

I,

where g l and 92 are the x and y-components of

Equation (6.12) constitutes a Neumann boundary condition for the

l	 pressure on the body surface.. In order for the line=SOR calculation of

the pressure to converge, Eq. (6.12) must be incorporated into the dif-

ference equation (5.19) evaluated either on the body or one line off

the body. As Roache [111 emphatically points out, it is insufficient

Simply to extrapolate the body values from the field without first mod-

ifying the coefficients in Eq. (5.19), subject to Eq. (6.12). The most

straightforward approach, eliminating the need for extrapolation alto-

gether, is to evaluate and solve the pressure equation on the body
R	 ,

simultaneously with that in the field.

{j

	
9

t All attempts to use Eq. (6.9) as the pressure boundary condition

.	 led to divergent pressure solutions, apparently because the pres-

sure and velocity calculations are not done simultaneously.
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g	 Letting the n--line for J oe represent the airfoil surface, and
r 	 »,
e
kk

	 using central-difference approximations (Appendix. A) for p, and pn 
in

f'k

Eq. (6.12), the following expression is obtained for pi's_i.

{fin+^n>

	

xx	 yy
Pi ' s-1 "2pi,s+ +	

02 + n2)	
(pi+l,s _ pi-10s)

x y
(6.13)

2 (nxg l + nyg2)

nX + ny

Using; first-order one-sided difference approximations (Appendix A) for

the n-derivatives in Eq. (5.5), and combining the result with Eq.

(6.13), the difference equation for the pressure an the body reduces to

Ai's pl.-1,s + Bi,s Pi's 
+ C

i,s pi+l,s
(6.14)

+	 n+l + G +l	 + H	 n+l	 _ F
i ' s pi,s+l	 i's pi+l,s+l,	 is pi-1,s+l	 is

where

r Ai,s	 4(3Wi-1,s + 
W
i+l,$ ) + 2 (Xi-i ' s + Xi,$)

(6.15)

Qxnx + ^^)

2(q2 + n2)

(Z i's + zips+l)

Bi ' s	 - (W +l,s + Wi-1,s + 2Zi,s+1) 	
(6.16)

C
i,s - 4(3Wi+l,s + 

Wi-1,$ ) - 2(Xi+l,s + Xi,s

(6.17)

	

+ 
Qxnx + yny) fz	 + z	 )

2	 (n Z + nY)
	

, s+,1

	E's - 2Zi^ s+1	
(6.18)-

i
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G 
,s 

"` 
2(Xi+1, s 

+ x
ir s+l)	

(6, 1 >

11i,s 	 2(xi-1,s + Xi's+1)	
(6.20)

x

and

(n g +n9,) „
Ei,s	

x 1	 y 
2 (Li,s + z)	

(6.21)

W+ ny)

Note that 6 t has been set equal to zero on the body.

6.5. Re-entrant Boundaries

Re-entrant boundaries occur wherever a branch cut is made in the

physical plane (Figure 1). Velocity and pressure and gradients there-

of must be continuous across these boundaries, so the re-entrant bound-

ary conditions are periodic in the transformed plane. To avoid extrap-

olating these boundary values from thethe field, the physical variables on

both sides of the cut are calculated simultaneously. That iR, two

^-lines that meet on the cut represent a single g-line as far as the

solution algorithms are concerned, and the n-direction matrix inversion
r	 {

is continuous across the wake.

6.6. Trailing Edge

The body-fitted coordinate system shown in Figure 1 is of the

C-type or wake type, in which the n-lines begin and end on the outflow

boundary. If the airfoil surface coincides with the line n =s, then the

i

s	
two points ^--t and C=r occur at the trailing edge, and the re-entrant

segments are defined by	 Z and ? r along n=s.

t

j As opposed to an 0-type coordinate system, in which the

rj=lines are closed curves.

36



At the trailing edge, which is a sharp point in the physical

plane, the surface-normal vector (Gn) is discontinuous, making the

pressure boundary condition (6.11) also discontinuous. This singular-

ity is peculiar to the C-type coordinate system rather than the Flow

itself, and it can be circumvented on physical grounds.

The no-slip condition implies that there can be no unbalanced

force on the fluid at the trailing edge. Neglecting the viscous stress,

as in section 6,4., the projection of the momentum equation in an ar-

bitrary direction T reduces to

T'Vp r-' c • 	(6.22)

If T is tangent to the re-entrant segments at ^=R and g-r on n-s, then

the pressure boundary condition at the trailing edge becomes

p g =_,7-1 ( nyg 1 - nX92 )	 (6.23)

as t,+t- and 94r+ .

Computationally, the following substitutions are made in the

line-SOR equation (5.30) at the trailing edge.

pR'+1 s = pZ-1,s + J (ny9 1 - nxg 2 )	 (6.24)



CHAPTER VII

COMPUTATIONAL ,ADJUSTMENTS

7.1. Turbulence Model

Baldwin and Lomax [141 have formulated an algebraic turbulence

model for separated flow, which is used herein to include the effects

of small-scale eddies in the Reynolds-averaged Navier-Stokes equations.

This model generates an eddy viscosity v  10 such that the nondimen-

sional physical viscosity becomes

P	 1+' pT	(7.1)

and p  .? 0 on the body and in the freestream. Transition is set at the

point of minimum pressure on either side of the, stagnation point, with

the turbulence propagating downstream into the wake.

7.2. Artificial Viscosity

Space-centered di,fferencing leads to algorithms that are algebraic-

ally convenient, second-order accurate, and unfortunately susceptible

to instability, especially at high Reynolds number. Some form of arti-

ficial dissipation is usually needed to diffuse spurious oscillations,

even with fully implicit methods. This task is accomplished herein by

adding an extra viscous term to the (nondimensional) right-hand side of

Eq. (2.12); specifically,

au
r

	LHS(2. 12) = RxS (2. 2) 
+ xn a  (ax + ax')	 (7.2)

^	 J	 i
The additional term is the same as the viscous term in (2.12), but with

1	 _

t Equation (7.2) uses the Einstein summation convention and the

cartes an ;coordinates of Chapter IL.,
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p=1 and Re replaced by, the artificial Reynolds number [15],

defined by
1eIn-u(
Ra .	J 	 (7.3)

where e > Q and J is the Jacobian of the coordinate transformation,

given by Eqs.	 (3.16) and (3.18).

Ideally, the artificial viscous term should vanish wherever the

calculated flow satisfies. continuity. 	 The main advantage. of (7.3),

however, is that it behaves like a switched filter, turning on wherever

instabilities are most likely to arise. 	 For situations in which V.0

^ r varies sharply across the field, an extended definition of Ra is

1	 e^Vu^
(7.G)Ita	 J	 aye

where the subscript "ave" indicates a three-point average in the di-

i
rection of sharp variation. 	 In either case, the additional term in	 1

(7.2) introduces both implicit and explicit artificial viscosity into

the approximate-factorization scheme discussed in Chapter IV.

7.3.	 Pressure Smoother

}
The primary source of instability in the calculated flow is the

pressure equation.	 Regardless of the method of solution or the degree

of convergence, the right-band side of the difference equation (5.19)

contains only information from the previous time step. 	 As a result,

numerical oscillations in the velocity field are fed directly into the

pressure equation, worsening the situation, with each time step.

Viscosity, either real or artificial, dissipates oscillations in

both.pressure and velocity. 	 The need for artificial viscosity can, how-

ever, be reduced somewhat by smoothing the right-hand side of the 	 ?

39



pressure equation. Moreover, a three-point average in the direction

sharp variation improves results considerably. Specifically, Eq.

(5.19) is replaced by

LIIS(5.19) "4 (Fi 1, + 2 i^ + > iRi. ^)	 (7.5)

which is more or less equivalent to the addition of a term proportional..

to Op in the pressure equation.

r.
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CHAPTER VIII

COMPUNTIONAL RESULTS

8.1, Coordinate SXstem for NACA 663018 Airfoil

Thompson [151 has generated a body-fitted. curvilinear coordinate

system for the NACA 66 018 airfoil, based on an assumed Reynolds num-
3

bar of 100,000. This coordinate system, shown in Figure 2, is suitable

for calculations at Reynolds numbers within an order of magnitude or so

of 100,000. If Re >> 100,000 0 the flow resolution in the viscous region

will be poor, because the mesh spacing is not fine enough next to the

body. On the other hand, if Re 4< 100,000, round-off problems may

arise because the mesh spacing is too fine. The transformed plane is

a 113 x 51 rectangular grid with unit mesh

8.2. —Computational Parameters

In all the calculations reported below, the time step is fixed at

At-0.01. The gradual start consists of 100 time steps of uniform accel-

eration, with the x and y body-force components given respectively by

g, --cos a

9 2 = s in a

After the first 100 time steps, at t= 1.00, the calculation is stopped

and then restarted with the initial condition Au - Av = 0. Since a

three-point backward time difference is used in the. AF momentum solver

(section 4.2.), the restart is necessary to avoid overshooting the val-

ues of Au and Av at =1.01. 14ad a nonlinear (e.g., cosine) acceleration 	 '^

been used, the stop and restart would be unnecessary, because the body

force would be a continuous function of time. As it is, the body forte
41
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for the linear start is a step function, discontinuous at t-0.0 and

t=1.0.

The number of iterations in the line-SOR pressure solver is

fixed at thirty per time step, with the acceleration parameter set at

w- 1.85. Thirty iterations are probably more than necessary, although

stability does improve slightly with the iteration count. Reducing the

number to twenty degrades stability and convergence only slightly;

further reduction to ten or fewer seems to promote instability, due to

poor convergence. The w-value of 1.85 is not necessarily optimal, but

rather the result of some experimentation. Values from 1.8 to 0.0

lead to increasingly slower convergence, while the optimum seems to lie

somewhere between 1.8 and 1.9.

"	 The artificial viscosity coefficient can be set at any value e 0,

1

	

	

depending on how stable the undamped calculated flow is. Since this

parameter' alters the local Reynolds number (section 7.2.), it is de-

sirable to keep the value of a as low as possible. The pressure

smoother (section 7.3.) is used in all calculations, since it does not

add any ficti^zous terns directly to the momentum equation, nor does it

affect the spatial truncation error.

8.3_. Results for Re 100 0 and a = 6°

Even though the coordinate system (Figure 2) was designed for
a

Re = 100,000, it is worthwhile to make a calculation at low Reynolds

	

	 {
I

numbers without including the turbulence model and the artificial vis-

cosity. The object here is to examine the qualitative behavior of the

predicted flow field in the absence of artificial stabilizing mechanisms.

The results presented in Figures 3 12 were obtained for the con-

ditions	
42
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1Ro - 1000

Q

Figures 3 - G show €aequent;it lly the ovol.ut o n of the prossure di t v	 at►- 	 j

t1oll ial 'olig the :airfIoil,.
,i.
	DOW118t o alll Of the loadIlIS 0d o,	 the prilpsure

;.Oil 	 tho	 1,i;)we ( r1

,
1	 rd)	 'su1 f zn 

a 
g1'Sttit^ia l.ly	 falls,	 w11:i.a e,	 tile p ossu1,'o Oil

jj
1

4
1dt.

tile! upper Fnal,".4 €a,,e St; adual.ly r1, € co. At t-3.0 the two di s tt;Lbut iann have

begun to over lap, l401, the point o 
	 moVing 1. ps t rQui 1 to

^ f

x-0.5 by t*4 . 0.

Figta1'i. s 7 - 1-9 illustrate  t ine devolo( mLint of the velocity f i Q It	 I

botwoon t-2.0 € nd t*4.0.	 Around tale 'Lea (Ling edge (1+ ;tg4 ros 7 and 8),
i

► Otero i;a hardly any c;haange 3,11 the Velocity taxoftles.	 Moreover, exami-

nation, of the ontire rlow f,i.d 'd (Figures 9 €axle{ 10) reveals lAt;tP,le,

eh€ango c'Xcopt near the tr€► ;l tog echo (Figuros 11 react 12)i 	 Pero, €a vor—

Lox jt1;,t beginning to fot,lta tit t-:'.Q has growaa Qons.i+de.rzably by t,"4.0.

r
The e€ale"Intion was tee kinttted at tm4.3, due to ivirttabi:l,xi.ty tisso-

Ci4lu'd with the trnil.ing-odge vo1 tox.	 A root€aa°t eouId have boon initi-

ated at t-14.0,	 with artificial viscosity added ,(Or sttttal,ll. c:at:i on,	 bttt

this seemod unwarranted. 	 The ;i,ncolmultion gone' oted for t*ji . it gives all

radectu€ato pictu re of tho	 flow at Tow 1Rc ynoldo numbed."'	 and thr' .t.aast€abil

ity is probably due, to the moot spacing, which is allt ► oh too fine.

1- Tho loading edSo eo;i,a aides with --0, .talc{ tile tra i.JJ118 edge with x--I.

Tho prossure eool,ftr.e.le ►lt 0i1 Is dofl.nod by

P	 1
.

i
43



.f

i

}	 8.4. Results for Re	 40,000 and a m 0

Mueller [161 has conducted wind'-tunnel tests of the NACA 668018

r-.
airfoil at Reynolds numbers from 40,000 to 400,000. In order to eval-

uate the applicability of the combined AF/SOR scheme for real flaw

problems, calculations have been made for comparison with Mueller's

data. The computational results presented in Figures 13 - 34 were ob-

tained for the conditions

Re = 40,000

c	 1 , t ^.. 1.0

C = 10, t > 1.0

a = 0° and 60

'trial calculations with c =0 became unstable around the leading

edge at tw 0.8. With c=1, stability problems developed in the wake,

near the trailing edge, at t=1.8 Thus, to maintain stability for

Re = 40,000, it is necessary to increase the artificial viscosity coef-

ficient front 1 to 10 when t>1. Furthermore, to keep the flow

well-behaved in the wake, it is advisable to activate the turbulence
1

model prior to ,t=310.1

The computation for a=0 (Figures 13 - 23) was executed from t=0.0

to t=2.0 with V = 0. The turbulence model was activated at t=2.01,

and execution continued until. t =5.0 (a total of 500 time steps). The

combined eddy/artificial viscosity kept the flow orderly, and no

`f Since the turbulence model increases the local viscosity, it has a

stabilizing effect on the :flow, especially in the wake. As a result,

the turbulence helps to suppress the development of unstable trailing

edge vortices-of the kind discussed in section 8.2. ^ (Figure 12) .
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instabilities were apparent when the calculation was finally stopped.

Figures 13 - 17 indicate the change in the pressure distribution

between t-1.0 and t=5.0. The calculated variation of 0p is symmetric

along the airfoil (as it should be), and the pressure drop at t=3.0,

between x-0.8 and x-1.0, is precipitated by vortices at the trailing

edge (figure 22). These vortices have begun to damp out by t=5.0.

The agreement between the computed C  and the wind-tunnel data is

good everywhere except near the leading and trailing edges. Further

calculation would probably eliminate the discrepancy at the trailing

edge, since the computed pressure seems to be falling there with time.

The Leading-edge probleiti may be the indirect result of continuity vio-

lations and artificial viscosity, via Eq. (7.4) , and might or might
k	

not be corrected by additional computation.

Figures 18 23 show the change in the velocity field between

t=2.0 and t=5.0. For the most part, the viscous layer around the body

is unrealistically thick, with separation occurring at center chord

(figure 19). This is unavoidable with the Af/SOR method in its pres-

ent form, since it is caused by the artificial viscosity, which is nec-

essary for stability at high Reynolds number. 	 3
a

At t=2.0 the leading-edge velocity profiles (figure 20) are

well.-behaved, though, getting thicker in the x-direction.. By t=5.0:,

the profile shapes (figure 21) have begun to alternate somewhat, due to

the variation of the artificial viscosity along the body. This

t Experimentation with the AF/SOR method has indicated that the greater

the penetration (continuity violation) around the leading edge, the

j	 gentler the pressure gradient there.
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alternation could be the harbinger of trouble for t 5.0, but the

velocity and pressure distributions are stall symmetric and quite

stable at t- 5.0.

8.5. Results for Re - 40,000 and a w 60

The computation for a- 6° (Figures 24 - 34) was executed from

t- 0.0 until t- 5.0, with the turbulence model activated in the second

time step (t- 0.02). No instabilities were encountered, nor were any

apparent when the calculation, was terminated.

The evolution of the pressure distribution along the body

(Figures 24	 28) is qualitatively the same as for Re = 1000. In this

case, However, the slopes are steeper, and the overlap for the upper

and :Lower surfaces takes longer to develop. Comparison with the

wind-tunnel data in Figure 28 shows the computed curves to be mysteri -

ously displaced from the experimental curves, but with the same general

shape, including the double overlap. Moreover, in Figures 28 and 17

alike, the calculated pressure distributions appear to be right-shifted

from the experimental results. In the 6-degree case, the shift may be

due to poor resolution of the calculated minimum pressure on the upper

surface near the leading edge. 	 1

Examination of the velocity field (Figures 29 and 30) reveals

substantial change between t= 2.0 and t= 5.0. The upper and

lower-surface separation points, located respectively at x z 0.6 and

f	 x = 0.8 when t = 2. 0, have moved upstream to x tt 0.3 and x ^ 0.7 by t = 5.0.	 jy

The ].ending-edge velocity profiles exhibit a g'r'adual ,thickening

(Figures 31 and 32), and vortices have developed at the trailing edge

f

46



r^
}

t

i
.	 k

r.f Pi ^i

h

by t- 5..0 (Figures 33 and 34)• As in the calculation for a -0, the

viscous layer is much too thick around Rile body.

8.6 Other Calculations

Prior to making the calculations for the 663018 airfoil, a great

deal of personal effort and computer time was invested in calculations

for ttae NACA 64A010 airfoil at Re ft 2,000,000-, using a coordinate

system generated by Cooper [8]. In fact, most of the developmental.

',.
work for the Ar/SOR. scheme was clone with the 64A010 airfoil.' To main-

tain stability with this coordinate system and Reynolds number, how--

i	 ever, the required values of a were 10 during the gradual start and 100

thereafter. In other words, the amount of artificial viscosity needed

for Re a 2,000,000 was an order of magnitude greater than that fori
40,000, making the viscous region about three times thicker at the

higher Reynolds number.

a

	

	 Tile stability problem is probably related to the coordinate geom-

etry, specifically to the mesh spacing. Equation (3.11) determines the
a	 ,

n-line spacing next to the body; so if ate increases by two orders of

{	 magnitude, the spacing decreases by one order of magnitude. It is com-

mon knowledge that, for explicit methods, the maximum stable time step

decreases with the minimum .Finite.-diff erence cell dimension. Tile same

1

1	 t The AF/SQR method, as it now stands, represents the last of three at-

tempts to construct an approximate-factorization algorithm for incom-

pressible .Fiore. The first two versions, while invaluable from an ex-

periential standpoint, produced little in the way of communicable re

stilts.
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is apparently true for implicit/explicit methods such as AF/SOR, but

the relationship is more difficult to quantify. In either case, it

a
seems that more viscosity may be needed for stability when the mesh

spacing is reduced with the time step and Reynolds number fixed. Ad-
4

ditional. calculations are needed to verify this for AF/SOIL.



CHAPTER IX

CONCLUSION

9.1.	 Discussion

`. The combined AF/SOR algorithm is implicit in its solution of the

momentum equation, but explicit in the sense that the pressure/

continuity solution is lagged in time.	 As a result, the method is far

less stable than the compressible-flow AF scheme of Beam and Warming.

i
For a time step At = 0.01, the maximum practical Reynolds number is

probably around Re = 10,000, if the artificial viscosity is to be kept

` tolerably low (s < 1).	 Furthermore, since stability may depend on

mesh spacing as well as viscosity, the body-fitted coordinate system
a
` should be generated for the Reynolds number in question or for a lower

value, but not a higher.	 Increasing the Re-value in the coordinate gen-

eration (section 3.1.) reduces the mesh spacing.	 This, in turn, de-

mands more artificial viscosity for stability, which contaminates the
r

numerical results.	 Since truncation error is preferable to instabil-

ity, it seems advisable to keep the mesh a little on the coarse side.
t

g
By way of comparison with conventional implicit methods, point-SOR

I calculations can be stabilized at Re = 10 6 with e = 1 and At= 0.01.

Thus, at high Reynolds number, point $OR (or some other fully implicit

method) is required for incompressible flow calculations.	 On the other

hand, at low Reynolds number (Re < 10 4) AF/SOR seems preferable, being

tr

g

`j
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passably stable and faster than point SOR by at least a factor of two.t

Compared with compressible-Clow AF calculations, AF/SOR fairs

poorly. Cooper [8] reports a machine-time expenditure of 4.5 seconds

per time step on the CDC Cyber 203, using the method of Beam and

Warming at a freestream Mach number of 0.8 and a Reynolds number or

two million. The AF/SOR calculations discussed in Chapter Vllx aver-

aged 5.5 seconds per time step on the same computer. While program

optimization could markedly reduce both of these cost figures, the

point is that the compressible-flow algorithm seems to require no more 	
is

computer time than the incompressible solution.

In summary, the combination of approximate .factorization and line

SOR appears to be suitable only for incompressible flow calculations at

low Reynolds number (Re e 104 ), when used alone. On the positive side,

however, AF/SOR might serve as an initial -guess generator for iteratIve

methods such as point SOIL. It is possible that the latter approach,

employed in each time step, would produce stable high-Reynolds-number

solutions in relatively few iterations compared to point SOR alone.

t Thirty iterations of line SOR is roughly equivalent to .fifty itera-

tions of point SOR, for a single equation. Ten iterations of the

}
	

line-SOR pressure solver takes roughly the same number of operations as

the AF momentum solver. The net result is that AF/SOR, as used herein,

requires between two and three times less work than a 50-iteration

point-SOR solution for u, v, and p

i
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9.2. Epilogue

The results presented in Chapter VIII are in some ways disap-

pointing, but not really surprising. While fully explicit and fully

implicit methods usually have definable (or at least estimable) limits

of stability, mixed methods can only be evaluated by computational ex-

perimentation. At the outset, one hopes for the best, but in the end

must accept those limitations dictated by the Machine,

Incompressible flow at high Reynolds number remains a knotty prob-

lem, requiring expensive, and sometimes questionable, methods of solu-

tion, At low Reynolds number, AF/SOR offers a means of calculation

that is relatively efficient. Unfortunately, most engineering problems

involve high Reynolds number, whether they be aerodynamic or hydrody-

namic. Only rarely are calculations needed. for molasses or for concen-

trated shampoo.

What is needed is a method that calculates pressure and velocity

simultaneously, but with the same efficiency as approximate factoriza-

tion. A vactorized ADS or SOR scheme could meet the simultaneity cri-

terion but would be inefficient, requiring far more than one iteration

per time step for convergence. Perhaps a clever formulation or manipu-

lation of the pressure/continuity equation would allow factorization in

the same fashion as compressible flow. Except for the method of Steger

t That is, an algorithm that inverts a 3 x 3 matrix at each point in

the field to obtain the vector (u,v,p). This takes about four times

as many operations as the more commonly used approach, which is to cal-

culate u, v, and p in sequence at each point. The latter method, in

effect, inverts three I x 1 matrices.
51
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and Kutler [91, which converges only for the steady state, efforts in

that direction have failed to produce a stable algorithm. Neverthe-

less ) the problem is so intriguing, so deceptively simple at a glance,

that it can become an obsession. Every day one thinks anew, there

must be a way.
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APPENDIX A

FINITE-DIFFERENCE APPROXIMATIONS

The difference expressions listed below were used in discretix ng

the spatial derivatives in the main text (except where otherwise

noted). The grid spacing in all cases is A9 - an - 1. Whenever the

forms for the ^- and n-derivatives are identical, only one form is

given. The indices "i" and "J" denote ^- and 9-values, respectively.

Second-Order Central Differences:

1

	

f - 2 (f1+1 - f i-1)	
(A.1)

f - f+1 - 2f
i + fi-1	 (A.2)

{

	

(WfF 	4 (3t41+1 + W1-1)f1+1 - (tai+l + W -1 ) f + 4 (W i-1 + 3Wi+1 )f i+1

i	 (A.3)

f = 1(f	 - f	 - f	 + f	 )	 (A.4)
^n	 4 i+l, j +l	 i-1, j+1	 i+i,j-1	 i-1, j-1

r i

	

(Wf ) n = [ i,j+1 (fi+l,j+i	 f i-1 j+l ^
 -W	 (f (f +l,j.l - f i-L j-1)]

(A•g)

	n 	 4	 +1 j i+l,j+l	 i+1 1J- 1 	i-1'j 1-1,j+1	 3-10J-1	 a

(A.6)
3

First-Order One-Sided Differences:

(Zf n )
n
 2 (3Z j+1	 z  ) f j+1	 2ZJ+lfj

(A.7)
`	

+ 
1
2(Zj+l + Zj)fj -1
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APPENDIX B

A DIFFERENCING PROBLEM

Cooper (81 points out that the same type of differencing should

be used in the flow calculation as in the numerical calculation of the

metric coefficients.	 For example, if central differences are used to

calculate g	 and Cy	then the same should be used for u	 and v,	 and

so on.

An additional problem has been encountered with respect to the

viscous terms.	 Consider the two possible central-difference expres-

sions for (Zu

(zu	 U
= 2	

(zu
(Z11 i,j+l	 i,-1

i A

n n	 n

(3Z	 + z	 )ui,j+l	 i'j_I	 i,jq-1
(B.1)

(Z 
i0j+1 + z ij-d u 

ij

+ 1(3Z	 + z	 )u
4	 ij-1	 i,j+l	 i'j-1

(zu 
n
)	 (ZU 

n 
) i ' j+lI - (zu n i,j-k

-f(zi,j+l + Z'L ► j)Ui'j+I

(B.2)
"
2
(Z, fJ+l + 2Z ,,j + Z,,,j_,)u,j

+ 2 (Z ili-I + z 
ij 

)U 
i'j-1
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For some reason, Eq.	 (D.1) works and (B.2) does not.	 The same

4 problem applies to (Wu)	 and, of course, to similar terms involving

kl^ the ether velocity component v
r When Eq,	 (B.1) is used in the AF momentum solver, without ever

calling the pressure solver, the results are stable and well-behnved

(though erroneous next to the airfoil).	 X11 the other hand, if Eq.

(B.2) is used, especially during the gradual start, oscillations arise

I

i in the velocities.	 Tb s happens with or without the pressure solver,

and the situation ,gets worse if the Reynolds number is reduced (just

the opposite of what would be expected). 	 '.

j The reason for the instability with Eq. 0.* is not clear. 	 The

' metric quantities n 	
Lind 

n 
	 use values of ^c and y at j+1 and J-1 but

P

! not at J.	 It is possible that the coefficients in the difference ex--

1 pre;ssion for (!u)	 are restricted In the same way.	 In any case, the 

remedy is to use Eq.	 (13.:1)	 , not Eq.	 (B.2).

C	 1
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