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DEVELOPMENT OF ADVANCED ACREAGE ESTIMATION METHODS
1. INTRODUCTION

A practical application of remote sensing which is of considerable
interest is the use of satellite-acquired (LANDSAT) multispectral scanner
(MSS) data to conduct an inventory of some crop of economic interest such
as wheat over a large geographical area. Any such inventory requires the
development of accurate and efficient algorithms for analyzing the struc-
ture of the data. The use of multi-images (several registered passes over
the same area during the growing season) increases the dimension of the
measurement space. As a result, characterization of the data structure
is a formidable task for an unaided analyst.

Cluster analysis has been used extensively as a scientific tool to
generate hypotheses about structure of data sets. Sometimes one can
reduce a large data set to a relatively small data set by the appropriate
grouping of elements using cluster analysis. In some cases, the algorithm
which effects the grouping becomes the basis for actual classification.

In other cases, the cluster analysis produces groupings of the data which

in turn serve as a starting point for other algorithms which produce

acreaée estimates. Additional uses of cluster analysis arise in conjunction
with dimensionality reduction techniques which are used to generate displays
for purposes of further interactive analysis of the data structure.

Work carried out under this contract dealt with algorithm development,
theoretical investigations, and empirical studies. The algorithm development

tasks centered around the use of the AMOEBA clustering/classification



algorithm as a basis for both a color display generation technique and
maximum likelihood proportion estimation procedure., Theoretical results
were obtained which form a basis for the maximum lieklihood estimation
procedures. An approach to analyzing large data reduction systems was
formulated. An exploratory empirical study of spatial correlation in
LANDSAT data was also carried out. Specifically, investigations were
carried out in the following areas:

Development of Multi-Image Color Images

Spectral-Spatial Classification Algorithm Development

Spatial Correlation Studies

Evaluation of Data Reduction Systems

Each of these investigations is discussed in turn in the sequel.



2. DEVELOPMENT OF MULTI-IMAGE COLOR IMAGES

In a crop inventory application, the input data for a clustering
algorithm is a multi-image; namely, a set of registered images, taken at
different times, of the same subject. In addition to having multi-
dimensional data (multispectral measurements) we also have "multi-pictures"
of the subject. The availability of this spatial aspect of the data and
attempts to preserve the spatial integrity were the basis for investigations
carried out in previous contract periods (see [1] and the references there-
in). These investigations led to the development of the AMOEBA spatial
clustering/classification algorithm ([2]) and a distance preserving
algorithm for dimensionality reduction ([3]).

The above mentioned algorithms were combined with a model for human
color vision to formulate a technique for generating a single color image
from a multi-image. The formulation and results of the technique are
presented in *he attached report:

Jack Bryant and Gary Breaux, Multi-Image Display for Human Under-

standing, Contract NAS-9-14689, SR-T1-04080, Report #22, Department

of Mathematics, Texas A&M University, August, 1980.



3. SPECTRAL-SPATIAL CLASSIFICATION ALGORITHM DEVELOPMENT

The objective of this study was to formulate and test algorithms
based on a likelihood function which respected the integrity of some
predetermined structure in the data.

For purposes of these investigations, the "pure field data" (patches)
determined by the AMOEBA algorithm ([2]) were used as the predetermined
structure. A maximum likelihood parameter estimation procedure (HISSE)
was designed to respect (take into account) field integrity.

A mathematical description and implementation of the procedure, along
with results from preliminary tests appears 1n the attached report:

Charles Peters and Frank Kampe, Numerical trials of HISSE,

Contract NAS-9-14689, SR-H0-00477, Department of Mathematics,

University of Houston, August, 1980.

Theoretical results underlving the approach used in the HISSE
algorithm are discussed in the attached report:

Charles Peters, On the existence, uniqueness, and asymptotic

normality of a consistent solution of the likelihood equations

for nonidentically distributed observations--applications to

missing data problems, Contract NAS-9-14689, SR-H0-00492,

Department of Mathematics, University of Houston, September,

1980.

Additional theoretical results were obtained which address the con-
vergence of a particular iterative form of the 1ikelihood equations in

the case of a mixture of densities from (possibly distinct) exponential



families. These results appear in the attached report:
Richard A. Redner, An iterative procedure for obtaining maximum
Tikelihood estimates in a mixture model, Contract NAS-9-14689,
SR-T1-04081, Division of Mathematical Sciénces, University of

Tulsa, September, 1980.



4. SPATIAL CORRELATION STUDIES

The objective of this study was to gain some insight into the nature
of the spatial correlation of pixels in Landsat data. In particular, an
empirical study of neighboring pixels (along scan lines) was carried out n
an attempt to understand the characteristics of spatial correlation for
boundary or mixed pixels. Results of this study appear in the attached
report:

W. A. Coberly, Spatial correlation in LANDSAT: An empirical

study, Contract NAS-9-14689, SR-T1-04082, Division of Mathematical

Sciences, University of Tulsa, November, 1980.



5. EVALUATION OF DATA REDUCTION SYSTEMS

Data reduction systems which utilize multi-temporal MSS data to
produce proportion estimates of several crop classes are large and com-
plicated. Large numbers of vector-valued observations are used, in con-
junction with algorithms based on various models, to produce these
estimates. Testing the validity of these models and determining the
subsequent effect on the accuracy of the proportion estimates cannot
(in many instances) be carried out. In addition, when the software
system is (conceptually) the beét it may be that properties of the original
data set in fact impose the accuracy limitations.

A theoretical approach to determining the Timiting accuracy of the
data set is set forth in the report:

Virgil R. Marco, Jr. and P. L. 0dell, Information in remotely

sensed data for estimating proportions in mixture densities,

Contract NAS-9-14689, SR-T1-04083, Program in Mathematical

Sciences, University of Texas at Dallas, November, 1980.
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MULTI-IMAGE DISPLAY FOR HUMAN UNDERSTANDING
Jack Bryant* and Gary Breaux*

Abstract. Three recently discovered techniques are combined to produce
subjectively appealing color displays of multi-temporal Landsat imagery.

The first technique selects prototypes by use of an unsupervised clustering
program. ‘These are used to find a linear dimensionality reduction such that
the inter-prototype separation in the original space is nearly preserved

in three dimensions. The third technique produces red, green, and blue
values for an image in which normal human interpretation of color differences

closely matches the Euclidean distances within the three dimensional pre-

image.
Clustering Linear feature selection Landsat
Color display Human vision Multi-imagery

*The authors were partly supported by the National Aeronautics and Space
Administration, Contract NAS-9-14689, principal investigator, L. F. Guseman, Jr.



Consider the imagery shown in Fig. 1. Each scene of about 23,000
picture elements (pixels) is a Landsat remotely-sensed image taken from
the North American Great Plains. The images have been corrected geo-
metrically to be in close spatial registration to one another. Each was
acquired on a different date: in May, June, August, and September, 1976.
The August acquisition is shown in Plate 1A, the standard false-color
product produced at Johnson Space Center, Houston, Texas. The two Landsat
infra-red bands have no color; the standard product is somewhat like
color infra-red film. The images of Fig. 1 are small, but the digital
data set is not, for each pixel is a 16-vector (4 components for each
acquisition).

The high dimensionality of the space in which these data are
embedded is a common problem in pattern recognition. Most data analysis
techniques such as clustering or classification require computer time
at least in proportion to the dimension, and some (e.g. maximum likeli-
hood classification) require time porportional to the square. Thus a
common motive for dimensionality reduction is computational complexity.
Another is human understanding: the presentation of the multi-image in
the form of Fig. 1 (as four images) is not ideal. Yet there seems to
exist no better way to present high dimensional imagery for human analysis.
This is exactly the problem we tackle: 1is there a way to display the
imagery of Fig. 1 while retaining the spatial and spectral-temporal

structure?



Four Pass Landsat Imagery
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Fig.



Plate 1.

Color Products:

JSC Product 1

AMOEBA Clustering of Fig. 1
Principle Components Display
Distance Preserving Display




WHAT IS STRUCTURE?

By spatial structure we mean the spatial relationship between
objects in the scene. To preserve spatial structure we produce a single
image which is pixel-by-pixel registered to the multi-imagery. It is
not so clear what spectral-temporal structure means. It will surely
mean different things to different people. Our view is that the structure
is represented by the Euclidean distances (in the high dimensional space)
between typical measurement-space samples. Structure is preserved when
these distances are accurately reproduced in the lower dimensional space.
A new technique(]) for linear feature selection has as its objective
the preservation of distances between samples (prototypes). Rather than
obtain the prototypes at random, we use the spatial clustering program
AMOEBA.(Z) Plate 1B shows the clustering of the data in Fig. 1 we
obtain. Note that this cluster map is not an image in the usual sense
of a picture of a scene. Some of the spatial structure is clearly lost,
particularly the pattern of roads so easily seen in Fig. 1.

Because of the spectral overlap between the measurements in any
one acquisition (and present in the scene), the intrinsic dimensionality
of a given acquisition is less than the number of measurements.(3) Thus
we know some of the spectral structure, and use a four-to-two brightness-
greenness transformation.(4) This converts the 16-dimensional data of

Fig. 1 to 8-dimensional data. This is the data we cluster to produce

Plate 1B.




WHAT IS COLOR PERCEPTION?

A method for reducing dimensionality (and a measure of success)
is only helpful is we can display the reduced data so it can be understood.
As an example, suppose the data could be represented in one dimension.
Then it is natural to produce a gray-scale or black-and-white image.
Since we know that norﬁal human gray (i.e. non-color) vision has a
logarithmic response, we prepare an image so that the perceived
brightness (not the actual brightness) is linearly proportional to the
transformed data (with, perhaps, a bias to translate the transformed data).
That is, we consider the physiology of human vision in preparin§ our image.
Unfortunately, the multi-imagery of Fig. 1 is not one dimensional
spectrally: nor is any single acquisition. As we shall see, however, the
data can be reduced to three dimensions with small errors. Color images
can be produced with three colors, which suggests color vision is at most
three dimensional. The easy way to get a color dispaly (reduce dimensionality
to three, display one red, one green, and one blue) is not appropriate for
the same reason that we would have been wrong to produce a black-and-
white image with the flux viewed Tinearly proportional to the transformed
data. Namely, this display fails to take into account the physiology of
human color vision. Indeed, imagery produced in this way is disappointing
(Hay et a].(s)). Instead, we should produce a color image in which
human perception of color difference matches distances between the objects
being displayed. To this end, we need to model visual perception. We
begin with a red-green-blue digital image and follow the processing of

(6)

this image by the visual system. We use the notation of Faugheras.



A model for the combined video or photographic system and pigmented
cone photochemical response gives a linear transformation U to produce
cone output signals L, M, and S. A model for retinal receptor response
produces the (nonlinear) transformation by the logarithm function to
L*, M*, and S*. Next a model for the Ganglion neural connections gives
a final linear transformation P to signals A, C], and C2. Signal A is
brightness and C] and C2 are chromaticity signals: these go to the
visual cortex. (We are ignoring spatial effects.) Faugheras notices
that each of these transformations is invertible and uses this to trans-
mit color imagery over a noisy channel with lower bit rate (or better
(6, p. 91)

perceived signal-to-noise ratio). He reports a reduction in

the average bit-rate by a factor of 27.

A comprehensive survey of color image perception and a bibliographical
guide is found in Ha11(7’ Chapter 2). Hall gives a block diagram (p. 42)
of the monocular visual system (but gives no numeric parameters).
Faugheras's work is based on a slightly simpler model (for light-adapted
(or photoptic) vision). To use his work, one need only determine U.

He has determined P by psychovisual experiments. There is another approach
to this problem, outlined by Ha11(7’ pp. 21-22) and followed by Juday(s)
and Kaneko(g). We prefer the approach based on a model, although we do

not know the exact U for the film product used. This problem is being
studied, but our requirements are not severe: we do not need strict

color fidelity. The major problems left are: first, how much of sub-
jective color space can we occupy without exceeding the film color gamut?

Second, how do we scale the output image so that it can be displayed on



a given digital system? We found experimentally that twenty-five levels
of brightness A and thirteen levels of each chromaticity channel C] and
C2 could be displayed. The details of how to scale everything are less
interesting and are relecated to the Appendix.

Let's now review the end-to-end process. We obtain our connection
between measurement space and perception space by the following steps:

(10,11)

1. Using feature selection techniques, reduce the

dimensionality to three. We use here the principle components

(1)

map and the distance preserving map.

2. Apply suitable scaling (see the Appendix) and apply P'],

1 to the transformed image.

exponential, and U~
3. Again scale, and display the result on a color monitor or as
color film. These products make up Plate 1C (the principle

components map) and Plate 1D (the distance preserving map).
DISCUSSION

Observers, viewing Plate 1, uniformly prefer the color image 1D.
The cluster map 1B is rejected because it is not a picture in the same
sense that 1A, 1C, and 1D are pictures, although the clustering shown
might be a helpful aid to a human analyst. Plate 1C is not favored
because obviously distinct classes are colored the same. This is cer-
tainly not the case in 1D. We observe that 1C is "too dark,"” yet it was
produced by the same method as led to 1D; only the feature selection
method was different. This finding which discredits the pringiple com-

ponents approach is new but not entirely unexpected. See, for example, the



imagery shown in Lowitz.(]z’ Fig. 1, p. 360) The seventh (of seven)
principle components image contains significant structural information.
Here we find that the principle components map from 8 to 3 dimensions
1dentifies distinct classes, a flaw which goes against our underlying
purpose. If B 1s 3 x 8 matrix and y],...,yp are the prototypes, let

P = p(p'])/zs ]et

2
f(B) = By.-By.|| - |ly:=y:l])",
(B) 1§i§j5p (] 1By, yJ|I Iy, JII
and let
NB) = (5 (b))

For the principle components map B, N(B) 2 9.78, and for the distance
preserving map N(B) = 0.95. The two are shown in Table 1.

The main open problem is to make the colors reproducible. The
experiment reported here used 32 prototypes. In another, using the same
data and procedure, we let AMOEBA find the natural number of clusters
rather than the forced number 32. It found 12, and their centers were
used as prototypes. The resulting image was as satisfactory as 1D, but
red and green were interchanged. Clearly the process does not lead to
stable color assignments in any absolute sense. Another problem: should
the spatial aspects of color vision be taken into account? We suspect
not if one is to view the composite as an image. Image enhancement by
spatial filtering is another matter. The three perception space channels

A, C], and C2 have different modulation transfer functions.(G’ pp. 58-74)



Table 1.

Principle Components Transformation

-.6454 -.2910 .0362 .0120 .3973
.2356 .1264 -.0406 .0470 -.2396
.4714 .3878 .0495 -.1812 .7280

Transformation which Minimizes f

-.444] -.2485 -.0040 -.5235 .5668
2721 .1634 -.1447 -.2517 -.6681
.2802 .2787 .1073 .7353 .1515

-.2734
.2934
-.1414

-.1261
.0082
-.3301

-.4939
-.8290
-.1366

-.5492
-.7080
-.5169

-.1442
.3065
-.1530

-.4266
.3029
-.2412
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The underlying psychovisual experimentation is incomplete in that the
interaction of perception and filtering A, C], and C2 differently has not
been resolved. Is linear filtering (as by spatial convolution) even the
appropriate operation in perception space? Results we have obtained so
far with image enhancement in perception space have been disappointing.

One sees, on viewing Plate 1D, that no saturated red is present.
This results from our avoidance of the boundary of the color gamut. It
is safe, but does leave many displayable colors unused. Can these colors
be used without identifying classes which must be projected onto the

boundary of the gamut to be displayed?

SUMMARY

Linear feature selection and a model for human color vision are
combined to obtain a connection between multi-imagery and the human
visual system. The overall objective is to preserve the spatial
structure of the data as a single image, with perceived color separation
matching multi-dimensional Euclidean separation in the original measure-
ment space. The principle components feature selection technique is
found to fail to separate classes obviously separated in the original
data. A new distance-preserving linear map is tested and is found to
accurately represent the measurement-space structure of the data. Color
products are reproduced to illustrate the results. Several open problems
are mentioned. An appendix giving all key details of the method is

included.
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APPENDIX

Let the prototypes selected by AMOEBA (or by some other method)
be denoted by y],...,yp. Let A be a linear feature selection matrix
to three dimensions, and let X; = Ay1. The transformed prototypes
preserve some aspect of the data structure in lower dimensional space,
depending, of course, on the feature selection technique. Let XM be

the mean vector of the transformed prototypes, and let 2, = Xy < Xy

We first determine a scale factor sp for the prototypes. For any sp,

let w, = sp zs. Determine sp so that each W, is in the parallelepiped

[-12,12] x [-6,6] x [-6,6], and at least one w; is on a face of this

1

parallelpiped. Let S = spP' , where P is the transformation determined

by psychovisual experiments.(ﬁ) Let Ui = exp(w;.), i =1,...,p and

J ij
j=1,2,3. (We use the second subscript to indicate the j-th component

of the vector “i') Let Vi T U']u1. Usually v, would now be translated

and scaled to fit the range of the display device. The imaging system

we use*, however, makes transmission density linearly proportional

(8, pp. 5-6)

to input rather than to the logarithm, so we compute

13

tij = log Vij’ J = 1,2,3. Now determine a scale factor Sp and a display

bias b such that if d]J = s tiJ + b then each d1J is in [0,255] and

at least one d]J has the value 0 and another has the value 255.

*The Information International FR-80 at Johnson Space Center,
Houston, Texas. The machine gives transmission density linearly
proportional to 1nput in a channel with zero input on the other two
channels. Transmission density is the logarithm of the ratio of the
Eransmitted flux with and without the sample's presence in the light

eam.



We are now prepared to define the transformation by which all

data (not just the prototypes) is mapped to perception space. Let

E - E3 5 £3 be defined by Eps = exp(p,) = 1.2,3. Let
d = exp(-b/sD) and define L* : €3 » E3 by Lt P, = log P; if P > d,

LY p = -b/sy if py < d . Finally, let M : £3 5 £3 be defined by

J
M(pJ) [min{pJ,255}] » J = 1,2,3, The transformation from input

multi-imagery I to gun values G is

+, -
6 = M(sp L' ]ES(AI—XM)+b).

14
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Numerical Trials of HISSE

by

Charles Peters and Frank Kampe

1. Introduction.

The Houston Integrated Spatial/Spectral Estimator (HISSE) is a statistical
estimation procedure based on a normal mixture model which is designed to take
advantage of spatial associations of LANDSAT data pixels produced by an auto-
mated spatial/spectral clustering algorithm. The clustering algorithm used in
this experiment 1s the AMOEBA algorithm developed at Texas A & M University,
which is based on the three assumptions listed below [1]. AMOEBA detects
spatially connected sets of LANDSAT pixels, called patches, whose elements
are characterized by spectral similarity, within certian tolerances, to their

neighbors.

Assumption 1: Real classes exist.

Assumption 2: Each patch contains pixels from one and only one

real class.

Assumption 3  Each real class 1s represented by at least one patch

No absolute commitment to the agricultural nature of real classes 1s
expressed 1n {11, however, there 1s an indication of a high degree of nurity
of patches with respect to ground truth labels when AMOEBA patches are plotted
on ground truth maps. A more complete study, with the same conclusion, 1S
reported 1n [5]. Therefore, we feel justified 1n 1dentifying the real classes

with ground truth labels. In addition to the three assumptions just given,



HISSE requires the following assumption.

Assumption 4+ The data from each patch 1s normally distributed with

mean and covariance depending only on the class to

which it belongs.

Assumption 4 has been challenged, some might say refuted, 1n [2].
However, we take the position that the proper question to ask 1s whether
assumption 4 is close enough to the truth to be useful in estimating class
proportions and labeling classes with ground truth labels. The clustering
portion of AMOEBA may be described as a k-means algorithm which respects patch
integrity (see Assumption 2) with a novel way of determining the correct number
of clusters. As such, 1t contains no way of compensating for the confusion
arising from classes with overlapping spectral characteristics. Thus,
Assumption 4 may be regarded as a step toward mitigating the error in proportion
estimation which 1s unavoidable with the classify and count method. Henceforth,
pixels contained in patches will be called pure pixels, and all others boundary

pixels.

2. Mathematical Description.

It s assumed that there are m real classes, labelled 1, ---, m, and p
|
patches represented by 1ndependent random vectors (Xi,O]), N (xp,op) where
0. ¢ {1,---,m} s the unknown real class to which patch 3 belongs and

J

X. = (X S | ) 1s a set of NJ n-vectors representing the spectral data

J 3177 TN
from the jth patch. The eJ are 1.i.d. with ap = ProbLGJ=2] unknown and,
given that eJ =, XJ 1s a random sample from an n-variate normal distribution

Nn(“z’“z) with unknown mean and covariance. Notice that ap 1S the expected



fraction of patches belonging to class £ and for a given scene may be

quite different from the fraction of pure pixels belonging to class &,

which we denote by ¢,. The random variable ¢, 1S directly related to
the total acreage of the patches belonging to class &.

The log 1ikelihood function for the parameters aQ’uQ’QQ is

1 g1ogf
where

m
2) F(X)) = T apfy(X)

and fQ(Xj) 15 the NJ-fo]d product normal density

N

X.) = ﬂ N (X

Q( ) k=1 N Jk’“JL’Q

3) f 2).

Despite the apparent complexity of L, it depends on the data only through

the patch means

N.
4) no= 2y
3 N5 =y 3K
and scatter matrices
5 J.(x (X !
) o3 Tk k™ k™)

Once the mJ's and SJ's are computed and stored, HISSE has no further

need for the pure data.



The numerical procedure used 1n HISSE for finding a maximum of the
l11kelihood function 1s defined by iteratively substituting into the 1likelihood

equations, viz.

k
(k+1) _ 1 P aé )fZ(XJ)
(6) o T gh T

1y P 0GR X))

= 7 m./ E

(7) EERRR A v LTRAL —(_Tf ¥
f (X )
(k+1) (k+1) (k+1)T

= Z
(8) %, i —f_(T(JT RN —f‘(ﬂ by
where R, =S_+ N.m.m T 1s the noncentral scatter of the jth patch. The values

NI BN B N £ (X.) —

. AN | .
of the parameters used 1n evaluating the ratios are those at the preceding
f(XJS

kth step of the algorithm. It is shown in [6] that there is a unique strongly
consistent solution of the likelihood equations 1n a neighborhood of the true
parameters as p - « and that the 1teration procedure (6)-(8) converges to the

consistent solution 1f the starting values are near 1t.

Let N = N] + ... 4 Np be the total number of pure pixels. It 1s easy to
p
show that £{¢,1 = a, and var{¢,) < L z N2. Thus, 1f the patches are nearly

uniform 1n size, the MLE of o, can be used as a predictor of ¢g' However, the

L
least MSE predictor of oy based on the observed data (assuming that the para-
meters are known) is

1 P af (XJ)
2 By = ELogIXpsr Xy =y (IN J“*ﬂx‘y



Therefore, we take 82 evaluated with the maximum 11kelihood estimates of
the parameters as our estimate of g -

In processing the boundary pixels,which typically constitute 60-70% of the
scene, we assume that the boundary data consist of an independent sample from
a mixture

10 iy

where the component normal distributions are the same class distributions
represented in the pure data, plus observations from a contaminant class
(possibly corresponding to the "not in field" ground truth label) in the tails
of the Nn(uz,Qz). In other words, we assume that a boundary observation
which 1s spectrally unlike all of the pure classes 1s much more likely to be
from the contaminating class than an outlier from one of the pure classes.

Therefore we classify as a contaminant each boundary observation X which

satisfies
T.,-1 2
1) (x-1p) Qg " (x-ug) > x
for all 2 =1, ---, m, where the ug's and Qg's are the previously estimated

pure data class means and covariances and xg 1s a size o critical value
for XZ with n degrees of freedom. 1In this experiment we chose a = .1.

let Y], N YM denote the boundary observations remaining after rejecting
those classified as contaminants. We treat Y], SN YM as an 1ndependent sample
from the mixture density (10), with unknown mixing proportions E&, cee, &h



but known components N (u,,2,), and obtain a MLE of &i, ey, &h by successively

substituting into (6). Obviously, Y], Ty, YM is, at best, a truncated sample

from the mxture (10), so that the MLE of E], =+, o is asymptotically biased.
We do not expect this effect to be a reason for serious concern. After obtaining

the MLE for Gys “7 s &h, we use as our final estimate of the number of pixels

corresponding to class ¢, the quantity NB, + M&i, where B, 1s given by (9).

3. Implementation.

The number of classes assumed 1n this experiment is determined by AMOEBA
subroutines PAINT and CLASFY. PAINT produces the pure/boundary division of
a5 x 6 mile LACIE segment, an array LABELS containing a patch description for
each of the pure pixel locations,and a map of the scene showing the pure and
boundary pixels. CLASFY produces an array CLASS containing the final cluster
designation of each of the patches. A subroutine STATZ has been attached to
AMOEBA which calculates and saves patch sizes (NJ), patch means (mJ) and
noncentral patch scatters (Rj)' These statistics are then passed to STAT3
which uses the CLASS array to compute the fraction (ag) of patches assigned
to each cluster, the fraction of pure pixels assigned to each cluster, and cluster
means (“2) and covariances (Qg)
statistics are used as 1nitial estimates of the parameters for the i1teration

for the pure data only. These cluster

procedure described by (6)-(8). CLASFY occasionally produces a cluster with

such a small number of pure pixels that an 1nitial covariance estimate cannot be
calculated. In this case the initial QE 1n HISSE 1s obtained by averaging

the cluster sample covariance with a multiple of the identity so as to insure that

the condition number of QE 1s no greater than 16.



After 1nitialization HISSE produces iterative estimates aék),uék),ﬁék)

of the parameters until a convergence criterion is satisfied, after which the

estimates B, are computed in the manner described in Section 2 and stored.

L
The boundary pixels are identified from the LABELS array output by AMOEBA.
For each one, the quadratic forms (x—uz)TQE](x-uz) are computed and tested

against the threshold value of xi, as in (11). For those boundary pixels not
rejected by the thresholding procedure, the 1ikelihood ratios fl(x)/fk(x)

are computed and stored 1n a temporary disc file for use in the iteration

procedure for estimating &i, sy Eh. Although the number of boundary pixels
processed 1s much greater than the number of patches, the cost is comparable to that
of processing the pure data because the 1teration procedure (6) can be carried

out simply by accessing the temporary file.

For the purpose of labeling classes HISSE identifies for each class £,
a,f,(X.)
. . . 2747
the three patches J which have the highest posterior probability
(X))
J

1n that class. The spatial coordinates of pixels i1n these labeling patches

are obtained from the LABELS array. Thus, in using HISSE, the analyst would
be required to make a judgement concerning the identity of each class based on

his ability to label the labeling patches.

4. Numerical Results.

The results tabulated 1n this section are from four passes over LACIE segment
1618 acquired n May, June, August and September of 1976. The data was preprocessed
by premultiplying each single pass 4-dimensional data vector by the LANDSAT I

transformation to brightness-greenness space



and stacking the brightness-greenness vectors to obtain 8-dimensional data
vectors. The results of the AMOEBA run were 7500 pure pixels, organized

into 310 patches. The number of clusters estimated by NUMCLU was 13. HISSE
required 19 i1terations to estimate the parameters of the pure data mixture
model. Of the 15290 boundary pixels, the thresholding procedure rejected 5575.
The number of passes through the remaining 9725 boundary pixels required to
produce estimates of the boundary mixing proportions &i, cee &i3 was 8.
The total cost of running AMOEBA and HISSE together 1s much less than that of
running UHMLE or CLASSY on the full scene.

Figures 1-4 show the scatter plots 1n brightness-greenness space, correspond-
ing to each of the passes, of the means of the patches determined by AMOEBA.
Particularly in the fourth pass, the tasseled cap configuration described 1in
(4] is visible. Figures 5, 6, and 7 show the plotted trajectories of the
estimated class means from pass to pass on the same coordinate system used in the
4th pass scatter plot. The trajectories of the means of the pure data clusters
produced by AMOEBA would be nearly i1ndistinguishable. It 1s interesting that
the class means trajector1es eventually given a small grains label exhibit a
characteristic triangular shape. Obviously, this characteristic can be used as
an aid in labeling the classes (see (3], for a discussion of this idea).

Figure 8 tabulates the initial cluster means, cluster variances, and patch
membership proportions obtained from AMOEBA's clustering of the pure data. Figure
9 tabulates class means, variances and patch memebershipprobabilities (the o's)
estimated by HISSE. Figure 10 compares the estimates derived from AMOEBA and
HISSE of the fraction of pure pixels belonging to each cluster (class). Notice
that 1n Figure 10, there 1s a significant difference between the two estimates,

particularly in the more populous classes. These classes happen to be the most



spectrally confused classes. There is also an appreciable difference seen in
Figures 8 and 9 between the respective estimates of the a's, although the
difference is not as pronounced.

Figure 11 shows the AMOEBA boundary map for segment 1618 with the three
labeling patches corresponding to each class outlined. A ground truth map
was used to attach ground truth labels to the labeling patches and hence to
the classes. Most of the classes were given a single ground truth label by
this procedure. Classes 2, 5, 6, 7, were not assigned a single ground truth
label and appeared to be made up of more than one type of small grains. However,
each of these classes was clearly small grains. Class 1 was the only really
difficult class to label; each of its labeling patches represented small grains
ground truth labels as well as such labels as beans and fallow. In other words,
the labeling patches for class 1 were snurious. For the purpose of obtaining
an aggregate small grains estimate, it was assumed that class 1 was a mixture
of 1/3 small grains, 1/3 beans, and 1/3 fallow acreage.

Figure 12 shows the final acreage estimate for each of the 13 classes 1n
the mixture model, the acreage of the set C of boundary pixels rejected as
outliers or contawinants, and the crop labels (1ncluding "small grains") assigned
to each class. The aggregate small grains acreage estimate 1s 15,288. The
small grains acreage from the ground truth tape 1s 15,465, an error of only 1.1%.
If class 1 1s labelled all small grains, the error is 15%. If none of class 1
is classified small grains, the error 1s 9.2%. It should be emphésized that the
problem of labeling cluster #1 from AMOEBA 1s also serious, since cluster 1 is
centered near the means of the spurious patches used to label class 1.

The thresholding of boundary outliers makes a pronounced difference in the



estimate. The small grains acreage estimate derived from HISSE without
thresholding would be 19,230, comparable to the estimate of 20,336 derived

from AMOEBA's cluster map.

5. Conclusions.

The accuracy with which HISSE estimated the small grains acreage in
segment 1618 was impressive, to say the Teast, but of course the procedure
must be tested on other segments for which ground truth is available. Also,
as we mentioned in Section 4, the accuracy of the estimate depends on the
classification given to the labeling fields for class 1, the problem class.

The procedure we used-dividing the class evenly among competing ground truth
labels - seems fair; however, in an operational situation the class would be
labeled by an analyst looking at a film product and 1t seems unlikely that

he would apportion the class i1n such a way. In any case, the greatest possible
relative error was 15%, sti111 a marked improvement over the accuracy obtained
by labeling AMOEBA's clusters and counting the cluster assignments, or that
achieved by HISSE without the thresholding procedure.

The performance of HISSE, or AMOEBA, depends in large part upon the purity
with respect to ground truth labels of the patches found by AMOEBA, which is
influenced by the user defined "percent in fields" parameter in AMOEBA. In this
experiment we defined the parameter as 50%; that 1s, we conservatively estimate

that 50% of the pixels 1n the scene should be found in fields. By reducing the

s1ze of this parameter, we expect to produce a higher degree of patch purity
and thus alleviate the problem of having a class represented by labeling patches

which should not be patches at all. We hope that this will not aggravate another



problem, namely that the ground truth map for segment 1618 shows a few large
fields representing important classes (such as barley) 1n which no patches
were found.

Finally, we note that although the aggregated small grains acreage was
very accurately estimated, the i1ndividual estimates for the various small grains
classes (spring wheat, barley, oats, and millet) were not nearly as accurate.
Indeed, several of the HISSE classes could not be given a single one of these
labels, although they clearly represented small grains. Moreover, there was
one significant crop class (beans) without a small grains label which was
seriously underestimated. Thus, the usefulness of HISSE 1n a multicrop inventory

‘cannot yet be determined.
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FINAL CLASS TRAJECTORIES
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VI LAAL LLALI QTARTITIDNIVI \(NIVLDIYY

CLUSTER # CLUSTER MEAN PATCH PROPORTION
1 26.84 110.39 29.79 121.70 36.49 11'.02 26.44 108.04 .077
2 24.99 108.48 28.17 117.42 44.25 115.57 34.05 112.63 .094
3 24.80 106.86 28.82 111.90 32.59 111.73 21.69 107.00 271
4 25.51 111.64 30.29 127.63 50.08 115.15 39.10 113.13 .094
5 25.46 108.75 29.26 122.53 48.90 114.94 36.61 111.77 .100
6 25.09 109.24 29.35 123.39 48.80 114.94 18.15 103.83 .158
7 23.90 106.14 28.76 113.53 38.15 113.07 37.15 112.73 .058
8 25.05 112.20 33.45 135.38 56.52 116.32 17.19 102.97 .026
9 23.26 105.98 25.02 108.48 34.30 125.54 25.91 121.94 .048

10 25.50 107.50 35.75 123.25 37.25 126.50 20.25 104.75 .003
11 25.49 110.83 30.71 128.90 24.92 104.16 19.04 104.01 .045
12 37.60 123.64 37.76 123.44 31.92 116.60 25.48 118.12 .010
13 30.16 132.47 31.80 139.64 27.37 123.07 20.68 123.83 .016

CLUSTER VARIANCE

1 7.98 10.82 3.22 36.25 51.31 16.82 32.68 10.60
2 6.09 10.51 3.25 25.33 33.50 8.50 23.14 18.36
3 7.87 5.24 7.29 32.49 29.88 18.48 17.25 12.48
4 4.54 18.49 2.48 15.77 32.80 7.96 16.41 5.97
5 9.11 4.70 3.13 21.46 27.%9 6.43 19.9? 6.90
6 4.64 8.34 4,26 38.13 44.59 6.00 11.12 6.22
7 © 4,74 2.60 6.14 22.52 15.73 11.22 37.19 7.90
8 1.50 3.18 3.61 12.71 15.00 1.84 3.43 1.59
9 2.90 3.42 5.40 11.30 11.44 24.02 8.12 53.75
10 4.25 0.25 0.69 35.19 11.19 4.25 1.19 3.69
11 4.00 5.83 5.3533.79 5.26 1.55 8.07 3.38
12 3.28 2.5 2.90 3.69 1.43 13.61 3.93 3.95
13 1.75 9.97 1.38 5.20 1.31 2.81 1.09 3.41

FIGURC 8



CLASS #

10
11
12
13

10
11
12
13

26.
24.
24.
25.
25.
25.
23.
25,
23.
25.
25.
37.
30.

91
62
11
58
30
10
89
06
26
50
25
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16

.56
.76
.66
.78
.48
.60
.66
.53
.89
.25
.78
.07
.64
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108.
106.

111

108.
109.
106.
112.
105.
107.
110.
123.
132.

10.
10.

20.

FINAL CLASS STATISTICS (HISSE)

19
52
34
.88
73
25
13
25
98
50
37
64
47

44
02

.29

68

.02
.04
.34
.19
.24
.26
.89
.24
.20

29.
27.
28.
30.
29.
29.
28.
33.
29.
35.
29.
37.

31

64
91
61
23
41
36
78
47
02
75
80
76
.80

.08
.71
.93
.74
.98
.29
.15
.62
.36
.69
.48
.00
.49

117
117

CLASS MEAN

110.

126.

123.

123.

113.

135.

108.

123.
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123.

139.

87
89
19
38
49
41
48
25
20
44
64

33.
50.
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48.
38.
56.
34.
37.
24
31.
27.

.57 35.07
.84 44.68

73
83
09
73
08
65
30
25

.86

92
37

110.
115.
113.
115.
114.
114,
113.
116.
125.
126.
104.
116.
123.

CLASS VARIANCE

51.15 72.18

23.47 35.
25.
19.
26.

38

22.
12.
11.
35.
42.

02
15
54
42
65
65
27
20
06

.00
.16
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39
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44
15

14.

11

11.

32
.94
.22
81
64
.92
57
.47
19
.79
.31
.30

24
8

9.

11.

23.
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.81
.02
55
.15
.94
.61
02
.81
17
.25
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.32
.49

50
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30
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35
55
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14
60
07

44,

15

14

16.
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11.

37
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37
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19

25.
20.

57

.39

.74
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06
24

.65
.33
.18
.19
.84
.07
.99

53
13

.65

97
83
20

.04

13
91
25

.07

48
68

12.
17.
13.

107

113.
107.
113.

111

103.
112.
102.
121.
104.
103.
118.

123

14
05
05

.31
.76
.09
.82
.50
.66
.70
.88
.66
.85

.45

58
51
64

.28

89
70
93
94
75
99
12

.83

PATCH PROBABILITY
.126
.083
221
.084
.108
.170
.061
.023
.048
.003
.048
.010
.016



PURE PIXEL PROPORTIONS(¢k)

CLUSTER # AMOEBA ESTIMATE CLASS # HISSE ESTIMATE( B¢)
1 .054 1 .143
2 .136 2 .107
3 .259 3 .188
4 .101 4 .089
5 .109 5 .123
6 .171 6 174
7 .067 7 .068
8 .021 8 .021
9 .034 9 .034

10 .001 10 .001
11 .031 11 .038
12 .003 12 .003
13 .012 ' 13 .012

FIGURE 10
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FIGURE 11 (PART 1)
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1. Introduction

This paper 1s concerned with the existence, uniqueness, and asymptotic
properties of a strongly consistent local maximizer of the 1ikelihood
function for a vector parameter in the case of nonidentically distributed
samples and without prior assumptions which insure the existence of a global
MLE. Uell known results pertaining to scalar parameters and i.i.d. samples
date back to theorems of Cramér [ 51 and Huzurbazar (11], while results
concerning the consistency of the MLE, under assumptions that insure a
unique MLE, may be found in Wald [17], Wolfowitz [19], and LeCam [127.
Somewhat more recently, Silvey [15] has dealt with the asymptotic properties
of the MLE without independence. Surprisingly however, a correct proof of
the multidimensional version of the combined results of Cramér and Huzurbazar
on the existence of a unique consistent solution of the likelihood equations
when multiple roots occur did not appear until 1977 in a note by Foutz [10],
(see also Tarone & Gruenhage [161, Chanda [ 3], and Peters and Walker [14,Appendix].)
Examples 1 and 2 which follow illustrate the need for a consistency theorem
along these lines which relaxes the assumption of identically distributed
observations.
Example 1 (Observations with missing components): Let Xl’ X2, ... be
independent random vectors 1in R" whose common density is one of a parametric
family {q(xle)}eee , where 0 is a subset of R”. Suppose that instead of the
X; we observe only certain subvectors ByXys ByXys ..., where {Bi} is a given
sequence of Ny xn matrices obtained by deleting n - n; rows from the identity.
Clearly we can assume that components are missing at random provided that the

Bi‘s are independent of the Xi's. Under what conditions is there a unique



strongly consistent (and asymptotically efficient) local MLE of 6 based on the
observations lel’ ByXos ...

A recent paper by Dahiya and Korwar [6] illustrates that even for a bivariate
normal sample, with several simplifying restrictions on the sample and on the
parameters, the likelihood equation for Example 1 has multiple roots and requires
numerical methods for its solution.

Example 2 (Estimating mixture density parameters with sample blocks of varying
sizes): Let f(xlTl), f(xsz), cees f(xlrm) be unknown but distinct members of

a multivariate parametric family {f(xl'r)}TET , and let Uy wees O be the unknown
positive probabilities corresponding to a discrete mixing distribution supported
on {Tl, ee.» T._}. The number m is known. Under what conditions will there be

m
a unique consistent MLE of the parameter 6 = (al, vees B g Tys eees T )

m

describing the mixture density q(x|e) =.g aif(xlTi), based on a sample of the
type Xl’ X2, ..., where the Xi are inde;;ident and each Xi is itself a random
sample Xi = (Xil’ cees XiNi) of known size from an unknown component density
f(X[Ti)? In this example the parameter 6 1s only locally idemtifiable. Moreover,
it can easily occur that the likelihood function is unbounded [9]; hence, the
need for a consistency theorem for local maximizers is especially clear.

The practical 1mportance of Example 2 is indicated by the fact that
estimation of mixture density parameters is often proposed as an alternative to
the clustering of large amounts of multivariate data [181. The asymptotic
properties of the MLE are of interest because of the prevalence of large sample
considerations in judging cluster validity (8], even though it may be difficult
to argue for a statistical basis for a given clustering problem. The presentation

of the data in blocks of varying size may occur when the primary sampling units

are grouped by physical or spatial associations (see [21 and [13] for an



application of this idea in the analysis of pictorial data.)

Finally we remark that the existence and uniqueness of a consistent solution
of the likelihood equations bears on the numerical problem of obtaining the
estimate. Each of Examples 1 and 2 is a missing data problem (in Example 2
the random variables which indicate the component population of origin are missing);
thus, a natural numerical procedure for obtaining a MLE is one derived from the
generalized EM procedure of Dempster, Laird, and Rubin [7]. Such a procedure
increases the value of the likelihood at each iterative step; however, this is
no guarantee of convergence, since the likelihood function may be unbounded.
Generally speaking it is possible to show that the Hessian of the log likelihood
is negative definite near the consistent solution of the likelihood equations.
Thus, the generalized EM procedure is convergent to it given a good enough starting
value (see [14] for a thorough discussion of numerical properties in the case
of a mixture of multivariate normal distributions.)

Throughout this paper the symbol Ee will denote expectation with respect to

2

v etc. will denote differen-

a distribution determined by a parameter 6 and Du’ D
tiation or partial differentiation with respect to scalar or vector variables u, v.
For a scalar valued function, vy will denote the gradient with respect to an inner
product which will usually be understood from the context. Given an inner product
<-|+> and a vector o, the symmetric k-linear form f(nl, ces nk) =.g <0|”i> will

be denoted by <o]->k. Thus, for example, we may write the covaria%gé of a statistic
S as CovT(S) = ET{<S - ET(S)|->2}. The largest and smallest eigenvalues of a
symmetric positive definite operator A will be denoted respectively by p(A) and

o(A).



2. A General Consistency Theorem. Let © be an open subset of RY and for each

positive integer r and each 6 ¢ 0, let qr(-le) be an Nr—variate density with

respect to some fixed o-finite measure Ar on RNr. Let 6° ¢ 0 and let Xl’ cees
X be a sequence of independent random vectors with X having density qr(-leo).

p?
For 6 ¢ 6 define

p
L,(8) = 3 T0g ap (X,l0)
r=1
Theorem 1: Suppose
o -
(1) .{Nr Dy a,. (x]6%) d_(x) =0,
(17) J/' 2 0 -
N Do O (x|6°) dr.(x) =0,

and that there is a constant M, functions fr’ a neighborhood Q of 6° and Ar-nul]

N

sets Ar in R'r such that for all r, 6 ¢ Q,x ¢ A,

r
. 3 o
(i) Dy, 5., 6 109 a, (x|0)]s £ (x) i, 3. k=1, ..., v
i 7§ Uk
(iv) Eolf (X )%} < M
80" 'r*r -
4
(v) Eeo{{Dei log q. (X [69)17} <M 1=1, vy v
1 2 0y~2 . .
(vi) E,o{ =—— T D q. (X [6")1°} <M i, =1, ...5 v
and
p

(vii) there exists ¢ > 0 such that 1y Jr(eo) > € Iv for sufficiently large p,

r=1

T . . .
where Jr(eo) = Eeo{ve log q, (Xrleo) Vs log q, (xr|e°)}, I, is the identity on
RY, and the ordering is the usual one on symmetric operators. Then there is a
neighborhood o° of 8° such that with probability 1 there is an integer Py such

that for p = p, there is a unique solution 6P in o° of the likelihood equation
1



DeLp(e) = 0. Furthermore, 6P - 6° as p > = and 6P is a maximum 1ikelihood
estimate. The consistent estimator 6P is asynptotically normal and asymptotically
efficient.

Proof: In the proof we make repeated use of the following version of the strong

Taw [4, p. 103]1: 1let Zl’ 22, ... be uncorrelated random variables such that
n
the variances of the Zi are bounded. Then %—Z (Zu - E[ZJ]) -0 a.s. as n > o,
j=1
3 1 p
Let S (8) == I D.log q.(X_|6). By (i) E,o{S (8°)} = 0 and by
p P r=1 0 r‘’r 0 P
(v) S p(60) +0 a.s. as p > «. Consider the vxv matrix DeSp(eo) whose i, jth
element is
P P
1 2 0 1 1 2 0
= D log g (X |6°) == £ ———D q.(x.]8")
p r=1 ei,ej r’r P =1 qr(xrleo) ei,ej r‘'r
21 g D, log q (X_[6°)D, 1o (X |e°)
P r=1 ei r'r ej 9 A2 )

By (1i) the expected value of the first term on the right is zero. Hence, by
(v) and (vi)

1
D.S (8°) + =
5 p( ) 5

fl ™M

J (6°) ~ 0
r=1 r

a.s. as p » «». Thus, with probability 1, if 0 < n < €/, there is p, € N
so that for p > P,
Desp(eo) < -2nl .

Without loss of generality we can assume Q is convex. For 6 ¢ Q,

1 P2 2 0
= I |D log q.(X_.|6) - D log q.(X {6)]
P r=1 ei,ej r‘r ei,eJ r'r
1 PV oy 1 /3 o 0
s> L I e, -6 fyID logq (x |67 + t(6 - 6°))[dt
P =1 k=1 k k! °0 O‘i’ej’ok r‘r
1 P o
<=z zle, -o0/|f (X))
P p=1 k=1 K k' r*"r



With probability 1, for large p

p
1+1 3
P r=1

1+ ME

It follows that for any particular norms on RY and on the symmetric vxv matrices

£L(X )

I

Egol (X))

I ™Mo

1
P r=1

I

there is a constant M such with probability 1 there is a positive integer Py
such that for p = Py 8 e Q,
[10gS,(8) - Dgs (6°)[1 = M|[o - 6°|] .

Thus there is a convex neighborhood Q° of 6° such that
DeSp(e) < - nl

for all 6 « 9°, p 2P It now follows that for p = Py Sp is one to one on
@° and that the image under Sp of the sphere Qd(eo) at 6° of small radius &
contains the sphere Qns(sp(eo)) at Sp(eo) of radius nS. Since 0 is eventually
. 0 . . . a . 0 .

in Qnd(sp(e )) there is a unique solution of Desp(e) =0 in 96(6 ). Since
DeSD(e) is negative definite, this solution is a MLE.

p
Let Zp = %-Z Jr(e°). The Cramér-Rao lower bound for p observations is
r=1
verified without difficulty to be (p zp)‘l.

%

By (v), (vii), and Liapounovs

Theorem [4, p. 200],pr2 2;

Moreover, in a neighborhood of 0° we may write

sp(eo) is asymptotically distributed as N (0, I).

_ (@) o
sp(e) = Sp(e ) + A(8)(6 - 6°)

where A(8) - DeSp(eo) as 8 » 6%, It follows that with probability 1.

]

p
for large p. Since DeSp(eo) + Zp > 0 and A(6P) - DGSp(eo) with probability 1,

L s o,0p oy _ L py~-1 b =% 0
) 8" - 6 = - 12 A(06 X L S (6
P 57 (0P - 6%) < - 2 AeP) N £ ¥ s (o)



L 1L
2 A(eP) 122 converges almost surely to the identity. Therefore,

the expression -I
P p p

L oL
p? Z; (6P- 8°) is asymptotically Nv(O,I) and 6P is asymptotically efficient.

This concludes the proof.

3. Applications.

Suppose that in Example 1 the Xi have a common n variate normal distribution

Nn(u, I) and it is desired to estimate p, I by maximum likelihood based on the

observed components lel’ Bzxz, ey Bpo. The likelihood equations for u and
z are
(3.1) > 8T(e_8T) L By - ¢ 8l(s s8) 1B x
: s rtr 7r r¥ Saryrtr rr °
r=1 r=1
and
P oaTin waly-len o P oToo ooyl T aTia spT)-l
(3.2) rEIBr(BrZBr) Br —rEIBr(BrZBr) Br(xr - u)(xr - u) Br(BrzBr) Br .

and have no explicit solution, although for given & (3.1) may be solved explicitly
for p provided that the matrix an the left of (3.2) is invertible.

Components i and j are paired in the observation Brxr if both the ith and

Jth columns of Br contain a 1. Let ¢(i, j, p) denote the relative frequency

th

with which the ith and j© components are paired in the first p observations

B1 R Bpxp, and let ¢1(i, 3) = 1im__ (i, 3, p) .

p+oo

Theorem 2: Let X,, X be independent, identically distributed according

ERUREE
to Nn(u, ). If ¢;(i, j) > 0 for all i, j =1, ..., n, then there is a unique
strongly consistent solution of the likelihood equations (3.1) and (3.2), which
has the asymptotic properties given in Theorem 1.

Proof: The only one of conditions (i) - (vii) in Theorem 1 which poses any



difficulty is number (vii). For 8 = (u, I), the information matrix Jr(e)

corresponding to the density of Brxr,
(-16) = Ny (B u, B 8])
9 N et Tt 2

is
Ur(e) | 0
o | ule)®ue)

(3.3) 3 (o) -

- aT(g raTy-l
where Ur(e) = Br(BrZBr) B, and the Kronecker product Ur(e)ca Ur(e)

r
represents the symmetric operator on n x n real symmetric matrices S (with
trace inner product) defined by Ur(B)SUr(e) . Thus (vii) is satisfied if for

each I there exists ¢ = «(I)>0 such that for all p sufficiently large

1P orT i caTy-1 T
(3.4) 5}512 Br(BrZBr) BrZ > ¢l 7
and
1P T Ty-1n <42 2
(3.5) E}EITFEBV(BrZBr) BrS] 2 eTrS
for all Z « R" and symmetric S. However, (3.5) implies (3.4), as can be seen
by taking S = ZZT. Hence, 1t suffices to establish (3.5) under the stated
hypotheses.
T Ty-1lp <42
Mow, Tr(BT(B,28T) 778 53
= Ty-1(arepTy 2
Tri(B,2B.) "(87SB.)1
= Ty~%(p_sgT T)~%;2
Tr[(BrZBr) 2(BrSBr)(BrZBr) ]
Ty~ Ty 7,2
> of(B £B,) “ @ (8,.IB.) ] Tr(B SB]
But,

L

of(B.28T)™% @ (B_z8) %1=1/pf (B 2BT)* @ (B _zB)*?]
rr r r ) rr rr

and



T\% Tyhe _ Ty T T\%
p[(BrZBr) ® (BrzBr) ] T?‘A‘?ﬂ”(BrZBr) A (BrZBr) A (BrZBr)z

=_sup Tr[(B):BI)A]2
Trac<a

_ T T
= sup TrZBrABrZBrABr

TrAa%<1

T
r

5 5.2
sup TriI?B ABrzzl

Tra%<1

2

In

L L
p[Z?® %] sup Tr[BIAB ]
Tra®s<i r

1 1
plZ?® 1] .

The last equation follows from BrBI = Ipn, - Hence,
- -1 .
TriB (B x8])7'8 12 = o(z™? @ £”7) Tr(B 58] )°
_ -1 -1 T T, .2
=0l @I 7] Tr[BrBrSBrBrl
Therefore,
1P T Ty-1g .2 o o 1P To eaTo -2
prEITr[BY‘(Br‘XBY‘) BrS] 20l °®ZI 7] Erler[BrBrSBrBrJ
-1 -5, 1 T T 2
20( °®1I ]Otprgl(BrBr) @ (BrBr)]TrS
Since eventually
p
o2 5 (878 ) ® (878)1 > L min ¢1(i,d) .
Py T T rr 2 i3

L L
(vi1) follows upon taking ¢ = %—min $:1(1,3) - plZ?® 5?1 - QED.
1,3

The second application of Theorem 1 is to the problem outlined in Example
2. We assume that the unknown component densities f(xlri) are from a regular

exponential family (see [1] for definitions) with minimal canonical representation
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(3.6) f(x|t) = C(1) exp <t|F(x)> (teT)
with respect to a o-finite measure A, where T is an open subset of a finite
dimensional space V with inner product <-|->. We also assume that for distinct

<1y |F(x)> <tp] F(x)>

Tys woes Tpos the functions e .y, € , together with any

m
components of F(x)e<T’IF(x)>, cens F(x)eq""F(x)> are linearly independent

(A]. The joint density of X, = (xr1’ cees Xrnr)’ aiven that Xr is a sample
from f(x|ty) is
(2.7) P(x.d1g) = v (rg)exp<ry |G (x)>

)

where X = (xrl’ cees X

Yelty) = C(TE)Nr

and
(x) =2 Fix_)
G (x)=1 F(x
r'’r =1 rj
The log-likelihood for the parameter 6 = (al, ees O s Tys cees Tm) of
Example 2, based on the sample Xl, e Xp is
p
(3.8) Lp(e) = E log qr(Xrle) s
r=1
where
]
(3.9) A [0) = B oy P (K [7p)

and pr(Xrlrz) 1s agiven by (3.7). The followina lemma collects some facts
about exponential families which we require. For proofs, see Barndorff-

Nielsen [1] .
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Lemma 1: Let (1) be a canonical representation of an exponential family.

For T ¢ T let k(1) = - In.C(t) = 1In fnexp<r|F(x)>dA(x)
R

Then
(i) For each 1 ¢ T, F(x) has moments of all orders with respect to
f(x|t)s
(i1) «(t) has derivatives of all orders which may be obtained by
differentiating under the integral sign. D:K(T) may conveniently
be represented as a symmetric k-linear form on V whose coefficients
are polynomials in the first k moments of F. In particular,
(i) D k(t) =<E_(F)|-> = s <F(x)]->f(x|t)dx(x)
T T Rn
and
. 2 _ _ - .2 . ne .
(iv) D x(t) = cov (F) = én<F EL(FY[->"f(x]r)da(x) 3 Dix(t) is
positive definite.

(v) «x(t) s strictly convex on T.

We are now ready to establish consistency of the MLE in Example 2.

Theorem 3: If the numbers {Nr} are bounded and Lp(e) is given by (3.8)

then with probability 1 there is a unique consistent solution of DeLp(e) =0
which, moreover, is a MLE of the parameter 6° = (a?, ey a;_l, T?, ey r;)

and is asymptotically normal and efficient.

Proof: Write “r(Tl) = E. (Gr) ; u(rz) = E, (F). Using Lemma 1, the nonzero
2 2

derivatives of qr(xrle) up to order 2 are:

(3.10) Dazqr(xrle) = pr(xrsz) - pr(xr|Tm) , 1 <2 sm-1

(3.11) DTRqr(xrle) = alpr(xrlrz%:Gr(xr) - “r(T2)|'> , 1< <m
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2 -
(3.12) TSL’%qr(xrle) = pr(xr‘T2)<Gr - ur(T2)|'> , 1< sml
2 -
(3.13) DTm’ag qr(xrle) = 'pr(xrle)<G - U, (t )] >, 1 <2 <ml

2

— . 2 -
(3.14) DTRqr(xrle) = agpr(xrsz){<Gr - ”r(Tz)l > cov_ (G)}, 1<2<m,

g r
Conditions (i) and (ii) of Theorem 1 follow immediately from (3.10) - (3.14).
Similarly, using Lemma 1 and the boundedness of {Nr}’ conditions (iii) - (vi)
of Theorem 1 are readily verified. It remain to verify (vii). We may write

Jr(w) in matrix form as

I, 0 A. B 1y
J.(8) = E
x*
2 2
0 NI, 5. ¢l Lo N7,

0

where I and I are respectively the 1dentity operators on R™ 1 and V" and

o (X 1ty = p (X It )10 (X, ] ) = X [T )]
Ar=< rm rz‘”" rrom g, k=1, ..., m1
(X.18)
() (X |t )[p (x IT ) - X [t )1 - -
Br= k"r k r''m erz<G ‘U(T I'> 2 1, -.-,ml
qr(xrle) =1, , m

KT (X T )
c = (agakp IT p2 lTk —l(G - u (Tk)kG _ ur(TQ)|.> k, 9 = 1, eeay M.
S

The assumptions concerning the linear dependence of the functions exp<t|F(x)>
and F(x)exp<t|F(x)> insure that Jr(e) is positive definite for each r.
Condition (vii) will be established once it is shown that the smallest

eigenvalue of Jr(o) is bounded away frop zero as Nr > ©
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Clearly,
A B
o(d (8)) 2 o <% r r j)
r 0] .
Br C

Observe that

Pr(X,lTy)
LR - exp {-N [elr)) - k(T ) - <ty - Tk!ﬁ%— G.>1} .

pelt )

If X is a sample from f(xlrk), then the expression in square brackets
converges to

K(Tz) - K(Tk) -<T, - TklETk(F)> = K(TQ) - K(Tk) - K'(Tk) . (T2 - Tk)

which is positive by the strict convexity of k. Hence,

P(X.]T,)

- >0 as M » o,
pr(xrlTk} r

Therefore,
Ppr(XrITz)pr(xrlTk) . pr(xrlTQ) 1
’ qr(xrle)z — K qr(xrle)
converges to 0 if ¢ # k and é;— 1f 2 =k as Nr + o, Thus,
EgTA] - <“1‘Z + f&'z‘— > as N+ =
“n %

-y
Given that Xr is from f(xlrk), er(Gr - “r(Tk)) converges in distribution
to a normal random variable Z with mean zero and covariance covT (F).
k

Hence,
p (X IT ) 1
r''r!t g -~
¢ 2(GY‘ - Ur(Tk))

quxrles lr



1

converges in distribution to 0 if 2 # k and ~ Z if g = k.
k
Let A be any element of V and consider
N2 <G (o) 1014 = 120 S F(x 4
po <G - (T )17 = 0 [j§£< rj) - ETk(F)|A>]

After expanding and taking expectation with respect to Ty it will be seen
that the only nonvanishing terms are those of the form

2 2
E. KF(X,5) - ETk(F)lA> <F(X,,) - ETk(F)lA> ]

k
. N 2
of which there are N+ zr = O(Nr). Thus

1
]

4
E. IN.* <G, - ur(rk)|A>]

K "
is bounded as Nr + o, Jt follows from a standard theorem on convergence of
moments [4, p. 951 that
P (X T,)
T
k | a.(X.[6)

-k i
E Nr (Gr Ur(Tk)) +0 as Nr > o

Thus Ee(Br) + 0. Similar reasoning shows that

Ee(Cr) > (Gkgcoka(F))

as N > . Therefore okJr(e)) 1s bounded away from 0 and this conciudes

the proof.

4, Concluding Remarks.

Theorem 3 remains true under weake assumptions then the boundedness
of the sample sizes Nr’ but nothing like the approach embodied in Theorem

1 will work without some restrictions on Nr' Nevertheless, it is far from

14
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intuitively clear that restrictions are needed for the existence of a
consistent MLE. Similarly, it seems plausible that the assumption in
Theorem 2 that components be paired with nonzero asymptotic frequency
might also be weakened. In certain cases, e.g., when a normal mean is

to be estimated from data with missing components and the covariance is
the identity, the existence of a consistent MLE with desirable asymptotic
properties can be shown under weaker hypotheses than those derived from
Theorem 1. The condition in Theorem 1 that ¢1(i, j) > 0 for all i and j
is nevertheless reasonable since it is equivalent to the condition that

the Cramer-Rao lower bound be of the order of %-as p > o,
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SUMMARY

In this paper we investigate the problem of estimating the
parameters for a mixture of densities from, possibly distinct,
exponential families. The likelihood equations used by Hasselblad
(1969) are necessary conditions for a local maximum of the 1ikels-
hood function. We show that a particular repeated substitution
scheme, determined by the likelihood equations, converges locally
to the strongly consistent maximum likelihood estimate. This

generalizes the results of Peters and Walker (1978).

Some key words: exponential families, maximum 1ikelihood estimate,

mixture densities.



1. Introduction

Let X be an n-dimensional random variable whose density p (with
respect to some o-finite measure) is a convex combination of densities

P> where each P, belongs to some exponential family, i.e.,

L
P(x) = I 0.7 Py(x)
m
ao >0 I oy = 1
i i=]

p;(x) = r:(a,%) h.(x) exp <l f.(x)D,

n.
and where (*, * D is an inner product on R 1 defined by {x, Yy >1 =
-1
t

X Zi Y.

If {x } 1s an independent sample on R" then a maximum 11kelihood

k
k=
estimate of {aé s q } 1s a choice of parameters {a s Qs }1 =1 which locally

maximizes

n ™M=

Tog p(x,)

=Z |—
>
——

with {a], q1}m replacing {a?, q?)m in the evaluation of p.
i= i=1



If we assume that this choice is to be made from some open neighbor-

hood @, of the true parameters q? and that for each i and j, Eq lf1j
1

[ < o

then a necessary condition for a local maximum is that

N o3P, (x,)
k=1 p(xk)

where 6, = Eq1 ().
Equations of this type will be referred to as likelihood equations

and these were introduced by Hasselblad (1969) for the case that each P,

belonged to the same exponential family. We will see that this restriction
1s not essential. The case that each P, is a multivariate normal density
has a longer history and has been considered by Day (1969), Duda and Hart
(1973), Peters and Walker (1978), Wolfe (1970), and others. A1l of these
authors considered a particular repeated substitution scheme to itera-

tively solve the Tikelihood equations.

2. Assumptions and a change of parameters.

At this time 1t 1s necessary to change the way each family 1s
parameterized. The following lemma will provide some insight into this
change. The lemma 1s essentially a rearrangement of some ideas pre-
sented 1n Berk (1972) and Barndorff-Nielsen (1978) and is outlined

below. Throughout this paper "v" will denote the Fréchet derivative of



a vector valued function of a vector variable. For questions con-
cerning Fréchet derivatives, see Luenberger (1969).
Lemma 1 Let po(x,q) = ;(q)h(x) exp (q,f)z for qeQ, an open subset of

n A -
RO If po(x,q) = po(x,q) a.s. implies that q = q, then 6(q) (f) 15

:Eq
a 1-1 function. We also have that 0(2,) is an open subset of R © and
q(8) is a continuously differentiable function with Vga nonsingular.

Proof In Chapter 8 of Barndorff-Nielsen (1978) we have that £(q)

is 1-1 and infinitely differentiable Since 6(q) s continuous, 1t follows

from the Brouwer invariance of domain theorem see Dugunji page 358 (1966))

that e(Qo) is open. We also have that

-
Vg8 = VqE.(f) = {f(f-e )(f-¢6 )tpe} L

Since 8(Q) is open and Eq(f) = 6 it follows that qu is nonsingular.
The final conclusion of the lemma follows from the inverse function

theorem.

Throughout the rest of this paper we will make the following

assumptions.
n

1) p](x,q]) 1s defined for each q. € Q an open subset of R i con-

taining q? and q, 1s uniquely determined by pi(x, q1).

m

2) 1f S is a proper subspace of Rt, t=m+ n. s then
i=]



Prob m

p1(x){f](x) - 6,1

P (X){F (x) - €}

where the probability and functional evaluation are taken with respect

e?}m
i=1

0
to {a1 R

We note that this assumption is a generalization of identifi-
ability (see Yakowitz and Spragins (1968) and Teicher (1963)). That

this 1s a nontrivial change can be seen in the following example.

XT 2

Example Let py(x) = te””" and py(x) =t xe XT.

Clearly p, and

p, are identifiable. We now observe that

p](f]‘ 9]) = p](X - ..[I._)

and so

1 1
Pr(fy= 8y) + Py - Py = 0.

By defining 9, = Eq (f1) and using lemma 1 we can proceed to the new
1
parameterization of P» 1.8,

P (x,6,) = r {6 )h (x)exp <q (8.), f (x)>;.

1 171

Th1s change in parameters does not change the necessary conditions

for a local maximum of L.



We now consider a statistical property of solutions to the
likelihood equations. The following lemma is a consequence of the fact
that the conditions of Chanda (1954) are satisfied by p(x) and is
offered without proof. The reader is referred to Peters and Walker
(1978) for further discussion.

Lemma 2 Given any sufficiently small neighborhood of the true
parameters, with probability one as N approaches infinity, there is a
unique solution to the l1i1kelihood equations in that neighborhood
and this solution is a maximum likelihood estimate.

This solution is called the strongly consistent maximum likeli-

hood estimate.

3. THE GENERAL ITERATIVE PROCEDURE

A natural iterative procedure for solving the likelihood equa-
tions is suggested by their fixed point form. We generate a sequence
of estimates by repeatedly substituting the last estimate into the
right hand side of the likelihood equations. This generates a new
estimate. Hasselblad (19639) and Day (1869) have shown many examples
where this work. Peters and Walker (1978) have proven that 1f each
P, is a multivariate normal density, then this procedure converges
locally to the strongly consistent maximum 1ikelihood estimate. Our
proof of the local convergence for exponential families generalizes
this result and the proof 1s patterned after their argument. Before

we proceed further it will be helpful to introduce some notation



n
Since ei ranges over 91(91) an open subset of R 1, the natural

parameter space is a subset of

where t

"
3
+
ne~z
3
=
1)
(-’.
-
1)
3
¥
3]
<
(1)
(—’-
o g
<Y
(-+

s e D o
-3

1s an element of Rt. If for i=1,..., m we let

then the 1ikelihood equations become
2) . = Aly)
! (M(y)
A1 M1

where A = . and M =



Equivalent to equation 2 is

Y = ¢ (Y) = (]'C) I+¢ (Qélg) .
/

€

We define the repeated substitutions scheme by

The operator ¢_ is said to be locally contractive near a point .

if for some norm || - || on RY there 1s a number 0 < X < 1 such that
[Pe. (V) =vllh a1l ym - 2]

whenever y’ 1s sufficiently close to v.

4. LOCAL CONTRACTABILITY )

We will now establish the following theorem.
Theorem 1. With probability one as N approaches infinity, ¢.1s a
locally contractive mapping (in some norm) about the strongly consist-

ent maximum 1ikelihood estimate whever o < € < 2.

Proof. For any norm on Rt one can write

¢ (v7)-v= v (y) [y~ Y]+0(HY-Y' ||2>

where y is a solution to the likelihood equations. We can see that
the theorem will be proved if one can show that with probability one,

V¢€ converges to an operator which has norm less than one.



We can write Vo_(y) as a matrix of Frechet derivatives

vV A VeA
Vcbe(y) = (1-e) I + ¢ a
VM VM
Q €

We recall that Vq ei is nonsingular and since
1

vV 6.I. = f(fi-ei) (fi-e]. )T pi(ei),

1
we have that Z; Ve qi is positive definite with respect to the usual 1nner
n 1 .
product on R '. So we define (',i§ for i=1, ..., m by

. T -1
(X Yy D75 = oyx 4y Veiq‘ y

and let bi = p1/p.

By direct calculation, using the likelihood equations, we see

that 1f v is the strongly consistent maximum 1ikelihood estimate then

10



: N b'l(xk) b](xk)
VA(y) = T - (diag a;) Nz :
k=1 b_(x,) b_(x,)
m' Xk m' Xk
N T
N b](xk) (b](xk){f](xk) - e]}, >l
VeA(Y) s - 'r]q‘ Z : -
k=1 \'p (x,) b (x ){f (x ) -8}, -2
m* Xk O X T\ Xy b= Bt m
T
N b](xk){f](xk) - 61} b](xk)
_ ]
VQM(Y) = - diag a; kE1 : .
bm(xk){fm(xk) -8} ' bm(xk)
v M(y) = |di ALY (x )
e.I’Y = 1ag N ’Z<=] bTx—k)—— V61D]\Xk,
- = :
N .
k=1 - .
_ bm(xk){fm(xk) - 8.} b (x, )FF (%) - 8 b, >m
We observe that V@E {Y) can be written as
% () =13 Fix, )
¢ Y} =5 Xps Y
€ N k=1 k
where VYF(x, y) exists and has the property that for any norm ||- || on

VYF(x, Y ) there exists a real valued function g such that

11
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v, FOG ) 1] < g(x)
and fg(x) p(x, v°) < =

for every y in some neighborhood of yo. It follows from this that
V€¢ evaluated at the maximum likelihood estimate converges to
E{VYée(yo)}. Hence it will suffice to show that in some norm ||-]],

E{VYée(yo)} has norm less than one.

Let /b1(x)

b,;\(X)
V(x) = b](X){f](X) - 8y}

b (x){F, (x) - 6}

and let ¢+, - denote the inner product induced on Rt by scalar

-

multiplication and <- , - >i i=l, ..., m.
Since
N f.(x,)
EARE . ey e.p. (x ) (+0)
k=1 PUX) 8P R
=VG.=1
have that

diag a; O
0 = » P
E{V¢>E(Y 1} =1-c¢ o I fV v, -> p



13

We can denote this as I - €QR where

diag TR
Q:
0 1
and R = J{V {V, -> p . By assumption 2 we have that QR 1s

positive definite with respect to <- , Q'] > . The theorem will be

proved 1f it can be shown that for

that < W, QV[QRIN > = <W,RH > < <H, QW > .
By an application of Swartzes inequality and the fact that

(ve) = = f(f-9)5-e)p,

we have the following.

Ry = [ iy b

]
—
- M3
"
—
—
«<
O~
©
e
+
A\
~N
—t
-
—+
-
'
<>
-~ O
N
O
-
A4
-
———
—
o

m . )2 o
< |z 1N Lo, (F -6 P P
- i=1 0 o™ 1 ] p
0.1 3
2
m ye
i 1 T o.-1 0 T, 00 -1 0
= z — 4+ =g za.L. V., q {E(ff )-8 ¢ } L.V, q; a2 }
i=1 L? ay - 8y, 18
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T | —=+z.0°%2; V. QQz,
'i:][a.io h| h| 1 61 11

<y QWD

This completes the proof.

We now consider a useful generalization of this theorem. Consider the
case that the random variable X is a mixture of densities Pi» i=1, ...,
m+k for k>0, where each P, is from some exponential family for i=1,...m
and where P, is an arbitrary but completely determined density for

i =m+l,..., mtk. The appropriate likelihood equations are

N
i -
Qi'N‘Ez.‘*p—r)-(;)'— i=1,..., mk

5 :.]_r; f1(Xk)P1(Xk) /l’; p](Xk) i=1 o
VN pix) N k=1 PUx) T

Let Qe be the appropriate operator determined by these Tikelihood
equations. It can be seen that the proof of Theorem 1 can be easily

extended to prove the following theorem.

14



Theorem 2 Let assumption 1 be satisfied for i=1,...,m and suppose

m
that whenever S is a proper subspace of Rt, t = mtk+Z nss then

i=]
Py (x)
Py (%)
Prob p](X){fl(X) _ el} ) <7.

(0 (x) - 8}

\

~

It follows that with probability one as N approaches infinmty, CE 15
locally contractive mapping (in some norm) about the strongly consistent

maximum likelihood estimate whenver o < ¢ < 2,

a

15
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5. DISCUSSION

We observe that Theorem 1 is sufficiently general to include most
exponential families and almost arbitrary mixtures between such families.
In fact, it covers mixtures between families where the associated measures
are not equivalent. Thecrem 1 also applies to many situations where some
subset of the usual parameters are known or where the parameters are
constrained.

It should also be pointed out that although Theorem 1 applies to
mixtures of multivariate normals, it is not based on the traditional likel1-
hood equations. Instead of iterating on the covariances, the procedure up-
dates the non-central second moment. This results in a different iterative
procedure, whose difference is more than cosmetic. The difference in the

updated covariances is given by (u1 - ) (u - ui)T where u. is the new

j
estimate for the mean given M, - However, there seems to be no practical
difference between the two schemes and one has to favor the Peters and Walker
scheme since 1t 1nvolves the covariances directly

Finally, we observe that the remarks made by Peters and Walker (1978)

concerning the optimal choice of € are applicable to this paper and the

reader is referred to their paper for a discussion of this.
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SPATIAL CORRELATION IN LANDSAT
AN EMPIRICAL STUDY

William A. Coberly
The University of Tulsa

1. INTRODUCTION

Data analysts who have worked with LANDSAT data have
observed that neighboring pixels are not independent mea-
surements on disjoint areas of the target scene. This
spatial correlation or dependency is induced by a number
of factors - overlap of the instantaneous field of view
(IFOV), atmospheric scattering, optical and electro-mechan-
1cal components of the sensor system. These factors are
are in addition to any intrinsic spatial correlation which
might exist in the target scene. This spatial correlation
violates a number of assumptions usually made in the digital
processing and analysis of LANDSAT data, especially the
statistical analysis. A few studies (1, 2 ) have inves-
tigated 1ts effects on the accuracy of various statistical
procedures. However, a more fundamental analysis of spatial
correlation is reguired i1n order to enhance our understanding
of LANDSAT image representation and modelling. In partic-

ular, a better understanding of the boundary or mixed pixel



phenomenon requires the incorporation of spatial correla-
tion into the model.

Two approaches should be undertaken. First an analyt-
1cal determination of the spatial correlation induced by
the atmosphere and the sensor system, based on a linear
system representation of these factors should be made.

The second approach is an empirical determination of the
spatial correlation structure. This is the purpose of this

exploratory study.
2. SPATIAL CORRELATION

A complete study should consider the two dimensional
properties of spatial correlation. However, in this study
only the one dimensional characteristics, in the direction
of the scan line, will be studied. This is a reasonable
start since a number of the factors, such as detector re-
sponse and electronic amplification and recording, are one
dimensional.

Define Xl, X2, cee XL to be the random digital

measurements along one scan line for a single channel of !

the multispectral scanner. Let m = E( Xl ) be the mean

value of Xl for 12 =1, -+ ,L. Then the autocovariance

function is given by



v 1,i+k ) = E(( X -m; ) (X ,,-m . )).
We now impose the assumption of covariance stationarity,
which may not hold for large scan angles, but should be a
reasonable assumption for small scan angles. Now Y de-
pends only on the 1lag k, and is independent of scan line

position 1. That is,
A ..
y(Ck) = y(i,i+k ).

That 1s, we are assuming that the distribution of the
pixels along a scan line is covariance stationary, changing
only in mean. Note that y(0) is the variance and the

autocorrelation (spatial correlation) is given by
p( k) = vy(k)/¥(0)
for k =0,1, +-- .
3. ESTIMATION OF THE MEAN

The mean function m is, of course, in general not
known. However, for the segments used in this study, digital
ground truth was available and this suggests a way to esti-
mate the mean for each of the pixels. The digital ground
truth 1s tabulated at the subpixel level, six subpixels per

pixel according to the following scheme.



Xl-l xl 1+1]
] 1 |
| | |
--|-----"----+-- Scan Line
— | , t e
SRS U [P R S
| | {
1 N _1
Plxel///r Subpixel

If the pixel has the same ground truth label assigged to
each of the six subpixels, then it is said to be "pure".
A "field" 1s an interval along a scan line of pure pixels
with the same ground truth label. A "field" may be one
pixel in width or many. Pixels which are not "pure", that
1s, those containing conflicting subpixel ground truth
labels, wi1ll be called "boundary" pixels.

The estimate of the mean function for a scan line 1is
defined as follows: .

-

field mean of X if
contained in a field

a moving average if X
1s a boundary paixel

\

®he moving average used 1s

( Xl~2 + 2X1-l + 2Xi + 2Xl+1 + X1+2 )/8.



In Faigures 1 - 8, the pixels X, are plotted (solid lines)
superimposed on the estimated mean function m, (dotted
line) for the four LANDSAT channels and the two tassel-cap
coordinates "brightness"” and "greenness". One scan line

for two acquisitions of each of four segments 1s presented.

Pixels Estimated Mean
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segment 1645/236, line 62. (a)-(d) channels
1-4, (e) braghtness, (f) green coordinate.
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4. ESTIMATING THE SPATIAL CORRELATION

For a given scan line and channel, the sample spatial

correlation is calculated by

L-k

~ —l "~ ~
YOk = g 1 CXmm D 0X om0
i=1
and
p( k) = y(k)/Y(0)
for k =0,1, *++ . In this study the sample spatial

correlation was calculated for every third scan line for

each of the four channels on each segment acquisition. 1In
Table 1 the average spatial correlation function over all
scan lines used in the calculations 1is tabulated for two
acquisitions for each of four segments. Although the coef-
ficients are not the same from segment to segment, the pat-
tern 1s very consistent. The lag 1 correlation is distinctly
non-zero over all segments and channels and the lag 3 and
larger order correlations are essentially zero. The lag 2

correlation 1s zero for some cases and non-zero for others.
In Figures 9-16, the histograms of the estimates for

p(l) and op(2) and the scatter plots of op(l) versus op(2)

are presented for all scan lines processed in the study.
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5. BOUNDARY PIXELS AND SPATIAL CORRELATION

The spatial correlation observed has considerable
implications i1n the characterization of boundary or
mixed pixels. The usual notion of mixed pixel is one in
which the instantaneous field of view intersects at least
two real label classes in the target scene. 1In fact,
spatial correlation may induce the mixed pixel effect even
when the IFOV target is composed of a single class, due to
the mixing of neighboring pixels by the correlating mech-
anism. By understanding this spatial correlation phenom-
enon, better automatic boundary finding or field finding
algorithms, specifically developed for LANDSAT data appli-

cations, should result.
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TABLE 1. Estimated spatial correlation functions.
Lag

Segment Chan 1 2 3 4 5 6

1612/145 1 .22¢ -,036 -,030 -.029 -,0851 -,05%
2 .302 -0051 -c048 -.OSP -0080 -0072
3 .352 -,060 -~-,100 =~-.CP7 =-.078 -.021
4 .26 -,053 -,0°¢2 -,087 -.0E82 -,0F1

1c18/22¢% 1 -E A .114 -,004 -.075 -.0€2 =-,00°0
2 . 501 .12¢ -,008 -.077 =-.114 -,11°¢
2 . 486 .07 -,03¢ -,0f1 -.096 -.CSC
4 . 486 .021 -.,022 -,06¢ -.C7¢ =-.CCC

1622/12¢ 1 .20 =-,015 -,029 -.044 -,046 -.0kES
2 .27 -,005 -,040 -.032 =-.0t4 -,.06E
3 . 387 .017 -.,019 -.0428 -,078 -.09¢
4 .421 .046 -,007 -.035 =-.071 -,0E2

1633/236 1 . 235 .032 -,023 -.042 -.048 -,0AK1
2 .446 .058 -,042 -.072 ~-.,0¢0 =-.CS2
3 . 396 .035 -,034 -.062 -.090C -.0F7
4 432 .051 -,031 ~-,072 =-.083 -,07¢
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TABLE 1. Continued.
Lag

Segment 1 2 3 4 5 6

1642/14¢ 1 .213 -,057 -,060 -.050 -,064 -,0¢°
2 .337 -.024 -,055 -.066 =-.070 -.072
3 . 365 .003 -~,023 -~-.0%4 -,077 -.C7°¢
4 . 293 .007 -,029 -,046 -,062 -.Cc0

16242/236 1 .216 -,033 -,031 -,044 -_,059 -,0¢2
2 .210 -,019 -,053 -,070 -.CBE -.C°2
3 . 254 .014 -,050 -.079 -.,110 -,10°¢
4 .406 .015 =-,0¢6 -,C76 =-.,116 =-,11°¢

1645/145 1 .10¢ -.C066 ~-,011 -,011 -.021 -.C1%t
2 .17  -,1C8 =~-,047 -.023 -,015 -,C0F¢
3 .260 -.,04¢ -,034 -,035 -.C239 ~,CEl
4 0293 —.027 —'029 '0024 -0021 -.04("

1625/23¢6 1 .243 -,005 -,045 -,060 -.070 ~.072
2 424 .013 -,071 -,007 -,082 -,0¢7
3 .426 .023 -,042 -,061 -.076 -.00°1
4 L4241 .033 -,043 -,058 -,062 ~,0°F1
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INFORMATION IN REMOTELY SENSED DATA FOR ESTIMATING
PROPORTION IN MIXTURE DENSITIES]
Virgil R. Marco, Jr., and Patrick L. Odell

University of Texas at Dallas
Box 688, Richardson, Texas, 75080

I. INTRODUCTION

Data taken remotely by multichannel sensors on a near earth satellite
can be modeled as a collection of multivariate data points. In the
application [1] that motivates this paper each px1 data vector repre-
sents a measure of feflectance from (1.1) acre location on the surface of
the earth. Each of the p elements of the data vector is a reflectance
measure at a preassigned wave length of light. Conceptually, each crop
class defines a set of reflectance measures that can be modeled by a
multivariate unimodel probability density function unique for each crop
class.

Let there be m-crop classes and let the p.d.f.
Pi(x) = pi(xsp45Z3) 1= 1,...,m (1.1)

denote the distribution of the random data vector X given that the
measurements were made on the ith crop class, Hi’ i=1,...,m. Also

let the multivariate mixture p.d.f.

]This research was supported in part by the National Aeronautics and
Space Agency, Johnson Space Center under Contract NAS 9-14689-95.



m
p(x) = Z a'ip'i(x) (]-2)
i=1
m
such that o, 0 i=1,2,...,m and ] o, =1 denote the distribu-
i=1

tion of the multivariate observations given that the data is unlabeleld,

that is modeled by p(x) in (1.2).

Definition 1. A random sample is said to be unlabeled if the random

vectors are selected from a population defined by (1.2).

Definition 2. A random sample of unlabeled data is said to be classi-

fied data if, according to some classification rule R = (R1.R2,...,Rm),
each vector in the sample is assigned to one of the (crop) classes
H-l, HZ""’nm .
Definition 3. A random sample of unlabeled data is said to be verified
data if each vector is classified as being from the true subclass T,
for some i=1,2,..., or with probability one.

Verified data is classified data in which there is zero probability
of misclassification.

Definition 4. A random sample is said to be labeled if it is selected

from a single class I, and the identity of ith population is known.

The difference between verified and labeled data is that the verified
data must be labeled a posteriori while the labeled data is labeled prior
to taking the sample. In both types of samples, one knows with certainty
the 1abel of the population from which the samples came.

The purpose is to estimate the vector or proportions o =

(0ty 50 seeesar )T which defines the function p(x) in (1.2). If q.
1272 p i



denotes the proportion of vectors in the mixture from class “i and N

the total number of vectors in the region, then
A, = (1.1) N o (1.3)

is an estimate of acreage of crop class Hi » as a function of an estimate

of the proportion &i and a; - Hence, our interest is to estimate

“well,

Three different types of data are available for estimating the
elements of o arise naturally in the application involving remote
sensing from space. They all are maximum likelihood estimators for «

using

(a) unlabeled data,

(b) classified data, or

(c) verified data, respectively.

The cost of acquiring unlabeled data is less than the cost of acquiring
classified data which is in turn less than the cost of acquiring verified
data. The computation of sample size allocations when samples from more
than one type of data are available arises naturally. In the case of
sample design one can control the type of data to be selected and the
optimal mix of sampliné can be accomplished. It is important to note
that one always has available a random sample of unlabeled data; hence

if Cu denotes the cost per unit of taking unlabeled data then

(]
u
(gp]
+
O
H
~
(]



=

are the per unit cost where Cv and Cu are the costs of classifying
and verifying in unlabeled data point respectively. The values Kv and
KC are multiplicative constants that give in addition to an additive
model a second multiplicative representation of the costs.

One would expect Cu < Cc < Cv in most space science applications.
It is important to note that in the space application unlabeled data is
available as basic for two of the three methodologies for estimating a ,
and except for missing data that the totality of unlabeled data is
also available. The cost of machine processing every vector is a
realistic limiting factor for unlabeled and classified data while the
cost of resources to visit each location for verification is the major
1imiting factor for obtaining verified data.

However, it is not intuitively clear which type of data contains
greatest amount of information for estimating o for a fixed sample
size. The purpose of this paper is to compute and order with respect
to magnitude the information content of the three types of data, and
discuss the implications of that ordering for the space application.

The term information content of the data is defined as the inverse
of the Cramer-Rao matrix lower bound for unbiased estimators for a .

This is the matrix form of Fisher's Information,



II. INFORMATION CONTENT OF VARIOUS TYPES OF DATA

2.1 Fisher's Information: Let X denote a random observation from a
multivariate (p-variate) population whose p.d.f. is defined by (1.2).
If we denote the parameter vector by a = (a],...,am_])T then by the

usual theory (Cramer [2], Rao [3]) the (m-1 x 1) random vector

s = anp(x) (2.1.1)

oo

is such that

E[S] = ¢
and
T azlnggxl aztnggx! def
E[SS']=-E [ YR = - [ {3a. Sor = Ala) (2.1.2)
1 J

where A(a) denotes Fisher's information for a contained in the
sample X .

If X],...,X denote a random sample from a multivariate population

n
whose p.d.f. is defined by (1.2), then the Fisher's information for «

contained in this sample can be shown to be
T, .
E[SS']=n Aa) . < (2.1.3)

Furthermore, A-](a) is the Cramer-Rao lower covariance matrix bound
for unbiased estimators of the vector o« . That is,
if & is any unbiased estimator for o , then the covariance matrix AMQ)

will never be less than A'](a) . Note that if A and B are two positive



definite matrices of the same size and A - B 1is positive semi-definite
then we say B 1is less or equal to (when A - B = ¢) than A .

From (1.2) it follows that

m-1 m-1
p(x) = jg‘l o pj(x) +11 - jz'l o pm(x) (2.1.4a)
m-1
= j§1 a3lp;(x)-pp(x)] + py(x) . (2.1.4b)

It follows from (2.1.1) that

. - Pj(x) - Pp(x)
J m
JZ] ajpj(x)
pj(X)-pm(X)
== (2.1.5)
and
zSi= _ [pj(X)-pm(X)][kaX)-pm(X)] (2.1.6)
oK [p(x)]

Therefore, the information for o is given by
def aS.
Mao) = {-E[-a-al]l . (2.1.7)
% J f
(m-1)x(m-1)

Fisher's information can be seen as the information contained in a

random variable X about the parameter o . This should be interpreted



as the extent to which, on the average, the accuracy of estimating the un-
known parameter a can be increased as a result of the observed value x
of the random variable X .

In the ensuing sections of this paper, information for o con-
tained in unlabeled, classified and verified data, defined earlier will
be ordered.

Above, information is defined in terms of unbiased estimators.

2.2 Likelihood Function, If X],XZ,...,Xn denotes a simple random sample

from p(x) defined by (1.2) then the 1ikelihood function is
n

L (XyseeesX, ) =
u'”l n i=1

p(Xi) (2.2.1a)

nrm
= | J a, p.(X.)] (2.2.1b)
£=l[j 19 9
the 1ikelihood function for unlabeled data.
Let  X{sXpseeusX, denote a simple random sample from p(x) which
has been classified according to a rule R = (R],Rz,...,Rm) , then each
data vector Xk » k =1,2,...,n generates through classification new

data defined by the random variable Yi(xk)’ i=1,2,...,m , where

Yi(xk) 1 if Xk 3 Ri (2.2.2)

0 if Xk ¢ Rk

whose joint p.d.f. is for each Xk a multinomial



(y, (%) )= g 1 (2.2.3)
h y aonoay = H g' Lnd
Yi"‘Ym 1Y%k m' "k i=1 i
where
95 = Pr[Xk € Rj]
= [ p(x)dx
R

i .
? [ pilx)
=) a, p.(x)dx
j='| J R. J

m
= Z aip(i i)
5=

the probability of classifying I(Xk) in Hj .

The likelihood function for classified data follows from (2.2.3),

and is
Le = LOY O suee Y (X )50 sY (X ) sen Y (X))
n m Y.(X,)
= 0 g itk
k=1 i=1
n m [ m (X, )
-n n|7J a.P(in)] Tk
k=1 i=1[j=1 J
12 o] (2.2.4)
= I a,P'ij 2.2.4
i=1{j=1 J }
where

(2.2.5)

=
I
-~
[ R e P=]
—t
-<
-de
——
><
=~
e



the number of sample vectors in Ri .
Let I](Xl)’IZ(XZ)"°"In(Xn) denote a random sample whose labels

are known with probability one, that is, the data has been verified, then

[

1 if Ik € Hj

€ Hj (2.2.6a)

Tj(Ik)

[}

0 if Ik

then the p.d.f. of T = (T],...,Tm)T for each I, s

m t.(1,)
f (tyseeest ) = T [as] ' K (2.2.6b)
T]’...,Tm .‘q m _i___-' 1
The likelihood function of a verified sample is
L, = Lv(Tl(Il)""’Tm(I]);"';Tl(Im)""’Tm(In))
n m T.(I,)
= NI I [ai] ik
k=1 i=1
m n.
= 1 [0‘1] L (2.2.7) )
i=1
where
n
ng = kZ] T,(1) » (2.2.8)

the number of individuals in the sample from Hi .

2.3 Information for o Contained in Unlabeled Data.

Let the following denote the information for o contained in

Xt

unlabeled data: X],... n’



(o) = n{A;‘j (a)} )
(m-1)x(m-1)
Using (2.1,2)

» (2.2.1b) and synthetic division, it can be shown that

for § = J
u a.+g am m-1
A ‘(&‘,E;‘) HRCHUN N (C=wy k§] %845
k#i
a. m=1 (2.3.]6)
;
J#i
and for i £ J
u ] m-1
Aij = &; 1 - (a1.+am)81.m - (aj+am)8jm - kg o Bm+amBiJ' (2.3.1!))
k#i,j
where
P:(x)p.(x) : (2.3.10)
0 f "J = p x dx < - L) C
RP
and Bjk = Bkj » for a1l J#£ k.
When Bij =B,
- u
Au(a) = n(l-B){ATJ} (2.3.2a)

where



1

a.to
u _ i m Lo
Aij = EGE;:— for i =j (2.3.2b)
-1 for i#3 . (2.3.2c)
%n

When m = 3, the p.d.f. of a random variable X from a mixture

population (unlabeled data) is

P(X) = a]p](x) + a2p2(X) + a3p3(X) (2.3.3a)
where
and

oy > 0, ay > 0, a3 > 0. (2.3.3¢c)

It follows from (2.3.1a) - (2.3.1c) that the information contained in

unlabeled data is given by

u u
Ay o Ay
Au(a) =
u- u
Ayy Ay
where
(1-a,) ( o0 o Q
u _ 2 _ 273 172
T ey ] 1-a, By - (1-0)By5 - T-a, °23 (2.3.4a)
(1-04) i a0 Qa0
u o 1 %93 1%
Y22 " apuy |17 Ty P12 " Tegy B13 7 (1708 (2.3.4b)
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A‘]‘Z = I\g] = E]g [1+a8,, - (1-0,)B,, - (1-04)By51 . (2.3.4c)

Note that one minus (2.3.1c) can be regarded as a distance measure.

th th

That is, when the i populations are "close together" or "far

and j
apart" then (]'Bij) will be small or large, respectively. In fact,
several investigators [3], [5], [6] , have employed a form of (2.3.1c)

as a probabilistic distance measure for feature selection. While Cover
and Hart [8] have shown that ZaiajBij corresponds to the asymptotic
nearest neighbor probability of error, this motivates a possible
estimating procedure (see section 4. ) using a nearest neighbor procedure.

It is of interest to consider the behavior of Bij in terms of a
th

popular distance measure as the distance between the ith and j popula-
tions diverges. This behavior is described in Lemma 2.3.1.
Lemma 2.3.1: Let the distance measure between the ith and jth populations
be given by
p;(x)
ey =/ [p,(x) - pj(x)] log b;m dx . (2.3.5)

If Aij + o for all i # j , then Bij +0.

Proof: Toussant [4] has shown that
]

A..\~-
({35 3
OfBijfz(a) :

Note that as Aij -+ o then

1

A\ = &
j 4
<—‘Tl) +0.
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Note that (2.3.5) is known as the divergence between two distributions.
For normal distributions with equal covariances, (2.3.5) reduces to
the well known Malhanabis distance.

The following example can clarify some of the concepts introduced
above:

Example 2.3.1:

x 5, 0<x<1 x-1, 1<x<2 x-2, 2<x<3
P](x) = {2-x, 1<x<2 , pz(x) = {'3-x, 2<x<3 , p3(x) = { 4-x, 3<x<4
0 , o.w. 0 , o.w. 0 , o.w.

P(x) = oypy(x) + a,p,(x) + azpa(x) .

Let a = a2 -§ then
p](x)pz(x) (2 X)(X-])
]2 p(x] 3(2 -x+x-1) &

-[ 3(2-x)(x-1)dx
1

2
/ (3x-2-x2)dx
1

1
2

3
23 3/ (3-x)(x-2)dx = %
2

o)
|

3,
N~ N on
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To conclude this section, a result that follows from Lemma 2.3.1

is given.

Theorem 2.3.1: Let Aij be a distance measure defined by (2.3.5).

If Aij + o for all i#j then ,

A(a) > Ay(o) = n{A¥j}

where

o, +a

L for i =3

o.0

im

A, =
1 ] g

.l fori#j .

m

Proof: Using equations (2.3.1a) - (2.3.1c) and letting Aij + o , the

Theorem follows from Lemma 2.3.1;
Note that (2.3.2a) can be written as

The information matrix Av(a) is the information for o contained in
verified data. This is a topic of the next section.

2.4 Information for o Contained in Verified Data

Let Ti(lk) be defined as in (2.2.6a). It follows from (2.2.7) -
that

m ni
£n Lv=£n[i]l] ai ]

.g n; én[a.] (2.4.1)

i=1

m-1 m-1
iZ] n; Zn[ai] +n, 2n 0 - jZ] aj] .
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m
since ) a,=1.
=1

From (2.1.1) then Sj = aaﬁn L it follows that
J
34nL
_ VoV
Sv" aa {Sj}
where
m
V_ o
Sj = aaj [izl n, £n ai] (2.4.2)

n. n
=GJ—-'—"[‘- ,j=1,...,m-] .
i O

In matrix notation

SV = Adn (2.4.3)

where the (m-1)>m matrix A, s given by

[ 1
— 00...0 0-—
% %mn
1 1
1(—1-50...0 0-5-
A: . m
@ ; o (2.4.4)

L] 0 *

00 0..00— -1

i -1 %nj

and

n = ("]""’"m
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Note that by the Cramer-Rao theory the expected value of S is the

zero vector which we will verify directly.

E[SV] = E[Aaﬁj
=AaE[ﬁ]
=n b, a since ny ~ multinomial (n,aj) for j=1,...,m.
Now,
i 7
L0 0..0 ‘&L
1 m “1\ 0
o Lo...o0 - a]—
| m -1 =] - (2.4.5)
Aa(l" . . . . = . :Q
5 R —j—— -1 l a J 0
L %n-1 amJ
ThUSs
E[Sv] =¢ ‘ (2.4.6)

The information matrix for o when sampling from verified data
can now be computed by finding the covariance matrix V(Sv) of Sv

using (2.4.3) and (2.4.6), that is,

v(S)

Av(a)

:
b, V(@) AT (2.4.7)



17

where V(n) 1is the covariance matrix of the n = (n],...,nm)T , a

multinomial vector variate; that is,

V(n) = n[Diag(ay,....a ) - a'] . (2.4.8)

From (2.4.7), (2.4.8) and (2.4.5),

. T, ,T
Av(a) = Aa[D1ag(a],...,am) - oo ] Ay

Aa[Diag(a],...,am)] Al . (2.4.9)

For exemplary purposes consider the case when m = 3 , then since

oo -k
1 3

A = ,
o & -2
2 3
1,1 1

Av(a)

3 (2.4.10)

i

Suppose we are given an unlabeled sample

Then we verify this sample generating the sample
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_ T
TP'”’% , where Ti—(ﬂlﬁ.unm)

For estimating a, should we disregard the unlabeled sample or consider
the joint sample (Xi’Ti) s, 1 =1,...,n? The joint p.d.f. of

(xi’Ti) s 1 =1T,...,n s

p(x;sts) = plx;[t5)p(ty) o to = (toq,eenty )

tij m tij

1 j=1

"
s g

J

t.
CRERCH) (2.4.11)

"
W= 3

Jj=1

To answer the above question consider the following theorem.

Theorem 2.4.1: The amount of information for o contained in the obser-

vation (xi’ti) is equal to the information for o contained in the
observation ti alone.

Proof: Taking the logs of both sides of the equality in (2.4.11), we see that

m
tij £n pj(xi) + .E

t.. &n a. .
1 Jj=1 R

J

Now taking derivative with respect to o we have

m
9 ti' Zn a

3 £n p(x;,t.) i J 3 _ 3 £n p(t,)
] aj 3 aj ] aj *
Therefore,
. azlnp(xi,ti) L oZenp(t;) }
] ag d 0‘j )

J
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Thus, it follows from Theorem 2.4.1 that for estimating o the
joint sample (xi,Ti), i=1,...,n contains no more information than
the sample T],...,Tn alone.

2.5 Information for o Contained in Classified Data.

Using the 1ikelihood function given in (2.2.4) for a random sample

defined in (2.2.2), it follows that

[}
ne-13

£Zn L : .
¢ 7 i

i
3
o~1 8
e
=
(o)
=]
[S=]
+
T
=
[
- 3
t~ 0
b
=
ol
N
()
=
-
]
3
O~ 0
—
[
-

m
Also, from (1.3.6) and } a, =1 that
i=1

m-1 :
o = 1 ag[ P19 - pim ] + et (2.5.1)
J:
and
5 a; = P(i|j) - P(i|m) . (2.5.2)
c AL
From (2.1.1) and S, = it follows that
J d aj
c m 1 -
S;= 1 N ——[Phla) - P(ilm)] (2.5.3)
I = L

or in matrix notation
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N T -1 o
S = [8;;1 671 R (2.5.4)

where the (m-1)xm matrix [Aij]T is defined by its elements

A*ij = P(i]j) - P(i|m) , (2.5.5)
—g] o0 ... 0 |

0 9, 6 ... O

G=|. . N (2.5.6)
o . . . 9

and

N = (N,,N N )T (2.5.7)

1’ 2’ooo,m . oo

Note that by the Cramer-Rao theory the expected value of Sc is
the zero vector which we will verify directly.

s ] = Efax; 17 6 W
= [*;;1T 67 WD
= (51 67 (hg) (2.5.8)
where
g = (9].92,..-,9,“)T
or

GJ (2.5.9)

o]
1]

where



J = (1,1,...,1)

It follows from

m v
I P(il§) =1
i=1

for j =1,2,...,m that

[A*ij]J = ¢

and in turn from (2.5.8) and (2.5.9) that

- ~1 -
E[S.] = N[a*;51 67 6 = .

T
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(2.5.10)

(2.5.11)

The covariance matrix V(Sc) of Sc can now be computed using

(2.5.4) and (2.5.11), that is

V(s) = [ar1 671 V() 67N an )

(2.5.12)

where V(N) is the covariance matrix of the N = (N].Nz,...,Nm) , @

multinomial vector variate, that is

V(N)

NG(1-d376)

where

o0
L1}

N[6-GJJ7 6]

N[6-Po P]

(2.5.13)
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From (2.5.10), (2.5.12), and (2.5.13)
Ala) = V(sg) = NLa= 2T 67 (x0T (2.5.14)

the information for o contained in classified data.

For completeness we state the'?o]lowing theorem.

Theorem 2.5.1:

A(a) + Av(a) as P+ 1
where
P={P(1]j)} .
Proof: In matrix notation,
g = Pa .

Let P~+1, then g+ a and

1 for i=j#m
a* s AVij = {-1 for i=m
0 o.w.

that is,
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Note that (2.4.9) can be written as

) : ol yof tme
A(a) = [Ty 1=9, (1Djag(y- ) Y--T==-- (2.5.15)
' 1 m T
In-1

where Im-l is a (m-1)x{m-1) 1identity matrix and

_ T
'Jm_] = (‘] s"] 90009'])

—m I

m-1
Thus,
Afa) = [A*--]T G'][A* ] [AY.QT[diag(-l— -l—)][AY.] = A, (a)
c ij ij ij Qyses sy ij v
as P-+1.
For exemplory purposes consider the case when m = 2 , then since
(83517 = [P - PO2) , P(217) - P(2]2)]

g 0
G=[] .
0 9,

L
g] =1 - gz Y
P(1[1) = 1 - P(2|1) and

P(2|2) = 1 - P(1[2) ,
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then

¢ .y . N[PO[1)-P(1]2)72
AS (o) o, : (2.5.16)

Suppose further, that if there are no errors in classification, that is,
P(1]1) = P(2]2) =1

then

and

Note that for this case, A;](a) is the variance of a sufficient

N
statistic &] = T} for o in a binomial probability density function.
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ITI. THE MAIN RESULT

3.1 The Ordering of the Information for a .

For the two population case (m=2) , the information for

contained in unlabeled, verified and classified data are given respectively

by
_ N(1-B) Py (xJpy(x)
Au(a) = (110.2 s where B = p—-—p—(r- dx (3.].]3)
R
Ay(a) = a:Lz , ‘ : (3.1.1b)
and
> .
A(a) = "[P('I;zaz(’lz)] i (3.1.1c)

The similarity of Av s A and Au is striking and one notes in

c
this case an obvious ordering exists, that is

A (a) > A (a) (3.1.2a)
and

A2 @) (3.1.2b)

The inequality (3.1.2a) holds since
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N 2
= — - P
Acle) = gig (PO - POT]2)]
2
- N|P§1|1[ - P(]]Z)]
However,

g9 = a]P(l 1) + (]-a])P(llZ)
9 =1-9
implies

919, = o (1-a,)EP(1]1)-P(1]2))% + a]; POIN[1-P(1[1)]

+ Lp(1|2)D1-P(1]2)]] .
1

Let

2
Ré = [P(ll;);P(HZ).L . (3.].3)
172
Va](1-a])

Since 0 < Rc <1 , one can conclude for m= 2 , that

_ N
Ac(a) = E;TT:&TT Rc

or

N -
Ac(a) < m- Av(a) .
From (2.6.1a) and the fact that

def .
O<R = 1-B¢<] (3.1.4)
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implies that (3.1.2b) holds, that is, for m=2

Au(a) < Av(a) .

In this section, we will establish the following ordering of the
information for a :

Ac(a) < Au(a) < Av(a) . (3.1.5)

(Note that if A and B are two positive definite matrices of the
same size and A - B is positive semi-definite then we say "B is less
than A".) This result will be given in a corollary to a Theorem proved
by Rao [ 3].

Note that classified data defined in (2.2.2) is a explicit trans-
formation of the unlabeled data. Knowing this, it follows directly from

the following Theorem due to Rao [3] that

Mla) < Afa) .

Theorem 3.1.1 (Rao): The matrix Ax - AT is semi-positive definite,

where A is the information matrix in a measureable function T
of X.

The ordering between A, with Au and Ac is not as straight-
forward. The ordering (3.1.5) is proved in corollary 3.1.1 which will
be proved very similarily to the proof of Theorem 3.1.1 once the
following three lemmas are proved.

Suppose one takes an unlabeled sample and then classifies it, then

let
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z= (Y00 . Y = (Y, (X)s. Y (X))

when Yj(X) =1,0 if x¢ Rj s X ¢ Rj respectively,
Lemma 3.1.1: The p.d.f. for Z 1is given by

px(x) , if Xe Rj and ¥y = 1 for some j = 1,...,m

p,(z)
z 0 ., o.. (3.1.6)

Proof:

pz(2) = p(x,y)

Pr(Y(x) = y[X=x) p,(x)

Now (3.1.6) follows from

1 if Xe Rj and y. =1 for some j = 1,...,m

J
PAY(X) =y [%=x) =
O.W.

since Pr(Yj(x) =1 and Vk(x) =1)=0 for j#k.

Recall from Sections 2.3 - 2.5 that

Sy = (55} » (3.1.7a)
Sy = 551 (3.1.7b)
S¢ = {Sg} ’ _ (3.1.7¢)

for j=1,...,m-1



where
U pj(x) p(x)
J p(x)
SY = .-'_.i - 1'&
J aj m
m Y.
s$= § L A,
J iZ] g; i

for j=1,...,m=1,

Furthermore, we know that

E Su = E Sv =t SC =90

Lemma 3.1.2:

(i) ELS,IY=yl=s_

(11) E[S,|X=x] = 5,

(i14) E[S,)¥=y] =S .

Proof:

(i) For each j =1,...,m-1, it follows from (3.1.8a) that

. E%%;§l dx .

" pj(X)-pm(x)

Let

Y = Yk) = (0,...,0,1,,0,...,0)

29

(3.1.8a)

(3.1.8b)

(3.1.8¢)

(3.1.9)

(3.1.10a)

(3.1.10b)

(3.1.10¢)



where ]k indicates that Y © 1 . Then it follows from Lemma 3.1.1

that

P; (x)- P (x)
p(x) 4
EL531Yy (k)] f 9

= 5= [P(KI3)-P(k]m)]
k

_ g
Iy

(Note that 9, = h(y(k)).)
Thus, in general we have
m
u = —E = ¢ i = -
E[SJIY y] = Z % j Sj s J=1,2,....m-1 ,

(ii) For each j =1,...,m-1 , it follows from (3.1.8b) that

t, ot
E[s;.’lx=x]= ) === f(t]x)
{tlp(t|x)>0y I ™
f(t(i)IX) f(t(m)|X)
= o - @ ‘
where
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f(t,x)
Note that f(t|x) = _ET%T_'= ; § f(t

Hence, it follows that
a.p:(x) op (x)
- __mm
X] ajpixf o(mp(x)

P (x)-p_(x)

= —-J——b—(—x-)-—— = S;:‘ ,forj = ],.oo,m'z .

v
ELSYIX

(i1i) Suppose y = Y (k) for k = 1,...,m , then for j = 1,...

it follows from (3.1.8b) that

’ Flt i1y it 1Y)
E[s;|y=y(k)] - (g% (k) _ ___Jn%;ri_)_.

It can be easily shown as follows:

. f(ts). Y1)
ERLITIRIS
TELT R 17y

') Y3

gl )
"

Ik

_ P(k|j)a,
Ik

= Q(j| k)

,m=1
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Thus,

- Qilk) _ Q(mlk)

a

ELSY|v=y, \]
[S51¥= ) ; .

ajP(klj) ) amP(k]m)
%59k “mIk

g—‘- [P(k[§) - P(K|m)]
k

Y
I

In general, we have

m y.A,.
E(SY|v=y) = §] W =5%, for j=1,...,m1.
J i=1 91- J

. (3 Ty
Lemma 3.1.3: (i) E(Scsu ) Ac

(i1) E(SUSI) = A,
. Ty _
(iii) E(SCSV) = A .

Proof:

(i) E(scsuT)

ECE(SS,' |Y=y)}

Ty
E{SCE(SU |Y=y)}
It follows from Lemma (3.1.2) that

= T, -
= E{SCSc } AC .
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(ii) and (iii) are similarly proved.

st " Tyt b v v N [T

Coro]i&ry 3.1.1:

(ii1) A-A = 03

where Dy, D, and Dy are positive semi-definite matrices.
Proof:
(i) Since Esc.f ESu = ¢, then by definition, the covariance

matrix, of Su-Sc -is given by ,

! .p-: 4 : T 'y ' ] (] ' y W .y R
E(su-sc)(su-sc) . (3.1.11)

[l + + v i} s
L0t or . f VL L . Mation by gy

Now. (3.1.11) can be written as

TeeToe e Tic e Ty tipe'® Tope'c Topere Topere Te
E(S,Sy ~SySc S¢Sy *cS ) = ES,S, “ES,Sc -ES S HESCS, .

It follows from Lemma (3.1.3) that

T _ T
E(SU-SC)(SU-SC) = Au-AC-AC+Ac

Au-AC » Since Ac is symmetric.

Since by definition, (3.1.11) is positive semi-definite, then Au-Ac
is.positive semi-definite.

(ii) and (iii) are similarly proved.
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4, APPLICATION AND COHCLUSIONS

The central questions now include the following: Should one spend
resources to verify data to gain information? Should one spend the
allocated amount on verifying a small amount of data or process a large
amount of unlabeled data? Is there any advantage at all to processing
classified data.

4,1 Concerning Classified Data

In the space application the total data set is made up of unlabeled
data which can be processed directly to obtain the true value of «

or more realistically due to the magnitude of the set he sampled to
estimate o . Let 31 = ¥ Yi'/N = N,/N be an estimator
. v=l J J

oy j=12,...,m, then since in general

A m
tlo;) = L P(i1dda # o (4.1.1)

it follows that if g = (51,62,...,§m) , then g is a biased estimator

for o . In matrix notation
E[g] =Pa=g

where g = [Pr(x ¢ Ri)] » which implies

Note that if one defines

6 =pg
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]Pa =oa and & 1is an unbiased estimator for

that E[a] = P VE(g) = P~
o , when P is known. Unfortunately, the matrix P! is unknown; hence
must be estimated. The sample used to estimate Pl is called test
data. There is bias iﬁ.tﬁefgs;imafor &.=:§']§ when P s '
replaced by (P7ly = (3)'] ,.hence & will be biased. ., |

Note also that in (d.\.{) it has ‘been assumed that u; and . are

i

known when in f;cfltﬁey é}é ﬁot knowﬁ‘but must be‘estiﬁate&:‘ *he
sample for estimating these parameters are called the training data
(the data to "train" élclassifier). |

One must also select a classification rule. Two candidates natbrally
are candidafes. The Bayes classification procedure and the maximum
likelihood procedure. The Bayes classifier is optimal with respect to
minimizes the expected costs of misclassification but unfortunately is
a function of the elements of « hence in practice cannot be used. The
analysis and results in this paper are not dependent on the type of
classifier used.

In Table 4.1 the values of information for various values of o
wheﬁ m=2 and n =1 as function of type of classifers and for various
distance between the subpopulation p](x) and pz(x) each assumed to
be normal, hence p(x) = a; py(x) + (1-a)p2(x) is a mixture of two normals
(A = Hy=Hy and I, =1L, = Ehe identity matrix). The symbols Ag and

A denote the information using a Bayes classifier and the maximum

MLE
likelihood classifier, respectively; Av is information using verified

data.
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In Table 4.2 values of information are given for various values
of 4,k and o, when og = ko? and p(x) is a mixture of two
univariate normal p.d.f. The value selected for 0? =1 and n=1.

4.2 Conclusions

The surprising result that classified data has the least informa-
tion is especially important since current practice in processing remote
sensed data is to classify the unlabeled data. It is true that it may
be easier to classify than compute the maximum likelihood estimates for
a using unlabeled data. Hence classifying the data would be a necessary
task. The information in classfied data is nearly equal to but always
less than the information in unlabeled data.

Note also, if the expense to verify data is sufficiently small
then the unlabeled data taken remotely from sapce is not needed. A random
sample of locations on the earth's surface is sufficient to estimate
o . The satellite data is of no value except to randomly select.sites
for verification.

If training data and test data are in reality classified data
(that is, unlabeled data classified by photo interpreters) one can and
should expect loss of information. However, training data and test
data are in fact verified or labeled (ground truth with no classifica-

tion error) one should expect better results in estimating o .



Table 4.2. Information M for Various Types of Data (v,u,c) Versus
Values of the Parameters (k,A,a]).

Type of k=1 k=2
o Data A =1 2 3 1 2 3
0.1 v .11 1. | nn 11.11 | 11,17 |1
u 1.15 | 4.57 | 7.98 0.60 | 2.38 | 5.51
c 0.65 | 2.66 | 5.78 0.47 | 1.68 | 3.79
0.3 v 4.76 | 4.76 | 4.76 4.76 | 4.76 | 4.76
u 0.88 | 2.51 | 3.76 0.62 | 1.81 | 3.09
c 0.60 | 2.01 | 3.41 0.48 | 1.48 | 2.69
0.5 v 4,00 | 4.00 | 4.00 4.00 | 4.00 | 4.00
u 0.82 | 2.20 | 3.21 0.68 | 1.77 | 2.77
c 0.59 | 1.86 | 3.00 0.61 | 1.47 | 2.50






