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DEVELOPMENT OF ADVANCED ACREAGE ESTIMATION METHODS

1. INTRODUCTION

A practical application of remote sensing which is of considerable

interest is the use of satellite-acquired (LANDSAT) multispectral scanner

(MSS) data to conduct an inventory of some crop of economic interest such

as wheat over a large geographical area. Any such inventory requires the

development of accurate and efficient algorithms for analyzing the struc-

ture of the data. The use of multi-images (several registered passes over

the same area during the growing season) increases the dimension of the

measurement space. As a result, characterization of the data structure

is a formidable task for an unaided analyst.

Cluster analysis has been used extensively as a scientific tool to

generate hypotheses about structure of data sets. Sometimes one can

reduce a large data set to a relatively small data set by the appropriate

grouping of elements using cluster analysis. In some cases, the algorithm

which effects the grouping becomes the basis for actual classification.

In other cases, the cluster analysis produces groupings of the data which

in turn serve as a starting point for other algorithms which produce

acreage estimates. Additional uses of cluster analysis arise in conjunction

with dimensionality reduction techniques which are used to generate displays

for purposes of further interactive analysis of the data structure.

Work carried out under this contract dealt with algorithm development,

theoretical investigations, and empirical studies. The algorithm development

tasks centered around the use of the AMOEBA clustering/classification



algorithm as a basis for both a color display generation technique and

maximum likelihood proportion estimation procedure. Theoretical results

were obtained which form a basis for the maximum lieklihood estimation

procedures. An approach to analyzing large data reduction systems was

formulated. An exploratory empirical study of spatial correlation in

LANDSAT data was also carried out. Specifically, investigations were

carried out in the following areas:

Development of Multi-Image Color Images

Spectral-Spatial Classification Algorithm Development

Spatial Correlation Studies

Evaluation of Data Reduction Systems

Each of these investigations is discussed in turn in the sequel.



2. DEVELOPMENT OF MULTI-IMAGE COLOR IMAGES

In a crop inventory application, the input data for a clustering

algorithm is a multi-image; namely, a set of registered images, taken at

different times, of the same subject. In addition to having multi-

dimensional data (multispectral measurements) we also have "multi-pictures"

of the subject. The availability of this spatial aspect of the data and

attempts to preserve the spatial integrity were the basis for investigations

carried out in previous contract periods (see [1] and the references there-

in). These investigations led to the development of the AMOEBA spatial

clustering/classification algorithm ([2]) and a distance preserving

algorithm for dimensionality reduction ([3]).

The above mentioned algorithms were combined with a model for human

color vision to formulate a technique for generating a single color image

from a multi-image. The formulation and results of the technique are

presented in the attached report:

Jack Bryant and Gary Breaux, Multi-Image Display for Human Under-

standing, Contract NAS-9-14689, SR-T1-04080, Report #22, Department

of Mathematics, Texas A&M University, August, 1980.



3. SPECTRAL-SPATIAL CLASSIFICATION ALGORITHM DEVELOPMENT

The objective of this study was to formulate and test algorithms

based on a likelihood function which respected the integrity of some

predetermined structure in the data.

For purposes of these investigations, the "pure field data" (patches)

determined by the AMOEBA algorithm ([2]) were used as the predetermined

structure. A maximum likelihood parameter estimation procedure (HISSE)

was designed to respect (take into account) field integrity.

A mathematical description and implementation of the procedure, along

with results from preliminary tests appears in the attached report:

Charles Peters and Frank Kampe, Numerical trials of HISSE,

Contract NAS-9-14689, SR-HO-00477, Department of Mathematics,

University of Houston, August, 1980.

Theoretical results underlying the approach used in the HISSE

algorithm are discussed in the attached report:

Charles Peters, On the existence, uniqueness, and asymptotic

normality of a consistent solution of the likelihood equations

for nonidentically distributed observations—applications to

missing data problems, Contract NAS-9-14689, SR-HO-00492,

Department of Mathematics, University of Houston, September,

1980.

Additional theoretical results were obtained which address the con-

vergence of a particular iterative form of'the likelihood equations in

the case of a mixture of densities from (possibly distinct) exponential



families. These results appear in the attached report:

Richard A. Redner, An iterative procedure for obtaining maximum

likelihood estimates in a mixture model, Contract NAS-9-14689,

SR-T1-04081, Division of Mathematical Sciences, University of

Tulsa, September, 1980.



4. SPATIAL CORRELATION STUDIES

The objective of this study was to gain some insight into the nature

of the spatial correlation of pixels in Landsat data. In particular, an

empirical study of neighboring pixels (along scan lines) was carried out in

an attempt to understand the characteristics of spatial correlation for

boundary or mixed pixels. Results of this study appear in the attached

report:

W. A. Coberly, Spatial correlation in LANDSAT: An empirical

study, Contract NAS-9-14689, SR-T1-04082, Division of Mathematical

Sciences, University of Tulsa, November, 1980.



5. EVALUATION OF DATA REDUCTION SYSTEMS

Data reduction systems which utilize multi-temporal MSS data to

produce proportion estimates of several crop classes are large and com-

plicated. Large numbers of vector-valued observations are used, in con-

junction with algorithms based on various models, to produce these

estimates. Testing the validity of these models and determining the

subsequent effect on the accuracy of the proportion estimates cannot

(in many instances) be carried out. In addition, when the software

system is (conceptually) the best it may be that properties of the original

data set in fact impose the accuracy limitations.

A theoretical approach to determining the limiting accuracy of the

data set is set forth in the report:

Virgil R. Marco, Jr. and P. L. Odell, Information in remotely

sensed data for estimating proportions in mixture densities,

Contract NAS-9-14689, SR-T1-04083, Program in Mathematical

Sciences, University of Texas at Dallas, November, 1980.
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MULTI-IMAGE DISPLAY FOR HUMAN UNDERSTANDING

Jack Bryant* and Gary Breaux*

Abstract. Three recently discovered techniques are combined to produce

subjectively appealing color displays of multi-temporal Landsat imagery.

The first technique selects prototypes by use of an unsupervised clustering

program. These are used to find a linear dimensionality reduction such that

the inter-prototype separation in the original space is nearly preserved

in three dimensions. The third technique produces red, green, and blue

values for an image in which normal human interpretation of color differences

closely matches the Euclidean distances within the three dimensional pre-

image.

Clustering Linear feature selection Landsat

Color display Human vision Multi-imagery

*The authors were partly supported by the National Aeronautics and Space
Administration, Contract NAS-9-14689, principal investigator, L. F. Guseman, Jr.



Consider the imagery shown in Fig. 1. Each scene of about 23,000

picture elements (pixels) is a Landsat remotely-sensed image taken from

the North American Great Plains. The images have been corrected geo-

metrically to be in close spatial registration to one another. Each was

acquired on a different date: in May, June, August, and September, 1976.

The August acquisition is shown in Plate 1A, the standard false-color

product produced at Johnson Space Center, Houston, Texas. The two Landsat

infra-red bands have no color; the standard product is somewhat like

color infra-red film. The images of Fig. 1 are small, but the digital

data set is not, for each pixel is a 16-vector (4 components for each

acquisition).

The high dimensionality of the space in which these data are

embedded is a common problem in pattern recognition. Most data analysis

techniques such as clustering or classification require computer time

at least in proportion to the dimension, and some (e.g. maximum likeli-

hood classification) require time porportional to the square. Thus a

common motive for dimensionality reduction is computational complexity.

Another is human understanding: the presentation of the multi-image in

the form of Fig. 1 (as four images) is not ideal. Yet there seems to

exist no better way to present high dimensional imagery for human analysis.

This is exactly the problem we tackle: is there a way to display the

imagery of Fig. 1 while retaining the spatial and spectral-temporal

structure?



Fig. 1 Four Pass Landsat Imagery



Plate 1. Color Products: A. JSC Product 1
B. AMOEBA Clustering of Fig. 1
C. Principle Components Display
D. Distance Preserving Display



WHAT IS STRUCTURE?

By spatial structure we mean the spatial relationship between

objects in the scene. To preserve spatial structure we produce a single

image which is pixel-by-pixel registered to the multi-imagery. It is

not so clear what spectral-temporal structure means. It will surely

mean different things to different people. Our view is that the structure

is represented by the Euclidean distances (in the high dimensional space)

between typical measurement-space samples. Structure is preserved when

these distances are accurately reproduced in the lower dimensional space.

A new technique^ ' for linear feature selection has as its objective

the preservation of distances between samples (prototypes). Rather than

obtain the prototypes at random, we use the spatial clustering program
(?}

AMOEBA. Plate IB shows the clustering of the data in Fig. 1 we

obtain. Note that this cluster map is not an image in the usual sense

of a picture of a scene. Some of the spatial structure is clearly lost,

particularly the pattern of roads so easily seen in Fig. 1.

Because of the spectral overlap between the measurements in any

one acquisition (and present in the scene), the intrinsic dimensionality

of a given acquisition is less than the number of measurements. ' Thus

we know some of the spectral structure, and use a four-to-two brightness-

(4)greenness transformation. This converts the 16-dimensional data of

Fig. 1 to 8-dimensional data. This is the data we cluster to produce

Plate IB.



WHAT IS COLOR PERCEPTION?

A method for reducing dimensionality (and a measure of success)

is only helpful is we can display the reduced data so it can be understood.

As an example, suppose the data could be represented in one dimension.

Then it is natural to produce a gray-scale or black-and-white image.

Since we know that normal human gray (i.e. non-color) vision has a

logarithmic response, we prepare an image so that the perceived

brightness (not the actual brightness) is linearly proportional to the

transformed data (with, perhaps, a bias to translate the transformed data).

That is, we consider the physiology of human vision in preparing our image.

Unfortunately, the multi-imagery of Fig. 1 is not one dimensional

spectrally: nor is any single acquisition. As we shall see, however, the

data can be reduced to three dimensions with small errors. Color images

can be produced with three colors, which suggests color vision is at most

three dimensional. The easy way to get a color dispaly (reduce dimensionality

to three, display one red, one green, and one blue) is not appropriate for

the same reason that we would have been wrong to produce a black-and-

white image with the flux viewed linearly proportional to the transformed

data. Namely, this display fails to take into account the physiology of

human color vision. Indeed, imagery produced in this way is disappointing

(Hay et al.^ '). Instead, we should produce a color image in which

human perception of color difference matches distances between the objects

being displayed. To this end, we need to model visual perception. We

begin with a red-green-blue digital image and follow the processing of

this image by the visual system. We use the notation of Faugheras.



A model for the combined video or photographic system and pigmented

cone photochemical response gives a linear transformation U to produce

cone output signals L, M, and S. A model for retinal receptor response

produces the (nonlinear) transformation by the logarithm function to

L*, M*, and S*. Next a model for the Ganglion neural connections gives

a final linear transformation P to signals A, C, , and Co- Signal A is

brightness and C, and C? are chromaticity signals: these go to the

visual cortex. (We are ignoring spatial effects.) Faugheras notices

that each of these transformations is invertible and uses this to trans-

mit color imagery over a noisy channel with lower bit rate (or better

perceived signal-to-noise ratio). He reports^ ' p ' a reduction in

the average bit-rate by a factor of 27.

A comprehensive survey of color image perception and a bibliographical

guide is found in Hall^7' ChaPter 2). Hall gives a block diagram (p. 42)

of the monocular visual system (but gives no numeric parameters).

Faugheras 's work is based on a slightly simpler model (for light-adapted

(or photoptic) vision). To use his work, one need only determine U.

He has determined P by psychovisual experiments. There is another approach

to this problem, outlined by Hall^7' pp* 21'22) and followed by
(9)and Kanekov . We prefer the approach based on a model, although we do

not know the exact U for the film product used. This problem is being

studied, but our requirements are not severe: we do not need strict

color fidelity. The major problems left are: first, how much of sub-

jective color space can we occupy without exceeding the film color gamut?

Second, how do we scale the output image so that it can be displayed on



a given digital system? We found experimentally that twenty-five levels

of brightness A and thirteen levels of each chromaticity channel C, and

C2 could be displayed. The details of how to scale everything are less

interesting and are relegated to the Apoendix,

Let's now review the end-to-end process. We obtain our connection

between measurement space and perception space by the following steps:

1. Using feature selection techniques, ' reduce the

dimensionality to three. We use here the principle components

map and the distance preserving map. '

2. Apply suitable scaling (see the Appendix) and apply P ,

exponential, and U" to the transformed image.

3. Again scale, and display the result on a color monitor or as

color film. These products make up Plate 1C (the principle

components map) and Plate ID (the distance preserving map).

DISCUSSION

Observers, viewing Plate 1, uniformly prefer the color image ID.

The cluster map IB is rejected because it is not a picture in the same

sense that 1A, 1C, and ID are pictures, although the clustering shown

might be a helpful aid to a human analyst. Plate 1C is not favored

because obviously distinct classes are colored the same. This is cer-

tainly not the case in ID. We observe that 1C is "too dark," yet it was

produced by the same method as led to ID; only the feature selection

method was different. This finding which discredits the principle com-

ponents approach is new but not entirely unexpected. See, for example, the



imagery shown in Lowitz/ ' 9' ' p* ' The seventh (of seven)

principle components image contains significant structural information

Here we find that the principle components map from 8 to 3 dimensions

identifies distinct classes, a flaw which goes against our underlying

purpose. If B is 3 x 8 matrix and y.j,...,y are the prototypes, let

P = p(p-l)/2, let

f(B) = I (||By.-By M - lly^ I I)2.
l<i<j<p J J

and let

N(B) = (̂

For the principle components map B, N(B) = 9.78, and for the distance

preserving map N(B) = 0.95. The two are shown in Table 1.

The main open problem is to make the colors reproducible. The

experiment reported here used 32 prototypes. In another, using the same

data and procedure, we let AMOEBA find the natural number of clusters

rather than the forced number 32. It found 12, and their centers were

used as prototypes. The resulting image was as satisfactory as ID, but

red and green were interchanged. Clearly the process does not lead to

stable color assignments in any absolute sense. Another problem: should

the spatial aspects of color vision be taken into account? We suspect

not if one is to view the composite as an image. Image enhancement by

spatial filtering is another matter. The three perception space channels

A, Cr and C2 have different modulation transfer functions.^
6> pp> 58'74)



Table 1.

Principle Components Transformation

-.6454

.2356

.4714

-.2910

.1264

.3878

.0362

-.0406

.0495

.0120

.0470
-.1812

.3973

-.2396

.7280

-.2734

.2934

-.1414

-.4939

-.8290

-.1366

-.1442

.3065

-.1530

Transformation which Minimizes f

-.4441

.2721

.2802

-.2485

.1634

.2787

-.0040

-.1447

.1073

-.5235

-.2517

.7353

.5668

-.6681

.1515

-.1261

.0082

-.3301

-.5492
N

-.7080
-.5169

-.4266

.3029
-.2412
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The underlying psychovisual experimentation is incomplete in that the

interaction of perception and filtering A, C,, and Co differently has not

been resolved. Is linear filtering (as by spatial convolution) even the

appropriate operation in perception space? Results we have obtained so

far with image enhancement in perception space have been disappointing.

One sees, on viewing Plate ID, that no saturated red is present.

This results from our avoidance of the boundary of the color gamut. It

is safe, but does leave many displayable colors unused. Can these colors

be used without identifying classes which must be projected onto the

boundary of the gamut to be displayed?

SUMMARY

Linear feature selection and a model for human color vision are

combined to obtain a connection between multi-imagery and the human

visual system. The overall objective is to preserve the spatial

structure of the data as a single image, with perceived color separation

matching multi-dimensional Euclidean separation in the original measure-

ment space. The principle components feature selection technique is

found to fail to separate classes obviously separated in the original

data. A new distance-preserving linear map is tested and is found to

accurately represent the measurement-space structure of the data. Color

products are reproduced to illustrate the results. Several open problems

are mentioned. An appendix giving all key details of the method is

included.
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APPENDIX

Let the prototypes selected by AMOEBA (or by some other method)

be denoted by y,,...,y . Let A be a linear feature selection matrix

to three dimensions, and let x. = Ay1. The transformed prototypes

preserve some aspect of the data structure in lower dimensional space,

depending, of course, on the feature selection technique. Let XM be

the mean vector of the transformed prototypes, and let z. = xi - XM-

We first determine a scale factor s for the prototypes. For any s ,

let w. = s z.. Determine s so that each w. is in the parallelepiped

[-12,12] x [-6,6] x [-6,6], and at least one w. is on a face of this

parallelpiped. Let S = s P~ , where P is the transformation determined

by psychovisual experiments/ ' Let u.. = exp(w..), i = l,...,p and
' J ' J

j = 1,2,3. (We use the second subscript to indicate the j-th component

of the vector u-.) Let v. = U~ u . Usually v would now be translated

and scaled to fit the range of the display device. The imaging system

we use*, however, makes transmission density linearly proportional

to input rather than to the logarithm/ » PP- ~ ' so we compute

t.. = log v.., j = 1,2,3. Now determine a scale factor Sr, and a display
' vJ ' J

bias b such that if d = sn t. + b then each d is in [0,255] and
I J L* I J IJ

at least one d has the value 0 and another has the value 255.
' J

*The Information International FR-80 at Johnson Space Center,
Houston, Texas. The machine gives transmission density linearly
proportional to input in a channel with zero input on the other two
channels. Transmission density is the logarithm of the ratio of the
transmitted flux with and without the sample's presence in the light
beam.
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We are now prepared to define the transformation by which all

data (not just the prototypes) is mapped to perception space. Let

E • E3 -> E3 be defined by Ep. = exp(p ) , j = 1,2,3. Let
J J
+ 3 3 +d = exp(-b/sn) and define L : E -> E by L p = log p. if p. > d ,

*-* J J \J

L+ p - -b/sn if p. < d . Finally, let M : E3 -»• E3 be defined by
J vJ

M(p ) = [minip ,255}] , J = 1,2,3, The transformation from input
J J

multi-imagery I to gun values G is

G = M(sD LVES(AI-xM)+b).



, Hcport No 2 Government Accession No 3 Recipient s Catalog No

/, Title and Subtitle

Numerical Trials of HISSE

5 Report Date

5 August, 1980
6 Performing Organization Code

SR-HO-00477

/ Author(s)

Charles Peters and Frank Kampe

8 Performing Organization Report No

75
10 Work Unit No

I'erforming Organization Name and Address

University of Houston
Department of Mathematics
Houston, TX

77004

11 Contract or Grant Ho

NAS9-14689

,' Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, TX 77058 Task Monitor: Dale Browne

13 Type of Report and Period Covered'

Technical Report
14 Sponsoring Agency Code

Supplementary Notes

Abstract

This paper addresses the mathematical description and implementation
of the statistical estimation procedure known as the Houston Integrated
Spatial/Spectral Estimator (HISSE). HISSE is based on a normal mixture model
and is designed to take advantage of spectral and spatial information of
LANDSAT data pixels, utilizing the initial classification and clustering
information provided by the AMOEBA algorithm. HISSE calculates parametric
estimates of class proportions which reduce the error inherent in estimates
derived from typical "classify and count" procedures common to non-parametric
clustering algorithms. HISSE also singles out spatial groupings of pixels
which are most suitable for labeling classes. These calculations are designed
to aid the analyst/interpreter in labeling patches with a crop class label.
Finally, we report HISSE's initial performance on an actual LANDSAT agri-
cultural ground truth data set.
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Numerical Trials of HISSE

by

Charles Peters and Frank Kampe

1. Introduction.

The Houston Integrated Spatial/Spectral Estimator (HISSE) is a statistical

estimation procedure based on a normal mixture model which is designed to take

advantage of spatial associations of LANDSAT data pixels produced by an auto-

mated spatial/spectral clustering algorithm. The clustering algorithm used in

this experiment is the AMOEBA algorithm developed at Texas A & M University,

which is based on the three assumptions listed below [1]. AMOEBA detects

spatially connected sets of LANDSAT pixels, called patches, whose elements

are characterized by spectral similarity, within certian tolerances, to their

neighbors.

Assumption 1: Real classes exist.

Assumption 2: Each patch contains pixels from one and only one

real class.

Assumption 3 Each real class is represented by at least one patch

No absolute commitment to the agricultural nature of real classes is

expressed in (.11, however, there is an indication of a high degree of purity

of patches with respect to ground truth labels when AMOEBA patches are plotted

on ground truth maps. A more complete study, with the same conclusion, is

reported in [5J. Therefore, we feel justified in identifying the real classes

with ground truth labels. In addition to the three assumptions just given,



HISSE requires the following assumption.

Assumption 4; The data from each patch is normally distributed with

mean and covanance depending only on the class to

which it belongs.

Assumption 4 has been challenged, some might say refuted, in [2].

However, we take the position that the proper question to ask is whether

assumption 4 is close enough to the truth to be useful in estimating class

proportions and labeling classes with ground truth labels. The clustering

portion of AMOEBA may be described as a k-means algorithm which respects patch

integrity (see Assumption 2) with a novel way of determining the correct number

of clusters. As such, it contains no way of compensating for the confusion

arising from classes with overlapping spectral characteristics. Thus,

Assumption 4 may be regarded as a step toward mitigating the error in proportion

estimation which is unavoidable with the classify and count method. Henceforth,

pixels contained in patches will be called pure pixels, and all others boundary

pixels.
i
!

2. Mathematical Description.

It is assumed that there are m real classes, labelled 1, • • - , m, and p
i

patches represented by independent random vectors (X',,0,), •••, (X ,0 ) where

0 f {l,---,m} is the unknown real class to which patch j belongs and
\)

X = (X-, ,• • • ,X N ) is a set of N n-vectors representing the spectral data
J J ' J'»J J

from the jth patch. The 6 are i.i.d. with a0 = ProbLO =£1 unknown and,
— J * J

given that 8 = £, X is a random sample from an n-vanate normal distribution
J J

N (y.,,̂ ) with unknown mean and covariance. Notice that a. is the expected



fraction of patches belonging to class I and for a given scene may be

quite different from the fraction of pure pixels belonging to class I,

which we denote by <j> . The random variable (j>. is directly related to
X* X*

the total acreage of the patches belonging to class I.

The log likelihood function for the parameters ô .ŷ .n̂  is

1) L = J log f(X )j — I j

where

m

and f0(X.) is the N -fold product normal density
^ J . J

NJ3 ) ' -
Despite the apparent complexity of L, it depends on the data only through

the patch means

4) mj = IT ^Jk

and scatter matrices

N.

Once the m 's and 5 's are computed and stored, HISSE has no further
J j

need for the pure data.



The numerical procedure used in HISSE for finding a maximum of the

likelihood function is defined by iteratively substituting into the likelihood

equations, viz.

- ] L
' p j=l

p
m / Y

(8) tt - £ *j *j - (k+1)(8) n ~ ~ -

where R . = S + N m m is the noncentral scatter of the jth patch. The values
J J J J J f (x j —

of the parameters used in evaluating the ratios ff Y T are ^ose a^ ^'ie Preceding
\)

kth step of the algorithm. It is shown in [6] that there is a unique strongly

consistent solution of the likelihood equations in a neighborhood of the true

parameters as p -> °° and that the iteration procedure (6)-(8) converges to the

consistent solution if the starting values are near it.

Let N = N, + • • • + N be the total number of pure pixels. It is easy to

1 p 2show that CL<j>0l = a,, and var(<j>0) < — 5- ZLN . Thus, if the patches are nearly
*• * ^ 41^ J = l J

uniform in size, the MLE of ct? can be used as a predictor of <j>.. However, the

least MSE predictor of <f>. based on the observed data (assuming that the para-

meters are known) is

1 P

X 1 = — Z N
'V N j = l J



Therefore, we take 8,, evaluated with the maximum likelihood estimates of
X/

the parameters as our estimate of (}>..

In processing the boundary pixels,which typically constitute 60-70% of the

scene, we assume that the boundary data consist of an independent sample from

a mixture

where the component normal distributions are the same class distributions

represented in the pure data, plus observations from a contaminant class

(possibly corresponding to the "not in field" ground truth label) in the tails

of the N (y.,n ). In other words, we assume that a boundary observation
1 1 X/ X

which is spectrally unlike all of the pure classes is much more likely to be

from the contaminating class than an outlier from one of the pure classes.

Therefore we classify as a contaminant each boundary observation X which

satisfies

ID

for all £ = 1, •••, m, where the M 's and ft 's are the previously estimated
2

pure data class means and covariances and Y 1S a size a critical valueAa
2

for x with n degrees of freedom. In this experiment we chose a = .1.

Let Y,, •••, YM denote the boundary observations remaining after rejecting

those classified as contaminants. ' We treat Y,, •••, Y., as an independent samole

from the mixture density (10), with unknown mixing proportions a,, •••, a



but known components N (u0,R0), and obtain a MLE of a,, •••, a by successivelyL -' t\ £ £ i m

substituting into (6). Obviously, Y-,, •••, Y^. is, at best, a truncated sample

from the mixture (10), so that the MLE of a-j, • • •, a is asymptotically biased.

We do not expect this effect to be a reason for serious concern. After obtaining

the MLE for a,, •••, am, we use as our final estimate of the number of pixels

corresponding to class I, the quantity NfL + Met , where Bn is given by (9).

3. Implementation.

The number of classes assumed in this experiment is determined by AMOEBA

subroutines PAINT and CLASFY. PAINT produces the pure/boundary division of

a 5> x 6 mile LACIE segment, an array LABELS containing a patch description for

each of the pure pixel locations,and a map of the scene showing the pure and

boundary pixels. CLASFY produces an array CLASS containing the final cluster

designation of each of the patches. A subroutine STAT2 has been attached to

AMOEBA which calculates and saves patch sizes (N ), patch means (m ) and
J j

noncentral patch scatters (R-)- These statistics are then passed to STATS
J

which uses the CLASS array to compute the fraction (ot°) of patches assigned

to each cluster, the fraction of pure pixels assigned to each cluster, and cluster

means (y°) and covariances (ft°) for the pure data only. These cluster

statistics are used as initial estimates of the parameters for the iteration

procedure described by (6)-(8). CLASFY occasionally produces a cluster with

such a small number of pure pixels that an initial covanance estimate cannot be

calculated. In this case the initial ft, in HISSE is obtained by averaging

the cluster sample covanance with a multiple of the identity so as to insure that

the condition number of Q° is no greater than 16.



(k)After initialization HISSE produces iterative estimates a: ',u
jL A/ A/

of the parameters until a convergence criterion is satisfied, after which the

estimates 6. are computed in the manner described in Section 2 and stored.
X*

The boundary pixels are identified from the LABELS array output by AMOEBA.

For each one, the quadratic forms (X~V?) ̂ n (
x~^£)

 are computed and tested
2

against the threshold value of x > as in 01)- For those boundary pixels not

rejected by the thresholding procedure, the likelihood ratios fj(x)/f.(x)

are computed and stored in a temporary disc file for use in the iteration

procedure for estimating a,, •••, a . Although the number of boundary pixels

processed is much greater than the number of patches, the cost is comparable to that

of processing the pure data because the iteration procedure (6) can be carried

out simply by accessing the temporary file.

For the purpose of labeling classes HISSE identifies for each class £,
a£f£(X^the three patches j which have the highest posterior probability

in that class. The spatial coordinates of pixels in these labeling patches

are obtained from the LABELS array. Thus, in using HISSE, the analyst would

be required to make a judgement concerning the identity of each class based on

his ability to label the labeling patches.

4. Numerical Results.

The results tabulated in this section are from four passes over LACIE seqment

1618 acquired in May, June, August and September of 1976. The data was preprocessed

by premultiplying each single pass 4-dimensional data vector by the LANDSAT I

transformation to brightness-greenness space

1

1



and stacking the brightness-greenness vectors to obtain 8-dimensional data

vectors. The results of the AMOEBA run were 7500 pure pixels, organized

into 310 patches. The number of clusters estimated by NUMCLU was 13. HISSE

required 19 iterations to estimate the parameters of the pure data mixture

model. Of the 15290 boundary pixels, the thresholding procedure rejected 5575.

The number of passes through the remaining 9725 boundary pixels required to

produce estimates of the boundary mixing proportions a,, •••, a",3 was 8.

The total cost of running AMOEBA and HISSE together is much less than that of

running UHMLE or CLASSY on the full scene.

Figures 1-4 show the scatter plots in brightness-greenness space, correspond-

ing to each of the passes, of the means of the patches determined by AMOEBA.

Particularly in the fourth pass, the tasseled cap configuration described in

[4] is visible. Figures 5, 6, and 7 show the plotted trajectories of the

estimated class means from pass to pass on the same coordinate system used in the

4th pass scatter plot. The trajectories of the means of the pure data clusters

produced by AMOEBA would be nearly indistinguishable. It is interesting that

the class means trajectories eventually given a small grains label exhibit a

characteristic triangular shape. Obviously, this characteristic can be used as

an aid in labeling the classes (see [31, for a discussion of this idea).

Figure 8 tabulates the initial cluster means, cluster variances, and patch

membership proportions obtained from AMOEBA'S clustering of the pure data. Figure

9 tabulates class means, variances and patch memebershipprobabilities (the a's)

estimated by HISSE. Figure 10 compares the estimates derived from AMOEBA and

HISSE of the fraction of pure pixels belonging to each cluster (class). Notice

that in Figure 10, there is a significant difference between the two estimates,

particularly in the more populous classes. These classes happen to be the most



spectrally confused classes. There is also an appreciable difference seen in

Figures 8 and 9 between the respective estimates of the a's, although the

difference is not as pronounced.

Figure 11 shows the AMOEBA boundary map for segment 1618 with the three

labeling patches corresponding to each class outlined. A ground truth map

was used to attach ground truth labels to the labeling patches and hence to

the classes. Most of the classes were given a single ground truth label by

this procedure. Classes 2, 5, 6, 7, were not assigned a single ground truth

label and appeared to be made up of more than one type of small grains. However,

each of these classes was clearly small grains. Class 1 was the only really

difficult class to label; each of its labeling patches represented small grains

ground truth labels as well as such labels as beans and fallow. In other words,

the labeling patches for class 1 were spurious. For the purpose of obtaining

an aggregate small grains estimate, it was assumed that class 1 was a mixture

of 1/3 small grains, 1/3 beans, and 1/3 fallow acreage.

Figure 12 shows the final acreage estimate for each of the 13 classes in

the mixture model, the acreage of the set C of boundary pixels rejected as

outliers or contdi.nnants, and the crop labels (including "small grains") assigned

to each class. The aggregate small grains acreage estimate is 15,288. The

small grains acreage from the ground truth tape is 15,465, an error of only 1.1%.

If class 1 is labelled all small grains, the error is 15%. If none of class 1

is classified small grains, the error is 9.2%. It should be emphasized that the

problem of labeling cluster #1 from AMOEBA is also serious, since cluster 1 is

centered near the means of the spurious patches used to label class 1.

The thresholding of boundary outliers makes a pronounced difference in the



estimate. The small grains acreage estimate derived from HISSE without

thresholding would be 19,230, comparable to the estimate of 20,336 derived

from AMOEBA'S cluster map.

5. Conclusions.

The accuracy with which HISSE estimated the small grains acreage in

segment 1618 was impressive, to say the least, but of course the procedure

must be tested on other segments for which ground truth is available. Also,

as we mentioned in Section 4,the accuracy of the estimate depends on the

classification given to the labeling fields for class 1, the problem class.

The procedure we used-dividing the class evenly among competing ground truth

labels - seems fair; however, in an operational situation the class would be

labeled by an analyst looking at a film product and it seems unlikely that

he would apportion the class in such a way. In any case, the greatest possible

relative error was 15%, still a marked improvement over the accuracy obtained

by labeling AMOEBA'S clusters and counting the cluster assignments, or that

achieved by HISSE without the thresholding procedure.

The performance of HISSE, or AMOEBA, depends in large part upon the purity

with respect to ground truth labels of the patches found by AMOEBA, which is

influenced by the user defined "percent in fields" parameter in AMOEBA. In this

experiment we defined the parameter as 50%; that is, we conservatively estimate

that 50% of the pixels in the scene should be found in fields. By reducing the

size of this parameter, we expect to produce a higher degree of patch purity

and thus alleviate the problem of having a class represented by labeling patches

which should not be patches at all. We hope that this will not aggravate another



problem, namely that the ground truth map for segment 1618 shows a few large

fields representing important classes (such as barley) in which no patches

were found.

Finally, we note that although the aggregated small grains acreage was

very accurately estimated, the individual estimates for the various small grains

classes (spring wheat, barley, oats, and millet) were not nearly as accurate.

Indeed, several of the HISSE classes could not be given a single one of these

labels, although they clearly represented small grains. Moreover, there was

one significant crop class (beans) without a small grains label which was

seriously underestimated. Thus, the usefulness of HISSE in a multicrop inventory

'cannot yet be determined.
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FINAL CLASS TRAJECTORIES
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FINAL CLASS TRAJECTORIES
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CLUSTER * CLUSTER MEAN PATCH PROPORTION

1 26.04 110.39 29.79 121.70 36.49 IP.02 26.44 106.04 .077

2 24.99 108.48 28.17 117.42 44.25 115.57 34.05 112.63 .094

3 24.80 106.86 28.82 111.90 32.59 111.73 21.69 107.00 .271

4 25.51 111.64 30.29 127.63 50.08 115.15 39.10 113.13 .094

5 25.46 108.75 29.26 122.53 48.90 114.94 36.61 111.77 .100

6 25.09 109.24 29.35 123.39 48.80 114.94 18.15 103.83 .158

7 23.90 106.14 28.76 113.53 38.15 113.07 37.15 112.73 .058

8 25.05 112.20 33.45 135.38 56.52 116.32 17.19 102.97 .026

9 23.26 105.98 29.02 108.48 34.30 125.54 25.91 121.94 .048

10 25.50 107.50 35.75 123.25 37.25 126.50 20.25 104.75 .003

11 25.49 110.83 30.71 128.90 24.92 104.16 19.04 104.01 ,045

12 37.60 123.64 37.76 123.44 31.92 116.60 25.48 118.12 .010

13 30.16 132.47 31.80 139.64 27.37 123.07 20.68 123.83 .016

CLUSTER VARIANCE

1 7.98 10.82 3.22 36.25 51.31 16.82 12.60 10.60

2 6.09 10.51 3.25 25.33 33.50 8.50 23.1H 18.36

3 7.87 5.24 7.29 32.49 29.08 18.48 17.25 12.48

4 4.54 18.49 2.48 15.77 32.80 7 . 9 f > 16.41 5.97

5 9.11 4.70 3.13 21.46 27.!>9 6.43 19.9? 0.90

6 4.64 8.34 4.26 38.13 44.59 6.00 11.1? 6.?2

7 • 4.74 2.60 6.14 22.52 15.73 11.?? 17.19 7.90

8 1.50 3.18 3.61 12.71 15.00 1.84 3.43 1.59

9 2.90 3.42 5.40 11.30 11.44 24.02 8.12 53.75

10 4.25 0.25 0.69 35.19 11.19 4.25 1.19 3.69

11 4.00 5.83 5.35 33.79 5.26 1.55 8.07 3.38

12 3.28 2.56 2.90 3.69 1.43 1.61 3.93 3.95

13 1.75 9.97 1.38 5.20 1.31 2.81 1.09 3.41

FIGURE 8



FINAL CLASS STATISTICS (HISSE)

CLASS # CLASS MEAN PATCH PROBABILITY

1 26.91 109.19 29.64 117.57 35.07 110.50 25.53 107.45 .126

2 24.62 108.52 27.91 117.84 44.68 115.93 35.13 113.58 .083

3 24.11 106.34 28.61 110.87 33.73 113.30 21.65 107.51 .221

4 25.58 111.88 30.23 126.89 50.83 115.51 39.97 113.64 .084

5 25.30 108.73 29.41 123.19 48.09 114.35 35.83 111.28 .108

6 25.10 109.25 29.36 123.38 48.73 114.95 18.20 103.89 .170

7 23.89 106.13 28.78 113.49 38.08 113.06 37.04 112.70 .061

8 25.06 112.25 33.47 135.41 56.65 116.35 17.13 102.93 .023

9 23.26 105.98 29.02 108.48 34.30 125.55 25.91 121.94 .048

10 25.50 107.50 35.75 123.25 37.25 126.50 20.25 104.75 .003

11 25.25 110.37 29.80 127.20 24.86 104.14 19.07 103.99 .048

12 37.60 123.64 37.76 123.44 31.92 116.60 25.48 118.12 .010

13 30.16 132.47 31.80 139.64 27.37 123.07 20.68 123.83 .016

CLASS VARIANCE

1 9.56 10.44 5.08 51.15 72.18 24.81 44.57 12.14

2 3.76 10.02 2.71 23.47 35.32 8.02 15.39 17.05

3 4.66 3.29 6.93 25.02 21.94 9.55 14.74 13.05

4 4.78 20.68 2.74 19.15 39.22 7.15 16.30 4.31

5 9.48 4.02 2.98 26.54 20.81 4.94 18.06 6.76

6 4.60 8.04 4.29 38 42 44 64 5.61 11.24 6.09

7 4.66 2.34 6.15 22.65 15.92 11.02 37.65 7.82

8 1.53 3.19 3.62 12.65 14.57 1.81 3.33 1.50

9 2.89 3.24 5.36 11.27 11.47 23.77 8.18 53.66

10 4.25 0.26 0.69 35.20 11.19 4.25 1.19 3.70

11 3.78 5.89 8.48 42.06 4.79 1.75 6.84 2.88

12 3.07 3.24 3.00 3.00 1.31 3.32 4.07 3.66

13 1.64 9.20 1.49 5.16 1.30 2.49 0.99 3.85

FIGURE 9



PURE PIXEL PROPORTIONS(* )
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1. Introduction

This paper is concerned with the existence, uniqueness, and asymptotic

properties of a strongly consistent local maximizer of the likelihood

function for a vector parameter in the case of nonidentically distributed

samples and without prior assumptions which insure the existence of a global

MLE. Hell known results pertaining to scalar parameters and i.i.d. samples

date back to theorems of CrameY [ 5] and Huzurbazar [11], while results

concerning the consistency of the MLE, under assumptions that insure a

unique MLE, may be found in Wald [17], Holfowitz [19], and LeCam [121.

Somewhat more recently, Silvey [15] has dealt with the asymptotic properties

of the MLE without independence. Surprisingly however, a correct proof of

the multidimensional version of the combined results of CraneY and Huzurbazar

on the existence of a unique consistent solution of the likelihood equations

when multiple roots occur did not appear until 1977 in a note by Foutz [10],

(see also Tarone & Gruenhage [16], Chanda [ 3], and Peters and Walker [14,Appendix].)

Examples 1 and 2 which follow illustrate the need for a consistency theorem

along these lines which relaxes the assumption of identically distributed

observations.

Example 1 (Observations with missing components): Let Xp X2, ... be

independent random vectors in Rn whose common density is one of a parametric

family {q(x|0)}Q Q , where 0 is a subset of R . Suppose that instead of the

X. we observe only certain subvectors BjXj, B,̂ , ..., where {B^} is a given

sequence of n. x n matrices obtained by deleting n - ni rows from the identity.

Clearly we can assume that components are missing at random provided that the

B.'s are independent of the X.'s. Under what conditions is there a unique



strongly consistent (and asymptotically efficient) local MLE of 0 based on the

observations BjXp B^, ...?

A recent paper by Dahiya and Korwar [61 illustrates that even for a bivariate

normal sample, with several simplifying restrictions on the sample and on the

parameters, the likelihood equation for Example 1 has multiple roots and requires

numerical methods for its solution.

Example 2 (Estimating mixture density parameters with sample blocks of varying

sizes): Let f(x|T,), f(xJT2), ..., f(
xlTm)

 De unknown but distinct members of

a nultivariate parametric family {f(xJT)} y , and let a,, ..., a be the unknown

positive probabilities corresponding to a discrete mixing distribution supported

on {T,, ..., T ). The number m is known. Under what conditions will there be

a unique consistent MLE of the parameter 0 = (ĉ , ..., a ,, T,, ..., T )
m

describing the mixture density q(x|0) = £ a.f(x|-r.)» based on a sample of the
1 = 1 1

type X,, X2> ...» where the X. are independent and each X. is itself a randon

sample X- = (X-,, ..., X....) of known size from an unknown component density

f(x|-r.)? In this example the parameter 0 is only locally identifiable. Moreover,

it can easily occur that the likelihood function is unbounded [9]; hence, the

need for a consistency theorem for local maximizers is especially clear.

The practical importance of Example 2 is indicated by the fact that

estimation of mixture density parameters is often proposed as an alternative to

the clustering of large amounts of multivariate data [181. The asymptotic

properties of the MLE are of interest because of the prevalence of large sample

considerations in judging cluster validity [81, even though it may be difficult

to argue for a statistical basis for a given clustering problem. The presentation

of the data in blocks of varying size may occur when the primary sampling units

are grouped by physical or spatial associations (see [21 and [131 for an



application of this idea in the analysis of pictorial data.)

Finally we remark that the existence and uniqueness of a consistent solution

of the likelihood equations bears on the nunerical problem of obtaining the

estimate. Each of Examples 1 and 2 is a missing data problem (in Example 2

the random variables which indicate the component population of origin are missing);

thus, a natural numerical procedure for obtaining a MLE is one derived from the

generalized EM procedure of Dempster, Laird, and Rubin [7]. Such a procedure

increases the value of the likelihood at each iterative step; however, this is

no guarantee of convergence, since the likelihood function may be unbounded.

Generally speaking it is possible to show that the Hessian of the log likelihood

is negative definite near the consistent solution of the likelihood equations.

Thus, the generalized EM procedure is convergent to it given a good enough starting

value (see [14] for a thorough discussion of numerical properties in the case

of a mixture of multivariate normal distributions.)

Throughout this paper the symbol EQ will denote expectation with respect to
2

a distribution determined by a parameter 0 and D , D etc. will denote differen-

tiation or partial differentiation with respect to scalar or vector variables u, v.

For a scalar valued function, V will denote the gradient with respect to an inner

product which will usually be understood from the context. Given an inner product
k

<•!•> and a vector a, the symmetric k-linear form f(n,. ••., TV) = n ^In,-* will
k j=1

be denoted by <a|-> . Thus, for example, we may write the covariance of a statistic
p

S as Cov (S) = E {<S - E (S)|-> }. The largest and smallest eigenvalues of a

symmetric positive definite operator A will be denoted respectively by P(A) and

o(A).



2. A General Consistency Theorem. Let 0 be an open subset of Rv and for each

positive integer r and each 0 e 0, let qr(-|6) be an flr-variate density with

respect to some fixed o-finite measure Ar on R r. Let 6° e 0 and let X,, ....

X , ... be a sequence of independent randon vectors with X having density qr(-|
e°)

For Q & Q define

L_(e) = z log qr (x 10)H r=l

Theorem 1: Suppose

d) [n De V
 (x|e0) dxr(x) = ° '

and that there is a constant M, functions f , a neighborhood ft of 0° and A -null

sets Ap in R
Nr such that for all r, 9 e fi,x i Ar,

(iii) ID!? fl fl log q (x|9)|< f (x) i , j, k = 1, . . . , v
V 0j' 9k r r

Ee0{fr(Xr)
2} < M

(Xl9°)]4} * M i = 1, .... v

(iv)

(v )

( \n\ F \

Ee0{[DQ log
i

r 1 r n2

and
l P(vii) there exists e > 0 such that - E J (e°) > e I for sufficiently large p,
Pr=l

 r v

where Jr(0°) = Ee0{VQ log qr (Xr|6°) vj log qp (Xr|0°)}, Iy is the identity on

Rv, and the ordering is the usual one on symmetric operators. Then there is a

neighborhood n° of 0° such that with probability 1 there is an integer PJ such

that for p > p, there is a unique solution 0P in n° of the likelihood equation



DQL (e) - 0. Furthennore, Q^ -> 9° as p -»• °° and 6^ is a maximum likelihood
o P

estimate. The consistent estimator 6P is asymptotically normal and asymptotically

efficient.

Proof: In the proof we nake repeated use of the following version of the strong

law [4, p. 103]: let Z,, I*, ... be uncorrelated random variables such that

the variances of the Z. are bounded. Then — E (Z - E[Z 3) -> 0 a.s. as n -»• °°.i nj=1 u j

Let Sn(9) = £ I DJog q r(X Je). By (i) E f lo{S(0°)} = 0 and by
K K p=J

 D ' ' ° K

(v) S _(0°) •* 0 a.s. as p -*•<». Consider the vxv natrix DQS (0°) whose i, j

element is

ie°) - i - - °v<*X)

- 1 Z D log q (X |9°)D log q (X |0°)
r=l 1 r r

By (ii) the expected value of the first term on the riqht is zero. Hence, by

(v) and (vi)

DflSn(6°) + I l 0(6°) -> 0° p v r=i

a.s. as p -»• <». Thus, with probability 1, if 0 < n < e/2 there is pQ e N

so that for p > po
DQSp(e°) s -2nl •

Without loss of generality we can assume ft is convex. For 6 e n,

P j1l°Vej
1<*"V"(rl8> -^.e

' 6°))ldt

l



With probability 1, for large p

i P i P

r= 1 r=1

< 1 + M*5

It follows that for any particular norms on Rv and on the symmetric vxv matrices

there is a constant M such with probability 1 there is a positive integer p,

such that for p > p,, 9 e ft,

I lDas~(9) - DQS (
e°) 11 - M] I6 - e°l I •t/ p u p

Thus there is a convex neighborhood ft0 of 9° such that

DQSp(0) < - nl

for all 0 e ft0, p > PJ. It now follows that for p > PJ S is one to one on

ft0 and that the image under S of the sphere ft.(00) at 9° of small radius 6

contains the sphere ft &(S (0°)) at S (9°) of radius r\&. Since 0 is eventually

in ft 6(S (9°)) there is a unique solution of DQS (0) = 0 in ft6(0°). Since

D~S (0) is negative definite, this solution is a MLE.
U D

1 P
Let £ = — £ Ĵ (0°). The Cramer-Rao lower bound for p observations is

Pr=l r ,
verified without difficulty to be (p £ )~ . By (v), (vii), and Liapounovs

Theorem C4, p. 200],p2 £~a S (0°) is asymptotically distributed as N (0, I).

Moreover, in a neighborhood of-0° we may write

Sp(0) = Sp(0°) + A(0)(0 - 0°)

where A(0) -> DQS (0°) as 6 -v 0°. It follows that with probability 1.

% T% /flp _ flo» _ % A / f lpx-l 7h % r-
J5 <; / f to»

u L lo ~ a 1 — — L r\\\) I i- p L o l O J
P p p p p

for large p. Since DQS (0°) + E -»• 0 and A(0P) -»• DQS (0°) with probability 1,



i' n -I 3-
the expression -E* A(0H) E* converges almost surely to the identity. Therefore,

p'5 £p (9P- 9°) is asymptotically N (0,1) and 9P is asymptotically efficient.

This concludes the proof.

3. Applications.

Suppose that in Example 1 the Xi have a common n variate normal distribution

Nn(y, E) and it is desired to estimate y, E by maximum likelihood based on the

observed components BjXj, B2X2, ..., B X . The likelihood equations for y and

E are

(3.1) E B^(Br EBjj'
1 Bry = E B̂ EB̂ Ŝ̂  .

and

- ' T '(3.2) E B(B rEB)-B r = E B B ) ' ^ - y)(Xr - y)

and have no explicit solution, although for given E (3.1) may be solved explicitly

for y provided that the matrix an the left of (3.2) is invertible.

Components i and j are paired in the observation B X if both the i and

j columns of B contain a 1. Let <f>(i, j, p) denote the relative frequency

with which the i and j components are paired in the first p observations

B.X., ..., B X , and let <j>,(i, j) = 11m j)(i. j, p) .1 ^" x p - > - « >

Theorem 2: Let X,, X2, ... be independent, identically distributed according

to N (y, E). If (jijO, j) > 0 for all i, j = 1, ..., n, then there is a unique

strongly consistent solution of the likelihood equations (3.1) and (3.2), which

has the asymptotic properties given in Theorem 1.

Proof: The only one of conditions (i) - (vii) in Theorem 1 which poses any



8

difficulty is number (vii). For 6 = (u, Z), the information matrix J (6)

corresponding to the density of B X ,

q (-|e) = Nn (By, B SB!) .

is

(3.3)

where Ur(e) =

Jr(e) =
" ur(e)

0

0

u r (e )®u r (e )

, and the Kronecker product Ur(e) ® Ur(9)

represents the symmetric operator on n x n real symmetric matrices S (with

trace inner product) defined by U (0)SU (0) . Thus (vii) is satisfied if for

each Z there exists e = e(Z)>0 such that for all p sufficiently large

(3.4)
iĵ B̂ X)

CZ
TZ

and

(3.5) 1 P

Pr=l
S.I

for all I € Rn and symmetric S. However, (3.5) implies (3.4), as can be seen

by taking S = ZZ . Hence, it suffices to establish (3.5) under the stated

hypotheses.

Now, -

V^jKV-r

-(BrZBT)-]

But,

and



(BZBV2] = sup Tr(BrEBb)s A (BjflJ) A (B Zfi
r r TrA2<l r r r r r

= sup Tr[,_
TrA*<i

= sup TrZB'AB ZB 'AB
TrA2<i r r r r

= sup TrtzVAS^]2

TrA2<l r r

A sup TrCB^AE I2
TrA2<i r r

The last equation follows from B B = In . Hence,

> a L Z 2 ®

Therefore,

^ Z TrcB^B^Bj)'^^]2 > atz"*5 ® Z**2] • ^ Z

^ ^Pr=1 r r r r

Since eventually

a[i Z (E [B ) ® (flV)] > T" in *i(i.J) »Pr=1 r r r r i . ̂  .

(vi i ) follows upon taking c - \ min 4>i ( i , j ) • pCZ15 <2> Z^l - QED.
i,J

The second application of Theorem 1 is to the problem outlined in Example

2. We assume that the unknown component densities f(x|t.) are from a regular

exponential family (see [11 for definitions) with minimal canonical representation
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(3.6) f(x|i) = C(T) exp <T|F(X)> (T e T)

with respect to a a-finite measure X, where T is an open subset of a finite

dinensional space V with inner product <•[•>. He also assume that for distinct

TJ, .... im , the functions e
<TllF^x^, ..., e*7"1'1 *̂̂ , together with any

components of F(x)e<Tl \fM>
) ..., F(x)e

<TitilF^x^> are linearly independent

[X]. The joint density of Xr = (Xr,, ..., Xr,.r), given that Xr is a sample

from f(x|T£) is

(3.7) P r(
x

r lT£) = Y r(T4)exp<T£|G r(x r)>

where xp = (xpl, . .., xrfjr)

Yr(T£) -

and

F(xrj)

The log- likelihood for the parameter 9 = (a,, ..., am ,, T-, , .... T) ofi m — i i m

Example 2, based on the sample X,, ..., X is

(3.8) L (6) = T. log qr(Xr|6) ,
v r=l

where

(3-9) qr(Xr|9) = i a£ P̂ X̂ )
£=1

and p (X |TO) is qiven by (3.7). The following lemma collects some factsr r ~

about exponential families which we require. For proofs, see Barndorff-

Nielsen El] .
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Lemma 1: Let (1) be a canonical representation of an exponential family.

For T e T let K(T) = - In.C(-r) = In / exp<T|F(x)>dA(x)
Rn

Then

(i) For each T e T, F(x) has moments of all orders with respect to

f(x|T);

(ii) K(T) has derivatives of all orders which may be obtained by
i,

differentiating under the integral sign. D K(T) may conveniently

be represented as a symmetric k-linear form on V whose coefficients

are polynomials in the first k moments of F. In particular,

and

(iii) D K(T) =<E(F)|-> = /<F(x)|->f(x|T)dX(x)T T Rn

(iv) D*IC(T) = cov (F) = /<F - E (F)|->2f,(x|T)dA(x) ; D^K(T) is
T I nn I l

positive definite,

(v) K(T) is strictly convex on T.

We are now ready to establish consistency of the MLE in Example 2.

Theorem 3: If the numbers {N } are bounded and L (0) is given by (3.8)

then with probability 1 there is a unique consistent solution of D0L (9) = 0

which, moreover, is a MLE of the parameter 0° = (a?, ..., a° ,, T^, ..., T°)

and is asymptotically normal and efficient.

Proof: Write \i (T.) = E (G ) ; y(Tn) = E (F). Using Lemma 1, the nonzero
r i T£ r * T£

derivatives of qr(xr|0) up to order 2 are:

(3.10) Da qr(xr|0) = Pr(xrK£) - Pr(xr|Tm) , 1 < H < m-1
A/

(3.11) DT qr(xr|0) = Vr
(xr'T£)<Gr(xr) ' M^^0 ' l * * * m



12

(3.12)

(3.13)

(3.14)

qjxje) = -pr(xjTm)<Gr - y (T ) | - > , 1 < i < m-1

qr(xr|e) = " C°VT (Gr)} ' l ~
X,

Conditions (i) and (ii) of Theorem 1 follow immediately from (3.10) - (3.14).

Similarly, using Lemma 1 and the boundedness of (N }, conditions (iii) - (vi)

of Theorem 1 are readily verified. It remain to verify (vii). We may write

Jr(i|>) in natrix form as

J r(8) =

" il o •

-° N? J2-

Ee

"A B "

B f*
1.

*- r rj

"I, 0 "

-° N?!?-

where I. and Ip are respectively the identity operators on R and Vm and

k = 1, ..., m-1

Br =

|T k )Cp r (X,

/apakPr(X IT )p (X IT )
= & K r r £ o r K V<

\ q r(X r |9)2

Tm)] -
Nr <6r 'r r

i = I, ..., m-1
k = 1, .... m

k, I = 1, ..., u

The assumptions concerning the linear dependence of the functions exp<T|F(x)>

and F(x)exp<T|F(x)> insure that Jp(e) is positive definite for each r.

Condition (vii) will be established once it is shown that the smallest

eigenvalue of J (0) is bounded away frop zero as N -»• °°.



Clearly,

o(J (6)) > a [E,
A

r _

Observe that

= exp f-N - K(T.) - <T -
Pr(Xr|ik)

If Xr is a sample from f(x|t.), then the expression in square brackets

converges to

T

which is positive by the strict convexity of K. Hence,

13

Therefore,

qr(xr|er

converges to 0 if i ? k and — if i =
a

qr(xr|e)

k as N + °°. Thus,

am ak

as N •> <»r

Given that X is from f(x|r. ), N~^(G - VI^T. )) converges in distribution
f K i i i K

to a normal random variable Z with mean zero and covariance cov (F).
Tk

Hence,
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converges in distribution to 0 if £ ̂  k and — Z if i = k.
ak

Let A be any element of V and consider

Nr

- yr(rk)|A>]
4 = 'V ) * E

After expanding and taking expectation with respect to T, , it will be seen

that the only nonvamshing terns are those of the form

E_ [<F(X ) - E (F)|A>2<F(X ) - E (F)|A>2]
Tk rj Tk ™ Tk

of which there are Np + (!M = 0(N2). Thus

is bounded as N -> °°. It follows from a standard theorem on convergence of

moments C4, p. 95] that

"Tk qr(xje)
(G, - V.

T r
-*• 0 as N ->•r

Thus Eg(B ) ->• 0. Similar reasoning shows that

Ee<Cr> * <5

as N -* °°. Therefore a(J (0)) is bounded away from 0 and this concludes

the proof.

4. Concluding Remarks.

Theorem 3 remains true under weake assumptions then the boundedness

of the sample sizes N , but nothing like the approach embodied in Theorem

1 will work without some restrictions on N . Nevertheless, it is far from
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intuitively clear that restrictions are needed for the existence of a

consistent MLE. Similarly, it seems plausible that the assumption in

Theorem 2 that components be paired with nonzero asymptotic frequency

might also be weakened. In certain cases, e.g., when a normal mean is

to be estimated from data with missing components and the covariance is

the identity, the existence of a consistent MLE with desirable asymptotic

properties can be shown under weaker hypotheses than those derived from

Theorem 1. The condition in Theorem 1 that <|>^(i, j) > 0 for all i and j

is nevertheless reasonable since it is equivalent to the condition that

the Cramer-Rao lower bound be of the order of — as p -»• °°.
P
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SUMMARY

In this paper we investigate the problem of estimating the

parameters for a mixture of densities from, possibly distinct,

exponential families. The likelihood equations used by Hasselblad

(1969) are necessary conditions for a local maximum of the likeli-

hood function. We show that a particular repeated substitution

scheme, determined by the likelihood equations, converges locally

to the strongly consistent maximum likelihood estimate. This

generalizes the results of Peters and Walker (1978).

Some key words: exponential families, maximum likelihood estimate,

mixture densities.



1. Introduction

Let X be an n-dimensional random variable whose density p (with

respect to some a-finite measure) is a convex combination of densities

p., where each p. belongs to some exponential family, i.e.,

m
p(x) = .I,a p

a° > o I a° = 1

Pj(x) = r.(qi°) h.(x) exp <q°, f,(x) >1

n.
and where <', ' > is an inner product on R 1 defined by <x, y> =

x1 Z. y.

N nIf {x. } is an independent sample on R then a maximum likelihood
k=l

estimate of {c^ , q° } is a choice of parameters {a , P^^ = -i which locally

maximizes

1 N
L = - I log p(x. )

N = k

with {ĉ , q^}m replacing {a°, q°}m in the evaluation of p.



If we assume that this choice is to be made from some open neighbor-

hood n.j of the true parameters q? and that for each i and j, E (f . | < »

then a necessary condition for a local maximum is that

Qi " N t=l PK>

Pi(xk>

k=l

where 9. = Eq (f̂ .

Equations of this type will be referred to as likelihood equations

and these were introduced by Hasselblad (1969) for the case that each p

belonged to the same exponential family. We will see that this restriction

is not essential. The case that each p is a multivariate normal density

has a longer history and has been considered by Day (1969), Duda and Hart

(1973), Peters and Walker (1978), Wolfe (1970), and others. All of these

authors considered a particular repeated substitution scheme to itera-

tively solve the likelihood equations.

2. Assumptions and a change of parameters.

At this time it is necessary to change the way each family is

parameterized. The following lemma will provide some insight into this

change. The lemma is essentially a rearrangement of some ideas pre-

sented in Berk (1972) and Barndorff-Nielsen (1978) and is outlined

below. Throughout this paper "V" will denote the Frechet derivative of



a vector valued function of a vector variable. For questions con-

cerning Fre'chet derivatives, see Luenberger (1969).

Lemma 1 Let p (x,q) = r(q)h(x) exp <q>O0 "for qe£20 an open subset of

R °. If P0U,q) = PQ(x,q) a.s. implies that q = q, then 6(q) = E (f) is
n

a 1-1 function. We also have that Q(ftQ) is an open subset of R ° and

q(9) is a continuously differentiate function with V0q nonsingular.

Proof In Chapter 8 of Barndorff-Nielsen (1978) we have that e(q)

is 1-1 and infinitely differentiate Since 6(q) is continuous, it follows

from the Brouwer invariance of domain theorem see Dugunji page 358 (1966))

that 6(ft0) is open. We also have that

f t "]

Since 6(n) is open and E (f) = 0 it follows that V 6 is nonsingular.

The final conclusion of the lemma follows from the inverse function

theorem.

Throughout the rest of this paper we will make the following

assumptions.
n,

1) P.(x,q ) is defined for each q e ft an open subset of R con-

taining q and q is uniquely determined by p^x, q ).

2) If S is a proper subspace o f R , t = m + Z n > then



Prob Pm(x)

P1(x){f1(x) -

E S \ < 1

where the probability and functional evaluation are taken with respect

to {a t 6 }

We note that this assumption is a generalization of identifi-

ability (see Yakowitz and Spragins (1968) and Teicher (1963)). That

this is a nontrivial change can be seen in the following example.

Example Let p-j(x) = re

p- are identifiable. We now observe that

~XT and p2(x) = T
2xe"XT. Clearly p1 and

pl(fT 61) = pl( x-I)

and so

P](fr e,) ,lp2 - ̂ = o.

By defining 9 = E (f ) and using lemma 1 we can proceed to the new

parameterization of p , i.e ,

This change in parameters does not change the necessary conditions

for a local maximum of L.



We now consider a statistical property of solutions to the

likelihood equations. The following lemma is a consequence of the fact

that the conditions of Chanda (1954) are satisfied by p(x) and is

offered without proof. The reader is referred to Peters and Walker

(1978) for further discussion.

Lemma 2 Given any sufficiently small neighborhood of the true

parameters, with probability one as N approaches infinity, there is a

unique solution to the likelihood equations in that neighborhood

and this solution is a maximum likelihood estimate.

This solution is called the strongly consistent maximum likeli-

hood estimate.

3. THE GENERAL ITERATIVE PROCEDURE

A natural iterative procedure for solving the likelihood equa-

tions is suggested by their fixed point form. We generate a sequence

of estimates by repeatedly substituting the last estimate into the

right hand side of the likelihood equations. This generates a new

estimate. Hasselblad (1969) and Day (1969) have shown many examples

where this work. Peters and Walker (1978) have proven that if each

p is a multivanate normal density, then this procedure converges

locally to the strongly consistent maximum likelihood estimate. Our

proof of the local convergence for exponential families generalizes

this result and the proof is patterned after their argument. Before

we proceed further it will be helpful to introduce some notation



".
Since 6.. ranges over B^(ti^) an open subset of R , the natural

parameter space is a subset of

R1 = Rm © R] © ... ©

m
where t = m + I n . We then have that

1 = 1 n

\

Y =

m

is an element of R . If for i=l,..., m we let

then the likelihood equations become

A!

where A = and M =

m

Mi

M_



Equivalent to equation 2 is

Y - *e(T) '- (1-0 He

We define the repeated substitutions scheme by

The operator $ is said to be locally contractive near a point

if for some norm || • 1 1 on R there is a number 0 <_ X < 1 such that

II £ e (Y')-Y|| 1 Ml Y' - A II

whenever Y is sufficiently close to Y-

4. LOCAL CONTRACTABILITY

We will now establish the following theorem.

Theorem 1 . With probability one as N approaches infinity, £r is a

locally contractive mapping (in some norm) about the strongly consist-

ent maximum likelihood estimate whever o < e < 2.

Proof. For any norm on R one can write

/ 2 \<J>£ (Y') - Y = v$ (y) [Y'- Y] + o M |Y -Y' 1 1 )

where Y is a solution to the likelihood equations. We can see that

the theorem will be proved if one can show that with probability one,

V<t> converges to an operator which has norm less than one.
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We can write V$ (y) as a matrix of prechet derivatives

(
V A V0Aa 6
V M VfiM / .a o

We recall that V 6i is nonsingular and since

i'9i' (frei)Tp,<ei>-
_j

we have that Ij VQ q. is positive definite with respect to the usual inner
n i

product on R . So we define <.','>. for i=l, ..., m by

<x, y y. = aiX
T l] Ve>qi y

and let b^ = p^p.

By direct calculation, using the likelihood equations, we see

that if Y is the strongly consistent maximum likelihood estimate then
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vw = - *
- em), -

I N
V MY) = - diag o, ^r Z
a 1 N k=l

b1(xk){f1(xk)-e1}x /bl(xk)

K=I P xk i 1 y
T

-Il
b1(xk){f,(xk) -e,}\ /<b1(xkHf1(xk) - e,}, -X

- V* '4

We observe that V$ (y) can be written as

i N

(Y) = n-Z F(x. ,
N k=l k

where V F(x, Y) exists and has the property that for any norm ||- || on

V F(x, Y ) there exists a real valued function g such that
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V F(x, Y) || < g(x)
Y

and

for every Y in some neighborhood of Y • It follows from this that

V <J> evaluated at the maximum likelihood estimate converges to

E{V $ (Y°))- Hence it will suffice to show that in some norm ||-||,

E{v $ (Y°)) has norm less than one.

Let

V(x) =

\
and let < • , • > denote the inner product induced on R by scalar

multiplication and <' , ' X i=l, ..., m.

Since

E

have that

E{7*e(Y°)} = V <V, •> p



We can denote this as I - eQR where

'diag a.

Q =

and R = /V <V, •> P • By assumption 2 we have that QR is

-1positive definite with respect to <• , Q •> . The theorem will be

proved if it can be shown that for
\

w = c R*.

that < W, Q'^QRlW > = <W,RW > <_ <W, Q-1W > .

By an application of Swartzes inequality and the fact that

(vqe)

we have the following.

< W , R W > = < V , W > p

y.
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m
= I

= <W, Q']W> .

This completes the proof.

We now consider a useful generalization of this theorem. Consider the

case that the random variable X is a mixture of densities p., i=l

m+k for k>o, where each p. is from some exponential family for i=l,...m

and where p is an arbitrary but completely determined density for

i = m+1,..., m+k. The appropriate likelihood equations are

/

i N p.
^1 -1N £=1 P

^

Let $ be the appropriate operator determined by these likelihood

equations. It can be seen that the proof of Theorem 1 can be easily

extended to prove the following theorem.
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Theorem 2 Let assumption 1 be satisfied for i=l,...,m and suppose

that whenever S is a proper subspace of R , t = m+k+Z n., then

Prob - e S >

It follows that with probability one as N approaches infinity, C is a

locally contractive mapping (in some norm) about the strongly consistent

maximum likelihood estimate whenver o < e < 2.
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5. DISCUSSION

We observe that Theorem 1 is sufficiently general to include most

exponential families and almost arbitrary mixtures between such families.

In fact, it covers mixtures between families where the associated measures

are not equivalent. Theorem 1 also applies to many situations where some

subset of the usual parameters are known or where the parameters are

constrained.

It should also be pointed out that although Theorem 1 applies to

mixtures of multivariate normals, it is not based on the traditional likeli-

hood equations. Instead of iterating on the covariances, the procedure up-

dates the non-central second moment. This results in a different iterative

procedure, whose difference is more than cosmetic. The difference in the
^ ^ /s -r ^

updated covariances is given by (y^ - y.) (u - y^) where v1 is the new

estimate for the mean given y . However, there seems to be no practical

difference between the two schemes and one has to favor the Peters and Walker

scheme since it involves the covariances directly

Finally, we observe that the remarks made by Peters and Walker (1978)

concerning the optimal choice of e are applicable to this paper and the

reader is referred to their paper for a discussion of this.
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SPATIAL CORRELATION IN LANDSAT

AN EMPIRICAL STUDY

William A. Coberly
The University of Tulsa

1. INTRODUCTION

Data analysts who have worked with LANDSAT data have

observed that neighboring pixels are not independent mea-

surements on disjoint areas of the target scene. This

spatial correlation or dependency is induced by a number

of factors - overlap of the instantaneous field of view

(IFOV), atmospheric scattering, optical and electro-mechan-

ical components of the sensor system. These factors are

are in addition to any intrinsic spatial correlation which

might exist in the target scene. This spatial correlation

violates a number of assumptions usually made in the digital

processing and analysis of LANDSAT data, especially the

statistical analysis. A few studies ( 1 , 2 ) have inves-

tigated its effects on the accuracy of various statistical

procedures. However, a more fundamental analysis of spatial

correlation irs required in order to enhance our understanding

of LANDSAT image representation and modelling. In partic-

ular, a better understanding of the boundary or mixed pixel



phenomenon requires the incorporation of spatial correla-

tion into the model.

Two approaches should be undertaken. First an analyt-

ical determination of the spatial correlation induced by

the atmosphere and the sensor system, based on a linear

system representation of these factors should be made.

The second approach is an empirical determination of the

spatial correlation structure. This is the purpose of this

exploratory study.

2. SPATIAL CORRELATION

A complete study should consider the two dimensional

properties of spatial correlation. However, in this study

only the one dimensional characteristics, in the direction

of the scan line, will be studied. This is a reasonable

start since a number of the factors, such as detector re-

sponse and electronic amplification and recording, are one

dimensional.

Define X,, X_, ••• , XT to be the random digital
i f. J_i

measurements along one scan line for a single channel of l

the multispectral scanner. Let m = E( X^ ) be the mean

value of X for i = 1, ••• ,L. Then the autocovarrance

function is given by



Y(

We now impose the assumption of covariance stationarity,

which may not hold for large scan angles, but should be a

reasonable assumption for small scan angles. Now y de-

pends only on the lag k, and is independent of scan line

position i. That is,

Y( k ) = y( iri+k ).

That is, we are assuming that the distribution of the

pixels along a scan line is covariance stationary, changing

only in mean. Note that y(0) is the variance and the

autocorrelation (spatial correlation) is given by

P ( k ) = Y( k )/Y( 0 )

for k = 0,1, • • • .

3. ESTIMATION OF THE MEAN

The mean function m is, of course, in general not

known. However, for the segments used in this study, digital

ground truth was available and this suggests a way to esti-

mate the mean for each of the pixels. The digital ground

truth is tabulated at the subpixel level, six subpixels per

pixel according to the following scheme.
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Scan Line

Pixel Subpixel

If the pixel has the same ground truth label assigned to/

each of the six subpixels, then it is said to be "pure".

A "field" is an interval along a scan line of pure pixels

with the same ground truth label. A "field" may be one

pixel in width or many. Pixels which are not "pure", that

is, those containing conflicting subpixel ground truth

labels, will be called "boundary" pixels.

The estimate of the mean function for a scan line is

defined as follows:

field mean of X if
contained in a field

m
a moving average if
is a boundary pixel

?he moving average used is

Xi-2 + 2Vl + 2Xi + 2Xi+l



In Figures 1 - 8 , the pixels X^^ are plotted (solid lines)

superimposed on the estimated mean function m. (dotted

line) for the four LANDSAT channels and the two tassel-cap

coordinates "brightness" and "greenness". One scan line

for two acquisitions of each of four segments is presented.

Pixels Estimated Mean
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Figure 1. Pixel radiance and estimated mean plot for
segment 1618/145, line 62. (a)-(d) channels
1-4, (e) brightness, (f) green coordinate.
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Figure 2. Pixel radiance and estimated mean plot for
•egment 1618/235, line 62. (a)-(d) channels
1-4, (e) brightness, (f) green coordinate.



o
ru.

o

(d)

25 00 50 00 75.00 100.00 125 OC 150 00 175.00 200

c-
c

c
o

oo

.00 25 00 50 00 75.00 100 00 125 00 150.00 175 01

Figure 2. Continued.



10

g
DO 25 00 50 00 75.00 100 00 125 00 150 00 175 OC

D

(b)

25 DC 50 00 75 00 100 00 125 DC 15D OC 17; C: 21. CT

00 25 00 50 00 75 00 100 00 125 00 150 00 175 C:

Figure 3. Pixel radiance and estimated mean plot for
segment 1633/129, line 62. (a)-(d) channels
1-4, (e) brightness, (f) qreen coordinate.
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Figure 6. Pixel radiance and estimated roean plot for
segment 1642/236, line 11. (a)-(d) channels
1-4, (e) brightness, (f) green coordinate.
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Figure 7. Pixel radiance and estimated mean plot for
segment 1645/145, line 62- (a)-(d) channels
1-4, (e) brightness, (f) green coordinate.
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4. ESTIMATING THE SPATIAL CORRELATION

For a given scan line and channel, the sample spatial

correlation is calculated by

and

p ( k ) = Y ( k ) / y ( 0 )

for k = 0,1, ••• . In this study the sample spatial

correlation was calculated for every third scan line for

each of the four channels on each segment acquisition. In

Table 1 the average spatial correlation function over all

scan lines used in the calculations is tabulated for two

acquisitions for each of four segments. Although the coef-

ficients are not the same from segment to segment, the pat-

tern is very consistent. The lag 1 correlation is distinctly

non-zero over all segments and channels and the lag 3 and

larger order correlations are essentially zero. The lag 2

correlation is zero for some cases and non-zero for others.

In Figures 9-16, the histograms of the estimates for

p(l) and p(2) and the scatter plots of p(l) versus p(2)

are presented for all scan lines processed in the study.
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5. BOUNDARY PIXELS AND SPATIAL CORRELATION

The spatial correlation observed has considerable

implications in the characterization of boundary or

mixed pixels. The usual notion of mixed pixel is one in

which the instantaneous field of view intersects at least

two real label classes in the target scene. In fact,

spatial correlation may induce the mixed pixel effect even

when the IFOV target is composed of a single class, due to

the mixing of neighboring pixels by the correlating mech-

anism. By understanding this spatial correlation phenom-

enon, better automatic boundary finding or field finding

algorithms, specifically developed for LANDSAT data appli-

cations, should result.
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TABLE 1. Estimated spatial correlation functions.

Segment

1618/145

1G18/235

1623/129

1633/236

Chan

1
2
3
4

1
2
•3
4

1
2
3
4

1
2
3
4

1

.229

.302

.352

.386

.445

.501

. 486

.486

.309

.378

.387

.421

.335

.446

.396

.432

2

-.036
-.051
-.060
-.053

.114

.129

.097

.091

-.015
-.005
.017
.046

.032

.058

.035

.051

Lag
3

-.030 -.
-.048 -.
-.100 -.
-.099 -.

-.004 -.
-.008 -.
-.03* -.
-.029 -.

-.029 -.
-.040 -.
-.019 -.
-.007 -.

-.023 -.
-.042 -.
-.034 -.
-.031 -.

4

039
05P
CP7
087

075
077
081
064

044
039
048
035

042
072
068
072

5

-.051
-.080
-.078
-.089

-.C8£
-.114
-.096
-.079

-.046
-.054
-.078
-.071

-.048
-.090
-.090
-.083

6

-.056
-. C72
-.081
-.081

-.CCT
-. IIP
-. 090
-.ens

-.0*5
-.065
-.094
-.083

-.0*1
-.CP3
-.OPT
-.07/
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TABLE 1. C o n t i n u e d .

Segment

1642/1-15

16*2/236

1645/145

16*5/236

1
2
3
4

1
2
3
A

1
2
3
A

1
2
3
A

1

.213

.337

.365

.393

.219

.310

.354

.406

.109

.178

.260

.293

.343

. 4 2 4

.426

.441

2

-.057
-.024

.003

.007

-.033
-.019

.014

.015

-.066
-.108
-.048
-.027

-.005
.013
.023
.033

Lag
3

-.060 -.
-.055 -.
-.023 -.
-.029 -.

-.031 -.
-.053 -.
-.050 -.
-.0*6 -.

-.011 -.
-.047 -.
- .034 -.
-.029 -.

-.045 -.
-.071 -.
- .049 -.
- .043 -.

4

050
066
054
0*6

0 4 4
070
079
076

Oil
023
035
024

060
087
061
058

5

-.064
-.070
-.077
-.062

-.059
-.C8£
-. 110
-.316

-.021
-.015
-.039
-.021

-.070
-.083
-.076
-.068

6

- . 0 4 5
- .072
- .07?
- .069

- .0*2
-. C°I
-.108
- . l l f

-.015
- . C O ?
-.051
- . 04?

-.073
- .097
-.091
-.081
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INFORMATION IN REMOTELY SENSED DATA FOR ESTIMATING

PROPORTION IN MIXTURE DENSITIES1

Virgil R. Marco, Jr., and Patrick L. Odell
University of Texas at Dallas

Box 688, Richardson, Texas, 75080

I. INTRODUCTION

Data taken remotely by multichannel sensors on a near earth satellite

can be modeled as a collection of multivariate data points. In the

application [1] that motivates this paper each pxl data vector repre-

sents a measure of reflectance from (1.1) acre location on the surface of

the earth. Each of the p elements of the data vector is a reflectance

measure at a preassigned wave length of light. Conceptually, each crop

class defines a set of reflectance measures that can be modeled by a

multivariate unimodel probability density function unique for each crop

class.

Let there be m-crop classes and let the p.d.f.

P.J(X) = p^x^tE.) 1 = l,...,m (1.1)

denote the distribution of the random data vector X given that the

measurements were made on the i crop class, n., i = l,...,m . Also

let the multivariate mixture p.d.f.

This research was supported in part by the National Aeronautics and
Space Agency, Johnson Space Center under Contract NAS 9-14689-95.



m
P(x) = I aiPi(x) (1.2)

m
such that a. 0 i = l,2,...,m and I a- = 1 denote the distribu-

1 i=l n

tion of the multivariate observations given that the data is unlabeleld,

that is modeled by p(x) in (1.2).

Definition 1. A random sample is said to be unlabeled if the random

vectors are selected from a population defined by (1.2).

Definition 2. A random sample of unlabeled data is said to be classi-

fied data if, according to some classification rule R = (R-itRnf.^)*

each vector in the sample is assigned to one of the (crop) classes

H-j , IIo » • • • »"_ •

Definition 3. A random sample of unlabeled data is said to be verified

data if each vector is classified as being from the true subclass n.

for some i = 1,2,..., or with probability one.

Verified data is classified data in which there is zero probability

of misclassification.

Definition 4. A random sample is said to be labeled if it is selected

from a single class n. and the identity of i population is known.

The difference between verified and labeled data is that the verified

data must be labeled a posteriori while the labeled data is labeled prior

to taking the sample. In both types of samples, one knows with certainty

the label of the population from which the samples came.

The purpose is to estimate the vector or proportions a =

(a.|,a2,...,a ) which defines the function p(x) in (1.2). If a..



denotes the proportion of vectors in the mixture from class n^ and N

the total number of vectors in the region, then

A. = (1.1) N «. (1.3)

is an estimate of acreage of crop class n. , as a function of an estimate

of the proportion a^ and a. . Hence, our interest is to estimate

wel 1.

Three different types of data are available for estimating the

elements of a arise naturally in the application involving remote

sensing from space. They all are maximum likelihood estimators for a

using

(a) unlabeled data,

(b) classified data, or

(c) verified data, respectively.

The cost of acquiring unlabeled data is less than the cost of acquiring

classified data which is in turn less than the cost of acquiring verified

data. The computation of sample size allocations when samples from more

than one type of data are available arises naturally. In the case of

sample design one can control the type of data to be selected and the

optimal mix of sampling can be accomplished. It is important to note

that one always has available a random sample of unlabeled data; hence

if C denotes the cost per unit of taking unlabeled data then

C» " Cu + c» = Kvcu

Cc - Cu + cc - KcCu



are the per unit cost where Cv and C are the costs of classifying

and verifying in unlabeled data point respectively. The values Ky and

KP are multiplicative constants that give in addition to an additive

model a second multiplicative representation of the costs.

One would expect C < C < Cu in most space science applications.
U \f V

It is important to note that in the space application unlabeled data is

available as basic for two of the three methodologies for estimating a ,

and except for missing data that the totality of unlabeled data is

also available. The cost of machine processing every vector is a

realistic limiting factor for unlabeled and classified data while the

cost of resources to visit each location for verification is the major

limiting factor for obtaining verified data.

However, it is not intuitively clear which type of data contains

greatest amount of information for estimating a for a fixed sample

size. The purpose of this paper is to compute and order with respect

to magnitude the information content of the three types of data, and

discuss the implications of that ordering for the space application.

The term information content of the data is defined as the inverse

of the Cramer-Rao matrix lower bound for unbiased estimators for a .

This is the matrix form of Fisher's Information.



II. INFORMATION CONTENT OF VARIOUS TYPES OF DATA

2.1 Fisher's Information: Let X denote a random observation from a

multivariate (p-variate) population whose p.d.f. is defined by (1.2).

If we denote the parameter vector by a = (a-j ,...,am_-j) then by the

usual theory (Cramer [2], Rao [3]) the (m-1 x l) random vector

<- = 3lnp(x) (21b - 3 a U.i.

is such that

E[S] = <j>

and

where A(a) denotes Fisher's information for a contained in the

sample X .

If X, ,...,X denote a random sample from a multivariate population

whose p.d.f. is defined by (1.2), then the Fisher's information for a

contained in this sample can be shown to be

E[S ST] = n A(o) . • (2.1.3)

Furthermore, A~ (a) is the Cramer-Rao lower covariance matrix bound

for unbiased estimators of the vector a . That is,

if a is any unbiased estimator for a , then the covariance matrix A(a)

will never be less than A~ (a) . Note that if A and B are two positive



definite matrices of the same size and A - B is positive semi-definite

then we say B is less or equal to (when A - B = $) than A .

From (1.2) it follows that

m-1 / m-1 \
P(X) = I ttj p^x) +11 - I otj I pm(x) (2.1.4a)

j=l • y j=l J

m-1
= .1 ct.jCp.jW-pJx)] + pm(x) . (2.1.4b)

J "" '

It follows from (2.1.1) that

m
(x)I a.p.

j=l J J

Pi(x)-Pm(x)
3

POO

and

3S. Cp,(x)-p (x)][pk(x)-p (x)]
•3aK [p(x)]2

Therefore, the information for a is given by

def { r 3S . -i
A(a) = "E ' (2J'7)

(m-l)x(m-l)

Fisher's information can be seen as the information contained in a

random variable X about the parameter a . This should be interpreted



as the extent to which, on the average, the accuracy of estimating the un-

known parameter a can be increased as a result of the observed value x

of the random variable X .

In the ensuing sections of this paper, information for a con-

tained in unlabeled, classified and verified data, defined earlier will

be ordered.

Above, information is defined in terms of unbiased estimators.

2.2 Likelihood Function. If X,,X2,...,X denotes a simple random sample

from p(x) defined by (1.2) then the likelihood function is

Lu(Xr...,Xn) = n p(X.) (2.2.1a)

n r m T
- n la. p.(X.) (2.2.1b)
£=lLj=l ° ° 1 J

the likelihood function for unlabeled data.

Let X,,X2»...,Xn denote a simple random sample from p(x) which

has been classified according to a rule R = (R^,R2»...»Rm) i then each

data vector Xk , k = l,2,...,n generates through classification new

data defined by the random variable Y.(X̂ ), i = l,2,...,m , where

Y.(Xk) = 1 if Xk e Rj (2.2.2)

- 0 i f X k * R k

whose joint p.d.f. is for each Xk a multinomial
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m y,-(XJ
hv v (y1(X.),...,ym(X.)) = n g. (2.2.3)Y r..Ym IK m K 1 = 1 i

where

g. =

P(x)dx
RM

m

m
I <*,p(i .1) »

the probability of classifying I(X t) in n. .K J
The likelihood function for classified data follows from (2.2.3),

and is

n m Y . ( X . )
= n n g.

k=l i=l 1

(X.)
k

n m f m 1 Y-
= n n \ I a.P(T| j ) n

k=l i = i [j=l J J

m T m 1 Ni
= .n Jl ajPdlJ) (2.2.4)

where

N, = I Y . ( X . ) (2.2.5)
7 k=l T K



the number of sample vectors in R. .

Let I-|(X-|),I2^2) ...• >In(Xn) denote a random sample whose labels

are known with probability one, that is, the data has been verified, then

Tj(lk) = i if i k e n .

= 0 if Ik e Hj (2.2.6a)

then the p.d.f. of T = (T, ,...,!) for each I. is

m t . ( I . )
fT T (tr...,tn) = n[a.] 1 k . (2.2.6b)

r l " - * ' m '' m i=l 1

The likelihood function of a verified sample is

n m T.(I.)
= n n [a.] ] k

k=l i=l 1

m n.
n [a.] n (2.2.7)

1=1 1

where

n, = I T (I ) , (2.2.8)
1 k=l n k

the number of individuals in the sample from n. .

2.3 Information for a Contained in Unlabeled Data.

Let the following denote the information for a contained in

unlabeled data: X,,...,X :I n



ing (2.1.2), (2.2.15) and
for i = i

d""*lon. tt can 5e shown that

A" =,

m=l
I a.B.

and for j

m m-]

(2.3.1a)

where

(2.3.15)

0<B.. , Pi
- U

and

dx

(2.3.1c)

When B.. = R

= n(l-B)(Au.}

where
(2.3.2a)
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AU. =
aiam

for i = j (2.3.2b)

(2.3.2c)

When m = 3 , the p.d.f. of a random variable X from a mixture

population (unlabeled data) is

p(x) = OjpjU) + a2P2(x) (2.3.3a)

where

a, + a2 + a3 = 1 (2.3.3b)

and

ot, > 0 , ou > 0 , a^ > 0 (2.3.3c)

It follows from (2.3.la) - (2.3.1c) that the information contained in

unlabeled data is given by

Au(a) -

r ,u ,u -i
All A12

u u

where

.u

11

\22

(l-o,)

a2a3

cuc

12

1 J J D
I ~ T - D-, 012

(2.3.4a)

(2.3.4b)
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(2.3.4c)

Note that one minus (2.3.1c) can be regarded as a distance measure.

That is, when the i and j populations are "close together" or "far

apart" then (1-B..) will be small or large, respectively. In fact,

several investigators [3], [5], [6] , have employed a form of (2.3.1c)

as a probabilistic distance measure for feature selection. While Cover

and Hart [8] have shown that 2a.ct.B.. corresponds to the asymptotic
• J ' *J

nearest neighbor probability of error, this motivates a possible

estimating procedure (see section 4. ) using a nearest neighbor procedure.

It is of interest to consider the behavior of B.. in terms of a
' J

popular distance measure as the distance between the itn and j popula-

tions diverges. This behavior is described in Lemma 2.3.1.

Lemma 2.3.1: Let the distance measure between the i and j populations

be given by

-j 7 [PI (x) - p.(x)] log
J

P,(x)
dx

If A.. •*• » for all i ? j , then B.. -»• 0
' J » J

(2.3.5)

Proof: Toussant [4] has shown that
1
T

Note that as A.. •* <» then
' J

1
4 0 .
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Note that (2.3.5) is known as the divergence between two distributions.

For normal distributions with equal covariances, (2.3.5) reduces to

the, well known Malhanabis distance.

The following example can clarify some of the concepts introduced

above:

Example 2.3.1:

P,(x) =
x , 0<x<l
2-x, l<x<2
0 , o.w.

, P2(x) =
x-1, l<x<2
3-x, 2<x<3
0 , o.w.

, P3(x) =
x-2, 2<x<3
4-x, 3<x<4
0 , o.w.

P(X) =

Let then

P1(x)p2(x)
PUT dx

J i(2-x+x-l
dx

(2-x+x-l)

3(2-x)(x-l)dx

(3x-2-x)dx

r
/
J

B23 = 3 (3-x)(x-2)dx

13 = 0 .

3»3'3; 5 7
7 2
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To conclude this section, a result that follows from Lemma 2.3.1

is given.

Theorem 2.3.1; Let A., be a distance measure defined by (2.3.5).
' J

If A.. •* «> for all ij<j then ,
* \j

Au(a) -> Av(a) = n{A

where

for i = j

for i t j .
m

Proof: Using equations (2.3.1a) - (2.3.1c) and letting A^. •*• » , the

Theorem follows from Lemma 2.3.1.

Note that (2.3.2a) can be written as

Au(ot) = n(l-B)Av(a) (2.3.6)

The information matrix Ay(a) is the information for a contained in

verified data. This is a topic of the next section.

2.4 Information for ot Contained in Verified Data

Let 1̂ (1̂  be defined as in (2.2.6a). It follows from (2.2.7)

that

In Lv = £n f
 m Mn a. M

Li=l 1 J

m

m-1

(2.4.1)

m-1
I a-j] »

J-l J



m
since I a. = 1 .

= J

From (2.1.1) then S. = 3,£n L it follows that
J oa.

3 £n L

where

15

(2.4.2)

n • n

In matrix notation

Sv - (2.4.3)

where the (m-l)xm matrix A is given by

Aa =

-r- 0 0 ... 0 0 -a

0 0 0

a.m
1 r-0 ... 0 0 - —

1 _ 1
am-l am

(2.4.4)

and

n = (n1,...,nm)
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Note that by the Cramer-Rao theory the expected value of S is the

zero vector which we will verify directly.

E[Sy] = E[Aa?T|

= n A a since n. ~ multinomial (n,ct.) for j = 1,...,
" J J

m

Now,

Aaa =

* M

— 0 0 ... 0 - —
al am
0 — 0 ... 0 - —

al am

u . . . . . u — — — —
Vi v

•

•

am

=

0

= $
(2.4.5)

Thus,

ECS,.] = # (2.4.6)

The information matrix for a when sampling from verified data

can now be computed by finding the covariance matrix V(Sy) of Sy

using (2.4.3) and (2.4.6), that is,

Av(a) = V(S)

(2.4.7)
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where V(rf) is the covariance matrix of the n = (n,,...,n ) , a
i I Hi

multinomial vector variate; that is,

V(n) = n[Diag(0,...,o) - oa] .

From (2.4.7), (2.4.8) and (2.4.5),

Av(a) = Aa[Diag(a1,...,am) - aa ] Aa

(2.4.8)

= Aa[Diag(ai ..... aj] A^ . (2.4.9)

For exemplary purposes consider the case when m = 3 , then since

/.!
Oh

A =a

0 -JT

0 -- - —
OU

Va) =

(2.4.10)

^Suppose we are given an unlabeled sample

A"! , . . . ,A |T| •

Then we verify this sample generating the sample
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Tr...,Tn .where T. = (T̂  ,... ,T.m)
T

For estimating a should we disregard the unlabeled sample or consider

the joint sample (X. ,T.) , i = l,...,n? The joint p.d.f. of

(X.,1̂ ) , i = l,...,n is

p(x1,ti) = p(x1|t1)p(t.) , t. = (̂ !,...,tim)

m
n

j= i
m

t m 11J n [a,]

= n [a. p , (x i ) ]
t.
1J (2.4.11)

To answer the above question consider the following theorem.

Theorem 2.4.1: The amount of information for a contained in the obser-

vation (x.,t.) is equal to the information for a contained in the

observation t. alone.

Proof: Taking the logs of both sides of the equality in (2.4.11), we see that

m m
In p (x.,t ) = I t . £n p ( x . ) + I t.. in a. .1 T j=i U J T j=i iJ J

Now taking derivative with respect to a. we have
m

9 a.
*J

p(x.,t.) 3
L-= o + J '

aj P( t . )

3 a.
J

3 a.
J

Therefore,

-E

"5
= - E
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Thus, it follows from Theorem 2.4.1 that for estimating a the

joint sample (X.,T.)» i = l,...,n contains no more information than

the sample T,,...,T alone.

2.5 Information for a Contained in Classified Data.

Using the likelihood function given in (2.2.4) for a random sample

defined in (2.2.2), it follows that

m
£n Lc = N. £n g.

m-1 m-1

since
m

m
Also, from (1.3.6) and I a^ = 1 that

m-1 r -i
9l = I ctJ Pd|J) - PON +P(i |m)
1 j=l JL J

and

m-1

(2.5.1)

r 9 £n L
From (2.1.1) and S. = c

a. it follows that

sj =J
Ni yi

(2.5.2)

(2.5.3)

or in matrix notation



20

s = .-
' J

iT ..where the (m-l)xm matrix [A..] is defined by its elements
" J

A*... = P(i|j) - P(i»

G =

g1 0 0

0 g2 0

0

0

and

N =

(2.5.4)

(2.5.5)

(2.5.6)

(2.5.7)

Note that by the Cramer-Rao theory the expected value of Sc is

the zero vector which we will verify directly.

E[SC] = EtA^f G"1 N

= [A*...]1 G'1 E[N]

(2.5.8)

where

9 =

or

g = GJ (2.5.9)

where



J = (1,1,....l)1 .
i

It follows from

21

for j = 1,2,..., m that

[A*1d]J = (2.5.10)

and in turn from (2.5.8) and (2.5.9) that

E[SC] = GJ = (2.5.11)

The covariance matrix V(S ) of S can now be computed using

(2.5.4) and (2.5.11), that is

v(sc) = V(N) ... (2.5.12)

where V(N) is the covariance matrix of the N = (N,»N2»...»Nm) , a

multinomial vector variate, that is

V(N) = N[G-GJJl G]

= NG(I-JJTG)

= N[G-PoaTP]

(2.5.13)

where

G =

P^ 0 ... 0

0 Pa ... 0



From (2.5.10), (2.5.12), and (2.5.13)

Ac(a) = V(SC) =

the information for a contained in classified data.

22

(2.5.14)

For completeness we state the following theorem.

Theorem 2.5.1:

Ac(a) + A (a) as P

where

P = {P(i|j)> .

Proof: In matrix notation,

g = Pa .

Let P -> I , then g -»• a and

1 for i = j f m
1 for i = m
0 o.w.

that is,



I.

Jm-l

Note that (2.4.9) can be written as

.T
m

.
J- i

where I -, is a (m-l)x(m-l) identity matrix andm-1

-J -I = v~ I»~ I »• • •»~ i) •

m - 1

Thus,

Ac(ct) = [A*...;

as P * I .

[A?.f[diag(

23

(2.5.15)

For exemplary purposes consider the case when m = 2 , then since

[A.j]
T=

G =

- P(2|2)]

g1 = ' - 92 •

P(l|l) = 1 - P(2|l) and

P(2|2) =
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then

A / \ _ ^ L ' \ M / ~ \ ' I *- / J /O C 1C\AII^CX; - —J—— — . ^t.D.lDj

Suppose further, that if there are no errors in classification, that is,

P{1|1) = P(2|2) = 1

then

g-i = ot-j and Q« = cio

and

Note that for this case, A" (a) is the variance of a sufficient

Nlstatistic 61, = -*r- for a, in a binomial probability density function.
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III. THE MAIN RESULT

3.1 The Ordering of the Information for a .

For the two population case (m=2) , the information for

contained in un labeled, verified and classified data are given respectively

by

Pi(x)Po(x)(j <*

and

A (c

The similarity of A , A and A is striking and one notes in
V C U

this case an obvious ordering exists, that is

Av/(a) > A(a) (3.1.2a)

and

Ay > Au(a) . (3.1.2b)

The inequality (3.1.2a) holds since
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Ac(a) = [ p < 1 M ) - P(l|2)]2

- P Q I 2 *)]
|2)J[l-giJ

However,

9, = ct^d D + O-a

implies

i« = a,d-cu)EP(l|D-Pd|2))2 + —i a2

1

Let

0 . [P(lll)-Pdl2)]
2 ,, . .. v•j* * • •

( 1 -a

Since 0 < R < 1 , one can conclude for m = 2 , that

Ac(a) = 00-a) Rc

or

From (2.6.1a) and the fact that

def
0 < R = 1 - B < 1 (3.1.4)- u
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implies that (3.1.2b) holds, that is, for m=2

Au(a) < Av(a) .

In this section, we will establish the following ordering of the

information for a :

Ac(a) < Au(o) < Av(a) . (3.1.5)

(Note that if A and B are two positive definite matrices of the

same size and A - B is positive semi-definite then we say "B is less

than A".) This result will be given in a corollary to a Theorem proved

by Rao [ 3:].

Note that classified data defined in (2.2.2) is a explicit trans-

formation of the unlabeled data. Knowing this, it follows directly from

the following Theorem due to Rao [3] that

Ac(ct) < Au(a) .

Theorem 3.1.1 (Rao); The matrix AX - AT is semi-positive definite,
•

where Ay is the information matrix in a measureable function T

of X .

The ordering between Ay with AU and AC is not as straight-

forward. The ordering (3.1.5) is proved in corollary 3.1.1 which will

be proved very sim'ilarily to the proof of Theorem 3.1.1 once the

following three lemmas are proved.

Suppose one takes an unlabeled sample and then classifies it, then

let
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Z = (XT,Y(X)) , Y(X) = (Y,(X) ..... Ym(X))

when Y-(X) = 1,0 if x e R. , x i R. respectively.
J J J

Lemma 3.1.1 : The p.d.f. for Z is given by

1 Pv(x) , if X e R. and y. = 1 for some j = l,...,mx J J
0 , o.w. (3.1.6)

Proof;

Pz(z) = p(x,y)

= Pr(Y(x) = y|X-x) px(x)

Now (3.1.6) follows from

1 if X e R. and y. = 1 for some j = l,...,m
Pr(Y(X) = y |X=x) =

0 o.w.

since Pr(Y.(x) = 1 and Y.(x) = 1) = 0 for j t k .r j K

Recall from Sections 2.3 - 2.5 that

Su = {Ŝ } , (3.1. 7a)

Sy = {Sj} , (3.1.75)

Sr = {$<?} , (3.1. 7c)
J

for j = 1,... ,m-l
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where

Proof:

J--J* (3.1.8b)
j m

m Y.
- A (3.1.80

for j = l,...,m-l .

Furthermore, we know that

E Su = E Sy = E Sc = * (3.1.9)

Lemma 3.1.2;

(i) E[SjY=y] = Sc (3.1.lOa)

(ii) E[Sy|X=x] = Su (3.1.lOb)

(iii) E[Sy|Y=y] = Sc . (3.1.lOc)

(i) For each j = l,...,m-l, it follows from (3.1.8a) that

f P.:1
ddx

Let

Y = y = (0 ..... 0,lk,0,...,0)
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where lk indicates that yk = 1 . Then it follows from Lemma 3.1.1

that

j-yk

9k

(Note that gfc = h(y/k)K)

Thus, in general we have

E[sV|Y=y] = I ^. A . = Sc. , j = l,2,...,m-l .
J t—1 **t w JR^ I ^

(ii) For each j = 1 m-1 , it follows from (3.1.8b) that

ECS V |X=x ]= I - f(t|x)

{t|p(t|x)>0} J m

_fUUihO f(t(m)|x)
aj am

where
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,,,,,,.

Hence, it follows that

„ a.p.(x) ampm(x)crcv|v _ x-| = J j _ M rcELSj|X XJ < l x ) cy>(x)

Pi(x)-Pm(x) u= J m — = S" ,forj = l,...,m-2 .

(iii) Suppose y = y/ k» for k = l,...,m , then for j = l,...,m-l

it follows from (3.1.8b) that

It can be easily shown as follows:

•"•< fit ,v -•f(^.lKy(M)
f(t(j)|y(t) -- h(y[k))

.•h(y(k)|t(J))f(t(J))

gk

P(k|j)aI
9k
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Thus,

aj

amP(k|m)

ajgk Vk

9k

A

In general, we have

u m y.A..
E(Ŝ |Y=y) = I -LJJ-=S^, for j = l ..... m-1,

J 1=1 91 J

Lemma 3.1.3: (i) E(S S T) = A

(11)

(1ii) E(ScsJ) = Ac .

Proof;

(1) E(SCSU
T) = E{E(ScSu

T|Y=y)}

= E{ScE(Su
T|Y=y)}

It follows from Lemma (3.1.2) that

' E{ScScT} = Ac '
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(ii) and (iii) are similarly proved.

Corollary 3.1.1;

(i)

(ii)

(iii)

where D-., Dp and D^ are positive semi-definite matrices.

Proof:

(i) Since ES = E$ = $,, then by definition, the cpyariance

matrix,of S -S -is gi,ven by, , >, ,
' U C ' ' ' * ' I*

E(VSc)(VSc)T • ' " (3.1.11)
, I'

Now, (3. 1.11) can be written as

+S S +S S Tl = ES'S -FS S -ES S +ES S '
Vll *C\ ' ^U\ L\*C LVc ^C^C '

It follows from Lemma (3.1.3) that

E<Vsc"Su-sc> =T

= A -A , since A£ is symmetric.

Since by definition, (3.1.11) is positive semi -definite, then A -A

Is, positive semi -definite.

(ii) and (iii) are similarly proved.
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4. APPLICATION AND CONCLUSIONS

The central questions now include the following: Should one spend

resources to verify data to gain information? Should one spend the

allocated amount on verifying a small amount of data or process a large

amount of unlabeled data? Is there any advantage at all to processing

classified data.

4.1 Concerning Classified Data

In the space application the total data set is made up of unlabeled

data which can be processed directly to obtain the true value of a

or more realistically due to the magnitude of the set he sampled to

estimate a . Let g^ = I Yij/N = Nj/N De a" estimator

a. j = 1,2,...,m, then since in general
J r

m
ELV = I PdlJjoj / a. (4.1.1)

it follows that if g = (g-|»g2>..»»9m) » then g is a biased estimator

for a . In matrix notation

E[g] = Pa = g

where g = [Pr(x e R..)] , which implies

a = P']g .

Note that if one defines

<* = P"]g
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that E[8] = P E(g) = P Pa = a and S is an unbiased estimator for

a , when £ is known. Unfortunately, the matrix P is unknown; hence

must be estimated. The sample used to estimate P"1 is called test
\ ' i '̂.i A ' • ,' -i

data. There is bias in. the estimator S.-.P g when P is
i A 1replaced by (P~. ),= (P) ,.,hence fi will be biased. , ,

Note also that in (4.1.1) it has 'been assumed that y.. and I. arc
i .. , ,• • • • . ' • - • • • i-

known when in fact they are not known but must be estimated. The

sample for,estimating these parameters are called the training data
t i '

(the data to "train" a classifier).

One must also select a classification rule. Two candidates naturally

are candidates. The Bayes classification procedure and the maximum

likelihood procedure. The Bayes classifier is optimal with respect to

minimizes the expected costs of misclassification but unfortunately is

a function of the elements of a hence in practice cannot be used. The

analysis and results in this paper are not dependent on the type of

classifier used.

In Table 4.1 the values of information for various values of a,

when m = 2 and n = 1 as function of type of classifers and for various

distance between the subpopulation p-j(x) and P£(X) each assumed to

be normal, hence p(x) = a-j p-j(x) + (l-a)p2(x) is a mixture of two nortrals

(A = y-i-Vo and EI = £p = ^e 1(*ent -̂y matrix). The symbols AB and
AMLE denote tne "information using a Bayes classifier and the maximum

likelihood classifier, respectively; Ay is information using verified

data.
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In Table 4.2 values of information are given for various values
2 2of A , k and a-, when a^ = ka, and p(x) is a mixture of two

2
univariate normal p.d.f. The value selected for a, = 1 and n = 1 .

4.2 Conclusions

The surprising result that classified data has the least informa-

tion is especially important since current practice in processing remote

sensed data is to classify the unlabeled data. It is true that it may

be easier to classify than compute the maximum likelihood estimates for

a using unlabeled data. Hence classifying the data would be a necessary

task. The information in classfied data is nearly equal to but always

less than the information in unlabeled data.

Note also, if the expense to verify data is sufficiently small

then the unlabeled data taken remotely from sapce is not needed. A random

sample of locations on the earth's surface is sufficient to estimate

a . The satellite data is of no value except to randomly select•sites

for verification.

If training data and test data are in reality classified data

(that is, unlabeled data classified by photo interpreters) one can and

should expect loss of information. However, training data and test

data are in fact verified or labeled (ground truth with no classifica-

tion error) one should expect better results in estimating a .
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Table 4.2. Information A for Various Types of Data (v,u,c) Versus
Values of the Parameters (k,A,ai).

al
0.1

0.3

0.5

Type of
Data

V

u

c

V

u

c

V

u

c

k = 1

A = 1

11.11

1.15

0.65

4.76
0.88

0.60

4.00

0.82

0.59

2

11.11

4.57

2.66

4.76
2.51

2.01

4.00

2.20

1.86

3

11.11

7.98

5.78

4.76
3.76

3.41

4.00
3.21

3.00

1

11.11

0.60

0.47

4.76
0.62

0.48

4.00

0.68

0.61

k = 2

2

11.11

2.38

1.68

4.76

1.81

1.48

4.00
1.77

1.47

3

11.11

5.51

3.79

4.76

3.09

2.69

4.00

2.77

2.50




