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PREFACE
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scientist for Lockheed Engineering and Management Services Company, Inc.,

- performed this research for the Earth Resources Research Division, Space and

Life Sciences Directorate, National Aeronautics and Space Administration, at
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1. INTRODUCTION

Recently, considerable interest has been shown in developing techniques for the
classification of imagery data (such as remotely sensed multispectral scanner
data acquired by the Landsat series of satellites) for inventorying natural
resources, monitoring crop conditions, and detecting changes in natural and
manmade objects. Nonsupervised classification or clustering techniques have
been found to be effective in the analysis of remotely sensed data (ref. 1).
The approach of clustering for 1imagery data classification, 1n general,
1nvolves two steps: (1) partitioning the image 1nto 1ts inherent modes or into
1ts homogeneous parts and (2) labeling the clusters using 1nformation from a
given set of labeled patterns.

In practical applications of pattern recognition such as remote sensing, 1t 1s
difficult to obtain labels for the patterns. In remote sensing imagery, an
analyst-interpreter provides the labels for the picture elements (pixels) by
examining imagery films and using other information (e.g., crop growth stage
models and historic information). Remote sensing imagery usually has a field
structure, and it 1s recognized that fields are easier to label than are
pixels. The development of algorithms for locating fields has attracted the
attention of several researchers in the recent literature (refs. 2-5).

Considerable interest has been shown in applying maximum Tikelihood equations
for the decomposition of the mixture density of the imagery data into its
normal component densities (refs. 5-9). Recently, methods have been developed
(refs. 10, 11) for probabilistically labeling the modes of the data using
information from a given set of labeled patterns and, also, from a given set of
labeled fields.

In decomposing the mixture density of the data into its normal component densi-
ties, the parameters of the component densities and the a priori probabilities
of the modes are iteratively computed using maximum likelihood equations coupled
with a split and merge sequence. The updating of the parameters is usually
stopped after a few 1terations because of the large amount of computation.
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Also, 1n practical problems (remote sensing imagery data of several acquisi-
tions), a large number of parameters will be estimated. For a fixed sample
s1ze, the accuracy of estimation usually decreases (ref. 12) as the number of
parameters to be estimated increases. To overcome the computational require-
ments and the large number of parameters to be estimated with the usual maximum
likelihood clustering technique, maximum likelihood equations are obtained 1n
this report by approximating the cluster conditional densities with first-order
tree dependence (refs. 13, 14) among the features. The field structure of the
data is also taken into account. Either the average mutual i1nformation between
the features (ref. 13) or the probabilistic distance measures (ref. 15) can be
used to construct optimal dependent feature trees for a given data type.

This paper 1s organized as follows. General maximum likelihood equations are
presented 1n section 2. Section 3 concerns the problem of approximating proba-
bility density functions with dependent feature trees using the criteria of
information measure and probabilistic distance measure. Expressions are
derived for the criteria when the distributions of the features are Gaussian.
In section 4, a general dependent feature tree and 1ts various types of nodes
are described, and expressions for the covariance between the features not
connected by a single 1ink are derived. Maximum 11kelihood equations for the
parameters of the density functions when approximated by dependent feature
trees are developed 1n section 5. Experimental results from the processing of
remotely sensed multispectral scanner i1magery data are presented in section 6.
Section 7 contains the concluding remarks. Detailed derivations of maximum
likel1hood equations are given in appendix A. In appendix B, the field
structure of the data 1s taken 1nto account in developing maximum likelihood
equations. An expression 1s derived in appendix C for the mutual i1nformation
between the feature subsets when they are represented by the nodes in a
dependent feature tree. Also, expressions are derived for the covariance
between the feature subsets when they are connected by a path in a dependent
feature tree.
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2. GENERAL MAXIMUM LIKELIHOOD EQUATIONS

General maximum likelihood equations are presented in this section for the
decomposition of the mixture density of the data into 1ts component densities.
It is assumed that a set % = {Xl"°°’XN} of N unlabeled patterns, each of
dimension n, 1s given. These patterns are assumed to be drawn 1ndependently
from the mixture density

11}
p(x|e) = JZ; p(X,w 58, )P (w)) (2-1)

where 6 15 a fixed but unknown parameter vector, 6; 1s a parameter vector for

3
the jth cluster, and m is the number of modes or clusters in the data. Let
P(wj) and p(Xle) be the a priori probabilities of the modes and mode condi-
tional densities, respectively. The 1ikelthood of the observed pattern vectors

is, by definition, the joint density

N
p(¥|6) = kI_I1 p(X,le) (2-2)

Since the logarithm 1s a monotonic function of its argument, taking the
gradient of the logarithm of equation (2-2) with respect to 6; results n

N m
_ 1
Ve L = z_: E(X_—m Ve z_: p(Xkle,eJ)P(mJ) (2-3)
1 k=1 k 1{J=1
N
where 2= Tog[p(X, |6] (2-4)
k=1
and Vg & 1s the gradient of 2 with respect to 8,. From the Bayes rule, the

]
a posteriori probability can be written as

p(X, |ws,0.)P(w;)
p(“’]lxk,e) = kp(;(k r;)’ ! (2-5)
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If the elements of 6; and ej

equation (2-5) in equation (2-3) yields

are assumed to be functionally independent, using

N
Z_: k287 110glp(X, o, ’ei)P(“ﬁ)]f (2-6)

8,
The following likelihood equation for the a priori probabilities can easily be

obtained from equation (2-6) by introducing Lagrangian multipliers to take into
account the probability constraints on P(“i)'

LN
Plug) =g ‘L; pluy 1%, »0) (2-7)

Since 6; is a parameter vector of the density of the jth cluster,
equation (2-6) can be written as

N
Z log[p X Im 0, )] (2-8)

From equation (2-8), general maximum likelihood equations for the parameters of
the cluster conditional densities can be obtained.
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3. APPROXIMATING PROBABILITY DENSITY FUNCTIONS WITH DEPENDENT FEATURE TREES

If the probability density function of the ith class 1s approximated by a
first-order dependent feature tree, it can be written as

n
p, (%) = 11, [Xmgl"mjm] ;5 0<3(2) <2 (3-1)

where x_ 15 the m th feature of pattern vector X; (nﬁ, see, m ) is an unknown
mz L n
permutation of integers 1, 2, «++, n; and p(x1|x0), by definition, is equal to

p(xj). Each variable 1n the above expansion may be conditioned upon, at most,
one of the other variables. Figure 3-1 shows an example of a dependent feature

tree.

X1

X2 XS

X
X3 Xq X6 X7 8

Figure 3-1.- An example of a dependent feature tree.

The component of the density in the product approximation that is represented
by a single Tink, such as the one connecting features xg and xg in figure 3-1,
1s p(x8|x5). The density that is approximated by the dependence tree of
figure 3-1 can be written as

p(X) = P(Xl)P(XZ |x1)p(x3 |X2)p(X4|X2)p(X5 'XI)P(X6IX5)p(X7 |X5)p(X8 IXS) (3-2)

3.1 CONSTRUCTION OF OPTIMAL DEPENDENT FEATURE TREES

This section concerns the problem of constructing dependent feature trees. The
dependent feature tree, the density of which best approximates the true density,
1s proposed to be constructed using either the criterion of information preser-
vation (ref. 13) or the criterion of class separability (ref. 15). An algorithm
developed by Kruskal (ref. 16) provides an efficient computational procedure for
constructing optimal dependent feature trees using the expressions developed in
the following.
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3.1.1 A CRITERION BASED ON INFORMATION MEASURE
th

‘

Let p1t(X) be the approximate density of the 1'" class with the product

approximation. That 1s,

n
X = I ;pi [Xmg xmj(z)]} (3-3)

Consider the following measure of closeness between the true and approximate
densities (ref. 13). That 1s,

I(pspy) = éé

atog| i |4
3 Pl f p 00108 oy |e (3-4)

where C 1s the number of classes. From equation (3-4), it is seen that

I(p,pt) = O whenever p;(X) is equal to pj¢(X) for all X and that I(p,ps) > 0 if
P, (X) 1s different from p,¢(X) for some X. To find the product approximation
for the densities or the dependent feature tree that minimizes I(p,p¢)s
consider

.~

]
]
[\’]o
)
————
€
L

I(p,py) = p; (X)Toglp;, (X)1dX

C .
+ 25 Plw) | b, (X)Toglp; (X)1dX

1=1 4
= - & I[xl’xj(l)] + K (3-5)
where
¢ \
I[Xl,XJ(R’)] = 1;]. p(wi)11[xzan(2)]
T.IX. % 10+ ] =.[ [x.,x:r \Tl0 PilxeXs ()] dx. d (3-6)
140X (2) U [CORat T CIO T EI [ g B (¢ ;G-
n C
and K== 2, I(x,) + 22 P(w;) | p;(X)TogLp, (X)Idx
2=1 1=1
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The quantity 11[x2,xJ(2
X3(2) of class 1. From equation (3-5), Kruskal's algorithm (ref. 16) can be

)] 1s the mutual 1nformation between features X, and
efficiently used to construct optimal dependent feature trees.

3.1.2 A CRITERION BASED ON PROBABILISTIC DISTANCE MEASURES

A probabi1lity density function, 1ike any other function, can be approximated by
a number of different procedures. In the sense of preserving the separability
between the classes, it 1s proposed that a criterion based on probabilistic
distance measures such as divergence be used to construct dependent feature
trees. The measure of closeness between the approximate and true densities 1s
defined as

plt(X) pZt(X)

From equation (3-7), 1t 1s seen that Jy5 1s large whenever the ratio of py{(X)
to pp¢(X) 1s large 1n the region of class 1 and the ratio of ppy(X) to pyi(X)
is large in the region of class 2. By using the product approximation of equa-
tion (3-3) for the densities p;j+(X), equation (3-7) can be written as follows.

. fpl(x)log{pl[x'%‘X’“g(i)}}dx




where

AJlZ[xmi ’ij(i)] = J12[xm1. ’ij(].)] - JIZ(Xmi) - le[xmj(i)] (3-9)

and
Z 1 xm Z(Xmi) -
p 1og E J.p 1og dx (3-10)
) .[ 1 2 Xm) 2 1(Xm1.) m'i

If more than two classes exist, the expected value of the measure of closeness
defined over pairs of classes can be used to obtain optimal approximations for
the densities (ref. 17). From equation (3-8), Kruskal's algorithm (ref. 16)
can be efficiently used to construct optimal dependent feature trees.

3.2 EXPRESSIONS FOR THE CRITERIA WHEN THE DISTRIBUTIONS OF THE FEATURES ARE
GAUSSIAN

Expressions are derived in this section for the mutual information and for AJ12
between the features, assuming that the distributions of the features are
Gaussian. If pz(xi), the density of feature x; of the gth class, is Gaussian,
it can be written as

1 1 - 2
pz(x1) = ———— exp {- 5% [Xi - u1(2)] } (3_11)
"?noiui 2 1( )

or it 1s denoted as py(xj) ~ N[u (2), o, (2£)]. The joint and conditional

densities of features x; and x; of the zth class can be written as follows.

J
pz(xi ,XJ') = L " 1/2; exP[‘ ']é' ql(xi ’Xj)] (3-12)
ZH;oi(z)oj(z) {1 - pij(.?,)]}
where
) - . x1-u1.(9,)2- o xi - uy (9] - u;(8)
2 2[1 pu(z)] a;(2 i o, (% \’cjus
X. - u_(®) 2
. (3-13)



2
GiJ(R')

2 -
pij(z) - cilzicjlli (3-14)
and o1j(2) is the covariance between features x; and X of the zth class. From

equations (3-11) and (3-12), the conditional density can be written as

Py (x,Ix,) = ! ——— 17z eol-a,(x, [x;)] (3-15)
{Zno_'(l) [1 - p,lj(ﬂ,)]}
where
2
(x, |x.) ! [ (] - o (D41 ¢ (1)]

q, \ X, |X = X. - U -p X =-u

LY 201(2)[1-933(2)] 1 1 1] Vojlzj J J
(3-16)

3.2.1 AN EXPRESSION FOR THE MUTUAL INFORMATION BETWEEN FEATURES x, AND Xy

In this section, an expression is derived for the mutual information between
Gaussian-distributed features x, and X3 of class 2. From equations (3-11) and
(3-15), the following can easily be obtained. Consider

Py (x;5%5) Py (x,1x])
P (x5)pg (X)) py (X))

-1/2 o (%) X: = u: ()] x; - u.(8)
S R AL UL e
[1 pij(l)] o (% "oJU,S
_ ] p?\] (2) [xi ~ u'i(z) ‘ + Xj " uj(z) ‘ (3_17)

5 :
2 [1 - p_ij(l)] L ,,oi(zj ,,oj(z)

From equation (3-17), the mutual information between features x; and X, of

class & can be obtained as follows.

Py (X;5xs)
Iz(x1,xj) = fpk(x1’Xj)]OQ[pZ(X_l;sz(Xj):ldx'i de.
=1 109[1 - p?J(lﬂ >0 (3-18)
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3.2.2 AN EXPRESSION FOR AJ

12(X; 2% ;) WHEN FEATURES x; AND x; ARE NORMALLY
DISTRIBUTED J

From equations (3-7) and (3-9), when features x; and Xy are normally
distributed, an expression for AJ12(X1 ,xj) can be easily obtained as follows.

8,;(0 * 2 2)

ZAJIZ(x .y - {[11(1)01(2) - ZOBL(I)OUE) + o](l)aJ(Z) gL(Z)G] (1) - ZGL)(I)GLL(Z) + o (Z)UL(I) ) 2]
L]

(2) n

(1) a o ,(2)
[ - ]tu,(l) - u, @7 - [?‘j“f* :‘j‘m]““m‘” - 0,10y (1) - u(2)]

;) (2) a.{2) o (1)
[ A ] u (1) - uJ(?.)]Z: - %[%m_ + %m. 2]+ [ﬁndﬁn][ulm . ul(z)]z}

Q

3

Q

o)
ISR LU [, (1) - u (2)7°
- W"’OJ + ~—(r’- —(7)- u
(3-19)
where Aij(l) (1)o (1) - 013(1) (3-20)
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4. A GENERAL DEPENDENT FEATURE TREE

A general dependent feature tree 1s shown 1n fiqure 4-1.

X21
X20 X18
X4
X5 X19 X17
X1 o< °
X3 xg R X13 X15 X16
X X14
X2 x6 ?
X10
X7
X12
X11

Figure 4-1.- A general dependent feature tree.

Each node of the tree represents a feature, and the feature numbers are given
1n figure 4-1. In approximating the probability density functions with depend-
ent feature trees, each feature may be conditioned upon, at most, one of the
other features. Node x; 1s the root node of the tree. Nodes Xos X4s X5 X7,
etc., are nodes on the periphery of the tree.

4.1 DIFFERENT TYPES OF NODES

For convenience 1n the following analysis, the nodes of the dependent feature
tree are divided 1nto the following types.

1. Type I nodes: Except for the root node, nodes on the periphery of the tree
are defined as type I nodes. For example, in figure 4-1, nodes x,, Xy, X5
X7, etc., are type I nodes.



2. Type II nodes: These are nodes which are one node deep from the periphery.
For example, in figure 4-1, nodes Xgs X10> X15s X17»> X19» etc., are type II
nodes.

3. Type III nodes: These are nodes which are at least two nodes deep from the
periphery. For example, in figure 4-1, nodes x3, Xg, Xg, X3, etc., are
type 111 nodes.

4, Type IV nodes: The root node of the tree 1s defined as a type IV node.
The types of root nodes are divided into type IVa and type IVb. Examples
of the types of root nodes are described in the following.

a. Type IVa node: The type IVa node is the root node of a tree with a
single Tink. As an example, node xy of figure 4-2 is a type IVa node.

X3

Xl X2
X4 Xg

Figure 4-2.- I1lustration of a type IVa node.

b. Type IVb node: The type IVb node is the root node of a tree with two
or more links. As an example, node x; of figure 4-3 is a type IVb
node.

X1 X3 X6 X7

X2 X4

Figure 4-3.- Illustration of a type IVb node.

It 1s noted that the type IVb node 1s different from the type IVa node in that
more than one node links directly with the root node of the tree.
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4.2 AN EXPRESSION FOR THE COVARIANCE BETWEEN THE FEATURES CONNECTED BY A PATH
IN A DEPENDENT FEATURE TREE

An expression for the covariance between the features when a path connects
their representative nodes in a dependent feature tree 1s developed in this
section. For example, features xj; and xjq are connected through features x;q,
Xgs Xgs X13» and x;g in the dependent feature tree of figure 4-1. For the
following analysis, consider the dependent feature tree shown in figure 4-4,

X1

X2
X5

X3 X4 ”

X7

Figure 4-4.- An example dependent feature tree.

The probability density represented by the dependent feature tree of figure 4-4
can be written as follows.

p(X) = p(xq)p(x51%1)P(x51x5)p(x41%5) (x5 1%5)P(Xg x5 P(x4]x4) (4-1)

In the following, an expression for the covariance between features xg and xy
of figure 4-4 1s derived.

£ (x5 - ug) (x7 - u)] = [ (xg = ug)(x; = uy)p(R)aK
- [ (xg - ugp(x,)p(xg1x,)p(xg x5 )dx, dx dxg

f p(x4|x2)dx4f (x7 - u7)p(x7|x4)dx7 (4-2)

From equation (3-15), the following equations are obtained.

a
f(x-/ - u7)p(x7|x4)dx7 = p74€ (X4 - u4) (4-3)

f(x4 - u4)p(x4|x2)dx4 = Py (x2 - uz) (4-4)
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Using equations (4-3) and (4-4) in equation (4-2) yields

E[(XG - U6)(X7 - Uy = 974( 942(-[()( - Uz)p(xz)dx

fp(xslxz)dxs f(XG - u6)p(x6|x5)dx6 (4-5)

Similar to equations (4-3) and (4-4), which were developed from equation (3-15),
the following are obtained.

ag
f(x6 - u6)p(x6|x5)dx6 = pssJo_E (XS - US)
f(xs - ug)plxg|x,)dxg = pszJ’ (x, - u,) (4-6)

f(x2 - uz)(x2 - uz)p(xz)dx2 = 0,

From equations (4-5) and (4-6), the covariance between features xg and x7 can
be obtained as follows.

o} g g
74 42 65

For a general case, the following theorems can easily be established.

Theorem 1: Suppose the features x; and x.,. in a dependent feature tree are
connected by a path as shown 1n figure 4-5. Then, the covariance between
features x; and x.,q 1s given by equation (4-8).

Xy
Xpr+1

Xr-1 Xr+2
Xpr+s-1

X3 \
Xp+s

Figure 4-5.- A path between features X1 and Xp4e
in a dependent feature tree.

X2
X1
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g +) g [}
12 23 r-1,r r+s.r+s-1
E[(X - u )(X - u )] = . ce e 3 . s
bobiims st e 9 °r Ores-1

C%ris-1,r45-2 L re2 el

g (4-8)
Opts-2 Orsl r+l,r

Theorem 2: Suppose the features x; and x,. in a dependent feature tree are
connected by a path as shown in figure 4-6. Then, the covariance between
features x; and x, 1S given by equation (4-9).

o< o o< o .. *¢—e
X1 X2 X3 X4 Xp-1 Xy

Figure 4-6.- A path between features x; and x,.
in a dependent feature tree.
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5. MAXIMUM LIKELTHOOD EQUATIONS FOR THE PARAMETERS OF THE DENSITY FUNCTIONS

In this section, maximum likelihood equations are developed for estimating the
parameters of the cluster conditional densities when approximated by the first-
order dependent feature trees. In practice, such as in the classification of
remotely sensed multispectral scanner imagery data, considerable interest has
been shown in applying maximum likelihood clustering for the decomposition of
the mixture density of the data 1nto 1ts normal component densities. The
mixture density p(X) can be written as

M
p(X) = 21 Pw,)p(X]w,) (5-1)
1=

where m 1s the number of clusters, and P(w;) and p(XIwi) are the a priori proba-
bilities of the modes and mode conditional densities, respectively. If the
cluster conditional densities are Gaussian [i.e., p(XIwi) ~ N(Ui,£1)], by using
a given set of N 1ndependent observations from the mixture density, from equa-
tion (2-6), the maximum 1ikelihood equations for the estimates of the parameters
of the mixture density can easily be shown to be the following (ref. 6).

N
Plag) =5 2o plog1%) \

In maximum Tikelthood clustering, equation (5-2) is used for updating the
parameters of the densities, and this computation is coupled with a split and
merge sequence. The updating is usually stopped after a few iterations because
of the large amount of computation in clustering data such as 1magery data.
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For practical problems, the number of parameters to be estimated is large.
Using equation (5-2), the number of parameters to be estimated for each mode is
ﬂiﬂ?i_il, where n 1s the dimensionality of the patterns. It is known that,
with a fixed sample si1ze, the accuracy of estimation usually decreases as the

number of parameters to be estimated 1ncreases (ref. 12).

In this paper, the cluster conditional densities are approximated with first-
order dependent feature trees to reduce the number of parameters to be
estimatéd. In the product approximation for the densities discussed in the
previous sections, 1t is noted that each feature is conditioned upon, at most,
one of the other features. The number of parameters to be estimated for each
mode is obtained as follows: the means n, the variances n, and the covariances
(n - 1), or a total of (3n - 1), where n is the dimensionality of the patterns.
When the product approximation is used for the probability densities, with an
increase 1n the dimensionality of the patterns, the reduction in the number of
parameters for each mode is as shown in figure 5-1.

i

. .80
3]
£0
§
<
o .60
QO Q
<+
e
£g .40
<
c 0
©
0
56 .20
>
=
[¢¥]
o 0 TS D T | 1 | 1 | TR |

1 11 21 31 41
n dimensionality —»

Figure 5-1.- Reduction in the number of parameters with the dimensionality.

In the following, maximum likelihood equations are developed for estimating the
parameters of the cluster conditional densities when approximated with first-
order dependent feature trees. It is assumed that the structure of the depend-
ent feature tree 1s determined using the techniques discussed in section 3.

The different types of nodes described in section 4 are considered separately.
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5.1 MAXIMUM LIKELIHOOD EQUATIONS FOR THE A PRIORI PROBABILITIES, MEANS, AND
VARTANCES

In thi1s section, maximum 11kelihood equations similar to equation (5-2) are
obtained for the a priori probabilities of the clusters and for the means and
variances of features in each cluster when the cluster conditional densities
are approximated with dependent feature trees. The different types of nodes
discussed in section 4 are treated separately. It 1s assumed that a set

* = {Xl,---,XN} of N unlabeled patterns, each of dimension n, drawn independ-
ently from the mixture density p(X) is given. When the cluster conditional
densities are approximated by first-order dependent feature trees, the density
of the ith cluster can be written as

n
(Xl = L oilx,bey )] (5-3)

The maximum likelihood equations for the a priori probabilities of the clusters
can easily be shown to be the following.

er—l

N
2, Plog 1) (5-4)

If 85 1s a parameter of the 1th cluster, using equation (5-3) in equation (2-8)
results 1n

_JL_
36,

ZT: 1”“”[2 % (109 }pitlexJu)]g)] (5-5)

In the following, 1t 1s assumed that the distributions of pattern features 1n
each cluster are Gaussian. That is,

p;(x,) ~ Nlu,(i),0,(1)] (5-6)
5.1.1 MAXIMUM LIKELIHOOD EQUATIONS FOR THE PARAMETERS OF TYPE I NODES

Consider a 1ink 1n a dependent feature tree containing a type I node, as shown
in figure 5-2.
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— T2

X3

Figure 5-2.- A link in a dependent feature tree
with a type I node.

Since each feature is conditioned upon, at most, one of the other features,
equation (5-5) becomes

N
§£_ = 2; ,6) 3%:‘%109[p1(x2’x3)]}
for ¢, = u3(1)

03(]) (5'7)

and ¢1

When ¢, = ugz(1), from equation (5-7), the following 1s obtained.

d,3(1)
k%23 ,
2. p(“’i|xk’°){x3 () ["2 - up(d ]}
us(1) = 5.

In equation (5-7), letting ¢, = 03(1) and ¢; = 023(1) and eliminating

[x§ - u3(1)] from the resulting equations yields, after simplification, an
expression for the covariance between type I and type Il nodes. That is,

Egi P(w1|xk’9)[xg - uz(ii][ 5 - u (1)]

9y3(1) = 0, (1) - ZN? n - (5-9)
plw, |X ,e)[} -u (i]
] 1'%k 2 2
Letting 9, = 03(1) 1n equation (5-7) and using equation (5-9) yijelds the
following.
i K 2 op3(1) k .
2 P(“H'Xk"’)([’% - “3(‘)] o_ﬁT o3(1) - [ - “2(‘)] ["3 - “3(‘)” (5-10)

03(‘) =
kz=:1 plw, 1X,,6)
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5.1.2 MAXIMUM LIKELIHOOD EQUATIONS FOR THE PARAMETERS OF TYPE II NODES

A typical type II node, as defined 1n section 4, in a general dependent feature
tree is shown 1n figure 5-3.

X2

X1

Figure 5-3.- A typical type Il node in a
general dependent feature tree.

In figure 5-3, node x; 1s a type Il node, and nodes X1s Xos *0%, X are type 1
nodes. The terms in the product approximation of the probability density
function of cluster i containing feature xg are

p(Xlw ) = eoe plx Ix)p(xq|xg) o0 plx,[xc) oo (5-11)

th

If 8, 1s a parameter of the 1*" cluster, using equation (5-11) in

equation (2-8) yields

LLIS
36,

N r
; (0, 1X,»8) 33—1- [22;1 pi (%, Ix) + p1(xslxt)] =0 (5-12)

From equation (5-12), Tetting 8, = ug(i) results in the following maximum
11kelthood equation for the mean of feature x, of cluster i.

N k 1 t() ( L 95 (1)
k;-l p(m‘lxk,e)xs + [ - Ot(1) < (]) ] > p(m |Xk,e) _.5 A [ - utn)] ’.Z;l s£ {x -u (1)]
T T B e
US(1) = N
25 p(w, 1X,»8)
(5-13)
where As£(1) = 05(1)02(1) - 052(1) (5-14)
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In equation (5-12), letting ei = os(1), 051(1), TN Osr(1)’ and ost(1) yields

the following after simplification.

p 2
[ -] }+ o2(1) - Utm]z)

X K z2
kz=:1 p(mi|Xk,0) r[xs - us(1)] + g (1)| e As,_(l) Ast(ﬂ

N K r o (ﬂ o (1)e, (1) K k
2 p(mi|Xk,e)(r + [xs - us(1)] L sJ‘T T TTaT) [ - us(1)] [xt - ut(1)]})

o (1) =

(5-15)
5.1.3 MAXIMUM LIKELIHOOD EQUATIONS FOR THE PARAMETERS OF TYPE III NODES
A typical type III node in a general dependent feature tree is shown in
figure 5-4.
Xy
Xt X2
X1
Figure 5-4.- A typical type III node in a
general dependent feature tree.
may be

In figure 5-4, Xg is a type III node; and nodes X1s Xos *0% X, and X¢
type III nodes or other types of nodes. Proceeding as in section 5.1.2, the
maximum 1ikelihood equations for the variance and mean of feature x¢ of
cluster i can be shown to be the following (see appendix A).

N K 2 o) K 2 2 . M‘;l_)]i
kz_l plw lxk'a) r[x -u (1)] #'Ai'('ﬂ'[ -ut(I) +a(1) . ; ] 1 }

os(1) = ROAD e,
é p(m,l!Xk,e)(r —(-1?(-1-)—?‘—(—-)-[)(: - u (1) x'é ugn] + gri ‘:;HTZL(*T Xt u (1)] [x - (1)]%)

(5-16)
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and

N K 1 N cst('l) K r o 1(1) K
:L:‘l plw, X, .0)xg + [ -~ 5T : zr: R ] . kgl p(‘”l'Xk’e)(As_t('ﬂ' [xt - "t(‘)] + {2;1 ai(ﬁ [x,~ - u£(1)]=
o (1)~ 8, (1) 71 A, 00)

ug(n) = N
k2=1 p('-"1 ka!e)

(5-17)

5.1.4 MAXIMUM LIKELIHOOD EQUATIONS FOR THE PARAMETERS OF TYPE IVA NODES

A typical type IVa node in a general dependent feature tree is shown in
figure 5-5. ’

Figure 5-5.- A typical type IVa node in a
general dependent feature tree.

In figure 5-5, %y 1s a root node of type IVa, and node x, may be of type I,
type II, or type IIl. The maximum likelihood equations for the variance and
mean of feature xj of cluster 1 are given in the following.

Egi P(w,|Xk’e)([x§ - u1(1)]2 N ;g%;}l 9y, (1) - [x§ - u1(1)][x§ - “2(‘)]})

N
kgl p(“’-, |Xk,0)

o1(1) = (5-18)

and

N 054 (1)
2 plo o0k - - [ - w0
ul(i) = (5-19)

N
kgl p(w-| |Xk’e)

5.1.5 MAXIMUM LIKELIHOOD EQUATIONS FOR THE PARAMETERS OF TYPE IVB NODES

A typical type IVb node 1n a general dependent feature tree is shown in
figure 5-6.
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Xr+1

X1

Figure 5-6.- A typical type IVb node in a
general dependent feature tree.

In figure 5-6, x; 1s a root node of type IVb, and nodes X1s Xgs **%5 X are of

type I, type II, or type III. The maximum likelihood equations for the
variance and mean of feature x4 of cluster i can be shown to be the following.

z”;1p<w1.|xk,e) (r - 1§ - u ] {Z 7 [<5 - )] }

. k=
°s(1) TN r o (i)o (1)
2 k . k .
z=: p(‘”ilxk’e)<(r -1+ {2};1 °si(i)Asz(i) [Xs } “5(1] [XSL } ”2(1)]1)
(5-20)
and
N ()
2 p(m1|Xk,e)x§ + — (’TT kz: p(u) |Xk,e)’£: —"(-ﬂ- Xg = U (1)]}
k=1 r-1
3—(—% Z
ug(1) = [ > i 5500, ] (5-21)

gl p(“’1 |Xk,9)

5.2 MAXIMUM LIKELIHOOD EQUATIONS FOR THE COVARIANCES BETWEEN FEATURES

In this section, maximum likelihood equations are developed for the covariances
between the features when the probability density functions of the clusters are
approximated by first-order dependent feature trees.

5.2.1 MAXIMUM LIKELIHOOD EQUATIONS FOR THE COVARIANCE BETWEEN TYPE I AND
TYPE II NODES

In this section, maximum likelihood equations for the covariance between type I
and type Il features are derived. A typical link connecting type I and type II
nodes is shown in figure 5-7.

5-8



o —e
Xg

Figure 5-7.- A typical link connecting type I
and type II nodes.

In figure 5-7, node x, is of type I, and node x,. is of type II. The maximum

11kel1hood equation for the covariance between features x,. and xg of cluster 1
1s given in the following.

ﬁ& p(m1|Xk,e)[xt - ur(iﬂ [xt - us(i)]

N 7
>, plw [X, ,0) [X,‘f - ur(i)]

(5-22)

5.2.2 MAXIMUM LIKELIHOOD EQUATIONS FOR THE COVARIANCE BETWEEN TYPE IVA AND
TYPE IT OR TYPE III NODES

A typical link connecting type IVa and type II or type III nodes in a general
dependent feature tree 1s shown in figure 5-8.

X3
X2

Figure 5-8.- A typical link connecting
type IVa and type II or type III nodes
1n a general dependence tree.

In figure 5-8, node xy 1s of type IVa, and node Xo may be of type II or
type I1I. The maximum 1ikelihood equation for the covariance between
features x; and x, of cluster i is as follows.

(5-23)
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5.2.3 MAXIMUM LIKELIHOOD EQUATIONS FOR THE COVARIANCE BETWEEN TYPES OF NODES
OTHER THAN THOSE CONSIDERED IN SECTIONS 5.2.1 AND 5.2.2

Let there be a link between nodes xp and x3 1n a general dependent feature tree

whose types are other than those considered in sections 5.2.1 and 5.2.2. The

maximum likelihood equation for the covariance between features Xp and x3 of

cluster i 1s given in the following.

N
2 h:lka)} 2(Mog(1) + apg(1)ay(1) + a2y - up(n)][o§ -u3(1ﬂ}

= x 2{ (5-24)

k=1
023(1) = N
2 oo, o ey - u L]+ o[k - uy(1)]
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6. EXPERIMENTAL RESULTS

In this section, some results from processing remotely sensed Landsat
multispectral scanner 1magery data are presented. The images are of a 5- by
6-nautical-mile area called a §egment. The 1mage 1s divided into a rectangular
array of pixels, 117 rows by 196 columns. The image is overlaid with a rectan-
gular grid of 209 grid intersections. Two classes are considered: class 1 is
wheat, and class 2 1s "other." The true (ground truth) labels for the pixels
at the grid intersections are acquired. The locations of the segments and the
1individual acquisitions used for each of the segments are listed in table 6-1.
The a priori probabilities of the classes are estimated as sample estimates.
Equations (3-6) and (3-18) are used to compute the weighted mutual information
between the features, assuming in each class that the features are Gaussian
distributed. Kruskal's algorithm (ref. 16) 1s used to construct optimal
dependent feature trees by minimizing I(p,py) of equation (3-5). The optimal
dependent feature trees of segments 1648 and 1739 are shown 1n figures 6-1 and
6-2, respectively.

X2
X1
X -0« ®
° X6 X3 X4
X7
X8

Figure 6-1.- Optimal dependent feature tree
of segment 1648.

Generally, 1t 1s known that, for each acquisition, a strong dependency exists
between channels 1 and 2 and between channels 3 and 4. From figures 6-1 and

6-2, it is seen that these dependencies appear in the optimal dependent feature
trees.
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X10

X16
X11

X12

Figure 6-2.- Optimal dependent feature tree
of segment 1739.

To 1nvestigate the effectiveness of the optimal dependent feature trees in
classification, an experiment 1s performed to compare the classification accu-
racies of the Bayes classifier (1) when the densities are approximated with
optimal dependent feature trees, (2) when no approximation is used for the
densities (full covariance matrix), (3) assuming the features are independent,
and (4) when the densities are approximated with arbitrary dependent feature
trees. Spectral vectors of 104 labeled pixels are used as the training pattern
set, and the spectral vectors of the remaining 105 labeled pixels are used as
the test pattern set. The structure of the arbitrary dependent feature tree
used 1n this experiment is shown in figure 6-3.

The computed confusion matrices and the classification accuracies on the train-

1ng and test sets for each of the segments processed are listed in table 6-1.
From table 6-1, 1t is seen that, in general, better classification accuracies
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Xq X3

X2 X4

&
-9

Xn-3 Xn-1

Xn-2

Figure 6-3.- Arbitrary dependent feature tree
used in the experiment.

are obtained on the training set when the full covariance matrix is used
without approximating the densities. Improved classification accuracies are
obtained on the test set when the densities are approximated with optimal
dependent feature trees. This might be due to the fact that a large number of
parameters are estimated when the full covariance matrices are used.

One of the important objectives in the classification of remotely sensed
agricultural imagery data is to estimate the proportion of the class of
interest 1n the image. The ratio of the variance of the estimated proportion
using machine classification to the variance of the estimated proportion using
simple random sampling 1s called variance reduction factor R (ref. 1). The
quantity R can be viewed as an indication of how much the machine classifica-
tion improves the proportion estimation. The computed variance reduction
factors for each of the segments processed are listed i1n table 6-2. From
table 6-2, it is seen that the variance reduction factor consistently improves
when the densities are approximated with dependent feature trees, compared to
the other cases.
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7. CONCLUDING REMARKS

In the classification of imagery data, such as in the machine processing of
remotely sensed multispectral scanner data, unsupervised classification
techniques have been found to be effective. The application of clustering
techniques for the analysis of imagery data essentially involves two steps:

(1) clustering the data or partitioning the image i1nto its inherent modes and
(2) g1ving the probabilistic class labels to the resulting clusters. In
practice, it 1s observed that fields are relatively easy to label when compared
to pixels.

Several researchers have investigated methods for locating fields 1n the
imagery data. Recently, considerable interest has been shown in developing
techniques for probabilistically labeling the clusters using information from a
given set of labeled patterns and, also, from a given set of labeled fields.

In decomposing the mixture density of the data into 1ts normal component densi-
ties, the parameters of the component densities and the a priori1 probabilities
of the modes are 1teratively computed using maximum likelihood equations coupled
with a split and merge sequence. The updating of the parameters is usually
stopped after a few 1terations; and for practical data, a large number of param-
eters must be estimated. For a fixed sample size, the accuracy of estimation
usually decreases as the number of parameters to be estimated increases.

To overcome the above shortcomings, it is proposed in this paper that the den-
s1ties be approximated with first-order dependent feature trees. The dependent
feature trees can be constructed using criteria based on information measure
and, also, based on class separability measure. Expressions are derived for
the criteria when the distributions of the features are Gaussian. Expressions
also are derived for the covariances between features not connected by a single
11ink in the dependent feature tree.

Different types of nodes are defined 1n a general dependent feature tree.
Maximum 11kelihood equations are derived for the parameters of the mixture
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density of the data by approximating the cluster conditional densities with
first-order dependent feature trees. The field structure of the data is also
taken into account in the decomposition of the mixture density of the data into
its normal component densities. Furthermore, experimental results from the
processing of remotely sensed multispectral scanner imagery data are presented.
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APPENDIX A

DERIVATIONS OF MAXIMUM LIKELIHOOD EQUATIONS FOR THE
PARAMETERS OF A TYPE IIT FEATURE

In this appendix, maximum likelihood equations for the parameters of a typical
type III feature are derived. A typical type III node i1n a general dependent
feature tree 1s 11lustrated in figure A-1.

X3

X4 )

Figure A-1.- ITlustration of a typical type III node
1n a general dependent feature tree.

In figure A-1, x5 1s a type III feature. The following 1s obtained from equa-
tion (5-5) by keeping only the terms that involve feature Xp n the product
approximation of the density of the ith cluster.

#fl

N
57 2 Py X8) g (10903 (xg[xp)] + Toglp; (x5 x,)]

+ 1og[p1(x2|x1)]§

N
EE% plu, 1X,50) 5o~ {10gLp; (x,5x4)] + Toglp; (x,,x3)]
= i

+ 1oglp, (x15%5)] - 2 Toglp;(x5)] - Toglp; (x1)] (A-1)
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It 1s assumed that the features of the ith cluster are Gaussian distributed.
That is,

- 1 1 . .y 12
1ogLp, (x.x)] = ~Tog(2n) - 7 Toala (] - 75—y lo(1)[x,. - u.(1)]

- 2°rs(i)[xr - ur(i)][xS - us(i)] + cr(1)[xS - us(i)]2§

(A-2)
_ i . 2 ..
where Ars(1) = °r(1)°s(1) - ors(1) (A-3)
Using equation (A-2) in equation (A-1) yields
N 3C
22 E k
. plw, |X,,0) =~ (A-4)
ei =1 17k aei

where

¢ = ]09[A24(1)] +E2%(1T {04(1)[x; - u2(1):,2 - 20 4(1)[ - u2(1)] [x - u4(1)] + 02(1)[ - u4(1)]2}

+ Toglaps(1)] + K}%TTT {03(1)[x; - u2(1)]2 - 2030 - w ][ - u31)] + 004 - u3(1)]2§

‘>

+ Toglay (1)1 + K;%TTT :°1(‘)[xz - “2“)]2 - 2°21(‘)[x§ - "2(’)][x ”1("] + °2(‘)[x§ - “1(‘)]2{

2
-2 109[02(1)] - a—é%i-)- [Xlé - U2(1)] (A-S)

Letting 8, = up(i), from equation (A-5), the following is obtained.
gt |- o b8 - 0]+ S i - )
i B - )+ o B o)
| B8 - o]+t (- )

. {@%‘ﬂ' [x; - uz(i)]} (A-6)



Substituting equation (A-6) in equation (A-4) and equating the results to zero
yields the following maximum 1ikelihood equation for the mean of feature x, of
cluster i.

il k 1 f914") g 9308) 99400) ]
E‘l P(“’1|xk'°)(‘z *[ 2 CX 6 ENCN ) BENCA ) ] R ["1 - “1(‘)] *-E-z?-ﬂ- [x3 - u3(1)] + Iom e [K4 - u4(1)]‘

.07(“ - AZl('I) - A23(‘) - 524(1)

up(v) =

iy
k}; plw, [%,,0)

(A-7)

Letting 6. = 02(1) in equation (A-4) and equating the result to zero yields the
following after simplification.

ﬁ ) o) ad,(1) [k ) (1)]2 o3 (1) [k 2 20(1)apy(1) [, ATk
W s - Xy - - - + - -
&y P et ey —2——“24(‘) 4" % ‘2—%4(1) X5 uz(l)] —7——%4(1) [x2 uy( )][x4 u4(1)]
2 2
03(1) 023(1) K 2 03(1) K 2 203(1)023(1)
+ 1A23I17 A223(1) [X3 U3(1)] A223(‘) [Xz - “2(‘)] —2——%3(1) [x2 - u2(1)][ - u3(1)]
2 2
c}(l) 021(1) K 2 01(1) K 2 201(\)021(1) k K
+ {W :gl—m [x1 u1(1)] Zgl(_ﬂ- [x2 - u2(1)] + _AZZRT [x2 - u2(1):|[x1 - ul(l)]
-2, _2 [xk-uh)]2 =0
3,07 ;gaj 2% (A-8)

Similarly, differentiating £ with respect to 023(i) for j = 1,3,4 and equating
the resulting expression to zero yields

N 20,.(1)  20,(1)a.(1) 20, (1)o_ (1) 2
2 2
2;% P(”1|Xk'°)2' AZJ%I) - [x; - “z(‘)][xﬁ - ”J(‘)] o [ Xz - “2("]

AZJh) AZJ( 1)

2
20, (1) 2a0,(1)0,. (1) 2
-7_3_2 [k—uzh)][x -u(1):‘ ———J—az % [Xk-"-(ﬂ] =0 ;3=13,4
22 () AzJ 37
(A-9)
Using equation (A-9) for j = 1,3,4 1n equation (A-8) yields, after
simplification, the following maximum 11kelihood equation for 02(1).

2 2 2
uz(i)]2 + {%}:T [x: - uq(i)] + AZ ‘) [g - u:‘(i)]2 + %}1)7 [x: - ul(i)]z:)
T o] T - TS - ] ot - T - ]

(A-10)
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Proceeding, similar to equations (A-9) and (A-10), 1t can easily be shown that
the maximum likelihood equations for the mean ug(i) and variance og(i) of
feature x4 of cluster i of figure 5-4 are of equations (5-16) and (5-15).
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APPENDIX B
MAXIMUM LIKELIHOOD EQUATIONS WITH FIELD STRUCTURE

In practical applications of pattern recognition, such as 1n the classification
of remotely sensed agricultural imagery data, one of the difficult problems is
to obtain labels for the training patterns. The labels for the training pat-
terns are usually provided by an analyst-interpreter by examining imagery films
and using some other information such as historic information and crop calendar
models. Agricultural imagery data usually have a field-like structure, and 1t
is observed that fields are relatively easy to label when compared to pixels.
Recently, considerable i1nterest has been shown in developing techniques for
locating fields in the 1magery data (ref. 2-4) and in developing methods for the
probabilistic labeling (refs. 10, 11) of cluster distributions using information
from a given set of labeled fields. Once the fields are located by a field-
finding algorithm, the problem of fitting a mixture of Gaussian density
functions to the data by taking into account the field structure of the data is
considered in this appendix.

It is assumed that there are f-fields in the data. Let the jth field be denoted
by FJ; let 1t contain NJ pixels; and let Xjk’ k = 1’2""’Nj’ be their spectral
vectors. Let m be the number of clusters in the data. Let P(w;j) and p(X|w;) be
the a prior1 probability that a field belongs to cluster w, and cluster condi-
tional densities, respectively. Let X. be the concatenated vector of spectral
vectors of the pixels in the jth field. That is,

e —

XJ1
~ XJZ
X5 =| . (B-1)
X.
N

It is assumed that the fields are independent. Then, the joint density of
f-fields 1s given by

~ ~ f -~
p(XpaeeeuX) = J.I;[l p(X;) (B-2)
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The mixture density p(i&) can be written as
~ m ~ 3
p(X) = 22:1 P(ug)p(X;luy) (B-3)

If it is assumed that the spectral vectors of the pixels in each field are
cluster conditionally independent, then

N
~ J

Using equations (B-3) and (B-4), the joint density of equation (B-2) can be
written as follows.

(Xporee ) ffl 2 ()Nﬁ (X lug) (B-5)
p XN = pw p . w -
1 f j=1 ) =1 2 sy jk'7e

Since the logarithm 1s a monotonic function of its argument, taking the log of
both sides of equation (B-5) and denoting it by 2 results in

= 1 P(w X.plw B-6
2 Ly Tog Z}l (w.) kl'=I1 p(X 5 o) (B-6)

From equation (B-6), which 1s similar to equation (2-7), the maximum 1ikelihood
equation for the probability that a field belongs to a cluster can easily be
obtained as the following.

P(w ) = T ~ (B‘7)
J-Zl p(X;

If 8; 1s a parameter of the density function of the ith cluster, differentiating
% of equation (B-6) with respect to 8; yields the following.

£ P p(¥:lw ) "
2% 3 21;1 331 Noglp (X, l0;)] (B-8)

J=1 p(XJ)
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If the probability density functions of the clusters are Gaussian [i.e.,
P(X|wj) ~ N(U1,Zi)], from equation (B-8), the maximum 1ikelihood equations for
the mean and covariance matrix of the densities of the clusters can be shown to

be the following.

and g =32

(B-9)

where

.)T}
1
(B-10)

(B-11)

If the probability density functions of the clusters are approximated with
first-order feature dependence trees, maximum likelihood equations for the
parameters of the densities (similar to those developed in section 5) can
easily be obtained from equations (B-8) and (3-1) by taking into account the

field structure of the data.

B-3



APPENDIX C

DEPENDENT FEATURE TREES WITH THE NODES
REPRESENTING FEATURE SUBSETS



APPENDIX C

DEPENDENT FEATURE TREES WITH THE NODES
REPRESENTING FEATURE SUBSETS

Very often it is necessary to have each node of a dependent feature tree
represent a set of features instead of one feature. For example, in remote
sensing, the satellite makes multiple passes over a given area and, at each
acquisition, gathers several channels of data. In some instances, 1t is
desirable to have each nede of a dependent feature tree represent a set of
features (e.g., the set of features corresponding to an acquisition). In this
appendix, expressions are developed for the mutual information between the
feature subsets and for the covariance between the feature subsets when a path
connects them in a dependent feature tree. It is assumed that the features are
Gaussian distributed.

Let the components of feature vectors X; and Xj be the sets of features repre-
sented by nodes 1 and j, respectively. Let n; and nj be the dimensionality of
vectors Xi and Xj, respectively. If the feature vector X, is normally distrib-
uted, its probability density p(X1) can be represented as

D(X.i) NN(Ui’Ei) (C-1)

where Uj 1s the mean vector and Zi is the covariance matrix.

.
Let 7 = (xI,x}) . Then,

p(Z) ~N(U,,z,) (C-2)
where
L Z1j
I = (C-3)
z
.3
1) J

C-1



The mutual information between feature vectors Xi and Xj can be written as

p(X1,XJ)
10X, %) = fp(Xi,XjHog FUCTPXGT a; o,
1 |Zz|
= - Vi ]Og -l_i'l_]-_rlTjT (C-4)
I(X,,X.) = -1 1og | J i. i i3 (C-5)
i*7j3 . Zjl

where IZZI is the determinant of the matrix zz. Let y and v be the zero mean
normal random vectors. That is, p(y) ~ N(O,Cy) and p(v) ~N(0,C,). Let
Z = (y",v1) and p(7) ~ N(0,C,). Let

and

Consider

where

c Cy CYV
, =
T
C C
A (Cc-6)
- N 1
a4 Y W
C =
z T
MRS
plylv) =-%%§}
= constant - exp(- %-A) (C-7)
T
A= (y * O vav) Qy( 0 vav) (C-8)
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Thus, the dens1ty plylv) is Gaussian with the mean -Q Q v and the covariance

matrix Q Following a similar argument, it can eas11y be shown that, if X;
is norma]]y distributed, p(X IX ) is normally d1str1buted with the mean
Q’lon( j U )| and the covar1ance matrix Q Now expressions for the

covar1ance between the feature subsets, when a path connects their representa-
tive nodes in a dependent feature tree, can be derived as in section 4.2. For
example, if X4 and Xy are Gaussian random vectors, similar to equation (4-3),
the following can easily be obtained.

f(x7 - U)p(X X)X, = 03105, (%, - U,) (c-9)

Thus, expressions similar to equations (4-8) and (4-9) can easily be obtained.
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