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PREFACE

The techniques which are the subject of this report were developed to support
the Agriculture and Resources Inventory Surveys Through Aerospace Remote
Sensing program. Under Contract NAS 9-15800, Dr. C. B. Chittineni, a principal
scientist for Lockheed Engineering and Management Services Company, Inc.,
performed this research for the Earth Resources Research Division, Space and
Life Sciences Directorate, National Aeronautics and Space Administration, at
the Lyndon B. Johnson Space Center.
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1. INTRODUCTION

Recently, considerable interest has been shown in developing techniques for the
classification of imagery data (such as remotely sensed multispectral scanner
data acquired by the Landsat series of satellites) for inventorying natural
resources, monitoring crop conditions, and detecting changes in natural and
manmade objects. Nonsupervised classification or clustering techniques have
been found to be effective in the analysis of remotely sensed data (ref. 1).
The approach of clustering for imagery data classification, in general,
involves two steps: (1) partitioning the image into its inherent modes or into
its homogeneous parts and (2) labeling the clusters using information from a
given set of labeled patterns.

In practical applications of pattern recognition such as remote sensing, it is
difficult to obtain labels for the patterns. In remote sensing imagery, an
analyst-interpreter provides the labels for the picture elements (pixels) by
examining imagery films and using other information (e.g., crop growth stage
models and historic information). Remote sensing imagery usually has a field
structure, and it is recognized that fields are easier to label than are
pixels. The development of algorithms for locating fields has attracted the
attention of several researchers in the recent literature (refs. 2-5).

Considerable interest has been shown in applying maximum likelihood equations
for the decomposition of the mixture density of the imagery data into its
normal component densities (refs. 5-9). Recently, methods have been developed
(refs. 10, 11) for probabilistically labeling the modes of the data using
information from a given set of labeled patterns and, also, from a given set of
labeled fields.

In decomposing the mixture density of the data into its normal component densi-

ties, the parameters of the component densities and the a priori probabilities
of the modes are iteratively computed using maximum likelihood equations coupled
with a split and merge sequence. The updating of the parameters is usually
stopped after a few iterations because of the large amount of computation.
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Also, in practical problems (remote sensing imagery data of several acquisi-
tions), a large number of parameters will be estimated. For a fixed sample
size, the accuracy of estimation usually decreases (ref. 12) as the number of
parameters to be estimated increases. To overcome the computational require-
ments and the large number of parameters to be estimated with the usual maximum
likelihood clustering technique, maximum likelihood equations are obtained in
this report by approximating the cluster conditional densities with first-order
tree dependence (refs. 13, 14) among the features. The field structure of the
data is also taken into account. Either the average mutual information between
the features (ref. 13) or the probabilistic distance measures (ref. 15) can be
used to construct optimal dependent feature trees for a given data type.

This paper is organized as follows. General maximum likelihood equations are
presented in section 2. Section 3 concerns the problem of approximating proba-
bility density functions with dependent feature trees using the criteria of
information measure and probabilistic distance measure. Expressions are
derived for the criteria when the distributions of the features are Gaussian.
In section 4, a general dependent feature tree and its various types of nodes
are described, and expressions for the covariance between the features not
connected by a single link are derived. Maximum likelihood equations for the
parameters of the density functions when approximated by dependent feature
trees are developed in section 5. Experimental results from the processing of
remotely sensed multispectral scanner imagery data are presented in section 6.
Section 7 contains the concluding remarks. Detailed derivations of maximum
likelihood equations are given in appendix A. In appendix B, the field

structure of the data is taken into account in developing maximum likelihood
equations. An expression is derived in appendix C for the mutual information
between the feature subsets when they are represented by the nodes in a

dependent feature tree. Also, expressions are derived for the covariance
between the feature subsets when they are connected by a path in a dependent
feature tree.
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2. GENERAL MAXIMUM LIKELIHOOD EQUATIONS

General maximum likelihood equations are presented in this section for the

decomposition of the mixture density of the data into its component densities.

It is assumed that a set •¥? = {X^,»»»,XN} of N unlabeled patterns, each of
dimension n, is given. These patterns are assumed to be drawn independently

from the mixture density

m
p(X|e) = 2 p(X,u> e )P(u> ) (2-1)

j=l J J J

where 9 is a fixed but unknown parameter vector, 64 is a parameter vector for

the j^n cluster, and m is the number of modes or clusters in the data. Let

P(u>.:) and p(X|aj-i) be the a priori probabilities of the modes and mode condi-j J
tional densities, respectively. The likelihood of the observed pattern vectors
is, by definition, the joint density

N
P(*|e) = II p(Xje) (2-2)

Since the logarithm is a monotonic function of its argument, taking the
gradient of the logarithm of equation (2-2) with respect to 9^ results in

N

V=
m

P(X. |ve )p(o>
1=1 " " ^

(2-3)

N
where * = £ log[p(X. |9] (2-4)

k=l k

and VQ a is the gradient of fc with respect to 9^ From the Bayes rule, the

a posteriori probability can be written as

p(X kK,e.)P(u>.)
k 1
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If the elements of 6n- and 6,- are assumed to be functionally independent, using

equation (2-5) in equation (2-3) yields

J, )
V*= ? pfaJV^V Io9[p(xi<lvei)p(a)i)]i (2-6)

I K J . 1

The following likelihood equation for the a priori probabilities can easily be

obtained from equation (2-6) by introducing Lagrangian multipliers to take into

account the probability constraints on P(u-j).

i N
1 V* ~f .. Iv a\ (2-7}

Since 8.J is a parameter vector of the density of the i*n cluster,
equation (2-6) can be written as

N ,
V* = ? P(^|Xk,6)VQ jlog[p(Xk|o)i,0i)] (2-8)

—

N

I K — J . 1

From equation (2-8), general maximum likelihood equations for the parameters of

the cluster conditional densities can be obtained.
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3. APPROXIMATING PROBABILITY DENSITY FUNCTIONS WITH DEPENDENT FEATURE TREES

If the probability density function of the itn class is approximated by a
first-order dependent feature tree, it can be written as

where x is the m feature of pattern vector X; (m, , •••, m ) is an unknownm t » i n
permutation of integers 1, 2, •••, n; and p(x |Xg), by definition, is equal to
p(x.j). Each variable in the above expansion may be conditioned upon, at most,
one of the other variables. Figure 3-1 shows an example of a dependent feature

tree.

X2

Figure 3-1.- An example of a dependent feature tree.

The component of the density in the product approximation that is represented
by a single link, such as the one connecting features x^ and XQ in figure 3-1,
is p(xg|xg). The density that is approximated by the dependence tree of
figure 3-1 can be written as

P(X) = P(x1)p(x2|x1)p(x3|x2)p(x4|x2)p(x5|x1)p(x6|x5)p(x7|x5)p(x8|x5) (3-2)

3.1 CONSTRUCTION OF OPTIMAL DEPENDENT FEATURE TREES

This section concerns the problem of constructing dependent feature trees. The
dependent feature tree, the density of which best approximates the true density,
is proposed to be constructed using either the criterion of information preser-
vation (ref. 13) or the criterion of class separability (ref. 15). An algorithm
developed by Kruskal (ref. 16) provides an efficient computational procedure for
constructing optimal dependent feature trees using the expressions developed in
the following.
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3.1.1 A CRITERION BASED ON INFORMATION MEASURE

Let P-,t(X) be the approximate density of the
approximation. That is,

class with the product

n
- n m, m. (3-3)

Consider the following measure of closeness between the true and approximate
densities (ref. 13). That is,

I(p,Pt)= (3-4)

where C is the number of classes. From equation (3-4), it is seen that

Hp.Pt) = 0 whenever p^X) is equal to p-jt(X) for all X and that I(p,pt) > 0 if
P-,(X) is different from P-,^(X) for some X. To find the product approximation
for the densities or the dependent feature tree that minimizes I(
consider

Kp.Pt) = - E P(̂ ) f Pi1
 1=1 i J i

C
£

E

where

=J Pi^^j

and E UxJ
4=1 *

(X)log[p(X)]dX

+ E PK) f P
1=1 n J ^

XjlogCp (X)]dX
n

(3-5)

(3-6)
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The quantity I [x ,x , »] is the mutual information between features xp andT * J v* /
xi(£) of c^ass ""• From equation (3-5), Kruskal's algorithm (ref. 16) can be
efficiently used to construct optimal dependent feature trees.

3.1.2 A CRITERION BASED ON PROBABILISTIC DISTANCE MEASURES

A probability density function, like any other function, can be approximated by
a number of different procedures. In the sense of preserving the separability
between the classes, it is proposed that a criterion based on probabilistic
distance measures such as divergence be used to construct dependent feature
trees. The measure of closeness between the approximate and true densities is
defined as

'12 og
Plt(xy

dX + (3-7)

From equation (3-7), it is seen that J^ is large whenever the ratio of

to P2t(x) 1S Iar9e in the region of class 1 and the ratio of P2t(x) to
is large in the region of class 2. By using the product approximation of equa-

tion (3-3) for the densities p^(X), equation (3-7) can be written as follows.

'12

n f
+ .E j p2(

x)]

. £ fp rx ,x llogpfc

mj(T)

(3-8)



where

and

K = Ms)'
dxm.

Ms)'
(S)

dxmi

(3-9)

(3-10)

If more than two classes exist, the expected value of the measure of closeness

defined over pairs of classes can be used to obtain optimal approximations for

the densities (ref. 17). From equation (3-8), Kruskal's algorithm (ref. 16)

can be efficiently used to construct optimal dependent feature trees.

3.2 EXPRESSIONS FOR THE CRITERIA WHEN THE DISTRIBUTIONS OF THE FEATURES ARE
GAUSSIAN

Expressions are derived in this section for the mutual information and for AJ,?
between the features, assuming that the distributions of the features are

Gaussian. If Pn(x,-)» the density of feature x., of the Jr" class, is Gaussian,

it can be written as

or it is denoted as P^(X-J) ~ N[u.(£),o.(£)]. The joint and conditional

densities of features x,- and x,- of the £tn class can be written as follows.
1 J

0-

exp - \ qt(Xl .X.,)] (3-12)

where

Vvxj) = ^.\

(3-13)
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(3-14)

and 0-,,-U) is the covanance between features xn- and x, of the £ class. From
equations (3-11) and (3-12), the conditional density can be written as

1

.,.

where

(3-15)

(3-16)

3.2.1 AN EXPRESSION FOR THE MUTUAL INFORMATION BETWEEN FEATURES x1 AND x.

In this section, an expression is derived for the mutual information between
Gaussian-distributed features x1 and Xj of class £. From equations (3-11) and
(3-15), the following can easily be obtained. Consider

f ? 1
= 1 - P (A)L iJ J

(3-17)

From equation (3-17), the mutual information between features xn- and x, of
class £ can be obtained as follows.

(3-18)
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3.2.2 AN EXPRESSION FOR AJ1 9(x. ,x.) WHEN FEATURES x, AND x, ARE NORMALLY
nrcTDiRiiTcn *•<- ' J J
DISTRIBUTED

From equations (3-7) and (3-9), when features x^ and Xj are normally
distributed, an expression for AJ^x ,x-) can be easily obtained as follows

Ifo (l)o (2) - 2o ( l )o (2) + o ( l )o (2) a (2)o (1) - 2a (l)o (2) + a (2)o (1) ]
0.1 /„ v \ - / l J _ J _ 'J IJ _ ] _ J . J _ ] _ ' J 'J _ 1 _ J O I
2Aj12(xi'xj) ' ̂  - A^TTf - - + 4^T2T -- 2J

",(2)

(3-19)

where A.^l) = a.(l)oj(l) - <%.(!) (3-20)
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4. A GENERAL DEPENDENT FEATURE TREE

A general dependent feature tree is shown in figure 4-1.

*18

x4

x12

Figure 4-1.- A general dependent feature tree.

Each node of the tree represents a feature, and the feature numbers are given
in figure 4-1. In approximating the probability density functions with depend-
ent feature trees, each feature may be conditioned upon, at most, one of the
other features. Node Xj is the root node of the tree. Nodes x2, x4, x5, x7,
etc., are nodes on the periphery of the tree.

4.1 DIFFERENT TYPES OF NODES

For convenience in the following analysis, the nodes of the dependent feature
tree are divided into the following types.

1. Type I nodes: Except for the root node, nodes on the periphery of the tree
are defined as type I nodes. For example, in figure 4-1, nodes x2, x^, x5,
xy, etc., are type I nodes.
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2. Type II nodes: These are nodes which are one node deep from the periphery.

For example, in figure 4-1, nodes x6, XIQ, x15, x17, x^g, etc., are type II

nodes.

3. Type III nodes: These are nodes which are at least two nodes deep from the
periphery. For example, in figure 4-1, nodes X3, XQ, xg, x^, etc., are
type III nodes.

4. Type IV nodes: The root node of the tree is defined as a type IV node.
The types of root nodes are divided into type IVa and type IVb. Examples
of the types of root nodes are described in the following.

a. Type IVa node: The type IVa node is the root node of a tree with a
single link. As an example, node x of figure 4-2 is a type IVa node.

xl

Figure 4-2.- Illustration of a type IVa node.

b. Type IVb node: The type IVb node is the root node of a tree with two
or more links. As an example, node x^ of figure 4-3 is a type IVb
node.

Figure 4-3.- Illustration of a type IVb node.

It is noted that the type IVb node is different from the type IVa node in that
more than one node links directly with the root node of the tree.
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4.2 AN EXPRESSION FOR THE COVARIANCE BETWEEN THE FEATURES CONNECTED BY A PATH
IN A DEPENDENT FEATURE TREE

An expression for the covariance between the features when a path connects

their representative nodes in a dependent feature tree is developed in this
section. For example, features X-Q and x^g are connected through features X

Xg, xg, x^, and x^ in the dependent feature tree of figure 4-1. For the

following analysis, consider the dependent feature tree shown in figure 4-4.

X3

Figure 4-4.- An example dependent feature tree.

The probability density represented by the dependent feature tree of figure 4-4

can be written as follows.

P(X) = P(x1)p(x2|x1)p(x3|x2)p(x4|x2)p(x5|x2)p(x6|x5)p(x7|x4) (4-1)

In the following, an expression for the covariance between features x6 and x7
of figure 4-4 is derived.

E[(xg - u6)(x7 - u?)] =f (x6 - u6)(x? - uy)p(X)dX

=1 (x6 - U6)p(x2)p(x5|x2)p(x6|x5)dx2 dx5 dxg

•J p(x4|x2)dx4J (x7 - U7)p(x7|x4)dx?

From equation (3-15), the following equations are obtained.

(4-2)

rI (xy - U7)p(x7|x4)dx? = - u4)

/<*4 - »,

(4-3)

(4-4)
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Using equations (4-3) and (4-4) in equation (4-2) yields

E[(x6 - u6)(x7 - u?)] - P74 P42ŷ /(*2 - U2)p(x2)dx2

Jp(x5|x2)dx5 J (xg - U6)p(x6|x5)dx6 (4-5)

Similar to equations (4-3) and (4-4), which were developed from equation (3-15),

the following are obtained.

(x6 - U6)p(x6|x5)dx6 = p65̂ — (x5 - u5)
b

J

- U5)p(x5|x2)dx5 = p

- U2)p(x2)dx2 =

(x2 - U2)
(4-6)

From equations (4-5) and (4-6), the covanance between features Xg and

be obtained as follows.

n °74 °42 °65
- U7>1 = ̂ •^•-^• '52E[(x6 - u6)l

For a general case, the following theorems can easily be established.

can

(4-7)

Theorem 1: Suppose the features x^ and xr+s in a dependent feature tree are

connected by a path as shown in figure 4-5. Then, the covariance between

features x-^ and xr+s is given by equation (4-8).

xr+l
xr+2

/r+s-1

V+s

Figure 4-5.- A path between features xj and xr+s
in a dependent feature tree.
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°23 Vl,r Vs,r+s-l

V "' —
r+s-l,r+s-2 r+2,r+l ,. ON—' r-2 * o i (4-8)
°r+s-2 Vl r 1>r

Theorem 2: Suppose the features xj and xr in a dependent feature tree are

connected by a path as shown in figure 4-6. Then, the covariance between

features x^ and xr is given by equation (4-9).

x1 x2 x3 x4 xr_! xr

Figure 4-6.- A path between features x^ and xr
in a dependent feature tree.

°1? °?^ a14 °r 9 r 1
Ul)(xr - ur)] . Ji . Ji . Ji ... -SiLl • or.1>r (4-9)
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5. MAXIMUM LIKELIHOOD EQUATIONS FOR THE PARAMETERS OF THE DENSITY FUNCTIONS

In this section, maximum likelihood equations are developed for estimating the
parameters of the cluster conditional densities when approximated by the first-
order dependent feature trees. In practice, such as in the classification of
remotely sensed multispectral scanner imagery data, considerable interest has
been shown in applying maximum likelihood clustering for the decomposition of
the mixture density of the data into its normal component densities. The
mixture density p(X) can be written as

(5-1)P(X) = L P(̂ )P(X|̂ )

where m is the number of clusters, and P(w-j) and p(X|w1-) are the a priori proba-
bilities of the modes and mode conditional densities, respectively. If the
cluster conditional densities are Gaussian [i.e., p(X|u>.) ~N(U.,£ )], by using
a given set of N independent observations from the mixture density, from equa-
tion (2-6), the maximum likelihood equations for the estimates of the parameters
of the mixture density can easily be shown to be the following (ref. 6).

^u = IX=1ui N
(5-2)

k=l

(xk - u.)(xk - ul)
T
P(u)l|xk)

N

k=

In maximum likelihood clustering, equation (5-2) is used for updating the

parameters of the densities, and this computation is coupled with a split and
merge sequence. The updating is usually stopped after a few iterations because
of the large amount of computation in clustering data such as imagery data.
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For practical problems, the number of parameters to be estimated is large.
Using equation (5-2), the number of parameters to be estimated for each mode is

3', where n is the dimensionality of the patterns. It is known that,
with a fixed sample size, the accuracy of estimation usually decreases as the

number of parameters to be estimated increases (ref. 12).

In this paper, the cluster conditional densities are approximated with first-
order dependent feature trees to reduce the number of parameters to be
estimated. In the product approximation for the densities discussed in the

previous sections, it is noted that each feature is conditioned upon, at most,
one of the other features. The number of parameters to be estimated for each
mode is obtained as follows: the means n, the variances n, and the covariances
(n - 1), or a total of (3n - 1), where n is the dimensionality of the patterns.
When the product approximation is used for the probability densities, with an
increase in the dimensionality of the patterns, the reduction in the number of
parameters for each mode is as shown in figure 5-1.

O)
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c to
i.

OJ <D
JC 4->
4J QJ

C ro

to
C Q.
O
•- M-
4-> O
O
3

XJ
0)

t
.80

.60

.40

.20

0
1 11 21 31 41

n dimensionality —*•

Figure 5-1.- Reduction in the number of parameters with the dimensionality.

In the following, maximum likelihood equations are developed for estimating the
parameters of the cluster conditional densities when approximated with first-
order dependent feature trees. It is assumed that the structure of the depend-
ent feature tree is determined using the techniques discussed in section 3.
The different types of nodes described in section 4 are considered separately.
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5.1 MAXIMUM LIKELIHOOD EQUATIONS FOR THE A PRIORI PROBABILITIES. MEANS. AND
VARIANCES

In this section, maximum likelihood equations similar to equation (5-2) are

obtained for the a priori probabilities of the clusters and for the means and
variances of features in each cluster when the cluster conditional densities
are approximated with dependent feature trees. The different types of nodes
discussed in section 4 are treated separately. It is assumed that a set
-X- = {X,,"«,XN> of N unlabeled patterns, each of dimension n, drawn independ-
ently from the mixture density p(X) is given. When the cluster conditional
densities are approximated by first-order dependent feature trees, the density
of the itn cluster can be written as

1=1
The maximum likelihood equations for the a priori probabilities of the clusters
can easily be shown to be the following.

PK) =4 E pK-K) (5-4)1 N k=l n K

If e.j is a parameter of the ith cluster, using equation (5-3) in equation (2-8)
results in

(5-5)36.

In the following, it is assumed that the distributions of pattern features in
each cluster are Gaussian. That is,

P ) ~N[U(i),a(i)] (5-6)

5.1.1 MAXIMUM LIKELIHOOD EQUATIONS FOR THE PARAMETERS OF TYPE I NODES

Consider a link in a dependent feature tree containing a type I node, as shown
in figure 5-2.
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X2
X3

Figure 5-2.- A link in a dependent feature tree
with a type I node.

Since each feature is conditioned upon, at most, one of the other features,

equation (5-5) becomes

U-'f; P<»,IV»if-|109Cl>i(x2'x3>]l
I K J . 1

for ̂  = u3(i)

and ^ = o3(i) (5-7)

When A = u3(i), from equation (5-7), the following is obtained.

N

(5-8)

k=l

In equation (5-7), letting <t>1 = 03(1) and $. = o23(i) and eliminating
f k "I2X3 ~ U3^M ^rom t'ie resultin9 equations yields, after simplification, an
expression for the covariance between type I and type II nodes. That is,

E
(5-9)

c=l ' "

Letting A^ = a3(i) in equation (5-7) and using equation (5-9) yields the

following.

V /
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5.1.2 MAXIMUM LIKELIHOOD EQUATIONS FOR THE PARAMETERS OF TYPE II NODES

A typical type II node, as defined in section 4, in a general dependent feature
tree is shown in figure 5-3.

-•4-

Figure 5-3.- A typical type II node in a
general dependent feature tree.

In figure 5-3, node xs is a type II node, and nodes x,, x,,, •••, x are type I

nodes. The terms in the product approximation of the probability density

function of cluster i containing feature x$ are

un) = ••• P(xs|xt)p(x1|xs) ••• P(xp|xs) ••• (5-11)

If 61 is a parameter of the i
th cluster, using equation (5-11) in

equation (2-8) yields

-= E PKK.e
i k=l 39.

4=1
Pi(x4|xs) + P1(xs|xt) = 0 (5-12)

From equation (5-12), letting 91 = us(i) results in the following maximum

likelihood equation for the mean of feature xs of cluster i.

Uc(l) =

where

£

1) -as£(i)

(5-13)

(5-14)

5-5



In equation (5-12), letting 6i = 0s(i), °si(
1)» "*» Osr^^' and °st̂  yie1ds

the following after simplification.

(5-15)

5.1.3 MAXIMUM LIKELIHOOD EQUATIONS FOR THE PARAMETERS OF TYPE III NODES

A typical type III node in a general dependent feature tree is shown in
figure 5-4.

Figure 5-4.- A typical type III node in a
general dependent feature tree.

In figure 5-4, xs is a type III node; and nodes x,, x2, •••, xr and x^ may be
type III nodes or other types of nodes. Proceeding as in section 5.1.2, the
maximum likelihood equations for the variance and mean of feature xs of
cluster i can be shown to be the following (see appendix A).

as(i)
• •!<•»

r-f o (i)o (i)
[g .,;«)4o

(5-16)
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and

k=
p(w i lxk>8)xs r V1'

k=l
P ( " | x . e )

(5-17)

5.1.4 MAXIMUM LIKELIHOOD EQUATIONS FOR THE PARAMETERS OF TYPE IVA NODES

A typical type IVa node in a general dependent feature tree is shown in
figure 5-5.

xl X2 X3

Figure 5-5.- A typical type IVa node in a
general dependent feature tree.

In figure 5-5, xj is a root node of type IVa, and node /2 may be of type I,
type II, or type III. The maximum likelihood equations for the variance and
mean of feature Xj of cluster i are given in the following.

and

k=
p(u»i|xk,e)

=1
p(u1|X|(f8)

(5_18)

(5-19)

5.1.5 MAXIMUM LIKELIHOOD EQUATIONS FOR THE PARAMETERS OF TYPE IVB NODES

A typical type IVb node in a general dependent feature tree is shown in
figure 5-6.
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xr+l

Figure 5-6.- A typical type IVb node in a
general dependent feature tree.

In figure 5-6, xs is a root node of type IVb, and nodes x,, x2, •••, xp are of

type I, type II, or type III. The maximum likelihood equations for the

variance and mean of feature xs of cluster i can be shown to be the following.

(i) =
k=l

(r- - u
a(i)

1=1

k*

N

k=l
- u(1)

and
(5-20)

-.(i) (5-21)

5.2 MAXIMUM LIKELIHOOD EQUATIONS FOR THE COVARIANCES BETWEEN FEATURES

In this section, maximum likelihood equations are developed for the covariances

between the features when the probability density functions of the clusters are
approximated by first-order dependent feature trees.

5.2.1 MAXIMUM LIKELIHOOD EQUATIONS FOR THE COVARIANCE BETWEEN TYPE I AND
TYPE II NODES

In this section, maximum likelihood equations for the covariance between type I

and type II features are derived. A typical link connecting type I and type II

nodes is shown in figure 5-7.
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xr xs

Figure 5-7.- A typical link connecting type I
and type II nodes.

In figure 5-7, node xs is of type I, and node xr is of type II. The maximum
likelihood equation for the covariance between features xr and xs of cluster i
is given in the following.

E P(«l|Xk.e)[x!;.ur(1)][xJ.us(1)]
orsd) - op(1) ̂ —T, -, (5-22)

E PKlXk,e

5.2.2 MAXIMUM LIKELIHOOD EQUATIONS FOR THE COVARIANCE BETWEEN TYPE IVA AND
TYPE II OR TYPE III NODES

A typical link connecting type IVa and type II or type III nodes in a general
dependent feature tree is shown in figure 5-8.

xl

Figure 5-8.- A typical link connecting
type IVa and type II or type III nodes
in a general dependence tree.

In figure 5-8, node xj is of type IVa, and node x2 may be of type II or
type III. The maximum likelihood equation for the covariance between
features X} and x2 of cluster i is as follows.

E
(5.23)
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5.2.3 MAXIMUM LIKELIHOOD EQUATIONS FOR THE COVARIANCE BETWEEN TYPES OF NODES
OTHER THAN THOSE CONSIDERED IN SECTIONS 5.2.1 AND 5.2.2

Let there be a link between nodes x2
 anc' X3 in a 9ener%al dependent feature tree

whose types are other than those considered in sections 5.2.1 and 5.2.2. The
maximum likelihood equation for the covariance between features x2 and X3 of
cluster i is given in the following.

Z p(M1|xk,e) o2(i)o3(i) + o23(i)A23(i) + o23(i)[x2 - u2(i)l[x3 - u3(i)l|
'=1 ( ii (5-24)

P(«1|X|C,8)
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6. EXPERIMENTAL RESULTS

In this section, some results from processing remotely sensed Landsat
multispectral scanner imagery data are presented. The images are of a 5- by
6-nautical-rmle area called a segment. The image is divided into a rectangular
array of pixels, 117 rows by 196 columns. The image is overlaid with a rectan-
gular grid of 209 grid intersections. Two classes are considered: class 1 is
wheat, and class 2 is "other." The true (ground truth) labels for the pixels
at the grid intersections are acquired. The locations of the segments and the
individual acquisitions used for each of the segments are listed in table 6-1.
The a priori probabilities of the classes are estimated as sample estimates.
Equations (3-6) and (3-18) are used to compute the weighted mutual information
between the features, assuming in each class that the features are Gaussian
distributed. Kruskal's algorithm (ref. 16) is used to construct optimal
dependent feature trees by minimizing I(p,pj.) of equation (3-5). The optimal
dependent feature trees of segments 1648 and 1739 are shown in figures 6-1 and
6-2, respectively.

X2

X7

Figure 6-1.- Optimal dependent feature tree
of segment 1648.

Generally, it is known that, for each acquisition, a strong dependency exists
between channels 1 and 2 and between channels 3 and 4. From figures 6-1 and
6-2, it is seen that these dependencies appear in the optimal dependent feature
trees.
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ô
<o

• oc
«j :̂
i t
0 0

CO Z

oo
«!•
to
f-H

CM 1- r~
CM If) tOto

toto co •
t— 1 r-l O

CT) t̂ CO
^H If) CM

CT)
to

00 CO
f— 1 «-! O

rt/1 O* CM
I-l If) If)

CT)
to

CO r-~ •
| CM t-l O

CM If) CM
i— 1 If) CT)

to
r^

If) CM •
CM i-i O

O CO CM
CM If) IOr-*

to
oo •* •
t-H *-H O

r̂  if) CM
1— 1 tf) «— 1

CM
p^

O CM •
CM i-H O

CT) O i-l
r-H If) r-

lf>
to

CT» ̂  •
i— i i— i O

co co r^
CM to CM

CO
CT)

*1- «*• •
co o

CM 00 CM CO
CM VO CO to
CM i— 1 •— 1 CM

r̂  p .̂ r*» r—

T
et

on
,

M
on

ta
na

CT)
CO
r*-
I— 1

—t CO If)
!-< VO O

CT)
r~

O .-1 •
t CM i-l, O

r-. co if)
vo vo

CO
00

^ 0
CM i-l O

i— i 00 i— i
i-H tO 00

CO

o to •
, CM | O

i-v r~
to if>

r̂ .
CO

*»• to •
CM O

•—i co tr>
— I VD O

CD
r^

0 i-l
| CM i—l, O

f̂  CO If)
to to

CO
CO

^- o •
CM i-l O

^- vo if)
•—I to O

CT)
r-

f^ CO •
[ i-l O

*»• CTI t— 1
ID CO

CM
CT)

r*> ^- •
CM O

co r~ co
CTl to If)
i-l O CM

r̂  p~ P~

</>
• IO

I/) CO
VI C
HI 10
•z. ^

CO
If)
00
I-l

oor^
to

•

0

o
If)
CM
r**
•o

CO
*f
vf>
r-^

•o

I-H
to
CT>
r^

0

r^
^c
o
r^
•o

CT)
I-H
If)
r^

o

CO
CO
CT)
to

•

o

*}•
If)
If)
00

•o

s
s
if

ic
a

ti
o

n

*s-
O IO

C 3
IO O
QJ <J£ 10

</)

IO

13

u
OJs.
i.
o

M JD
3 10

>*- )̂
C O
O !-
O O.

10 .0,

6-2



Optimal dependent feature tree
of segment 1739.

To investigate the effectiveness of the optimal dependent feature trees in
classification, an experiment is performed to compare the classification accu-
racies of the Bayes classifier (1) when the densities are approximated with
optimal dependent feature trees, (2) when no approximation is used for the
densities (full covariance matrix), (3) assuming the features are independent,
and (4) when the densities are approximated with arbitrary dependent feature
trees. Spectral vectors of 104 labeled pixels are used as the training pattern
set, and the spectral vectors of the remaining 105 labeled pixels are used as
the test pattern set. The structure of the arbitrary dependent feature tree
used in this experiment is shown in figure 6-3.

The computed confusion matrices and the classification accuracies on the train-
ing and test sets for each of the segments processed are listed in table 6-1.
From table 6-1, it is seen that, in general, better classification accuracies
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X3

x4

xn-l

Figure 6-3.- Arbitrary dependent feature tree
used in the experiment.

are obtained on the training set when the full covariance matrix is used

without approximating the densities. Improved classification accuracies are

obtained on the test set when the densities are approximated with optimal

dependent feature trees. This might be due to the fact that a large number of

parameters are estimated when the full covariance matrices are used.

One of the important objectives in the classification of remotely sensed

agricultural imagery data is to estimate the proportion of the class of

interest in the image. The ratio of the variance of the estimated proportion

using machine classification to the variance of the estimated proportion using

simple random sampling is called variance reduction factor R (ref. 1). The

quantity R can be viewed as an indication of how much the machine classifica-
tion improves the proportion estimation. The computed variance reduction

factors for each of the segments processed are listed in table 6-2. From

table 6-2, it is seen that the variance reduction factor consistently improves

when the densities are approximated with dependent feature trees, compared to
the other cases.
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7. CONCLUDING REMARKS

In the classification of imagery data, such as in the machine processing of
remotely sensed multispectral scanner data, unsupervised classification
techniques have been found to be effective. The application of clustering
techniques for the analysis of imagery data essentially involves two steps:
(1) clustering the data or partitioning the image into its inherent modes and
(2) giving the probabilistic class labels to the resulting clusters. In
practice, it is observed that fields are relatively easy to label when compared

to pixels.

Several researchers have investigated methods for locating fields in the
imagery data. Recently, considerable interest has been shown in developing
techniques for probabilistically labeling the clusters using information from a
given set of labeled patterns and, also, from a given set of labeled fields.

In decomposing the mixture density of the data into its normal component densi-
ties, the parameters of the component densities and the a priori probabilities
of the modes are iteratively computed using maximum likelihood equations coupled
with a split and merge sequence. The updating of the parameters is usually
stopped after a few iterations; and for practical data, a large number of param-
eters must be estimated. For a fixed sample size, the accuracy of estimation
usually decreases as the number of parameters to be estimated increases.

To overcome the above shortcomings, it is proposed in this paper that the den-
sities be approximated with first-order dependent feature trees. The dependent
feature trees can be constructed using criteria based on information measure
and, also, based on class separability measure. Expressions are derived for

the criteria when the distributions of the features are Gaussian. Expressions
also are derived for the covariances between features not connected by a single
link in the dependent feature tree.

Different types of nodes are defined in a general dependent feature tree.
Maximum likelihood equations are derived for the parameters of the mixture
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density of the data by approximating the cluster conditional densities with
first-order dependent feature trees. The field structure of the data is also
taken into account in the decomposition of the mixture density of the data into
its normal component densities. Furthermore, experimental results from the
processing of remotely sensed multispectral scanner imagery data are presented.
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APPENDIX A

DERIVATIONS OF MAXIMUM LIKELIHOOD EQUATIONS FOR THE

PARAMETERS OF A TYPE III FEATURE

In this appendix, maximum likelihood equations for the parameters of a typical

type III feature are derived. A typical type III node in a general dependent

feature tree is illustrated in figure A-l.

X5

Figure A-l.- Illustration of a typical type III node
in a general dependent feature tree.

In figure A-l, x2 is a type III feature. The following is obtained from equa-

tion (5-5) by keeping only the terms that involve feature x2 in the product

approximation of the density of the i^"1 cluster.

3 o
7= E PfoJXfc.e) log[p.(x4 |x2)] + 1og[p.(x3|x2)]
1 K~ -L I

+ Iog[p1(x2 |x1)] j

Tog[pi(x2,x4)] + Iog[pi(x2,x3)]
N

K~l 1

+ log[Pl(Xl,x2)] - 2 log[Pl(x2)] - logCp^Xj)] (A-l)

A-l



It is assumed that the features of the ith cluster are Gaussian distributed.
That is,

. rrr iV1^- v""2
rs

log[Pl(xr,xs)] = -log(2ir) - \ log[Ars(i)] - ̂
 l

(.} jas(i)[xr - up(i)]
J

where

- 2ors(i)[xr- ur(i)][xs- us(1)] + ar(i)[xs

= or(i)as(i) -

Using equation (A-2) in equation (A-l) yields

where

Jo

.2

Letting 6. = U2(i)» from equation (A-5), the following is obtained.
9Ck " "

i) r
TT X1) [

2ai(1')
+ l-

2a

(A-2)

(A-3)

(A-4)

(i)[xj - U4(

(A-5)

(A-6)
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Substituting equation (A-6) in equation (A-4) and equating the results to zero

yields the following maximum likelihood equation for the mean of feature x2 of
cluster i.

u2(i) •

(A-7)

Letting 8 = o2(i) in equation (A-4) and equating the result to zero yields the
following after simplification.

2 °(1)

Similarly, differentiating t with respect to 02j(i) for j = 1,3,4 and equating
the resulting expression to zero yields

( 2o2 (i) 2o2(i)<j (i) r k ,r . , 2o? (i)a,(i) rt

•'"»••'{- Ĵ r - ̂ t~ [4 - -.(•)]« - V"] *-SJr5)- [4 • "2

- ̂»r [4 - ̂i')]K - V"] * !5^i K - VA ( l ) l

(A-9)

Using equation (A-9) for j = 1,3,4 in equation (A-8) yields, after
simplification, the following maximum likelihood equation for

££* [4 - ̂ JW -v

(A-10)
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Proceeding, similar to equations (A-9) and (A-10), it can easily be shown that
the maximum likelihood equations for the mean us(i) and variance os(i) of
feature xs of cluster i of figure 5-4 are of equations (5-16) and (5-15).
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MAXIMUM LIKELIHOOD EQUATIONS WITH FIELD STRUCTURE

In practical applications of pattern recognition, such as in the classification
of remotely sensed agricultural imagery data, one of the difficult problems is
to obtain labels for the training patterns. The labels for the training pat-
terns are usually provided by an analyst-interpreter by examining imagery films
and using some other information such as historic information and crop calendar
models. Agricultural imagery data usually have a field-like structure, and it
is observed that fields are relatively easy to label when compared to pixels.
Recently, considerable interest has been shown in developing techniques for
locating fields in the imagery data (ref. 2-4) and in developing methods for the
probabilistic labeling (refs. 10, 11) of cluster distributions using information
from a given set of labeled fields. Once the fields are located by a field-
finding algorithm, the problem of fitting a mixture of Gaussian density
functions to the data by taking into account the field structure of the data is
considered in this appendix.

It is assumed that there are f-fields in the data. Let the j1-11 field be denoted

by F,; let it contain N-, pixels; and let X^, k = 1,2,»-«,N., be their spectralj j j ̂  j
vectors. Let m be the number of clusters in the data. Let P(u.j) and p(X|u>.j) be
the a priori probability that a field belongs to cluster u>1 and cluster condi-
tional densities, respectively. Let X- be the concatenated vector of spectral
vectors of the pixels in the jth field. That is,

"x.xjl
(J2

(B-l)

It is assumed that the fields are independent. Then, the joint density of

f-fields is given by

h.'-.xV) = II pfL) (B-2)
1 j=1 J/
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The mixture density p(x" ) can be written as
* \J '

m
(B-3)

If it is assumed that the spectral vectors of the pixels in each field are

cluster conditionally independent, then

NJ
(B-4)

Using equations (B-3) and (B-4), the joint density of equation (B-2) can be

written as follows.

i

-.xf)
= n m

£ P(».) kn (B-5)

Since the logarithm is a monotonic function of its argument, taking the log of

both sides of equation (B-5) and denoting it by l results in

-L
J=l

log
m

5 p(^
"N.j

~

P(x jk|»r) (B-6)

From equation (B-6), which is similar to equation (2-7), the maximum likelihood
equation for the probability that a field belongs to a cluster can easily be
obtained as the following.

(B-7)

If Q-j is a parameter of the density function of the i^n cluster, differentiating
i of equation (B-6) with respect to ei yields the following.

ii_
36.

i!!i> f _L
"i

(B-8)
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If the probability density functions of the clusters are Gaussian [i.e.,

p(X|ui) ~ N(U ,£.)], from equation (B-8), the maximum likelihood equations for
the mean and covanance matrix of the densities of the clusters can be shown to
be the following.

(B-9)- J=J

j=l
rN,

and (B-10)

where (B-ll)

If the probability density functions of the clusters are approximated with
first-order feature dependence trees, maximum likelihood equations for the
parameters of the densities (similar to those developed in section 5) can
easily be obtained from equations (B-8) and (3-1) by taking into account the
field structure of the data.
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APPENDIX C

DEPENDENT FEATURE TREES WITH THE NODES

REPRESENTING FEATURE SUBSETS

Very often it is necessary to have each node of a dependent feature tree
represent a set of features instead of one feature. For example, in remote
sensing, the satellite makes multiple passes over a given area and, at each
acquisition, gathers several channels of data. In some instances, it is
desirable to have each nede of a dependent feature tree represent a set of
features (e.g., the set of features corresponding to an acquisition). In this
appendix, expressions are developed for the mutual information between the
feature subsets and for the covariance between the feature subsets when a path
connects them in a dependent feature tree. It is assumed that the features are
Gaussian distributed.

Let the components of feature vectors X^ and Xj be the sets of features repre-
sented by nodes i and j, respectively. Let n^ and n,- be the dimensionality of
vectors X^ and X,-, respectively. If the feature vector X1 is normally distrib-
uted, its probability density p(Xn) can be represented as

p(X.) (C-l)

where Un- is the mean vector and E. is the covariance matrix.

Let Z =

where

xI.xM . Then,
\ I J /

p(Z) ~N(Uz,Ez) (C-2)

E =
Z

E.
1

ET.
. ""J

E .
U

E .
J _

(C-3)
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The mutual information between feature vectors X^ and Xj can be written as

dX

|E' (C-4)

(C-5)

where IE I is the determinant of the matrix EZ. Let y and v be the zero mean

normal random vectors. That is, p(y) ~ N(0,Cy) and p(v) ~ N(0,CV). Let

Z = (yT,vT) and p(Z) ~ N(0,CZ). Let

and

Consider

c =z

_ x

z

\

CT
yv

"°y

0T
yv

°yv

Cv

V

°».

|

(

= constant • expi-

(C-6)

(C-7)

where

(C-8)
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Thus, the density p(y|v) is Gaussian with the mean -Q" Qyyv and the covariance
matrix Q" . Following a similar argument, it can easily be shown that, if Xn-
is normally distributed, p(X.|X.) is normally distributed with the mean

[ -1 »1 J -1Ji ~ Q-i Qii^i ~ UiM and tne covariance matrix Q. . Now expressions for thei 1 ij j j j i
covariance between the feature subsets, when a path connects their representa-
tive nodes in a dependent feature tree, can be derived as in section 4.2. For
example, if X4 and X7 are Gaussian random vectors, similar to equation (4-3),
the following can easily be obtained.

(Xy - U7)p(X7lX4)dX? = -Q7
1Q?4(X4 - U4) (C-9)

Thus, expressions similar to equations (4-8) and (4-9) can easily be obtained.

NASA-JSC
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