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1. INTRODUCTION

Recently, considerable interest has been shown in developing techniques

(refs. 1 and 2) for the analysis of multichannel imagery data (such as remotely

sensed multispectral scanner data acquired by the Landsat series of satellite)

for inventorying natural resources, predicting crop yields, detectinq mineral

and oil deposits, etc. One of the important objectives in the analysis of

remotely sensed imagery data is to estimate the proportion of the crop of

interest in the image. Nonsupervised classification or clustering techniques

(ref. 2) which partition the image into its inherent modes or clusters have

been found to be effective in the classification of imagery data for proportion

estimation.

Usually, agricultural imagery data have a field-like structure (ref. 3). The

resolution element or pixel of the remote sensing imagery corresponds to

approximately 0.44 hectares (1.1 acres) on the ground. A significant portion

of the imagery data will contain mixture pixels (i.e., pixels containing

objects from more than one class) whenever the objects being viewed by multi-

spectral scanner (MSS) are not large enough relative to the size of a resolu-

tion element. The percentage of mixture pixels in the image depends in general

on the size of the fields. By analyzing a number of remotely sensed multi-

spectral agricultural images, Nalepka and Hyde (ref. 4) have estimated that,

for 20-acre fields, the percentage of mixture pixels in the image is around

40 percent.) and, for fields between 60 acres and 100 acres, the percentage of

mixture pixels exceeded 20 percent. Hence, to be able to accurately estimate

the proportion of the crop of interest in the image, it is necessary to deal

with the mixture pixels.

Recently, several researchers (refs. 5 and 6) have attempted to partition or

segment a multichannel image into pure pixel (i.e., pixels containing objects

of a single class) regions or fields and into mixed pixel or boundary pixel

regions. There is considerable interest in developing techniques (refs. 4 and

7) for estimating the proportion of classes in the mixed pixels. In all the

proposed methods the proportions of classes in the mixed pixels are estimated

1-1



as follows. Assuming the spectral response vector of the mixed pixel as

Gaussian, the proportions of classes in the mixed pixel are estimated as those

that maximize the likelihood of occurrence of its spectral response vector.

One of the reasons these approaches are not successful, in general, is that the

individual observation vectors are noisy. In this paper, techniques are

developed for estimating the proportions in the mixed pixels by the characteri-

zation of region of mixed pixels. The probability density function of the pro-

portion of classes in the mixed pixels is estimated using information from the

spectral vectors of a set of mixed pixels from the mixed pixel region.

Estimates for the proportion of classes in the mixed pixels are then obtained.

This paper is organized in the following manner. In section 2, relationships

are developed between the moments of the spectral vectors of the mixed pixels

and the moments of the spectral vectors if the entire pixels contain objects

from a single class. In section 3, expressions are developed for the maximum

likelihood estimates of the parameters of the probability density function of

proportions of classes in the mixed pixels of the region when the mixed pixels

contain two classes of ibjects. Experimental results from the processing of

remotely sensed agricultural imagery data are presented in section 4. In

section 5, the results of section 3 are generalized when the mixed pixels

contain more than two classes of objects. The concluding summary is given in

section 6. In the appendix A, using information from the spectral vectors and

the proportion of classes of a given set of mixed pixels from the region,

expressions for the estimation of the probability density function of the

proportion of classes in the mixed pixels of a region are presented. The

dependencies between the spectral response vectors of the subpixels of the

classes are dealt with in appendix B.
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2. A MODEL FOR THE CHARACTERIZATION OF BOUNDARY PIXEL REGIONS

A model for the characterization of regions of boundary pixels is presented in

this section. With the present resolution, a pixel or a resolution element of

Landsat MSS images re presents an acre of ground area. It is observed that more

than 30 percent of the pixels of a typical MSS image are boundary or mixed

pixels (i.e., pixels containing more than one class of objects).

Let a pixel consist of K small cells of equal size, and let K i be the number of

cells containing the ith class. Let x ij be a random vector reptes_enting the

spectral response of class i in the jth subcell of these K i cells. The situa-

tion is illustrated in the figure 2-1, where for convenience the subcells of

class i are shown as a contiguous block.

Class i cells

xi 1	 x12

xij

xiKi

Figure 2-1.- Spectral response vectors associated with
the cells of class i in a resolution element.

Let the spectral response vectors xij , j = 1, 2, ---, K i , have mean M' and

covariance matrix Ei for i = 1, 2, ---, R, where R is the number of classes of

objects in the resolution element. Let the total response for the resolution

element be represented by the random vector X. Assume that X can be written as

K

X	 xij	 (2-1)
_ =1
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Let K be the total number of subcells of the resolution element, where

K a	 K 
	

(2-2)

If the entire resolution element were to consist of class i, assuming

independence between the spectral response vectors of the subcells, l the mean

vector M i and the covariance matrix E i of X can be obtained as follows.

m  = E(X) = KM; )

l	 (2-3)

and	 E  = cov(X) = KEi(

Since there are actually K i subcells of the ith class, the mean of X is

E(X) = K i Mi =	 aiKMj
_	 A.

_ t ai m, -M(Q)	 (2-4)
i=1

where

K
ai =	 (2-5)

and is the proportion of class i in the resolution element. The proportions ai

satisfy the following relationships.

ai >0	 i=1, 2, ---,R

( 2-61

and	 ^ ai 1
Jul

The dependencies between the spectral response vectors of the subpixels of the
classes are dealt with in appendix B.

2-2
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If the random vectors associated with the subcells of different classes are

also assumed to be independent, the covarifince matrix of X can be written as

cov(X) a	 KiEi

=	 ai Ei 	E(a)	 r (2-7)

i=

Let the elements ai , i = 1, 2, ---, R, of the vector a satisfy equation (2-6).

Let p(a) be the probability density function of a characterizing a region of

mixed pixels. Let Aa be the region of a in which the constraints of equation

( 2-6) are satisfied. Let pm(X) be the probability density function of the

spectral response vectors X of the mixed pixels. It can be written as

PM(X)	 f pm(X,a)da
A
a

= f p,., ( XI a)p( a)da	 ( 2 -8)
A
a

One of the important objectives in the analysis of remotely sensed imagery data

is to estimate the proportion of the class of interest in the image. If p(a)

is known or estimated, given an observation vector X of a mixed pixel, the

Bayes posteriori estimate for the proportion of classes in the mixed pixel can

be obtained as follows.

a = ECO )

= f apm(aIX)ua
A

a

f apm(Xla)p(a)da
A

=
o—	

(2-9)

f pm(Xia)p(a)da
A

C&
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3. ESTIMATION OF p(a) WHEN THE MIXED PIXELS CONTAIN TWO CLASSES OF OBJECTS

The problem of estimation of p(a) to characterize a region of mixed pixels,

given the spectral response vectors of a set of mixed pixels from the region,

is considered in this section. Very often the proportion of classes in the

mixed pixels is unknown. The identification of mixed or border pixels,

however, can be obtained by using either the clustering algorithms or the

segmentation algorithms. Assuming functional forms for p(a), expressions are

developed in the following paragraphs for obtaining the maximum likelihood

estimates of the parameters of p(a) using information from the observation

vectors of a set of mixed pixels. From the analysis of several ground-truth

images, it is observed that suitable functional forms for p(a) are (a) the beta

distribution function and (b) the density function representing the portion of

a Gaussian curve in the region of interest. These functional forms are

described in the following paragraphs. Let a be the proportion of class 1 in

the mixed pixel. Then (1 - a) is the proportion of class 2.

a. Beta distribution: Modeling p(a) as a beta distribution in terms of

unknown parameters, it can be written as

Am (1-a)c ; 0 c a c 1
P(CL) -	 (3•I)

0	 elsewhere

where b > -1 and c > -1 are the parameters to be estimated and the

constant A is given by

A	 r(b + c + 2)	
(3-2): r

 + rc+

and r(-) is a usual game function.

b. Gaussian surface: The probability density function p(a) can also be

modeled as a portion of Gaussian surface in the allowable region of a.
That is, p(m) can be written as

f(c)	 • if 0 c a c 1
p(a1 :	 f f(E) dE	

(3-3)0

0 ; otherwise

3-1
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where f(a) is a Gaussian density function with mean mf and variance Sf . The
parameters mf and Sir are to be estimated. The probability density function
p(a) is illustrated in figure 3-1.

p(a)

Figure 3-1.- The probability density function p(a), when
modeled as the portion of a Gaussian surface.

3.1 MAXIMUM LIKELIHOOD ESTIMATION OF p(a)

The es-^imation of the parameters of p(m) is formulated in this section as that

of a maximum likelihood estimation problem. It is assumed that the spectral

response vectors X t , 1 - 1, 2 9 •••, N, of a set of mixed pixels are given. The
log likelihood of the occurrence of the set of given observation vectors can be

written as follows.

L =	 log[pm(X,)]

i	 log [fl pm (X i I Wp( a)dal	 (3-4)
 JJ

Closed form solutions for the parameters of p(a) that maximize L seem to be

difficult when the functional form of equation ( 3-1) or equation (3-3) is used

for p(a). In general, the parameters of p(a) that maximize L can be obtained

using optimization techniques such as the Davidon-f-letcher-Powell procedure

(refs. 8 and 9). However, iterative equations, which are similar to maximum

likelihood equations in clustering (refs. 10 and 11). for the estimation of

parameters of p(a), can be obtained using the functional form for p(a) given by

equation (3-3). The following maximum likelihood equations can easily be

derived by differentiating L with respect co the paraameters of p(e) and

equating the resulting ex pressions to sere:.
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fl 
GPM 

( X I 1 a) f(a)da	 P (mf - a)f(a)da
mf • ^ ^	 °	 t3-5)

• j 
pmlXila)f(alda	 j f(a)ds

and

j°I (a - mf)2 pm(Xi1a)f(a)da	 jI Isf - (a - mf)2,f(a)da
Sf = A A	 * °	 ( 3-6)

•	
j 

pm(XIla)f(a)da	 j f(a)da
0	 0

The use of equations (3-5) and (3-6) requires, in general, that the integration

be performed numerically. From equations (2-4) and (2-7), for a particular a,

the mean and the covariance matrix of the spectral vectors of the mixed pixels

are given by the following.

	

M(a) • a MI + t1 - a)M2 	 (3-7)

	

L (a) • or  + (1 - a) E
2	

(3-8)

The resolution elements that contain a single class are called pure pixels. In

the following equations, it is assumed that the spectral vectors of the pure

pixels are Gaussian. For a given a, it is also assumed that the spectral

vectors of the mixed pixels are Gaussian. In the estimation of mf and Sf . by

iteratively using equations (3-5) and (3-6), the computation can be considar-

ably reduced by transforming the spectral vectors with a transformation matrix

that simultaneously diagonalizes the covariance matrices E, and E2. Let A be

the transformation matrix. Then we have [121

At, AT•I^

(3-9;
and	 AL2AT • A J
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where AT - me-1/2#. The matrices a and s are the eigenvalue and eigenvector

matrices of E 1. The matrices A and # are the eigenvalue and eigenvector
matrices of K, where

K - A 1 /2 mT E2me 1/2	 (3-10)

Let the spectral vectors XR be transformed into vectors Y R, where

R	 Y  - AX 	 ; it - 1, 2, •••, N	 (3-11)

Let the means Mi of the pattern classes be transformed into ui , where

vi = AMi ; i - 1, 2	 (3-12)

From equations (3-7), (3-8), (3-9), and (3-12), for a given a, the mean and the

covariance matrix of the transformed spectral vectors of the mixed pixels are

given by the following.

u(a) = aµI + (1 - a)1'2	 (3-13)

and	 S(a) - aI + (1 - a)A	 (3-14)

The use of pm(Y i 1a) in equations (3-5) and (3-6) reduces the computation con-

siderably since the determinant and the inverse of matrix S(a) can be computed

directly from equation (3-14). An estimate for the proportion of the class of

interest (say class 1) in a mixed pixel with the transformed observation vector

Y is given by the following.

.,	 J 1 GPM
 (YI a)f(a)da

Cg = o
	

(3-15)1 pm(Yla)f(a)da0

3.2 MAXIMUM LIKELIHOOD ESTIMATION OF (a), WITH THE CRITERION OF A LOWER BOUND

It is observed that in equations (3-5) and (3-6) the numerical integration is

to be performed at each iteration for the transformed spectral vector of every
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given mixed pixel. In the following paragraphs, it is shown that the computa-

tion can be considerably simplified by using a lower bound on the likelihood

function as a criterion. By noting that the logarithm is a convex upward

function, a lower bound on L of equation (3-4) can be obtained as follows.

L -) L 1 	(3-16)

where	 L1 = 
f1 

A(a)p(a) da	 (3-17)

and	 A(a) _ i =t I0gLPm (Y i IM)]	 (3-18)

3.2.1 MAXIMUM LIKELIHOOD EQUATIONS FOR THE ESTIMATION OF PARAMETERS OF p(a)

The maximum likelihood equations for the estimation of parameters of p(a) that

maximize L1 of equation (3-17) can easily be shown to be the following.

f1 aA((z)f(a)da fl ( mf - a)f(a)da

M 
	 °	 + ° r
	

(3-19)

fA(*)f(a)da 	 f f(a)da

fo 
I (a - mf ) 2A(a)f(a)da f1 [Sf -(a - mf)2]f(Oda

and	 Sf= 	 + °	 (3-20)

fA(a)f(a)da	 I f( a)da

It is seen that the usE of equations (3-19) and (3-20) requires the integration

to be performed numerically, once for every iteration. In the transformed

space, an expression for A(a) is given by the following.

A(a) _ - log(2,r) - 7 logI S(a)I - itr[S-l(a)SV]

+ SMTS-1 (a)u(a) - NT(a)S-1(a)u(a)

as +ba +c
_ nN log(2w) - N t log[ a + (1 ..a)X3 +	 a +

	
^ a 

i	 (3-21)
i=1	 i
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where

N

	

SM =	 Yi
(;^ )

SV =	 YiYiT)
Anj

	

N	 2	
(3-22)

a i
 = 'F^ uli - v21 )

b  = (uli - u21)[SM(') - Nu2i]

c i = 021[SM(i) -'^'2i, - 1 SV(i,i)

The diagonal elements of the eigenvalue matrix A are A i , and the dimensionality

of the patterns is n.

3.2.2 CLOSED FORM EXPRESSIONS FOR THE INTEGRALS IN EQUATIONS (3-19) AND (3-20),
WHEN THE COVARIANCE MATRICES OF THE CLASSES ARE EQUAL

In the following paragraphs, expressions are derived for the computation of the

integrals in equations (3-19) and (3-20) when the covariance matrices of the

classes are equal. If the covariance matrices of the classes are equal, then

X i = 1 for all i and A(a) in equation (3-21) becomes

	

A(a) = as  + ba + c	 (3-23)

where

	

a =	 ai

i=

	

b =	 bi	 (3-24)
i=1

n
and	 c =	 ci -	 log(21)
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Let

0(9) = 1 1 exp (- 2)dC	 (3-25)
ITT

The following can now easily be derived.

rl	 - mf _ -mf	
(3-26)o f(a)da = m

f	 f)

1	
;fW

-mf(1 - mf)2
0 (a - mf )f(a)da = 	 exp ,^ -exp - --25f	 (3-27)
o	 f	 f

1	
2	

Sf	 -mf
I_m2
	

(1 - mf )	 (1 - mf 1 2	 /' 11 (a - m) f(a)ds = Sf

	

	 — exp	 exp -	 + J f(a)def	 ^ ^/Ff ^ - ^	 o
f	 f

(3-28)

1	 3	 Sf/2	 mf	
-mf	

(1 - mf ) 2	(1 - mf)2

( a - m f ) f (a) da =	 2 + ^– exp , – - 2 + --^f	 exp - L ^—f
o	 ^	 f	 f	 f	 f

(3-29)

1	 4	
Sf	 3mf	 mf	 -mf	 3(1

 ^fmf )
	 (1 - mf)3

(a - mf) f(a)da = f - — + -^ ex ,	 + — —
o	 1	 Sf	

p f
	 Sf

(1 - mf)2	
2	

1
exp - —— + Sf I f(a)da	 (3-30)

f

The integrals in equations (3-19) and (3-20) involving the term A(a) can be

expressed in terms of the above equations as follows.
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i

t"

I
1

0 A(a1f(a)da = a 
J 

(a - mf ) 2 f(a)da + 2(ann f + b) J 1 (a - mf)f(a)da

	

0	 0

+ (am2 + bmf + c) I1 f(a )de	 (3-31)

	

fl1	
3f	 1	

2
0 aA(a)f(a)da = a 

fo
(a - nf) (a)de + (3^f + b) f.0 (a - of1 f(nlda

1	 1
+ 3a^1f + 2Dmf + C) r (a - a^ If (a)da + (Mf * Dwf + Cn^ f` 0 f (nlda

,o	 / (3-32)

fo1 (a - mf ) 2A(a)f(a)da = a 11 (a - mf ) 4 f(a)da + (2am f + b) f1 (a - mf)3f(a)da
 0

1
+ (am2f + bmf + c) f ( a - mf ) 2f( a)da

0

(3-33)
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4. EXPERIMENTAL RESULTS

In this section, some results from the processing of remotely sensed MSS imagery

data are presented. Several segments 2 were processed in the following manner.

For every segment, several acquisitions are acquired and the images are regis-

tered. Each acquisition is a 4-channel image. The 4-channel image values are

transformed into greenness and brightness space (ref. 13), thus generating a

2-channel image. Two classes are considered. Class ! is wheat and class 2 is

pasture. The class of interest in the image is wheat. The resolution element

or pixel %f the image corresponds to approximately an acre on the ground. Each

pixel is divided into six subpixels, and the true class labels, or the ground-

truth labels for each of the subpixels, are acquired. The pixels containing

only wheat, the pixels containing only pasture, and the mixed pixels having

wheat and pasture in different proportions are located in the segment. The

spectral response vectors of pure pixels are assumed to be Gaussian. For a

given a, the spectral response vectors of the mixed pixels are also assumed to

be Gaussian. Assuming the functional form of equation (3-3) for p(a), the

maximum likelihood estimators for the parameters of p(a) are obtained using

equations (3-5) and (3-6). The spectral vectors are transformed using a trans-

formation matrix that simultaneously diagonalizes the covariance matrices of

the two classes. Simpson's rule is used for computing the integrals numeri-

cally. The proportion of classes of interest (i.e., wheat) in the mixed pixels

is estimated using equation (3-15). The number of pixels from each of the

classes and the number of mixed pixels are listed in table 1. Also included in

table 1 is the average true proportion of wheat in the mixed pixels estimated

from the ground-truth labels of the subpixels of the mixed pixels. The esti-

mated proportion of wheat in the mixed pixels using equations (3-5), (3-6), and

(3-15), after first iteration and after the convergence, are listed in table 1

for n - 2 and 4. For a subset of the segments of table 1, the estimated pro-

portion of wheat in the mixed pixels is listed in table 2 for n - 6 and in
table 3 for n - 8. In general, it is observed that the better

A segment is a 9- by 11-kilometer (5- by 6-nautical-mile) area for which the
MSS image is divided into a 111-row by 196-column rectangular array of pixels.
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proportion estimates are obtained for n = 4. It is thought that the degrada-

tion in the estimates with the increase in the number of acquisitions is due to

the registration errors.

x
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5. ESTIMATION OF p(m) WHEN THE MIXED PIXELS

CONTAIN MORE THAN TWO CLASSES OF OBJECTS

The problem of estimation of p(a) when the mixed pixels contain more than two

classes of obJects is considered in this section. The functional forms that

can be used for p(a) are the multivariate generalization of the ones presented

in section 3. These are described in the following paragraphs.

a. 'rho Dirichlet Distribution: If p(a) can be represented as a Dirichlet

distribution function, it can be written as

R	 ai
p(a) = K n ati

i=1

 ) [R-1 a
= K 1 - =1 nj	

in a
i i	 (5-1)

where Aai = 1, ai , 0 for i = 1, 2, ---, R, and

r }^ ( ai + 1)

K =	 i=1	 (5-2)

III [r(a^ + 1)1

The set of parameters (ai) are such that a i > -1 for i = 1, 2, ---, R, and

are to be estimated.

b. The multivariate Gaussian surface: By modeling p(a) with the surface of a

multivariate normal distribution in the region aa, p(a) can be written as

f(a)	 if a c as
f(a)da

P(Q)	
as	

(5-3)

0 ; otherwise

where f(a) is a Gaussian density function with the mean vector M f and the

covariance matrix Zf. The parameters Mf and Lf are to be estimated.
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(Mf - ca)f(a)da

f f(a)da
Qa

(5-5)

5.1 MAXIMUM LIKELIHOOD ESTIMATION OF p(a)

Givan the spectral response vectors X z , I - I t 2, —, N, of a set of mixed
pixels, the log likelihood of the occurrence of the given set of observation

vectors can be written as follows.

N
L = 109 i n=1 pm (Xi

=	 log f pm (X 1 1 a)p( a)da	 (5-4)
i n 	 i2a

In general, using the functional forms for p(a) that are given either in equa-

tion (5-1) or in equation (5-3), the parameters of p(a) that maximize L can be

obtained using optimization txhniques such as Davidon-Fletcher-Powell (refs. 8

and 9). If the functional form given by equation (5-3) is used for p(a), the

following maximum likelihood equations for the estimation of parameters of p(a)

that maximize L can easily be derived.

f apm (X i Ia)f(a)da	 f
M , 1	 a	 +	 a
f A 

A f pm(Xila)f(a)da

a

and

1	 'b (a - Mf l(a - Nf ) TPM (X j la)f(a)ds	 /  L
	

(a- Mf )(a• Mf1T^f(a)ds

Ef - 	 'D	 j PO (X1 ( alf(a)da	 A	 f f(alde
Qa	 'Aa

(5-6)

It is noted that in equations (5-5) and (5-6) the integrals need to be computed

for every spectral vector at each iteration.
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5.2 MAXIMUM LIKELIHOOD ESTIMATION OF
	

A
fm I

Since the logarithm is a convex upward function, a lower bound on L of

equation (5-4) can be Otained as

L ao L 1	(5-7)

where	 Ll X A(a)P(a)da	 (5-8)
a

and	 .(a) s	loglpm(X112)1	 (5-9)

If the functional form given by equation (5 .3) is used for p(a), the following

maximum likelihood equations for the estimation of parameters of p(a) that

maximize L I can easily be derived.

f aA(a)f(a)da 1 (Mf - a)f(a)datl	 A

Mf 	+	
a	

(5-10)
A(a)f(a)da	 f(a)de

	

a	 a

and

f f (a - M f)(a - Mf ) TA(a)f(a)da f a I • ( a

Ef	

• Mf )(a - Mf)T,f(a)da

s	 +

	

A(a)f(alda	
f2 

f( Oda
a	 a

(5-11)

It is observed that the use of equations (5-10) and (5-11) requires the

integrals to be computed once for every iteration.
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6. CONCLUDING SU14ARY

One of the important objectives in the processing of remotely sensed imagery

data is the estimation of the proportion of the class of interest in the image.

Agricultural imagery data usually have a field-like structure. from the analy-

sis of several images, it is observed that depending on the field size, a.sig-

nificant portion of the image contains mixed pixels (i.e., pixels containing

more than one class of objects). Techniques are currently being developed for

partitioning an image into regions of pure pixels and mixed pixels.

This paper addresses the problem of estimating the proportions of classes in

the mixed pixels. Relationships are developed between the moments of spectral

vectors of mixture pixels and the moments of spectral vectors of pure pixels of

different classes of objects as a function of the proportion of classes in the

mixed pixel. The probability density function p(a) of the proportion of classes

in the mixed pixels can be modeled either as a Dirichlet distribution or as a

normalized Gaussian surface in the region of interest in terms of unknown param-

eters. Given the spectral vector of a mixed pixel, the proportion of classes in

the pixel can then be estimated using p(a).

By modeling p(a) as a normalized Gaussian surface, expressions are developed

for obtaining the maximum likelihood estimates of its parameters using informa-

tion from the spectral vectors of a set of mixed pixels from the mixed pixel

region. These involve evaluation of integrals numerically. If the mixed pixels

contain two classes of objects, the computation can be considerably reduced by

transforming the spectral vectors using a transformation matrix that simultane-

ously diagonalizes the covariance matrices of the classes. Closed form expres-

sions are developed for the computation of the integrals when the covariance

matrices of the classes are equal.

Experimental results are presented from the processing of remotely sensed

agricultural imagery data. Two classes are considered. Class 1 is wheat and

class 2 is pasture. The mixture pixels contain wheat and pasture in different

proportions. The proportion of wheat in the mixture pixels is estimated using

E-1



equations (3-5), (3-6), and (3-15) with the dimensionality of the spectral

vector n where n = 2, 4, 6, and 8. The proportion of wheat in the mixed pixels

is also estimated using the true class labels of the six subpixels of a pixel

from the ground truth. Better proportion estimates are obtained for the value

of n = 4 or with the data from two acquisitions.

Expressions are developed for the estimation of parameters of p(a) based on the

r	 criterion of the minimum sun of the squares of errors, using information from 	 +

the spectral vectors and proportions of classes of a set of mixed pixels from

the mixed pixel region. Furthermore, the effect of the dependencies between

the spectral vectors of the subpixels of the classes on the moments of the

spectral vectors of the mixed pixels is considered in appendix B.
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APPENDIX A

ESTIMATION OF p(a) WITH THE CRITERION OF THE

MINIMUM SUM OF THE SQUARES OF ERRORS

The problem of characterization of a region of mixed pixels through the estima-

tion of p(a) using information from the spectral vectors of a given set of

pixels from the region was treated in sections 3 and 5. If the proportion of

classes in the mixed pixels of the given set are also known, the problem of

estimation of p(a) using all the available information (in addition to the

spectral vectors) is considered in this appendix. The estimates of the param-

eters of p(a) are obtained using the minimum sun of the squares of errors as a

criterion.

Let X., R - 1, 2, ---, N, be the n-dimensional spectral response vectors of the

given set cf nixed pixels. Let ai , i - 1, 2, ---, N, be the R-dimensional

vectors of proportions of classes in the mixed pixels. Given the spectral

vector Xi of a mixed pixel and p(a), an estimate for the proportions of classes

in the pixel is given by

fn COX iIa)p(a)da
J p(Xila)p(a)da
n
a

If the functional form of equation (5-3) is used for the probability density

function p(a), equation (A-1) can be written as

f ap(Xila)f(a)da

ai (A-2)f p(X i la)f(a)da

a

where f(a) is a Gaussian density function with the mean vector Mir and the

covariance matrix E f . The criterion of the minimum sum of the squares of

errors can be used for obtaining the parameters Mf and Ef of p(a). The sun of

the squares of errors, e, of the proportion estimates can be written as

follows.
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=e	 _ (oi - ai )T

if a is a parameter of p(a), differentiating E with respect to 8 results in

a

	

ai - ai )T ae
	 (A-4)

i=

From equation (A-2), we get

as	
f ap(X	 3W [f(a)Ida - ai f P(X i I a) -3" [f( a) ]do

i : a	
no	 (A-5)

ae	 f. p(X
i I a)f (a)da

Differentiating f(a) with respect to its mean vector M f yields

	

aff(
F ) = Ef1( a - Mf )f( a)	 (A-6)
f

Let 
vii 

be the elements of the matrix Ef 1. Differentiating f(a) with respect
to 

vii 
results in the following.

af(a)	 a	 _ (CL, _ 
M ) 2 f( a)

avii	
ii 	 fi

(A-7)

and.	 aft= [a 
ii - (ai - Mfi )( aj - Mfj)3f(a)

i^

Where aii are the elements of the matrix Ef and Mfi is the ith element of the

vector Mf . Substitution of equations (A-5), (A-6), and (A-7) in equation (A-4)

yields iterative equations (A-8) and (A-9), which are similar to maximum likeli-

hood equations (refs. 10 and 11), for the estimation of parameters M f and Ef of

p(a).

When there are only two classes in the mixed pixel, as shown in section 3, the

computation can be greatly reduced by transforming the spectral vectors using a

transformation matrix that simultaneously diagonalizes the covariance matrices

of the classes.

(A-3)
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APPENDIX B

EFFECT OF CORRELATIONS BETWEEN THE SPECTRAL VECTORS OF SUBPIXELS

ON THE MOMENTS OF SPECTRAL VECTORS OF MIXED PIXELS
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APPENDIX 8

EFFECT OF CORRELATIONS BETWEEN THE SPECTRAL VECTORS OF SUBPIXELS

ON THE MOMENTS OF SPECTRAL VECTORS OF MIXED PIXELS

In section 2, it is assumed that the spectral vectors of the subpixels are

independent. The purpose of this appendix is to take into account the correla-

tions between the spectral vectors of subpixels in developing expressions for

the moments of the spectral vectors of the mixture pixels. If the entire

resolution element were to consist of class i, the spectral vector X of the

resolution element can be written in terms of the spectral vectors of the

subpixels as

X = I Xij	
(B-1)

J=1

The mean vector Mi and the covariance matrix Ei of X can be obtained as

follows.

Mi	 E(X) = KMi	 ( B-2)

E i = cov(X)

• E i (xis - Mi)	 (xi3-M1)T
31	 J1

K

• E	 (xij - Mi)(x
ij

 - Mi) T +	 _ (x is - Mi)(xik - Mi)T
1	 31k1

I ksj

= KEi + K 	E L(xi^ - Mi)(xik
 - Mi)TJ	

(B-3)
k=1
k$j

If the spectral vectors of the subpixels are independent, the second term on

the ri ght-hand side of equation (8-3) becomes zero. Let

T

Zisr = (xis'xir)	 (8-4)

r
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Let E; z be the covariance matrix of the random vector Zisr, which can be

written as

Ei	 Eisr
E i, Z =

	

	 (B-5)
,T

E1
sr Ei

Qi	 Qi sr
Let	 EiZl =	 (B-6)

T
Qi sr	 Qi

If the random vectors x ir and x i s are Gaussian with mean Mi and covariance

matrix Ei, the conditional probability density p(xislxir) is normal with mean

vector 
M
i - QisQisr(xir - Mi) and covariance matrix Qi l . Now consider

.)(xis - Mi ) T
J	

f (xir - Mi) [f(xis -Mi )Tp(xis lxir	
sJ

)dxip(xir)dx
E[(xir - Mlr

(B-7)

Using equation (8-7) in equation (B-3) yields

E i KE1 - Ei i L QisrQls	 (B-8)
r=1 s=1

s#r

It is assumed that the covariance matrix Eisr of radiance vectors x i s and xir

can be written as

Ei sr a 
asrEi
	

(B-9)

where a s,, is a constant which may depend on the spatial distance between the

rth and the sth subpixels. Using equations (8-5), (B-6), and (8-9) in

equation (8-8) yields

Ei = KE1 

*r=1 i a
sr Ei	(B-10)

Sol
s*r
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_ i aim,
i=1

(B-14)

The quantity within parentheses in equation (B-10), in general, depends on the

number of subpixels and the spatial arrangement of subpixels or on the shape of

the region of a class in a resolution element. Let 6 be a quantity represen-

tative of the shape of a region of a class in a resolution element; then,

equation (8-10) can be written as

E i = KLi + 6KEi	 .

_ YK ti
	

(B-11)

where	 v = (1 + 6)	 (B-12)

If there are R-classes and K i subcelis of each class in a resolution element,

the spectral vector of the resolution element can be written as

K

X A ^ xis
 J=1

The mean vector M of X can be obtained as follows. Consider

K

M = E(X) _	 E(xi^)
in Jul

_ = Kimi

Assuming the spectral response vectors of subpixels of different classes are

independent, the covariance matrix of X can be obtained as follows.
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W

	

(	 K	 K

	

= cov(X) = E ) 	(xi3 - M;)	 (xi' - Mi)T
=	 i	 =	 J

'K K

j EIr
	

I

_	 (xij - Mi)(xii - 
Mi)TllJ1= ^	 t=1 L

_	 (1 + 5 i )K i Zi
i=1

vi K. i
= v K `iJ ul

_ j a i a 
i 
r i

Jul
(8-15)

where	 ai vi	

(8-16)

vi=(1+6i1'

and d i is a quantity representative of the shape of the region of i th class in

a resolution element. A comparison of equations (2-7) and (3-15) shows that

the effect of correlations between the subpixels of classes is to introduce the

constants di.

NASA•JSC

s-a


	1981020972.pdf
	0030A02.JPG
	0030A03.TIF
	0030A04.TIF
	0030A05.TIF
	0030A06.TIF
	0030A07.TIF
	0030A08.TIF
	0030A09.TIF
	0030A10.TIF
	0030A11.TIF
	0030A12.TIF
	0030A13.TIF
	0030A14.TIF
	0030B01.TIF
	0030B02.TIF
	0030B03.TIF
	0030B04.TIF
	0030B05.TIF
	0030B06.TIF
	0030B07.TIF
	0030B08.TIF
	0030B09.TIF
	0030B10.TIF
	0030B11.TIF
	0030B12.TIF
	0030B13.TIF
	0030B14.TIF
	0030C01.TIF
	0030C02.TIF
	0030C03.TIF
	0030C04.TIF
	0030C05.TIF
	0030C06.TIF
	0030C07.TIF
	0030C08.TIF
	0030C09.TIF
	0030C10.TIF
	0030C11.TIF




