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PREFACE

The Agriculture and Resources Inventory Surveys Through Aerospace Remote

Sensing is a 6-year program of research, development, evaluation, and

application of aerospace remote sensing for agricultural resources, which

began in fiscal year 1960. This program is a cooperative effort of the

National Aeronautics and Space Administration, the U.S. Agency for Inter-

national Development, and the U.S. Departments of Agriculture, Commerce,

and the Interior.

The work which is the subject of this document was performed within the

Earth Resources Research Division, Space and Life Sciences Directorate, at the

Lyndon D. Johnson Space Center, National Aeronautics and Space Administration.

Under Contract NAS 9-15800, personnel of Lockheed Engineering and Management

Services Company, Inc., performed the tasks which contributed to the completion

of this research.
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1. INTRODUCTION

1.1 BACKGROUND—,—

This report describes the results of the Domestic Crops and Land Cover classi-
fication and clustering study on area estimatton. The objectives of the study

are as follows-,

Task 1* To understand the current crop area estimation approach of the Econom-
ics and Statistics Service (ESS) of the U.S. Department of Agriculture
(USDA) in terms of the factors that are likely to influence the bias
and variance of the estimators.

Task 2 k, To develop and evaluate alternative clustering, classification, and
regression methods that could be inserted into the evrrent ESS
estimation procedure.

Task 3c To begin studies that may lead to an improved estimation procedure.

Task I was intended to support Task Z by providing a working understanding of
the current ESS crop estimation approach. Such understanding is needed in
designing appropriate experiments for evaluating and comparing alternative
components.

Consideration of these alternative methods in Task 2 was principally motivated
by two factors, First, it was believed that a more theoretically based clus-

toring algorithm would be appropriate. In particular, the CLASSY algorithm
developed at the Lyndon B. Johnson Space Center (JSC) had performed well in
tests and was the candidate clustering replacement. CLASSY is an adaptive max-
imum likelihood clustering algoritbm which models the overall data distribution
as a mixture of multivariate normals. In addition to its clustering proper-
ties, CLASSY can also be used to provide direct area estimates. A second fac-
tor was the belief that the Editor procedure should ideally use independent

data sets for developing the regression equation and evaluating area esti-

mates. One way to do this would be to divide the available data into training

and test portions. Alternatively, this could be accomplished by generating

quasi-independent segments for regression using a jackknifing technique. The



Mean Square Error (MS) classifier lends itself well to this use, as it makes
no parametric assumptions; thus, there are fewer parameters estimated with the
algorithm, implying more stable parameter estimam;to, It was felt that, due to
this robust nature, the MSE classifier would be more extendible to an inde-

OL	 pendent test set.

1.2 CURRENT USDA PROCEDURE

The current USDA acreage estimation procedure comprises registration and
digitization of ground truth and raw Landsat data, development of an estimator
on the portions of the area of interest for which ground truth is available,

and application of that estimator to the whole area of Interest. This study is
concerned with the procedure used in developing the estimator.

The acreage estimation pro(edure involves the followin g steps:

a. A registered raw data se l: for the area of interest for which ground truth

is available is selecte ,7 . The data could be unitemporal or multitemporal,
and, usually, both are studied. The data set is separated by crop type.

It is optional to remove border pixels, poorly reoistered fields, poorly

reported fields, and pixels with extreme spectral values relative to the
vest of the crop type.

b. Each ground truth crop is clustered separately, yieldino a group of
clusters with known cluster labels.

c. Several options are excercised and parameters specified. Among these are:

(1) specifying the minimum and maximum number of clusters per crop type

(2) specifying separability of clusters in specteal space

0) specifying percent convergence when combining clusters

(4) specifying a priori probabilities

(5) seeding clusters

(6) pooling the resulting clusters

(7) dropping clusters with small populations

(8) not clustering crops with sifiall populations



d. After the training set has been clustered, it is then classified; and, for

each crop, a regression Is performed between the ground truth and the num-

ber of pixels *;Iassifled into that crop class.

e. Based on the r2 of the regression, the percent correctly classified, and the

time available, the analyst may repeat earlier steps with different
parameters or options, or may drop crop types being clustered in an effort
to increase the r2 and the percent correctly classified. Thus, for each

crop, a regression estimator is obtained which will predict the amount of
ground truth present in the area of interest when that area is classified.

143 STANDARIZED PROCEDURE

For this study, it was necessary to standardize the use of the USDA crop
estimation procedure so that alternative clustering and classifying components
could be evaluated. The following options and parameter values were

recommended through discussions with USDA analysts;

a. Specifying a priori probabilities.

b. Clustering only crop types with a minimum of 200 pure pixels available.

c. Clustering pure pixels only.

d. Removing pixels with extreme Spectral values relative to others of the same

ground truth crop type.

o. Specifying a minimum and a maximum number of clusters per crop type (from 1
to 15) and a minimum cluster population (from 150 to 200 pixels).

f. Specifying separability of clusters in spectral space to be in the range of
0.6 to 0.8.

g. Specifying convergence when combining clusters to be within the range of 95
to 99 percent.

With these recommendations and a desire to choose an exact procedure, the USDA
Editor software was exercised on data provided by the USDA. For this data set,
a priori probabilities for each crop clustered were specified as the proportion

of that crop present in the training set.

4
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Clustering was done on pure pixels only, and pixels with extreme values were
omitted (clipped) from the clustering process. One analyst performed all
clipping in this study for consistency. The clipping limits used for each crop
type for each part of this study can be found in appendix A. To ensure a
minimum of 160 to 200 pixels per cluster, the maximum number of clusters was
specified as the number of pixels divided by 100, with no more than 15 clusters
allowed. The minimum number of clusters was specified to be the maximum number

of clusters divided 
by 3. A separabililty of 0.76 was used and was vrrely

reached before the clustering procedure stopped due to reaching the specified
minimum number of clusters. A convergence of 95 percent provided adequate
clustering without unduly increasing the computer time.

All other options in the standardized procedure were as recommended by the USDA
analysts. All files generated during this study on the USDA Editor were
archived on tape and will be available for at least I year. A list of these
files is presented in appendix E. Comparison of results from this standardized
procedure with the M Missouri analysis results are presented in section 3.



{ 2.	 DATA SET

1

F =

2.1	 DESCRIPTION

The Landsat data used in this study included 33 segments in northwest Missouri,

each having an area of approximately 1 square mile (259 hectares). 	 These

r, segments were all contained in strata 10 (50 to 100 percent agriculture) and

had little cloud cover.	 Data were available for two dates: 	 May 14 and

f August 3,	 1979. An additional 12 segments from the August date were avail=able

but not analyzed because of heavy cloud cover. The counties represented in the

Missouri data set are listed in table 2-1. 	 The ground truth proportions in the

f

33 analyzed segments are given in table 2-2

TABLE 2y1.- SEGMENTS PER COUNTY IN

MISSOURI DATA SET
}

Number of
i

County segments

I
Daviess 5 t'
Harrison 5 1

i
Putnam 2

Schuyler 3

Mercer 3 J'
c

Caldwell 3i

Gentry 4 r

Sullivan 4'

Linn 5

Livingston 5

Grundy 3

De Kal b

-3

Total 45

2-1_
^r
a
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TABLE 2-2. , GROUND TRUTH PROPORTIONS OVER 33 SFGM6NN

Crop

Mixed Pure*

Hectares	 Pi xels	 ProportionHectares Pixel s Proportion

Corn 524.7 1552 0.117 211.5 651 0.101

Winter
wheat 114.0 452 .034 62,4 192 .030

Permanent

pasture 1321.5 3934 .296 021.3 2527 .392

Soybeans 1073.2 3299 .245 576.9 1773 .275

Dense
woodland 355.3 1136 .054 167.0 514 .080

Other

hay 304.6 964 .072 192.4 592 .092

Other 601.5 2059 .153 64.2 194 .030

Total 4374.7

x

13476 1.000 2031.5 6443 1.001

*Pure = Poorly regi stered, poorly reported, and border pixel s removed.

0 i



i	 1

' The major crops in this study are corn, soybeans, and pasture, which represent

about 12, 25, and 30 percent of the crops present in each segment, respec-

tively.	 Three additional crops are also studied; 	 winter wheat (3 percent),

dense woodland (8 percent) and other hay (7 percent). 	 About 15 percent of the

segments consisted of other craps, mainly wasteland. 	 For a given crop, the

minimum number of pure pixels considered for analysis was 200. 	 The crops

lumped together as "other" had well below 200, and other hay, dense woodland,

and winter wheat were marginal. 	 The! best performance ('as measured by percent

correctly classified) in most cases was obtained for permanent pasture, in
I

which over 2500 pure pixels were available for training.

i
Listed in table 2-3 are the number of pure pixels present in ground truth in

' each of the 33 segments used in this study, broken down by crop type. 	 The

sample mean and sample standard deviation are also listed.

The Missouri data set provided by the USDA was available at the dolt, Beranek, 1

Newman (B8N) remote processing center in Boston, where the USDA Editor software

also resided.	 The same Missouri data set was placed on tape and sent to the

Laboratory for Applications of 'Remote Sensing (LABS) at Purdue University.

Software for alternate clustering and classification used in this study was

located at LARS. 	 The Missouri data sets at both BBN and LARS were identical.

The following information foreach pixel was provided in the data set:

a.	 four channel values from May 14

b.	 four channel values from August 3

c.	 ESS crop code 9

d.	 segment number

e.	 tract and field identification
9

f.	 4andsat row and column

g.	 flag indicating a border pixel

i

I 2-3



TABLE 2-3,,— PURE PIXELS OF GROUND TRUTH BY SMENT

$aent
nuI el

Corn
Winter
wheat

Permanent
pas 41re

Soybeans
Dense

Weodland
Other
hay

6034 5 7 45 13 0 34

6085 0 0 165 22 0 72

6015 31 19 30 81 0 8

4034 0 0 0 0 0 0

6095 0 U 310 0 r	 0 0

6073 27 0 41 17 77 33

9046 0 0 99 0 47 36

6064 0 7 46 76 40 0

6065 29 3 28 1 0 15

6095 0 0 0 0 0 0

9061 86 0 0 183 0 0

9036 5 3 36 125 0 0

6053 0 0 40 104 4 4

50'" 12 0 0 171 2 35
9057 tt 11 108 17 14 45

9037 17 26 79 67 2 2

9062 8 0 251 18 30 16

9Ob6 0 8 0 79 0 0

6045 5 0 #	 340 13 ^	 0 U

9041 69 43 42 152 3 0

6046 53 0
7

u 62 0
9097 6 0 12 82 1 62

9096 37 0 0 26 39 28
6040 3	 2 124 22 8 55

b050 0 ► 	 0 U 10 3 6

4035 51 5 84 125 0 34

9016 93 0 0 86 0 0

9051 0 35 145 9 115 0

6063 22 2 31 75 16 0

6050 34 0 182 0 0 79

9052 39 19 26 137 0 0

6059 0 0 115 18 44 14

9017 22 13 141 46 7 10

Total 651 192 2527 1775 514 592

Sample
mean 19.7 5.8 76.6 53.8 15.6 17.9

Sample
$0* 25.2 10.8 90.1 55.8 27.3 23.4

4

r
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2.2 PHILOSOPHY OF EXPERIMENTS

The experiments were designed to understand the performance of Editor and to

compare performance when alternative components are inserted. To motivate the

analysis, two main variables X and Y can be considered, where X is the crop

acreage derived from the classifier (or the number of classified pixels,

depending upon choice of units) and Y is the corresponding ground truth acreage

for the segment. In the current method of analysis, Y is regressed onto X, as

if X were a fixed variable. Also, the regression is developed on the training

set instead of an independent sample. Certain subtle and often overlooked

features of the classified variable X are not accounted for in the current

method of analysis. In particular, the values which X assumes are a function

of

a. The observed spectral values and ground truth labels of the segments used

to calibrate the classifier (training set). This implies that X is a

random variable since the training set is picked at random.

b. The number of observations in the training set. The larger the training

set, the less sensitive the classifier is to the random selection process

for picking the training set.

Now let
X!,q'...,X

1
X1,X2,...,XN

2

be two sets of classifier-deri ved acreages over two sets of randomly selected

segments. Both sets of segments are assumed to have been picked from the same

population. Ideally, Yi regressed onto X!, i = 1, • . • ,N I , should be "about" the

same as Y; regressed onto X, i ='1,..,N2 . The following conjectures arise;:

a. If Xi is obtained by classifying the training set and X^ is obtained by

classifying an independent set, the regressions wil l be different for

"small" training sample sizes.

b. If X'
1 	obtained by classifying the training set and X is obtained by

d classifying an independent set, then the XI-values will be more closely

r	
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correlated with the Yi-values than will be the X1-values. This point has

bearing on the relevance of the r2 values obtained by Erditor and reported

by the USDA.	 {

co If X i ' is obtained through a jackknifi ng procedure and X^ is obtained by

classifying an independent set, then the regressions of Yi onto X, and Yi

onto Xi will be "about" the sane. This conjecture is probably classifier

dependent and is one of the reasons why a linear classifier was selected

for study.

2.3 DESIGN DE: EXPERIMENTS
F

In keeping with the conjectures presented in the Philosophy of Experiments

i

	

	 section, the design of experiments was done in three levels. The first level

consisted of training and testing on all 33 segments. This corresponds to the

current USDA estimation procedure. In the second level, the data set was

partitioned into a training set and a test set to assess the performance and

the validity of the current USDA estimation procedure. Jackknifing techniques

were used in the third level as a means of obtaining independent test sets

f
	 which were larger than those obtainable by using a single training-and-test

j

	

	 partitioning of the data. This experimental design was strongly influenced by

the belief that the sampl e of segments chosen to obtain estimates is a critical"

part in the whole estimation process.

r

Many of the experiments were roan in parallel as a means of comparing alterna-

tive components. That is, the standardized USDA procedure was first run on a

data set, and the procedure was repeated with the only change being the use of

the CLASSY c1A1stering algorithm to generate cluster statistics which were then

inserted into the Editor system. Then a corresponding analysis was performed

using the MSE classifier software. One experiment was designed for the USDA

Editor to specifically evaluate one particular method of estimation,' namely

jackknifing. A separate jackknifing experiment for the MSE classifier was

designed. The experiments are described below in further detail and, unless

explicitly stated, all 'analysis is with multitemporal data.'

2-C
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2.3.1 TRAINING AND TESTING ON ALL 33 SEGMENTS

The current USDA method of training on a sample and developing the regressions

on the training set was performed using all 33 segments. The following

comparisons were made:

a. Comparison of unitemporal versus multitemporal - The entire estimation

process was carried out for unitemporal data and for multitemporal data

within the current Editor system. Summary statistics were collected. The

Hotelling's T2 test was used to determine if multitemporal data produced

significantly better estimates than unitemporal	 This test is described in

detail in section 3.1.2.

b. Comparison of the current standarized USDA procedure versus the CLASSY
clustering algorithm - The entire estimation process was performed using

the standarized USDA procedure. The process was repeated but with CLASSY

cluster statistics inserted into the Editor system. Summary statistics

were collected. The Hotelling's T2 test was used to determine if the use

of CLASSY produced significantly better estimates on the training set than

the current USDA procedure.

c. Comparison of the current standarized USDA procedure versus the MSE
classifier - The entire estimation process was performed using the MSE

classifier software. Summary statistics were collected. The Hotelling's
T2 test was used to determine if the use of the MSE classifier produced

significantly better estimates on the training set than the current U =SDA
procedure,

2.3.2 TRAINING ON 25 SEGMENTS AND TESTING ON 8 SEGMENT;

The data set was divided into two sets: a training set of 25 segments used to

develop a classifier and a test set of 8 segments independent of the training
set. The classifier developed on the training set was used to classify both
the training and test sets. Regressions for the six crops of interest were
developed on the training set and also on the test set. This was carried out

with the standardized USDA procedure and again with CLASSY as a component of

the Editor system, and finally with the MSE classifier software. Summary

2 -7



statistics ve presented in later sections. The following tests and
comparisons were made;

a. For each of the three classification choices, an F-test was performed to
determine if the regression line developed on the training set for a given
crop was equal to the regression line developed on the test set. (A
preliminary test for homogeneity of variance must be carried out first.)
This test indicates if the regression line developed on the training set is

extendible to the test set, A discussion of this test appears in
section 3.2.1.

b. The current USDA clustering procedure was compared with the CLASSY cluster-
ing algorithm. The Hotelling ' s T2 test was performed to determine if the

use of CLASSY produced significantly better estimates on an independent set

than the USDA procedure, The estimates for the independent set were ob-
tained from th e regression line, which was developed on the training set.

c. The current USDA classifictition procedure was compared with the MSE classi-

fication. The HotAlli.nlq's T2 test was performed to determine if the use of

the MSE classifier produced significantly better estimates on an indepen-

dent set than the IISDA proceduro.

M.3 JACKKNIVING

Jackknifing techniques were used to simulate -the procedUre of training on a
sample and developing regressions on an independent set. The following
experiments worn condui^tpd.

a. Oackknifinti within tho Fdi tor system

By repeating the division of the data set into training and test portions
so that all segments appear exactly once in a test group, the combined test

groups from all repetitions represent a quasi-independent test set.
Summary statistics and regressions were obtained from this quasi-indepen-
dent test set and were compared to results obtained when training and
testing on all 33 seqments. Details of this j ackknifing are given in a
later section.



r.

b. Jackknifing, with the MSE classifier

The data set was divided into sets consisting of 25 and 8 segmentso The
set of 25 segments was further divided into a set of 24 training segments
and d set of I test segment. This division of the 25 segments was repeated
so that each of the 25 segments appeared exactly once as a test segment.
These test segments were combined to form a quasi-independent test set of
25 segments. The Hotelling ' s T2 test was performed to determine if the
regressions developed on the quasi-independent test set produced si qnifi-
cantly better estimates on ^n independent set than did the regressions
developed on the 25 segments without jackknifing. For each crop, an F-test
was performed to determine If the regression line developed on the quasi.

independent test set was equal to the regression line developed on an
independent test set * Details of this Jackknifing appear in section 5.6,
Cross -Validation Procedure,

2.4 SELECTION OF TRAINING A40 TEST SEGMENTS

Before -training and test segments were selected, the geography, strata
boundaries, and the Landsat imagery of the area covered by the 33 segments were

studied. These segments, when plotted on a topographic map of Missouri, covered
a rectangular area rou ghly 100 miles (160 kilometers,) oil a side. This
rectangle represented about one-eighth of the land area in Missouri * About
three-quarters of the segments were 800 feet ( 244 meters) in elevation. The
remaining segments were scattered around the perimeter at 1000 feet
(305 meters).

The geography was rolling. No major urban areas were nearby. A copy of the
topographic map is included in appendix R. Some cloud cover was at the edge of
the scene, but very little was over the segments. A fairly uniform color
distribution prevailed.

County maps with strata boundaries were provided by the USDA, with the 33 seq-
ments identified on them. All 33 segments were in strata 10. Very few were

2-9



near the strata boundaries, and the segments were evenly distributed over the

counties (see table 2-1).

There were, then, two factors in the choice of training and test segments, both

related to geography. It is assumed that if soil characteristics vary over the

region, they will be most different between segments that are widely separated

geographically. Also, segments located at the extreme edges of the re g ion were
slightly higher in elevation, Therefore, to obtain representative training

segments and representative test data, each g roup of segments should be

distributed uniformly over the geographic region covered by all 33 segments

Eight independent test segments were chosen by laying out a uniform grid with

eight boxes over the topographic map. One segment from each box was randomly

selected, The remaining 25 segments constituted the trainin g group. Listed in
tables 2-4 and »5 are the segment number and ground truth crops present (in

pixels) for the test and training grou ps, and the comparisons with all
33 segments.

These groups wore found S ,itisfactery, since they are both fiirly representative
of the total data set of 33 sopment, And still provide some variation.

To further validate that the r5 training segments are representative of the

entire data set, the porcent of the training set correctly classi fied when
training with 2 r, sentl if knt = ind wi th kill ^i qoq,cants t 1.rn pr;3sont.ed in table 2 -6.

The similarity of these results are i ndicative that the 25 traini ng segments

are representative.

In the Editor jackknifing experiment, it was nece ssary to partition the data.

i nto 11 groups of 3 segments each. This was accomplished by laying a grid wi th

three boxes over the topographic map such that 11 segments fell into each box.

Three segments were then chosen randomly, one from each box. This was repeated

10 times, obtaining 11 test groups of 3 segments each. Each corresponding

training group was composed of the remaining 30 segments. Mean values for each

of the 11 test and trainin gk	 g groups can be found in appendix 0.

t
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TABLE 2-4.- PURE PIXELS OF GROUND TRUTH 114 EIGHT TEST SEGMENTS

Segment no, Corn Winter
wheat

Permanent
pasture

Soybeans
Dense

woodland
Other

hay

5038 0	 0 0 A 0	 0
5048 53	 0 7 0 62	 0

5059 0	 0 115 18 44	 14
5098 0	 0 310 0 0	 0
9017 22	 13 141 46 7	 10
9037 17	 26 79 57 2	 2
9045 0	 0 99 0 47	 136
9052 30	 19 26 137 0	 0

Total 131	 58 777 258 152	 62
H X

Mean of 8 1614	 7.2 97.1 33,5 20,3	 7.8
Mean of 33 19.7	 5.8 75,5 53.8 15.5	 17.9

SD of 8 20151	 .10.6 100.4 48.9 25,1	 12.6
SO of 33 25:2	 10.8 90.1 $5.8 27.3	 23,41

f



Segment no. Corn Winter
wheat

Permanent
pasture Soybeans Dense

woodland
Other
hay

60115 31 19 30 61 0 8

6034 5 7 45 13 0 38

6035 61 6 54 125 0 34

6040 9 2 124 22 R 55
6045 6 0 340 13 0 0
60,50 34 0 102 0 0 79
6053 0 0 40 104 4 4
6058 12 0 0 171 2 35
60601 0 0 0 10 3 6
6063 22 2 31 76 16 0
6064 0 7 46 76 40 0
60165 29 3 28 1 0 15
6073 27 0 41 17 77 33
6085 0 0 165 22 0 72
6095 0 0 n 0 0 n
t1061 n6 0 0 183 n 0
9036 5 3 36 1?5 0 0
9147 59 43 42 152 3 0
9051 0 35 145 9 115 0
9057 0 01 108 17 14 45
9016 93 0 0 85 0
9062 8 0 251 18 30 16
9066 0 G 0 79 0 0

9096 37 0 0 26 39 28
9097 6 0 12 82 1 62

Total 5201 134 1750 1507 352 530

Mean of 25 20.8 5.4 70.0 60.3 14.1 21.2
Mean of 33 19.7 5.8 76.6 53.8 15.6 17.9

SD of 25 26.5 11.0 87.8 57.22 27.9 25.3
SD of 33 25.2 10.8 90.1 55.8 27.3 23.4

4

TA84E 2-5.- PURE PIXELS OF GROUND TRUTH IN 25 TRAINING SEGMENTS
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Average 0.05 a	 0-1-
Crop ground MSE A Percent

truth 0=0.1 a-0.2 0.0.3 6=001 0x002 K-3

Corn 15.909 68.165 0.1 231 167 127 177 122 AA

.15 103 74 57 7 q 54 40

.2O 58 42 32 45 31 22

Winter 4.365 24.577 0.1 1104 797 CtIE^ R45 58c1 421
wheat

.1q 01 355 270 376 ^	 258 `	 1A7

^^..^.^
.20 '276 200 152 212 14;5 10C

Permanent 40.047 320.887 0.1 172 124 95 132' 90 66
pasture .15 77 55 47 rq 40 29

.20 43 31 24 33 i	 23 17

Soybeans 32.522 128.773 0,1 105 76 58 80 55 40

.15 47 34 26 36 25 18

.20 27 19 15 20 14 10

Dense 10.768 83.933 0.1 620 448 241 475 326 236
woodland

.15 276 199 152 211 145 105

.20 155 112 Ab 119 82 59

Other hay 9.228 92.3.70 0.1 929 670 511 711 488 354

.15 413 298 228 316 217 158

.20 233 168 128 178 122 89

2.5 SAMPLE SIZE ESTIMATES

Table 2-7 gives the sample sizes needed to detect different amounts (10, 15,

and 20 percent) of deviation from the average ground truth at various levels of

type I error (a) and type It error (0) for each of the six crops. For each

crop and for a given amount of deviation, the sample size was ohtained by

solving two simultaneous equations which relate the type I and type It errors

to the sample size and the critical value. The equations were based on the

standardized normal distribution.

TABLE 2-7., UNIVARIATE SAMPLE SIZE ESTIMATES



Table 2-8 gives the sample sizes needed to detect different amounts (10, 15,

and 20 percent) of deviation from the ground troth mean vector at type I error

(a- 0.05) and various levels of type II error (a) when all six crops are

considered simultaneously. For a given amount of deviation, the sample size

was obtained by solving two simultaneous equations which relate the type I and

type II errors to the sample size and the critical value. The equations were

based on central and noncentral Hotelling's T 2 distributions.

TABLE 2-8.- MULTIVARIATE SAMPLE SIZE ESTIMATES

4 percent « = 0.05

0. 1 0=0.076 0=0.187 0=0.220 0=0. 295

46 36 34 30

0.15 5=0.083 0=0.184 O 0.264 t=0.367

Or. 4 20 is 16

0.20 ^=Q-11

16
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3. EVALUATION OF STANDARDIZED USDA PROCEDURE

3.1 ANALYSIS RESULTS FOR TRAINING AND TESTING ON 33 SEGMENTS

3.1.1 COMPARISON WITH USDA RESULTS

In tables 3-1, 3-2, and 3-3 are listed the omission error, the commission

error, the residual MSE, and the r 2 of the regression for each crop from runs

made with the standardized procedure and all 33 segments for training (columns

headed JSC). Also included (when available) for comparison are figures provided

by the USDA from similar runs made by USDA analysts (columns headed USDA)-.

The percent correctly classified is equal to one minus the omission error.

From the omission and commission errors, it is apparent that the August acqui-

sition provided better results than the May acquisition. In section 3.1.2, a

multivariate statistical test was performed to determine if multi temporal data

provided significantly better estimates than the August data.

3.1.2 NOTELLING'S T2 TEST COMPARING UNITEMPORAL AND MULTITEMPORAL ESTIMATES

To compare the performance of the standardized USDA procedure using different

types of data, namely unitemporal and nultitemporal, a criterion to measure the
performance must first be defined. The criterion adopted in this study is a

vector consisting of the absolute differences between the ground truth and the

regression estimate for each of the six crop types of interest. Multivariate

statistical analysis techniques have been applied, because the major objective

is to evaluate the performance of the procedures in classifying and estimating

the crop hectarage of all six crop types simultaneously. To compare the

unitemporal and multitemporal results, a test is made of the equality of the

two mean vectors of the absolute differences (vectors of means of the absolute

value of the differences.) If the hypothesis of equal mean vectors is

rejected, the type of data yielding a smaller mean vector of absolute dif-

ferences between the ground truth and the regression estimate is preferred.`'



Crop
r2

Percent
correct error

Omission Commission
error

Residual
MSE

JSC USDA JSC USDA JSC USDA JSC USDA JSC USDA

0. 2 0.37 0.52 0.43 0.97 0.55 0.47 197.8Corn 0.48

Winter
wheat .27 .39' .34 .30 .66 .70 .68 .,42 28.8

Permanent
pasture .74 .75 .72 .73 .27 .27 .52 .44 391.5

Soybeans .75 .75 .74 .74 .,26 .26 .37 .29 214.0

Dense
woodl and ,44 .44 .31 .34 .68 .66 .51 125.8

Other hay .03 .18 .08- .12 .92 .88 .79 .73 111.4

A,

TABLE 3-1.- EDITOR MULTITEMPORAL PERFORMANCE MEASURES FOR

TRAINING AND TESTING ON 33 SEGMENTS

I

Crop
r2

Percent
correct

Omission
error

Commission
error

Residual
MSE

JSC USDA JSC USDA JSC USDA JSC

.,..

USDA JSC USDA

Corn 0.80 0.82 0.73 0.67 0.27 0.33 0.37 0.24 68.2'

tinter
wheat .38 452 .29 .34 .71 .66 .56 .44 24.6

Permanent
pasture .79 .80 .79 .75 .21 .25 46 .36 320.9

Soybeans .85 .85 .79 .78 .21 .22 .33 .23. 128.8

Dense
woodland .62 .65 .47 .47 .53 .53 .54 .44 83.9

Other hay . 20 .48 .22 .32 .78 .68 .60 ..q 2 92.4

TABLE 3-2.- EDITOR AUGUST PERFORMANCE MEASURES FOR

TRAINING AND TESTING ON 33 SEGMENTS



TABLE 3-3.- EDITOR MAY PERFORMANCE MEASURES FOR

TRAINING AND TESTING ON 33 SEGMENTS

Crop
r2

Percent
correct

Omission
error

Commission
error

Residual
MSE

JSC USDA JSC USDA JSC I USDA JSC I	 USDA JSC	 USDA

Corn 0.07 0.35 0.26 0.18 0.74 0.82 0.76 0.58 313.4

Wi nter
wheat .01 . 12 .02 .09 .98 .91 .88 .66 39.0

Permanent
pasture .58 .74 .68- .77 .32 .23 .51 44 648.9

Soybeans .61 .63 .67 .72 .33 .28 .52 .42 326.4

Dense
woodland .44 .,44 .33 .24 .67 .76 .65 .53 125.2

Other hay .05 .20 .16 .19 :84 .81 .64 .64 109.1
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The hypothesis is now formulated and tested as	 follows;

Let

VAl 'S1

uA2 u[32

4 `°, uA = uA3 # uD =
11B3 I

I 'M x B4

^t uA5 uE35

Xj I'afi x

where

I'M 	 =	 the ir,ean of the absolute difference between the ground truth and

the regression estimate of crop i from the USDA procedure using

mul ti temporal	 data,

L

Bi =
	 the mean of the absolute difference between the ground truth and the

regression estimate of crop i from the USDA procedure using unitemp-

w oral	 data,	 (crop :I is corn; crop 2 i s winter wheat; crop 3 is permanent

pasture; crop 4 is soybeans; crop 5 is dense woodland; crop 6 is other

hay.

It is desired to test

HO:
	 ! 'A 1 'D	 =

H1	 PA -
UD	 O	

^2)

r

It is assumed that a random sample of 33 segme nts wa s chosen.	 Cla ssif icat ion
has been performed; and ground truth, Gl-assification results, and regression

estimates were obtained for each of the 33 segments.	 Let

YIa YAli YBli

Y2 YA2j Y52j

Y3a
A YA3i

A
yD3j

Y,	 = Ya	
Ai

_ Y
B,1

_ ;	
J	 1,2,.- . ,33	 (3)

Y43 YA4j Y54a

y 5i YA5j Y55j

iv

r Y6
A

YA6j
A

6jj

F
3-4



where

Yi
j
	 the ground truth . of crop i in segment j

r	 YAij	 the regression estimate of the ground truth of crop i in segment j from
the USDA procedure using multitemporal data

I	 YR13 = the regression estimate of the ground truth of crop i in segment j from

the USDA procedure using unitemporal data, i_ i,•••,

To test the hypothesis, the vectors formed are
i

^	 IY	 ^ Y	 I ^ IY	 Y	 Iw	 1^	 AIj	 1j	 B1j
I

	

Y2j	 YA2j	 Y2j - YB2jiA

	

IY3j " YA3j I 	 IY3j 	 Yt33j I
a	 dj	

j	 I, 0,•,33	 (4)

	

IY4j _ YA4ji _ IY 4i	 Y^4jl

1
^ 	 .IY5j - YA5j

.I
 - 

IY5j 	Ya5j l 	 Lj

r	

`	
A	

A	

5

	

IY6j _ YA6j I 	 IY6j 	 YI16j

The Notelling's T2 testing statistic is given by
i	

T2	
N d'S-1

where
r

N = sample size
N

a - 
N	

da	 t
1

Sd = the sample variance-covariance matrix of dj

The computed T 2 = 44.3324, and T20.05 (6,32) = 17.4. Since T2 > T20.05 (6,32)1

we reject H0 : P A - p B = 0 at the 0.05 level of significance and conclude that

the mean vectors of absolute differences are not the same for multitemporal and

unitemporal data: And since

r`
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a

	

-5.3ar39	 0

	

-0.40394	 a

	

0.81182 < 0	 (6)

	

-3.14828	 0

	

1,89091	 0

	

-1.14818	 O

it indicates that the regression estimates obtained from multitemporal data

seen to be closer to the ground truth for all crop types than the regression	 o

estimates obtained from unitemporal data. It is therefore expected that

multitemporal data will produce better estimation results.

3.2 EVALUATION ON AN INDEPENDENT TEST SET

I	
__

3.2.1 TRAINING ON 25 SEGMENTS AND TESTING ON 8 SEGMENTS

One of the purposes of this study was to evaluate how well a classifier and the
regression equations which wooe developed on the trainin g set performed on an

independent test set. Of the 33 segments available for analysis, 8 were choseni
as a test set. The remaining 25 segments were then used in the standardized

USDA procedure to train a classifier and to develop the regression equations

for the six crops being studivd. Performance meafiures of this classifier on 	 I
the 25 training soqmonts and on the 8 test segments are riven in table 3-4.

r	 Also listed in this table are the r 2 1  (r == the correlation coefficient) and

the regression MSE's for each crop in both sets of segments. This table shows
that the training set had lower omission and commission errors for each crop
than did the test set, with the exception of other hay. Also, the traininq set
yielded higher r2 's than the test set, with dense woodland as the only
exception. Both dense woodland and ether hay are considered minor crops in

r

thi's study, Finally, the overall percent correct is 57.70 for the training set
as compared to 42.00 for the test seta }

To determine wh+ether the regression lines fitted to the 25 segments in the

training set were appropriate for predicting ground truth in the 8 independent

test segments, a two-stage F-test was performed for each crop. This test is

	

r	 constructed to determine if the regression line developed on the training set

3-b
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is significantly different from the regression line developed on the test

set. The structure of this test requires that the residual sum of squares for

each line be pooled to form a common variance estimate. Thus, homogeneity

tests for the error variances of the training and test sets must first be

performed. These tests are outlined below.

Assume that the linear relationship between the ground truth and the number of

pixels classified for the training set is given by

Y i ' a
i
 + b 1X i 	 eTRAIN	 (7)

and for the test set is given by

Yi , a
2 + b2xi + cTEST	

(g)

where 
eTRAIN and 

eTEST are the random errors of the models, with variances

?.	 2
°TRAIN 

and 
aTCST' 

The hypothesis for testing homogeneity of variances is

stated as:

2	 - z
HO.	

TEST y 'TRAIN	
(9)

i H1' NEST	 `'TRAIN'

The testi ng stati sti c is F	 MSE -	 , where MSE	 and MSFT^ST^MSE TttAIN	 TEST	 'TRAIN a re
the residual mean square errors obtained by separate regressions on the test

set and the training set, respectively. The null hypothesis HO is rejected at

level 0.10 if F > FPM5,6,23) = 2.51 or if F t f (0.05,6,23)	 0.260.

If the homogeneity of variances is not rejected for a crop, then the following

hypothesis is tested;

HO , training set regression line - test set regression line

H I	training set regression line	 test set regression line

The testing statisti c is

SSE ALL' SSETRAIN " SSETEST

F '	
}
	 (10)

`TRAIN	 TEST'	 J
29
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where SSE TEST' SSETRAIN' and SSE 
ALL 

are the residual sums of .squares obtained
by separate regressions on the test set, training set, and combined test and
training sets, respectively. The null hypothesis Hp is rejected at level 0.05
If F > F(0.95,2,29) = 3.32. Results for these two tests for the six crops are
given in table 3-5 (page 3-11). Homogeneity of variances was rejected for the
major crops of corn, permanent pasture, and soybeans. Of the three remaining
crops, the equality of the training set regression line and the test set
regression line was rejected for the crop other hay.

In the first part of this section, F -tests were performed to determine if the
regression line developed on the training set was significantly different from
the regression line developed on the test set. These tests provided infor-
mation as to the extendibility of the area estimation procedure which is
currently being used by the USDA. In this section, an alternative method is
presented with which to gain insight into the question of this extendability.

As known from regression theory, an estimator for the model variance can be

obtained by summing the squared residuals from the regression and then dividing

this quantity by its degrees of freedom. A similar estimator is now
described. This estimator, denoted by a`	 is a weighted average of the 8

squared residuals obtained when the regression equation from the 25 training'
segments is used to predict the ground truth (Y) for the 3 test segments. The
calculation is given by

" 2
d2 - 1	 (Y1 - Yi)	

(11)

1++
75

(X -)2

where

Y i	 ground truth hectarage for segment i in the test set,
i - 1 • .. 8

3-9



Y i - estimated ground truth hectarage for segment i in the test

set using the training regression equation as a predictor,

i = 1,000,8

X i	x number of classified pixels for segment i in the test set,

i x 1,,.. . ,8

R	 = the mean number of classified pixels per segment in the
training set

25
(X^ - R)	 _ the corrected sum of squares for the independent variable

in the training set

And	
1	 (Xi

_	 R)2*	
2

°TEST	 `TRAIN	
(EYi	 EYi)

(X3	
R)x

1	 j"1	 (.12)E(a)	
(X

..

2^7 f(X -)E
=1	 J

It can be seen that E(a 7 ) depends upon the training set through its variance

0TRAIN and EY
i	Likewise, E(02) depends upon the test set through its

variance 
aTEST 

and EY	 If the training set and test set share the same

regression line and i,	= a2	- 02 is a common variance, then
TRAIN	 TEST

E(a 2 ) # a2.	 No formal tests were made using a2, but for a given crop if v2 is

considerably different from the ME of the training set, it is an indication

that a2	 * 02	 and/or the training set regression li ne is significantly
TRAIN	 TEST

different from the test set regression line. Table 3-6 lists the MSE's of the

'	 six crops on the training set, which are unbiased estimates of thecr 2	's.
TRAIN

Also listed is a 2 for each crop. For crops for which the homogeneity of

variances was reJected in table 3-5, it appears that MSE's of the training set

are quite different from their corresponding o2'1s.

.I
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TABLE 3-5.- EDITOR MULTITEMPORAL ANALYSIS: F-TESTS FOR

HOMOGENEITY OF VARIANCES AND EQUALITY OF REGRESSION LINES

Crop
Computed F

for homogeneity
of variances

Computed F
for equality of
regression lines

Corn *7.043'

Minter wheat 1.723 2.66

Permanent pasture *7.178

:Soybeans *3.308

Dense woodland 605 3.296
Other hay .658 t3.363

Critical	 values .260,	 2.51 3.32

*Homogeneity of variances rejected.
tEquality of regression lines rejected.

TABLE 3-6.- EDITOR MULTITEMPORAL ANALYSIS: MEAN SQUARE ERRORS

OF THE 25 TRAINING SEGMENTS AND 0^ 2 's OF THE

8 TEST SEGMENTS

Crop MSE 02

Corn 23.805 147.517

Winter wheat 21:628 43.449
Permanent pasture 176.736 1025.186

Soybeans 119.426 438.685
Dense woodland 72.595 88.132
Other hay 79.541 110.431
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3.2.2 JACKKNIFING WITH THE EDITOR SYSTEM

Ideally; it is desirable to have a large sample with which to train a classi-

fier and another large sample Independent of the first with which to develop a

regression line. The advantage of having a large sample is that the sampling

variability is reduced as the sample size increases. When it is impossible to

have a large training sample as well as a large sample with which to develop

the regression line, a jackknifing procedure can be employed. The jackknifing,

which is now described, simulates the method of training a classifier on a
sample and 'then developing a regression on an independent sample.

The 33 segments were grouped Into 11 sets containing 3 segments each. One set
of 3 segments became the test set, while the remaining 10 sets were pooled and

used to train a classifier. The test set containing three segments was then
classified, This procedure was repeated 10 more times, with each set of

3 segments being the test set exactly once, and the remaining 30 segments being

	

used to train a cla vi? ful	 I H I T
& _4	 -,fl -,. IrLe 

"I test sets were then combined, resulting in

a sample of 33 segments, each having ground truth (Y) and a classification
variable W.

Regrossion equations for the 6 crops of interest were developed on this coin-
bi ped set of 33 segments. The regression MSE's, rN, and classification
performance measurements are 

g
iven in table 3-7 for this combined set. For

comparison, the classification results obtained when all 33 segments were used
to train the classifier tire also qivon. 4ith only one exception, the omission
and commission error rates are higher in the jackknifed set than in the set

where 411 33 seqments were used in the training. Also, the r2 's are lower in

the Jackknifed set. For the major crops of corn, permanent pasture, and

soybeans ) the decrease in r2 is 0.15, 0.23, and 0,14, respectively. The

results of this jackknifing study indicate that the r 2 s reported by the USDA

are overestimated..
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4. EVALUATION OF THE GLASSY CLUSTERING ALGORITHM

4.1 INTRODUCTION

The CLASSY clustering algorithm is an adaptive, maximum likelihood clustering

procedure developed at JSC (refs. 1 to 4). The algorithm is fundamentally a

density estimation algorithm which approximates the overall data distribution

as a mixture of multivariate normal distributions. That is, if x is an

observation vector and p is its probability density function, then

m

p (xlm 'nm) 
^	

ai>pi (xi :ui 0 E
t-

where

a i 	a priori probability of occurrence of class i

p i (xlu i ,E i ) = multivariate normal probability density function for class i with

mean vector u , and covariance matrix Zi
t

m	 total number of classes

ar m 	 = full set of parameters

-	 (^ ^. e. ,. {. a^ ! • • . dam' ^jl ^ • •.• , 
l^n ,. ^^q , ^ ^ ^ , Lm. })

Given a set of statistical ly independent, unlabeled sample vectors {x j }, the

likelihood function may be formed in the following manner:

N r m

L( {x. }Im,am) = jj	 aipi(x•Iui, i )	 (14)
,j-1 i-1	 "^

i

where N is the total number of samples.

So far, the assumptions and equations parallel the usual maximum likelihood

development. In using CLASSY, the additional assumption i s that each value of

the parameters m and R  occurs with an a priori probabil i ty distribution

A(m,nm). This Bayesian formulation of the problemis ;taken to avoid the

degenerate situation of increasing the likelihood by generating more and more

'
f

clusters with smaller and smaller values of a j . The practical limit of this

i	 process is that each class will be associated with only one data point.

4_1

1

(13)



In practice, the a priori probability A(rn,,rm ) has been chosen as

M
B rl c for ti e 

RMA(m>,rm )	 i=1 i	
_m	

(15)

0	 otherwise

where

c i = a constant containing normalizing factors over r m space

o = overall normalization constant

Rm = finite region of ar m space corresponding to allowable values for the

parameters

?	 The objective of CLASSY, then, is to determine the discrete parameter m and the 	 1

continuous parameter vector Tr m so as to maximize the following function.

	

N	 r in

	

L((xj},m,n,,,) = A(m ,rm ) n	 aipi (xj I ui ' i )	 (16)
j-1 i 1

The value of m and ,rm which maximize equation (16) specify a set of dis-

tributions called clusters.

r
Many approaches may be taken to maximize equation (16). The approach chosen in

CLASSY is to interleave the maximum likelihood iteration [designed to maximize

L(Ixj },m,,r m ) with respect to the continuous parameter vector ,r] with a discrete

split, join, and combine process 'designed to maximize L(Ixyi l,m, 1m) with
respect to the discrete parameter m]. Althounh the theoretical convergence
properties of this procedure have not been examined it is expected that b}	 p	 y

alternating these two techniques,, values of m and n corresponding to at least a

local maximum of L(I ,<j},m,,rm) will be determined. Since the splitting and

combining techniques operate around each existing cluster, and the statistics

for hypotheses concerning different numbers of clusters are maintained

separately, it has been observed that the final local maximum will often be
global

4-2
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Necessary conditions for a maximum of U 1xj},m,Z.), assuming a fixed number of

classes m, are well known (see Duda and Hart (ref. 5) and Wolfe (ref. 6)] and

are given by the following equations:

aipi(xkJui,Ei)
p (iix k ,nm) - m

E aj;p,
j=1	

( xk I u	 )

N

a	 ili	 lr I1 ptxk'nm)

N
p(i Ix ,nm)xk

u i =	
1

E PH l xk,nm)
k=1

N

P- ( i Ixk " !M )( x k - ui )(xk	 Pi)T
E - 

^1	 -	 -	 -

i
p(i J x^ n?rm)

k=1

where p(ilx k ,,rm) is the posterior probability of class i, given the kth sample

vector and the values of the parameters; and a i , ,p i , and E i , i	 1---,m are the

elements of ,rm.

CLASSY uses a direct functional iteration to maximize equations (19) and (20);

that is, estimates for a and E i are used in the right-hand side to produce

improved estimates on the left-hand side. Estimates for the a priori class

probabilities, a i , are computed using an iteration scheme which has proved to

converge more rapidly than the simple functional iteration using equation

(18). The scheme used is described in reference 4.

The optimization of L(16j },m,-am) with respect to the discrete parameter m

generates hypotheses concerning the number of clusters and the subsequent

testing of these hypotheses using a likelihood ratio test. At certain points 	 1

r	 a
in the process of maximum likelihood iteration, it is possible to generate a

k	 hypothesis concerning the fit of a given cluster to the data; namely, either

f

(17)

(18)

(19)

(20)
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that the data are better represented by two clusters rather than one (a split
hypothesis) or that the data are better represented by combining the given
cluster with another cluster (a ,join hypothesis). Each cluster is periodically
checked throughout the program to see if either a split or a join hypothesis

seems reasonable. Measures of skewness and kurtosis are compared against

values expected for a single, normal distribution to see if a split hypothesis
should be considered. A measure of cluster similarity is used to determine if

a join hypothesis is appropriate.

Clusters may be eliminated as the result of a likelihood ratio test or if their

estimated a priori class probability in the mixture falls below a set thresh-

old. Details concerning the split, join, eliminate operations as well as the

operation of the algorithm in a general may be found in references 2, 3, and 4.

4.2 DESCRIPTION OF PROCEDURE

In order to evaluate the CLASSY clustering algorithm as a replacement for the

clustering algorithm currently used in the Editor system, two different

experiments were performed.

In the first of these experiments, CLASSY was used to cluster the pure pixels

for each of the 6 test crops in the 33 Missouri segments. Unlike the

standardized USDA procedure, outlying pixels and poorly registered fields were
not removed before clustering. The resultant cluster statistics for each crop

were transferred to the Editor system, and all pixels in the 33-segment area

were classified using Editor's maximum likelihood classifier. Regression

equations relating the classified pixels to the ground truth- hectarage were	 u

developed for each crop. The performance measures for classification and

regression, including the percent correctly classified, the omission and
commission errors, and the r2 and MSE for regression are given in table 4-1.

In the second experiment, CLASSY was used to cluster pure pixel data for each
crop contained in 25 of the available 33 Missouri segments. The remaining 8
segments were reserved as an independent test set for use in evaluating the
classifier and regression equations developed using the 25 training segments.

(
{
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Crop	 MSE	 r	
Correct
	 Omission2	 %

Corn	 23.33	 0.9308	 72.31	 27.69	 29.47

Winter
wheat	 22.07	 .4427	 38.05	 61.95	 58.35

Permanent
pasture	 239.79	 .8435	 75.45	 24.55	 45.50

Soybeans	 85.95	 .8877	 81.57	 18.43	 34.01

Dense
woodland	 62.53	 .7195	 49.74	 50.26	 51.50

Other hay	 59.45	 .4845	 26.14	 73.86	 63.05

TABLE 4-1.- CLASSY MULTITEMPORAL PERFORMANCE MEASURES FOR
TRAINING AND TESTING ON 33 SEGMENTS*

 'Com-

}

i



The purpose of this experiment was to determine if the performance of the

hectarage estimation system on an independent data set was comparable to its

performance on the training data set. The percent correctly classified, the

omission and commission errors of the classifier developed on the 25 training

segments and those from the 8 test segments are given in table 4.2. Similarly,

the MSF and r 2 for the regression equations developed separately on the 25

training segments and on the 8 test segments are also given in this table. The

last column in table 4-2 is an unbiased estimate of the error variance in

applying the regression equation developed on the 25 training segments to the 8

test segments. This is the same statistic described in section 3.2.1.

-

	

	 In section 4.3, a statistical comparison is made of the hectarage estimates

obtained when using CL ASSY to cluster all 33 segments with the corresponding

estimates using the standardized USDA procedure. In section 4.4, a similar

statistical comparison is made for the estimates obtained for the eight

independent test segments. Finally, in section 4.5, a test is made to

determine whether the regression line developed on the 25 training segments is

statistically different from a line fitted to the 8 test segments.

i 4.3 COMPARISON OF CLASSY AND THE STANDARDIZED USDA PROCEDURE

To compare the performance of CLASSY and the standardized USDA procedure, the

criterion defined in section 3.1.2 and the Hotelling ` s T2 test on the mean
r	 vectors of absolute differences have been used.

Let	
NC1

uC2

	

uC = uC3	 (21)

"C4

uC 5

- uC6

where pCi is the mean of the absolute difference between the ground truth and

the regression estimate of crop i from the CLASSY procedure.

F
Y.

4-6

l

^E



F	 i-f

► :	 h-1.

L^

CL"
Q

^I	

LA.

N
W
aO
N

l	 UJ
Luj
cn

E
zI U.1

U
z4
QU-j	 ^

1uj

W
CDZW
WO2

-+

m z

i
Q

cc

W
in
Ln
4

C)

Ln

H

J
c.2 ẑ
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We now test:
HO: 

uA
- 

PC^0

14 1: 
PA - PC
	 0	

(221

where p  is defined in section 3.1.2. The Hotelling's T 2 testing procedure for
the above problem is similar to that described in section 3.1.2. The computed

T2 is 44.1959, and T20.05 (6,32) is 17.4. Since T2 > T20.05(6,32), we

reject HO : PA u 0 = O and conclude that the mean vectors of absolute
differences are not the same for the two procedures. And since

	

1.69696	 0

	

0.36333	 0

	

a - 
2.39	 > 0	 (23)

	

0.37909	 0

	

0.99424	 0

	

2.08121	 0

indicates that the regression estimates obtained by using CLASSY seem to be

closer to the ground truth than the regression estimates obtained by using the
a

standardized USDA procedure, it is believed that the CLASSY clustering

algorithm performs better than the clustering algorithm used in the

standardized USDA procedure.

4.,4 COMPARISON OF CLASSY AND THE STANDARDIZED USDA PROCEDURE BY WEIGHTED MEAN
VECTORS^

Another testing was done on the mean vectors of weighted absolute differences

so that crops with larger ground truth proportions contributed more in

distinguishing the difference between CLASSY and the standardized USDA

procedure. The hypothesis is formulated and tested as follows:

H O : uA 4C 0

H	
u*	

0	
(24)

1 •	 A	 uC

4_$

i

e



where

uA1
	

uC 1

1jA2
	

t2'

uA3
	

OC3

n
	

PA
	

1'R4
	 ►JC - 

'C4

"A5
	

It 5
,r

PAC
	

4'C6

and uAi ^ the mean of the weighted absolute difference between the ground
truth and regression estimate of crop i (weighted by its ground

truth pixel proportion) from the USDA procedure

u i
 
 the mean of the weighted absolute difference between the ground

truth and regression estimate of crop i (weighted by its ground

truth pixel proportion) from the CLASSY procedure

The computed T2 is 20.0823, and T  05(6,32) is 17.4. Since
T2 > T0,05(6,32), we reject HO : laA - t,* -- 0 at the 0.05 level of significance

and conclude that the weighted mean vectors of absolute differences are not the

same for the two procedures. And the following
i

r

	

1446021	0,

	

0.026101	 0

	

Y 0.88508	 ^ 0	
(25)

	

0.281399	 0

	

0.169621	 0

	

0.149436	 LO

indicates again that the CLASSY clustering algorithm seems to perform better

than the cl usteri ng algorithm used in the current USDA procedure.

4.5 COMPARISON OF CLASSY AND THE USDA STANDARDIZED PROCEDURE ON AN INDEPENDENT
TEST SE

I'n this study, the 33 segments were _divided into two sets. One set consisting

of 25 segments is called the training set; the remaining 8 segments form the

4-9
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test set. The 25 training segments were used in training the classifier and in
obtaining the regression coefficients. The regression line was then applied to

the eight test segments to determine how well the line predicts crop hectarage

using an independent set. This study has been completed for both CLASSY and

the standardized USDA procedure. To compare th? performance of CLASSY and the

standardized USDA procedure on an independent test set, a similar Hotelling's

T2 test, as in the previous section has been done on the eight segments.

The computed T2 is 11.035, and TO .05 (6,7) is 405.92. With this sample of 8

segments, since T 2 < T6 .05 (6,7), there is not enough statistical evidence to

reject the hypothesis that the mean vectors of absolute differences between

ground truth and the regression estimate are the same for the two procedures on

an independent test set. A larger independent test set would be more

appropriate because the critical value T (p,N - 1) decreases rapidly as the
sample size N increases.

4.6 COMPARISON OF TRAINING AND TEST SET REGRESSION LINES
t

In order to determine if the regression line fitted to the 25-segment training

data was appropriate for the 8 independent test segments, a two-stage F-test,

as described in section 3.2, was performed. The results are presented in`

table 4-3. Corn and permanent pasture did not pass the homogeneity of variance
testa The test for equality of regression lines indicates that the regression 	

s

lines are different only for dense woodland and other hay. However, the fact
that corn and permanent pasture failed the homogeneity of variance test indi-
cates that different regression models exist for the training and the test sets	

}}



TABLE 4-3.- CLASSY MULTITEMPORAL ANALYSIS. F-TESTS FOR
HOMOGENEITY OF VARIANCES AND EQUALITY OF REGRESSION LINES

Crop
Computed F

for homogeneity
of variances

Computed F
for equality of
regression lines

Corn *13.03

Winter wheat 1.34 0.09

Permanent pasture *5.03
Soybeans 1.66 0.10
Dense woodland 1.05 t6.82'
Other hay 1.01 f3.61

Critical	 values .260,	 2.51 3.32

*Homogeneity of variances rejected.
tEquality of regression lines rejected.



S. EVALUATION OF THE MEAN SQUARE ERROR CLASSIFIER

5.1 BACKGROUND

The MSE classifier (ref. 7) is an algorithm intended to exploit the Bayes

classification rule, which assigns an observation x c Rm to one of m
populations, wl,w2,•••,wm, in which the lowest conditional average loss is

incurred in so assigning x. This conditional average loss for population j is

given by

	

uj(x) =	 ci j p ( wi lx)	 (26)	 C

I	 where cij is the cost incurred in assigning x to wj when it actually belongs in
r

wi, and p(w ix) is the posterior probability that x is an observation on wi.I
!

	

	 If a zero cost is assumed for correct classification and equal costs of one for

incorrect classification, then the optimal classification rule which minimizes

total expected loss also minimizes the probability of error in classification.

I`n this context, the cost function c i f can be expressed as

	

cij
	

(1	 8ij )	 (27)

where

aij=Iifi= j

sij =0 ifj

and
K

uj (x) = ^ (1 - d ij )p(wi Ix)
i=1

1	 P(wj (X)

Thus x is assigned to wi if i

ui(x) < u^(x) , j	 1,2+ •• • ,m, j	 i	 (28)

or equivalently,
{

	

p(wi lx) > p(w lx)	 j	 1 2,, ...m, j # i	 (29,)
i
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The particular algorithm used in this experiment was developed by S, G. Thadani
a

(ref. 7),
F;
Yt	

For a given observation x, m loss functions are estimated where, for each J,

11 j (6) Is approximated by

A ox) aT̂ (x)	 (30)
k

where

C	 is an r-dimensional vector whose components are linearly independent functions
I
`	 of x, and

aj = (aj1,•••,ajr)T

is a parameter vector determined so that the following MSE is minimal;

	

E [u.(x) - u (a ,x) j2 	(31)T

The expectation with respect to the overall mixture density function is denoted

by ET I . } ,

r	 It has been shown (ref. 7) that the vector a 	 that minimizes equation (31) is 	 a

the same vector that minimizes
f

m
Mj(a^	

k R
) _	 p(w )E [ .uj (a j ,x)	 c o o	 (32)

^
R=1	 1

where E,(-) denotes the expectation with respect to the conditional probability

density function p(61wR); addition ally, if we define

r

_ 
F.1a

i
 12	

m	
Nk

MN (a j )	 -	 + R	 Cpj(aa,Xi )	 c a	 (33)
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,f

where x i is the itth training sample from class w; and It J 1 2 - aT a,	 then if

C^ i (x) Tt i (x) ] < a	 i X 1,---,r	 (34)

4 z it a* 01M

it can be shown that

1im r j (a 1 X M (y	 (35)
N+

The approach, then, is to minimize MN(a^} with respect to aj and to use a

reasonably large number of training samples. If N i represents the number of

training samples from class i and N = N 1 + «•• + Nm , then

NZ

^ j	
k^l 

044 (h) + CIr -	 1 
cR3 i l 

(xi 
^)	

(36)

Where the elr terns assures that the sum is positive definite.

Since equal costs of 1 for misclassification are assumed: this minimizing

vector can be expressed as

N

a* S	 t(x 4T(x ) + cl -1 «	 m	 t(x )	 (37)
_a

[ktl - -k - -k
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5.2 DESCRIPTION OF PROCEDURE
i

The procedure used in testing and evaluating the MSE classifier on the USDA

data set consisted of the following four tasks.	 i

-a. A determination of the most appropriate form of the classifier.
}

b. A simulation, using the MSE classifier, of the standardized USDA procedure i

in which the classifier is trained on all the data for which ground truth

is available.

c. A performance evaluatic::'', of the MSE classifier on an independent test set.

5.3

I	 x



d. An investigation of the efficacy of using a cross-validation procedure to
produce a different regression estimator.

A detai ied discussion of each of the four tasks and the results follows.

5.3 DETERMINATION OF THE CLASSIFIER

This task addressed the issues of whether pure pixels only should be used in
training the classifier and whether the terms of either a linear or quadratic
function should be the components of §(x). Separate computer runs were made in
which pure pixels and then all pixels were used, respectively, for training.
Additional runs were made using, first, a linear form of I(x) and then a
quadratic form. The conclusion reached was that a classifier trained on all

the pixels in the crops of interest and using a quadratic form of the vector

function t(x) produced the best classification results.

Since no clustering is done in the algorithm, valuable information is probably
lost in restricting the training set to pure pixels. In each subsequent task
described, reference 'to training the classifier will assume the use of all

pixels in the training set and the terms of a quadratic function as entries of

,P W .

5.4 SIMULATION OF THE STANDARDIZED USDA PROCEDURE

In this task, the MSE classifier was trained on the crops of i-nterest in the

33 segments and then used to classify all pixels in the 33 segments. For each
crop, the absolute values of the resi'dua'ls were compared to the corresponding
USDA results using`a Hotelling's T 2 test for multivariate data. This test was

applied again on the same data with the exception that, for each segment, the

absolute values of the residuals were weighted by the proportions of the crops

of interest in that segment. A discussion of the results of both tests
follows. Following this discussion is table 5-1. This table reflects the
statistics collected over the 33 segments.
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k

5.4.1	 COMPARISON OF THE MEAN SQUARE ERROR CLASSIFIER AND THE STANDARDIZED USDA
PROCEDURE

The Hotelling's T2 test, as described in section 3.1.2, has been performed to

compare the results from the MSE classifier with the results from the

standardized USDA procedure. Stated below are the testing procedure and the

inferences.

l`

z	
Let

u01

uD 2

uD 103(38 )

ti 'D4

!^! 1D5

uD5

where 
PDi 

is the mean of the absolute difference between the ground truth and

the regression estimate of crop i from the MSE classifier.

We test
HO;

PA	
pp 	 0

(39)
H 1

: 'A -	 I'D	 0

wherej A is defined in section 3.1.2,

a

Using the ground truth and regression estimates on the 33 segments, the
r	

computed T2 is 21.777 and T6 05 (C 32) is 17.4. Since T 2 > T6.05(5,32), we	
i

reject H0 	11 A - I'D = 0 at the 0.05 level of significance and conclude that the

mean vectors of absolute differences are not the same for the two procedures.

In this case, however, we have

4.52919

0.27372

a _ 1.17319
(aD)

-0.34008

0.67899

4.15128
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Crop MSC r2 % Correct Omission Commission

Cohn 51.90 0.5460 65.61 0.3439 0.2412

Winter 24.63 .3751 7.(1.13 .7987 .4013
wheat
Permanent 361.16 .7643 85.34 .1466 .5001
pasture
Soybeans 128.02 .8478 83.48 .1652 .3573

Dense 95.15 .5733 33.98 .6602 .4765
woodland

Other 115.38 ..0005 1.87 .9813 .4706
hay

Thus, it cannot be concluded that one procedure is better than the other

because the elements in ado not have the same sign.

5.4.2 COMPARISON OF MEAN SQUARE ERROR CLASSIFIER AND STANDARDIZED USDA
PROCEDURE BY WEIGHTED MEAN VECTORS

Similar testing, as in section 4.4, was done on the mean vectors of weighted

absolute differences. We test

Hot uA	 Q = 0

tai)
H 
1;	 F1A	 ^'n	 D

where pA is defined earlier and p D is defined in a similar manner as pA.

The computed T 2 is 0.2557 and T606,32) is 17.4. Since T2 < T6.05(6,32),
there is not enough statistical evidence to reject the hypothesis that the

weighted mean vectors of absolute differences are the same for the two

procedures.

TABLE 5-1.- MSE CLASSIFIER MULTITEMPORAL PERFORMANCE MEASURES FOR

TRAINING AND TESTING ON 33 SEGMENTS*

l

1



5.5 MEAN SQUARE ERROR CLASSIFIER PERFORMANCE ON AN INDEPENDENT TEST SET

The MSE classifier was trained on the same 25 segments previously referred to
as the training set, and all pixels in the 33 segments were classified. The

regression equation determined by the 25 points obtained in the training
process was used to predict the ground truth hectares in the 8 test segments.

A Hotelling's T2 test was app"lied on the mean vectors of absolute differences

of the ground truth and regression estimates on the 8 test segments. The test

is now described.

5.5.1 COMPARISON OF THE MEAN SQUARE ERROR CLASSIFIER AND THE STANDARDIZED USDA
PROCEDURE ON EIGHT TEST SEGMENTS

When the performance of the MSE classifier was compared to that of the
standardized USDA procedure on an independent test set, a Hotelling's T 2 test

on the mean vectors of the absolute differences was conducted on a set of eight
segments. The computed T 2 was 25.1924 and T 2 .05 (6,7) was 405.92. Since T 2 <

T0 .05(s,7), there is, again, not enough evidence 
to reject the hypothesis. A

larger independent test set is needed.

5.5.2 F-TEST FOR EQUALITY OF TRAINING AND TEST REGRESSION LINES

The two-stage F-test described in section 3.2 was used to determine if the

regression line fitted through the 25 points using the MSE classifier was

adequate to predict the ground truth in the 8 test segments. The results are

presented in table 5-2. Corn and permanent pasture failed the homogeneity of
variances test. The test for equality of the regression lines was not rejected
for any crop which passed the homogeneity of variances test. following

table 5-2, table 5-3 'displays performance statistics compiled on the 25
training segments and on the 8 test segments.

t

5-7	 a
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TABLE 5-2.¢ MSE CLASSIFIER MULTITEMPORAL ANALYSIS: F-TESTS FOR

HOMOGENEITY OF VARIANCES AND EQUALITY OF REGRESSION LINES

Crop
Computed F

for homogeneity
of variances

Computed F
for equality of
regression lines

Corn *11.896
Winter wheat 1.600 1.240

Permanent pasture *4.009

Soybeans 1.939 1.516

Dense woodland .3979 1.724

Other hay .6094 2.332

Critical	 values .2600	 2.51 	 1 3.32

*Homogeneity of variances rejected.
tEquality of regression lines rejected.
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5.6 CROSS-VALIDATION PROCEDURE

The current USDA procedure is to develop a regression estimator by fitting a

line to the points obtained from the training data. The objective of the

fourth and final task was to determine if the estimate of the ground truth

hectares in the eight test segments could be improved by using a different

regression line based on a procedure referred to as cross- validation. Of the

25 training segments, 1 segment is left out, and the MSE classifier is trained

on the remaining 24 segments. The omitted segment is then classified as if it

represented an independent test set. This process is repeated for each of the

25 segments, thus producing 25 points through which a regression line is

fitted. The 8 test segments are then classified using the MSE classifier
	

a s

developed on all 25 segments, and the ground truth hectares for these 8

segments are predicted from the regression line,

Two tests were conducted on the results. The first was the two-stage F- test

for the equality of the regression line determined in the cross-validation

procedure and the regression line fitted to the eight test segments. These

results are presented in table 5-4. It is noted that, in the cross-validation

procedure, the hypothesis for equality of variances was rejected for woodlands

in addition to the corn and pasture crops previously rejected in the noncross-

validation procedure.

The final question to settle was which of the two procedures, cross-validation

or noncross- validation, yielded a regression line which best predicted the

ground truth for an independent set. The Hotelling's T 2 test previously

discussed was used on the ei ght test segments. In thi s applicati on,

11 0 :	 P i	oil	 U
(42)a

N 1'	 u I	 ^'TI	 9

where

1
u I = mean vector of absolute differences between the ground truth and the

regression estimate on an independent set using cross-validation i n
F

obtaining the fitted line on the 25 points.

5-1O
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uII	 mean vector of absolute differences between the ground truth and the

regression estimate on an independent set without cross-validation.

The computed T2 is 9.9528 and T6 . 0 5 (6,7) is 405.92. Since T 2 < TS .05(6,7), we
conclude that there is not enough evidence to reject the hypothesis. A larger
independent test set is needed.

TABLE 5-4.- MSE CLASSIFIER MULTITEMPORAL ANALYSTS:

F-TESTS FOR HOMOGENEITY OF VARIANCES AND EQUALITY

OF REGRESSION LINES IN CROSS-VALIDATION PROCEDURE

R

Crop
Computed F

for homogeneity
of variances

Computed F
for equality of
regression lines

Corn *8.478

Winter wheat 0.854 0.412

Permanent pasture *2.980 1
So ybeans 1:070 2.10

Dense woodland *.255

Other hay .553 1.18

Critical	 values .260,	 2.51 3.32

*Homogeneity of variances rejected.
tEquality of regression lines rejected.

INo-values.



6. CALIBRATION REGRESSION APPROACH

6.1 INTRODUCTION

Statistical methods have often been illustrated with beautiful examples without

adequately emphasizing the abstract ideas that underlie the methods; that is,

ideas essential to correct statistical thinking. The result has been that

certain problems with similar objectives appear amenable to identical

statistical solutions when, in fact, intrinsic differences exist which Alter

considerably the details of their solutions. It is often the case that the

practitioner is interested in assessing the value of some quantity which is

impracticable to assess or impossible to observe directly in a given instanc±^0

the estimation being performed with the aid of a relationship between the

quantity whose value is sought and another whose value can be determined

directly. The curve-fitting procedure usually adopted depends on the

additional assumption that the values of the independent variables are known

exactly (without error) - an assumption often passed by without emphasis. This

simplification of problems without explicit mention of the fact fosters

misconceptions that are carried over into analysis of data, a particularly bad

misconception being that the variable whose value is to be estimated

automatically assumes the role of the dependent variable. The calculation and

use of dosage-response curves to estimate dosage constitute an example. The

dosage-response curve should he evaluated from a series of observations, with

dosage as the independent variable, and the curve then used to estimate unknown

dosages from observable responses.

To illustrate the aforementioned in more detail, assume that a linear relation

prevails between U and V 	 '.

aO +alU+a2V=0	 (43)

6-1
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which may be written in the equivalent forms

V=a+AU
	

(44)

where

o	 0/a2

1 /01 2 i

U Z y + N	 (46)

where

Y 
-a0 

/al

- Ct 24a 1

A common impression regarding the principles of curve-fitting seems to be: If

one is interested in estimating V from U, then take V - a + bU as the estimate

of equation (44), if one were fitting by the method of least squares, the a and

b that -minimize E(V	 V i ) would be found. on the other hand, if one is

interested in estimating U from V, then U : c + dV is to be fitted, the val ues
A

of c and d being chosen so as to make U a good fit in terms of the deviations

(Ui U i ?. It does not seem to by generally realized that the fitting should

be done in terms of the deviations which actually represent "error." Thus,
when the research worker selects the U-values in advance, holds U to these

values without error, and then observes the corresponding V-values, the errors

are in the V-values. So, even if the researcher is i nterested in using'

observed values V Q of V to estimate U, he should nevertheless fit V = a + bU

and then use the inverse of this relation to estimate U 4 i.e., U	 No	 a)/b.
Let us examine this from the viewpoint of the theory of least squares.

Consider the case where the values of U are selected (or adjusted) by the 	 t

research worker, and the corresponding values of V are found by observation.

One can minimize ^(V i - V i ) and ECU	 U i ) 	 thereby obtaining the two lines,

respectively:

V=a+ bU 	(46)

U = c + dV	 (47)

1	 6-2_



IF

Vi )	 minimized

ANOVA I

M_i - U  ) z minimized

ANOVA II

Total variability of V's about Total variability of U's about

their mean:	 EN i - O) 2 their mean:	 EN i - 0)2

Reduction effected by (46); Reduction effected by (47);
bt(U i 	- 0) (Vi -	 'V) d-E(Ui - MY - 7)

Deviation about V Deviation about U

4(V	 - 7) 2 - bt(U i - DXV i - V) EN 	 dE(Ui - 0)(V i 	- 0)

E(V i 	- V i ) (Ui - Ui

The ANOVA tables are interpreted as follows. On the left, E(V i	 W gives a

measure of the observed variability of the V-values. The second row of ANOVA I

gives the portion of the observed variability of the V-values that can be

attributed to the dependence of V on U, and the last row indicates the mag

ni'tude of the portion of (Vi - V) P that must be attributed to "error" (this

portion has been minimized by the fitting process). In ANOVA II, on the other

hand, Z(Ui - Q) 2 represents the variability in the chosen values of U which

resulted from the way in which the researcher selected them, and it should be

noted that the corresponding values observed for V have in no way entered into

their determination. Consequently, the apparent dependence of the U on the V,

measured by the second row of ANOVA II, is a spurious dependence, and the last

row of this table cannot be interpreted as being a measure of the "error" in

the V -values, since it is that portion of the variability of the U-values that

cannot be accounted for by the variability of the V-values. Briefly stated,

when the values of U have been selected by the researcher and the corresponding

V-values observed, the line obtained by minimizing Z 	 Ui) is meaningless;

and, accordingly, equation (46) is the only correct estimate of the postulated

linear relationship between U and V. Therefore, if it is desired to reason 	 t
from V to U, this must be done by means of U = NO	 a) /b.

One example is to calibrate an instrument, say a pressure' gauge. Assume that

the increase in gauge marking is linearly proportional to the increase in

pressure. To calibrate the gauge, one subjects it to two or more controlled



pressures (U) and notes the gauge markings M. Using these data, the
parameters are calculated, and the gauge is calibrated. The gauge is then used
to determine unknown pressure (U) simply by reading the marking VO and
obtaining U = (VC - a)/b.

The calibration problem is very general. Consider the problem of estimating
the ground truth crop-type acreage of an area segment from the acreage obtained
by classifying the Landsat data. To establish the relation between the two
acreages, a number of segments was selected'. The ground truth acreages of
these segments were recorded and held as constants. The segments were then
processed by a classification algorithm, and the classification acreages were
obtained. In view of the fact that the ground truth acreages were controlled
and the classification acreages depended upon spectral observations which can
be regarded as chance occurrences and, therefore, are relatively imprecise, it
seems only appropriate to consider the ground truth as the independent variable
and classification acreages as the dependent variable: The ground truth
acreage (U) of a new segment is then estimated from observing the
classification acreage (Vo) of that segment by the equation U	 No	 a) /b.

More detail on the application of this calibration model to the crop -type
acreage estimation problem will be given in the next section.

r	 6.2 DESCRIPTION OF NEW REGRESSION ESTIMATOR

This section provides a brief description of the regression method currently

being used by the USDA to estimate the ground truth crop-type acreages. Denote
the ground truth acreage by U and the acreage obtained from classifying the
Landsat-data by V. Using the sample of 33 segments, U is regressed onto V.

Ground truth acreages (U i ) and their corresponding classification acreages (Vi)
are obtained for each of the 33 segments. The relation between U and V is then

assumed to be

Ui	 Y + SV
i +	 i - 1,... } 33	 (48)
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where c , representing error, is distributed. N(O,v ,2 ). The least squares
estimators d of 6 and c of Y obtained by minimizing Z(U i ,. UO 2 are

E(U i	O)(Vi	o)
d a	 (49)

UZ

c x 0 - d0	 (5O)

The regression line is given by U - c ++ dV, and the ground truth acreage is
estimated by U - c + dV

Although under this model (hereafter referred to as the current model) this
estimator is unbiased with minimum variance (in the class of all unbiased

linear estimators), the model does not seem to be appropriate 	 The reason is

that, in the current model, the classification acreage (V) was considered as
the fixed variable and the ground truth acreage (U) as the dependent variable;
whereas, actually, the values of the ground truth acreages (U) were controlled
and held as constants and only the values of the classification acreage (V)

were observed and subject to error.

The calibration model is now introduced. Regressing the classification acreage

(V) onto the ground truth acreage (U) gives,

V i : 0 + Ru i + C i 	i - 1,...,n	 (51)

where c i , representing error, is distributed as N(o,c2). The least square
estimators a of a and b of 0 obtained by minimizing E(V i - Vi ) 2 are



Given a classification acreage V, the around truth acreage is estimated by
A	 ,1 	 a

Ut	(56)

Another estimator under this model, Uz = Ac + dV,^ wi11 also be considered where

c and d are defined earlier, Note that U, and U, though having the same form

c + dV, are two entirely different estimators because they are obtained under

two different models. For instance, Uz is not an unbiased estimator (U is

unbiased) because the classification acreages (V's) are no longer considered

fixed constants under the calibration model.

We will now restrict our attention to the calibration model, which seems more

appropriate than the current model in estimating the ground truth crop-typo

acreages. The properties of the two calibration estimators U  and U, are given

in the next section.

6.3 THEORETICAL PROPERTIES OF T11G TWO CALIBRATION ESTIMATORS

Under the calibration model

V
i	

+ aUi + c
i	

i	 1,	 n	 (56)

where e i is distributed as N(O,o2 ), U is a maximum likelihood estimator and1
gives a readily interpreted analysis of variance. It may be noted here that

r

	

	 the mean, variance, and MSE of U I = (V	 a)/b are infinite, since there is a

nonzero probability that b may be zero. The mean, variance, and MSE of

U2 = c + dV are fini te for n > 4. However, it can be shown, with the help of

Tchebycheff's inequality, that the probability of b lying in an interval that

contains very small values, including zero, can be made very small by making

D(U i - Ol 2 large, provided is/01 is not large. This can be done by increasing

n and choosing values of Ui that are not very close to each othei, The
expressions given below should b,2 considered as corresponding to the

distribution truncated for the value of b very close to zero.

6-5
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Let UO be the quantity to be estimated and let

A(U i - 0)2

	

2 _	 (57)

	

aU -	 n I —_"

2

	

9	 1 + .- -.	 (58)
S aU

f	 Then, to order n,

7	 1

	

bias NO(U - 0)	 (59)

!
^	 1	 (n	 1) '0	 0

var (U)	
a 2 n + 1 +	 3a2 	a2	

(0	 U )?	 (60)
(	

1	 n	 (n1	 R7	 (n - 1) oV	 0

2 	 2
MSE (U 1 ) _ -°-	 n 

1 + - 3a2 -^-- +	 -°	 -2- (0	 UO ) 2	 (61)
4	 (n	 1)a' 0	 (n - 1)aUR

	

bias ( U2 ) _ =	 a-2 20 --z Z03 {0 - UO )	 (62)
S QU 

8	 n au 6

var (U)
02 n + 1 + 02 (0 2 2e + 6) +	 a2	 2a4)2

r	 2	 n	 (n - 1) 6u 0e^	 (n - 1) 0Z	 n	 00e 

(63)

MSE (U ) - a2	 n + 1 + a2 (e2 - 2e + 6)

Y	 2-	
n	 (n - 1)oU 5 e	 A

a

	

2	 4

(n - 1)a U
50	 6 aue	 ne
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From equations (55) and (62), it is evident that both estimators are biased,
A	 A

but U 1 is asymptotically unbiased whereas U2 is not.

lim bias (U l )	 Q	 (5)
n•^

2
1 im bias ( U2 )	 ( - UQ )	 (66)
n+00	 R OUQ

However, both biases vanish at the point Up = 0 and may he small when Up lies

j	 very close to Q. I'
r I

Berhson (ref. 8) has shown that when l a/5l is small, the asymptotic MSE of U l	k

is smaller than U2 except when Up lies very near to 0. Moreover, U 1 is

I	 consistent whereas U is not. Saw (ref. g ) showed that, when Up lies very
2

`	 close to Q, tip is closer than U 1 to UU ; he further showed that other estimators	 j

can be obtained that may do even better than U
2 in a much smaller interval. lie

thus found the use of	 to be unappealing on this ground.	 ,)

x

Applying this calibration model to the ground truth, crop-type acreage estima -

tion problem, c2 and 0 were first estimated using the data on the 33 segments.

Table 6-1 displays the two calibration estimators U l and U2 for each of the six

crops. Using the estimates of o2 and 5 and the equations given earlier, bias	 ^'+

( U l ), bias (U 2 ), MSE (U I ), and MSE (U 2 ) were calculated for each of the six

crops. These data are presented in table 6-2. It is clear that the magnitude

of bias (U1) is smaller than the magnitude of bias (U2 ), and MSE (U1) will be

smaller than MSE (U2) if UG, the quantity we wish to estimate, is not very

close to the sample mean U

6-8



TABLE 6-1.- CALIBRATION ESTIMATORS U 1 AND U2

Crop
U1

U2

Soybeans
^
U 1 - V - 7.2214

0 . 9548	
^ -7.5633 + 1.0473V U2 = -1.4261 + 0.8870V

Corn U
V - 5.8009 =

7651.9 + 1.3191V U = -2.8899 + 1.0523V

entpastur
e

U 
1

` V - 26.5319
^1^+

- -3
'

+ 1.3137V
U ?. 

= -19.1698 + 1.`0386V
pasture

Dense
U 1

= V
"""".^6T^9""""

- 4.03 53 _
D

6769  _ 5 .9614 + 1 4773V' it = 0.3375 + 0.9211Vwoodland 2 

Winter ^
1

_ V
- '-'

- 0.9228._
0.4521

.. 2.0411 + 2.2119V U = 1.9412 + 0.8366Vwheat 2

Other hay U I
= V - 1.4935i-

U.1117 - 12.6890 + 8.4962V U 2 = 4.8692 + 1.6913V

E^
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1 CONCLUSIONS

With regard to the standardized USDA procedure used in this study, it seems

clear that the oul titemporal data produce significantly better estimates than

those obtained using unitemporal data. In addition, it is to ear that the cur-

rent practice of evaluating the classifier and developing the regression on the

same data set used to train the classifier can lead to optimistic performance

estimates. With the possible exception of winter wheat and dense woodland,

both of which had small populations, performance measures calculated using an

independent test set and similar measures calculated using a cross-validation

approach were uniformly worse than the samemeasures calculated on the training
set. It also soeins clear that the regression equation developed on the train-

ing data may not be appropriate for the test data. All crops tested, except

winter wheat and dense woodland, showed differences in the regression models

for fines calculated on a training set andon an independent test set.

The CLASSY clustering algorithm, when substituted for the current USDA cluster-

ing method, produced improved estimates. The estimates were significantly

better than the standardized USDA procedure when testing and training were done

on all 33 segments. The performance measures for the 33 segments are summarized

in tahla 7-1.

r

The independent test set of eight segments was not large enough to allow the

detection of any significant difference between the procedure using CLASSY and

the standardized USDA procedure; however, the performance measures, as listed

in table 7-2, indicate an improvement when using CLASSY clustering,

It is worthwhile to note that this improvement in performance was obtained

despito the fact that CLASSY requires no decisions from an analyst concerning

the number of clusters, separability thresholds, or other arbitrary parameters.

In addition, CLASSY was operating with data for which the outlying observations

had not been removed. Such observations were removed in the course of

t

!

r	 ;
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executing the standardized procedure. This represents another source of

subjective analyst input not needed when using CLASSY.

The MSE classifier did not produce significantly better hectarage estimates
than the standardized USDA procedure when evaluated on either the training set

or the independent test set. However, this classifier showed less sensitivity
to the training/test degradation discussed earlier. This is evidenced by the

fact that the hypothesis of equality of regression lines fitted to the training
and test data sets was accepted for all crops except corn and permanent

pasture, which failed the homogeneity of variances test. Also, the overall

percent correct on the independent test set decreased least when using the MSE

classifier. This greater extendibility might be expected due to the fewer

parameters required to be estimated in using this classifier.

The calibration approach to regression points out a fundamental problem in the

current regression model and suggests an alternative which has several
theoretical advantages.

7.2 RECOMMENDATIONS	
i

Several recommendations seem appropriate at the conclusion of this study.

First, the use of CLASSY clustering in place of the current Editor clustering
algorithm is recommended. CLASSY seems to offer a tangible improvement to the

current Editor system in terms of increased performance and decreased analyst

interaction.

Also, the study seems to indicate that the regression estimator may be
improved. Use of a simpler classifier might make regression more extendible,
and improved performance is expected using the calibration regression

4

approach. Unfortunately, this issue is not clearly decided at this time. The
recommendation is that additional research to improve regression /proportion

estimation be conducted. 'i'his should include actual tests of the calibration
approach as well as other alternative approaches. Such approaches include a

regression model in which both ground truth and classification acreages are

considered random and the use of direct proportion estimates. In an

7-4
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operational setting, it is recommended that jackknifinq be used to obtain more

realistic performance estimates.

A

A final e recommendation is that any future work be conducted with a larger data

set, if possible. The sample size estimates reported in section 2.2 as well as
our own experience in making the various tests indicate that the sample size of

the Missouri data set is only marginally sufficient if testing is carried out

on all the traininn data. The data set is not sufficiently large to achieve

significant test results if it is divided into training and test portions. The
j	 sample size estimates reported in section 2.3 should serve as a guide in
r	 selecting future data sets and in designing future experiments.

r

p

A



y

m
	

8. REFERENCES

1. Lennington, R. K.; and Malek, H.: The CLASSY Clustering Algorithm

Description, Evaluation, and Comparison with the Iterative Self-Organizing

Clustering System (ISOCLS). LEC- 11289, March 1978.

2, Lennington, R. K.; and Rassbach, M. E. • CLASSY - An Adaptive Maximum

Likelihood Clustering Algorithm. LEC-12145, May 1978, [presented at the

Ninth Annual Meeting of the Classification Society (North American Branch),
Clemson University (Clemson, South Carolina), May 21-23, 19781.

3. Lennington, R. K.; and Rassbach, M. E.: Mathematical Description and
Program Documentation for CLASSY, An Adaptive Maximum Likelihood Clustering

Method. LEC-12177 (JSC-14621), April 1979.

4, Lennington, R. K.; and Rassbach, M. E. 	 CLASSY	 An Adaptive Maximum

Likelihood Clustering Algorithm. Proceedings of Technical Sessions,
Volume 11, LACIE Symposium, October 1978, JSC-16015 (Houston, Texas),
July 1979.

5. Duda, R. 0.; and Hart, P. E.: Pattern Classification and Scene Analysis. 	 i

John Wiley and Sons (New York), 1973.

6. Wolfe, J. H.: Pattern Classification by Multivariate Mixture Analysis.
Multivariate Behavioral Research, vol. 5, 1970, pp. 329-350.

7. Thadani, S. G.: A Nonparametric Loss-Optimal Pattern Classification

}	 System. LEC-11451 (JSC-13901), April 13, 1978.

8. Berkson, J.: Estimation of a Linear Function for a Calibration Line.
Technometrics, vol _11, 1969, pp. 649-660.

g . Saw, J. C.: Letter to the Editor. Technometrics, vol. ,12, 1970, p. 937.

,g





TABLE A- 1,- CORN CLIPPING LIMITS

i

Channels
Data

type
2 4 6 8

n̂.Max f Min, Max. Min. Max. Min. Max.

Standardi zed procedure

Augus t 12 19 42 71 *,. *»,. *,.

May *- - *- *- 25 45 ?4 60

Multitemporal 12 19 42 72 24 44 26 61

Independent test set procedure

August 12 19 43 69 *.. *..,

May *- *- *- *_ 24 47 24 55

Multi temporal 12 19 43 68 22 47 24 57

Jackknifing training sets

Multitemporal
only

1 12 19 43 73 21 47 24 62

2 12 19 43 70 23 45 24 61-

3 12 19 43 70 23 44 24 56

4 12 19 42 70 24 44 32 61

5 - 12 20 41 73 24 46 24 61

6 12 21 41 73 23 45 24 61

7 12 19 41 70 23 45 24 61

G 12 19 41 71 24 42 24 61

9 12 19 41 73 24 44 24 56

10 12 19 41 73 24 44 24 61

11 12	 1 19	 1 41	 1 70	 1 24	 1 44 24	 1 61

I



Channels
Do to 2 4
type

Mina Max, Min. Max. Min. Max, Min, Max.

Standardized procedure

August 19 33 36 6 * *- *• *-

May 15 30 52 82

Mul ti temporal 19 33 33 57 0 29 52 84

Independent test set procedure

August 1s 32 34 56
May *- * *- * 14 30 55 83

Muititemporal 1 Q 32 34 56 14 30 59 R3

Jackknifing training sets

Mul ti temporal
only

1 15	 36 30 58 14 32 51 84

2 1R	 32. 34 58 14 29 52 80

3 18	 33 34	 j 57 14 29 50 79

4 18	 33
A

35 57 14 24 55 80

5 15	 33 35 58 14 35 51 84

6 16	 34 34
4

57 14 30 59 84

7 15	 33 34 58 16 31 54 78

8 17	 33 34 58 14 29 55 80

9 18	 33 34 58 14 29 55 80

10 1$	 33 34 58 14 29 52 80

11 188	 32 30 58 14 29 15 83

i

i

TAM A-2.- WINTER WHEAT CLIPPING LIMITS



TABLE A-3.- PERMANENT PASTURE CLIPPING LIMITS

fi

f

^a

Charnel s
Data z

- 
4	

.
8type

Min. Max. Min. Max. Min. Max. Min. Max.

Standardized procedure

August 0 26 30 73

May 16 36 45 103

Multitemporal 0 26 28 74 0 34 43 94

Independent test set procedure

August 12 27 38 73

May *- *i4 *- *- 14 35 41 88

Mul titemporal 12 27 38 72 12 34 41 87

Jackknifing training sets

Mul ti temporal

only

1 12 26 31 76 12 39 41 94

7 12 26 31 76 13 36 43 87

3 12 24 33 72 9 36 18 98

4 12 26 31 76 9 37 18 104

5 12 28 31. 77 9 42 18 103

6 12 28 33 76 9 37 18 104

7 12 26 33 76 9 38 18 104

8 12 26 32 76 9 35 18 103

9 12 -	 26 3 l6 9 34 18 102

10 12 26 30 76 9 36 18 104

11 12 27 1	 37 1 9 38 18 104

i

i4
a



s

TABLE A-4.- SOYBEANS CLIPPING LIMITS

Channels
Data 2 4 6 1	

8
type

Min. Max. Min. Max. Min. Max. Min. Max.

Standardized procedure

August 0 22 47 99 *., *_ *.._

May *- *- *- *- 23 48 31 65

Multitemporal 0 1.	 22 50 98 25 48 28 62

Independent test set procedure

August 12 21 I	 48 105

May *- *- *- *- 22 47 28 65

Multitemporal 12 24 44 105 21 47 28 63

Jackknifing training _sets

Mul-ti temporal
only

1 11 23 47 98 21 48 28 63

2 11 23 46 101 22 44 28 64

3 11 23 46 98 23 47 28 64

4 11 23 47 105 22 45 28 65

5 11 24 47 98 18 48 28 67

6 11 23 47 105 15 47 28 72

7 11 22 39 105 22 46 29 64

8 11 22 49 98 22 45 28 61

9 11 22 46 98 23 45 28 65

10 11 22 47 98 24 46 30 63

11 12` 23 47 98 24 47 28 65
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TABLE A-5. DENSE WOODLAND CLIPPING LIMITS

Channels
Data
type

2 4 6 8
Mi n. Max. Min. I Max. Min. Max. Mina Max.

Standardized procedure

August 0 23 43 69

May 14 28 54 72

Multitemporal 10 23 44 68 0 30 51 73

Independent tent set procedure

August 10 19 48 67

May *- *- *- *- 16 27 53 74

Multitemporal 10 19 48 70 15 28 54 74

Jackknifing trai ninq sets

Multitemporal

only

1 10 24 42 70 14 28 51 74

2 10 22 42 70 14 29 51 72

3 10 22 42 67 14 30 52 74

4 10 22 42 70 14 28 50 74

5 10 24 43 68 14 29 52 74

6 10 24 42 70 14 29 52 74

7 10 20 47 70 14 28 55 74

10 22 45 68 14 29 54 74

9 10 24 42 70 14 29 52 74

10 11 24 43 70 14 29 52 72

11 10 24 44 70 14	 , 30 54 74-



TABLE A-6.- OTHER HAY CLIPPING LIMITS

Channels
Data	

_ 2
	 4	 6	 8type	 --•

Min.	 Max.	 Min.	 Max.	 Min.	 Max.	 Mind Max.

Standardized procedure

August 0 25 38 68

May *- *-- *- 15 33 56 91

Multi temporal 13 27 38 68 0 32 56 91

Independent test set procedure

August 13 28 37 68

May lr- *- *- *- 13 32 54 99

Multitemporal 13 26, 38 69 12 32 49 100

Jackknifing training sets

Multitemporal
only

1 11 28 37 68 12 32 92 92

2 11- 27 37 68 12 32 50 100

3 13 27 33 75 12 32 50 90

4 12 28 38 68 12 32 50 100

5 11 28 37 69 14 32 50 93

6 11 29 37 75 12" 32 50 100

7 11 28 33 68 12 33 49 100

8 14 28 37 67 13 29 56 91

9 13 28 33 68 12 32 50 98

10 11 24 39 68 12 31 50 93

11 11 28 39 68 12 32 50 90

i
i
I

i
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TABLE E-1.- NUMBER OF CLUSTERS GENERATED

TRAINING AND TESTING ON ALL 33 SEGMENTS

i

Cron JSC USDAt
(pure) (mixed)

Corn 2 7 6 7

Winter
wheat 1 5 2 1

Permanent
pasture 5 15 7 6

Soybeans 5 10 5 8

Dense
woodland 1 7 3 4

Other hay 1 7 4 5
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APPENDIX E

ARCHIVED FILES

Listed below are the file naming conventions used in naming files created by

Editor.

	̀ FRAME-NAMES	 list of Landsat scenes used

fk	 TASK2	 33 segments split into two groups, 25 for training and 8
for testing

TASKS	 Jackknifing procedure using Editor

j	 No task number	 t4ining and testing done on all 33 segments

i	 CLASSY	 CLASSY clustering algorithm used instead of Editor
clustering

TRAIN	 training set file

w TEST	 test set file

MAY	 file using May acquisition only

AUG	 file using August acquisition only

MTEMP or BILL	 file using both acquisitions

SEGTOT or SGT	 segment total file
j

EST or ESP or ESTPAR estimated parameter file

STAT	 statistics file
1

ISTAT-	 inverted statistics file s

PACK	 automatically packed file

CAT	 categorized file	 1

SCAT	 list of files for scattergramming

TBL or TABLE	 table file

CLIPPED	 clipped file

APRIOR or PUR	 prior probabilities specified
°'	 I

('-	 E-1



N-GRPS	 N clusters

SEES	 list of segment numbers

NB	 all pixels available

-NB	 border pixels removed

CORN	 corn pixels only

PERMANENTPASTURE

or PASTURE	 permanent pasture pixels only

DENSEWOO LAND or
WOODS	 dense woodland pixels only

OTHERHAY or HAY	 other hay pixels only

WINTERWHEAT or WHEAT winter wheat pixels only

SOYBEANS	 soybean pixels only

Examples:

TASK3/TRAIN/5/PACK.-CORN/CLIPPED is a packed file of clipped corn pixels used

as training data in the fifth of 11 jackknifi ng runs. (There are 30

segments of corn pixels in this file.)

BILL/WOODS.SGT is the segment totals file for crop dense woodland using

multitemporal data when testing and training on all 33 segments.

r	 TASK2/TEST/CLASSY/CAT. is the categorized file resulting from classification of

the 3 test segments after CLASSY was used to cluster the 25 training

segments.

Fk

E-2
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<JSCA-RAMS. NAMES

<JSC>TASK /TRAIN.SEGSi2

<JSC>TASK2/TEST.SI:QS 2



< JSCMAYMHEAT. 5STPAR; I
< JSCMAYMMCAT. SECITOT; I
<11SOMAY/TABLE.; 4
<J$C>MAY/STAT.-WINTERWtir.AT/CLIP;I
<JSC>MAY/STAT.15-QRPS/CLXP/EP;l
<JSC>MAY/STAT.-OTHCR14AY/CLIP;I
<JSC>MAY/STAT,-DCNSE!400DLAND/CLIP;I
<JSC>MAY/STAT.-SQ)'OEANS/CLIP;l
<JSC>MAY/STAT.-PERMANi r.NTPASTURE/CLIP;I
<JSC>MAY/$TAT.-CORN/CLIP;l
<JSC>MAY/SOYSEANS.ESTPAR;l
<JSC>HAY/SOYBEANS.SEQTOT;l
<JSC>MAY/PERMPAST-ESTPAR;l
<JSC>MA)'/PCRMPAST,SEGTOT;l
<JSC>MA1'/PACK.-PERtIANCNTPASTURE/CLIP;1
<JSC>MAY/PACK--DTHERHAY/CLIP;l
<JSC>MAY/PACK.-DENSEWOODLAND/CLIP;I
< JSC>tlA)'/PACK - -SOYS ANS/CLIP; I
< J5C>MA)'/PACK. -14INTERWHEAT/CLIP; I
<JSC>MAN'/PACK,-CURN/CLIP; i
<JSC;IMAY/PACK.-OTHERHAY/11079;1
<JSC>MAY/PACK.-DENSEWOODLAND/MO79;1
< JSC MAY/ PACK. -83 0)'BEANS/M07.5; I
<J$C>tlA^'/PACK.-PERMANENTfloSTURE/MQ7S;I
<JSC>MAY/FACK.-WINTERWIAEAT/M07S?'I
<JSC>HAY/PACK.-CORN/MO7S;1
<JSC>MAY/PACK.-NS/MQ70;1
< JSC XMAY/ PACK ,. NB /M079; I
<JSC>MAY/ISTAT.tV-ORPS/PUR;l
<JSC>MAYY'ISTAT.15-GRPS/EP;i
<JSC>MAY/HA)'.ESTPAR;l
<JSC>MAY/HAY.SEGTOT;l
<JSC>MAY/DENSEW0Q0S.ESTPAR;1
< J SC>MA MENSE14000S, SEOTOT O, i
< JSC >MA)' /CDRN * E5TPAR; I
<JSC>MAY/CORN.GEGI -OTf i
<JSC>MAY/CAT.;l



<JSC>AUVISOYBEANU.-ESTPARAMETER;2
<JSC>AUG/SOY8EANS.-SCGTOI *AL;2
<JSC>AUO /SAklTAa4E.;2
<JS0AUQ/CAT.NB-ZZQPS/PUC;1
<JSC>AUG/CAL.PRIQR;l
<JSq>AUG/WZNTeRWHEAT.-ESTPARAMETC-R;I
<JSC>AUO/W1NTWflMEAT. -SEGTOTAL; I
<JOC>AUO/STAT--ZZGPS/EP;l
<JSC>AUO/STAT.-OTHERHAY/CLIP;l
<JSC>ALJG/STAT.-DENSEHOOPLAND%CLIP;I
<JSC>AUa/STAT.-SO) ' BEANS/CLIP;l
<JSC>AUCi /STAT.-PERMANCNTPASTURE/CLIP;I
<JSC>AUG/STAT.-WINTER14HEAT/CLIP;I
<JSC>AUQ/STAT.-CQRN/CLIP;l
<JSC>AUG / SO)'BEANS. -EStPARAMETER;I
<JSC>AIJG/SQ)'SEANS--SEGTOTAL;l
<JSC>AUG/SAYTA$LC.*r i
<J6C>AUG/PERMPAST.-SEGTPTAL^l
<JSC>AUO/PACK.-SOYBEANSiCLIP;l
<JSC>AUG/PACK.-OTHERHAY/CLIP;l
<.)SC>AUU/PACK.-DKNSEWOODLAND/CLIP;I
<J$C>AUO/PACK.-PEiiMANENTPASTURE/CLIP;,i
<JSC>AUCIPACK.-WINTERWHEAT/CLZII;I
<JSC>AUQ/PACK.-CORN/qLIP;l
<JSC>AUQ/PACK.-NB/MD79;1
<JSC>AUO/PACX,ND/PIQ7S;1
<J.SC>AUG/D!'HER14AY.-6STPARAMPTER;I
<JSC>AUG/OTHERI•IAI*. -SECT i OTAL; I
<J$C>AUG/fSTAT,-Z'QPS/PUR;l
(JSC>AUG/ISTA-T.-ZzGpWEp;l
<JSC>AU6/0r.NSEWO.-ESTPARAMEI'ER;l
<JSC>AUG/I)ENSEWD.-SEGTOTAL;l
<)SC>AUQ/COPN.-ESTPARAMETEI?f'l
<JSC>AUG/CORNe-SEGTOTAL;!

T110 CCU OV,01 PONO-Â



<JSC>DjLI./woODS.Esp;l
<JSC>8ILL/WOOVS.$6T;l
<JSC>8ILL/WHCAT,,CSP;l
<JSC>SILI./WHCAT.SGT;l
<JSC>BILL/TBL. ► Z
<JSC>DlLL/SUY8EANS.CSP ► 1
<JSC>BJ4L/SOYSEANS. SGT; l
<JSC>oILL/PA5TURE.ESP;1
<JSC>DILL/PASTURE.SOT ► l
<JSC>OlLt./PACK.-OT14ERHAY/CLIPPED;I
<JSC>ialLL/PACK.-OCNSEWOODLANO/CLIPPED;I
<JSC>BILL/PACK,-SOYOFAN$/CLIPPr.D'► I
<JSC>BILL/PACK.-PCOMANCNTPASIURE/CLIPPED;t
OBIO
<JSC>OILL/PACK.-WINTCRWHEAI'/CLIPPCD;I
<JS0BILL/PACK.-CORN/CLIPPED;l
<JSC>8ILL/PACK,-NO/MO7S;1
<JSP>OILL/PACK.NB/MD7S;1
<JSC>DILL/ISTAT.ISGRPS/APRIOiR,;Z
<JSC>BILL./HAY.ESP ► l
<J5C>S144/HAY.SGT;l
<JSC>SILL/CORN.ESP;i
<JSP>8ILL/CQRN. SGT; l
<JSC>BILLICAT.;3

"J



< JqC, CLASSY/14400 1:7. GUT/ PUR61 t). 
1
* 1

<JSG)GLA ljl 4Y/141W'AT. IXT/1 1URLPIR
. I

< JS C>CLAfUS* Y/ STAT - 41 J NTLRWICAT/ PURF, 11 IX; I
< JSC>GLA5 l.,'Y/STAT. — OTIiF.:RHAT/PUrMf)D',; I

<JSC>CLAS$Y/STAT. —VENSEWOODLAND/ PUREP IA"; 1
#33

J SO >CL ASSY/STAT. -CORN/ PUREP IM I
<JSC>CI.ASSYISTAT.---PASI'URe/rLi perix; t

< JSQ >CLASSY/SOYBEANS. gEiT/ p urvl:' Pl X; I
< JSC>CLA5SY/.(j'OT . -WHFAT/PUR5P I X; I

< JSC>CLA-dSY/SGT - PUREP IX; I
<J$C>C4A$SY/PASTUt`^E.C.UT/PUREPI)(;I
<JSC>CLASSY/PASTURC.SGT/PURL:,'.PIX;I
< JSC >CLASSY/ I STAT. -270RPS/ PUREP VUPR I ORS; I
tE)33	

-< JSC>CLASS)'/ I STAT. -27-CIRPS/PUREP Dif ; I
<JSC>CLASSY/I-IAY.CST/Pt)r^CP(Jl/t; I
<JSC>CLASSY/HAY.SCiT/PUREPI>f;I
< JSQ>MASSY/CORN. EST/1 1UREP I X; i
ZJSC>CI,ASSYICAT.PUREF)XX/PRIORS;i
< JSQ CLASSWWOOOS. MST; i
<JSG>CLA rjSY/14LQV$. rMT; 1
< J $C >CLASSY/ WHEAT a C9T; 1
< JSC)CLA5SY/1*MAT. SOT; I
<JSC>QLASSY/TABLE.)' l
< JSC>CLASt"SY/STAT. FIXED; I
<JSa>CLASSY/SQ)'SEANS -EST; I
<JSC>CLASSY/SDYBEANS.SCiT;l
< JSC>C4.AS5Y/PASTtJrNE. EST; i
<JSC>CLASSY/PASTURr.VGT;l
< JSQ >CLASSY/ PACK, NV I NCL /BORDER P IXELS; I
<JSC:, CLASBY/I8TAT. PUR; I
< J$C>CLASSY./IIAN, EST rl
< JSC >CLASSY/MAY. SOT; I
<JSC>CLASSY/CDRN.E,5T;l
<JSC>CLASSY/CORN.SGT; I
<JSC>CLASSY/r.AT,NR/PUR;l



0

<JSC> TASK2/TRAIN/iMAY'/WINTERIJHCAT. ESP;
<.ISC>TASK2/TWAIN/MAY/I4INTER WI II:AT ► S GT; I
<JBC>TASK2/TRAIN/MAY/SOYBCANS.KSP;1
<J$C-, TASK2/ TRAIN /t1AY/S GI YBE> ANO SGTII

<J$C>TAZK2/TRAIN/MAY/PERtIANENTPASTURE.ESP;1
00021
<JGC>TASK2/'TRAIN/MAY/PCRMANENTPASTURE. SGT'i1

a<J$C>TASK2/TRAIN#/MAY/ PACK, -01HERHAY/CE.IP;1

<JSC>TASK2/TRAIN/MAY/PACK.-DENSi rltiODLANA/CLIP#-
id 20021
<J$C>TASK2/TRAIN/MAY/PACK.-SOYD ANS/CLIPiI
*621
<JSC>TASKZ/TRAIN/MAN'/PACK.-PERMANENTPASTURC2 !`CLIP11
M and 20021
<JSOTASS2/TRAIN/MAY/ PACK. -WINTCRWHCAT/ CLIP' i
^ ?0021
<JSC>TASK2/TRAIN/MAY/ PACK. -CORN/CLIP;I
<JSC>TASK2/TRAIN/MAY/ PACK. -WINTERWHEAT/M079II

20821
<JSC>TASK2/TRAIN/MAY/PACK.-NC/M07011
<JSC>TASK2/TRAIN/MAY/PACK.NB/MO79 ► 1
<JSC>TASK2/1'RAFN/MAY/PACK.-OTHERHAY/MO79I2

x021,

<JSC>TASK2/TRAIN/MAY/PACK. —DENSCWOOD44ND/MO79 2
Md 20621
<JSC>TASK2/TRAIN/MAY/PACK.—SOYBEANS/M07£1.2
*621
<45C>TASK2/TRAIN/MAY/PACK.-PERMANENTPASTURE/MG7912

R and 20021
<JSC>TASKZ/TRAIN/MAI'/PACK.-CORN/MO79P2
<JSC>TASK2/TRAIN/MAN''/OTHERHAY.ESP ► 1
<JSC>TASK2/TRAIN/MAW/OTHE"RHAY.SOT; I
<JSC>TASK2/TRAIN/MAY/DENSEWOODLAND. ESP; I

*1
<JSC>TASK2/TRAIN/MAN'/DI NSIEWOODt.AND.SGT ► 1

*1
<,JSC>TASK2/TRAIN/MAN`/CORN.f SP I
<JSC>T.ASK2/TRAIN/MAN'/CORN.SGT'rl
<JSG>T;ASK2/„TRAIN/MAN"/CAT.; 1
<JSC>TASK»/TRAIN/IIAY/TSL. 1,
<JSC>TASK2/TRAIN/MAY/STAT.16-GRPS ;I

K	 6 IN/MAY/I rTAT 1G-M GRPa/ CEr1ni 1<JSC >TAS_»fT A	 ^



^JSC.'-TAGHZ/TCGl/IiAY/TSL. ' I
<J« C 	 TVFIT /MAY /CAT,
< JS0TA9K2/TFXT/MAY/W1 III CRNHCAT , 1:$P; I
< J90TAVKVTL0T/ MAY /141 WRWHEAT. SOT; I
<J$C>I'ACK2/TCST/MAY/60YUCANS, ESP; I
< J$C >TASK 2 /TCSTIMAY/ SOYBEANS. SOT; I
<J$C>TAUK.I./T.C$T/.MAY/PC'riMAtICNTPASTURP.*.C-SP,* t

1021
< J SC ) TASK t.., / TCUT /MAY /PC HMANCNTPAS TURC. 5 OT; 1

1021
<JSC>TA.BK2/lCST/i4A`/PACK NO/MU70; I
< JSC.s l'ASK"ft/TCOT/MA)'/OTtILRI(AY. ESP; I
<Jf)*C,* E TA SKZ/TCOT/MAY/QT[i'LRIIAY. SOT; I
<JtU*WTAaKZ/Tl.;SI'/NAY 

0	
SP'DLNSEW0ODLAND.F;l

<J$C>TASK'* /TEUT/MAY/Or^MOrWOODLAND,SPT;J
J QC,*# TASK *'ITCST / MAY / CORN. ESP; I

<JSC>TASK'-'/TEST/flAYICQRN,SOT;I



< JIIC^l A'jKZ /I RA I N/AUO/W I NTERWHEAT. Elf
< JSCMSK"/TRA I WAUNWINTUNIX AT. G(
<J$C'*,TAUK?.ITPAIN/AUG/SOYDCANS.P.SP;;
<JSC>TAUK"/TRAIN/AUG/SOYBCANS.sar;^
<JVC>TASKZ/I'RA I N/AUO/I'LRMAfXNTPAST(

&Atl #) i

<JUC>TASK2/*TPAIN/AUO/̀PERMANENTPAOI'URE.SGT;t
*0821

<J$C>TASK2/TRAIN/AUS/PACK.-OTHRRHAY/CLIP;1
0021
<JSC>TASK2/TRAIN/AUG/PACK.-CORN/CLIP;t
<JSC>TASKZ/TRAIN/AUG/PACK,-DgNSENOODLAND/CLIP;l

)ad 20821
<JSC>TASK2/TRAIN/AUO/PAVA.-WI14TERWHEAT/CLIP;I

* 2001
< JOC >TASK2/TRA I N/AUG / PACK s- PERMANENTPASTURGUCLIP; i

0 and 20871
<JSC>TASKZ/TRAIN/AUS/PACK.-SOYSCANS/CLIP;I

*021
<J$C>TASK2/1'RAIN/AUG/PACK.-OTf4CRl4AY/MO78;1

*021
<JSC>TASKZ/TRAIN/AUG/PACK.-DENSE140ODLAND/MO79;1

*d 20021
<jSC,S TASK2/TRAIN/AUO/PACK.,-SOYBEANS/MO70;1

#821
<JSC>TASKZ/TRAIN/AVO/PACK,-PERMANENTPASTUr%E/MD79;1

* aild 20OZI
L< JSC>TASK2/ TRA I N/AUS/ PACK. -W INTERWHEAT/MU79,1 I

* 20x32 
<JBP>TASK2/TRAIN/AUO/PACK.-CORN/MU79tI
<JSC>TA592/TRAIN/AUOIPACK.-NB/llO7.9;1
<J$C>TASK2/TRAIN/AUG/PACK,NB/11070:1
<JSC>TASK2/TRAIN/AUU/OTHERHAY.ESP;I
<JSC>TASXZITRAIN/AUC/DIHERHAY.SGT;i
<.ISC>TASK2/TRAIN/AUG/DENSEWOODLAND.E$P;1

*1
<JSC>TASK2/TRAIN/AUG/DENSf^WOODLAND.SOT;i

*1
<JSC)TASKZITRAINIALJG/CORN,ESP;t
<JSC>TASK2/TRAIN/AUG/CORN.SGT;l
<JSC>TASK2/TRAIN/AUa/TBL.;1
<JSC>TASK2,'TRAIN/AUCi/STAT.16-CiRPV):i
<J$C>TASK2/TRAIN/AUG/rSTAT-10-ORPSICLIP;I
<JSC>TASK2/TRAIN/AUG/CAT.;I -



<4=TAGK."/TCGT/AUGil4 I NVIRWIINAT. SLIT #* I
< J I.;C,*#, TASK'-'/TE.T/AtJtA/t4 INTGRI41frAT. ESP #* 2
< J9C^TA5K"/T0T/AfJCs/GU -'UANU. CUP; 1
4 JOC,',TA$K"/TCUT/AUVi/DO"'DEANS, SaT; I
<JSC>TAaKZ/TE;ST/AUO/pr.4'tIANC, NTf)ASTUr?E,C$f*, ; I
tool
<J$C>TASKZ/TCUr/AUO/PERMANENTPAStURE.SGT;I

#021
<JSC>TASK2/TCST/AUO/PACK.14B/MO70;1
4JUC>TASK""/TCr^T/AUS/OTI!ER[iAY.E$P;I

SOT; L
e.JSC>TA5K2/TCUT/AUG/DLtISCWOUDLAND.C-,SP;I
< J 50 >TASK Z/ TrUT/AUCi /DrINU WOO DLAND, OCIT; I
<JSC>I'ASK'"/TEUT/AUG/CDRN,CSP;I
<JP)C 5TAE;I'w:-,/ TV'-'j'T/AUCt/CDRN. 6aT * I
< jM*,,TASR2/1 -CVT/AjVli CAT.



w
i

i

'	 <JSC>TASK2/TRAIN/MTEMP/TLL1.;I
<JSC>TASKZ/TRAIN/MTE:PIP/MiT.1G-GRP ta'; I
<JSC>TASK :/TtiAIN/MTEMP/ISTAI*.1G- 6RPS/CLIP;,I

won77
<JCC>TASK2/TI,AIN/PITEMP/CAT.;1
<JSC>TASKZ/TRAIN/MTEMP/WINTERWHEAT.ESP;

*1
<JSC>TASK2/TRAIN/MTEMP/WINTERWHEAT.SGT;1.

<JGC>TASKZ/TRAIN/t1TEMP/$OYUEANS.ESP; 1
<JSC>TASK«/TRAIN/MTEMP/SOYDE'ANS. GOT; 1
< JSC>TASK2/TRA IN/CITE*MP/ PI=Rf goNENTPASTURE . ESP;

* 20821
<JSC>TASK2/TRAIN/tITEMP/PERMANENTPASTURC-.S(iT;1

20821
<JSC>TASKZ/TRAIN/MTEMP/PACK.-OTHERHAY/CLIP; i

*20821
<JSC>TASK2/TRAIN/MTEMP/PACK.•-DENSEWOODLAND/CLIP;1

,*and 20821
<JSC>TASK2/'TRA I1I/MTEMP/PACK . -S01'SEANS/CL I P; I.

X201321
<JSC >TASK?/TRAIN/MTEMP/ PACK . -PERMANENTPASTURE/CLIP;1
*9 and 20021
<JSC>TASK2/TRAIN/MTEMP/PACK.-WINTERWHEAT/CLIP;1

*d '20821
<JSC>TASKZ/TRAIt4/MTEMP/PACK.-CORN/CLIP;1

*1
<JSC>TASK2/TRAIN/MTEMP/PACK.-OTHERHAYVM079;1
*20821
<4SC>TASK2/TRAIN/MTEMP/PACK'.-DENSEWOODLAND/MO79;1

*and 20821
I	

<JSC>TASK2/TRAIN/MTEMP/PACK.^SOYBEANS /M079;1
-20821

<J.SC>TASK2 /TRAIN/MTEMP/PACK.-PERMANEN(TPASTURE/MO79;1
w9 and 20821
<JSC>TASK2/TRAIN/MTEMP/PACK.-WINTERWHEAT /MO79;1

+d 20821
<JSC>TASKZ/TRAIN/MTEMP/PACK.-CORN /M079;1

I

	

	 <,JSC>TASK2/TRAIN/MTEMP/PACK.-NB/MO79;1
<JSC>TASKZ/TRAIN/t1TEMP/PACK.NB/MO79;'1
<JSC>1`ASK:!/TRAIN/MTEMP/OTHERHAY.ESP;1
<JSC>TASK2/TRAIN/MTEMP/OTHERHAY.SGT;1
<JSC>TASKZ/TRAIN/MTEMP/DENSEWOODLAND•ESP;1
W821
<JSC>TASKZ/ RAIN/MTEMP/DENSEWGJDLAND.SGT;1

0821
<JSC>TASK2 /TRAIN/MTEMP/CORN.ESP;1
<JSC>TASK2/TRAIN/MTEMP/CDRN.SGT;1



<JSCrTASKZ/TEST/MTEMP/TSL.;Z
<JSC?TASK^/TEST/MTEMP/CAT.;1
<JSC>TASKZ/TEST/MTEMP/WINTERWHEAT.ESP;1
;JSC>TASKZ/TEST/t1TEMP/WiNTERWHEAT.S(iT;f
<4SC>TASK2/TEST/MTEMP/SOYBEANS.ESP;I
<JSC>TASKZ/TEST/MTEMP/SOYREANS'.SOT;I
<JSC>TASK2/TEST/MTEMP/PERMANENTPASTURCoESP I

*20021
<JSC>TASK2/TEST/MTEMP/PERMANENTPASTURE.SGT !

*20021
<JSC>TASK2/TEST/MTEMP/PACK.NB/MO79;1
<JSC>TASK2/TEST/MTEMP/OTHERHAY.ESP;1
<JSC?TASK2/TEST/MTEMP /OT14ERHAY.SGT;I
<,JSC>TASK2/TEST/tITEMP/DENSEWOODLAND.ESP;I

*21
<JSC>TASKZ/TEST/MTEMP/DENSEWOODLAND.SGT;1

*a
<JSC>TASAZ/TEST/MTEMP/CORN. SOT;1
<JSC>TASKZ/TEST/MTEMP/CORN.ESP;1

k

0k"I PpC^Af• p
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<JSC>TASK2TEST/CLASSY/SOYBEANS.6ST ;I
<JSC>TASKZ/TRAIN/CLASSY/140ODS.EST;I
<JSC>TASK2/TRAIN/CLASSY/WOODS,SCiT;
<JSC>TAGK2/TRAIN/CLASSY/WHEAT. SGT;1
<JSC>TASK2/TRAIN/CLASSY/WHEAT.EST;I
<JSC>TASKZ/TRA'IN/CLASSI'/SOYBEANS.EST ;1
<JSC>TASK2/TRAIN/CLASSY/SDYBEANS,JGT ;1
<JSC>TAS KZ/TRAIN/CLASSY/PASTURE.EST;1
<JSC`>TASK2/TRAIN/CLASSY/PASTURE.SGT;1
<JSC>TASK2/TRAIN/CLASSY/HAY.EST;I
<JSC>TASK2/TRAIN/CLASSY/HAY.SGT;I
<JSC>TASKZ/TRAIN/CLASSY/CORN.EST;1
<JSC>TASKZ /TRAIN/CLASSY/CORN.SCT;I
<JSC>TASKZ/TRAIN/CLASSI'/CAT,;I
<JSC>TAEKZ/TEST/CLASSY/WOODS,,EST;I
<JSC>TASK2/TEST/C4ASSI'/1400DS.SGT;1
<JSC>TASKZ/TEST/CLASSY/WHEAT.E;,ST;1
<JSC>TASK2/TEST/CLASSY/WHEAT.S"uT41
<JSC>TASK2/TEST/CLASSI'/SOYBEANS4SCiT i
<JSC>TASKZ/TEST/CLASSY/PASTURE.EST;i
<JSC>TASK2/TEST/CLASSY/PASTURE.SOT;I
	

4

<JSC>TASK2/TEST/CLASSY/HA Y.EST;i
<JSC>TASKZ/TEST/CLASSI' /HA1'. SGT' ;1
<JSC>TASK2/TEST/CLASSI'/CORN.EST;1
<JSC>TASK2 /TEST/CLASSY/CORN. SGT; I
<JSC>TASK2/TEST/CLASSY/C}^T.;1
<JSC >CLASSY /TRAIN/TA6LE.;1
SJSC >CLASSY/TEST/TABLE.;1
<JSC>TASKZ/TRAIN/CLASS T/ISTAT.•-24GRPS/PUR;I
00853
<J$C +TASK2/TRAIN/CLASSI'/ISTAT.- 24OR PS/EP; 1

► 053
<JSC >TASK2/TRAIN /CLASSI'.BOUT; 1
<JSC>TASK2/TCST /CLASSI'.BOUT 1
<JSC>TASK2/CLASSY/STAT.-OTH5R;I
<JSC>1`ASK2/CLASSY/STAT.-PERMANENT;1
<JSC>TASK2/CLASSY/STAT.-SOYBEANS;!
<JSC*^TASKZ/CLASSY /STAT.-SOYBEANS;2
<JSC>TASK/CLASSI'/STAT. -CORN;1
<JSC>TASK2/CLASSY/STAT.-WINTER;1
<JSC>TASK2/CLASSY/STAT."DENSE l



<JSC>TAGK3/TRA%N/I.SEGS;4

<JSC>TASI(3/TRAIN/1/PACK.-OTHERHAY/CLIP;I
-47
<JSC>TA$K3/TRAIN/1 /PACK,-DENSEWOODLAND/CLIP;I
20OZ7

<JSC>TASK3/TPAIN/l/PACK.-PERMANENTPASTURE/CLIP;I
*nd 20027

<JSC>TASK3/TRAIN/1 /PACK.•SOYBEANS/CLIP;L
*7

<JSC>TASK3/TRAIN/i/PACK.-WINTERWHEAT/CLIP;I
*0827

<JSC>TASK3/TRAIN/l/PACK.-CORN/01,IP;1
<JSC>TASK3/1'RAIN/l/PACK.-OTHERHPY/MO70;I

*7
<JSC>TASK3/TRAIN/l/PACK.-DENSEWOODLAND/M079 ► 1

20827
<JSC>TASK3/TRAIN/1/PACK.-SOYSEANS/MU79;i

#7
<JSC>TASK3/TRAIN/l/PACK.-PERMANENTPASTURE/MO79;1

*nd 20827
<JSC>TASK3/TRAIN/1/PACK.-WINTERWHEAT/MO79;1

X0827
<JSC>TASK3/TRAIN/1/PACK.-CORN/M079;1
<JSC>TASK3/TRAIN/l/PACK.-NB/MU79;1
<JSC>TASK3/TRAIN/1/PACK.NB/MO79;2-

<JSC>TASK3/TRAIN/1/WINTERWHEAT.ESP;I
<JSC>TASK3/TRAINII/4IINTEI3WHEAT-SOT;I
<JSC>TASK3/TRAIN/l/TBL-f1
<JSC>TASK3/TRAIN/i/STAT.16-CiRPS;I
<JSC>I"ASK3/TRAIN/1 /STAT,-OTHERIIAI'/CLIP;I

*7
<JSC>TASK3/TRAIN/1/STAT.-DENSEWOODLAND/CLIP;I

ZOOZ7
<JSC>TASK3/TRAIN/1/STAT.-SO1'BEAt'S/CLIP;I

*7
<JSC>TASK3/'1'RAIN/1/SI'AT.-PERMANENTPASTURE/CLIP;I

-*nd 20027
<JSC>TASK3/TRAIN/i/STAT.-WINI'ERWHEAT/*CLIP;I

-*0827
<JSC>TASK3/TRAIN/1 /STAT.-CORN/CLIP;I
<JSC>TASK3/TRAIN/1/SOYCEANS.ESF;I
<JSC>TASK3/TRAIN/1/S01'BEANS.SGT;I
<JSC>TASK3/TRAIN/l/PERtIANENTPASTURE.ESP;I

•*C7
<JSC>TASK3/TRAIN/1/PERti,ANENTPASTURE.SGT;I

<JSC>TASK3/TRAIN/)/OTIiCRIiAY.ESP;I
<JSC;,TASK3/TRAIN/I/QTHERHAY.SGT;I
<JSC>TASK3/TRAIN/141STAT.16-CiRPS/CLIP;I
<JSC>TASK3/TRAIN/1/ISTAT.16-nRPS;I

1 , 0,DLAND.ESP;i<JSC>TASK3/TRAIN/l/DENSF10
<JSC>TASK3/TRAIN/1/DENSE:WOODLAND.SGT;I
<JSC)TASK3/TRAIN/1 /CORN.ESP;1
<JSC>TASK3/TRAIN/1/CORN.SaT;1
<JSC>TASK3/TRAIN/1/CAT.;l

E-15



K

i(

<JSC>TASK3/TEST/l/WINTERWHEAT.SGT;I
<JSC>TASK3/TEST /l/WINTERWHEAT.ESP;I
<JSC >TASK3/TEST/I/TBL.;l
<JSC>TASK3/TEST/1/SOYSESNS.ESP I
<JSC>TASK3/TCS T/I/SOYSEANS.SUT;I
<JSC>TASK3/TEST/I/PERMANENTPASTURE.ESP;I

*7
<JSC>TASK3/TEST/l/PERPIANENTPASTURE.SGTI

►7
<JSC>TASK3 /TEST/l/PACK.NB/MO79"► 1
<JSC>TASK3/TEST/I/OT14ERHAY.ESP;I
<JIC>TASK3/TEST/1/OTFIERHAY.SGT;I
<JSC>TASK3/TEST/l/DENSEWOODLAND.ESP;I
<JSC>TASK3/TEST/I/DENSEWOODLAND.SGT`;I
<JSC>TASK3/TEST/i/CORN.CSP;I
<JSC>TASK3/TEST/l/CORN.SGT+I
<JSC>TAS93/TEST/I/CAT.1
<JSC>TASK3/TEST/I.SEGS2 I

r-



<J$C'>TASK3/TRAIN/.".GEGS;l	 b

<J$C^TASK3/TRAIN/C/WINTERWHEAT ESP;1
<JSC;TASK3/TRA114/3/WINTEr'WHEAT.SGT;1
<JSC >TASK3/TRAIN /2/TSL.;1
<JSC>TASK3/TRAIN/Z/`STAT.I 0-GRPS'r 1

	
l

<JSC>TASK3/TRAIN/ /STAT. -OTHERHAY/CLIP;i
3
SJSC>TA;393/TRAIN/2/STAT.-DENSEWOODLAND/CLIP;1
20833

<JSC}TASK3/TRAIN/2/STAT.—SOYBEANS/CLIP;I
*3
<JSC>TASK3/TRAIN/?/STAT.—PERMANENTPASTUIRE/CLIP;1
and ?0833
<JSC>TASK3/TRAIN/2/STAT.-14INTERWHEi4T/CLIP;1
*0833
<JSC>TASK3/TRAIN/2/STAT.—CORN/CLIP ;I
<JSC>TA5K3/TRAIN/2/SQYSEANS.ESP;1
<JSC>TASKS/TRAIN/2/;OYBEAN'J.SGT;
<J$C>TASK3/TRAIN/2/PERMANENTPASTURE.ESP;I

lf33

<JSC>TASK3/TRAIN/2/PERMANENTPASTURE.SGT;I
*33

<JSC>TASK3/TRAIN/2/PACK.-SDYSE'ANS/CLIP;I

<JSC>TASK3/TRAIN/2/PACK.-OTHERHAI' /CLIP;1
r	 #3

<JSC>TASK3/TRAIN/2/PACK.-DENSEWOODLAND/CLIP;1
200;33

<JSC>TASK3/TRAIN/Z/PACK.-PERMANENTPASTURE/CLIP;1
*nd 20833
<JSC>TASK3/TRAIN/3/PACK.r-WINTERWHEAT/CLIP;I

*0033
<JSC>TASK3/ TRAIN/z /PACK.-CORN/CLIP ;i
<JSC>TASK3/TRAIN/2/PACK.-OTHERHAY/MO73;1

*3
<JSC>TASK3/TRAIN/3/PACK.-DENSEWOODLAND /M079 ;1
20833

<JSC>TASK3/TRAIN/2/PACK.-SOYBEANS/MQ79;1
*3
<JSC>TASK3/TRAIN/3/PACK.-PERMANENTPASTURE/MO79;1
*nd 20833
<JSC?TASK3/TRAIN/2/PACK;-WINTERWHEAT/M079 ;1

*0833
<JSC>TASK3/TRAIN/2/PACK.-CORN/M07$;1
<JSC>TASK3/TRAIN/2/PACK.-NB/MD"S;1
<JSC?TASK3/TRAIN/T-/PACK.NB/MO79;1
<JSC>TASK3/TRAllq/2/OTHERHAI'.ESP;1

.:	 <JSC>TASK3/TRAIN/2/OTHERHAI'.SGT;i
<JSC>TASK3/TRA IN/C/ISTAT.16-GRPS/CLIP;1
<'JSC>TASK3/TRAIN/ /ISSTAT. iO--G PS; 1'
<JSC>TASK3/TRAIN/2/DENSEWOODLAND.ESP;1
<JSC>TASK3/TRAIN/^/DENSEWOODLAND.SGT;I
<JSC?TASK3/TRAI'N/2/CDRN.ESP';1
<JSC?TASK3/TRAIN/2/CORN.SGT;1
<JSC?TASK3/TRAIN/2/CAT.;1
t IRr3T'8RK'aJrrZ)6TN/? Zr i5T-r7TI rG 1



<JSC>TASK3/TEST/r^./NINTERWNEAT.ESP;1
<JSC>TASK3/TE'ST/2/WINTERWHEAT.SGT;1
<JSC>TASK3/TEST/?/TBL.;i
<JSC>TASK3/TEST/Z/SOYBEANS.eSP;i
<JSC>TASK3/TEST/Z/SOY,SEANS.SOT;I
<JSC>TASK3/TEST/Z/PERMANENTPASTURE.ESP;I

03
<JSC>TASK3/TEST/2/PERMANENTPASTURE.SLT;I

**3
<JST;; TASK3/TESL'/2/PACK.NB/M079; 1
< JSC >TASK3/TEST/Z/OTHERHAY.ESP;1
<JSC>TASK3/TEST/2/DTHERHAY.ESR;.c.
<JSC>TAS}K(3/TEST/2/OTHERHAY.SGT;I

<JSC>TAS 3^TEST /VVENSEWOODLLAND ESP; 2
<JSC>TASK3 /TEST/Z /AENSEWOODLANO. SOT I

^<•JSC>TASK3/TEST/Z/CORN. ESP; I-

<JSC>TASK3/TEST/2/CORN.SGT;i

I

y



A

<J$C>TASKO/TRAIN/O/WINTERWHEAT.EaP;t
< JSC>T)."iSK3/TRA IN/3/141 NTERW14EAT - SOT; I
< JSC>TA foK:I/TRA I N101 TBL. ; I
<J$C>TASK3/TRAIN/$/STAT.16-ORPS;i
<JSC>TASK3/YRAIN/`3/STAT.-OTI(ERHAY/CLIPII

<JSC>TASX3/TRAIN/3/STAT.-DENSE140ODLAND/C'-IP;I
20033

<JSC>TASX3/TRAIN/3/STAT.-SOYSEANS/CLIP;I

<JSC>TASK3/TRAIN/3/STAT.-PERMANENTPASTURE/CLIP;I
*nd 20033
<JSC,',TASK3/TRAIN/3/$TAT.-NINTERWHEAT/C41P;I

<JSC>TASK:I/TRAIN/3/STAT.-CURN/CLIP;I
<JSC >TASK3/ TRA IN/3/S0Y$EANS - ESP Vl
<JSC>TASK3/TRAIN/3/SOYSirr"ANS.$GT;I
<JSC>TASK3/TRAIN/,3/PERMANENTPASTURE. ESP; I
#33
KJSC>TASK3/TRAIN/3fPERMANENTPASTURE.SGT;l

*33
<JSC>TASK3/TRAIN/3/PACK.-DTHERHAY/CLIPO;I

*33
<JSC>TASK3/TRAIN/3/PACR.-DENSEWOODLAND/CLIP;I.
20033

<JSC>TASK3/TRAIN/3/PACK.-SO)'01-:ANS/CLIP;I
43
<JSC>TASK3/TRArN/3/PACK,-PERMANENTPASTURE/CLIPO;l
*and 2003
<JSC>TASK3/TRAIN/3/PACK.-WINTERWHEAT/CLIP;I

.*01333
<JSC>I'ASK3/TRAIN/3/PACR.-CORN/CLIP;1
< JSC>TASKO/TRA IN/3/PACK. -OTHERHAY/M07S; I

*3	 i

<JSC>TASK3/TRAIN/3/PACK.-DENSEWOOPLAND/MD79;I
20833

<JSC>TASK3/TRAIN/3/PACK.-SON'BEANS/MD79;1
*3
<JSC>TASK3/TRAIN/3/PACK.-PERMANENTPASTURE/M079;1
*nd 20833
<JSC>TASK3/TRAIN/3/PACK.-WINTERWI3EAT/MO79;1
*0833
<JSC>TASK3/TRAIN/3/FACK.-CORN/MO79;1
<JSC>TASI(3/TRAIN/3/PACK.-NB/MU79;1
<JSC>TASK3/TRAIN/3/PACK.NS/MO79;1
< JSC>TASK3/TRA IN/3/UTI qERHA)'. ESP; I
<jSO>TASK3/TRAIN/31UTHERHAY.SGT;I
<JSQ>TASK3/TRAIN/3/ISTAT.10-ORPS/CLIP;I
<JSC>TASK3/TRATN/3/ISTAT.18-GRPS;I
<J$C>TASK3/TRAIN/3/DENSE140ODLAND.ESP;I
<jSC>TASK3/TRAIN/3/DENSEWOODLAND.SGT;1
<JSC>TASK3/TRAXN/3/C0RN-ESP;1
<JSC;-TASX3/TRAIN/3/C0RN. SOT; 1
<jSC>I'ASK3/TRAIN/3/CAT.;l
<JSC>TASK3/TRAIN/3.SCAT-FILES;i
<jSC>TASK3/TRAJN/3.SCQ$;2



<JSC>TASKO/TCST/O/WINTFRWflEAT.ESP;I
<JSC>I*ASKtl/TCST/3/PI I NTORPMEAT, SLIT; I
<JSC>TASK3/TCST/3/TB4.;l
<JSC>TASX3/TCST/3/$QYDIZANS.E$P;t
<JSC>TASK3/TROT/3/SOYDEANS.SPT;I
<JSC>TASK3/TEST/3/PERMANENTPASTURE.ESP;I

*3
<JSC>TASK3/TEST/3/PERMANENTPASTURC,50I*;I

*1
<JSC>TASK3/TEST/3/PACKiNS/MO79;1
<JSC>TASK3/TEST/3/01'HERHAY.E8P;I
<JSC>TASK3/TEST/3/OT14ERliAY*SGT;I
<J$C>TASK3/TEST/3/DENSC1400DLAND-ESP;I
<JSC>TASK3/TEST/3/0,EN$r.WUOPLAND, SGT; I
<JSC>TASK3/TCST/3/CQRNiESP;1
<JSC>TASK3/TSST/3/:"IN.SOT;l
<JSC>TAaK3/TEST/3/CAT.;l
<J$C>TASK3/TEST/3.SCAT-FILES;l
<JSC>TASK3/TEST/3.$EQS;Z -



i
I

1

<JSL>TF.SK3/TRAIN/4/WINTERW14CAT.CSP;I
<JSC>TASK3/TRAIN/4/WINTER14fiCAT.SGY; I
<JSC>TAK3/TRAIN/4/TRL.;1
<JSC>TASKS/TRAIN/4/STAT.I6-CRPS;I
<JSC>TASK3/TRAIN /4/STAT.-OTHERHAY/CLIP;1

*2
<4SC>TASK3/TRA-IN/4/STAT.-DENSEWOODLAND/CLIP;I
20042
<JSC>TASK3/TRAIN/4/GTAT.-SOYBEANS/CLIP;I

*Z
<JSC>TA8K3/TRAIN/4/STAT.-PERMANENTPASTURE/CLIP;I
*Ad 20042
<JSC>TASK3/TRAIN/4/STAT'.-WINTERWHEAT/CLIP;I

*0842
<JSC>TASK3/TRAIN /4 /STAT.-CORN/CLIP;1
<JSC>TASK)/T13AIN/4/SOYDEANS.ESP;I
<JSC>TASK3/TRAIN/4/501'DEANS.SGT'r1
<JSC>TASK3/TRAIN/4/PERMANENTPASTURE.ESP;

*4Z
<JSC>TASK3/TRAIN/4/PERMANENTPASTURE.SOT ;I

*42
<JSC>TASK3/TRAIN/4/PACK.-OTHERHAY/CLIP;I

*2
<JSC>TASK3/TRAIN/4/PACK.-DENSEWOODLAND/CLIP;1

^► 20842
<JSC>TASK3/TRAIN/4/PACK.-PERMANENTPASTURE/CLIP;1
*nd 20642
<JSC>TASK3/TRAIN/4/PACK.-WINTERWHEAT/CLIP;I

a*0842
<JSC>TASK3/TRAIN/4/PACK.-SOYBEANS/CLIP;I

42
<JSC>TASK3/TRAIN/4/PACK.-CORN/CLIP;
<JSC>TASK3/TRAIN/4/PACK.-OTHERHAY/MO79;1

.2
<JSC>TASK3/TRAIN/4/PACK.=-DENSEWOODLAND/MO79;1

F 20842
<JSC>TASK3/TRAIN/4/PACK.-SOYBEANS/MO79;1

*2
<JCC>TASK3/TRAIN/4/PACK.-PERMANENTPASTURE/M0791:

xnd 20042
<JSC>TASK3/TRAIN/4/PACK.-WINTERWHEAT/M07S;1
»0842
<JSC>TASK3/TRAIN/4/PACK.-CORN/MO7S;1
<JSC>TASK3/TRAIN/4/PACK.- NB/MO79;1
<JSt>TASK3/TRAIN/4/PACK.NB/MO79;1
<JSC?TASK3/TRAIN/4/OTHERHAY.ESP;1
<JSC>TASK3/TRAI14/4/OTHERHAY.SCil';i
<JSC>TASK3/TRA IN/4IISTAT.16-GRPS/CLIP;I
<JSC}TASK3/TRAIN/4/ISTAT. 16-tRPS;i
<JSC> TASK3/T{CAIN/4/DENSEWOODLAN D ESP;1

<JSC>1'ASK3/TRAIN /4 /DENSEWOOALAND.SOT;I
<4SC>TASK3/TRAIN/4/CORN.ESP;'1
<JSC >TAGK3/TRAIN/4/CORN.SGT;1,
<JSC>TASK3/TRAIN/4 /CAT..;1
<JSC>TASK3/TRAIN/4`.SCAT-FILES;1
<JSC>TASK3/TRAIN/4-.SECS;2



4J$C>TASK3/TCST14/WINTURWfICAT.EGP;I
JS0TASK3/TR3T/ ,1/14 INTIMMICAT. SCAT; .1

<JSCXrA0K3/TCUT/4/TV4,;1
< JUC>TASK3/Tl : ST/4/100YMANS. ESP; I
< JSC> TASKVTH-T/ 4 /SOYBEANS. VGT; I
< JSC>TAUK3/T(;'ST/4/PCI?MANENTPASTURE. ESP; I
2
<JSC>TASXD/TEST/4/PCRMANENTPASTLIPIZ. SOT' L

< JSC >TASK 3 /TL:UT/ 4/OTHCRfIAY. t SP; I
<J$C>I*ASX3/TEST/4/OTHER14AY.SGT; I
<J$G>TASK3/TEST/4/DaNSEWOODLAND-BUT;I
<JS0TAUK3/TEST/4/CORN,SSP;1
<J$C>TASK3/T,E$T/4/CORN,S0T;l

< JSC>TASKalTC5T/4 /CAT.; I
<JSCMSK3/TUSTl4.SCAT-FILCS;l
<J8C>TASX3/TF-ST/4.SE0$;2
<J$C>TASK3/TaST/4/DCNSE1400DLAND,C,SP;I

E-22



<JSC>TAGK2/T'RA.> N/ GC0S; 2
'	 <1JSCNTASMI/TRAINIV140006.DOUTI 1
1̂̀̀'	 ^.1SC>TA;iK^?ITRAfNf^71dHCA'1" ► Eibl1'1`i 1

<JSC>TA IKI/TRAIN/U/STAT,16- iRPU; 1
<J$C>TASK;JITRAIN/l/STAT.-DaNSa WWOODLAND/CLIP .

20844
<4$C>TASKO/TRAIN/!$/UTAT.-WHCAT/CLIP
JSC>TA KC/TRAIN/ /STAT,^-SOYDaANS/CLIP;°4 

<JSC>TASKS/TRAIN/S/STAT.-PASTURE/CLIP;'I
<JSC>TAS93/TRAIN/Z/UTAT,-flAY/CLIP ► 1
<JSC>TAS93/TtiAIN/"t/STAT, -CORN/CI.I P; M
<JSC>TASK3/TRAIN/'S/SDYOEANS, UGUT;'
<JSC>TASK3fTRAIN/5/PAUTURC.DCUT; i
<JSC>TI)CKU/TRAINIV PACK, -NB /MD79;i
<JSC>TASK.3/TRAIN/5/PACK,-DCNSENOOPS/CLIP;I

-044
I	 <JSC>TASfCS/TRAIN/5/ PACK. -OTHE RHAY/CLIP; I 	 l

'tJ?.`>TASKS/TRAINID/PACK,-SOYBEANS/CL IF; t

<JSC>TASKS/TRAIN/S/PACK.-PASTURE/CLIP;!
<JSC>'CASK3/TRAINlS/PACK,-WHEAT/CLTP;i

'

	

	 <JSC >1'ASKS/TRAIIJ/ /E'ACK. ,-CGRN/C4IP; 1
<JSC>'I`ASK3/TRAIN/S/ISTAT.10-t RPS I 1
<JSC>TASK3/TRAIN/:3/HAY.SOUT;1
<J$C>TASKS/TRAIN/'K/`CORN. ROUT; 2
<J$C>TASK3/TRAIN/$/PACK.-OTIiCRHAY/MO7S;I

4	
°*

r ,«+ ^.n.r.u..sres e^	 lnAMU _nr CCI	 l	 77q.t	 tronar rnAlr.#..r ^,.,.	 ...:d,....dGGGI.! NU. Ml ^. ; I

I	 20044
a	 <JSC>TASK3/TRAIN/5/ PACK .—SOYBEANS /MG'1S'i;

*4
<JSC>TASK3/TRAIN/5/PACK.-PASTURE/MO79;1
<JSC>TF1'gK3/TRAIN/SIPACK.—WINTCRWI4CAT/MO79G I

*0844
<JSC>TASKS/TRAIN/$ /PACK.—CORN/M07S ;i
<.ISC>TASK3/TRAIN/$/RACK.NS/MO7011
CJSC>TAVI(3/TRAIN/ I/COMMAND.L'AUT; 1

r CJSC>TASK3/TRAIN/5/14INI'ERWHEAT.CSP;1
<JSC>TASK3/TRAIN/5/14INTERWHEAT.SGT';S
<JSC)TASK3/TRAIN/5/T11L.;1
<JSC>TA$K3 /TRAIN/5/,OYEEANS.ESP;1
<JSC>TASf 3/TRAIN/3/SGYBEANS.$CiT; l
%JSG>TASK3/TRAlt4/5/ aNS WOODLAND.ESP; i
< J SC,' 'I ASKS/TRAIN/5/PERMANI*NTPASTURE . ESP; 1

*53	 1
<JSC>TASK3/TRAIN/5/PERMANENTPASTURE.SGT;1

053

<JSC>TASK3/TRAIN/$/OTHERFIAY.ESP;1
<JSC>TASKl/TRAIN/S/OTHERHAI`.SGT'.i

k

	

	 <JSC"TA$A3/TRAIN/5/ I STAT. 18-ORPS/CL I P; !
< J SC>TA$K3/TRAIN/a/DENSEWOODL.AND.SGT; i
<JSC>TASK3/TRAINI:5/CORN.ESP;1
<JSC>TASK3/TRAIN;;/CQRN.SGT r
{JSC>TASI 3/"1'RATN/5/CAT. 'r

`	

E-23
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<JSC>TASKS/TCSt`/f/WINTERWHEAT'.SOTtI
<JSC?TAVK:3/TCST'/^/TUL. R I
<J$C>TASK3/Tr4tT/̀ /SOYOaAOS,t SP I.
<J$C>TASKU /TCST /".S/ SDYSCANS,SGTl 1
<JDC>TASK3/TC ST/S/F eRMANENTPASTURS. CSP; I

*a
< JSC> TASKS/TEST/:I/PEPMANENrPASTUREoDaTS t

#3
<48C>TA1K2/TC"T/V/OTHERHAY.CSP i
< JSC? TASK.`3/TCS'1"/̀ 5/OTHEI2NAY. SGT; 1
<J1TC?TA K3/TEST/ /T1CIdS6t,l0ADLAND, ESP; 1
< JGC>TA$Ka/TE$T/S/DCNSEWOODLAND.SRTS 1
<JSC>TAUK /TE T/S/COPN.CSPI1.
<JGG?TASK2/TEST/V/CDRN.SOTI2
<JRGSTARKO/`CE$T/S/CAT. S I..	
<.IGC?TASKS/TCST/OtSEGS;Z
<4&G?TAaK2/TEST/S/PACK.NB/M070 1
<40C>TASK3/ ` EST/OT/CCMMAND.DQUT l

4



<JGC>TASK*/ RAlH/G/tlaODS. Dti'CI1
<JC1>TASK3/TRAIN/G/WHEAT.00UT;I
<JSC>TASK3/TRAIN/S3/STAT.17-ORPS;I

f <JSC>'TAOK /'TRAIN/O/STAT,-140000;/CLIP; I
<JSC>TASKO/TRAIN/U/STAT -WH,CAT/CL.IP; I
<JSC>TASKS/TRAIN/O/STAT.-SOYDEANS /CL,IP;I

*4
<J$G>TASK3/TRAIN/O/BTAT —PASTURC/GLIPI t
<J$C>TASK3/TRAIN/O/STAT, -OTHaRHAY/CLIP;]
k4

<J$C>TASK3/TRAIN/U/PASTURE:.BOUT;I
4JSC'>TASK:I/TRAIN/O/PACK.-OTHtRHAY/CLIP 1

*4
<JSC>TASTK3/TRAIN/S/PACK.-WOODS/CLIP#'1
<JSC>TASK3/TRAIN/Ii/PACK.-SOYCOANS/CLIP;I

<JSG>TASK3/TRAIN/S3/PACK.-1 1,ERMANaNTPAOTUP47dC I N I
+11d ZDS44
<40C>TASK3/1`RAIN/S/PACK.-WINTERWHCAT/CL,LP#'

00044
<JSC>TASK3/TRAIN/G/PACK.-CORN/C41 P I
<JUC>TASK3/1*RAIN/O/PACK.-NIA/ 1070;
<J5C>TASK3 /TF3AlNIG/HAYm8OU T3 I
tJRr± TASKI/TRAIN1G/CORN,5OUT;I
<JSC>TASK3lTr"AIN/G/DGNP!CW ?OPLAND.CSP;1
<JGC>TASK3/TRA IN/G/DENSCWOOD1-AND. SC T; 1
<JSC>TASK3/TRAIN /G SaOS;"
<JSIC>TASKO/TRAIN/G/PAOK NO/t!07S;
N.tnc.>{A$inarTRttIN/1:;.% 5TAY t7-GiRPS:"a
<JSC>TASK;3/TRAIN/G /CGM MAND. SOOT; 1
<J«SC>TASK3/TRA'IN/C/PACK.-OTHS:RHAY/MD78;'I
4
<J$C'>TASK3/TRAIN/S/PACK.-DENSCWOODL,AND/MO79;1'

* 20044
<JSC>TASK3/TRAIN/S/PACK.-SOYBEANS;/MU70;S

<JSC>TASK3/TRA I N/G/PACK . --^PERMAN",^NTPA STIJRC/MO79; I 	 j
•*nd 20044

<JSaC>TASKS/TRAIN/G/PACK. -WINTER10IEAT1 OM; I
-*004A
<JSC>TASK3ITRAIN/G/PACK.-CORN/MO70;1
< J$C>SASK3 /TRAIN/S/WINTERWHEAT.SGT 1
<JS3C>'TASK3/TRAIN/G/TESL, t T
^-JSC`>TASK3/TRAIN/G/TD4.;
<JSG;F TASK3/TI?A]14//G/S g1'lSEANS. ESP;1
<J;iC>TASK3/TRAIN/G/SOYS3E nNS.SGT; 1
<JSC>TASK3/TRA IN/S/PCRtIANGNTPASTURE.ESP;i

*SO'
<JSS >TASK^/TRAIN/S/PEsRMA14ENTPASTURE. SGT; 1

*53
<JSC>TASK 3/'1`PAIN/G/OTMERI AY CSP;1
<JSC>TA5K3/TRAIN/C/UTNGRHAY.SCT; 1
<JSC'>TASK:3/TRAIN/G/ISTAT.17—ORPS/CLIP;!
<JSC?TASKS/TR(t SN/G/CORN. ESP L 1
<JSC>TASK3/TRAI'N /CGRN.SGT,1
<JSG>TASK3/TRAINl(3/GAT.;1

er S

E-2
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<JSC>TASK3/TEST/S/FLACK.-NO/MO79;1
<JSC>TASK3/TES`r/6/PAiCK . NFL/MU70; 2
<Jac>TASK3/TEST/G/CUMMAND.BOUT;1
<JSC>1'ASK3/TEST/S/14INT£RWH£AT.ESP; I
<JSC>TASK3/TEST/S/WINT£RWH£AT.SGT;i
<JSC>TASK3/TEST/G/T8I..;l
<JSC?TASK3/TEST/B/SOYSEANS- ESP;
<JSC>TASK3/TCST/C /SOYBEANS.SGT;1
<JSC>TASK3/TEST/G/PERMANENTPASTURE.ESP 1
*3
<JSC>TASK3/T£ST/S/PERMANENTPASTURE- SOT;1

*3
<JSC>TASK3/TEST/S/DTE4ERHAY.SGT;l
<JSC>TASK3/TEBT/S/OTHERHAY.ESP;I
<JSClTASK3,/TEST/B/DENSEHOODLAND.ESP;l
<JSC>TASK3/TEST/S/DENSEWOOD4AND.SOT l
<JSC>TA"K3/TEST /S/CDRN.ESP;3
<JSC,TASK3/TEST/G/CORN.SGT;2
<JSC>TASK V TEST/S/CAT.;i
<JSC>TASK3/TEST/S.SE»GS;2



f'

' <JSC>TASK3/TRAIN/7/PACK.NO/MO70;1
<JSC>TASK5/TRAIN/71WOODS.BDUT;1

1 <JSC>TASKO/TRAIN/7/14HEAT.Bt3UT;i
<JSC>TASKO/TRAIN/7/STAT. — IOGIZPS/CLIP; 1
<JSG>TASK3/TRAIN/7/STAT.—WOODS/CLIP;!
<J$C>TASK3/TRAIN/7/STAI'.^-WINTERWHEAT/CLIP; 1

F *0844
<JSC>TASK3/TRAIN/7/STAT.-SOYBEANS/CLIP;I

*4
<JSC>TASK3/TRAIN/7/5TAT.—PASTURE/CLIP;I

' <JSC?TASK3/TRAIN/7/STAT.-14AY/CLIP;!
<J$C>TASK3/TRAIN/7/STAT.—CORN/CLIP;!
<JSC>TASK3/TRAIN/7/SDYBEANS.BOUT;1
<JSC>TASK3/TRAIN/7/PASTURE.BDUT;1.

. <JSC>TASK3'TRA1N/7/PACK.— OTHERHAY/MD70;1
*4

I <JSC>TASK3/TRAIN/7/PACK.-D5NSEWOODLAND/MU7J;1
* 20844

!
I <JSC}TASK3/TRAIN/7/PACK.—SOYDEANS/MO78;1

*4
! <JSC>TASK3/TRAIN/7/PACK.-PERMANENTPASTURE/MO79;1

*nd	 20041
<JSC>TASK3/TRAIN/7/PACK.—WINTERWHEAT/MD70;1,
*0044 4

' <JSC?TASK3/TRAIN/7/PACK.--CORN/MD79;i
<JSC>TASK3/TRAIN/7/PACK.-NB /M079; 1
<JSC>TASK3/TRAIN/7/PACK.--OTHERHAY/CLIP;!

*4
<JSC>TASK3/TRAIN/7/PACK.--WOODS/CLIP; 1

SOYBEANS ORIGINAL PAGE IS<JSC>TA$K3/TRAIN/7/PACK.—/CLIP;i
*4 POOR QUAI,try
<.JSC>TASK3/TRAIN/7/PACK.-PASTURE/CLIP;i

` <JSG>TASK3/1"RAIN/7/PACK.--WHEAfi/CLIP; 1
<JSC>I'ASK3/TRAIN/7/PACK.—CORN/CLIP;1
<JSC>TASK3/TRAIN/7/ISTAT. — iCriRPS /'CLIP;!
<JSC?TASK3/TRAIN /'7/HAY.BOUT;1
<JSC?TASK3/TRAIN /7 /CORN.BOUT;i
<JSC?TAS K3/TRAIN/7/CDMMAND.BGUT;i
<JSC>TASK3/TRAIN/7/WINTERWHEAT.ESP;1
<JSC?TASK3/TRAIN/7/14INTERWHEAT.SGT;1
<JSC>TAS0/TRAIN/7/T6L.;1 F1
<JSC>TA8K3/TRAIN/7/SDYBEANS.SGT;1
<JSC>TASK3/TRAIN/7/SOYBEANS.ESP;1 3+
<JSC?TASK3/TRAIN/7/PERMANENTPASTURE.CSP;1

ks3
<JSC>TASK3/TRAIN/7/PERMANCNTPASTURESGT;1
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