TO: NST-44/Scientific and Technical Information Division
Attn: Shirley Peigare

FROM: GP-4/Office of Assistant General Counsel
for Patent Matters/Nancy L. Fonseca

SUBJECT: Announcement of NASA-Owned U.S. Patents in STAR

In accordance with the procedures agreed upon by Code GP-4 and Code NST-44, the attached NASA-owned U.S. Patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:

U.S. Patent No.: 4,270,984

Government or Corporate Employee: Linev, Inc.

Supplementary Corporate Source (if applicable):

NASA Patent Case No.: LEW-13,148-2

NOTE - If this patent covers an invention made by a corporate employee of a NASA Contractor, the following is applicable:

YES ☑ NO

Pursuant to Section 305(a) of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent; however, the name of the actual inventor (author) appears at the heading of column No. 1 of the Specification, following the words "...with respect to an invention of..."
There is disclosed an electricity producing cell of the reduction-oxidation (REDOX) type divided into two compartments by a membrane, each compartment containing a solid inert electrode. A ferrous/ferric couple in a chloride solution serves as a cathode fluid which is circulated through one of the compartments to produce a positive electric potential disposed therein. A chromic/chromous couple in a chloride solution serves as an anode fluid which is circulated through the second compartment to produce a negative potential on an electrode disposed therein. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which has been added to the anode fluid. If the REDOX cell is then discharged, the current flows between the electrodes causing the lead to deplate from the negative electrode and the metal coating on the electrode will act as a catalyst to cause increased current density.

18 Claims, 4 Drawing Figures
There is disclosed an electricity producing cell of the reduction-oxidation (REDOX) type divided into two compartments by a membrane, each compartment containing a solid inert electrode. A ferrous/ferric couple in a chloride solution serves as a cathode fluid which is circulated through one of the compartments to produce a positive electric potential disposed therein. A chromic/chromous couple in a chloride solution serves as an anode fluid which is circulated through the second compartment to produce a negative potential on an electrode disposed therein. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which has been added to the anode fluid. If the REDOX cell is then discharged, the current flows between the electrodes causing the lead to deplate from the negative electrode and the metal coating on the electrode will act as a catalyst to cause increased current density.
FIG. 3

IN HCl - 0.1M CrCl₂

1. SILVER WIRE ELECTRODE
2. COPPER FOIL ELECTRODE
3. CARBON ROD ELECTRODE

POTENTIAL MV VS SCE

CURRENT DENSITY Ma/cm²

0.1

+300 +200 +100 0 -100 -200 -300 -400 -500 -600 -700

10 1.0
CURRENT DENSITY
Ma/cm²

OPEN CURRENT VOLTAGE Cr²⁺/Cr³⁺

VITREOUS CARBON ELECTRODE

1 M HCl + 10⁻⁴ M Pb²⁺ + 10⁻⁴ M Au³⁺ + 0.09 M Cr³⁺
+ 0.09 M Cr²⁺

○ SWEEP RATE - 50 MV/MIN
△ SWEEP RATE - 25 MV/MIN - AFTER ○ SWEEP

POTENTIAL
MV VS. SCE

FIG. 4
In summary, there is provided a REDOX cell which may or may not have a catalytic coating on one electrode but including certain desired ions in the fluid which contacts the electrode to coat it with the ions as charging takes place.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross-sectional view of the REDOX cell embodying the invention showing the anode and cathode fluid supply systems schematically.

FIG. 2 is a graph illustrating the increased current density in a REDOX cell embodying the invention.

FIG. 3 is a graph illustrating current density versus potential for different electrode materials.

FIG. 4 illustrates current density versus potential for a carbon electrode with a catalytic coating and utilizing desired ions in the fluid to plate out on the coated electrode.

DESCRIPTION OF A PREFERRED EMBODIMENT

Referring now to FIG. 1, there is shown a REDOX cell 10 comprising container 11, divided into compartments 12 and 13 by an ion conductive membrane 14. The graphite electrode 15 is disposed in the chamber 12 and connected to an output terminal 6 while a graphite electrode 7 is disposed in compartment 13 and connected to an output terminal 18.

In order to produce a voltage or potential difference between terminals 6 and 18, a cathode fluid is passed through chamber 13 while an anode fluid is passed through chamber 12. As shown, cathode fluid from a cathode fluid source 19 is circulated by a pump 20 through compartment 13. Similarly, anode fluid from an anode fluid source 21 is circulated by a pump 22 through the compartment 13.

The REDOX cell 10 utilizes an iron/chromium system wherein the cathode fluid contains ferrous/ferric couple while the anode fluid contains a chromic/chromous couple. The anode fluid preferably contains water and HCl (aqueous solution of HCl) having dissolved therein a chromium chloride salt. The cathode fluid likewise is water and HCl but has dissolved therein an iron chloride salt. These fluids provide the desired couples in each of the chambers 11 and 12. A more complete discussion of the couple, the fluid electrode requirements and membrane considerations is given in U.S. Pat. No. 3,996,064 which is incorporated herein by reference.

In accordance with the present invention, it has been found that a coating of lead on the inert electrode 15 substantially increases the current density of the electrode, and consequently, the current available at terminals 6 and 18. The lead may be coated onto the electrode 15 before it is disposed in chamber 12 to be contacted by the circulating anode with fluid. It can also be obtained by dissolving lead chloride in the anode fluid before charging the REDOX cell.

When current is supplied to the REDOX cell 10 at terminals 6 and 18 to bring it up to a charged condition, a lead coating will deposit on the anode electrode 15. Conversely, as the REDOX cell is discharged by current drawn from the terminals 6 and 18, the lead departs from the electrode and is redissolved into the anode fluid.

When the REDOX cell is being charged, chromium reduction occurs very rapidly on the lead surface which is desirable for high current density. At the same time, the rate of hydrogen evolution is advantageously mini-
an electrically conductive inert electrode disposed in the anode fluid.

2. The method of claim 1 wherein the lead ions produced in said anode fluid by the lead chloride are in the amount of 10^{-4} to 10^{-5} M/liter of anode fluid.

3. The method of claim 1 wherein an electrode to be inserted in the anode fluid is first coated with a metal selected from the group consisting of lead, silver, gold and copper.

4. The method of claim 3 wherein said metal coating is from about 2 to about 5 monolayers thick.

5. A method of making a REDOX cell of the type having an ion permeable membrane separating anode and cathode fluids comprises of water, HCl and chromium and iron chloride salts, respectively, and including the step of coating lead onto an electrically conductive inert electrode before disposing the electrode in the anode fluid.

6. The method of claim 5 wherein the lead coating is from about 2 to about 5 monolayers thick.

7. The method of claim 5 and including the additional step of coating the inert electrode with a coating selected from the group of metals consisting of lead, silver, gold and copper before applying the lead coating.

8. The method of claim 7 wherein the metal coating is from about 2 to about 5 monolayers thick.

9. The method of claim 1 wherein a porous inert electrode to be disposed in the anode chamber is first saturated with a solution of a salt selected from the group consisting of gold chloride, silver chloride and copper chloride and then heat treated.

10. A method of making a REDOX cell of the type having an ion permeable membrane separating anode and cathode fluids comprised of water, HCl and chromium and iron chloride salts, respectively, and including the additional steps of adding cadmium chloride to the anode fluid and then charging the cell to plate cadmium onto an electrically conductive inert electrode disposed in the anode fluid.

11. The method of claim 10 wherein the cadmium ions produced in said anode fluid by the cadmium chloride are in the amount of 10^{-4} to 10^{-5} M/liter of anode fluid.

12. The method of claim 10 wherein an electrode to be inserted in the anode fluid is first coated with a metal selected from the group consisting of silver, gold and copper.

13. The method of claim 12 wherein said metal coating is from about 2 to about 5 monolayers thick.

14. A method of making a REDOX cell of the type having an ion permeable membrane separating anode and cathode fluids comprised of water, HCl and chromium and iron chloride salts, respectively, and including the step of coating cadmium onto an electrically conductive inert electrode before disposing the electrode in the anode fluid.

15. The method of claim 12 wherein the cadmium coating is from about 2 to about 5 monolayers thick.

16. The method of claim 14 and including the additional step of coating the inert electrode with a coating selected from the group of metals consisting of silver, gold and copper before applying the cadmium coating.

17. The method of claim 16 wherein the metal coating is from about 2 to about 5 monolayers thick.

18. A method of increasing the current output of a REDOX cell of the type having an ion permeable membrane separating anode and cathode chambers, each chamber containing an electrically conductive electrode, the anode chamber containing a fluid comprised of aqueous HCl having chromium chloride dissolved therein, the cathode chamber containing a fluid comprised of aqueous HCl having iron chloride dissolved therein, the method comprising the steps of: adding to said anode fluid more than one salt selected from the group consisting of lead chloride and cadmium chloride and then charging said cell to plate cadmium and lead onto the electrode in the anode chamber.

* * * * *