NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
THE GEOLOGY AND GEOPHYSICS OF THE OSLO RIFT

M. E. RUDER

JULY 1981

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771
THE GEOLOGY AND GEOPHYSICS OF THE OSLO RIFT

Michal Ellen Ruder
Geophysics Branch
NASA Goddard Space Flight Center
Greenbelt, Maryland 20771
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>11</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>111</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>OVERVIEW OF THE GEOLOGY AND GEOPHYSICS OF THE OSLO RIFT</td>
<td>7</td>
</tr>
<tr>
<td>REMARKS: DATA COLLECTION PROCESS</td>
<td>18</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>20</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>23</td>
</tr>
<tr>
<td>Subject Guide for Selected Bibliography on the Oslo Rift (1960-1980)</td>
<td>23</td>
</tr>
<tr>
<td>Published Maps of the Oslo Region</td>
<td>26</td>
</tr>
<tr>
<td>Selected Bibliography on the Oslo Rift (1960-1980)</td>
<td>28</td>
</tr>
</tbody>
</table>
ABSTRACT

A review of the regional geology and geophysical characteristics of the Oslo graben is presented. The graben is part of a Permian-age failed continental rift. Alkali-olivine, tholeiitic, and monzonitic intrusives as well as basaltic lavas outline the extent of the graben. Geophysical evidence indicates that rifting activity covered a much greater area in Paleozoic time, possibly including the northern Skagerrak Sea as well as the Oslo graben itself. Much of the surficial geologic characteristics in the southern part of the rift have since been eroded or covered by sedimentation. Geophysical data reveal a gravity maximum along the strike of the Oslo graben, local emplacements of magnetic material throughout the Skagerrak and the graben, and a slight mantle upwarp beneath the rift zone. Petrologic and geophysical maps which depict regional structure are included in the text. Also presented is an extensive bibliography of pertinent literature published in English between 1960 and 1980.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heat Flow in Southern Norway</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Petrology of the Oslo Region</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Petrologic Map of Southern Norway</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Geologic Map of Norway</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Tectonic Map of Oslo Graben</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Mineral Deposit Map of the Oslo Region</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>Moho Contours Under Southern Norway</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>Bouguer Gravity Anomaly Map of the Oslo Region</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>Residual Gravity Anomaly Map of the Oslo Region</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>Earthquake Activity in Fennoscandia, 1951-1975</td>
<td>17</td>
</tr>
</tbody>
</table>
INTRODUCTION

Numerous aspects of continental geology require further refinement within the context of plate tectonic theory. Many intraplate processes are poorly understood and remain to be examined quantitatively by proponents of plate tectonics. Forces which create and propagate or abandon continental rift zones constitute some of these poorly understood processes. Geologic characteristics and geophysical expressions of continental rift zones often have been presented in piecemeal fashion; frequently no fusion of data types, and hence, no comprehensive interpretation has been attempted. The Geophysics Branch of the Goddard Space Flight Center has undertaken a research effort to compile all available geologic and geophysical data for approximately forty continental rift zones. The data types will be presented in a common format which will promote not only comparative analyses of the data available for a single rift zone, but also cross-correlations of geologic and geophysical characteristics of different rift zones.

The results of the compilation and synthesis will be published in the form of an atlas. Representative rifts from every continent, ranging in scale up to several hundreds of kilometers in length, will be included.

The Oslo Rift has been chosen as a model entry in the atlas. This report is designed to provide a brief introduction to and overview of its geology and geophysics for scientists interested in rifting processes e.g., heat flow (Figure 1); detailed petrology (Figure 2); generalized petrology (Figure 3). Available data is presented in map form: A comprehensive selected bibliography of pertinent literature published (in English)
between 1960 and 1980, a subject index to available literature, and a list of published maps and their publishers are included in the Appendix. A brief description of the data collection process and of the difficulties encountered during its compilation and synthesis appear at the end of this report.
Figure 1: Available Heat Flow Data for Southern Norway, from Swanberg et al. (1974).
Figure 2: Detailed map of Oslo Region Petrology, from Ramberg (1976). Compare with Figure 3.
Figure 3: Generalized Petrologic Map of the Oslo Rift, Employing the New Generalized Rock Classification Scheme. Compare with Figure 2.
Figure 4: Simplified Geologic Map of Southern Norway, from Holtedahl and Dons (1953). Note Lack of Detail in the Oslo Region.
GEOLOGY AND GEOPHYSICS OF THE OSLO RIFT

The Oslo graben is a 200 x 40 kilometer landform located on the Fennoscandian shield. It is bordered by Lake Mjøsa on the north (60°55'N), the Skagerrak Sea on the south (59°00'N), and it extends east from longitude 9°30'E to 11°20'E. The graben is distinguished from the surrounding land mass by its unique petrologic province and a series of normal faults. Many geophysical features of the graben extend well beyond its geomorphic limits. Due to this trend, it is necessary to consider the Skagerrak and southern coastal Norway when discussing the nature of the Oslo Rift. A brief summary of Precambrian geology, Cambro-Silurian sedimentation, and pre-rifting orogenic episodes as well as an account of the Permian rifting event is presented below. Geophysical features of the graben and the surrounding area and an overview of the regional Paleozoic rift system are included.

Much of the Precambrian basement of southern Norway is exposed today (see Figure 4). Migmatites, metavolcanics, metasediments, granitic gneisses, mylonites, and dike swarms provide evidence of considerable tectonic activity (collision and extension) throughout Proterozoic time (Bertheisen, 1980). Structurally, a NNW-NNE lineament pattern dominates the region (Gabrielsen and Ramberg, 1979). Several orogenic episodes, from 1700 my ago to the Caledonian in Cambrian-Devonian time, have affected local structures. East of the graben, a line of thrust faults and volcanics parallels the Norway-Sweden border, trending N and W (see Figure 5).
Figure 5: Tectonic Map of the Oslo Graben. Note the Master Fault, Aligned N-S in the Center of the Page, the NNW Trending Alignment of Cauldrons, and the Northerly Trending Faults and Lineaments. From Ramberg and Larsen, 1978.
Cambro-Silurian sedimentation in the Oslo region is extensive and well-documented by Henningsmoen (1978) and others. The 2 km sequence of fossiliferous shales and limestones includes the Kolsas, Tanum, and Skaugum Formations. Together, they compose the Asker Group. Within the group, volcanic debris is found in increasing amounts near Permian age sediments: evidence of short, pre-rift periods of volcanic activity. After the initial basalt floods in Permian time, sedimentation resumed. Throughout the rest of the epoch, volcanic and depositional episodes alternated. The Alnsjø sedimentary succession, more than 1000 m thick, overlies the main lava complex in Oslo, and the Brumund Sandstone, more than 400 m thick, overlies the Brumunddal lavas in the northern part of the graben. The Rhomb Porphyry Conglomerate is a poorly sorted conglomerate composed of fanglomerates and arkoses of volcanic origin.

Permian rifting in the Oslo region occurred in several stages. Ramberg and Larsen (1978) describe four distinct volcano-tectonic periods: initial basaltic volcanism, rhomb porphyry eruption and normal faulting, central volcano and cauldron stage, and emplacement of major batholiths. Basaltic extrusion at the outset of rift activity reflects the period of maximum tensile stress (Neumann, 1978). Fissures opened first in the south, then moved north with time. Flows were extensive, covering twice the area of today's graben. The volume of basalt within the graben is 500 km³; original volume could have exceeded 10,000 km³ (Ramberg and Larsen, 1978). Although domal uplift usually occurs at the outset of the rifting, no definitive evidence has been found. Erosion may make such doming impossible to substantiate. Rift valley formation began in earnest during the second stage of activity. Rhomb porphyry extrusion was accompanied by normal faulting. The master faults (trending N) formed during this period, with
vertical displacements of 1 to 3 km and a horizontal extension of 4 km (Ramberg, 1976). Rhomb porphyry sediments provide evidence of a large scarp on the eastern flank of the graben. Rhomb porphyry dikes were intruded throughout the rift valley, well to the south and north of the graben itself. Further development of the rift occurred in the third stage of central volcanism and cauldron subsidence. A northern and a southern section formed en echelon, separated by the Østfold horst and a scissor fault. A rectilinear cauldron pattern developed along a northerly trend, parallel to the axial fault, and along an easterly trend, parallel to the offset between the small grabens. Regular spacing between the cauldrons is 29 km, indicating a Moho depth of 23 km during volcanism (Ramberg and Larsen, 1978). The final stage of activity was the emplacement of granitic and monzonitic batholiths in the southern parts of each graben.

The Oslo petrologic province (Figures 2,3) coincides with the graben itself. It also includes the Fen alkaline province, located 12 km southwest of the city of Oslo, volcanic necks far south in Kristiansand, and rhomb porphyry dikes south and north of the graben. This unusual igneous suite is characterized by ultramafic, alkali-olivine, and tholeiitic basalts, and alkaline, monzonitic, and granite intrusives. U/Th ratios of the rocks divide them into two subgroups which were derived from one parent magma, believed to be of upper mantle origin (Sundvoll, 1978). According to Ramberg (1976), initial mantle upwarp was followed by injection of a magmatic pillow into the lower crust, causing partial melting. This created the period of maximum crustal tension and alkaline basalt flows. Subsequently, stoping and fractional crystallization led to alkaline and monzonitic intrusions which characterize the later stages of rift development.
Radiometric dating of the igneous rocks has produced inconclusive results. Ages vary from 355 to 136 my. Most current researchers date the age of the emplacement of the intrusive complex at about 280 my. There is disagreement as to the duration of the rifting episode. Oftedahl (1977) suggests a 3 to 4 my period; Larsen (1975) argues for at least a 10 my period.

Unlike the igneous petrologic province, the metallogenic rift province extends well beyond the graben, as is shown in Figure 6. The igneous suite has a sharp contact with the surrounding exposed Precambrian basement. By contrast the ore types found in the graben abound to the west and south. They are epigenetic and their spatial distribution parallels or continues lineaments and tectonic zones of Precambrian basement (Ihlen and Vokes, 1978). The deposits are numerous, including molybdenum, copper, and lead and zinc sulphides, but they are economically not very extensive, relative to Norway's other mineral deposits.

A wealth of geophysical information is available on the Oslo Rift. Numerous seismic, gravitational, magnetic, and heat flow investigations have been performed. A distinct thinning of the crust by as much as 8 km (Ramberg and Smithson, 1975; Ramberg et al., 1977) occurs along a SSW trend, nearly along the axis of the graben (see Figure 7). The rift is characterized by a gravity high, probably due to crustal thinning, mantle upwarp and dense ultramafics; see Figures 8,9 (Husebye and Ramberg, 1978). A small dip in the high is recorded over many cauldrons, indicating differential changes in density between mildly alkaline and ultramafic rock types. A strong gravity gradient traverses the Bamble-Arendal area, southwest of the graben. This coincides with the Great Friction Breccia Fault Zone of Precambrian age. The fault separates the Telemark unit to west, consisting of granites, migmatites, and
Figure 6: Mineralized Province extends beyond the Limits of the Igneous Petrologic Suite, from Ihlen and Vokes, 1978.
Figure 7: Depth to Moho, after Ramberg et al. (1977). Note that the Crust Thins Under the Rift Area.
Figure 8: Bouguer Gravity Anomaly Map, from Ramberg (1971). Note the High Gravity Values of the Oslo Rift Relative to the Surrounding Areas.
Figure 9: Residual Gravity Anomaly Map, from Ramberg (1971). Local Gravity Relief Reflect Structure and Petrology as Shown.
gneisses, from the Bamble unit to the east, composed of quartzite, amphibolite, mica schist, granite, and gabbro (Ramberg and Smithson, 1975). The Friction Breccia is a multistage fracture zone, full of mylonites. It is characterized by a strong positive magnetic signature.

Directly east of the Friction Breccia lies the Skagerrak's Norwegian Channel. The channel parallels the curve of the coastline southwest and ultimately north to the Norwegian Sea. There is much debate as to its glacial vs. tectonic origin (Sellevoll and Aastad, 1971; Talwani and Eldholm, 1972). Off the southeastern coast of Norway, seismic profiles show channel scarps that seem too deep to be of glacial origin. An initial tectonic period may have been followed by glacial scouring in this region where the channel attains its greatest depths. Five to six km of sediments fill the Skagerrak, masking most of the gravity and magnetic signatures of the underlying basement. These signatures do not dampen quickly, however, suggesting continuation of the rift zone into the Skagerrak (Ramberg and Smithson, 1975; Ramberg, 1976; Husebye and Ramberg, 1978). An area of extreme magnetic relief is located off the coast of Kristiansand. This may represent a southern extension of the rift, an 'Oslo-type batholith' (Ramberg, 1976). Heat flow in the area is normal; the rifting episode ended long ago (see Figure 1). Crustal rebound due to glacial melting averages 3 mm/yr in Oslo (Husebye and Ramberg, 1978). Local seismicity is typical of intraplate activity, although the graben itself is somewhat more active than either of its flanks (see Figure 10).

Many researchers have attempted to connect the Oslo rift with other regional features. The rift's general NNE trend can be extended south to a triple junction (Dewey and Burke, 1974) with the Danish-Polish Depression.
EARTHQUAKE ACTIVITY IN FENNOSCANDIA, 1951 - 1975

(AFTER HUSEBYE, ET AL., 1978)

Figure 10: Recent Seismic Activity in Scandinavia.
The Oslo Graben itself may represent a failed arm of the rift. The Danish Embayment (the western portion of the Danish-Polish Depression) was also tectonically and volcanically active during Permian-Triassic time. Doig (1970) and Ramberg (1976) suggest that rifting in this area is connected to a much larger system of rejuvenated graben structures that also is genetically related to a major episode of carbonatite emplacement in Canada and Scandinavia that occurred 565 mya. Illies (1970) prefers to associate the Oslo Graben with European rifts to the southeast, such as the Rhone Valley and the Rhine Graben. More definitive investigation must be performed before either hypothesis can be accepted. It is clear, however, that the Oslo Graben is part of a larger rift zone, extending along the coast of southern Norway and into the Skagerrak. It is representative of the Upper Paleozoic-Early Mesozoic period of extensive crustal deformation and rifting.

REMARKS: DATA COLLECTION PROCESS

During the compilation process, several obstacles were encountered which may occur again when investigating other areas. Availability and quality of data types proved to be the biggest problems. For some types, data were sparse (e.g., heat flow, see Figure 1); for others, there was too much information available to conveniently display at a scale suitable for comparative presentation (e.g., petrology, see Figure 2). Incomplete data is represented by point values, to indicate the paucity of observations. In the case of overabundant data, a generalized version was derived and presented. The petrologic map shown in Figure 3 is a case in point. This was derived from two existing petrologic maps: Holtedahl and Dons (1953),
Figure 4, was too simplified, and Ramberg (1978), Figure 2, was too
detailed. The igneous rock classification used in Figure 3 was generalized
enough to facilitate comparative study of rift petrology without masking
the distinguishing petrologic suites of individual rifts.

Norwegian earth scientist provided a great deal of the high quality
data for the Oslo region. Much of the geophysical information was received
from the principal investigators themselves. Background research at
Goddard included on-line literature searches of the GEOREF and GEOARCHIVE
data bases.

Future compilation and synthesis studies on other continental rift
zones scheduled to be included in the rift atlas will parallel this
report's format. Well documented and geographically accessible structures
such as the Rio Grande Rift and the East African Rift have comparable data
sets to that presented above, both in quality and breadth of available
findings. It is noted, however, that many rift structures, due to their
genologic history and location, have incomplete or sparse coverage. The
rift atlas will serve as a comparative tool, and it will highlight those
structures for which more research and documentation is needed. In light
of its relative wealth of geologic and geophysical information, the Oslo
Rift is an excellent example of a high quality data set for the atlas.

ACKNOWLEDGEMENTS

Paul Lowman and Herman Thomas were instrumental in devising a
generalized igneous rock classification scheme for the author's petrologic
map. Their help and encouragement is greatly appreciated. Special thanks
to Herb Frey, project manager of the geophysical atlas, who provided
direction and advice during the data collection process and constructive
criticism during preparation of the report. Thanks also to Mrs. Barbara
Lueders for careful typing of the manuscript.
LITERATURE CITED

Berthelsen, A. (1980) Towards a Palinspastic Tectonic Analysis of the Baltic
Shield. International Geological Congress, 26th, Colloquium C6,
Geology of Europe from Precambrian to Post-Hercynian Sedimentary Basins,
5-21.

cations for Collisional Orogeny. Geology, 2, 57-60.

Gabrielsen, R.H. and I.B. Ramberg (1979) Fracture Patterns in Norway from
Landsat Imagery: Results and Potential Uses. Norwegian Sea Symposium,
Trondheim, Proceedings, 24 p.

In The Oslo Paleorift, ed. by J.A. Dons and B.T. Larsen, 17-24, Norges
Geol. Unders., nr. 337.

Hol tedahl, O. and J.A. Dons (1953) Berggrunnskart over Norge. Scale
1:1,000,000, Norges Geol. Unders.

Oslo Paleorift, ed. by J.A. Dons and B.T. Larsen, 41-54, Norges Geol.
Unders., nr. 337.

Illies, J.H. (1970) Graben Tectonics and Relation to Crust-Mantle Inter-
action. In Graben Problems, ed. by J.H. Illies and S. Mueller, 4-27,
Schweizerbart, Stuttgart.

APPENDIX

SUBJECT GUIDE FOR SELECTED BIBLIOGRAPHY ON THE OSLO RIFT*

(Subjects Arranged Alphabetically)

*Complete Bibliography Begins on Page 27

ECONOMIC GEOLOGY

Bergstøl, S. (1972)
Ihlen, P.M. and F.M. Vokes (1978)
Ineson, P.R., I.G. Mitchell and F.M. Vokes (1975)
Vokes, F.M. (1960)
Vokes, F.M. (1973)
Vokes, F.M. and G.H. Gale (1976)

GEOCHRONOLOGY

Ineson, P.R., I.G. Mitchell and F.M. Vokes (1975)
Jacobsen, S.B. and G. Raade (1975)
Sundvoll, B. (1978)

GRAVITY

Åm, K. (1973)
Grønlie, G. (1971)
Grønlie, G. and I.B. Ramberg (1973)
Husebye, E.S., P.C. England and I.B. Ramberg (1977)
Husebye, E.S. and I.B. Ramberg (1978)
Lind, G. and S. Saxov (1970)
Ramberg, I.B. (1972b)
Ramberg, I.B. (1973)
Ramberg, I.B. (1976)
Ramberg, I.B. and S.B. Smithson (1971)
Ramberg, I.B. and S.B. Smithson (1975a)
Ramberg, I.B. and S.B. Smithson (1975b)

HEAT FLOW

Grønlie, G., K.S. Heier and C.A. Swanberg (1977)
Husebye, E.S. and I.B. Ramberg (1978)
Swanberg, C.A., M.D. Chessman, G. Simmons, S.B. Smithson, G. Grønlie,
and K.S. Heier (1974)

MAGNETICS

Åm, K. (1973)
Haines, G.V., W. Hannaford and P.H. Serson (1970)
Halvorsen, E. (1972)
Hannaford, W. and G.V. Haines (1969)
Husebye, E.S. and I.B. Ramberg (1978)
Kristoffersen, Y. (1973)
Lind, G. and S. Saxov (1970)
Sellevoll, M.A. and I. Aalstad (1971)
Storetvedt, K.M., S. Pedersen, R. Løvlie, and E. Halvorsen (1977)
SUBJECT GUIDE (cont'd)

PETROLOGY

Bergstøl, S. (1972)
Bjørlykke, K. (1966)
Bjørlykke, K., A. Elvsborg and T. Høy (1976)
Bockelie, J.F. (1977)
Dons, J.A. and E. Gyory (1967)
Čzamanske, G.K. (1965)
Čzamanske, G.K. and P. Mihalik (1972)
Čzamanske, G.K. and D.R. Wones (1973)
Dolg, R. (1970)
Griffin, W.L. (1973)
Hilmen, P.M. and F.M. Vokes (1978)
Neumann, E.-R. (1976)
Neumann, E.-R. (1978)
Nystuen, J.P. (1975)
Oftedahl, C. (1976)
Oftedahl, C. (1977)
Petersen, J.S. (1977)
Raade, G. (1969)
Raade, G. (1972)
Ramberg, I.B. (1972a)
Ramberg, I.B. (1973)
Ramberg, I.B. and B.T. Larsen (1978)
Ramberg, I.B. and N. Spjeldnaes (1978)
Rohr-Torp, E. (1973)
Sørensen, R. (1975)
Sundvoll, B. (1978)
Whitaker, J.H. (1977)
Widenfalk, L. and R. Gorbatschev (1971)

SEISMICS

Aki, K. (1977)
Berteussen, K.-A. (1975)
Berteussen, K.-A. (1977)
Berteussen, K.-A., A. Christoffersson, E.S. Husebye and A. Dahle (1975)
Bungum, H. and J. Fyen (1979)
Crampin, S. (1964)
Husebye, E.S., H. Bungum, J. Fyen and H. Gjøystdal (1978)
Husebye, E.S., P.C. England and I.B. Ramberg (1977)
Husebye, E.S., R. Kanestrom and R. Rud (1971)
Husebye, E.S. and I.B. Ramberg (1978)
Husebye, E.S. and F. Ringdahl (1977)
Kanestrom, R. (1972)
Kanestrom, R. (1973)
Sellevoll, M.A. and I. Aalstad (1971)
Sellevoll, M.A. and R.E. Warrick (1971)
Weigel, W.J. Hjelme and M.A. Sellevoll (1970)
SUBJECT GUIDE (cont'd)

STRUCTURE AND TECTONICS

Aki, K. (1977)
Bertelussen, K.-A. (1975)
Bertelussen, K.-A. (1977)
Bjørlykke, K., A. Elvsborg and T. Høy (1976)
Bockelie, J.F. (1977)
Dons, J.A. and E. Györy (1967)
Gabrielsen, R.H. and I.B. Ramberg (1979)
Henningsmoen, G. (1978)
Husebye, E.S. and I.B. Ramberg (1978)
Husebye, E.S. and F. Ringdal (1977)
Kanevskij, R. (1973)
Oftedahl, C. (1976)
Oftedahl, C. (1977)
Petersen, J.S. (1977)
Ramberg, I.B. (1972)
Ramberg, I.B. (1976)
Ramberg, I.B., R.H. Gabrielsen, B.T. Larsen and A. Solli (1978)
Ramberg, I.B. and B.T. Larsen (1978)
Ramberg, I.B. and S.B. Smithson (1975a)
Ramberg, I.B. and S.B. Smithson (1975b)
Ramberg, I.B. and N. Spjeldnaes (1978)
Rohr-Torp, E. (1973)
Segalstad, T.V. (1976)
Sellevoll, M.A. (1973)
Sellevoll, M.A. and R.E. Merrick (1971)
Skjernaa, L. (1972)
Sørensen, R. (1975)
Torske, T. (1975)
Weigel, W., J. Hjelme and M.A. Sellevoll (1970)
Whitaker, J.H. (1977)

VOLCANIC ACTIVITY

Barth, T.F.W. (1970)
Dons, J.A. and E. Györy (1967)
Henningsmoen, G. (1978)
Mystuen, J.P. (1975)
Ramberg, I.B. and T.F.W. Barth (1966)

VARIA

Dons, J.A. (1978)
Oslo Region Research Group (1977)
PUBLISHED MAPS OF THE OSLO REGION

Holtedahl, O. and J.A. Dons (1953) Berggrunnskart over Norge (Geologic Map of Norway), Scale 1:1,000,000. Norges Geol. Unders.

SELECTED BIBLIOGRAPHY ON THE OSLO RIFT (1960-1980)

Czamanske, G.K. (1965) Petrologic Aspects of the Finnmarka Igneous Complex, Oslo Area, Norway. J. Geol., v. 73, 293-322.

