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ABSTRACT:

This paper reports work with R. W. Brown where the radiative lifetime T

for the decay of massious neutrinos is calculated using various physical

models for neutrino decay. 'fie resulta are then related to the astrophysical

problem of the detectability of the decay photons from cosmic neutrinos.

Conversely, the astrophysical data are used to place lower limits on T. These

limits are all well below predicted values. However, an observed.feature at

1700 A in the ultravtolet background radiation at high galactic latitudes may

be from the decay (of neutrinos with mass 14 eV. This would require a d.,cay

rate much larger than the predictions of "standard" models but could be

Indicative of i decay rate possible in composite models. We may thus have

found an important test for substructure in leptons and quarks.
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I. INTRODUCTION

While suggestions tying astrophysical observations with the possibility

of massious l neutrinos have been around for soma time2, the advent of grand

unification theoried and (as we will suggest here` composite models of quarks

and leptons4 as well as recently reported experimental results implying

finites and cosmologically significant 6 neutrino masses, are stimulating much

interest and work on the subject of massious neutrinos and their cosmological

lmplications7 . Some of these implications will be discussed by others at Chia

symposium. we will concentrate on aspects involving the astrophysical search

for radiation from the decay .-)f massious neutrinos. Ws begin with a brief

summary of the basic cosmological setting for a discussion of this topic.

II. COSMOLOGICAL SETTING

Since the radiative lifetimes of light massious neutrinos are expected to

t	 be much larger than the age of the universe, both from theoretical 8 and some

observational 9 considerations, one moist look for the most copious source of

neutrinos In the universe in order to look for photons from their decay. This

source is the big-bang itself 10 . For each neutrino flavor f and helicity ef,

the number density of neutrinos plus antineutrinos in the universe is

nv = 1.1 x 102 
(2T7K)3 

;nn 
3

.	 fe

The total number density is thus

n  - 110 Eg f

(1)

(2)

NEMIROW&- h	 c-	 y
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taking T = 2.7K and the total mass is

11010f my
f	

(3)

Denoting Av = Ev/pc the fraction of the closure density of the universe

in neutrinos, it follows that

Q	 0.01 
h-2  

E
	

(4)
v	 o v

where ho is the present Hubble constant in units of 100 I= 9 71  NPC 1 and E  is

In eV. Thus a value for 25 4 E  4 100 ell could close the universe

(0.5 ho 1). He may compare equation (4) with the various values of 2

associated with objectb on different astronomical scales. It has been found

that the ratio of mass-to-light based on dynamical mass measurements increases

with the increaaing scale size. It is found that over distances much larger

than typical interstellar scales, M/L is proportional to scale size

(14/L a r) up to distances of the order of 14pc 11 . Our version of Figure 2 of

reference 11, which takes account of additional data 12 (in general agreement

with that in reference 11) is shown in Figure I. The curve shown in Figure 1

gives a functional approximation to the data of the form

(") = % [1-exp(-r/A)) 	(5)

in solar units. At extragalactic distances, the h dependence is also shown on

the scale. The function (5) has the virtue that WL a r for r << A and H/L

r
	

coast for r >> A as required by the observational constraint A % 2. The

value for M/L corresponding to the critical density (i.e., 2 = 1) is shown by

Ev =
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the circle marked C. it can be seen that there appears to be a scale size A •

a few Npc which is characteristic of the non-luminous mass in the universe.

Ibis size is interestingly close to the galaxy clustering size • 4 MVc18 and
Is of the order of the Jeans length (scaled to the present time) which one

would obtain from the growth of gravitational perturbations of neutrinos in

the range14

a few eV < m^ < a few tens of eV%

This range of masses is also relevant to the dynamical studies of Tremaine and

Gunn1S. it should also be noted that cosmological neutrinos can undergo

violent relaxation16 to produce a density distribution % s r-2  as implied by

rotation curve studies of the outer parts of galaxies (halos) and that such a

density distribution, when extrapolated to galaxy clusters, can give the

observed relation K/L a r . it may also be noted that massious neutrinos in

the mass range (6), could close the universe (see equation (4)) and thereby

solve the "flatness problem" proposed by Guth 1e. without getting into such

controversial areas as to whether or not 2 - 1 or whether neutrinos cluster on

the scale of galaxy clusters, galaxy halos, or both 19, we will therefore

concen.;rate our further discussion on the radiative decay of neutrinos in the

mass range (6) and the consequences of searching for the decay photons.

III. AWWP"SICAL NSt1MM MMMS AND RMIATM LIFSTIMBS

It has been pointed out by De Rujula and alashow8 that the wavelength

range to search for photons from the decay of cosmologically produced

neutrinos (mass range given by (6)) lies in the far ultraviolet. This is

(6)



Q

because for the decay from a heavier (v') to a lighter mass (v) neutrino

V , ♦ v + Y	 (7)

the emitted photon has an energy

,2_ 2

so - 2m• 
m	

(9)

in the rest system of the decaying neutrinos.

The neutrinos have been "adiabatically cooled" by the expansion of the

universe so that their velocity spread is determined by the dynamics of their

gravitational interaction rather than by thermal velocities. Typical

velocities for neutrinos bound in galaxy halos would be - 300 km/s. For

i	 neutrinos in galaxy clusters, the dynamical velocities would be % 10 3 km/s.
i

Thus, for so corresponding to a wavele-igth Ao % 1000 A (to % 12eV) the Doppler
o

spread of the lines would be AA • 1 A for neutrinos in galaxy halos and
0

3 A for neutrinos in galaxy clusters (AA/A
0
 - vv/c). For the case where

4.	m' >> m, which might be expected in light of the large mass differences known

to exist among the charged leptons, equation (a) reduces to

E a m'/2,	 m' >> m	 (9)
0

contrast to the narrow monochromatic radiation expected from nearby

there should also be continuum radiation at E < E (A > A ) from the
0	 0

neutrinos which occurred In the past when we Integrate the line

over all redshifts.



The formulas for the astrophysical photon fluxes are as follows20s

1) The diffuse line intensity from the galactic halo is given by

0

I 1 = a*	 I n' dl cm 2 B-1  sr ' A ''
	 (10)

where T and n' are the lifetime and density of v' neutrinos and the Integral

is along the line-of-sight of the telescope.

2) The flux from an extragalactic source such as the halo of a

nearby galaxy or a nearby galaxy cluster is given by

0

Fly
	

2	
In'dV -	 2N cm-1	 (11)

4TR T41	 4wR Tda

where the volume Integral

N - f n'dV
	

(12)

gives the total number of v'neutrinos In the source and R is the distance to

the source. If the mass of a galaxy cluster or halo Is assumed to be mainly

from v' neutrinos, then

2. x 1066 (M /M )s •
N 

s	
m'(ev)	

(13)

where Ms is the total mass of the source, usually given in solar mass (M0)

units.

!ti vri^r
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3) The continuum flux from the decay of cosmelogioal neutrinos is

no 
0IM _ —$	 f c ds 0;2 i1 sr-1 oil	(14)

a*% t 0	 ( 1+2) (1+09)/2

where so is the critical redshift of absorption of the W flux.

Since s - X/A where K - 1.24 x 10-5 eV A - hc, in wavelength units and for

Ao = hc/so, equation (14) becomes

cn'	
A3/2	

1/
IX	

o	 A
(15)

A0 4 A C AO (1 + so)

or, in numerical units2l.

3/2

I A 7.8 x 1028'01 
t 1 5/'s (1 — (9-1)(1-A0/A)1 1/2 

cm 2s 1or 1 
0- 

1

A
(16)

Since the expected ultraviolet fluxes (10), (11) and (16) are

proportional to the neutrino decay rate : I, the physics of neutrino

decay (t for v' + ;, + Y) and the astrophysical observations are both related

to the problem of determining the lifetime of putative sassious neutrinos in

the mass range (6).

IV. MODELS FOR RRDIATIVE NEUTRINO DECAY

To compute the radiative neutrino decay rate r = t-1 , we first note that

the most general form for the asiplitude is
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T(v' + v + Y) • i 
A 

T (A-q ) ahy i
V
gs(a + by 5 ) 1(p)	 (17)

where p2 = mt2 , (p-q) 2 = ma. a and b are dimensionless numbers while A

characterizes the relevant mass scale, or combination of mass scales, involved

in the decay Interaction. aquation (i7) follows from gauge and Lorentz

•	 invariance and leads to the decay rate

r =

	

	 (p0me 
m 

) 3 (lal 2 + Ibl 2 )	 (18)

2A

If m' >> m,

t s 3.65 x 10 21 
[m (eV)1 33 (lal 2 :' M 2) 

OV
(A; GeV)]

or

2
T = 1.30 x 105 fA(GeV)l (lal 2 + Ibl 2 ) -1 sec.	 (20)

(m'(eV)]3
i

Equation (20) is the basis for a discussion about the lifetimee predicted in

M	 various models, The models have a wide rang* of characteristics, and it is

useful to characterize them by the parameters a, b, and M.

1

A. Conservative 8118

It may yet turn out that neutrinos really are massless and hence

do not oscillate, as in the standard Glashow-Weinberg-8alam MS) mode]. with

no right-handed neutrinos. In this case, a = b - 0, and

(19)



U.

,i

F/

10

t . do (on)	 (21)

and there would be no more story to tell. This would also be the case for

massious neutrinos with conserved Topton number ( flavor).

a. extended Ai9

On the other hand, it is easy to extend MS to include neutrino

masses and mixing. (The mass eigenstates vi differ from the wealt-interaction

bazis vi .) Neutrino electromagnetic decay can now proceed by an intermediate

state consisting of a weak boson M and a charged lepton i both of which can

couple to the photon (see Figure 2). For three generations ( i - 1, 2, 31 i •

e, N, t) of Dirac neutrinos, and for m 3 > m1 , for example,

the v3 + V  + Y decay rate is22

F

ggccs^2^ o m2	 2

r(v3 + v1 + Y) 

	4 
(a3 

-a
a1 ) 2 (m3 + a 

2

204 9*	 m3

A s2 + s? cZ - s?	 s? - at
X 

( t Z u ^ • 
s1c1s3 - ^^ s1s2c2c3)3

U of the Kobayashi-Maakawa-like neutrino mixing

(si 1 sin 0i , ci a cos 01 ) with no CP violation. For a

i v' + v + Y, the scale is

14
A • (GPmo )-1 • m,^-- "V

it numbers a and b are (ignoring si , ci factors)

(22)

(23)
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2

W ;

!al. Ibl + 3232 
L'  

+ 4.3 x 10-6 	 (24)

X11

This is consistent with (22). Therefore we have

T +	
10 44 a

	(mctended (WS)	 (25)

(s•(ev))

it must be remembered that the mixing angles may increase this significantly

(e.g., t = on if 01 + 01).

C. Heavy Layton

The leptonic version of the Glashow-iliopoulon-Maiani (GIN) suppression

mechanism was operative in (22) and led to the O'(s2/mw) numbers in (24). we

can therefore achieve a larger decay rate by going to some model involving

heavier leptons. (24) is changed to

lal• Ibl • _3 a 10-2

32,x2

and so

37
t + 41, 	

s5	
(Heavy Lepton)

This agrees with detailed model calculations with an additional very heavy

lepton23,24 (fourth generation) and was first estimated in Reference S.

D. G_less

Models where the GIN mechanism is absent altogether could also decrease

the lifetime to the order-of-magnitude (27). This is the conclusion of

Reference 8 in a model involving ar additional, weak SU(2) singlet neutrino

and is also analyzed in Reference 23. we may write

(26)

(27)

.g
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97
T a 10 ^" S	 (NO GIN)	 (28)

W (eV)

with the caveat that this, as well as our other estimates, could be signifi-

cantly larger if mixing angles are sufficiently small.

D. Nsiorana-Dirac: neutrinosw

We may try to evade GIN suppression by considering both Dirac and

Majorara mass terms In the Lagrangian, a circumstance which can arise in

certain grand unified theories where the Majorana masses can be induced br

rad13t!ve corrections. Chong and LI25 have studied the rates for p + ey for

these genersl neutrino mass sigenststes in an extended =8 model, aid we can

adopt their work to v' + vy. If all six of the masses are small, we still

have GIN cancellations. If ••:e choose three of the masses to be as large as we

wish, a fine tuning of the parameters in a most general mass matrix cirl

enhance the decay rate. However, we still see the same ' oer limit

37
t >	 a	 (Majorana/Dirac)

(m aV)j

in this regard, see also reference 23.

F. Big"
Pal and Wolfenstein23 have also pointod out that Higgs Intermediate

states could enhance amplitudes by a factor of (%/N, ) 2 where No is a Higgs

mass. If there is no GIN-like cancellation In the remaining factors, then we

can optimistically guess that

N
t ^ (^) d ^

37
'^	 (Higgs)	 (30)

Im'(e'v))s

(29)
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in the case where M#/MN - 0.1, a four order-of-magnitude reduction would

result.

G. 2?Msite Models

There has been much effort In recent years constructing composite models

Ir

of quarks and leptons out of more basic particles. Various models have been

proposed. Many of these models naturally embrace non-zero mass neutrinos,

especially if higher generations are viewed as some sort of excitation of the

"ground sta'.e". Thus, it is very natural for as to focus on neutrino decay as
r^

a consequence of compositeness.

j

	

	 Unfortunately, the research area Is quite new, and the problems of

building very light particles with very small sizes and pointlike magnetic

moments are immense. No model haR yet appeared which is consistent with

experiment and known theoretical constrallts. For example, radial or orbital

excitations with a mass scale of an Inverse lepton or quark size should lead

to much heavier higher generations than are seen. Therefore, we have no

single calculation to offer as a good indication of what to expect for a decay

lifetime. Sven the N + ey comparison Is fraught with danger, in the context

of compositeness. It is possible that the great differences mentioned later

are due to entirely different constitueuts in.the two cases.

we are able to obtain order of magnitude estimates for lifetimes if a
I

scale A (composite size A7 1 ) Is given. This holds for a reasonably large

j

	

	 class of models, an important consideration since we want to be sure that

there Is no general principle which states that such electromagnetic decays of

composite neutrinos is vanishingly small. For certain theories, the transition

magnetic dipole moment Is zero in chiral symmetry limits, and for others, the

neutrino has neutral constituents. However, a variety of considerations4

W .
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Indicates that the higher generations are best viewed as additional scalars or

pare tacked on to the lightest generation.

The smallest lifetime in those models whose neutrinos are fundamental

fields corresponds to estimates like (30), yet still appears to be too large

to account for any cosmic W background flux observed. (The lifetime

Indicated by existing observations, under the assumption that neutrino decay

Is responsible for an observed flux enhancement, will be discussed later.) We

propose, in this paper, that significantly smaller lifetimes can be found in

the case where the neutrino is not elementary, and that W observations may

givethe first eviden" for composite structure of leptons.

The scale of Y 10 13 GeV , for m' = 10 eV, obtained from equation (23),

corresponds to structure on a distance scale *c/A = 10 -27 cm. Is it possible

that the neutrino has a size much larger than this? There are, in fact,

reasons to believe that leptons and quarks are bound states of something else,

reasons having to do with the proliferation of particles and parameters in

grand unified theories, the fact that the three generations resemble a bound

state spectrum, the mismatch with supersymmetry multiplets, and so forth.

This topic has been reviewed nicely by Harari y and has been the subject of

many papers recently. Although neutrino radiative decay has not been studied,

we have surveyed the general models proposed and give our estimates for T

below.

We may identify our A with the characteristic scale discussed by

Harar14 . Since no structure for leptons or quarks has yet been seen, we have

only a rough idea of A, based largely on lower limits. The value

A 2 1-103 TeV (magnetic moment, scattering) 	 (31)
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Is most often quoted, based on the absence of non-QICD anomalous magnetic

moments and on the absence of evidence for quark and lepton structure in

present scattering data, and on theoretical Higgs compositeness. The limits

on the proton decay rate and the radiative moon decay rate give much more

severe limits, with

A 108 TeV	 (Limits on other decays)
	

(32)

or even as high as the grand unification mass of 10 15 GeV if the proton decay

amplitude is first order In A-1.

The general decay -= •.e for v • + vy can be written

,2
	 2

(33)

which introduces f and includes equatit.-t (18) as a special case. The point is

that equation (17) Is the amplitude for a magnetic dipole (M1) transition, and

other possibilities may arise for composite fields and their effective

Lagrangians. The dimensionless function f IA , ...) may have other scalesme

(entering as ratios in its argument). As a first guess, f = const s 1 (141

transition) gives (for m • >> m)

t • 1011
fA(T!eV)l3 

s	 (First-order)	 (34)

where the amplitude Is • em'/A, first order. A second-order result would be

4
T 1035	 5 s	 (Second-Order)	 {a 5)

If A Is the only other scale.
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In the composite approach, protons are composites of composites and there

are various ways in which its decay may be inhibited, with no direct

implication for v' + vy decays. on the other hand, U + ey is much more

closely related in structure and we may write

2	 2

r(v + ey) - S (mu°)3 fu(L. ...).	 ( 36)

De 1Wjula and Glashow8 relate the two decays by

T (M
M VP + evv),)3 

T (U + ey) = (m )3 B(P + ey) 	
(37)

which, in our discussion, corresponds to f = f1A, a first-order approach. The

lower limit26 on the y + ey branching ratio of 1.9 x 10 -10 and

the u + evv lifetime of 2 x 10-6 s combine to yield

28T 4 10 s3	 (Composite Lower Limit (?))	 (38)

This may be regarded as a conservative lower limit on the lifetime we could

expect from composite models.

We should remember, however, that f and f  may be very different since we

have been talking about neutrinos which have no charge, far smaller mass than

moons and perhaps a Majorana character. Anything can happen at this point.

In our previous discussions of extended GM models the presence of a charged

very heavy lepton eliminates GIN suppression for v + vy, but, we now note,

does not eliminate GIN suppression for V + ey. In this very heavy lepton

model, f/f. = (7'(10 8 )! The composite picture may even involve selection rules

which operate differently in the two cases.
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To demonstrate this, we give the following representative calculation.

Suppose that the v is a bound state of a feraaon and a boson with masses mf

and mb and charges a and -e, respectively. we may then estimate the

transition magnetic moment by the lowest order perturbation calculation of the

anomalous magnetic moment which appears in Shaw, Silverman and Slansky27 0' we

•	 find, in the notation of equation ( 17) that

amA s X3.'a	 -) (1 + in r)2
16u m^

where r is defined to be f
/m
b << 1. Here g and g' are the couplings between

the neutrino composites and the two-particle states, and wehave

chosen mf « 
mb
. If mb = 10 3 TeV, m  = 10 2 TeV and g - g' a 1 as some sorth

of hyperstrong interaction, then we get

22T " 10	 s 3	 (40)
(m'(ev))

Obviously, equation (40) is hardly a universal estimate and much smaller

lifetimes can be found for other "reasonable" mb and mf • If it is accepted

that the p and v cases are not trivally related (f*f ) then we see that there

`

	

	 is much freedom in composite models concerning lifetime estimates and the

conservative lower limit given by equation (38) and in Figure 4 may not hold.

V. ULTRAVIOLET BACKGROUND DATA

The observational situation regarding the cosmic ultraviolet background

fluxes, particularly at high galactic latitudes, is still in a relatively

primitive state owing to fundamental observational difficulties. These

(39)
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observations have been reviewed quite recently 28 and the reviews point out,

among other things, conflicts in both observations and interpretation.

Nevertheless, the contributions from various sources of background

contamination can be estimated and general cosmic flux levels can be

established. Although it was originally suggested that thj W flux from decay

of neutrinos in the galactic halo would have a peak intensity in the direction

of the galactic center8, fluxes from stars and a large dust opacity make

searches in this direction impractical. Rather, one should look in the

direction of the galactic poles where these effects are minimized29. Indeed,

significant portions of the sky near the galactic poles may be almost totally

free of dust30 (a fact which is also important to studies of the cosmic far

Infrared background3l).

The W observations may be summarized as follows 32 : With all numbers in

0
units of photons CM0 2 s-1 sr-1 A-1 , the diffuse high-latitude far W spectrum

0	 0
appears to be flat between - 1300 A and % 1525 A with an intensity of 260 t

40. (Allowance for up to 0.2 mag of extinction by high latitude dust could

bring this number up by as much as 20 percent, but this is still within the

0	 0
error of the measurements.) In the range between 1680 A and 1800 A, the mean

flux level increases to % 600. The big question here is how much of the flux

could be from such things as scattered starlight, airglow, and the integrated

flux of distant galaxies. It has been argued that oackscattering of starlight

is negligible33 , however, this is presently a point of contention 34 . The
i
i	 O
i	 1700 A feature is not consistent with calculations of the spectrum from

distant galaxies 32 but may be due to airglow (another point of contention).

In the next section, we will use the "flat" flux level to derive a lower limit

on the neutrino lifetime, and we will also discuss the possibility that the

0
1700 A feature may be from neutrino decay 29 and the implications of this

hypothesis.
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Vi. ASTROPHYSICAL LOWZR LIMITS ON T AND OTHSR ASTROPHYSICAL IMPLICATIONSt

By making use of equation {16), the measurements of I.X discussed in

section V can be used to place lower limits on T. The most stringent limits

are obtained for the case 0 s 1 (Il a A7512 )  and using the data at the

shortest wavelengths. For this purpose, we take35

_ o

I	 ^200cm2s1 sr1 A-

	

l	 (41)
1250

Most previous workers 36 when using measurements or limits of the

background radiation at various discrete wavelengths to obtain T(E0 ) or T(mV)

have erred in connecting these discrete points to generate a smooth

function T(L 0 ). This method can be quite misleading, as it fails to account

for the fact that local neutrino decay emission would occur in very narrow
0

lines ( AA - 1 A) at specific wavelengths not covered by the data set used (see

Figure 3a). There is, however, a way to obtain a correct continuous

function T(E0 ) by utilizing the fact that cosmological neutrinos produce a

redshifted continuum spectrum given by equation (15). Figure (3b) shows the

characteristic triangular shaped spectrum obtained on a log 1 1 - log A plot

obtained from equation (15) if neutrino decay at an observation wavelength

corresponding to point 0 is responsible for the flux at 0 (solid triangle).

However redshifted radiation from the decay of higher mass neutrinos can also

account for the flux at 0 (dashed triangle). The triangles are inverted on a

log T-log % graph (see Figure 3b). Adding together the limits thus obtained

from flux measurements at several wavelengths gives a typical zig-zag limit

function for T (MV ) as indicated in Figure ?c. The resulting limit function

from observational data over the whole frequency range of interest U nfrared-

a	 _
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optical-ultraviolet) 37 is shown in Figure 4. The limits obtained from actual

photon flux measurements correspond to the line labled SBF. For data compi-

lations where the fluxea are given in units of F(erq cm-2 9- 1 sr-1 Ha 1), the

individual sections of SSF are given by the formula

h t	 (S ) - 517E 1 (hv /1: )5/2 q (S - by ).	 (42)
o min o	 vob ob o
	 + o	 ob

where hv0b is the energy corresponding to the frequency of the observation vob

and q+ is the Heavyside functions

q+ (x) - 1 for x)P 0 and q+ (x) - 0 for x< 0.
0

In the case where 
$0 

> 13.6 eV (the Lyman limit 10 < 912 A) the decay

photons are not generally directly observable (however, see footnote 41

later), but the indirect ionizing properties of the photons can be used to

place limits on the decay time. This can be done by requiring that

photoionization of high velocity clouds of neutral hydrogen (HI) near our

galaxy not exceed observational limits38.

Utilizing the condition that the ionization rate from v-decay photons not

exceed the recombination rate, Melott and Sciama 39 obtain the lower limit

2

t > (4 x 10
22 8) ( T )3/4 !KU (_ ) { OeV + h 1 [1-( l0 )3/2 ] N)	 (43)

104
	 d 0.05	 m'	 0	 0

912A

where nHII is the density of ionized hydrogen in cm 3 , T is temperature, d is

the distance of the cloud in kpc, ® is the angular extent of the cloud on the

sky, m' is in eV and N is the number of ionization per photon. Equation (43)

gives a conservative lower limit on t of % 10 248 if the clouds are at a

distance of % 1 kpc.
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Another method of computing T from ionization arguments is to note that

the lifetime of the clouds Tcl a 10149. In order for the clouds to exist in

their neutral state, the ionization rate r  must therefore be low enough such

that the photons cannot eat through the cloud in a time Tcl• Therefore, the

flux from neutrino decay FY must satisfy

FY C1 
< 

nHI 
R	

(44)

from which a rough limit is obtained on the neutrino lifetime

T ^ 4 x 10236	 (45)

in agreement with that obtained from equation (32).

The limits obtained from equations (43) and ( 44) are also shown in Figure 4.

These limits can be compared with the limits given by equation ls . Rquations

0
(43) and ( 44) only refer to the wavelength region a < 912 A which

represents m' > 27.2 eV. The decay of lighter mass neutrinos, of course, will

not produce ionizing radiation. It should be noted that if the high velocity

clouds originate in the galactic plane, they could be continually in the

process of "evaporating" by ionization once they leave the protection of the

galactic disk. They can therefore start out with higher values of nt then

observed. Also the corona of ionized plasma which would form around the

neutral core of the cloud could significantly slow the ionization rate (the

Felten—Bergeron effect 39 ). Both these considerations could make the limits

obtained from equations (43) and (44) somewhat too restrictive, but we assume

here they they are "reasonable" to within an order of magnitude.
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Having summarised the limits on t in Figure 4, we now discuss the

Interesting conjecture that the % 1700 A feature (see section. V) could be due

to neutrino decay29. This feature could then be hypothesised to be from a

decay line somewhere in the band pass region of the photometers of Maucherat-

0
Joubert, = al. and Anderson et 	 ,33, i.e., in the wavelength range 1680 A-

a
1800 A corresponding to an energy range 6.9-7.4 eV and a neutrino mass m' in

the range 13.8-14.8 eV. Of course, such neutrinos would have all of the

desirable cosmological properties discussed in Section I1 by satisfyin3 the

0
condition (6). The line would have an expected width • 2 A and for neutrinos

In a large galactic halo would require a neutrino lifetime " 6 x 10 24 s

(points on Figure 4). This lifetime is within the limits obtained from our

astrophysical arguments; however, it is much shorter than that given by the

"standard" calculations (see Figure 4). But within the framework of the new

substructure models for leptons and quarks (see Section IV) such decay rates

are possible.

0
Thus, if the % 1700 A feature or some similar feature, shown by future

observations to be narrow, could be shown to be from neutrino decay, it would

be a test which would determine neutrino mass from equation (8) or (9) and may

be the best way to prove that substructure for leptons and quarks exists40.

We therefore urge that improved high galactic latitude searches be made with a

field-of-view small enough to exclude hot stars and dust patches and with good

spectral resolution. We also suggest that such searches should begin with the

1680 A-1800 A region41.
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Figure 4. Theoretical model predictions for T(m V) and astrophysical lower

limits on h0 T(E0 ). (It is assumed that my = 2E0 , see equation (9).

The limits marked SBF (Stecker-Brown, th;.s work) were obtained

directly from cosmic photon fluxes. The limits MS  (Melott-Sciama,

Reference 38) and SBI (this work) are from ionizing flux limits

0
i from the % 1700 A feature

L WL

Figure 1. Mass/Luminosity ratio in solar units as a function of cosmic

scale size. For extragalactic objects the dependences on h o are

as shown on the scales.

Figure 2. Feynman diagrams for radiative neutrino decay for GWS models with

neutrino mixing.

Figure 3. Improper and proper methods for obtaining T(E 0 ) and T(mV).

(a) Given a discontinuous set of data points 0,0100"00..

for IX at various A, one cannot smoothly interpolate to get

T(mV) ( see text). (b) Cosmological continuum spectrum for

redshifted emission generated by higher mass ( ---- ) and

minimal mass (	 ) neutrinos to account for observation 0

and resulting T(mV) limits (see text). (c) Limits obtained

from a set of observations 0,01,0",... using the construction

shown in (b).
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