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I. SUMMARY

An experimental test program of a powered propeller and nacelle mounted
on a supercritical wing was conducted by the NASA Ames Research Center in
the 14-Foot Tunnel. Analysis of this dafa by the Douglas Airéraft Company,
under contract to NASA with Al Lavin as the program manager, is contained in
this report. The design condition for this study was Mo = 0.8. i

Analysis of the data indicated that the instai]ation. of the nacelle
significantly affected the wing flow and that the flow on the upper surface
of the wing is separated near the 1éading édge under powered conditions.
Comparisons of various theories with the data indicated that the Neumann
surface panel solution and the Jameson transonic solution gave results
adequate for design purposes. A modified wing design was developed (Mod 3)
which reduces the wing upper surface pressure_coefficients and section lift
coefficients at powered conditions to levels below those of the original
wing without nacelle or power. A contoured over-the-wing nacelle is
described that can be installed on the original wing without any appreciable

interference to the wing upper surface pressures.
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II. INTRODUCTION

The recent increases in fuel prices for aircraft has resulted in the
consideration of alternate propulsion system concepts that would reduce fuel
consumption. One of the primary candidates is a propeller-turboshaft
(turboprop) powerplant. Several system studies have been conducted tpat
jndicate fuel savings from 15 to 30% in fuel burned for a given mission when :
compared to turbofan engines (References 1 through 6). Flight speeds  of
M = 0.8 are considered necessary for compatibility with existing airline
operation and advanced propeller designs called Prop-Fans_ have been
developed that give efficient performance at these speeds. A wing of the
supercritical type is recommended to.maximize performance.

One of the aerodynamic concerns about the turboprop‘installation is the
interference drag that will result from the placement of the gas
generator/nacelle and propeller on a supercritical type wing. Several years
ago, a test was run by Douglas Aircraft under contract to NASA Ames
(Reference 7) to experimentally _evaluate these interferences. A
flow-through ejector powered nacelle located ahead of the wing was used to
simulate the onset flow of the propeller. This experimental approach
permitted independently varying the various propeller parameters to obtain a
basié understanding of the power-wing interactions. Many useful results and
observations resulted from this early exploratory program but a more
accurate representatioﬁ of the flow is obtained by using an actual rotating

propeller.
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The test results discussed in this report used the same wing design as
the previous simulator test. A semispan test insté11ation was used mounted
to the floor of the Ames 14-foot tunnel. Test conditions covered the Mach
range from 0.6 to 0.85. The Reynolds numbers based on the mean aerodynamic
chord varied from 7.8 x 10° at M, = 0.6 to 9.1 x 10° at M = 0.85.
 An air-driven motor powered an 8 bladed propfan propeller designated SR-2C

(Reference 8). The{instél]ation, deve]opment of the motor, fabrication and
testing were all done by NASA Ames. This report covers the analysis of the
‘data, comparison with theory and configuration modifications performed by
the Douglas Aircraft Company |(a divi§ion of the McDonnell Douglas

Corporation) located in Long Beach, California.
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111, NOMENCLATURE

Wing aspect ratio

Wing span

Local chord

Configuration drag coefficient

Section 1ift coefficient

Wing-body 1ift coefficient based on wiﬁg trapezoidal area

Wing 1ift coefficient based on exposed wing trapezoidal area

Pressure coefficient

Incremental induced drag coefficient

Mean aerodynamic chord

Free stream Mach number

Local Mach number

Propeller total pressure to freestream total pressure ratio
Reynolds number based on chord

Revolutions per minute

Propeller blade local radius divided by maximum radius
Exposed trapezodial reference area

Wing thickness to chord ratio

Coordinate system x streamwise, y spanwise, z vertical
Fraction of local chord

Configuration angle of attack measured relative to fuselage
reference plane

Swirl angle, degrees
propeller blade angle setting, degrees

Percent semispan of wing



Ac/y

Taper ratio

Wing quarter chord sweep




IV. DESCRIPTION OF THE MODEL

A photdgraph of the model is shown in Figure 1. The wing coordinates
were obtained from Douglas Aircraft. The wing had been tested previously as
part of the Douglas Aircraft supercritical wing development program and had
demonstrated good drag rise characteristics near Mo = 0.8. The design
also had been used previously a§’part of an earlier NASA sponsored test
where the propeller onset flow had been simulated by using an ejector
powered flow through nacelle mounted ahead of the wing (Reference 7 and
Figure 2). The planform of the NASA model with the nacelle installed is
shown in Figure 3 including the location of pressure rows to be discussed
later. Coordinates for the wing are given in Table 1 and Figure 4 shows a
side view of the nacelle. | |

The propeller was an SR-2C design (Reference 8) and.was powered by an
air driven turbine. Air to power the turbine was supplied through the floor

and wing and exhausted under the wing through a nozzle at about 50% chord.
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v V. _ANALYSIS OF THE DATA

Force Data
Analysis by NASA and Douglas determined that the force data for this.
test was not reliable. Subsequent analysis by NASA did result in some

usable force data, but for the purposes of the work described in this report

the force data will not be referred to.

Pressure Data

The pressure data on the wing were integrated to obtain the wing 1lift
coefficient (CL), and these results are shown on Figure 5. The analysis

W .
will focus on an angle of attack of 2 degrees or a C, near 0.5.

L

The pressure distributions on the wing are shownv;n Figures 6 through 12
for a fixed propeller blade angle of 57°, Figures 6 through 10 show the
flow development for a fixed angle of attack of 2° and Figures 11 and 12
show the variation with angle of attack at My = 0.8. The data indicates
that there is a significant effeét of the nacelle on the pressures inboard
of the nacelle at 36.5 and 41.5 percent semispan, but that there is a
negligible effect outboard of the nacelle. The pressure distributions
indicate that small separations may occur inboard due to the nacelle
installation, and at Mo = 0.8, a normal shock is indicated. Available oil
flow photographs shown in Figures 13 and 14 indicate that the flow has been

significantly disturbed by the nacelle but large regions of flow separation

are not apparent. The presence of the normal shock inboard of the nacelle

can be seen in Figure 14.

[ ————
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When.fu11 propeller power is added, the flow velocities are increased in
the propeller wash region (included on the figureé) and there is also a
change in the local angle of attack. The isolated propeller flow one blade
chord downstream of the propeller is shown in Figure 15. (These data were
not part of the current test but were measured separately as part of NASA's
propeller development program.) The propeller rotation for this test
created increased wing section angle of attack inboard of the nacelle
(upwash) and decreased angle of attack outboard (downwash). The pressure
distributions on the wing due to power show increased upper surface pressure
peaks and as the Mach number is increased, the presence of a flow spearation
becomes more apparent. Available oil flow photographs with power-oh, shown
in Figures 16 and 17, illustrate clearly that there is a significant flow

separation and extreme inboard flow from the outboard region of the nacelle.

The section 1ift data obtained by integrating the above pressure:

distributions (and removing obviously bad points) are shown in Figures 18
and 19. The installation of the nacelle reduces the Cy at the inboard

stations with little effect outboard. The windmilling propeller reduces the

Cy further probably due to a 15nui_jn__dynamic__pnessure:—-4The-—app+fcatfon'

of power significantly increases the <y values inboard due to propeller

upwash and increases the velocity to 1levels which caused the flow
separations. Outboard the Cy is reduced because of the propeller

downwash.
At Mo = 0.7, the Co data (solid symbols Figure 20) was used to
calculate the induced drag increment due to the nacelle installation by a

Trefftz plane method. The increment was found to be 12 counts

(ACD = 0.0012).
i
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To summarize these results for -later reference during the wing redesign
discussion (Section VII), the region outboard of the nacelle is not
seriously affected by the installation of the nacelle or power and wing
modifications are ndt required in this region. However, inboard the nacelle
significantly increases the upper surface pressure peaks but not to levels
that cause large flow separations. However, a significant 12 count induced
drag penalty was calculated. At Mo = 0.8, a small normal shock is present
near the nacelle on the wing, further contributing to the drag. The
increased flow velocity and upwash due to power are sufficient to increése
upper surface pressure levels and cl;s to conditions where attached flow

can not be maintained by the original wing design.

Comparison With Simulator Data (Reference 7).

It was found that the flow from the ejector powered simu]étor most
nearly matched the 59° blade angle data (Figure 21), therefore the
comparisons are made for this blade angle. Since the simulator test did not
have a nacelle mounted on the wing, only incremental effects due to power
from each test are compared.

Figures 22 through 27 compare the pressure distributions and span 1oads
between the two tests at M0 = 0.7 and 0.8. Qualitatively the pressure
distributions agree fairly well, with the peak pressure levels and the
general shape of the plots being very similar. It is interesting to note
that the pressure increase near 60% chord at 50% semispan on the upper
surface due fo power is indicated in both sets of data (Figure 25).

The incremental Cy values are not as large for the simulator test as
for the propeller test as shown on Figures 26 and 27. However, the cg

levels with power are comparable.

11
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VI. COMPARISON WITH THEORY
\

Lifting Line Program

The lifting line program is a method which uses a vortex filament at the
quarter chord point at several spanwise locations on the wing and a control
point at the three-quarter chord locétion. The wing zero-lift-1ine and the
propeller onset flow are input. The nacelle geometry canhot be input. The
strength of the vortex is then determined to satisfy the condition of
tangential flow at the control point. Forces are calculated by repeated
application of the Kutta-Joukowski léw. This theory is compared to the
simulator data in Figdres 28 and 29. Agreement with the clean wing is good
but the increments due to power are overpredicted. Both positive
(up-inboard) and negative (up-outboard) swirl cases are shown.

Comparisons with the propeller data are shown in Figures 30 and 31.
Increments due to the nacelle taken from the previous Figures (18 and 19)
are indicated. At My = 0.7, the clean wing data is below- predictions
inboard in contradiction to the data measured for the simulator case,
suggesting a difference in wing geometry. This may have been caused by a
difference in wing twist under 1load caused by the difference in wing
fabrication methods or scale. The powered data are well predicted except in
the. region immediately outboard of the nacelle. At Mo = 0.8 the same
conclusions apply except the clean wing data is underpredicted outboard,
again suggesting a difference in wing twist.

In summary, the powered data for the simulator is underpredicted by the

theory perhaps because of the presence of the ejector nacelle or nacelle

" Preceding page blan_k__ 13



boundary layer flowing over the wing. Powered predictions for the propeller
are generally good except just outboard of the dacelle. Nacelle

interferences, not included in the theory, may cause this discrepancy.

Neumann Theory

The Neumann program is an 1ncompress1b1e surface panel so]utwn using
unknown source and dipole singularities to satisfy the zero normal flow
condition at control points located in a number of panels describing' the
body surface (Reference 9). 1In regions "washed by the pr0p_e11er, the
propeller onset flow is input at each affeéted control point to be included
wif.h the free stream flow when the singularity strengths are found. The
program can calculate flows about completely arbitrary configurations.

T_he program contains the option of using the Goethert correction for
compressibility. However, when this option is applied, the zero normal f)ow
boundary condition is not exactly satisfied. Because of the complex
geometries dealt with and the smal) included angles between some body

surface panels, the compressibility option was not employed in order to

avoid potential numerical errors in some cases.

A description of the paneling used for the simulator case is shown in
Figure 32. The results are shown in Figures 33 and 34. (The Neumann
program. is compared to the data at the same configuration CL;, Since the
Neumann program did not include viscous effects, the same CL is achieved
at an angle of attack 1° 1less than the data, Figure 5.) The pressure
distributions generally agree well but the upper surface peaks near the
leading edge are underpredicted. Agreement is good if incremental effects

are compared. The section hft agreement is good with the exceptwn of the

power and swirl case at 35% semispan.
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The paneling for the propeller case is shown in Figure 35. The circular
body extending aft of the wing trailing edge is the representation of the
exhaust flow. The pressure distributions inboard and outboard of fhe
nacelle for the clean wing, wing plus nacelie and ‘wing plus nacelle plus
power are shown:- in Figures 36 through 41. (Again, note the 1° angle
difference.. The powered data are for B= S7°, run 69). The agreement of
the theory with the data is good. The experimental separation inboard of
the nacelle with power can be easily identified in Figure 38.

The section 1ift distribution data (Figure 42) does not agree as well.
Neither the level nor the increments afe reasonably predicted inboard of the
nacelle but outboard the agreement is better. The disagreement inboard may
be caused by local separations and transonic flows not correctly included in
the theory.

The Neumann pressure distributions are compared to the data at the same

angle of attack as the data (2°) in Figures 43 through 48.

Jameson Theory

The Jameson Theory is a fully transonic solution restricted to wings
only. The wing 1is mapped into a computatjona] plane and 'the full
compressible potential flow equations are solved (Reference 10).

-The Jameson theory agreement with the data for the clean wing is
excellent as shown on Figures 49 and 50. To abproximately account for
propeller onset flow effects, the wing was twisted in accordance with the

~propeller swfr] and an incremental free stream‘Mach number was applied to

account for slipstream velocity increases. The nacelle effect is not
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accounted for. These}results are shown in ?igures 51 through 56. As noted,
if the incremental Mach effeét is hot included, the agreement betweén the
theory and data is adequate to be used for design purposes.

The Jameson theory, applied in the manner discussed above, was the
primary method used to .design the modified wings described in the next
section. This computer code was used because it is a transonic method and
would give an adequate representation of the transonic flow development.
However, nacelle effects are not properly accounted for and the Neumann
computer‘.code was used to include these effects. Uncertainty exists by
using either program because of a limitation in the geometry capability
(lack of a nacelle in Jameson) or transonic flow computationai capability
(Neumann). These factors will be discussed further during the discussion of °

the wing design in the next section.
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VII. DESIGN PHILOSOPHY

Design Criteria

To reduce upper surface separations (Figures 16 and 17) and subsequent
degredations in wing performance, it was necessary to reduce the magnitude
of the high negative pressures on the wing upper surface inboard of the
nacelle (Figures 7 and 9) and reduce the wing Cy values (Figures 18
and 19) to acceptable design 1limits. Since the clean original wing

performed well and did not have any flow separations, the clean wing data
was used to establish the design crfteria. These criteria were minimum
upper surface pressure levels, chordwise pressure gradients and spanwise
upper surface isobar patterns. The <, levels at any span station and
the distribution of c, as it affects induced drag were also used. The

objective of the redesign work was to achieve levels on the new wing which

were equal to or less than the above criteria.

Wing Redesign

The airfoil section shape inboard of the nacelle was modified foAconform
to the above described criteria within the constraints of the existing
hardware. No problems were identified outboard of the nacelle so no
modifications were made there. The hardware constraints were that the
airfoil remain unchanged except for the forward or aft 20 to 25% of the
chord.

Modified-airfoils that fit within the existing planform could not be
found which conformed to the 'design criteria. Therefore, a leading or
trailing edge extension was required. A trailing edge extension was ruled

out because of diffuculities with the aft pressure gradients and unsweeping
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of the isobars. Therefore, a 15%'1eading edge extension was selected as

shown on Figure 57. The closer proximity of the propeller to the leading

edge is a concern and may shorten useable propelier test time.

The airfoil section for the modified planform was developed to reduce

upper surface peaks and gradients at transonic conditions (Mo = 0.8,

CL = 0.5) and fair smoothly into the existing airfoil shape at about 25%

W
chord. The airfoil shapes were developed using a 2-D transonic analysis
method prior to 3-D analysis to insure a pressure distribution over the
entire airfoil'that conformed tb accepted.design practice. The 3-D Jameson
computer code was used to evaluate the various designs in three dimensions.

Two of -the best designs developed are shown in Figures 58 through 62,

and are identified as Mod 2 and Mod 3. The n= 0.12 section shape is the

same for efther Mod.. The Jameson results with and without power, compared i

to the original wing, are shown in Figures 63 and 64. Mod 3 has pressure *

peaks near the 1leading edge about half of the original wing and the

transonic flow over the entire upper surface is free of shock waves even -

with power. The Cp levels with power are less than the clean'origina]
wing, the gradients-are less and constant Cp levels occur at similar x/c
values indicating swept isobar patterns. Mod 2 has higher nose peaks than
Mod 3 but, as will be discussed; Mod 2 may be less sensitive to nacelle
interferences. The spanwise distribution of 1ift is shown on Figure 65 and
the cl‘values are less everywhere than for the clean original wing. The
desired spanwise distribution of 1ift to reduce induced drag could not be
achieved.

Incompressible Jameson solutions at My = 0.1 were calculated for

reference to subsequent discussions of the incompressible Neumann solutions

to follow which calculated results for the wing/fuselage and the nacelle.

18



The Jameson results are shbwn in Figures 66 and 67. Note that the Mod 3
design has higher nose peaks than Mod 2. However, the transonic development
of Mod 3 was much better than Mod 2 indicating that at the design condition
of My = 0.8, Mod 3 will be the better design.

The_incompressib]e Neumann solutions for the 3 wings (original wing,
Mod 2, and Mod 3) with and without thg nacelle and power at the 37% semispan
station are shown in Figures 68, 69 and 70. In all cases, Mod 3 has lower
. pressure coefficients and gradient levels near the leading edge on the upper

surface than the clean original wing, and it is also better than Mod 2.

The same data presentation is shﬁwn at the 41% semispan station in
Figures 71, 72 and 73. At this station, the Mod 3 design significantly
reduces thé negative Cp peaks compared to the original wing} especially
with power as shown in Figure 73. However, the negative Cp peaks are
higher than the original wing without nacelle and power and are higher than
Mod 2 with nacelle and power. The uﬁcertainty here is whether the results
shown at the 41% semispan would also occur at transonic conditions. The Mod
3 results were worse in the Jameson code at freestream conditions similar to
the Neumann solution (Mo = 0) but the ‘pressure distribution development
into the transonic region (Mo = 0.8) was better. Since a transonic code
including the nacelle body was not available for this study, the transonic
development in the presence of the nacelle could not be evaluated. Since
the Mod 3 design is better at 37% semispan using the Neumann and is better
everywhere at transonic conditions as evaluated in the Jameson, it has been

~selected as 'the preferred design and is recommended for test. If the
édverse effects nearer the nacelle (41%) occur during test, these effects

can be treated locally with a small fillet.

19



To evaluate whether or not the pressure peak calculated for Mbd 3 at 41%
semispan will cause a flow separation, the results shown on Figure 72 are
compared to the power-off flow visualization photos on Figures 13 and 14.
The flow photos did not indicate a large region of flow separation although
a limited normal shock was indicated at Mo = 0.8. The pressure peak
calculated by the Neumann at these conditions was -1.4 as shown on Figure

72. Therefore, a -1.4 Cp should be marginally acceptable to avoid

significant flow separation. |

The peak Cp for Mod 3 with nacelle and power calculated by the Neumann
is -1.4 as shown on Figure 73. This level indicates that flow conditions
similar to‘the‘power-off case on the original wing would occur (like Figure
13 and 14) and the poweredvperformance of Mod 3 should be acceptable.

Figure 74 shows results for all the configurations and conditions at 56%
semispan. In all cases, the pressure distributions are more favbrab1e than
the original wing.

The spanwise distribution of 1ift for all cases is shown in Figure 75.
The desired c, values (less than the original wing) are achieved‘inboafd
of the nacelle for either Mod 2 or 3; | _

To amplify the conclusions drawn and to indicate sensitivity to angle of
attack, the Neumann results are shown at 1° higher angle of attack in
Figures 76 through 81. A11 the conclusions drawn previously apply to these
data. Note that in Figure 79, Mod 3 has a higher negative Cp;at the nose

without nacelle and power than Mod 2, just 1ike the Jameson results.

Nacelle Contouriqg

The “streamlines about the isolated wing computed using the Neumann

program are shown in Figures 82 and 83.

20



Underwing Nacelle - The nacelle geometry for this case was constrained to
adding fairings to the existing nacelle or contouring aft of the mofor SO
_that insta]latibn of the air drive motor would be assured.

The aft part of the nacelle and nozzle centerline were contoured to the
lower surface streamline as indicated in Figure 84. This contouring did not
produce adequate favorable effects to warrant further consideration as shown
in Figure 85.

Limited contouring of the nacelle was deve]éped using the upper surface
streamlines. As indicated in Figure 83, no contouring is possible inboard

of the nacelle because of the relationship of the wing leading edge and

rotating hub and propeller. A local fillet can be used outboard to fair
between the nacelle and the wing leading edge. In the profile‘View (Figure
82) a local "bump" on the nacelle upper surface in the region of the wing
leading edge will_make the nacelle conform more closely with the
streamline. The two fairings are shown by photographs of a subscale mock—up
in Figure 86.

These limited fairings probably won't have a significant impact on the
performance. The geometric limitations precluded contouring to the extent
hecessany. These fairings can be tested in the tunnel depending on test

results of the modified wing and basic nacelle.

Overwing Nacelle - An overwing nacelle was also considered and is shown in

Figure 87. For this case, the approach was to aerodynamically contour the
nacelle and then determine if the air drive motor can be installed. Since

this work was done in parallel with the development of Mod 3, the original
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wing was used. Also, because the objective of this work was to evaluate
what can be achieved by nacelle contouring with the power effects being
treated uéing wing modifications, the power effects were not included.

The contouring was accomplished by maintaining the longitudinal
cross-sectional area distribution of the nacelle to give the best chance of
the motor fitting inside. The centers of these areas were shaped to conform
to the flow streamlines. The resu]ting nacelle shape is shown in Figures 88
and 89. The contouring achieved excellent results as shown in Figures 90
through 92. At the 43% semispan location, the upper surface pressure peak
and gradient with the nacelle installed is.signfficantly less than for fhe
noﬁ-contoured nacelle case and is almost identical to the original wing
without the nacelle. Significantly better span loading is also achieved as
shown in Figure 93, which should provide significantly less induced drag.

It is recommended that this contoured nacelle and the non-contoured nacelle

be tested to confirm these results.

22



. VIII. DESIGN MODIFICATIONS

The wing coordinates for Mod 3 are given at 10 spanwise locations in
Table 2. These coordinates conform to the existing wing at approximately
25% of the original wing chord. The geometry of the overwing contoured
nacelle has been given to NASA Ames in the form of a computer tape
containing a parametric cubic definition of the nacelle.. The plan and

profile view were shown in Figures 88 and 89.
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IX. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are drawn from this study:

1)

2)

3)

4)

5)

6)

The force data could not be used during this study because of

uncertainties in accuracy.

Both the nacelle and ‘power had significant effects on the wing

flow. With power, the upper surface of the wing was separated at a

wing C, near 0.5,

L W

The increments in the pressure data due to power agreed fairly well

between the earlier simulator test and the propeller test. The

absence of a nacelle in the simd]ator_ test makes a direct

comparison impossible.

The Lifting Line computer code agreed better with the propeller
power-on data than with the previous simulator data. This program

could be used for preliminary design purposes.

The Neumann Surface Panel computer code predicted the wing surface
pressure distributions with sufficient accuracy - for design
purposes. The agreement with the propeller model Cp distributions
was excellent. The 9 values were not predicted as well.

The Jameson Transonic Program gives results adequate for design

purposes if the power effects are accounted for by wing twist.

Preceding page blank 2; S



7)

8)

A new wing planform and new airfoil sections were developed (Mod

3). At Mo = 0.8, the upper surface peak C_ values with bower

P
for this configuration are approximately half of the original wihg

with power. The pressure distribution is shock free and should
result in performance with power approaching that of the original
clean wing without power. Some uncertainty is present régard,ing
the effects of the nacelle on this wing at transonic speeds. It is

recommended that test data on Mod 3 be obtained to evaluate its

performance.

A contoured upper surface nacelle was developed for the original
wing which can be installed on the wing without producing any
appreciable interference to the wing pressures. It is recommended

that this nacelle be built and tested to evaluate performance.
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TABLE 2
MOD 3 WING COORDINATES

¢
v 0.0
N
\ X Y 4
N 15.8120860 0. -0.74068
N 14.054580 o o 450694
12335320 o. Zei20701
19.630340 o, J01097
8.978100 o 11831
7373 o ‘36
5.823 o Ja1491
433 o 0. 4787
2.911010 0. 1.;‘&5‘
WING DEFINED TO 40-PERCENT CHORD LINE 1380159 5 Py
\ ON UPPER AND LOWER SURFACES -0, 504210 0. ‘07284
2. 007980 °. J1zeie
TEN STATIONS, FROM CENTERLINE 23929238 e 181128
TO SIDE OF NACELLE : Zai75as30 o -9.145690
25469750 o. Ze.356210
. .. 9577320
6582210 X “e 82
“3.256770 o -1.392248
r.i26s0 o. Z1.705150
23482820 .. ~2.041560
Z7.426250 : -2.379368
27.256770 “2.739388
Z6.975060 -3.183160
-6.582210 : 3472570
S “6.079780 : 3.347270
SIDE OF Z3.935950 : -4.987230
FUSELAGE Z3l02023 : ~5.36432¢
-2 007028 : 5.734170
-6.904210 : 1095380
o.28573¢ : -6.445239
1.568150 : -6.788510
2.911010 =78
4.33399 : 7395120
5.823460 .
7373530 Z7.909590
8.978100 801
< 16620848 : Zg.2901
\ . . 12, Zg.a12710
1 1 14.954588 . -8. 49642
X SPAN/2 Y -B12068 . -8.
WRP SYSTEM B1-GEN-24215
TABLE 2 (CONT)
MOD 3 WING COORDINATES
v+10.5904
X v z
21.010529 10.590449 -9.474980 ~
19.501648 10590440 -9:303140
18.016922 10.5984490 -9.152090
16.562256 10.590440 -9.028640
15.143310 10590440 9.663920
13.765720 18.590440 0.128376
13: 434910 10.590440 0.167240
11.156138 10.590440 - 0.18055
9.934440 19.599440 0.168860
8.774670  10.590440 9.133300
7.681380 19.590440 0.075040
6.658910 10.596440 -9.005340
§.71127¢ 10.590440 -0.106710
a.842210 10.590440 -9.228509
4.955160 10.599440 -0.370010
3.3532 10.590440 -0.529380
2.739190 10.590440 -0.705650
2.21545¢ 10.590440 -0.897760
1.784100 10.590440 -1.1044090
1.44682¢ 10.580440 -1.325060
1.204950 10.590440 -1.558400
1.059448 10.590440 -1.801509
1.010880 10.59044¢ -2.057810
1.050448 10.590448 -2.314670
1.204950 10.590440 -2.585460
1.446820 10.59044¢ -2.859330
1.784100 19.590440 -3.137140
2.215450 10.59044¢ -3.417410
2. 1 10.590440 -3.698980
3.253230 10.59044 ~-3.979450
4.055160 10.590440 -4.2578090
4.842210 10.59044 -4.532260
5.711270 10.590448 -4.280430
6.658910 10.590440 °5.051159
7.681399 10.590440 -5.312740
8.774670 10.590449 -5.553420
9.934449 10590440 -5.781888
11.1564 10.590440 -5.9
12434910 10.590449 -6.192460
13.765729 10590440 -6.371
15143320 10.590449 -6.529240
- 16.562241 10.590440 -6.661230
18.016922 10.590440 -6.762860
19.501648 10.590440 -6.834500 o1 Gemze221
PAGE s 21.010529 10.590440 -6.877040
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TABLE 2 (CONT)
MOD 3 WING COORDINATES

¥e13.9735 Ve17.3565
Y 2z x v 2
3.973500 -9.380840 24.32122 . 35649 -0.287610
.973500 -9.244568 22.9811§ 7.35649 -0.1895988
. -9.12753¢0 21.65287! . 35649 -0.102070
3.973500 -8.03. 20.35110¢ 7.35649 -$.038'
973500 19.08149 . 35649 092130
.973500 17.84889: 7.35649 .21
.973500 16.6581 4, + X564 .021910
13.973500 16.51 7.3564 .002170
13.973500 14. 4 7. 35649 -6.03687¢
13.973500 13.38313¢ 7.35649 -0.094
13.973500 - 12.40494 7.35649 -9.1€8
.g73500 - 11, - 35649 ~0.260130
.973500 -4 10.6421 3 . 35649 -9.366440
973500 - 86454 - 35649 -0.487330
973500 -4 160324 « 35649 -0.622168
. -6 .53227¢ « X564 -0.769528
973500 -4 9828 - 5649 -0.92885
-9. 514220 « 25649
3.973500 - . 7.35649 27987
973500 - . 826500 7.35649 46897
973500 - .610089 . 35649
973500 - o4 7.35649
13.973% - . 436440 . 35649
13.97 - 479899 . 35649
13.973500 = 510089 + 35649
973500 - . 00 . 35649
973500 -3.032290 .128288 2.35649
973500 -3.282660 7.514230 - Y5649
973500 - 2. 50 35649
973500 -3.782090 532270 7. Y5649
973500 -4,028058 .160330 7. 35649 79830¢
973500 -4.268810 . 4@ 7.35649 736!
.§73500 ~4.505470 10.642130 - 35649
973500 -4.734450 11.490040 7.35649 406954
973500 ~4.9654108 12.404910 7.35649 ~4.595466
973500 -5.164330 13.383130 7. 75649 ~4.775254
973508 -5.36371¢0 14. 4 7.35649 - 5620
973500 -5.550510 15.513950 7.35649 -
973500 -5.723149 16.6581 7.35649 - 3
973500 -5.880498 17.8488! 7.35649 -
973500 -6.62 19.9814 . 35649 -
. 973500 -6.139820 20.351089 7.35649. -
.973500 -6.234190 21.652679 7.35649 -
973500 -6.301648 22.981155 17.35649 -
973500 ~6.342700 24.331223 17,35649 -
B1-GEN-24216
TABLE 2 (CONT)
MOD 3 WING COORDINATES-:
v=20.7396 ve24.1227
v 2 x ¥ 2
20.739571 -9.194370 27.651993 24.12268 -9.101139
20.73957 -9.127410 26.460739 24.12268 -9.
20.7395 ~0.076600 25. 288528 24, 12268 -8.051149
26.7395 ~0.043520 4. 140030 24. 12268 -0.0484
20.7395 -0.628779 13019768 24.12268 -9.9596
20.73957 -9.031330 1.932144 24.12269 -9.084560
20.73957 -9.9507 .881454 24.12268 ~0.123410
29,7395 -0.087030 9.871857 24.12268 -0.176229
20.73957 -0.1397 8.987318 24.12268 -¢.242610
20.7395 ~0.298180 7.991€69 24.1226 -9.322010
20.7395 ~-0.291000 7.4 5 24.1226
20.739571 -8.3875. 6.321e59 24.1228 5
20.73957% -0.496318 5.573160 24.1226!
20.73957 -9.616749 4.886970 24.1226
20.73957 -0.748230 4.265590 24.12268
20.7395™ -0, 99 . 711420 24,12268
20,7395 7 + 040450 » 226630 24.12268
739571 ! 3 .813130 24.12268
73957 .367610 ~AT2579 24.1226.
20.73957 490920 24,1226
73957 d .015320 24.1226
20.73957! ) 50 24.1226
739578 4 862110 24.1226
20.73957 59 24.1226!
. 73957 1 .915320 24.12268
20.73957 . 24.12268
20.72957¢ . 79 24.12268
20.73957 .813130 24.12268
. 739571 30 24.12268
R FIL
20.73957 ] 4.8 9 24. 8
20.739571 5.573169 24.12268
. 73957 6.321259 24.12268
20.73957¢ 7.1 S 24.12268
+ 73957 7.991669 24.12268
20. 739571 ) 8.997318 24. 12268
20.73957! ) 9.871857 24.12268
20.73957 29.881454 24.
20.739571 21.932144 24. 12268
20.73957 23.919760 24.12268
20.73957 24.140030 24.12268
20.73957 25.288528 24.12268
20.73957¢ 26.460739 24.12268
20.73957 -5.27400¢ 27.651993 24.12268

81.GEN.24217
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Ye2?.5057
X Y
29.312332 7.505692
28.20048% 7.505692
27.106400 ?.505692
26.034454 7.505692
24. 8. 7.505692
3.973724 ?.
2. ¥4 7.
2. 751 7.
1.156513 17.505692
20. 295883 17.505692
9. 490265 7.505692
8.736801 ?.505692
8.03851) 7.505692
7.398117 27.505682
6.818146 27.505692
6.200919 7.505692
15.848440 27.505692
. 462500 27.505692
15.144659 ?.505692
896116 7.5056%82
4. 71787 ¥?.505692
4.610658 37.5056%2
4,574870 27.585692
4.610650 '7.565698
4.717870 7.505692
14.896110 7.505692
15.144659 7.505692
15. 4625 7.505692
15.848440 7.505692
16.3009 7.505692
16.818146 7.505692
17.39841 7.505692
18.038513 27.505692
18.736801 27.505692
19.490265 27.505692
295883 27.505692
21.150513 7.505692
050751 ?7.505692
993057 7.5056
23.973724 27 .505692
24.988846 7.505692
26.034454 7.
27.106400 7.505692
28.2609485 7.505692
29.312332 7.505692
Ve34.4630
X v
33.245972 34. 462982
32.258194 J4.462982
. 9 34. 462982
.333862 . 462982
29. 4049 3¢ J4. 462982
28. 4. 462982
27.631 34.462982
26 . 794768 . 462982
25.994901 34. 462082
25.23567 34.462982
24.51994 J4.462082
23.85057 34. 462982
23.230194 34.462982
22.66125% 34. 462982
22.146011 34.462982
21.686493 34.462982
21.284500 34.462982
20.941635 . 462982
20.659241 34.462982
20.438446 34. 462982
280090 4. 462982
20.1843245 34.462982
20.15307%6 34. 4
20.184845 34
20.280990 34. 462982
20.438446 34.462982
20.659241 24.462982
29.941635 34.462982
21.284500 34. 462982
21.686493 34.462982
22.146011 34. 462982
22.661255 34. 462982
23.230194 34.462982
. 71 34, 462982
24.519943 34. 462982
«235672 34. 462982
25.994919 34.462982
« TOAT 34.462982
27.631866 4. 462982
28.502098 34. 462882
29.404938 4. 462982
30.333862 34, 462982
J1.2862¢9 34.462982
32.258194 34.462982
33.245972 34.462982

RN NN NNy VSV SN

MOD 3 WING COORDINATES

TABLE 2 (CONT)

x

30.9722717
29.940262
2B.824316
27.928009

26.957977
26.015335
25.104706
24.229691
23.393738
22.%;0143

27.528909
28.824316

940262
30.872717

TABLE 2 (CONT)

MOD 3 WING COORDINATES
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.
b
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24.482635

35813
30.159124
20.999952
21.852005
32.738922
33.648193
576218
35.519333

.

s

¥30.8888
Y

39.8887
36.88877
30.88877
30,8887
30.88877
30.88877
30.8887
30.88877
30.8887
30.8887;
30.8887
30.8887;

A

. .4

s
3333333

22
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38.637338
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9.94833¢
. 000220
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9.98738¢
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81-GEN-23245

FIGURE 1. NASA MODEL INSTALLED IN AMES 14-FOOT TUNNEL

SUPERCRITICAL WING BODY STING

FROM UPSTREAM OF THE MODEL

FIGURE 2. SIMULATOR TEST INSTALLATION
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AR =7.0
Ac/a = 32 DEG
FUSELAGE |\ A = 0.30
t/cavg = 13.9 PERCENT
[ ;| b/2 = 88.25 INCHES

STRAPEyp = 1.198 m2 (129 FT2)
Cmac = 0.703 m (2.304 FT)

1 1 1 1 A
20 40 60 80 100 81-GEN-23230A
PERCENT SEMISPAN

FIGURE 3. NASA MODEL PLANFORM

81 GEN 23204

FIGURE 4. SIDE VIEW OF UNDERWING NACELLE
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08

07 P g
p—//o

0.6 <]
//A//g ~

WING 05 / /“/

LIFT T /// NSTE:L BASED ON EXPOSED  —

04
COEFFICIENT, / / TRAPEZOIDAL AREA

CLu 03 2. C_ OBTAINED FROM -
PRESSURE INTEGRATION
0.2 M, ‘
——{— 0.8
0.1 e 0.6} walh -
NEUMANN
0 I |
—2 —1 0 1 2 3 4 5

ANGLE-OF-ATTACK, a , (DEG)

81-GEN-23221

FIGURE 5. WING LIFT CURVES

REF « RUN
W/B/N W/JET 1.90 91
CLEAN WING 1.91 277 -1.2
W/B/N/PROP-POWERED 1.92 8 | o8

X/C

e

T %
02 04 06%08
X/C

x,

5

e
0.2 04 0.6%0
X/C

81 GEN 230,

FIGURE 6. CHORDWISE PRESSURE DISTRIBUTION FOR ORIGINAL TURBOPROP CONFIGURATION AT
M =06
o
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SYM REF a [ RUN
—0—| W/B/N WIET 188 | 94
Cp CLEAN WING 1.87 | 276
----- W/B/N/PROP — POWERED | 1.88 | 20
Cp
85.0
65.0
59.7 4
4.
Ce PROP s
NACELLE
41.8
/ 36.5
250 pepeenT
SEMISPAN
Cp
Sl o a5 s e

81-GEN-23241

FIGURE 7. CHORDWISE PRESSURE DISTRIBUTIONS FOR ORIGINAL TURBOPROP CONFIGURATIONS

AT Mo = 0.7
SYM REF a RUN
12 —e— | W/B/N W/JET 186 106
- = | CLEAN WING 183 275
- Ao, [Lreeeee= | W/B/N/PROP-POWERED 1.86 137
E:A L b..‘
0.013 —iy
0.6%0.8
04 X/C
-1.21"
—0.84 N\ ;
—o0ad ¥ e ¥e
Gy s T
0.04+ .—k—\y 85.0 1.2
0.2 04 06%038
oafi - xic be ~0.84"
-1.2 3
65.0 ~0.4 e,
c : ;
59.7, R ANy
544 o2 02 osvos
PROP NACELLE 04 X/c
41.8
36.5
1.2
25.0
PERCENT ~0.64 ]
SEMISPAN _oal .
- - - =i 0002 04 o6vos ®

X/C 81 GEN 24211

FIGURE 8. CHORDWISE PRESSURE DISTRIBUTION FOR ORIGINAL TURBOPROP CONFIGURATION AT
M_ = 0.78
o
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REF a RUN

W/B/NW/JET 1.86 103
CLEAN WING 1.83 274
W/B/N/PROP — POWERED 1.84 75

PERCENT
SEMISPAN

.. B1GEN23219

FIGURE 9. CHORDWISE PRESSURE DISTRIBUTIONS FOR ORIGINAL TURBOPROP CONFIGURATION

ATM_ = 0.8
o
=12 sYmMm REF [ RUN
—e— [ W/B/N W/JET 1.85 89
. . = | CLEAN WING 1.83 273 12
—0.4 N[ e W/B/N/PROP-POWERED 182 132 o8

. .A
T T Saen
0.2 04 06%08

X/C

0.0 “'
W02 04 o6egs,d _04
0algy o xe N Cp .
: 0.0 -
3 ¢ 04
akl . XIC _\ Y L A

PERCENT
SEMISPAN

0.2 04 0608

X/C d
81 GEN 24212

FIGURE 10. CHORDWISE PRESSURE DISTRIBUTION OR ORIGINAL TURBOPROP CONFIGURATION
ATM_ = 0.82
o
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SYM REF Q RUN

[ ] W/B/N W/JET -0.12 100
CLEAN WING -0.13 274
=== | W/B/N/PROP-POWERED -0.13 77

65.0
59.7,

54.4

PROP NACELLE

- 2 41.8
02 04 06%08
X/c \\') 365

25.0
PERCENT
SEMISPAN

! 81-GEN-24206

FIGURE 11. PRESSURE DISTRIBUTION AT REDUCED ANGLE OF ATTACK FORM_ = 0.8
AND ORIGINAL CONFIGURATION

SYM REF «a RUN
CLEAN WING 3.81 274
----- W/B/N/PROP-POWERED 3.80 76

-l LT,

N

|02 04 0608
i X/c :

T / 36.5
25.0
/ PERCENT
SEMISPAN
SN

81 GEN 24192

FIGURE 12. PRESSURE DISTRIBUTION AT INCREASED ANGLE OF ATTACK FORM_ = 0.8 AND
ORIGINAL CONFIGURATION
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M= 075
o =2 DEG
WINDMILL
UPPER SURFACE

BL.GEN 23184A

FIGURE 13. OIL FLOW PHOTOGRAPH ATM_ = 0.75 — WINDMILL CONDITIONS

Mo =08

a =2 DEG
WINDMILL
UPPER SURFACE

BIGEN23181A

FIGURE 14. OIL FLOW PHOTOGRAPHATM_ = 0.8 — WINDMILL CONDITIONS

En 3{
% . 41



SWIRL ANGLE
1.10 CHARACTERISTICS

sy =M =08
- =My = 07

TOTAL PRESSURE
108 —18 RATIO
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FIGURE 17. OIL FLOW PHOTOGRAPH ATM_ = 0.8 — MAXIMUM POWER
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FIGURE 61. MOD 3 AIRFOIL AT = 0.350
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FIGURE 62. MOD 3 AIRFOIL ATn = 0.43
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FIGURE 63. COMPARISON OF CALCULATED CHORDWISE PRESSURE DISTRIBUTIONS USING JAMESON —
CLEANWING M _ = 0.800
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FIGURE 64. COMPARISON OF JAMESON CALCULATED CHORDWISE PRESSURE DISTRIBUTIONS FOR
POWERED CONFIGURATIONS M, = 0.800
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FIGURE 65. SECTION LIFT CHANGE DUE TO WING MOD 2 AND MOD 3
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FIGURE 66. INCOMPRESSIBLE JAMESON AT 7 = 0.38
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FIGURE 68. PRESSURE DISTRIBUTION FOR CLEAN WINGS AT = 0.37
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FIGURE 69. PRESSURE DISTRIBUTION FOR WINGS PLUS NACELLE WITHOUT POWER AT n = 0.37
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FIGURE 70. PRESSURE DISTRIBUTION FOR WINGS WITH NACELLES AND POWER AT n = 0.37

69



NEUMANN &= 1 DEGREE

Cp —— ORIGINAL

00 -

10 1 1 1 Il ! 1 1 1 i i H 1 1
O 20 40 60 80 100

PERCENT CHORD

81-GEN-23234

FIGURE 71. PRESSURE DISTRIBUTION FOR CLEAN WINGS AT = 0.41
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FIGURE 72. PRESSURE DISTRIBUTION FOR WINGS PLUS NACELLE WITHOUT POWER AT 7 = 0.41
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FIGURE 73. PRESSURE DISTRIBUTIONS FOR WINGS WITH NACELLES AND POWER AT 1 = 0.41
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FIGURE 74. PRESSURE DISTRIBUTION OUTBOARD OF NACELLE, WITH NACELLE AND POWER 7 = 0.56
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FIGURE 75. COMPARISON OF SECTION LIFT DISTRIBUTION CALCULATED USING NEUMANN
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FIGURE 76. PRESSURE DISTRIBUTION FOR CLEAN WING AT n = 0.37 AND a = 2 DEGREES
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FIGURE 77. PRESSURE DISTRIBUTION FOR WiNGS PLUS NACELLE WITHOUT POWER n= 0.37 AND
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FIGURE 78. PRESSURE DISTRIBUTION FOR WINGS WITH NACELLE AND POWER AT n = 0.37 AND
= 2 DEGREES
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FIGURE 79. PRESSURE DISTRIBUTION FOR CLEAN WINGS AT 1 = 0.41 AND « = 2 DEGREES
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FIGURE 80 PRESSURE DISTRIBUTION FOR WINGS PLUS NACELLE WITHOUT POWER AT = 0.41 AND
= 2 DEGREES
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FIGURE 81. PRESSURE DISTRIBUTIONS FOR WINGS WITH NACELLES AND POWER AT
n = 041 AND « = 2 DEGREES
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FIGURE 82. CLEAN WING STREAMLINE — PROFILE VIEW
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FIGURE 83. CLEAN WING STREAMLINES — PLAN VIEW
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FIGURE 84. STREAMLINEACONTOURED LOWER SURFACE AFT NACELLE
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FIGURE 85. EFFECT OF CONTOURING AFT PORTION OF UNDERWING NACELLE
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FIGURE 86. SUBSCALE MOCKUP OF POTENTIAL UNDERWING NACELLE CONTOURING
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FIGURE 87. SIDE VIEW NONCONTOURED OVERWING NACELLE
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FIGURE 88. PLAN VIEW OF OVERWING CONTOURED NACELLE
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FIGURE 89. SIDE VIEW OF OVERWING CONTOURED NACELLE
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FIGURE 90. PRESSURE DISTRIBUTION COMPARISON FOR CONTOURED NACELLE AT n = 0.37 PERCENT
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FIGURE 91. PRESSURE DISTRIBUTION COMPARISON FOR CONTOURED NACELLE AT n = 43 PERCENT
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FIGURE 92. PRESSURE DISTRIBUTION FOR CONTOURED NACELLE AT = 0.56 PERCENT
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FIGURE 93. EFFECT OF NACELLE CONTOURING ON SECTION LIFT DISTRIBUTION
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