
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



I

C^

I.

L
L

IN ASA-CP-164o71)	 FAbi:IC	 it,n AN Lo bU.	 No -34^163
CdAbACTFFIZATIUM (if CUMeu' iLIL aLEIiACav+sY	 ^^ Aob ^ ^r`'ISUITA d LF. FCF ri,Lcaiu SIC c6Nv dBi... a
Annual Fepoct, 1 Nov. 1979 - .i1 Uct. 11d0	 Uuclas
(Ore ycn GraduafL c! Celtec Lor S tuay dilLL)	 ,x/14	 17191

.	 s

FABRICATION AND SURFACE CHARACTERIZATION

OF COMPOSITE REFRACTORY COMPOUNDS

SUITABLE FOR THER.MIONIC CONVERTERS

4^	
r

^,	 RE (;tiVED	 v
I NASA M FAC!!.!r(r	 G:

Oregon Graduate Center
1%00 N.W. Walker Road

Beaverton Oregon 97006

3



a

tt{

k	 i

FABRICATION AND SURFACE CHARACTERIZATION

OF COMPOSITE REFRACTORY COMPOUNDS

I

	

	 SUITABLE FOR THERMIONIC CONVERTERS

i

ANNUAL REPORT

NOVEMBER 1, 1979 - OCTOBER 31, 1980

DECEMBER 1980

JET PROPULSION LABORATORY CONTRACT NO. 955156

OREGON GRADUATE CENTER

19600 N.W. WALKER ROAD

BEAVERTON, OREGON 97006

P. R. DAVIS

L. W. SWANSON

THIS WORK WAS PERFORMED FOR THE JET PROPULSION LABORATORY,

CALIFORNIA INSTITUTE OF TECHNOLOGY SPONSORED BY THE NATIONAL

AERONAUTICS AND SPACE ADMINISTRATION UNDER CONTRACT NAS7-100.



I	 A

TABLE OF CONTDITS

Page

I. Introduction
	

1

II. Rare Earth Hexabor de Surface Characterisation -
Task. A
	

S

n ,
	

II-A.	 Clean Surface %1haracterization of LaB6
	 S

II-B.	 Effects of Adsorbed Carbon Upon TaB 6 Surface
Propertlas
	

20

II-C.	 Cesium Adsorption and Cesium-Oxygen Coadsorption
^ LaB6 (100) and (110) Surfaces
	

25

II-C-1. Cs Adsorption on Clean LaB6
	

27

II-C-2. Cesium Desorption from the Clean LaB 6 (100) Surface
	

35

II-C-3. Oxygen Adsorption on LaB 6 (100) and (110)
	

37

11-C-4. Coadsorption of Cesium and Oxygen onto LaB6(100)
and (110)
	

45

II-C-5. Cesium Desorption from the Oxygen Covered
LaB 6 (100) Surface
	

55

II-C-6. Comparison of Cesium-Oxygen Coardsorption on LaB6
and W.	 62

II-D.	 Evaluation of LaB 6 (100) as a Cesium Vapor TEC
Electrode Material
	

64

III. Characterization of Refractory Alloys and
Related Surfaces - Task B
	

68

IV. Effects of Adsorbates on Refractory Alloy Surface
Properties - Task C
	

73

IV-A.	 Cesium Adsorption and Cesium-Oxygen Coadsorption
on Zr/0/W(100)
	

73

IV-A-1. Cs Adsorption on Zr /O/W(100)
	

75

IV-A-2. 02 Adsorption on Zr /O/W(100)
	

s0

r
	 IV-A-3. Cs-02 Coadsorption on Zr/O/W(100)

	
60

i



A

TABLE OF CONTENTS (cont.)

Page

IV-B.	 Comparison of Cesium Adsorption and Cesium-Oxygen
Coadsorptibn on Zr/O/W(100) and W(100)	 85

V.	 Technical Summary	 100

References	 103

Appendix	 105



[	 !

I. Introduction

The objective of the JPL thermionics program has been to establish

the feasibility of an advanced lightweight, long-life, direct energy

conversion system compatible with a nuclear reactor or solar heat
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source. The principal application foreseen at this tiwa is the use

of nuclear power for electric propulsion. Other applications of di-

rect energy conversion that will benefit from this program include

nuclear and solar thermionic/thermoelectric power for Earth orbital

and lunar applications, as well as terrestrial topping cycle applications.

The objective of the OGC program in thermionics is to fabricate,

characterise and evaluate new electrode materials that have the

potential of significantly improving converter performance. The

underlying philosophy of this work can be summarized in the follow-

ing assumptions::

(1) an emitter material for advanced mode TEC operation

should exhibit both a low clean work function (2,1 to

3.0 eV) and low volatility;

(2) the collector electrode work function should be as low

as can be tolerated by back emission considerations; and

(3) it would be desirable to have an emitter and collector

of the same material.

Historically the emitter electrode has possessed a high clean

surface work function. The advantage of a low clean surface emitter

work function is its ability to exhibit high em3ttet current density

1



levels at relatively low temperature (e.g. 10 A/cmx at 1626 K for

Ls36) without any Cs pressure. This important advantage Allows one

to reduce the converter cesium pressure and hopefully eliminate or

greatly reduce the vacuum arc drop, yielding much greater flexi-

0bility in converter design. In addition, it has been suggested

that low Work function electrode materials such asas LaB6 %:4y greatly

Increase TEC efficiencies and result in higher power outputs at

1700 K, l

For these reasons, the OGC program has paid particular attention

to the techniques of fabricating and characterizing the surface prop-

erties of promising new electrode materials. Our objective has been

to gain a clearer understanding of the basic surface properties of

these materials in relation to their utilization as thermonc energy

converter electrodes. We will continue to emphasize the study of

those factors (e.g., cesium desorption kinetics and mechanisms of

low work function production) which are of primary concern to

successful thermionic converter performance.

During the past year we have assessed the relevant surface

properties of some promising rare earth hexaboride (RB 6) electrode

materials, both clean and with - adsorbed cesium and cesiu-m-oxygen

layers. We have concluded m study of zirconium/tungsten and

hafnium/tungsten alloys and have investigated the properties of

adsorbed cesium and cesium-oxygen layers on the promising 2r/O/W(100)

surface, Our surface analysis techniques include Auger electron spec-y	 q	 g

troscopy (AES), mass spectroscopy of surface desorption products (TDS),

2	 4
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,field estission retarding potential (Pim p) 2 technique of measuring

work function and electron reflection, field electron (M) and

field ion microscopy MIN) and low energy electron diffraction

(1.ZD) .

Two important considerations in the selection of an appropriate

emitter electrode material are its work function and volatility.

In the case of the cesium thermionic diode: it is important to know

the variation of emitter work function #e with temperature T  and

cesium pressure P ca . Then the emitted current density J  may be

determined as a function of these operational parameters. It is

entirely equivalent to determine the functional: dependence of the

cesium. coverage a * o(Te ,Pcs ) and the dependence #e - #e (a), which

say be done using thermal desorption mass spectrometry and FERP.

Using a simple model and measured #e (a) and a(T) curves we have

assessed the usefulness of LaB 6 (100) as an electrode material is a

hypothetical cesium vapor NEP converter.

Volatility of the emitter electrode at the operating

temperature should be as low as possible in order to minimize

contamination, of the collector electrode. In the case of iden-

tical emitter and collector materials this may not be a significant

problem. For binary electrode materials such as'LaB 6 or CeB6 it is

now known that, within certain stoichiometric limits, the volatility

Is minimized and the vaporizA t{on occurs congruently so that emitter

material condensing on the collector should not alter its composition.3
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For single crystal materials, surface stability is an equally

important consideration, since some crystal faces tend to .facet,

forming thermodynamically more stable structures. We have used

JEM and FIM techniques to study stabilities of various crystal

faces under high field and high temperature conditions.

During the past year we have concluded a study of a class of

refractory materials which consist of dilute alloys of zirconium

or hafnium in tungsten or molybdenum. Certain crystal faces of

these alloys are known to produce low (~ 2.6 eV) work function

surfaces which are unusually stable at elevated temperature

(— 2040 0). 405 flriginal plans called for completion of the in-

vestigation of a group of W--Zr and W-Hf alloys, followed by a

similar study of Mo-Zr and Mo-Hf alloys. However, upon completion

of the H-Zr and W-Hf investigation, we decided that further work

on polycrystalline alloys would not be fruitful, so we shifted

emphasis to well-characterized single crystal surface studies.

The particular single crystal system chosen for extensive

study was the Zr/O/W(100) surface. This model alloy system pro-

vides an ordered surface which lends itself to characterization

by surface-sensitive techniques. Previous studies of this system

have yielded insight into the nature of the low work function our-

face and methods of routinely achieving the low work function on

this plane have been developed. 5 During the past year we have

carefully investigated the effects of c ►xygen adsorption, cesium

4
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adsorption and cesium-oxygen coadsorption upon the properties of
1
t	 the Zr/0/W(100) surface. Work function, AES, thermal desorption

amd electron reflection measurements have been mode and the results
l

are compared with results of similar measurements on W(100).

The research program we have pursued during the past year can

be conveniently separated into three major tasks:

Task. A: Rare earth hexaboride surface characterization,

Including the effects of cesium and cesium-oxygen

adsorbed layers;

Task B: Characterization of refractory alloys and

related surfaces;

Task ` C: Study of the effects of adsorbates on refractory

alloy surface properties.

We shall discuss individually the results obtained under each task.

II. Rare Earth Hexaboride Surface Characterization - Task A

I1-A.	 Clean Surface Characterization of LaB6

We previously reported 
6-8 

studies of the chemical, geometric

and electrical properties of clean LaB 6 single crystal surfaces.

During the present reporting period we have extended these efforts

to include careful FEM and FZM experiments. The aim of these

experiments has been a. direct comparison of the stabilities of

the low index planes under thermal treatment and high field con-

ditions. A brief description of high field phene.Aena will be

Included here for clarity.

ti

t
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Field emission is a phenomenon which can occur when the surface.

potential barrier of a metal is deformed by a sufficiently high ex-

ternally applied positive field, of the order of 10 7 V/cm•. Such A

high field can be obtained in practice only by the use of a sharp

point as the emitting surface. The surface potential step then

becomes a potential hill of finite width and the quantum mechanical

probability of electron tunneling from the Fermi level also becomes

finite (Fig. 1). The Fowler-Nordheim equation describes this

phenomenon,

I - A V2 exp[_(#3/2/sV) v(z)]	 (1)

where I is the emitted current, A is a pre-exponential constant, V

is the applied voltage, 0 is the work function, $ is a !geometric

factor such that OV - applied field and v(z) is a slowly varying

image correction. The factor 8 is a function of microscopic local

geometry and # is the local work function. Thus, a strongly aniso-

tropic emissions pattern, displayed on a phosphor screen, may be ob-

tained for a single crystal with various planes exposed, since the

current emitted from a given region is a strong function of the local

geometry and work function.

Field ionization is a phenomenon occurring at higher applied

fields, of the order of 10 V/cm In this case, a negative field is

used and the experiment is performed in a moderate pressure of an
	 u

4
imaging ps, such as helium. Electron tunneling occurs in reverse,

from gas atoms into the metal. Gas &toss, polarized by the field, 	
a
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Figure 1. Potential energy Olsgraa of a surface subjected to an

external positive electric field (field emission case).



are drawn by the field gradient toward the ourface. At tome critical

distance, xc, rhi barrier between the atomic potential well and the

surface potential is sufficiently narrow that electron tunneling occurs

with high probability (Fig. 2). Ions thus formed are accelerated by

the field and strike a fluorescent screen to form an ion emission

pattern. In the present work, a channel plate electron multiplier is

used to intensify the image.

The critical distance, xc, is a function of the local field but

is insensitive to the surface work function, so an snisotropic ion

emission pattern is obtained. Optimum resolution for a given pattern

is achieved by adjusting the applied voltage so that x  is as small

as possible over the largest practical surface area. Atomic resolution

of surface features may be obtained at this best image voltage (BIV).

Since the field depends upon local geometry, the BIV is a measure of

the relative local curvature or roughness of the surface.

Field evaporation is a 'type of field ionization which occurs

when the applied field is of sufficient strength to remove the surface

atoms themselves. The surface may be cleaned of adsorbed atoms by

this methud, and substrate atoms may alsr . be removed, leaving a field

evaporated end form which is characteristic of equilibrium conditions

under a high field. Field evaporation may be done in vacuum or in an

imaging gas atmosphere. A thermally equilibrated end form, on the

other hand, is achieved by heating in zero applied field with, in

general, a different resulting microscopic surface structure.

k

i
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X x

Figure 2. Potential energy diagram of an atom near a surface under

the influence of a negative external field (field

Ionization case). Vi is the ionisation potential of

the atom.
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The low temperature (77 K) field electron and ion emission

patterns for three emitter end forms are shown in Figs. 3-8, Figures

3-6 show patterns obtained after field evaporation in H2 and He; figs.

7 and 8 show the field ion (H2 image gas) and electron emission patterns

of the thermally annealed %'T — 1800 K) end forma Field evaporation in

H2 and He occurred at voltages 20% and 30% above their respective BIV's.

The He B1V was - 1.9 times larger than the H 2 BIV value. A comparison

of the H2 field ion pattern of Fig, 3, which reflects the local field

enhancement distribution, with the corresponding elect,`Dn pattern in

Fig. 4, which reflects both the work function and field distributions,

clearly shows that 
0
110 < 0100 for this end form, In contrast, the

end form obtained after field evaporation in He, while exhibiting a

similar ion pattern (Fig. 5), shows an electron pattern in Fig. 6

which suggests a work function reversal, i.e., 0100 < 0110' A result

similar to Figs. 5 and 6 was obtained after field evaporation in vacuum.

By adsorbing H2 on the He field evaporates; end form it was determined

that the electron emission pattern difference between Figs. 4 and 6

was not due to adsorbed H2.

The field ion and electron patterns of the thermally equilibrated

end forms shown in Figs. 7 and 8 are similar to those observed by

Futamoto, et al. 9 However°, according to our results the latter authors

appear to have inadvertently rotated the field electron pattern 45°

relative to their indicated crystallographic designations. Upon

thermal equilibration between 1600 to 1800 K the low index planes

a
i
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Figure 3. Hy drogen field ion image of a (100) oriented LaBE

emitter after field evaporation in H Z , BIB' = 13 kV.

OFTC.--A1, ^
'GF 1S

11



Figure 4. Field electron image of k field evaporated end form.

12



e
f

Figure 5. Helium field ion image of a (100) oriented LaB6

emitter after field evaporation in He, BIB' 2 24 kV.

I
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Figure 6. Field electron image of the field evaporated end form.
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Figure 7. Hy drogen field ion image of a (100) oriented LaBE

emitter after annealing 15 min. at 1P,00 K.

i
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Figure 8. Field electron image of thermall y annealed end form.
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increase in size in the order (111) > (110) > (100). In addition,

i
the (210)-(310) regions become slightly faceted. Also in agreement

with Futamoto, et a1., 9 we found that long term heating at T 1800 K

led to irreversible formation of field enhanced sicrocrystallites

randomly distributed over the surface.

These results clearly show that the work function difference

r
°	 between the (110) and (100) planes of the LaB6 can be radically

changed by the conditions of field evaporation. The thermal facet-

ing observed in the FIM patterns shows that the (111), (110) and

(100) planes are the most thermodynamically stable crystal faces

in vacuum. Further studies will be required to determine the

thermal/geometric stability and the relationship between the sur-

face B/La atom ratio and work function for the higher index planes,

e.g., (321), (346), (210).

Table I shows the best image voltages (BIV) and corresponding

slopes m of the electron I(V) characteristics of the various emitter

end forms plotted according to equation (1) in the form log(,/V 2 ) vs.

1/V. In this case, the slope m is given by

m - 2.8 x 107 *3/2/6	 (2)

An important finding Was the nearly 68% decrease in m when the field

evaporated end forms were thermally equilibrated. According to

equation (2) a reduction in m implies either a decrease in t or in-

crease in B. Since the H 2 BIV values (and hence B values) for the

field evaporated and thermally equilibrated end forms are nearly

17
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TABLE I	 N

SUMMARY OF BEST IMAGE VOLTAGES (BIV) AND FOWLER-NORDHEIM SLOPES

FOR THE INDICATED IMAGE GAS AND END FORM OF THE LaB6 EMITTER

End Form
Imse SIV Slope m Low Work

Gas (W) (volts) Function Plane

Field Evap. 92 13 4.4 x 104 (110)
In H2

Field Evap. Be 25 4.4 x 104 (100)
In He

Thermally Bz 13 1.4 x 104 (112)
Equil.
(- 1800 R)

18
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Identical, we conclude that the average for the latter and form
i

is 322 lower than the 82 or He field evaporated and forms.

Atom probe studies of the Lab 6 surface in He imaging Ras show

field evaporation occurring as D/La ~ 6 thus leaving a near stoich-P	 t	 •	 t

iometric surface. 10 However, upon heating to T > 1800 K the atom
x

probe results showed predominantly La in the surface layer. In view

of these results we conclude that thermal equilibration leads to a

restructuring of the surface t:ausing the "quenched in" 77 H surface

to exhibit a simultaneous reduction in # and formation of a La rich

surface layer. From the Fig. 8 photo we further conclude that low

work function regions of the thermally equilibrated and form occur

at the higher index (112) planes. However, from the obvious faceting

of the (210)-(310) 'region (see Fig. 1) an equally low work function

for these higher index planes cannot be ruled out.

From the Table I results and Figs. 3--8 patterns of the field

evaporated end forms, it can be concluded that, although the work

function distribution is dramatically changed depending on whether

field evaporation occurs in H2 or He, the average work function is

virtually unchanged. The reason for the reversal in the minimum

work function between the (110) and (100) planes is believed to be

due to an anisotropy in the surface B/La ratio brought about by field

evaporation in H2 . According to atom probe results, 
10 

La is prefer-

entially removed from the surface when field evaporated in H 2 . If

this phenomenon is specific to the (100) plane, it may lead to an

19
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anisotropy in the surface B/La stoichiometry and hence the change

in the work function distribution noted in Figs. 4 and 6.

II-B. Effects of Adsorbed Carbon Upon LaB 6 Surface Properties

One factor which has a strong effect, upon measured electrical

properties, such as Work function, of RB 6 surfaces is the presence

of surfacecontamination. Carbon has been found to be an especially

tenacious surface contaminant, and we therefore spent considerable

time investigating the nature and effect of submonolayer quantities

of adsorbed carbon. In particular, the effects of carbon on the

work functions of'LaBS ., 7y(100), (17.0) and LaB5.86(110) surfaces has

been investigated. The LaB S.86 (110) sample had a small bulk carbon

impurity which could be made to segregate preferentially to the sur-

face by applying the proper heating sequence. The surface carbon

layer could be removed by heating in oxygen.

The behavior of the surface carbon and oxygen concentrations

in vacuum, measured by AES, are shown in Fig, 9 as functions of

sample temperature for the LaBS.86 (110) surface with slight initial

CO contamination. Data were taken after heating to successively

higher temperatures, for 1 minute intervals (2 m a,n. for the 1900 K

point), and cooling to room temperature. The carbon coverage formed

by bulk diffusion increases with extended heating in the range

1700-1900 K, to about twice the maximum value shown here, and cannot

be removed except by heating in oxygen.

3
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The change in work function with temperature of the LaBS.86(110)

crystal is also shown in Fig. 9. These # measurements were made

during a different heating sequence, with more heating in the tempera-

ture range below 1300 K. Thus, CO desorption and carbon diffusion are

detectable at loner temperatures, shifting the work function curve to

the left relative to the Auger curves. An increase in the corrected

FERP work function of 0.1-0.2 eV is observed between the clean surface

0 - 2.75) and the surface with maximum surface carbon segregation
(# 2.9 eV). The LaBs .74 (110) sample, on the other hand, showed

negligible surface carbon segregation after similar treatment. Pre-

vious studies on a L.aB5. 74 (100) sample also showed negligible surface

carbon segregation from the bulk.

The differences between the behavior of carbon in these samples

cannot be explained by their initial bulk carbon contents. All three

samples were prepared from crystals purified by three zone refinement

passes, resulting in bulk carbon levels of — 0.0055 weight percent

carbon (0.00092 C/La atom ratio). 
11 

The carbon contents were deter-

mined by combustion analysis of — 100 mg of zAtterial.

In a similar study of zone refined LaB 6 (100) surfaces, Oshima,

et al. 
12 

reported formation of a surface carbon layer on a single

zone refinement Pass sample, while none was detected by AES on a

triple, pass sample. Bulk carbon was not detected in either sample

studied by Oshima, et al., within the ~ 0.04 weight percent detection

limit of the emission spectrography analysis method used. (This method

Is not as sensitive nor as accurate as combustion analysis.) Nevertheless,

22
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those authors observed a graphitic carbon layer, estimated at 1-2
r

moinolayers in thickness, on the single pass sample following several

minutes beating of the initially clean surface at 1600-1900 K. The

graphitic layer slowly converted to another fora (apparently a sur-

face carbide) during prolonged heating at 1200-1900 K. without loss

of carbon. This latter form was found to be extremely stable, being

apparently unchanged even during several hours heating at 1500 K in

S x 10-6 torr oxygen. The effect upon work function of graphite or

farbide layers on LaB S has not been reported by Oshima, at al.

We have not observed surface carbon of the magnitude described

by 6shims, at al., nor have we had any difficulty in removing the

carbon by heating at 1500 K in oxygen. Therefore, we believe than

the bulk carbon concentration in our LaBS.66 (110) sample is signifi-

cantly less than that in the single pass sample they have studied.

However, the quantity of carbon observed by 1AES on the LaBS.86(110)

sample studied here is greater than that detected under the same con-

ditions in. earlier work on this sample. In addition, the carbon

appears to be non-uni rmly distributed over the surface, being

highest near the edges and lowest in the center. The surface carbon

can be reduced to tm detectable levels by heating in oxygen, and the

non-uniform surface distribution can be reproducibly re-established

by subsequent heating to > 1600 K in vacuum. The apparent increase

with time of the bulk carbon concentration, and its non-uniform dis-

tribution, as inferred from the surface segregation observations,

23



imply that carbon is being supplied to the sample from the TaC

powder used to hold the sample in its molybdenum mounting sleeve.

The larger Laa 5. 74 samples, which have a shorter heating history,

are mounted in similar fashion but as yet shoe no detectable in-

crease in sulk carbon,

On the initially -_lean LaBs .86 (110) surface we have observed

a work function increase of approximately 0.15 eV for an estimated

average surface-segregated carbon coverage of 0,06 times the sur-

face boron coverage, based upon tabulated Auger sensitivity factors. 13

The uncertainty in this coverage assignment is large, but the ab-

solute coverage of carbon in this case, corresponding to the maximum

value we have observed, is of the order of .05 monolayer. A difficulty

arises because the carbon layer is not 'uniform. Since the FBRP beam

probes a spot nearly 1 mm in diameter, the measured work function is

only an average value. Nevertheless, we may conclude that even small

levels of carbon contamination can cause significant increase in the

LaB 5.86(110 ) surface work function.

Previous evaluations of LaB6 polycrystalline emitter material

in thermionic converter tests 
14 

did not show the low work function

values measured in basic studies. However, hot-pressed polycrystal-

line LaB6 likir that used in those tests is known to contain signifi-
a

cant bulk carbon contamination. Table Il gives results obtained by

Noack11 for a typical lot of LaB6 material powdered, hot pressed and

after 1 and 3 zone refining passes. Note that the bulk carbon content

p
k

i
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of the hot pressed polycrystalline saterial is score than thirty

f
times that of the triple pass crystal. It seems quite likely .TMhat

the poor showing of La16 in thersionic tests is due to surface stgr*-

`	 Eation of bulk carbon in the saterials used.

Table ii

CARBON CONTENTS OF DIFFERENTLY PRE-PARED LAB 6 SAMPLES

Sample	 Weight Percent Carbon

LaB6 powder

(starting material)	 .063

Hot pressed and electropolished
polycrystalline material 	 .187

Single pass	 .072

Triple pass	 .0055

II-C.	 Cesium Adsorption and Cesium-Oxygen Coadsorption on LaB6(100)

and (1:10) Surfaces

We have completed studies of cesium and cesium-oxygen coadsorption

on a (100) oriented LaB6 surface. Measurement of surface compositions,

work functions and thermal stabilities of these layers were made using

AES, FERP and TDS techniques. The AES and FERP results have been

25



compared with those of similar, previous measurements on a (110)

LaB6 surface.7

All measurements were performed in ultrahigh vacuum (2 x 10-i0 torr).

Oriented (100) and (110) crystals of triple zone-refined LaB5.74 and

LaB5.95, respectively, were provided by Dr. J. Verhoeven of Ames Labora-

tory, DOE. Initial cleaning of the crystals consisted of annealing at

temperatures up to 2000 K and /or heating at 1600 K in 10-6 torr of

oxygen to remove trace amounts of carbon. Subsequent flai^hing to 1700

K was sufficient to remove all contaminants from the (100) -oriented

crystal and all but trace amounts of carbon which diffused from the

bulk to the surface of the (110) oriented crystal upon flashing.

Oxygen dosing was accomplished by admitting research grade (99.997X)

`	 oxygen into the chamber through a leak valve and pressure was monitored

using a nude Bayard-Alpert ionization gauge. Cesium dosing was done

using an SAES Getters source consisting of a finely divided mixture of

Cs 2Cr0 4 and silicon which when outgassed and heated resistively produces

atomic cesium. The relative cesium flux was monitored using the quad-

rupole mass spectrometer which was located adjacent to the cesium

source in the vacuum chamber.

Thermal desorption measurements were performed by heating the

crystal with a programmable linear ramp current supply while the

sample was situated in ,front of a 1.5 mm diameter aperture mounted

on the entrance to the mass spectrometer. The proximity of the

sample to the aperture caused the Re supports to be invisible to the

26



mass spectrometer ionizer, preventing detection of desorption products

from the supports. S&,aple temperature was monitored using a W-Re thermo-

couple fastened directly to the crystal and calibrated pyrometrically

in the temperature range 1000-2000 K. Due to the nature of the sample

mount, heating rates were limited to a maximum of 32 K/sec.

When neutral cesium desorption spectra were desired, the crystal

was biased at -30 V relative to the aperture in order to prevent de-

sorbing ions from being collected. The ion spectra were obtained by

biasing the crystal at +0.1 V relative to the aperture, turning; the

Ionizer off, and adjusting the focus of the mass analyzer until the

ion signal was maximized. By applying such a small voltage drop be-

tween the crystal and aperture (which were separated by I mra), the

field lines were such that only ions from the crystal were drawn into

the analyzer. As a check, the ion desorption spectrum of the Re

supports was measured and found to be substantially different from

that of the sample.

II-C-1.	 Cs Adsorption on C..ean LaB6

Fig. lU shows the work function and AES peak to peak signal

strengths versus cesium dose time for the two crystals. Different

cesium fluxes were used for the two surfaces. Separate adsorption-

desorption experiments on the (100) surface have verified that the

cesium AES signal is proportional to the quantity of cesium adsorbed.

Thus, one may assume that a break in the cesium AES vs dose time curve

represents a change in sticking coefficient. For both crystals, the

3
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slope changes discontinuously to zero indicating that the sticking

coefficient goes to zero. Presumably, this point marks the filling

of all available cesium adsorption sites. The corresponding inde-

pendence of the work function on additional cesium exposure provides

further support for this conclusion.

During cesium exposure, the work function drops from a clean-

surface value of 2.78 eV to minima of 1.97 and 1.88 eV for the (100)

and (110) orientations, respectively, and then rises to saturation

values of 2.07 and 2.00 eV. Both crystals pass through their

respective work function minima at — 70% of maximum room temperature

cesium coverage. The attenuation of both La and g Auger signals

suggests immobile adsorption in such a way that both kinds of atoms

are covered or, more probably, sufficient mobility in the adlayer

to mask both types of atoms from the Auger analyzer.

An unusual feature of the work function versus coverage curves

is the nonlinear behavior near zero coverage. It can be seen from

Fig. 10 that the cesium Auger signal increases significantly be-

fore the work function starts to decrease. This effect disappears,

however, on both surfaces when a small oxygen underlayer is present.

Taken at face value, this result suggests that the dipole moment

per adatom approaches zero near zero coverage, a phenomenon which

has not been observed on refractory metal surfaces. Work done on

refractory metals suggests that the cesium adatom is significantly

polarized or ionized by the surface. Moreover, cesium does not adsorb
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with zero dipole moment until the surface density of cesium atoms

Is large enough to initiate lateral depolarization via dipole -dipole

Interactions. It is difficult to imagine a model in which cerium

atoms would adsorb on an atomically smooth surface and not be polar-

ized, apart from interaction within the adlayer. Therefore, we con-

clude that the nonlinear behavior of work function near zero cesium

coverage is caused by an unusual interaction of initially adsorbed

cesium with the surface, such as the filling of La lattice vacancies

below the plane of electric neutrality.

It is interesting to note that the relatively small work function

decrease caused by Cs adsorption is not entirely unexpected. Fig. 11

is a plat of minimum work function ¢m attained by Cs adsorption versus

the initial surface work function ^s for various metallic single crystal

substrates. The oxygen-containing Zr/0/W(100) and oxygen-covered

LaB 6 (100) surfaces havQ been included for comparison. In an earlier

study, Swanson and Strayer 
15 

showed that the minimum work function

attainable for a clean substrate -alkali adsorbate system could be

described by

^m ` k
j Os + k2 Ia	(3)

where 0S is the clean substrate work function, I  is the adsorbate

ionization potential and k l and k2 are empirically determined constants.

The results in Figure 11, based on the most recent single crystal data,

are not in disagreement with those earlier measurements.
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The effect of cesium adsorption upon the low energy electron

reflection characteristics of LaB 6 (100) has also been investigated.

The results, plotted in Fig. 12, show the following genera-I behavior:

1) Structure is present in the region a few eV above the

electron collection threshold, which probably corresponds

to Bragg-type reflections. Similar structure has been

observed for other LaB6 (100) crystals  and for the (100)

faces of other RB 6 compounds 16,17

2) The adsorption of successively greater amounts of cesium

destroys the structure in the reflection spectrum and

causes progressively larger electron reflection to occur.

3) The reflection scale is given in arbitrary units because

of difficulty in determining the total current impinging

upon the sample surfac er. Nevertheless, the relative

changes during cesium adsorption are meaningful.
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11-C-2. Cesium Desorption from the Clean L43000) Surface

Fig. 13 shows thermal desorption spectra of cesium layers on

clean surface as functions of coverage. Relative coverages were de-

termined by using the Cs (MNN) Auger peak intensity dependence on

cesium txposure as a measure of the quantity of cesium adsorbed

and defining saturation coverage as the point at which the slope of

the curve changes discontinuously to zero. Two discrete binding

states and a continuum of states are clearly visible. Using Redhead4s

formulation of desorption kinetics, 
18 

and assuming first-order de-

sorption (the validity of which will be discussed later) with a

pre-exponential factor of 10 13 sec 1 , activation energies of de-

sorption shown in Fig. 13 were calculated for the two discrete

binding states. The low-coverage continuum is probably composed

of a series of overlapping first-order desorption peaks, some which

have coverage-dependent activation energies. This point will be

discussed later.

The terminal desorption energy for the surface saturated with

cesium prior to desorption is readily estimated using Oe following

method. The desorption rate R(t) at any time t is given by

R 	 dt - vn on exp(-E/kT) atom-cm-2 sec 1	 (k)

where o is the temperature dependent adsorbate coverage in atom-cai 2,

n is the order of the reaction, v  is the rate constant for the

reaction, k is Boltzmann's constant, E is the binding energy of the

II€
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adsorbed species and T is the temperature in degrres Kelvin.

Assuming first-order kinetics, integration of equation (4) over 	 j

a narrow coverage range (o1 + o f) yields, upon rearrangeaent,
f

Q
in i ci • -E/kT + in v l + Rn(et)	 (5)

f

when At is the time interval over which the desorption takes place.

If of and of are close in value and the time over which the desorp-

tion takes place is short, the left-hand side and the in(at) term

on the right-hand side of equation (5) can be neglected. Equation

(5) then reduces to,

E ft kT in v l 	 (6)

From Fig. 13, the terminal desorption temperature for the crystal

saturated with cesium prior to desorption is 900 K which, when in-

serted into equation (6) yields a terminal desorption energy of

2.3 eV, assuming vl _ 10 13 sec-1 . Due to the fact that the work

function of the surface is less than the first ionization potential

of cesium throughout the full range of coverage, all cesium desorbs

in the atomic state.

II-C-3. Oxygen Adsorption on LaB 6 (100) and (110)

In Fig. 14 we show the work function and AES signal intensity

dependence on oxygen exposure for the (100) and (110) faces at room

temperature. Unlike the cesium adsorption curves, the slope of the

0(KLL) Auger signal does not change discontinuously with exposure

but rather decreases gradually, indicating a continuous decrease in
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sticking coefficient. The work function is observed to rise from

a clean-surface value of ~ 2.8 eV to - 4.4 eV for both surfacesi

representing a 1.6 eV increase. This result agrot-,s reasonably

well with previous work on the (100) surface.
19,20 

Saturation is

indicated by a lack of change in the work function and 0(KLL) Auger

signal beyond certain exposures. The B(KLL) Auger signal is observed

to undergo a considerably larger percent attenuation by adsorbed

oxygen than is the La(N00) signal for both crystal orientations

throughout the entire range of exposure for which adsorption occurs.

This result suggests that B sites are preferred over La sites for

oxygen adsorption, as proposed earlier by Goldstein and Szos*_ak19

and Nishitani et a1;
20
 Based on UPS results, the latter authors

believe that B sites are preferentially occupied for exposures

between 0 and - 1 L (at which point saturation of B sites allegedly

occurs) and then La sites begin to be filled. Although the satu-

ration of B sites at 1 L exposure is not supported by the Auger

data presented here, our AES peak shape analyses do show an enhanced

splitting of the La(MUN) peak at exposures greater than 1 L, in-

dicating that La surface atoms are involved chemically in the binding

of chemisorbed oxygen. This conclusion was also reached by Goldstein

and Szostak on the basis of similar observations from the Auger spectra

of the oxygen covered (100) surface.

As in the case of cesium adsorption, a curious nonlinearity in 	 e
i

the work function vs oxygen exposure curves occurs for both crystals 	
t

i
1
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at low exposures. As discussed earlier, this nonlinearity may be

due to initially adsorbed oxygen atoms which fill lattice vacancies

below the plane of electric neutrality and, therefore, do not affect

the work function.

In Fig. 15, we have combined data found in Fig. 14 to plot

the work function change vs relative oxygen coverage. According to

the classical Helmholtz model, information on the dipole moment per

adatom can be obtained from these plots. The work function change,

coverage, and coverage -dependent dipole moment per adatom are related

by the equation

	

d^	 gTOP(Q)	 (7)

where g is either 4 or 2 depending upon the nature of bonding of

the adsorbed atoms to the surfaced At low coverages, dipole-dipole

interaction is minimizedy causing the polarization of adatoms to be

due strictly to the substrate. In such situations, the behavior of

the dipole strength per isolated adatom, uo, can be deduced from

the 00(a) curves according to the equation

U -- 1 ` d(— o)

	

o	 ga \ dff a .► o

In light of these relationships, Fig. 15 implies that beyond the

anomalous behavior of b^ at low coverages, the oxygen dipole strength

increases until e = 0.5 for,-both orientations and then remains constant

until saturation. This conclusion is at odds with previous results

reported for the (WO) surface. Nishitani, et al. 20 report a linear

i

(8)
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dependence of 4# on coverage, with a break to smaller slope at e - 0.5,

suggesting,& coverage dependence of the dipole strength opposite to

that observed here. Goldstein and Szostak, 19 on the other hand, re-

port a constant linear dependence over the entire range of coverage.

Although discrepancies exist in the low coverage (8 - 0 . ► 0.5) range,

there is reasonable agreement on the dipole strength at higher

coverages (e n 0.5 to saturation). Assuming that, at saturation,

the oxygen density equals the unit cell density for the (100) orien-

tation (5.8 x 10 14 /cm2 ), the dipole moment per adatom at 6 > 0.5 is

calculated to be 0.68, 0.50, and 0.65 D for the results reported in

Goldstein and Szostak, Nishitani et al., and this work (Fig. 15(a))

respectively. It should be noted that on the basis of their con-

clusion that oxygen adsorbs to both La and B sites, Nishitani et al.

actually assumed the surface oxygen density at saturation to be twice

the value used here. However, for the purpose of normalizing the

three sets of measurements, we have chosen a maximum oxygen surface

density of 5.8 x 10 14 cm` 2 (- a7 2  where a - 4.16 A, the LaB 6 lattice

constant). The discrepancies at low coverage most likely result from:

(1) the difference in dependence of the 0(KLL) AES signal

and 0(2p) UPS signal on oxygen exposure between 0 and

l L as seen by comparing Fig. 14(a) of this work with

Fig. 3 of Nishitani et al.,

(2) the nonlinearity in the ¢(8) curve (Fig. 15(a)) reported

here, and

i
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(3) the fact that Goldstein and Szostak do not show any

data points in the first quarter of their #(0) curve

but simply extrapolate to zero coverage.

t

11-C-4. Coadsorption of Cesium and Oxygen onto Las6(100) and (110)

The effect of various amounts of preadsorbed oxygen on the work

function and surface atomic composition dependence following cesium

exposure is shown in Figs. 16 and 17. Based on Fig. 14, the

oxygen doses used can be calibrated in terms of coverage (relative

to saturation) by comparing the 0(KLL) Auger signal at the exposure

of interest to that at saturation. Thus, in terms of fractions of

saturation coverage, the oxygen coverages used correspond to approxi-

mately 0.7 and 1.0.

j

	

	 Several interesting features emerge from these data. Despite

the high initial (e Cs M 0) work function caused by the oxygen under-

layer, the subsequent minimum value achieved upon cesium adsorption

is considerably lower than that observed for the clean surface.

This observation is summarized in Table III. Also, as in the case

of cesium adsorption on the clean surfaces, both La and B Auger

peak intensities diminish with cesium coverage,- suggesting localized

chemisorption such that AES signals from both kinds of atoms are

attenuated.

The presence of an oxygen underlayer causes a substantial

increase in the amount of cesium that can be adsorbed before minimum
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TABLE III

THE EFFECT OF PREADSORBED OXYGEN, UPON THE FERP WORK FI;NCTION

DEPENDENCE ON CESIUM COVERAGE: LaB6(100) and (110)

Aft	 Oxygen 0 Prior to ;m Upon Cesium
Precoverage Cesium Exposure
(Relative to (eV)* Exposure (eV)*
Saturation) (100)	 (110) (100) (110)

0 2.78(8)	 2.78(8) 1.97(7) 1.88(5)

0.7 3.9(1)	 3.50(6) 1.5(1) 1.49(7)

1.0 4.3(3)	 4.08(7) 1.35(5) 1.47(6)

*The number in parentheses represents the uncertainty in the lase,
digit.

work function is reached. This conclusion is supported as follows:

(1) The cesium AES signal intensity vs dose time curves for

the clean. crystals (Fig. 10) show sharp breaks in

slope at exposure times of 4 and 31 minutes for (100)

and (110) orientations, respectively. However, when

an oxygen underlayer is present, the cesium Auger

signal continues to increase monotonically well beyond

these exposure times before changing slope.

(2) Inspection of Figs. 10, 16 and 17 shows that the cesium

sticking coefficient during adsorption is independent of

oxygen p recoverage. Therefore, the shift to higher dose

times at constant cesium flux before minimum work function

1	 50
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to reached indicates that the oxygen underlayer serves

to increase the cesium density for both surfaces.

e`	 (3) In Fig. 18, work function vs cesium AES signal is

plotted for the surfaces with different mounts of pre-

adsorbed oxygen. Inasmuch as saturation of the surface

is characterized by independence of the work function on

cesium exposure, the shift in the minisum work function

I
value to higher cesium AES signal strength with oxygen

precoverage seen in Fig. 18 is clear evidence of en-

hanced adsorption of cesium.

It is found that the presence of an oxygen underlayer results

in enhanced ionic bond character of adsorbed cesium atoms near

6 C 
0 0. According to equation (8), information on the dipole

moment per isolated adatom can be deduced from the initial slope

of the W) curve. Fig. 19 shows the work function change versus

cesium exposure time for LaB 6 (100) with and without preadsorbed

oxygen. As already discussed, the cesium sticking coefficient is

independent of oxygen precoverage. Therefore, cesium coverage is

proportional to dose time at the constant flux used here. Although

the absolute dipole strength cannot be deduced because the absolute

coverage is not known, it is clear from. Fig. 19 that the presence

of preadsorbed oxygen increases the dipole moment per cesium adatom

by about a fact(. `, of 2. This result is consistent with a model of

the surface in which cesium adatoms are directly bound to oxygen

sites which comprise an ordered underlayer.
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II-C-5. Cesium Desorption from the 	 6rp	 Oxygen Covered Lai (100) Surface

In	 pFig. 20, thermal desorption spectra for various amounts of

cesium on the oxygen covered surface are shown. The sample was dosed

at room temperature and the crystal was not heated after oxygen ad-

sorption. As in the case of desorption from the clean surface, two

discrete peaks and a continuum of peaks at low cesium coverage are

present. The terminal desorption temperature is, however, shifted

to a higher value (1200 K) as a result of oxygen precoverage. Using

equation (6), a terminal desorption energy of 3.1 eV is calculated

ifor cesium adsorbed on the oxygen saturated surface. Thermal de-

'

	

	 sorption studies of oxide species from LaB 6 (100) have shown that B202

begins to desorb above 1000 K. 22 Therefore, significant changes

'

	

	 are occurring in the oxygen layer in the temperature range over

which cesium desorption takes place.

'

	

	 The energies of the two discrete states in Fig. 2U are equal,

within experimental error, to those of the corresponding peaks in

'	 the clean-surface cesium desorption spectra (Fig. 13). Overall,

'	 the cesium desorption spectra with and without preadsorbed oxygen

are quite similar with the exception of the 0.8 eV shift in the

'	 terminal desorption energy that results when oxygen is coadsorbed.

Fig. 21 shows the effect of varying the amount of preadsorbed

'	 oxygen upon the neutral cesium desorption spectrum. In each case,

'	 the same dose of cesium has been applied, a dose which is sufficient

to saturatethe surface at room temperature when no chemisorbed oxygen

F^
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Is present. Since the total amount of cesium applied is constant,

the increase in number of ad-.orption sites caused by preadsorbed

oxygen results in incomplete population of the lower energy binding

states. Indeed, when the oxygen precoverage reaches saturation

(curve D), the 1.2 eV state is not populated at all and the 1.5 eV

state is only partially filled. Fig. 21 also shows that the ter-

minal cesium desorption energy increases monotonically with preadsorbed

oxygen coverage.

Heating the oxygen layer to 1400 K prior to cesium deposition

causes an inversion in population of the two high-coverage states in

the desorption spectra for saturation oxygen coverage and various

amounts of cesium, i.e., the 1.3 eV state then binds more cesium

than does the 1.6 eV state. However, the binding energies are un-

changed by this preheating step.

Fig. 22 shows the desorption spectra of Cs* from the oxygen

covered surface. Ion desorption can occur only if the work function

of the surface is higher than the ionization potential of the ad-

sorbed species, in accordance with the Saha-Langmuir equation. The

surface saturated with oxygen possesses a work function of 4.3 eV

and subsequent cesium adsorption reduces the work function to a

value equal to the cesium ionization potential (3.87 eV) at a

fractional cesium coverage of 0.07. Cs+ desorption thus can be	 t

expected to occur at or below this cesium coverage. Indeed, no ion

desorption is detected for relative coverages greater than 0.08.
i

_i
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Only one ionic binding state is observed and the activation energy

of desorption remains constant at 2.6 eV over the range of coverage

for which ion desorption can occur.

All the cesium desorption processes investigated here are

governed by first order kinetics as we shall show in the following

discussion. If we assume that the activation energy is independent

of coverage, equation (4) can be differentiated to find the relation-

ship between the temperature T  at which the desorption rate is maxi-

mized and the activation energy of desorption. For a linear heating

rate (T To + at), the general result is,

V n o (n-1) kT2
E	 n	 P 

a	
P exp _E/kT

p1
	(9)

where the subscript p indicates evaluation at the peak desorption

rate for a given binding state. From equation (9) it is evident that

the peak temperature, (a) is independent of coverage for first-order

reactions; (b) increases with increasing coverage for fractional order

reactions; and (c) decreases with increasing coverage for second-order

reactions. For zero order desorption equation (9) does not hold since

the desorption rate (equation 4) increases monotonically with
x

temperature.

Because of the fact that the associated peak temperatures are

x
independent of coverage, the two discrete peaks in the neutral de-

sorption spectra for the surface with and without oxygen as well as

the ion peaks in the spectra of the oxygen covered surface are clearly

R

1yy

i
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the results of first-order processes. The low-coverage continuum

appears to cone from three overlapping states centered at approai-

mstely 750, 700, and 650 K for the surface without adsorbed oxygen

and 1000, 900, and $00 K for the surface with oxygen. A comparison

of curves b and c from Fig. 1.3 shows that the state centered at

650 K does not shift in position over the coverage range represented;

by 9 - 0.26 (curve c), the 1.5 eV state has started, to gill but is

not yet to populated as to preclude identification of the 650 K state as

a shoulder on the high-temperature side. Curves c through f in Fig.

20 show a similar pattsrn. The 800 K state is discernable as a

shoulder on curves d, a and f and stands alone in curve c. For all

four coverages, the binding energy is constant. Therefore, the 650 K

and 800 K peaks in Figs. 13 and 20, respectively, result from first-

order processes. Compsri on of curves f, b, and a in Fig. 20 shows

that the peaks at 950 and 1000 K (which are shoulders in curve f but

are the main peals in curves b and a) increase in energy only very
r

slightly with coverage, suggesting that these peaks result from

firs`..-order desorption with coverage-dependent activation energies, 	 -i

rather than from fractional order processes. The same is probably

true for the corresponding peaks in the clean-surface spectra. 	 a
tl

An alternative method of calculating binding energy is available
r

for the 6Cs 0.06 spectrum (Fig. 20). Due to the fact that ion

desorption occurs at this coverage, the Schottky equation can be

utilized to calculate the desorption energy
-x,

t

t
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EN • E  + # - Ip .
	

(10)

Here E  and EN are the ion and neutral desorption energies at a given

coverage, # is the work function of the surface at that coverage and

I  is the cesium ionization potential. The work function of the sur-

face with 1.0 monolayer of oxygen and ~ 0.06 monolayer of Cs is 3.9

eV. Fig. 22 shows that the binding energy of ionic Cs at 6Cs M 0.06

is 2.6 eV. Insertion of these numbers along with the first ionization

potential of Cs (3.9 eV) into equation 0) yields a calculated neutral

Cs binding energy of 2.6 eV, which is shown in Fig. 20. Direct appli-

cation of equation (9) yields the same result.

II=C=6. 'csparison of Cesium-03r gen Coadsortion on LaB6 and W

The coadsorption properties of cesium and oxygen on tungsten

have been reported for different crystal faces 
15,23-28 

and provide a

comparison for LaB S . For both substrates, the presence of preadsorbed

oxygen causes a +pork function increase relative to the clean surface

value and a lower work function minimum upon cesium adsorption. This

phenomenon has been interpreted in terms of increased ionic. character	 `.

of the cesium bond caused by 'the oxygen underlayer, resulting in a

reduction of the surface electrostatic barrier,and hence, the work

function. We have observed an increase in the cesium dipole moment

by a factor of 2 as a`result of oxygen preadsorption on LaB6(100)
r

whereas Desplat25 reports a corresponding increase in the cesium

dipole strength of 40% on W(100). However, the lowest work function
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observed for the Ca/0/La36 system (1.35 eV) still exceeds that

observed for Cs/O1W (1.1 eV).

In contrast to LaB6 (100) and (110), the different crystal faces

of tungsten do not show marked shifts of the minimum work function

to higher cesium coverage as a result of oxygen preadsorption. In-

stead, the #(aCs) curves for the different tungsten surfaces all go

through minima and reach saturation values at approximately the same

relative cesium coverages, regardless of whether oxygen is preadsorbed.

LEED data from studies on W(112) 24 show that the saturation cesium

density is increased aWi htly by the oxygen underlayer, as evidenced

by a reduction in the nearest neighbor separation once the character-

istic HOP pattern is achieved at saturation. However * the increase

In cesium density with oxygen adsorption does not appear to be as

marked on tungsten as it is on LaB6.

The values of the saturation-coverage work functions of W(100)
23,25

and W(110) 26 (but not W(112)) approach the bulk polycrystalline cesium

value as oxygen precoverage becomes more extensive. This phenomenon

indicates that a second cesium layer which is not strongly perturbed

by the oxygen layer can be grown at room temperature and can achieve

bulk cesium electronic properties. Moreover, a low-energy cesium

binding state not present in the clean surface desorption spectrum

has been observed for oxygen covered W(110), 26 Lending further support

to the notion of second layer cesium formation as a result, of oxygen

precoverage. Neither of these effects has been observed for oxygen

preadsorption on LaB6 surfaces.
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TI-D. Evaluation of LaB 6 (100) as a Cesium Vapor TEC Electrode

Material

Using reasonable assumptions and a simple adsorption model,

we have evaluated the usefulness of LAB 6 (100) as an electrode

material for nuclear electric propulsion (NEP) TEC applications.

The (100) plane of LaB6 appears to be the most stable, both in good

vacuum and in background pa environments. Other planes tend to

facet, forming (100) .faces. The (100) surface also exhibits the

lowest work function of any low index plane. Unfortunately, the

clean LaB6 (100) work function is not low enough to meet the stringent

regitirements of NEP converter applications (10 A-cmi 2 at 1600 K, or

effective emitter thermionic work function of 2.4 eV), which are

determined by spacecraftspecific power requirements. Therefore,

some cesium adsorption would be required if LaB 6 were to be used in

NEP converter applications.

The behavior of the work function ^ and AES peak to peak signal

with cesium dose on an initially clean LaB 6 (100) surface has been

shown in Fig. 10a. A separate set of adsorption-desorption experi-

ments has verified that the ce-ium AES signal is proportional to

the quantity of cesium adsorbed. Thus, if the break in the AES vs

dose curve (Fig. 10a) corresponds to one monolayer of cesium (a

reasonable coverage assignment), the dependence of work function on

actual cesium coverage any be determined.
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The effect of thermal equilibration of the oxygen layer at

1400 K is-to evaporate boron oxides, changing the character of the

surface. Independent studies of oxygen interaction with the (100)

surface have shown that desorption of oxygen (as B'202 and other

species) occurs above " 1000 K and is complete at ~ 1650 K. 6022

At 1600 K, nearly all the oxygen has been removed. Thus, even

though an adsorbed cesium layer has greater thermal stability on

preadsorbed oxygen layers than on the clean LaB 6 (100) surface, the

oxygen-covered surface itself is unstable at the desired operating

temperature of a NEP emitter. Unlike cesium, oxygen would not be

continuously readsorbed unless a non-zero oxygen pressure were in-

tentionally maintained during converter operation. Consequently,

oxygen adsorption is not a practical method of improving LaB6

emitter cesiation in NEP thermionic converters. On the other hand,

the oxygen layer is stable at collector operating temperatures

(600-800 K). In what follows, we evaluate the clean and oxygen

saturated LaB 6 (100) surfaces as practical emitter and collector,

respectively, In NEP thermionic converters.

Table IV is a summary of work function and binding energy data

measured in this study fur various cesium cover :,^,es on clean an

oxygen covered LaB 6 (100).. To illustrate the method of electrode

evaluation, we usr^ the clean data to calculate the cesium flux

required to maintain the emitter conditions (2.4 eV at 1600 K)

required for NEP applications. For first order desorption,

equation (4) can be written
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Ca V1 

exp(-E/kTe)
	

(11)

where T. is the emitter temperature, a is the saturation (monolayer)

coverage Et ,, density (5 x 10 1 ' atom-cd2, for Cs), 
6 
C is the frac-

tional monolayer coverage, v l is taken to be 10 13 sec 1 and Ed is

the cesium desorption energy at A Cs . From Table IV we see that, at

2.4 eV, 0 C M 0.2 and E
d ft 1.5 eV. Then R - 1.9 x 1022 atom-cm 2 sec 1.

In equilibrium; the desorbing flux R must equal the incident flux times

a factor (1 - e Cs), the number of available adsorption sites, assuming

the sticking coefficient is unity on available substrate sites and zero

elsewhere. This flux may be related to the equilibrium cesium pressure

in the converter by

v . p(2nmkTCs )-1/2 (atom-cm: 2 sec 1)	 (12)

where p is the cesium pressure (dyne-cm 2 ), m is the cesium atom Mass

(gram) and 
TC.0 

is the cesium gas temperature (K). The pressure p is

a function of the cesium reservoir temperature TR, which we assume

here to be equal to T
Cs

, and is given by

log l o p (torr) = 03833.7 T  + 6.949 	 (13)

t

in the temperature range of interest.

Since

R - y(1 - 9
Cs

)	 (14)'

4
e
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TABLE IV

DESORPTION ENERGIES AND UORK }' LTIONS 1001,
SELECTED CESUM COVERAGES ON CLEAN

AND OXYGEN COVERED La36(100)

9Cs0 002 *
Cs Ed (eV) (eV)

0 0 1.8 3 0.1** 2.77

0.2 0 1.5 3 0.1 2.4

0.6 0 1.2 i 0.1 1.96t

0 At 2.6 ± 0.1*e ~ 4.1

0.8 At 1.3 3 0.1 1.4

1 At 1.3 t 0.1 1.35t

* Coverage - chi sat*

*Terminal desorption energy.

# Minimum work function attained by Cs adsorption.

Unequilibrated Oz layer,.

we find that the required incident flux is 2.3 x 1022 atom-cm-2 sec7l,

corresponding to a cesium pressure of 240 torr or TR W 840 K. These

values are outside the practical range for converter operation.

Similar calculations for idealized NEP converter collector

conditions (1,4 e%' at 700 K) show that the oxygen covered (0.8 mono-

layer 07) LaB 6 (100) would require a cesium pressure of 0.06 torr or

T  . 470 K. For comparison, we may use data of Desplat and
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Papageorgopoulos26 for single crystal W(110). Their results show

a work function of 2.4 eV at 0 
C 

M 27, with It xorresponding de-

sorption energy of 2.3 eV. To meet NEP converter emitter require-

ments, we calculate a cesium pressure of 0.7 torr or T  • 540 K.

The corresponding collector conditions, with "2-D oxide" W(110)

substrate, would require only 1 x 10-11 tors (TR r 200 W The

collector calculations here involve the additional assumption that

there are no evaporation products (except cesium) from the emitter

surface which would change the character of the collector surface

during operation..

The above calculations show that cesiated LaB 6 (100) has a

higher minimum work function and lower thermal stability than, for

example, W(110) at NEP converter electrode operating temperatures.

Dn the other hand, recent studies of LaB 6 (210)
30,31

 suggest that

this surface could meet NEP converter emitter requirements in the

uncesiated mode. Indeed LaB6 (100) itself can easily supply 10 A-cm 2

at a temperature of 1800 K without cesium, making it an attractive

candidate for advanced terrestrial converter designs.

III. Characterization _of Refractory AlloXs and Related Surfaces- Task B

Investigation of the surface properties of W-Zr and W-Hf alloys

have been completed. Final measurements have been made on W-0.5% Zr,

W-5% Zr and W-1% Hf samples, so that data on the set of samples

(W-0.5% Zr, W-5% Zr, W-0.5% Hf, W-12 Hf, W-5X cif) are now available.

Both surface composition-(AES) and work :function (FERP and thermionic)

measurements have been made.

68



,

i
t

I

The work function data are summarised in Table V. Note that

there is some disagreement among values determined by the various

techniques. Since the thermionic emission comes primarily from

low work function surface regions, thermionic measurements are

strongly weighted toward the low work function values. In particu-

lar, polycrystalline alloy Richardson plots yield small slopes

(low t R ) and correspondingly small pre-exponential values (AR),

suggesting that a small fraction of the total surface has low work

function and dominates the electron emission. For thermionic con-

verter applications, the effective work .function 
#eff 

is the most

reasonable value to use, since the emitted current density J may be

derived directly from it. Table V shows the typical low emission

current densities which could be obtained from representative alloy

samples.

Surface composition measurements on W-Hf and W-Zr alloys are

summarized in Table VI. Only the alloy elements and oxygen are

indicated, although there is also contamination from other elements

(primarily carbon). In general, contamination is small and does not

vary jystematically with bulk alloy composition. In earlier studies

of the Zr/O/W(100) single crystal surface, 5 we found oxygen to be

intimately associated with the Zr. That phenomenon also appears here,

with the normalized oxygen signal tending to follow the surface con-

centration of the minority alloying component (Zr or Hf). Note that,

in the case of W-Zr alloys, even a bulk Zr concentration as low as
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0.5% appears to drive the Zr surface concentration above the critical

value observed for a properly activated, low work function Zr/0/W(100)

single crystal surface.

One of the primary goals of the polycrystalline alloy studies

was to determine the bulk alloy composition which would yield opti-

mum surface segregation of the minority component (Zr or Hf). The

criterion for optimum surface segregation is minimum surface work

function. This criterion is difficult to apply because of surface

crystalline anisotropy, which may influence both surface segregation

and work function decrease. Even so, the data presented here allow

some general conclusions to be made.

1) Surface segregation of zirconium is more favorable than

surface segregation of hafnium for the same bulk composition.

2) To attain the optimum surface segregation of zirconium

suggested by studies of the Zr/O/W(100) system (26X), a

bulk zirconium concentration of less than 0.5% would be

required.

3) The data suggest that the optimum hafnium surface concen-

tration (24X) is obtained with a bulk alloy of W-5X Hf.

This surface concentration is of the (same magnitude as

that observed for Zr on the low work function Zr/O/W(100)

surface, and yields the lowest FERP and effective thermionic

work functions of the hafnium alloys studied. However,

studies of the Hf/O/W(100) optimum surface concentration

A

..
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	 have not yet been done, so data are not available for

that surface. It seems premature to predict optimum

W-Hf alloy composition for low work function based upon

Zr/0/14(100) data, especially since the surface segre-

gation properties of W-Zr and W-Hf alloys sees to differ

markedly.

The results imply that attainment of work functions in the

2.6 eV range may not be possible with polycrystalline alloys of

the type W-Zr or W-Hf. Recent studies in other laboratories 32

suggest that slight deviations from (100) orientation, even on

single crystal W surfaces, cause dramatic increases in the minimum

work function attainable with Zr and 0 adsorption. We therefore

believe that the most productive basic studies are those performed

on well characterized single crystal surfaces and have therefore

continued to emphasize this type of research. For this reason, pro-

posed studies on Mo-Hf and Mo-Zr alloys were not performed, with

efforts being devoted instead to the investigation of adsorbates on

the well-characterized Zr/O/W(100) surface.

IV. Effects of Adsorbates on Refractory Alloy Surface Properties _ Sisk c

IV-A.	 cesium Adsorption and Cesium-Oxygen Coadsorption on Zr/O/W(100)

Studies of cesium adsorption and cesium/oxygen coadsorption on

the Zr/O/W(100) surface have been performed. The measurements were

made in an ion-pumped chamber with ultimate pressure of Aix 10-10 torr.

I '	 Background gases were monitored with a quadrupole mass analyzer (QMA)



and consisted primarily of CO and H2 . The tungsten crystal was

electropolithed and its orientation was determined to be within l'

of the (100) face by Laue x-ray diffraction. The crystal was mounted

so that it could be resistively heated to 1700 K or heated by elec-

tron bombardment to 2400 K. Sample temperatures were monitored by a

W-5X Re versus W-26% Re thermocouple and were checked at high tem-

perature with an optical pyrometer. Estimated uncertainty in quoted

temperature values is t 10 K.

Zirconium was supplied from a resistively heated W wise onto

which Zr was melted. 
33 

The source could deposit reproducible doses

of Zr with less than 1% 0 and 2.5% C in the adsorbed layer, as mon-

itored by AES. Cesium and oxygen were adsorbed as discussed earlier

for LaB6.

The Zr/O/W(100) low work function surface (2.6 eV) was prepared

by the following treatment: 5 (1) Heat the W(100) crystal, onto which

several monolayers of zirconium have been initially deposited, at

1500 K for 2 min. in 1 x 10-7 torr 02 . (2) Heat the crystal to 2100 K

for 10 sec. in background pressure < 2 x 10_
9
 tore. The sample was

F

cleaned of adsorbed residual gas by electron bombardment to 1900 K:

before each experiment.

The FERP gun was used to measure the absolute work function of

the surface with the sample temperature below 400 K. The FERP gun

was also used to measure the integral Ic (Vc) curves from which elec-

tron reflection vs primary beam energy could be determined. AES
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t bean of 2000 eV enemy and 18 µA current. Modulation amplitudes of 	 j

4 V peak-to-peak (Vpp) for the Zr(147 eV), W(169 /179 eV), 0(510 eV)

and of 5.2 Vpp for the 0 (510 eV) and Cs (563/575 eV) peaks were used.

In TDS, the neutral Gs mass 133 peak was monitored with the line

of sight QMA, using a retarding field of ~ 20 V /cm to prevent Cs

positive ion emission. The sample vas heated to 1300.9 in 35 sec.

Due to non-linear heating, the heating rate dropped from 51 K/sec

f
to 20 K/sec during this heating interval. This factor was considered

in Cs desorption coverage and binding energy determinations.

IV-A-1.	 Cs Adsorption on Zr/0/W(100)

The work function change with Cs adsorption on the low work

function Zr/0/W (100) surface is shown in Fig. 23. The minimum

work function obtained is m
 -2.12 eV. This curve has a shallow

minimum, leading to a saturation value ^e = 2.16 eV. A plot of Cs

Auger peak-to-peak amplitude vs Cs adsorption time is linear with

a break in slope around 24 min. indicating, if unity sticking co-

efficient is assumed, that it takes 24 min. to develop one mono-

layer Cs coverage on Zr/0/W. Interestingly, the 02 Auger amplitude

is unchanged during Cs adsorption.

The change in work function with heating temperature of an

initially Cs saturated surface of Zr/0/W(100) is shown in Fig.

24. The sample was heated for 1 min. intervals to successively

higher temperatures ranging from 350 K to 1000 K. The FERP work

function was measured after the sample cooled below 400 K. Gradual
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desorption of Cs from this saturated Cs layer caused an initial

lowering of work function to 2.12 eV # which is the same minimum

observed from Ca adsorption on Zr/0/W(100). Further desorption

of Cs increased the work function. Heating to > 900 h yielded the

work function of the original Zr/0/W(100) s+,,rface. These results

suggest a reversible adsorption/desorption process.

Neutral Cs desorption spectra are presented in Fig. 25, as

a function of the fractional cesium coverage 
6 C 0 

,/a 
sat' 

The

amplitudes of these curves have been corrected for the nonlinear

sample heating rate. The curves show that as 
eCs

 increases, the

high energy desorption peak shifts slightly to lower temperature,

implying that the binding energy of Cs in this state is weakly

coverage dependent. Nevertheless, the desorption energies were

calculated assuming first order desorption through Redhead's

equation, is

E - kTp [an(v,Tp/a) - 3.64] .	 (15)

Here T  is the peak desorption temperature in degrees Kelvin, a is

the instantaneous heating rate at T - Tp and a pre-exponential

factor v l - 1013 sec-1 is assumed. The two major desorption peaks

occur at 445 K and 552 x, corresponding to binding energies of

1.1 t 0.1 eV and 1.3 i 0.1 eV, respectively. Fig. 25 also shows

that Cs desorption is complete at 900 K which is consistent with the

behavior of work function vs heating temperature of the initially

saturated Zr/0/W(100) surface (Fig. 24).
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IV-A-2, 02 Adsorption on Zr/0/W(100)

Fig. 26 shows the work function and 02 Auger signal changes

for adsorption by exposure of the Zr/0/W(100) surface to l x 10"e

torr 02 at room temperature. The work function increases rapidly

with 02 exposure up to 0.6 L, then levels out and reaches a final

value around 5.3 eV. The 02 Auger signal also increases rapidly in

the initial exposure range from 0.3 L to 0.9 L and levels out at

higher 02 exposures. After 0.9 7, 0 2 exposure, the sticking co-

efficient of 02 drops significantly, and the surface is essentially

saturated. The Zr/0/W(100) surface with "excess" 02 is produced by

the above 01 dosing procedure. The surface may then be heated to
i

1600 K for 2 min. in vacuum. We refer to the 02 treated surface

before: heating as unequilibrated and after heating as thermally 	 t

equilibrated.

We have studied the adsorption of Cs onto the Zr/0/W(100)

surface covered with various amounts of excess 02 , both thermally

equilibrated and unequilibrated.

IV-A-3.	 Cs-02 Coadsorption on Zr/0/W(100)

The change of work function with Cs adsorption on unequilibrated
z

excess 02 layers on the Zr/0/W(100) surface is sho*,m in Fig. 23.

ant work function minimum is reduced from 2.12 to 1.37 eV. Compared

with Cs on Zr/0/W(100), the excess 0 2 surfaces have lower work

f=ctions at saturated Cs coverage, higher saturated Cs coverages,

and the work function minima are shifted to higher Cs coverages.
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The primary effect of thermal, equilibration of excess oxygen

layers at 1600 K for two minutes is a reduction in the total amount

of oxygen and slight reduction in the amount of zirconium at the sur-

face as determined by AES. The net effect upon Cs adsorption is the

same as adsorbing less oxygen initially. Fig. 27 illustrates the

strong effect of excess 02 coverage on the minimum work function

attained by Cs adsorption. Data for both thermally equilibrated

and unequilibrated 0 2 layers fall on the curve.

Cesium thermal desorption from equilibrated and unequilib:rated

surfaces is also strongly affected by excess 02 coverage. Fig. 28

presents several desorption spectra showing increased ener gy (higher

temperature) binding states compared to surfaces without excess 02

(Figure 25). Note that curve B of Fig. 28, corresponding to low-

est 02 coverage, exhibits the lowest terminal desorption temperature

and predominance of low energy binding states.

The adsorption of excess 02 greatly increases the amount of

Cs which may be adsorbed. For example, a plot of Cs Auger amplitude

vs Cs dose time on the 02 saturated, thermally equilibrated surface

(excess 02 o/nsat . 0.6) is linear, and show3 a sharp break in slope

(corresponding to saturation coverage) at 45 min. This sL.rface thus

requires approximately twice as much Cs to develop saturation cover-

age as does the Zr/0/W(100) surface without excess 02 , assuming unity

sticking coefficient in both cases. In contrast to the constant 02

uger signal observed during Ca adsorpticn on the low work function
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layer.
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t

Zr/0/w(100) surface, the excess 02 Auger amplitude decreases as

Cz coverage increases. This result implies that Cs adsorbs on top

of excess 02 , thereby attenuating the 02 Auger signal. As dater-

mined by desorption/work function experiments (Fig.. 24), the Cs

adsorption/desorption process is approximately reversible on,

equilibrated 02 layers.

These results indicate that the effect of adsorbed excess 02

on the Cs adsorption/desorption characteristics of the low work

function Zr/O/W(100) surface is significant. The minimum work

function attained for Cs adsorption on Zr/O/W(100) is 2.12 eV,

while preadsorption of excess 0 2 reduces the minimum Cs work function

approximately linearly with increasing 0 2 coverage, yielding an

absolute minimum of 1.37 eV. Excess 02 increases the thermal sta-

bility of the Cs layer, producing a variety of binding states of

energy higher than those observed without excess 0 2 . Equilibration

of excess 0 2 layers at 1600 K reduces both the surface Zr and 02

concentrations, but the corresponding change in Cs adsorption/

desorption characteristics appears to be due primarily to the de-

crease in surface 02.

IV-B. Comparison of Cesium Adsorptionand Cesium-Oxygen Coadsorption

on Zr/O/W(100) and W(100)

It is interesting to compare these results with those obtained

for cesium adsorption on clean W(100). The most recent thorough

study of the Cs/W(200) system was that of DesFlat, 2g who investigated
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work function behavior, surface structure and surface composition

of cesium and cesium/oxygen coadsorbed layers on W(100). Unfortun-

ately, neither Desplat nor anyone else has made complete thermal

desorption measurements for Cs/W(100). Therefore, we investigated

cesium adsorption/desorption on W(100).

Measurements were performed on the same W(100) sample which had

been used for Zr/0/W(100) studies. The sample was cleaned of zir-

conium by repeated flashing to 2400 K. A residual amount of zirconium

(estimated to be < 0.2 monolayer) remained on the surface after these

treatments., because zirconium was continually resupplied from the

bulk. The surface oxygen and carbon were reduced to levels undetect-

able by AES.

A plot of FERP work function vs cesium exposure for this W(100)

surface is shown in Fig. 29. The curve is based on FERP peak

positions and includes a peak broadening and instrumental correction

of -0.05 eV to yield absolute work functions. Cesium coverage varies

linearly with dose time, as indicated by the Auger data of Fig. 30.

The clean, minimum and saturated work functions given inTable VII

are compared with data of Desplat28 for cesium adsorption on an

atomically clean W(100) crystal. The agreement is excellent implying 	 A

that the effect of residual zirconium on our sample is negligible.
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TABLE VII
i
'	 CRITICAL WORK FUNCTIONS FOR CESIUM LAYERS ON H(100)

This Work Desplat (Ref. 18)

clean
4.65 i .05 4.65*

#sin
1.65 i .0S 1.56

#sat
1.90 t .05 1.80

Value chosen by Desplat based upon best available
data. His Kelvin prose measured only work function
change.

Desorption of cesium from the W(100) surface produces the

spectra shown in Fig. 31. The relative cesium coverage values

shown were determined from integrated peak areas of the respective

desorption spectra, taking into account the kinetic energy variation

with temperature of the desorbing atoms. It is clear that cesium

adsorbs on the W(100) surface in at least two, and possibly three

distinct binding states. The high temperature states are unchanged

with cesium coverage implying first-order desorption kinetics. On

the other hand, the low temperature peak shifts to lover temperature

with increasing coverage, an effect that could be caused by second

order kinetics or first order kinetics with coverage dependent bind-

ing energy. Using a technique devised by Redhead, 
18 

these two cases

may be separated.

Fig. 32 shows a deconvolution of the spectra of Fig. 31 to

yield only the low energy peaks. Thus, the peak temperature T and
p
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Initial coverage 
a  

for each spectrum may be substituted into the

equation for second order desorp!ion

EAT2a a avze xp (-E/kTp)
	

(16)

If second order kinetics apply, then a plot of log(a T 2) vs 1/Tp

should yield a straight line of slope E/k. A nonlinear log(a0T2)

vs l
/TP 

plot, on the other hand, would imply first order kinetics

with a varying binding energy. As 'Fig. 33 shows, the latter case

Is applicable here. Therefore, all the peaks shown in Fig. 31,

result from first order desorption processes.

The decrease With coverage of the binding energy of the low

temperature state is an interesting phenomenon. In other adsorption

systems, the highest energy binding states (near zero coverage) may

shift with coverage, an effect generally attributed Lo the growing

importance of adsorbate-adsorbate interactions as the coverage of

the adsorbed species increases. It is known that at high coverage,:

cesium on the W(100) plane compresses into a pseudohexagonal

structure, determined predominantly by adsorbate-adsorbate inter-

actions. 28 The change in binding energy at high coverage which we

observe may indicate the onset of this compressed two-dimensional

phase.

In a previous study of cesium adsorption on W(110), a completely

different desorption behavior was observed. 
26 

No discrete binding

f
states were :oserved but, rather, a continuous decrease in desorption

energy with increasing coverage. Nevertheless, the terminal desorption

92



j
f
R

F
1

A

Cs DESORPTION- ?(IO0)
log %Tpa vs. I / T' J

7.6

NO.
H
bo

RP
0

7.4

7.2

/Tp x 104

Figure 33. Plot of log a 1 2 vs 1/Tp for low temperature state

of cesium on W(100), indicating binding energy

change with coverage.

7.9

93



Y4

y^

y

C

temperature of cesium from that surface was 1400 K, compared with

1200 K which we observe for cesium on W(100) .

The desorption spectra of Figs. 25, 28 and 31 show that adsorbed

cesium is more stable on the W(100) surface than on Zr /0/W(100),

but is more stable on Zr/O/W(100)with excess oxygen. A more instruc-

tive comparison may be seen in Fig. 34, where the data of Fig. 14

ae replotted with corresponding W(10.0) data. 'these curves represent

pseudoequilibrium T/T R curves at zero cesium pressure.

The work function and desorption results presented here suggest

fundamental differences between cesium adsorption on Zr/O/W(100) and

on W(100). The presence of the surface Zr-O complex reduces the	 s

binding energy of cesium and causes cesium to be ineffective in re-

ducing the work function, even though this layer contains a signifi-

cant amount of oxygen. Apparently, the oxygen is so tightly bound

to the Zr that its electron affinity is satisfied, and little or no

i
bonding between oxygen and cesium occurs. The addition of excess

oxygen to the surface, however, creates additional active sites for
i

cesium adsorption, thereby increasing its binding energy and enhancing 	
I

the cesium surface dipole layer strength.

Using the FERP gun, we have performed electron reflection studies

for cesium adsorption on Zr /O/W(100) and on W(100). The results for

Z O W 100 re shown in F 	 The behavior is quite differentr/ / (	 ) a	 h	 Fig. 35	 q	 ^

from that discussed earlier for LaB6(100) (Section 11). The Zr/0/W

(100) surface exhibits significant 1,,%Iflection near threshold which is
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reduced when cesium is adsorbed. For thersionic converter applications,

the region near threshold is of prizary interest, but the curious cross-

over behavior at about 3 and again at 6 eV above threshold may contain

additional information on the nature of the surface layer. Unfortun-

ately, the cs/Zrlo/W(100) surface is so complex, both geometrically and

ellectronically, that further interpretation of the reflection data is

difficult. Note that the adsorption of cesium reduces the amount of

structure in the reflection spectrum.

For comparison, Figs. 36 and 37 show, respectively, the elastic

and total reflection spectra for W(100) With and without adsorbed

cesium. The elastic reflection spectrum is determined by biasing the

FERP gun grid so that only electrons with energies approximately equal

to the incident energy (energy loss 4 4 eV) can be reflected. In all

the cases presented here, the qualitative behavior of total and elas-

tic reflected spec °Cra is similar. Note also that in every case where

a saturated cesium layer is present, a broad peak around 5 eV appears,

regardless of the substrate. This peak ray be characteristic of a

close-packed cesium layer.

The conclusion to be drawn from these experiments is that the

electron reflection near threshold is increased for W(100) when

cesium is adsorbed (with a similar result occurriag for LaB6(100)

as discussed in Section I1), while the reflection from Zr/0/W(100)

is reduced when cesium is adsorbed.. The different behavior of the

Zr/O/W(100) surface results from a high electron reflection coefficient.

97



n

1 00

90

so

Z 70
0

V 60
W
LL 50
W
U40

30
a

W 20

10

00	 2	 4 6 8	 10 12 14 16 18 20

ENERGY ABOVE THRESHOLD (eV)

Figure 36. Elastic electron reflection (V grid8.9 volts) from

W(100), clean and With, a saturated cesium layer adsorbed

at room temperature.



d

i'

I

^

	

	 R

I

100

90

^,. ISO 

70
Z 

60

J 50
LL
W 40
J

30

20

10

0

I

ELECTRON REFLECTION

Cs ON W(100)

CLEAN 1W(100)

0	 2	 4 6	 8 10	 12	 14 16	 18	 20

ENERGY ABOVE THRESHOLD (eV)

Figure 37. Total electron. reflection (V 
grid. 

22 volts) from W(100),

clean and with a saturated cesium layer adsorbed at room



for the surface without cesium, but the precise cause of this large

reflection coefficient near threshold is not know,+.

97	V. Technical Summary

11^-	 The objective of this project is to fabricate, characterize and
f`.

evaluate electrode materials that have the potential of significantly

improving converter performance. During this reporting period,

studies of the thermal stabilities of clean LaB6 single crystal faces

have been performed, and investigation of the properties of adsorbed

carbon .~ cesium and cesium-oxygen layers on LaB6 surfaces has continued.

Research on the surface properties of polycrystalline W-Zr and W-Hf

alloys has been concluded. Cesium adsorption and cesium-oxygen co

adsorption on the low work function Zr/0/W (100) surface has been in-

vestigated and compared with results of cesium adsorption studies

on W(100).

The relative thermal stabilities of the various crystal planes

of LaB6 were examined using field emission and field ion microscopy.

Thermal faceting was observed for high index planes, and the (100),

(110) and (111) planes were found to be the most thermodynamically

stable faces in vacuum. The work function difference between the

(100) and (110) faces could be radically changed by field evaporation

in hydrogen. This latter effect may be due to referential hydrogen

field evaporation of La atoms from the (100) plane.

Carbon adsorption and desorption at LaB5,74(100), (110) and

LaB5. e6 (110) surfaces were investigated. Significant workfunction

100
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increases (~ 0.2 AT) were observed for surface carbon levels leas

than 5Z of a monolayer. Procedures were developed for removing

both gas-phase adsorbed carbon and surface segregated carbon dif-

fused from the bulk. It is likely that the generaXly poor showing

of LaB6 in thermionic test converters may be attributable in part

to surface segregation of bulk carbon in the materials used.

The properties of adsorbed cesium and cesium-oxygen layers on

LaB6 (100) surfaces were studied in detail and the results compared

with results of similar work on LaB6(110) surfaces. Cesium adsorp-

tion produces work function minims of 1.97 and 1.88 eV, respectively,

on the initially clean (100) and (110) surfaces, whereas a preadsorbed

oxygen layer yieldsrespective minima of 1.35 and 1.47 eV with cesium

adsorption. Oxygen appears to adsorb preferentially over boron sites,

but the surface La atoms are also involved chemically in bonding to

the adsorbed oxygen. Oxygen precoverage increases the ionic char-

acter of the cesium bond to the surfacs, and also increases the

cesium coverage at #min• A simple model has been applied to the

data to show that LaB6 (100) would make an unsatisfactory emitter for

hypothetical NEP cesium vapor converter applications. On the other

hand, LaL6 (100) with adsorbed oxygen could be a suitable collector

for such applications.

Characterization of a set of polycrystalline Zr-W and Rf-W

alloy sample surfaces has been completed„ Because of the inhomo-

geneous nature of these surfaces, detailed understanding of their

geometric and electronic properties is not possible. Therefore,
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similar proposed experiments on polycrystalline Zr-Mo and Hf-Mo

samples have been abandoned in favor of careful, controlled studies

on the related, single crystal surface Zr/O/W(100),

Cesium and oxygen adsorption on the Zr/O/W(100) surface have

been investigated. The minimum wok function attained for cesium

adsorption on Zr/O/W(100) is 2.12 eV, while preadsorption of excess

oxygen reduces the minimum cesium work function approximately linearly

with increasing oxygen coverage, yielding an absolute minimum of

1.37 eV. Excess oxygen increases the thermal stability of the ad-

sorbed cesium layer, producing a variety of binding states of energy

higher then those observed without excess oxygen. Similar measure-

ments were made on a W'(100) sample and the thermal stabilities and

work function characteristics of cesium layers on W(100) and

Zr/O/W(100) were compared. Cesium was found to adsorb more strongly

on W(100) than on Zr/0/W(100), unless excess oxygen was present on

the latter surface. The work function lowering effect of cesium

was more pronounced on W(100) than on the low work function Zr/0/W(100)

surface.

Finally, low energy electron reflection measurements were

performed for Lah(100), Zr/O/W(100) and W(100) surfaces with and

without adsorbed cesium. Cesium was found to increase electron-re-

flection near the collection threshold on LaB 6 (100) and W(100) but

decrease the reflection on Zr/0/W(100). This difference ¢-.y be

explained by the unusually high threshold reflection coefficient of

Zr/O/W(100) without adsorbed cesium.
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APPE)iDIX

Summary of Conference Attendance

During this contract Pear, OGC personnel have participated in

a variety of conferences, workshops and other meetings related to

thermionic energy conversion. A summary of such actiVity is given

below.

1) April 15-17, 1990 - P. R. Davis mid L. W. Swanson attended

Tri-Services Cathode Workshop, Griffiss AFB, Rome, KY.

Papers presented; P. R. Davis and S. A. Chambers, "The

Desorption of Oxide Species from LaB S. 74(100)"; L. W.

Swanson, "Recent Progress in Thermal Field Electron Source

Performance." These papers are to be published in Appl,>

Surf. Sci.

2) April 18, 1980 - P. R. Davis presented a general seminar

at Central Wyoming,College, Riverton, WY entitled "Thermionic

Energy Conversion."

3) May 19-21, 1980 - L. W. Swanson attended IEEE International

Conference on Plasma Science, University of Wisconsin -

Madison. Papers presented: L. W. Swanson, H. K. Chen, and

P. R. Davis, "Cesium Adsorption on the Zr/O/W(100) Surface";

P. R. Davis, S A. Chambers and L. W. Swanson, "The Adsorption

of Cesium on Lanthanum Hexaboride Surfaces."

4) May 21, 1980 L. W. Swanson attended Thermionic Converter

Electrode Workshop held in conjunction with the IEEE

Conference.
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3) June 12-14, 1980 S. A. Chambers attended the Joint Rocky

Mountain/Pacific Northwest ACS Regional Meeting, University
a

s
	 of Utah, Sala Lake City, Utah.

Paper presented: S. A. Chambers, "Interaction of Cesium

and Oxygen with La36(100)1"

6) June 27, 1980 - P. R. Davis and L. W. Swanson visited JP'L,

Pasadena for technical program review by K. Shimada and

J. Mondt4

7) August 21-22, 1980 - P. R. Davis and L. W. Swanson attended

Intersociety Energy Conversion Engineering Conference,

Olympic Hotel, Seattle, VA*

Papers presented: P. R. Davis, S. A. Chambers and L. W.

Swanson, "The Adsorption of Cesium on Lanthanum Hexsboride

Surfaces"; H. K. Chen, L. W. Swanson and P. R. Davis,

"Cesium Adsorption on the Zr/O/W(100) Surface."
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