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NUMERICAL INVEST.GATION OF TURBULENT CHANNRL FLOW
Parviz Moin*and John Kiv*
Departasnt of Mechanical Engiuneering
Stanford University, Stanford, CA 94303

Fully devel.ped turbulent channel flow has been simulated numerically at
Reynolds number 13800, based on centerline velocity and channel half width.
The large-scale flow field has been obtained by directly integrating the fii-
tered, three-dimensional, time-dependent, Navier-Stokes equations. The emall-
scale field wmotions were simulated through an eddy viscosity wmodel. The
calculations were carried out on the ILLIAC IV computer with up to 516,096
grid points.

The computed flow field was used to study the statistical properties of
the flow as well as its time~dependent features. The agreement of the
computed mean velocity profile, turbulence statistics, and detailed flow
structures with experimental data is good. The resolvable portion of the
statistical correlations appearing in the Reynolde stress equations are
calculated. Particular attention is given to the examination of the flow

structure in the vicinity of the wall.

1. Introduction

Large-eddy simulation (LES) is a relatively new approach to the calcula-
tion of turbulent flows. The basic idea stems from two experimental observa-
tions. PFirst, the large-scale structure of turbulent flowe varies greatly
from flow to flow (e.g., jets ve. boundary layers) and consequently is diffi-
cult, 1f not impossible, to model in a general way. Second, the small-scale
turbulence structures are nearly isotropic, very universal in character
(Chapman, 1979) and hence much more amenable to general wodeling. In LES,

one actually calculates the large-scale motions in a time-dependeat, three-

*Portions of this work were carried out while the authors held NKC
Research Associateships at Ames Research Center.



dimensional computation, ueing for the large~scale field dynamical equations
that incorporate simple models for small-scale turbulence. Only the part of
the turbulence field with scales that are small relative to overall dimensions
of the flow field is modeled. This is in contrast to phenomenological turbu-
lence modeling, in which all the deviations from the mean velocity profile are
modeled.

A typical LES calculation for wall-bounded turbulent flows imposes a
great demand on computer speed and memory. At present, therefore, the use of
LES for practical engineering applications is admittedly uneconomical. How-
ever, for simple flows, such calculations are just within reach of the largest
present computers. The i{aformation generated by these computations can in
turn be used as a powerful research tool in studies of the structure and
dynamics of turbulence. 1In addition, the various correlations that can be
obtained from the computed large-scale flow field may be used it developing
phencmenological turbulence models for complex flows. These are the consid-
erations that motivate the present development of the LES method.

The first application of LES was made by Deardorff (1570), who simulated
a turbulent channel flow at an indefinitely large Reynolds number. In thts
ploneering work he showed that three-dimensional computation of turbulence (at
least for siample flows) is feasible. Using only 6,720 grid points, he was
able to predict several features of turbulent channel flow with a fair amount
of success. Of particular significance was the demonstration of the potential
of LES for use in basic studies of turbulence.

Following Deardorff's work, Schumann (1973, 1975) alsc calculated turbu-
lent channel flow and extended the method to cylindrical geometries (annuli).
He used up to ten times more grid points (65,536) than Deardorff and an

improved subgrid scale (SGS) model. In addition to dividing SGS stresses into



a locally 1isotropic part and an inhomczeneous part, he employed a separate
partial differential equation for SGS turbulent kinetic energy. However, the
added differential equation did not improve the results over the calculations
in which only an eddy viscosity model was used (Schumann, 1975).

Grdtzbach and Schumann (1977) extended their channel flow calculations to
account for temperature fluctuations and heat transfer. Later extensions by
Grotzbach include calculations of secondary flows in partly roughened chaa-
nels, inclusion of buoyancy effects, and liquid metal tlows in plane channels
and annuli. A receant v*eview of this group's work in LES was given by Schumann

et al. (1979).

In all of the above computations, the dynamics of the inmer region of the
bouadary layer (viscous sublayer and buiter layer) was essentially ignored.
It is in this region that virtually all of the production of turbulence
kinetic energy takes place (Townsend, 1956; Kim et al., 1971). Artificial
boundary conditions in the logarithmic region were used to simulate the inner
layers. Aside from the fact that these boindary conditions are designed to be
consistent iu the mean with the law of tht wall, there is little justification
or experimental evidence to warrant their use for the detailed flow field.
However , the computations of Deardorff (1970) and especially those of the
Karlsruhe group have produced successful comparisons with experimental data in
the regions away from the walls. With a relatively modest numbar of grid
poiats, they have been able to extract considerable information of practical
interest from their computations.

The first numerical simulation of turbulent channel flow that computed
rather than modeled the flow in the immediate neighborhood of the wall was
that of Moin et al. (1978). In this calculation only 16 uniformly spaced grid

points were used in each of the streamwise, x, and spanwise, z, directioms



and 65 non-uniformly spaced grid points in the direction normal to the walls.
The computational grid resolution in the lateral directions was inadequate
for resolving the experimentally observed coherent structures in the viscous
sublayer. Nevertheless, the computations did display some of the well-
established features of the tlow in the wall region. The results of this
computation were encouraging enough to justify the undertaking of the present
calculations.

In this paper, we describe our numerical studies of incompressible turbu-
lent channel flow with up to 516,096 grid points. Particular attention is
given c¢o the investigation of the detailed flow structures. The Reynolds

aumber, Ret. based on shear velocity, u and channel half-width was set

T
at 640. The corresponding Reynolds number based on centerline velocity and
channel half-width is about 13800 (Hussain and Reynolds, 1975). The results
of this work can be summarized briefly by stating that, in the present compu-
tations, the calculated mean velocity profile and turbulence statistics are in
sood agreement with the experimental data. The detailed time-dependent flow
structures are atrikingly similar to those observed experimentally. In
addition, the resolvable portion of several statistical correlations which
play an impsrtant role in phenomenological turbulence wodeling are computed.

These results tend to indicate that the LES method can be used very effec-

tively in supplementing laboratory measurements of turbulent shear flows.

2. coverning Equations for the Large-Scale Field

In LES, each flow variable f 1is decomposed as follows:

f = f+ f (2.1)

where f is the large-scale component and f' is the residual fileld.
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Following Leonard (1974), we define the large-scale field as
3
'f(xl,x2 ,x3) = '/D. 1111 Gi(x1 .xl) f(x{,xé ,x:',) dxidxz'dx:', (2.2)
where G, is the filter function in the i-direction and the integral is ex~
tended over the whole flow field. In planes parallel to the walls in which
the flow is statistically homogeneous, we use the Gaussian filter fungtion:
o VW2 2,,2
Gl(xi,xi) - (EKI) exp Lf6(x1 - xi) /A;] . i=1,3 (2.3)
Here, 4y = 2h; (Kwak et al., 1975), hy 1s the computational mesh size in
the i-direction, and subscripts 1 and 3 refer to the streamwise and spanwise
directions, respectively. The corresponding integrals in (2.2) are exteaded
over the entire (xl,x3) plane. The width of the Gaussian function char-
acterizes the size of the smallest eddies in the homogeneous directions that
are retained in the filtered fleld (the largest eddies in the residual
field).
Due to variation of turbulence length scale in the direction normal to
the walls, Xy, one should use a filter with a variable width, Az(xz). In
this direction a sectionally continuous “top hat"” filter function was used.

th

Let x, be the location of the § computational grid point in the ver-
j -

tical direction; we define the filter function GZ for the control volume
surrounding xzj as follows:

(A+(x2) + A‘(xz))“l for x, - 87(x,) < x5 < xy + a*(x,)

Gz(xz,xi) (£.4)

0 for xi > x, + A+(x2) and xi < x, - A-(xz)

where



for ;-(x2 + Xy )y < Xy < -;-(x2 + X, )

+ 1
8 (x,) = (x - )
2 7 241 "zj}
b -1 b ]

- 1
b(xy) = 7("2J‘ x21-1)

The functions &% and A"  are sectionally coanstant functions of X,

therefore, in the open neighborhood surrounding each computational grid poiant,

xzj - 4" < Xy < X, + A*, dA+/dx2 - dA'/dxz = 0. An important consequence

+

of this property of 4 and 4 and the form of G, and Gy (fuaction of

Xy - xi, i = 1,3) 1is the commutivity of the filtering operation and partial

differentiation operators 1in these neighborhoods and in particular at the

computational yrid points (see Moin et al. (1978)), i.e.,

3f of
= (2 ‘5)
o

Note that, with the application of G,, the filtered variable T  will be
sectionally continuous and the filtering in (2.3) is interpreted as an average
over grid spacings in the x,-direction. This 1s a step prior to complete
discretization of flow variables for numerical computation (Section 3).

Schumann (1975) and co-workers use a filtering function similar to (2.4)
in all spatial directions. When applying thic averaging process to the
Navier-Stokes equations, they evaluate the integral in the direction of the
derivatives analytically and then have to deal with averages over the faces ot
the control volumes. This process introduces three types of surface-averaged
as well as volume-averaged variables. The extra variables have to be related
to each other in some way.

Now, applying the filtering operation (2.2) to the incompressible Navier-
Stokes and continuity equations, we obtain the dynamical equations of the

large-scale flow field,
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EI - 0 (2.7)
where we have decomposed uy as in (2.1) and
ko equ x
P
Q
ot -...3“56“ (2.8a)
Q.. = uu +u'u +uu (2.8b)

Here, the variables are non-dimensionalized using the channel half-width §
and the wall shear velocity u;. The calculations were carried out for a
fixed streamwise mean-pressure gradient which is accounted for by the &4,
term in the momentum equation (2.6).

There &re two points associated with Eq. (2.6) that require further
explanation. First, the convective term, 337“1“3' is written in the

J

equivalent but more cumbersome form

9 1
- eijkujmk-rm-‘—i- -z-ujuj

This was done because it can be shown (Mansour et al., 1977) that, with this
form in the absence of time-differencing errors, conservation of energy,
momentum, and circulation in inviscid flows will be obtained when vfrtually

any difference scheme is applied to (2.6). Second, it should be noted that

the so-called Leonard (1974) stress term
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= uu -uu .9
A“ 1“5 uiu‘1 (2.9)

[

is not equal to zero. One has the option of calculating the term with double
bars explicitly, or, as Deardorff (1970) has done, to incorporate A“ in
whatever modeling assumption is used for T4 (see the next section). In the
present work, with respect to the Gaussian filter in the horizontal directions
where the partial derivatives are calculated pseudospectrally (Sec. 5), we
have chosen the former option. In Sec. 6 we shall show that Aij can be
quite significant;, hence, including it with 111 is not recommended. With
respect to the top-hat filter in the x2-d1rection where the derivatives are
evaluated by second-order finite-difference schemes, the latter option was
chosen. Here, it can be shown that (Shaanan et al., 1975) Aij 18 of the
same form and order as the truncation error of the finite-difference scheme;
hence {ts explicit calculation is not justified. However, when higher-order
finite-difference schemes or spectral methods are used to evaluate the deriv-

atives in the x,-direction, Aij should be calculated explicitly.

3. Residual Stress Model

The basic idea behind large-eddy simulation 1is that the large-scale
motions, which are calculated explicitly, provide most of the important
turbulent transport and, hence, the influence of the small eddies can be
modeled relatively crudely. 1In the present calculations, we have used an eddy

viscosity wmodel for tij similar to that used by Schumann (1975).

*
>) - ZVT < S1 > (3.1)

1 - - ZvT(S j

i) < si

13 ]
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and < > denotes the average over a plane parallel to the walls. The small-
8scale eddy viscucities Vg and v; repregsent the action of the unreecivzi
scales of motion on those that are resolved. Hence, as the resolution gets
better, Vp and \a;. should get smaller. Since the filter widths represent
the largest length scales that are not resolved, these widths are the charac-
teristic size of the largest (and hence most important) residual motions.

The first term in (3.1) with

2
- a) ¥2 -< 35
v (Cs ) (Si.1 < 01

T ))(S1 -<5s, . 2) (3.2)

J J 1)

is Smagorinsky's model and can be derived from equating tue subgrid scale
(SGS) productior and dissipation in homogeneous turbulence. This model was
used successfully 4in the numerizal simulation of the decay of isotropic
turbulence by Manscur et al. (1977) and by Deardorfi (1970) (with Si'1 - <sij>
replaced by sij) in the calculation of the ccre region of turbulent channel
flow. ln the expression for 2\ (Eq. (3.2)), 4 is the characteristic

length scale of the largest subgrid scale eddies, here assumed tc be (Dear-

dorff, 1970)
. 1/3
) (8,8,85) (3.3)

(:s is a dimensionless constant, and A1 i8 the filter width in the i-
direction. In addition, in order to account for low Reynolds number SGS
turbulence near the wall, the above expression for 4 was multiplied by the
Van Driest (1956) exponential damping function, 1 - exp(-y*/.\*). with A' =
25 and Y+ * y,u./V, the distance to the nearest wall in the wall units. In
all the calculations reported here which were performed with different grid

sizes, the value of C, = 0.065 was used. Numerical expcriments indicated

that the use of a valuc much larger than this one resulted in excessive




damping of the resolvable turbulence. When lower values of C; were used,
excess energy accuiulated near the high wave number end of one-dimensional
energy spectra. In general, however, the compuied turdulence inteneities were
rather insensitive to small perturbations (= 202) of C_ . Note thst the
above value of C, corresponds to C, = 0.1, used by Deardorff (1970), if 4
ia (3.3) is replaced by hi‘

Near the wall the important large scale structures are the “streaks”
(Kline et al., 1967). These structures are relatively finely spaced in the
spanwise direction. Their mean spacing characterizes the length scale of the
eddies in the viscous sublayer (and hence the thicxness of the viscous sub-
layer). Thus in a calculation with inadequate resolution in the spanwise
direction, the thickness of the viscous sublayer will probably be larger than
its physical counterpart. This in turn will lead to lower gradients of the
computed mean velocity profile and consequently insufficieat production of the
resolvable turbuleant kinetic energy. Therefore, in order to account for the
effect of some of the streaks that reside in SGS motion on the mean velocity
protile, the second term in (3.l1) was introduced in the model for ttj' As
was mentioned earlier, Schumann (1975) has also decomposed SGS stresses i{nto
two parts, as iu (3.1). The first was to account for locally isotropic SGS
stresses, and the second to account for inhomogcneities due to the nonzero
compcnent of mean strain.

lu the preseat study, the eddy viascosity, v;. is defined as follows:

* 2 ‘
- v 3.
v‘r c(DA3) 2 € si.1 > < si'1 > (34)

where ¢ = 0.065 1s a dimensionl::: coustant and D = 1 -~ exp(-y*z/A*z) is a

wall-damping function with d’ « 2%, a8 before. It should be pointed out

that the characteristic length scale assoclated with v; 1s 1, the fuilter
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width in the spanwise direction. As the resolution in the z-direction is
iaproved, v; will approach zero. Moreover, it should be noted that, due to
its functional form (function of y only), vr does not appear directly in
the governing equations for the resolvable portions of turbulence stresses and
hence does not coatribute to the dissipation terms in these equations. This
is in contrast to Vo which will supplewent the molecular viscosity as a
dissipating agent for the resolvable turbulence stresses. However, v; con-
tributes to the dissipation of mean kinetic energy, é( u >2, and therefore
indirectly to the production of resolvable turbulence stresses. The value of
¢ In Eq. (3.4) was chosen to be 0.065 from a numerical experiment. it is
approximately the wminimum value with which the resolvable turbulent kinetic
energy can be maintained (1.e., it did not decay indefinitely). This numeri-
cal experiment was performed with one of the computations repurted in Table }

(Case 1), but the same constant was used in all the other calculations repor-

ted tere.

4. The Computational Grid

Three faccors influence the choice of the computational grid. First, the
mesh size should be small enough to resolve the important scales ot motion in
the flow. Secotu, the computationsl domain should be large enough thet arti-
ficialities of the boundary conditions do not influence the statistics of the
solution in an undesirable way. Third, the availability of computer resource
restricts the size of calculation that can be done.

In the direction normal to the walls (-1 <y 5.1)t 63 grid points with
non-uniform spacings were distributed. The following transtormation gives the

location of grid points in this direction:

?For notational simplicity, we occasionally shift trom (%) ,x7,x3),
(ul U ,03) to (x,y,z), {u,v,v).



>~

= l -1 Il
yJ T tanhl €j tanh (a) l (4.1)
where

E, = -1+2(J-1)/(N2-1) , ,1-1,2,...,1«2

3

N, is the total number of grid points in the y~direction. Here a 1s the

adjustable parameter of the transformation (0 < a < 1l); a large value of

‘a distributes more points near the walls. In our computations we have usged

a = 0.98346, Ny = 63. This value of a was selected so that the above grid
distribution in the y-direction is sufficient to resolve the viscous sub-
layer (y"' < 5). -

The seiection of the length- of the computational box in the streamwise
and spanwise directions is 1initially guided by the two-point correlation
wmeasurements of Comte-Bellot (1963). Her data show that the correlation
between velocity fluctuations at two points away from the walla* separated
in x; Dbecomes negligible at an x, separation of 3.26. The correlation
between motions at two points (away from the walls) separated in xj . becomes
negligible beyond an x4 separation of 1.66. thus, if we wish to employ
periodic boundary conditions in 3% and X3 directions, we must choose a
computational domain approximately twice as large as these dimensions. This
is to prevent these simple but artificial boundary conditions from seriously
influencing the results (Schumann, 1973). It should be noted, however, that
the computed two-point correlation functions provide sufficient information

regarding the adequacy of the computational domain. 1If, for example, in the

_xl-ditection the length of the computational box, Lis is too short, the

computed profile(s) of Ru(y,r) does not decay sufficiently in the neigh-

borhood of r = L;/2, and hence L; should be increased.

*Near the wall data are not available.

12



In the wall region, the important large-scale atructures are the
“streaks"” (Kline et al., 1967). These have a mean spanwire spacing corre-
sponding to A}m = 100, with the most probable spanwise spacing, Agp, about
80 in the wall units. In addition, Kline et al. (1967) and Clark and Markland
(1970) occasionally observed U-shaped vortices in the ianer region. In the
studies of Clark and Markland, the average streamwise spacing of these
structures was found to be X{m = 440. For the present computation at Re, =

640, these correspond to dimensionless spacings of

A = 440/640 = 0.687

lm

A3, = 80/640 = 0.125

Table 1 shows the characteristics of the computational grid networks in
four different calculations reported here. In this table, N1 is the number
of grid points; L; 1s the length of the computational box, h; is the grid
spacing in the i-direction, and subscripts 1 and 3 refer to the streamwise
and spanwise directions, respectively. The Lllé and L3/6 entries in Table
1 show that, except for case !, where L, < 3.26T, the size of tte computa-
tional domain in all other cases appeats to be large enough to accommodate the
important large c¢adies. Furthermore, since the pseudospectral method (Section
5) is used to approximate the derivatives in the streamwise and spanwise di-
rections, the computationai grid resolution (at least for Cases 2, 3, and 4)
appears to be just adequate to resolve structures with A, =~ and A3p spacing
in the x|~ and xj-directions, respectively. It is emphasized that the above

values for Alm and k3p are based on an ensemble of measurements, and, at a

given instant, structures with a finer spacing than A3p and A can be

tin this case, the computed two-point correlation functions R33(y,ry)
(for y > .28) 1indicate that Lj 1s not sufficiently long.
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formed which cannot be resolved with the current grid resolution. Thus, we
cannot expect the present calculations to reveal the streaky structures in the
viscoue sublayer witn mean spacing equal to X3m. As we shall see, however,
calculations do produce streaks at the finest scale permitted by the grid.
Finally, we mention that the grid meshes for pressure do not coincide
with grid meshes for velocities. Grid points for P are located midway between
those for :Ti. The equation of continuity is enforced at node points for
P, whereas the momentum equations are evaluated at node points for ';i. Note
that, in contrast to the conventional staggered grid system (Harlow and Welch,
1965), in which the three velocity components are defined at different node
points, in the present grid system all the velocities are defined at the same

grid points. This will allow for coavenient application of the wall boundary

conditions.

S. The Numerical Method

Partial derivatives in the X, and X3 directions were evaluated pseu-
dospectrally (Orszag, 1972). This involves taking the x; (or x3) rourler
transform of the function to be differentiated, multiplying the result oy
1kl (or 1k3), where k1 (k3) is the wavenumber in the x, (x3) direction,
followed by inverse transformation to get the desired derivative. This method
has the advantage that it handles the high wavenumber components of the func-
tion precisely. Thus, the use of the pseudospectral method in the x; and
xy directions gives us the best possible resolution (with a given number of
grid points) in these directions. Partial derivatives in the X,y direction
were approximated by ceantral difference formulae. These will be described
below.

The time advancement was made using a semi-implicit method (Moin et al.,

1978). The momentum equations (2.6) were recast in the form

14
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X
; 2 2 (5.1)
N 3 Ki ] Ei
+ 5 + 5 + ui (no summation)
X
i where H; contains all of the terms in (2.6) that are not in (5.1). For

discretization in time, we used the Adams-Bashforth method for H; and the
Crank-Nicolson method for the remaining terms in the right-hand side of Eq.
(5.1). For convenience, we evaluated < 2\ > and v; at the old time step

Ne

In Eq. (5.1), Hy 1includes the term

€ k%% ¥ 'ﬁac; ; ujuy
The computation of this term can be accomplished by first calculating the term
under the large overbar, taking the Fourier transform with respect to Xy
and x4, multiplying by the Fourier transform of the Gaussian filter func-
tion, and then inverse traunsforming.
Next, we Fourier transform the resulting equations in the x; and x;
directions. this converts the set of partial differential equations (5.l) to

the following system of ordinary differential equations, for every pair of

Fourier modes k; and kj with y = x, as the independent variable:

32 n+1
“ntl -
+3L1+ (k +k)] +1k612—9 = q (5.2a)
azuml ol

1 At 3 - .
SRS e

2
oy’ *“zl_”m“&“‘a)

225 n+1 N
""2"’+ 8 [1 +-2-— (k + ka):l N 1k, 64 T P“ﬂ Q (5.2¢)
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Here, B,(1 = 1,2,3) are known functions of Re,, < Vg >, and vqp and

~

Q1 represent the terms involving pressure and velocity field at time

steps n and n - 1.

The following central difference formulae,

ayz ; hj(hj + hjﬂ) hjhj_’_l EjﬂThj + hyrf
il . g1 = % (5.3b)
Y14 Va1 ~ Yq

were used to approximate

azu:+1 a[';nﬂ

respectively, in Eqs. (5.2). Here j denotes the velocity mesh point yj,

q the pressure mesh point y,, and hy= yy - yy- The resulting set of

equations, together with the equation of continuity evaluated at the pressure

node points,

~

;n+l _ u;+1
ik, /. - 2 1ky /- -
N e SO A WO 0 I3[ L om) Lo (5.4)
1 hj+1 2 3 k]

BV B!
i+l j j+l h]

leads to a system of algebraic equations for the Fourier transtorm of the de-
pendent variables at the new time step. This system is of block-tridiagonal
torm and can be solved very efficiently (see below). No-slip boundary con-
ditions on velocity were used at the walls (y = + 1) and periodic boundary
conditions were incorporated in the x; and x5 directions. Note that
pressure wall conditions are not necessary; only velocity boundary conditions
are sufficient to close the system of equations (see Moin and Kim, 1980).

In the present calculations, the core memory of the ILLIAC 1V is large

enough to hold only a few planes of the dependent variables. Therefore, it is
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important to manage efficiently the transfer of data between the core and disk
memory, where the entire data base resides. A detailed description of the
data-management technique used here is given in Kim and Moin (1979).  Here, we
briefly outline the essential steps. At each time step, the system of alge-
braic equations just described is solved by two separate passes through the
data base. In PASS 1, the right-hand side of these equations is computed.
This is accomplished by transferring two (x-z) planes of the independent
variables from the disk memory to the core memory to be processed by a double-
buffer scheme. In this manner, all the (x~z) planes are transferred to the
coce, two planes at a time.

In PASS 2, the block-tridiagonal system must be solved for each k; and
k3. In this pass, (y-k3) planes of the right-hand side vector that were
computed in PASS 1 are transferred to the core memory. Due to the limitation
of the core size of the ILLIAC IV, a special algoritlm had to be developed to
solve the block-tridiagonal system of equations. For each k1 and k3, this
algorithm requires 676 N, floating-point arithmetic operations, in contrast
to 376 N, operations for the conventional block-tridiagonal solver (Merriam,
1978). The extra computations are necessary in order to avoid the extra 1/0
passes that would otherwise have been necessary.

With a full use of the parallel processing capabilities of the ILLIAC 1V
computer and the above data-management technique, the computer time per time
step (CPU and 1/0 time) was 22 sec for 63 x 64 x bﬁ grid-point calcula-
tions and 36 sec for the computations with 63 x 64 x 128 grid points. For
the calculations shown in Table 1, the dimensionless time step, A4t, was set

at 0.0Cl for Case 1, 0.00075 for Case 2, and 0.0005 for Cases 3 and 4.

Throughout the computations, the value of

+ l—hz-%ﬁl+

w

By

I
t

C(t) = Max ‘At

U

never exceeded 0.35.
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The initial condition for Case 1 in Table 1 was obtained by assigning the
final velocity field described in Kim and Moin (1979) to the corresponding
grid points used here. Y¥or Case 2, the final velocity field from Case 1 was
simply assigned to the alternate mesh points. The values at the iantermediate
points were obtained by Fourier interpolation. A similar procedure was used

to generate the {nitial velocity field for Cases 3 and 4.

6. Mean Velocity Profile and Turbulence Statistics

Starting from the 1initial velocity field, for each case, the governing
equations were integrated forward in time until the numerical solutions
reached statistically steady states. These equilibrium states were identified
by approximate periodicity of the horizontally averaged turbulence stresses in
time. Next, in order to obtain better statistical samples, the equations were
further integrated in time and a running time average of the horizontally
averaged turbulence quantities was calculated. For each case, the calcula-
tions were considered to be complete when the time-averaged turbulence quanti-
ties became stationary. The total time of integration and the averaging time
for all the computations reported here are shown in Table 1.

Figure 1 shows the mean velocity profile < u > (unless otherwise stated
in this section, < > 1indicates horizontal as well as time averaging) for
all cases reported in Table 1. The calculated mean velocity profiles are in
good agreement with each other as well as with the experimental data of
Hussain and Reynolds (1975). It appears that, at least for the different com-
putational grid networks considered here, the law of the wall and the corres-
ponding logarithmic layer and von Kirm&n constant can be predicted with

virtually no dependence on the grid resolution. This is particularly signiti-

cant in light of the fact that the characteristic length scale of the subgrid
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scale model used here is a function of computational grid resolution. Figure
2 shows the profiles of the correlatica coefficient between the resolvable

streanwise and vertical components of turbulence fluctuatioms,
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waere u = u-~< uD. The calculated profiles for all the cases reported in
Table 1 are in good agreement with each other and with the experimental data
of Sabot and Comte-Bellot (1976). The results presented in Fig. 2 together
with those in Fig. 1 establish some confidence in the reliability of the sub-
grid scale model used in this study.

In the remainder of this paper we shall present, in some detail, the
results obtained from Case 4 in Table 1. The computational grid resolution
for this case {s better than for all the other cases; and, as will be shown
later in this section, the computational domain appears to be large enough to

include the important large eddies.

6.1. Turbulence Stresses

Vertical profiles of the resolvable mean Reynolds shear stress, < :m;>'
and the total Reynolds shear stress, < EAV > ; < 2 >, are shown in Fig.
3. These profiles indicate that the average Reynolds shear stress profile has
attained the equilibrium shape which balances the downstream mean pressure
gradient in the regions away from the walls. In the vicinity of the walls,
the viscous stresses are significant, and they, together with the total
Reynolds stress, balance the mean pressure gradient. The symmetry of the
I< Um; > + 112| profile about the channel centerline indicates that the
total averaging time and statistical sample are adequate. Moreover, it should
be noted that the subgrid-scale contribution to the total Reynolds stress is

significant only in the vicinity of the walls.
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Figures 4 and 5 show the profiles of the dimensionless resolvable tur-
bulence intensities. For comparison, some of the available experimental data
over a range of Reynolds numbers are also shown. Once again, the symmetry of
the calculated turbulence intensities about the centerline of the channel
indicates that the total averaging time was sufficient for an adequate statis-
tical sample. The overall agreement of the computed turbulence intensities
with the experisental measurements is good. In Fig. 5, the resolvable tur-

+

bulence intensities in the vicinity of the lower wall are plotted vs. y =

yqu/v. In spite of large differences among various measurements, the maximum
of the computed < 3’2 >1/2 is located at a distance farther away from the

wall (y+ = 30) than those of the measured turbulence intensities (y+ 2 13-
20). 1In addition, in the immediate neighborhood of the wall, an appreciable
fraction of the vertical component of turbulence intensity appears to reside
in the subgrid-scale motions. It should be noted that, in contrast to the
turbulence shear stress, in order to deduce the subgrid scale contribution to
turbulence intensities one has to obtain an estimate for the kinetic energy of
SGS stress, Qkk’ and use it in Eq. (2.8a). Due to the high degree of ani-
sotropy in the channel flow, especially in the vicinity of the walls, we have

been unable to obtzin a reasonably accurate estimate for Qkk’

6.2. Two-Point Correlation Functions

Two-point correlation functions

< u (x,y,2) u (x +1,,y,2) >

R (y,r,) —
i l < ﬁ:z(x,y,z) >

and

Cug(x,y,2) Ui(x,y,z + r3)

R, (ysr,) = w
143773 < Uiz(x,y,z) >
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for { = 1,2,3 (no summation) are plotted in Figs. 6 and 7 at four vertical
locations. These profiles show that in general, for small separation dis-
tances, the correlation for the velocity in the direction of the displacement
1s larger than the corresponding transverse correlations. In addition, the
longitudinal correlation in the streamwise direction extends over much longer
distances than do all other correlations. This result was also obtained by
Deardorff (1970).

The slow decay of Rll(yw = 0,025, rl) for increasing r indicates that
near the wall the eddies are highly elongated in the streamwise direction. On
the other hand, the profiles of Rll(y,r3) show that the spanwise extent of
turbulence structures near the wall is much smaller than for those away from
the wall. Thus, it appears that, in accordance with the experimental observa-
tions, near the walls the computed flow field consists of elongated streaky
structures. The structure of the flow field will be examined in some detail
in the next section.

For comparison, in Figs. 6 and 7, the profiles of Rll(yw’ri) (i = 1,3)
at yw/é = 0.11, 0.44, and 1.0 from Comte-Bellot's (1963) measurements are
included. Note that the computed and measured correlations are obtained at
slightly different vertical locations. The correlations were calculated at
selected points in the y-direction, and the comparison is made at the loca~
tions where the y-coordinate of the computed and measured correlations were
closest to each other. For small values of the non-dimensionalized separation
distance, 1y, the measured correlatiouns, Rll(yw'rl)’ are smaller than the
computed ones, whereas for larger values of r, the reverse is true. At
small values of T the discrepancy between the computed and measured cor-
relations is due to the fact that the measurehents were made at a much

larger Reynolds number (Re = 135,000) than in the preseant simulation (see
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Batchelor, 1953). However, the cause of the difference between the computed
and measured profiles for larger values of r; 18 not clear. Comparison of
the measured profiles with the computed ones obtained from calculations with
larger computational box lengths in the streamwise direction shows no improve-
ment. Thus, the streamwise exteat of the computational box does not appear to
be a factor here. However, possible inadequate resolution in the x-directioa
may suppress the formation of some sma’l scale structures. In this case, these
structures could conceivably combine to form eddies that have long streamwise
extent throughout the channel cross section. In addition, it should be men-

tioned that Comte-Bellot's axial two-point correlation data were obtained by

traversing one probe downstream of another probe. With this procedure, the
measured Rll(y,rl) may be contaminated with errors, due to the effect of the
wake of the upstream probe. However, the probe interfereuce effect should be
significant only for small separation distances.

In Fig. 7, the profiles of Rll(ylr3) are also compared with the mea-
surements of Comte-Bellot. Aside from the Reynolds number e¢ffect for small
values of £3, the agreement between the computed and measured correlations
is good. Finally, the other two spanwise correlations, Rzz(y,r3) and
R33(y.r3), were also compared with the corresponding ones measured by Comte-
Bellot. The measured R,,(y,r;) and R33(y,r3) are systematically lower

than the computed ones for the values of r43 for which these correlations

have appreciavie magnitude.

22



6.3, Skewness and Flatness Factors of Resolvable Turbulence

The velocity skewness and flatness factors which are definud as
"4

- <u?> <5
S(u)) — and F(u]}) ® ——>— (i =1,2,3; no summation)
1 < u12>372 i < ;;2 >2 v

respectively, are plotted in Fig. 8. The flatness fact.rs of all the velocity
components reach their maxima at the wall. This indicates that in the vicin-
it: of the wall the turbulence is highly intermittent. Throughout an appreci-
able portion of the channel cross section, F(i3) and S(U:’) are approximately
equal to three and zero, respectively. These values correspond to the flat-
ness and skewness factors of a Gaussian distribution. However, Kreplin and
Eckelmann (197Y9) measuied the uj probability distribution and have shown
that it is not Gaussian, even though the values of S(uj) and F(uj) corcespond
to that of a Gaussian distribution.

Near the wall, S(GI) is positive, whereas away from the wall it is
negative. This indicates that near the wall the large-amplitude U fluc-
tuations are primarily due to arrival of high-speed fluid from regions away
from the wall. On the other hand, away from the wall the large-amplitude
u fluctuations are most probably associated with low-speed fluid leaving the
wall region. These observations are in agreement with the experiuental find-
ings of Brodkey et al. (1974) and with contour plots of TV from numerical
simulation of turbulent channel flow (Kim and Moin, 1979). However, as will
become clear below, the precise vertical location (in wall wunits) of the
crossover point in the present calculation is in disagreement with experimen-
tal data. This discrepancy is probably due to inadequate grid resolution in
the computations.

In Fig. 8, the profiles of skewness and flatness factors from wmeasure-

ments of Comte-Bellot (1963) and Kreplin and Eckelmann (1979) are reproduced.
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The overall agreement between computational and experimental data is good.
This 1is particularly encouraging cousidering the significant coantribution of
small scale turbulence to these quantitinas and the difficulties associated

with their measurenments.

6.4. Resolvable Vorticity Fluctuations

Figure 9 shows the profiles of the non-dimensional rms vorticity fluc-
tuations. The spanwise ccmponent of vorticity fluctuatioms, < W;Z >1/z,
attains its maximun at the wall and decreases monotonically towards the chan-
nel centerline. The profile of the rms streamwise vorticity fluctuations,

1/2, also attains its maximum at the wall but, in addition, displays a

< wi >
local maximum at y+ = 30. At about the same location, the peak of the ras
vertical component of the vorticity is located. The mechanics underlying this
behavior of the profile of < mf >1/2 will be discussed in tiw next section.

It 1s interesting to note that, in spite of large differences between

!
different components of rms < wIz >1‘2 near the wall, awvay from the wail
(y* > 70) they are virtually identical. This is in contrast to rms velocity

fluctuations, < 312 )l/Z

noting that the relative contribution of swall scales to vorticity tfluctua-

+ The difference btetween the two may be explained by

tions 1s significantly larger than their coatribution to velocity fluctua-
tions, and away from the walls the small scales tend to be {sotropic.
Exrloiting the “isotropy” of vorticity fluctuations may be very usetul in
statistical analysis of :urtulent shear flows.

The limiting wall value of vorticity fluctuations in the present calcula-
tions are 0.20 1, and 0.13 1y tor < W;Z »1/2 and < wf )1/2. respec-
tively. The agreemeat of these computed values with experimental weasureaments
(8ee Kreplin and Eckelmann, 1979, for data from several ueasurements) is sat-

istactory.
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6.5. Statistics Involvigg_pnoolvablc Pressure Fluctuations

The root-mean square value of the resolvable wall pressure fluctuatioas,
< Pz >l/2/1w, is 2.05 for both walls. This value is in fair agrcement with
the values of 2.64 obtained by Willmarth and Wooldridge (1962), 2.31 by Will-
marth (1965), 2.6 by Ellfot (1972), and of 2.0 and 2.5 reported by Coicos
{1962) for fully developed pipe flows. However, the cowputed values are con~
siderably lower than the 3.59 obtained by Blake (1970) or Emmerling's (1973)
nmeasurements (see Willmarth (1975))-* The measurements of Blake and Emerling
were made with a pinhole microphone and by optical techniques, respectively.
Therefore, in these experiments the smaller-scale pressure variations are
expected to be better resolved. Thus, In view of these two experiments, it
appears that an appreciable portion of the pressure fluctuations may reside in
subgrid scale motions.

The profiles of the diagonal elements of the resolvable pressure strain

correlation teansor
3u, du
oy <P(3x—‘+,§-1)>
J 1,

are shown in Figs. 10 and 1l1. These terms govern the exchange of energy
between the three components of resolvable turbulence kinetic energy (linze,
1975). The negative sign for ¢g; (no sumnation) indicates loss, or transter
of energy from <‘3;2 >l/2 to other components, whereas a positive sign
denotes energy gain. These profiles show that, except in the close vicinity
of the wall, as expected, the streamwise compcnent of turbulent velocity
fluctuations transfers energy to the cross stream coaponents. However, very

near the wall, there is a large transfer of energy from the vertical componeut

®
See Willmarth (1975) for the above references, as well cs values troa
other sources.
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of turbulence intensity to the horizontal components. In this work, we shall
refer to this phenomenon as the “splatting” effect. It will be shown that the
splatting effect is an important property of the flow in the vicinity of the
walls and should be taken 1ianto account in the modeling of near-wall turbu-
lence. In fact, this phenomenon was noted in a previous study by Daly and
Harlow (1970), who included a term in their statistical wmodel of ¢ij to
account -~ its effect.

The pi- rile of the off-diagonal element ¢;,, togethe: with the pressure

a -
diffusion term - 3; < Pu > and their sum

=" 3P  — 9P
PUV --(u W‘.‘V-a-)-‘-)

in the vicinity of the lower wall are shown in Fig. 12. The last term, P,
appears in the governing equation for resolvable turbulence shear stress,
<UvVD> The components of P ., ¢,, and - g? < o >, have comparable
magnitudes aand, as will be shown below, near the wall they provide important
contributions to the governing equation for < GHV > As expected (Hinze,
1975), except in the immediate neighborhood of the wall, the sign of ¢, is
opposite to that of < ;1; >, However, near the wall, where the splatting

effect is present, ¢;, has the same sign as < uVv>, thus contributing to

the production of turbulence.

6.6. Resolvabie Turbulence Intensity and Shear Stress Balance

In phenomenological turbulence modeling, the objective is to construct
rational models for the correlations that appear in the governing equations
for the Reynolds stresses. For the resolvable portion of the flow field in

channel flow, these equationsg are:
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It should be emphasized that the above equations are for the resolvable
portion rather than the total turbulent stresses. However, considerable in-
sight into the mechanics of energy transfer and the relative importance of
various terms in the Reynolds stress equations may be gained from the corres-
ponding terms in these equations.

In Figs. 13-17, all the correlations appearing in the above equations,
and in the governing equation for the resolvable turbulent kinetic energy,

q2 = %-( ;; + ;g + 3% > , are plotted in the vicinity of the lower wall (y+
< 90). The first term in the right-hand side of Egs. (6.1) and (6.4) is the
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production term. In Figs. 13-17, the remaining five terms in the right-hand
side of each equation are labeled as coanvection, velocity-pressure gradient
(VPG), diffusion, cascade, and dissipation. The last term in each equation,
A‘j, is a relatively complicated expression involving Ve They would be
identically equal to zero if Vv, were a constant. These terms were cal-
culated and found to be negligibly small compared to the other terms in each
equation.

In Figs. 13 and 17, the production and dissipation are clearly the domi-
nant terms in most of the region shown. In the immediate neighborhood of the
wall, however, where the production term is small, viscous diffusion carries
sufficient energy inward to balance the large viscous dissipation there. In
addition, it can be seen that, aside from the close vicinity of the wall (y+
< 15), ecnergy is convected from the wall region, where production is high, to
the regions away from the wall.

The velocity-pressure gradient terms make large contributions to the
balance of the governing equations for normal and spanwise components of tur-
bulent kinetic energy. Near the wall, the triple correlation term (convec-
tion) and pressure strain and pressure diffusion terms in the < ;g >
equation are very significant. In particular, the reduction of the normal
component of turbulent energy due to the splatting effect mentioned above is
compensated by the pressure diffusion term.

Near the wall (y+ < 25), 1in the dynamical equation for Reynolds shear
stress, < u v >, the triple correlation and velocity-pressure gradieat,

P are the dominant terms. However, for y+ > 25, the contribution of

uv’
Puv {s small and the production term takes on a more active role. Moreover,
it should be noted that in this equation the viscous diffusion and “dissipa-
tion" terms appear to be negligible. This in turn implies that the governing

equation for < u v > has a hyperbolic character.
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In Eqs. (6.2)-(6.4) and in Figs. 13-17, the terms involving molecular and
eddy viscosity were combined. In Fig. 18, the dissipation of turbulent kin-
etic energy due to molecular and eddy viscosity are plotted separately. It
can be seen that, near the wall, the dissipation due to eddy viscosity is neg-
ligible compared to that due to molecular viscosity. However, in the regions
away from the wall, they are comparable. Finally, in Fig. 18, the cascade
tera, - < 3"-3~ A, ., >, 1s also plotted. Near the wall, its magnitule is

i 3xj 1]
larger than the dissipation due to eddy viscosity, and away from the wall they

are of the same order of magnitude. Therefore, as was pointed out in Sect. 2,

inclusion of < I& 33— Alj > 1in the modeling assumption for the subgrid scale

stresses is not recommended. As long as this term can be evaluated explic-

icly, one should do so.

7. Deteiled Flow Structures

In this section we shall investigate the detailed structure of the com-
puted flow field. This wiil be done by examining contour plots of instanta-
neous velocity, pressure, and vorticity field, and by tracking passive
particles in the flow. The latter approach is a simulation of laboratory
flow-visualization experiments using hydrogen-bubble wire.

Figure 19 shows the contour plot of u in the x-z plane at y+ =
6.26 and at the non-dimensional time, ¢t = 4.3. In all the contour plots
shown here, positive values are contoured by solid 1§nes and negative values
are contoured by dashed lines. In addition, all the instantaneous plots are
obtained at the non-dimensional time ¢t = 4.3. The distinct feature of the
flow patterns in Fig. 19 is the existence of highly elongated regions of high-
speed fluid (IT" > 0) located adjaceant to the low-speed regions. This pic-
ture of the flow in the vicinity of the wall is in agreement with laboratory
observations. In their visual studies, Runstadler et al. (1963) and, more
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recently, other investigators have clearly demonstrated that the viscous
sublayer consists of coherent structures of high- and low-speed streaks alter-
nating in the spanwise direction. These studies have also shown that the
streaks are the unique characteristic of the wall-layer turbulence, and they
are ahsent in the regions away from the walls. Figure 20 shows the contour
plot of U in an x~2 plane far away from the wall (y"' = 400). In this
region, in agreement with experimental observations, it 1is clear that the
streaks and, for that matter, any definite orxganized structures are absent in
the computed flow patterns.

In Fig. 19, one can distinguish several localized regions of very high-
speed fluid (large concentration of solid lines) that are located on the high-
speed streaks. Figure 21 shows the corresponding coantour plot of pressure
fluctuations, obtained at the same vertical location (y+ = 6§.26). It can be
seen that, in contrast to Tx'", the pressure patterns are not elongated in the
streamwise direction. However, the regions of high-pressure fluctuations are
generally located in the vicinity of the "pockets” (see Falco, 1978) of high-
speed fluid. This correspondence together with examination of the contour
plots of v (see below) suggest that these pockets are "quasi-stagnation”
regions which are formed as a result of the arrival of high-speed fluid to the
wail layer. Moreover, the contour plots of normal and spanwise velocity
fluctuations siow that, like the pressure patterns, they do not exhibit
elongated streaky structures. These observacions imply that the wall layer
may be viewed as a bed of low-speed fluid that is constantly subjected to the

arrival of energetic eddies from the layers above. These energetic eddies

(with the help of the strong mean shear) form ‘the high-speed streaks in the

wall region.
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Figure 22 shows the ccatour plot of spanwise vorticity fluctuation,

31.2’:
a,

in the same x-zx plane as in Fig. 19. Virtually all the regions with large
vorticity fluctuations are assocfiated with negative w; (large concentration
of dashed lines). In these regions, the streamwise velocity profile has ex-
cess momentum with respect to the mean velocity (1.e., :" > 0). It should
be pointed out that, in the vicinity of the wall, the relatively large posi-
tive values of S(-J") (Fig. 8) indicate that the existence of regions with

——

—r
u < 0 are more probable than those with u > 0. However, the structures

"

with large magnitudes of u are most likely associated with positive values
of T This is in agreement with the above observations.

Figures 23 and 24 show the T and v patterns in an x-y plane (z =
4h3) which pass through the high-speed region in the lower left-hand corner
of Fig. 19. In Fig. 24, a positive 7 (the solid lines) represents fluid
moving in the positive y-direction, and a negative v (the dashed lines)
represents fluid woving in the negative y-dirzction. It can be seen that, in
the vicinity of the walls, the high-speed fluid elements (:x_” >> 0) corres-
pond to the sweep event, 1i.e., V< 0 near the lower wall, and Vv > 0 near
the upper wall. On the other hand, the low-speed fluid elements are generally
being ejected from the wall regions. Clearly, both the sweep and ejection
events have a positive contribution to the production of turbulent kinetic
energy. One of the distinct features of Fig. 23 is that the high-speed struc-
tures near the walls are inclined at oblique angles with respect to the walls.
This i{s the consequence of the action of mean shear on any fluid element from

the outer layers that is moving toward the walls. Similar large-scale struc-

tures have been identified in the laboratory by Rajagopalan and Antonia

31



(1979). In their measurements, they report the mean angle of inclination of
these structures to be 13°.

Figures 25 and 26 show the contour plots of \T” and Vv 1in a y-2
plane (x = 0). In these plots, only the lower half of the channel is shown.
Throughout a significant portion of the region displayed, there is a negative
correlation between u and v. Some of the regions where the correlation
between T;” and v 18 negative extend from the wall region to the channel
centerline. In the wall region, the vertical and spanwise extent of the
eddies is significantly smaller than in the regions away from the wall. In
particular, near the wall in Fig. 24 the array of high- and low-speed fluid is
clearly discernible.

Figure 27 shows the ;m, :7, and w patterns in the close vicinity of
the wall (y+ < 46, y,/6< 0.072) 1n the same y-z plane as in Figs. 25 and
26. Here, the region near the wall is magnified, and hence the contour lines
are highly distorted. In Fig. 27a, the mean spacing between two adjaceat
high-speed streaks (or low-speed ones) 1is about 250 in the wall units. The
mean streak spacing can also be obtained from the R (yy = 0.025, ry) pro-
file in Fig. 7. In this figure, the negative peak occurs at r; ~ 125. This
is the distance between two adjacent high- and low-speed streaks. Therefore,
the corresponding distance between two high- (or low-) speed streaks is about
250 in the wall units. These two values are, surprisingly, in good agreement
with each other but are considerably larger than the generally accepted value
of Agm = 100. Therefore, as was pointed out in Sect. 3 for the Reynolds num-
ber considered in this study, the computational grid resolution 1is inadequate
to resolve the streaks at their proper scale. However, as we have seen, the

computed flow patterns, in the wall region, do exhibit the streaky structures

at the finest scale permitted by the grid. The Kyj(yy = 0.025,r9) profile
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from Case 1 in Table 1 shows that the mean streak spacing in that calculation
1is about 330 in the wall units. Thus, there is a definite improvement in the
computed streak spacings with refinement of the computational grid resolution.

In Fig. 27b, one can see an array of positive and negative regions of
v-contour lines that correspond to fluid moving away from and toward the wall.
Intense shear layers are located at the interface betwecn the energetic fluid
streams moving toward and away from the wall. These shear layers may undergo
Helmholtz-type instabilities in the y-z plane that result in the formation
of streamwise vortices. These vortices can clearly be identified in Fig. 28,

where the contour plot of w, in the same y-z plane is shown.

Comparison of Figs. 27b and 27c demonstrates that, in the close vicinity
of the wall (y* < 10), the high-speed vertical streams with negative normal
component of velocity produce a flow pattern similar to that of a jet impinge-
ment on a plate. On the other hand, the high-speed vertical streams with
positive normal component of velocity are formed from two streams with op-
posite velocities in the spanwise direction. Since the high-speed fluid
elements arriving at the wall region are more energetic than the viscous-
dominated fluid woving away from the wall, there is a net transfer of energy
from the normal component of turbulence intensity to the horizontal components
(the splatting effect). This appears to be the reason for the behavior of the
pressure-strain correlations in the vicinity of the wall (Fig. 1ll). In addi-
tion, it should be noted that the impingement of fluid from outer layers on
the wall leads to stretching of spanwise vorticity fluctuations (as well as
streamwise vorticity) which can be an important mechanism for its amplifica-
tion.

Near the wall, in Fig. 27c, one can see large gradients of the spanwise

velocity component in the normal direction. On the other hand, due to the
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wall-suppression effect, the vertical component of turbulence intensity is
degraded there. Large values of 03w/dy lead to high values of streamwise
vorticity fluctuations in the neighborhood of the wall. In Fig. 28, it can
be seen that the regions with large w, are concentrated near the wall.
Here, two distinct areas can be identified: the first is slightly above the
wall (10 < y+ < 40), where the large amplitudes of w, are due to revolving
fluid elements induced by the intense shear layers shown in Fig. 27b; the
second is in the immediate neighborhood of the wall (y* < 10), where the

splatting effect and no-slip boundary conditions lead to large values of

dw/3y and consequently wee In Fig. 9, the profile of < m,z( >1/2  ateained

its maximum at the wall and displayed a local maxtmum at y* = 30. The maxi-
mum at the wall is a result of the splatting effect, and the local maximum is
located in the first region described above.

So far, we have examined the eddy structure of the turbulent channel
flow by considering two-dimensional contour plots of instantaneous velocity,
pressure, and vorticity field. To gain a better insight into the unsteady
dynamics of the flow, a computer motion picture simulating flow-visualization
experiments with hydrogen-bubble wires was made. Several sequences of film
were generated. At regular intervals in each sequence (47 = 0.015 in non-
dimensional time units), 128 particles were generated along a line either
parallel or normal to the walls. These particles were followed until the
memory capacity of the graphic display unit was depleted. Here, we briefly
discuss some of the still photographs taken from the film.

Figure 29 shows the particles generated along a line parallel to the
z-axis ("z-wire") and located near the lower wall (y* = 12). In this figure,
the wall-layer streaks are clearly evident. Un several occasions when viewing
the motion pizture, it was observed that the particles generated near the wall

were violently ejected to regions as far away from the wall as yt = 400.
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Figure 30 shows the time history of the particles generated along a
"g=wire” which is located distant from the wall (y"‘ = 319). It can be seen
that the coherent streaky structures that are the characteristic of wall layer
turbulence are absent in the regions away from the walls.

In Fig. 31, the time history of the particles generated along a line
normal to the walls is shown. The formation of inflexional velocity profiles
and strong shear layers near the walls is very similar to the correspoanding
photographs obtained by Kim et al. (1971) in their flow-visualization
studies. This resemblance is even more pronounced in Fig. 32, where 128
particles were generated along the same vertical line, as in Fig. 31, but
extended from the lower wall to y = -0.5. Here, one can see several profiles
with multiple inflexion points. In addition, in this figure, the formation of
a streamwise vortex with an axis of rotation which is tilted outward in the

flow direction and its ultimate breakup are clearly discernible.

8. Summary and Conclusions

In this study, turbuleant plane Poiseuille flow has been numerically sim-
ulated at a moderate Reynolds number. Most of the calculations were carried
out with 516,096 grid points on the ILLIAC IV comuter. The agreement of the
computed mean velocity profile and turbulence statistics with experimental
data is good.

The resolvable portion of the statistical correlations appearing in the
Reynolds stress equations was calculated. The role and relative importance of
the various terms in these equations were discussed.

The structure of the flow field was examined in some detail. It was
found that, in agreement with experimental observations, the computed flow
pattern in the wall region was characterized by coherent structures of low-
and high~speed streaks alternating in the spanwise direction. In this region,
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the large-amplitude, streamwise velocity fluctuations were primarily due to
the arrival of high-speed fluid elements from adjacent layers. The regions
with large-amplitude, streamwise vorticity, w,, were concentrated near the
wall. Slightly above the wall, these regions contained revolving fluid ele-
ments induced by strong shear layers in the cross-stream plane. In the imme-
diate neighborhood of the wall, the splatting effect led to large magnitudes
of Wy and 1instigated transfer of energy fror the normal componeat of
turbulent kinetic energy to the horizontal compoaents.

With three-dimensional, time-dependent, numerical simulation of turbu-

lence, one 1s capable of obtaining detailed, instantaneous information about

the flow at thousands of spatial locations. This information can effectively
be used to study the structure and statistical properties of the flow and
their relation to each other. Furthermore, with the aid of computer graphics
and the ability to move back in time and recreate an event in the flow aftev
it has already been observed, one has the unique opportunity to study the
mechanics of turbulent shear flows. Thus, with the anticipated advances in
couputer technology, it 1s expected that in the near future nunerical siamu-
lation of turbulent flows will make important contributions to turbulence

research.

This work was carried out in cooperation with the Thermo- and Gas-Dynamic
Division of the Ames Research Center, NASA. We are indebted to our
colleagues, A. leonard, R. S. Rogallo, and A. A. Wray, Ames Research Center,
and J. H. Ferziger and W. C. Reynolds, Stanford University, for numerous

helpful discuesions during the course of this study.
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Inte-

Case N N L/§ L,/& nt ot h /6 h,/§ gration Average
1 3 L 3 1 3 1 3 Hael  Time
1 64 66 4% 2a 1257 2009 0.1% 0.033 4.0 1.6
2 64 128 4w L 125.7 15.7 0.196 0.025 3.65 0.75
3 64 128 3 n 94,2 15.7 0.147 0.025 39 1.6
4 64 128 2n L 62.8 15.7 0.098 0.025 4.6 2.3
tHa §/u; units.
Table 1. Specifications of the computed cases
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Fig. 4. Resolvadble turbulence intensities and coaparison with experimental
data.
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Fig. 5. Resolvable turbulence intensities in the vicinity of the lower wall
and coaparison with experimental data.
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Fig. 21. Contours of P in the x-z plane at y" = 6.26.
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Fig. 25. Contours of T 1n the y-z plane at x = 0. (Only the lower half
of the channel is shown.)

Flg. 26. Contours of v 1in the y-z plane at x = 0. (Only the lower half
of the channel is shown.)
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Fig. 29.

Particles penerated from a

"z=wire"
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Fig. 30. Particles generated from a “z2-wire"

located at y = -0.5.
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