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Parvia Moir*and John M*
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Fully developed turbulent channel flow has been simulated americally at

. Reynolds number 19800, based on centerline velocity and channel half width.

The large-scale flow field has been obtained by directly integrating the fil-

tered, three-dimensional, tine-dependent, Davies-Stokes equations. The small-

scale field motions were simulated through an eddy viscosity model. The

calculations were carried out on the ILLIAC IV computer with up to 516,096

grid points.

The computed flow field was used to study the statistical properties of

the flow as well as	 its	 time-dependent	 features.	 The agreement of the

computed mean velocity	 profile,	 turbulence statistics,	 and detailed flow

structures with experimental data is good. The resolvable portion of the

statistical correlations	 appearing	 in	 the Reynolds	 stress	 equations are

calculated. Particular attention is given to the examination of the flow

structure in the vicinity of the wall.

I. Introduction

Large-eddy simulation (LBS) is a relatively new approach to the calcula-

tion of turbulent flows. The basic idea stems from two experimental observa-

tions. First, the large-scale structure of turbulent flows varies greatly

from flow to flow (e.g., jets vs. boundary layers) and consequently is diffi-

cult, if not impossible, to model in a general way. Second, the small-scale

turbulence structures are nearly isotropic, very universal in character

(Chapman, 1979) and hence such sore amenable to general modeling. In LBS,

one actually calculates the large-scale notions in a time-dependent, three-

*Portions of this work were carried out while the authors held NRC
.';	 Research Associateships at Ames Research Center.
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dimensional computation, using for the large-scale field dynamical equations

that incorporate simple models for small-scale turbulence. Only the part of

the turbulence field with scales that are small relative to overall dimensions

of the flow field is modeled. This is in contrast to phenomenological turbu-

lence modeling, in which all the deviations from the mean velocity profile are
•

	

r	 modeled.

A typical LES calculation for wall-bounded turbulent flows imposes a

great demand on computer speed and memory. At present, therefore, the use of

LES for practical engineering applications is admittedly uneconomical. How-

ever, for simple flows, such calculations are just within reach of the largest

present computers. The information generated by these computations can in

turn be used as a powerful research tool In studies of the structure and

dynamics of turbulence. In addition, the various correlations that can be

obtained from the computed large-scale flow field may be used iv developing

phenomenological turbulence models for complex flows. These are the consid-

erations that motivate the present development of the LES method.

The first application of LES was made by Deardorff (1510), whu simulated

a turbulent channel flow at an indefinitely large Reynolds number. In this

pioneering work he showed that three-dimensional computation of turbulence (at

least for simple flows) is feasible. Using only 6 , 720 grid points, he was

able to predict several features of turbulent channel flow with a fair amount

of success. Of particular significance was the demonstration of the potential

of LES for use in basic studies of turbulence.

Following Deardorff ' s work, Schumann ( 1973, 1975) also calculated turbu-

lent channel flow and extended the method to cylindrical geometries (annuli).

He used up to ten times more grid points (65,536) than Deardorff and an

improved subgrid scale (SGS) model. In addition to dividing SGS stresses into

2



a locally isotropic: part and an iahomc.-Qeneous part, he employed a separate

partial differential equation for SGS turbulent kinetic energy. However, the

added differential equation did not improve the results over the calculations

in which only an eddy viscosity model was used ( Schumann, 1975).

Gr8tzbach and Schumann ( 1977) extended their channel flow calculations to

account for temperature fluctuations and heat transfer. Later extensions by

GrBtzbach include calculations of secondary flows in partly roughened chan-

r	
nels, inclusion of buoyancy effects, and liquid metal flows in plane channels

and annuli. A recent -4view of this group's work in LES was given by Schumann

et al. (1979).

In all of the above computations, the dynamics of the inner region of the

boundary layer (viscous sublayer and butter layer) was essentially ignored.

It is in this region that virtually all of the production of turbulence

kinetic energy takes place (Townsend, 1956; Kim et al., 1971). Artificial

boundary conditions in the logarithmic region were used to simulate the inner

layers. Aside from the fact that these boundary conditions are designed to be

consistent iu the mean with the law of thx wall, there is little justification

or experimental evidence to warrant their use for the detailed flow field.

however, the computations of Deardorff (1970) and especially those of the

Karlsruhe group have produced successful comparisons with experimental data in

the regions away from the walls. With a relatively modest number of grid

points, they have been able to extract considerable information of practical

interest from their computations.

The first numerical simulation of turbulent channel flow that computed
L	 ^

rather than modeled the flow in the immediate neighborhood of the wall was

that of Moin et al. (1978). In this calculation only 16 uniformly spaced grid

R•

points were used in each of the streamwise, x, and spanwise, z, directions

3
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and 65 non-uniformly spaced grid points in the direction normal to the walls.

The computational grid resolution in the lateral directions was inadequate

for resolving the experimentally observed coherent structures in the viscous

sublayer. Nevertheless, the computations did display some of the well-

established features of the ilow in the wall region. The results of this

computation were encouraging enough to justify the undertaking of the present

calculations.

In this paper, we describe our numerical studies of incompressible turbu-

lent channel flow with up to 516,096 grid points. Particular attention is

given co the investigation of the detailed flow structures. The Reynolds

number, Re., based on shear velocity, uT , and channel half-width was set

at 640. The corresponding Reynolds number based on centerline velocity and

channel half-width is about 13800 (Hussain and Reynolds, 1975). The results

of this work can be summarized briefly by stating that, in the present compu-

tations, the calculated mean velocity profile and turbulence statistics are in

food agreement with the experimental data. The detailed time-dependent flow

structures are strikingly similar to those observed experimentally. In

addition, the resolvable portion of several statistical correlations which

play an imp-3rtant role in phenomenological turbulence modeling are computed.

These results tend to indicate that the LES method can be used very effec-

tively in supplementing laboratory measurements of turbulent shear flows.

t

2.	 Governing Equations for the Large-Scale Field

In LES, each flow variable f is decomposed as follows: 	 l

f . f + f'
	

(2.1)

where	 f	 is the large-scale component and	 f'	 is the residual field.
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Following Leonard (1974), we define the large-scale field as

3
T(xl ,x2 ,x3 )	 n Gi (xi ,xi) f(xi,x2,x3) dxldx2dx3	 (2.2)f jal

where Gi is the filter function in the i-direction and the integral is ex-

tended over the whole flow field. In planes parallel to the walla in which

the flow is statistically homogeneous, we use the Gaussian filter function:

1/2
G I (x i ,xi) - GT-)	 exp I -b(x i - xi) 2/ i	 ,	 i	 1,3	 (2.3)

i	 L	 JJ

here, Ai 2hi (Kwak et al., 1975), hi is the computational mesh size in

the i-direction, and subscripts 1 and 3 refer to the streamwise and spanwise

directions, respectively. The corresponding integrals in (2.2) are extended

over the entire (x l ,x3) plane. The width of the Gaussian function char-

acterizes the size of the smallest eddies in the homogeneous directions that

are retained	 in the filtered field	 (the largest eddies in the residual

f leld) .

Due to variation of turbulence length scale in the direction normal to

the walls, x1 , one should use a filter with a variable width, A2 (x2 ) . In

this direction a sectionally continuous "top hat" filter function was used.

Let 
x2i 

be the location of the J th computational grid point in the ver-

tical direction; we define the filter function G2 for the control volume

surrounding 
X2  

as follows:

(A+(x2 ) + &-(x 2 ))_
1
 for x2 - A-(x2 ) < x2 < x2 + A+(x2)

6 2 (x2  x2)	 (2.4)

0	 forx' >x2 +A+(x2) and xl<x2-A(xl)

where
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a+(x2) 
•	 (x2+1 -	

1

) 	1	 1
for 1 (x2 + x2 ) < x2 < T (x2 	+ x2 )

^ (x2 )	 2 (x2 - x2 )	 j	 ^-1	 ^1	 ^
^	 J-1

r	 The functions	 ^+ and D	 are sectionally constant functions of x2,

therefore, in the open neighborhood surrounding each computational grid point,

x2
i -
	 < x2 < x2 + D+ , dA+/dx2 • dA- /dx2 • 0. An important consequence

of this property of a and C and the form of G 1 and G3 ( function of

xi - xi, 1 - 1,3) is the commutivity of the filtering operation and partial

differentiation operators in these neighborhoods and in particular at the

computational grid points (see Moin et al. (1978)), i.e.,

'f	 aT	
(2.5)•

Note that, with the application of G21 the filtered variable f will be

sectionally continuous and the filtering in (2.3) is interpreted as an average

over grid spacings in the x2-direction. This is a step prior to complete

discretization of flow variables for numerical computation (Section 3).

Schumann (1975) and co-workers use a filtering function similar to (2.4)

in all spatial directions.	 When applying this averaging process to the

Navier-Stokes equations, they evaluate the integral in the direction of the

derivatives analytically and then have to deal with averages over the faces of

the control volumes. This process introduces three types of surface-averaged

as well as volume-averaged variables. The extra variables have to be related

to each other in some way.

Now, applying the filtering operation (2.2) to the incompressible Navier-

i
Stokes and continuity equations, we obtain the dynamical equations of the

large-scale flow field,

6
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au  - e u	 + a l u u	 2P 
+ d	 a T + l 

a ui	
(2.6)Tt — ijk j' t	 j j	 TI—  i1 Txjj ij I T x^'j

8ui

, X, 0 	 (2.7)

where we have decomposed u i as in (2.1) and

"'	 8 u

Wk	
epgk 3^

QT i j = Q i j 	 _ d i j	 (2.8a)

Q
ij 

= ui j + u^ui + ujui	 (2.8b)

P	 P + —Tk

Here, the variables are non- dimensional ized using the channel half -width d

and the wall shear velocity u T . The calculations were carried out for a

fixed streamwise mean-pressure gradient which is accounted for by the bil

term in the momentum equation (2.6).

There are two points associated with Eq. (2.6) that require further

explanation.

	

	 First, the convective term, a uiuj , is written in the
j

equivalent but more cumbersome form

_	 a	 1e i jku j'k + 7X_ 7 u ju j
This was done because it can be shown (Hansour et al., 1977) that, with this

form in the absence of time-differencing errors, conservation of energy,

momentum, and circulation in inviscid flows will be obtained when virtually

any difference scheme is applied to (2.6). Second, it should be noted that

the so-called Leonard (1974) stress term

7



i

Aij • u
iu j - uiuj	 (2.9)

is not equal to zero. One has the option of calculating the term with double

bars explicitly, or, as Deardorff (1970) has done, to incorporate 
Aij 

in

whatever modeling assumption is used for 
Tij 

(see the next section). In the

present work, with respect to the Gaussian filter in the horizontal directions

where the partial derivatives are calculated pseudos pec t rally (sec. 5), we

have chosen the former option. In Sec. 6 we shall show that Aij can be

quite significant; hence, including it with Tij is not recommended. With

respect to the top-hat filter in the x2-direction where the derivatives are

evaluated by second-order finite-difference schemes, the latter option was

chosen. Here, it can be shown that (Shaanan et al., 1975) A i j is of the

same form and order as the truncation error of the finite-difference scheme;

hence its explicit calculation is not justified. However, when higher-order

finite-difference schemes or spectral methods are used to evaluate the deriv-

atives in the x2-direction, Aij should be calculated explicitly.

3.	 Residual Stress Model

The basic idea behind large-eddy simulation is that the large-scale

motions, which are calculated explicitly, provide most of the important

turbulent transport and, hence, the influence of the small eddies can be

modeled relatively crudely. In the present calculations, we have used an eddy

viscosity model for Tij similar to that used by Schumann (1975).

R

Iij	
- 2vT(S ij - < S ij >) - 2v  < Sij >	 (3.1)

where

i 1 aui * auj
S j
	 x
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and < > denotes the average o%er a plane parallel to the walls. The small-

scale eddy viscuattles vT and vT represent the action of the unreseivel
scales of motion on those that are resolved. Hence, as the resolution gets

better, vT and vT should get smaller. Since the filter widths represent
the largest length scales that are not resolved, these widths are the charac-

teristic size of the largest (and hence most important) residual motions.

The first term in (3.1) with

V  - ( CaA) 2 32(S lj - < 31j MSij - < Sij >)	 (3.2)

is Smagorinsky's model and can be derived from equating tue subgrid scale

(SGS) production and dissipation in homogeneous turbulence. This model was

used successfully in the numerical simulation of the decay of isotropic

turbulence by Mansour et al. (1977) and by Deardorff (1970) (with S ij - <Sij>

replaced by Si p in the calculation of the core region of turbulent channel

flow. In the expression for vT (Eq. (3.2)), a is the characteristic

length scale of the largest subgrid scale eddies, here assumed to be (Dear-

dorff, 1970)

A - (A1 A2e3 ) 1/3	 (3.3)

Ca is a dimensionless constant, and Ai is the filter width in the i-

direction. In addition, in order to account for low Reynolds number SGS

turbulence near the wall, the above expression for Q was multiplied by the

Van Driest (1956) exponential damping function, 1 - exp(-y+/:a+), with e -

25 and Y+ - Ywut / v : the distance to the nearest wall in the wall units. In

all the calculations reported here which were performed with different grid

sizes, the value of Cs - 0.065 was used. Numerical experiments indicated

that the use of a valua much larger than this one resulted in exceosive

9



damping of the resolvable turbulence. When lower values of Cs were used,

excess energy accu. ►ulated near the high wave number and of one-dimensional

energy spectra. In general, however, the computed turbulence intensities were

rather Insensitive to small perturbations ( a 20%) of Ca . Note that the

above value of Cs corresponds to Cs - 0.1, used by Deardorff (1970), if Ai

In (3.3) is replaced by hi.

Near the wall the important large scale structures are the "streaks"

(Kline et al., 1967). These structures are relatively finely spaced in the

spaawise direction. Their mean spacing characterizes the length scale of the

eddies in the viscous sublayer ( and hence the thickness of the viscous sub-

layer). Thus in a calculation with inadequate resolution in the spanwise

direction, the thickness of the viscous sublayer will probably be larger than

its physical counterpart. This in turn will lead to lower gradients of the

computed mean velocity profile and consequently insufficient production of the

resolvable turbulent kinetic energy. Therefore, in order to account for the

effect of some of the streaks that reside in SGS motion on the mean velocity

profile, the second term in (3.1) was introduced in the model for t i j . 4s

was mentioned earlier, Schumann (1975) ha,i also decomposed SGS stresses into

two parts, as in (3.1) . The first was to account for locally isotropic SGS

stresses, and the second to account for inhomogeenetties due to the nonzero

companant of mean strain.

It, the preseat study, the eddy viscosity, VT. is defined as follows

V
T 

a c(UA3 ) 1 32 < Si , > < S i— >	 (3.4)

where c a 0.065 is a dimensionli,-^:.e constant and D a I -- exp(-y*2 /At2 ) is a

wall-damping function with A♦ 	 25, as before. It should be pointed out

that the characteristic length± scale associated with UT is A 3 , the filter

10



width in the spanwise direction. As the resolution in the z-direction is

improved, vT will approach zero. Moreover, ft should be noted that, due to
its functional form (function of y only), vT does not appear directly in

the governing equations for the resolvable portions of turbulence stresseN and

hence does not contribute to the dissipation terms in these equations. This

is in contrast to vT, which will supplement the molecular viscosity as a

dissipating agent for the resolvable turbulence stresses. However, vT con-

tributes to the dissipation of mean kinetic energy, ji< u >2 , and therefore

indirectly to the production of resolvable turbulence stresses. The value of

c in Eq. (3.4) was chosen to be 0.065 from a numerical experiment. it is

,approximately the minimum value with which the resolvable turbulent kinetic

energy can be maintained (i.e., it did not decay indefinitely). This numeri-

cal experiment was performed with one of the computations reported in Table 1

(Case 1), but the same constant was used in all the other calcule,tions repor-

ted here.

4.	 The Computational Grid

Three factors influence the choice of the computational grid. First, the

mesh size should be small enough to resolve the important scales of motion ill

the flow. Secoc:u, the computational domain should be large enough that arti-

ficialities of the boundary conditions do not influence the statistics of the

solution in an undesirable way. Third, the availability of computer resource

restricts the size of calculation that can be done.

In the direction normal to the walls (-1 < y < 1) t 63 grid points with

C

	 non-uniform spacings were distributed. The following transformation gives the

location of grid points in this direction:

i

tFor notational simplicity, we occasionally shift from 	 (xl9x2,xj)9

}	 (ul.u2,u3) to ( x ,y .z), (u,v.w).

i,

r



y	 I tank Iti tanh 1(a)I	 (4.1)

where

A

J

4j _ - 1 + 2(j - 1)/(N2 - 1)	 j - 1,2,...,N2

N2 is the total number of grid points in the y-direction. Here a is the

adjustable parameter of the transformation (0 < a < 1); a large value of

a distributes more points near the walls. In our computations we have used

a - 0.98346, N2 - 63. This value of a was selected so that the above grid

distribution in the y-direction is sufficient to resolve the viscous sub-

layer (y+ < S).

The selection of the length-of the computational box in the streanwise

and spanwise directions is initially guided by the two-point correlation

measurements of Comte-Bellot (1963). Her data show that the correlation

between velocity fluctuations at two points away from the walls * separated

in x1 becomes negligible at an x1 separation of 3.26. The correlation

between motions at two points (away from the walls) separated in x3 . becomes

negligible beyond an x3 separation of 1.66. thus, if we wish to employ

periodic boundary conditions in x 1 and x3 directions, we must choose a

computational domain approximately twice as large as these dimensions. This

is to prevent these simple but artificial boundary conditions from seriously

influencing the results (Schumann, 1913). It should be noted, however, that

the computed two-point correlation functions provide sufficient information

regarding the adequacy of the computational domain. If, for example, in the

xi-direction the length of the computational box, L 1 , is too short, the

computed profile(s) of Rii(y,r) does not decay sufficiently in the neigh-

borhood of r . L 1 /2, and hence L1 should be increased.

'Near the wall data are not available.
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In the wall region, the important large-scale atructures are the

"streaks" (Kline et al., 1967). These have a mean apanwire spacing corre-

sponding to Alm - 100, with the most probable spanwise spar.Lng, a3p , about

4f, 80 in the wall units. In addition, Kline et al. (1967) and Clark and Markland

(1970) occasionally observed U-shaped vortices in the inner region. In the

studies of Clark and Markland, the average streamwise spacing of these

structures was found to be lim - 440. For the present computation at Re = 2

640, these correspond to dimensionless spacings of

llm - 440/640 - 0.687

lap	 80/640 - 0.125

Table 1 shows the characteristics of the computational grid networks in

four different calculations reported here. In this table, N i is the number

of grid points; Li is the length of the computational box, h i is the grid

spacing in the i-direction, and subscripts 1 and 3 refer to the streamwise

and spanwise directions, respectively. The L 1 /6 and L3/6 entries in Table

1 show that, except far case 1, where L3 < 3.26 t , the size of tte computa-

tional domain in all other cases appeals to be large enough to accommodate the

important large eadies. Furthermore, since the pseudospectral method (Section

5) is used to approximate the derivatives in the streamwise and spanwise di-

rections, the computational grid resolution (at least for Cases 2, 3, and 4)

appears to be ,just adequate to resolve structures with Alm and a3p spacing

in the xi- and x3-directions, respectively. It is emphasized that the above

valueb for llm and "3p are based on an ensemble of measurements, and, at a

given instant, structures with a finer spacing than a 3p and aim can be

t In this case, the computed two-point correlation functions R33(y,r3)

(for y > .26) indicate that L3 is not sufficiently long.
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U	 formed which cannot be resolved with the current grid resolution. Thus, we

cannot expect the present calculations to reveal the streaky structures in the

viscous sublayer with mean spacing equal to aim . As we shall see, however,

calculations do produce streaks at the finest scale permitted by the grid.

Finally, we mention that the grid meshes for pressure do not coincide

with grid meshes for velocities. Grid points for P are located midway between

those for u i . The equation of continuity is enforced at node points for

P, whereas the momentum equations are evaluated at node points for u i . Note

that, in contrast to the conventional staggered grid system (Harlow and Welch,

1965), in which the three velocity components are defined at different node

points, in the present grid system all the velocities are defined at the same

grid points. This will allow for convenient application of the wall boundary

conditions.

5.	 The Numerical Method

Partial derivatives in the x l and x3 directions were evaluated pseu-

dospectrally (Orszag, 1912). This involves taking the x l (or x3) eourier

transform of the function to be differentiated, multiplying the result uy

Al (or ik3), where k l (k3) is the wavenumber in the xl (x3) direction,

followed by inverse transformation to get the desired derivative. This method

has the advantage that it handles the high wavenumber components of the func-

tion precisely. Thus, the use of the pseudospectral method in the x l and

X3 directions gives us the best possible resolution (with a given number of

grid points) in these directions. Partial derivatives in the x 2 direction

were approximated by central difference formulae. These will be described

below.

The time advancement was made using a semi-implicit method (Moira et al.,

1978). The momentum equations (2.6) were recast, in the form

14
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2

• - ap + (1 + 6 i2 ) < VT ? + 6il vT + ^e 
1	 t ax 
1	

a2ui	
a2ui	 (5.1)

+ Re  ax2 + ax3 + Hi (no summation)

where Hi contains all of the terms in (2.6) that are not in (5.1) . For

discretization in time, we used the Adams -Bashforth method for Hi and the

Crank-Nicolson method for the remaining terms in the right-hand side of Eq.

(5.1). For convenience, we evaluated < vT > and vT at the old time step

n.

In Eq. (5.1), Hi includes the term

1 _ _
e ijkujwk + 

TxjI 
u 

j 
u j

The computation of this term can be accomplished by first calculating the term

under the large overbar, taking the Fourier transform with respect to xl

and x3 , multiplying by the Fourier transform of the Gaussian filter func-

tion, and then inverse transforming.

Next, we Fourier transform the resulting equations in the x l and x3

directions. this converts the set of partial differential equations (5.:) to

the following system of ordinary differential equations, for every pair of

Fourier modes kl and k3 with y = x2 as the independent variable:

a2un+1

	

1 + B	 1 + 
At 

( k2 + k2)	
un+l + ik S 

of Pn+l =	 (5.2a)
ay 	 1 L	 Re	 1	 3	 1	 1 1	 1

2"n+1a u

2 + 62 Li  + W
At

 ( k12 + ' 3 )] u2 1 + t$2 	a- +;---	 Q2	
(5.2b)

ay	 y

2"n+l

	

a u3 + 
a	 1	

)	 un+l + i b at Pn+l = Q	 (5.2c)
a
`

 
y2 3	 Re 1 k3 ] 3	 k3 3 'F'	 3

15



Here, 01(1 - 1,2,3) are known functions of Re,, < VT >n , and vTn and

Qi	 represent the terms involving pressure and velocity field at time

steps n and n - 1.

The following central difference formulae,

a222	 —	 f _	 fi_	 f
= 2 

h (h + h J+l ) - h 
i 

h 
J+l + J+l hi + hJ."I	

(5.3a)

of	 . f q+l	 fq
Ty q	 yq+l - yq

were used to approximate

(5.3b)

21a u 	 "n+l

2'^ and ap
ay	 Y

respectively, in Eqs. (5.2). Here j denotes the velocity mesh point yj,

q the pressure mesh point y q , and hi - yj - yj- 1 • The resulting set of

equations, together with the equation of continuity evaluated at the pressure

node points,

"n+l _ "n+luik1 (u^n+ln+l) + u+	 2 J+l	
3 + ik3(n+l + un+l - 0	 (5.4)

-2-11
	 1 j 	hj+l	

_T_
3J+l 

3
1

leads to a system of algebraic equations for the Fourier transform of the de-

pendent variables at the new time step. This system is of block- trid iagonal

norm and can be solved very efficiently (see below). No-slip boundary con-

ditions on velocity were used at the walls ( y	 t 1) and periodic boundary

conditions were incorporated in the x l and x3 directions. Note that

pressure wall conditions are not necessary; only velocity boundary conditions

are sufficient to close the system of equations (see Moin and Kim, 1980).

In the present calculations, the core memory of the ILLIAC 1V is large

enough to hold only a few planes of the dependent variables. Therefore, it is
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important to manage efficiently the transfer of data between the core and disk

memory, where the entire data base resides. A detailed description of the

data-management technique used here is given in Kim and Moin (1979). , Here, we

briefly outline the essential steps. At each time step, the system of alge-

braic equations just described is solved by two separate passes through the

data base. In PASS 1, the right-hand side of these equations is computed.

This is accomplished by transferring two (x-z) planes of the independent

variables from the disk memory to the core memory to be processed by a double-

buffer scheme. In this manner, all the (x-z) planes are transferred to the

core, two planes at a time.

In PASS 2, the block- t rid iagonal system must be solved for each k l and

k3 . In this pass, (y-k3 ) planes of the right-hand side vector that were

computed in PASS 1 are transferred to the core memory. Due to the limitation

of the core size of the ILLIAC IV, a special algorithm had to be developed to

solve the block- tridiagonal system of equations. For each k l and k3 , this

algorithm requires 676 N 2 floating-point arithmetic operations, in .contrast

to 376 N2 operations for the conventional block-tridiagonal solver (Merriam,

1978). The extra computations are necessary in order to avoid the extra I/O

passes that would otherwise have been necessary.

With a full use of the parallel processing capabilities of the ILLIAC IV

computer and the above data-management technique, the computer time per time

step (CPU and I/O time) was 22 sec for 63 x 64 x b4 grid-point calcula-

9
	 tions and 36 sec for the computations with 63 x 64 x 128 grid points. For

the calculations shown in Table 1, the dimensionless time step, At, was set

at O.001 for Case 1, 0.00075 for Case 2, and 0.0005 for Eases 3 and 4.

Throughout the computations, the value of

C(t)	 Max j 't I+ h y + (h3 I
never exceeded 0.35.
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The initial condition for Case 1 in Table 1 was obtained by assigning the

final velocity field described in Kim and Moin (1979) to the corresponding

grid points used here. For Case 2, the final velocity field from Case 1 was

simply assigned to the alternate: mesh points. The values at the intermediate

points were obtained by Fourier interpolation. A similar procedure was used

to generate the initial velocity field for Cases 3 and 4.

6.	 Mean Velocity Profile and Turbulence Statistics

Starting from the initial velocity field, for each case, the governing

equations were integrated forward in time until the numerical solutions

reached statistically steady states. These equilibrium states were identified

by approximate periodicity of the horizontally averaged turbulence stresses in

time. Next, in order to obtain better statistical samples, the equations were

further integrated in time and a running time average of the horizontally

averaged turbulence quantities was calculated. For each case, the calcula-

tions were considered to be complete when the time-averaged turbulence quanti-

ties became stationary. The total time of integration and the averaging time

for all the computations reported here are shown in Table 1.

Figure 1 shows the mean velocity profile < u > (unless otherwise stated

in this section, < > indicates horizontal as well as time a-veraging) for

all cases reported in Table 1. The calculated mean velocity profiles are in

good agreement with each other as well as with the experimental data of

Hussain and Reynolds (1975). It appears that, at least for the different com-

putational grid networks considered here, the law of the wall and the corres-

ponding logarithmic layer and von Karmf n constant can be predicted with

virtually no dependence on the grid resolution. This is particularly signifi-

cant in light of the fact that the characteristic length scale of the subgrid

18
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scale model used here is a function of computational grid resolution. Figure

2 shows the profiles of the correlatioa coefficient between the resolvable
w

streamwise and vertical components of turbulence fluctuations,

	

F° 	 < u^v >/(< u•,2 
>11` <	 >1/2^

w
,r

	

•	 %aere u	 u - < u >. The calculated profiles for all the cases reported in

Table 1 are in good agreement with each other and with the experimental data
a

	

r =	 of Sabot and Comte-Bellot (1976). The results presented in Fig. 2 together

	

R	 with those in Fig. 1 establish some confidence in the reliability of the sub-

grid scale model used in this study.

In the remainder of this paper we shall present, in some detail, the

results obtained from Case 4 in Table 1. The computational grid resolution

for this case is better than for all the other cases; and, as will be shown

later in this section, the computational domain appears to be large enough to

include the important large eddies.

6.1. Turbulence Stresses

Vertical profiles of the resolvable mean Reynolds shear stress, < u v>,

and the total Reynolds shear stress, < U  > + < T 12 >, are shown in Fig.

3. These profiles indicate that the average Reynolds shear stress profile has

attained the equilibrium shape which balances the downstream mean pressure

gradient in the regions away from the walls. In the vicinity of the walls,

the viscous stresses are significant, and they, together with the total

Reynolds stress, balance the mean pressure gradient. The symmetry of the

1< u , v > + 1 12 )	 profile about the channel centerline indicates that the

total averaging time and statistical sample are adequate. Moreover, it should

be noted that the subgrid-scale contribution to the total Reynolds stress is

significant only in the vicinity of the walls.
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Figures 4 and 5 show the profiles of the dimensionless resolvable tur-

bulence intensities. For comparison, some of the available experimental data

over a range of Reynolds numbers are also shown. Once again, the symmetry of

the calculated turbulence intensities about the centerline of the channel

indicates that the total averaging time was sufficient for an adequate statis-

tical sample. The overall agreement of the computed turbulence intensities

with the experimental measurements is good. In Fig. 5, the resolvable tur-

bulence intensities in the vicinity of the lower wall are plotted vs. y+ -

ywuT/v. In spite of large differences among various measurements, the maximum

of the computed < "2 >1/2 is located at a distance farther away from the

wall (y+ s 30) than those of the measured turbulence intensities (y+ - 13-

20). In addition, in the immediate neighborhood of the wall, an appreciable

fraction of the vertical component of turbulence intensity appears to reside

In the subgrid-scale motions. It should be noted that, in contrast to the

turbulence shear stress, in order to deduce the subgrid scale contribution to

turbulence intensities one has to obtain an estimate for the kinetic energy of

SGS stress, Qkk , and use it in Eq . (2.8a) . Due to the high degree of ani-

sotropy in the channel flow, especially in the vicinity of the walls, we have

been unable to obtain a reasonably accurate estimate for Qkk'

6.2. Two-Point Crwrrelation Functions

Two-point correlation functions

< ui (x,Y,z) ui (x + r l , y , z ) >
Rii (Y.r1 ) -	 _

< u  ( x .Y,z ) >

and

< u I (x,Y,z) u i ( x .Y, z + r3)

xii(Y .r3)
< ui (x.Y,z) >
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for i - 1,2,3 (no summation) are plotted in Figs. 6 and 7 at four vertical

locations. These profiles show that in general, for small separation dis-

tances, the correlation for the velocity in the direction of the displacement

is larger than the corresponding transverse correlations. In addition, the

longitudinal correlation in the streamwise direction extends over much longer

distances than do all other correlations. This result was also obtained by

Deardorff (1970).

The slow decay of R
11 (y

w - 0.025, r l ) for increasing r l indicates that

near the wall the eddies are highly elongated in the streamwise direction. On

the other hand, the profiles of R 1l (y,r3 ) show that the spanwise extent of

turbulence structures near the wall is much smaller than for those away from

the wall. Thus, it appears that, in accordance with the experimental observa-

tions, near the walls the computed flow field consists of elongated streaky

structures. The structure of the flow field will be examined in some detail

in the next section.

For comparison, in Figs. 6 and 7, the profiles of Rll (yw ,r i ) (i - 
1,3)

at yw/b - 0.11, 0.44, and 1.0 from Comte-Bellot's (1963) measurements are

included. Note that the computed and measured correlations are obtained at

slightly different vertical locations. The correlations were calculated at

selected points in the y-direction, and the comparison is made at the loca-

tions where the y-coordinate of the computed and measured correlations were

closest to each other. For small values of the non-dimensionalized separation

distance, r l , the measured correlations, Rll(yw,rl), are smaller than the

computed ones, whereas for larger values of r l the reverse is true. At

small values of r l , the discrepancy between the computed and measured cor-

relations is due to the fact that the measurethents were made at a much

larger Reynolds number (Re - 135,000) than in the present simulation (see
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Batchelor, 1953). However, the cause of the difference between the computed

and measured profiles for larger values of r l is not clear. Comparison of

the measured profiles with the computed ones obtained from calculations with

larger computational box lengths in the streamwise direction shows no improve-

ment. Thus, the streamwise extent of the computational box doeb not appear to

be a factor here. however, possible inadequate resolution in the x-direction

may suppress the formation of some small scale structures. In this case, these

structures could conceivably combine to form eddies that have long streamwise

extent throughout the channel cross section. In addition, it should be men-

tioned that Comte-Bellot's axial two-point correlation data were obtained by

traversing one probe downstream of another probe. With this procedure, the

measured K11 (y,r l ) may be contaminated with errors, due to the effect of the

wake of the upstream probe. However, the probe interference effect should be

significant only for small separation distances.

In Fig. 1, the profiles of R11 (y l r3 ) are also compared with the mea-

surements of Comte-Bellot. Aside from the Reynolds number effect for small

values of r3 , the agreement between the computed and measured correlations

is good. Finally, the other two spanwise correlations, K 22 (y,r3) and

R33 (y,r3 ) 0 were also compared with the corresponding ones measured by Comte-

Bellot. The measured R22 (y,r3) and K33(y,r3) are systematically lower

than the computed ones for the values of r3 for which these correlations

have appreciaule magnitude.
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6.3. Skewness and Flatness Factors of Resolvable Turbulence

The velocity skewness and flatness factors which are defined as

«	 < u«3 >	 < u
«4 

>
S(ui)	 = 2 3/2 and F(—i %	 — i--_" 2 2 (i • 1,2,3; no summation)

t u  >	 < u  >

respectively, are plotted in Fig. 8. The flatness facti,es of all the velocity

components reach their maxima at the wall. This indicates that in the vicin-

it; of the wall the turbulence is highly intermittent. Throughout an appreci-

able portion of the channel cross section, F(u3) and S(u3 ) are approximately

equal to three and zero, respectively. These values correspond to the flat-

ness and skewness factors of a Gaussian distribution. however, Kreplin and

Eckelmann (1979) measured the u3 probability distribution and have shown

that it is not Gaussian, even though the values of S(u 3 ) and F(u3 ) cor:espond

to that of a Gaussian distribution.

Near the wall, S(ul ) is positive, whereas away from the wall it is

negative. This indicates that near the wall the large-amplitude u fluc-

tuations are primarily due to arrival of high-speed fluid from regions away

from the wall. On the other hand, away from the wall the large-amplitude

u fluctuations are most probably associated with low-speed fluid leaving the

wall region. These observations are in agreement with the experimental find-

ings of Brodkey et al. (1974) and with contour plots of u v from numerical

simulation of turbulent channel flow (Kim and hoin, 1979). however, as will

become clear below, the precise vertical location (in wall units) of the

crossover point in the present calculation is in disagreement with experimen-

tal data. This discrepancy is probably due to inadequate grid resolution in

the computations.

In Fig. 8, the profiles of skewness and flatness factors from measure-

meats of Comte-Bellot (1963) and Kreplin and Eckelmann (1979) are reproduced.
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9	 The overall agreement between computational and experimental data is good.

This is particularly encouraging evuaidering the significant contribution of

small scale turbulence to these quantities and the difficulties associated

with their measurements.

6.4. Resolvable Vorticity Fluctuations

Figure 9 shows the profiles of the non-dimensional rms vorticity fluc-

tuations.	 The spanwise component of vorticity fluctuations, < u,3 2 >1/2^

attains its maximum at the wall and decreases monotonically towards the chan-

nel centerline.	 The profile of the rms streamwise vorticity fluctuations,

< wi > 1/2 , also attains its maximum at the wall but, in addition, displays a

local maximum- a t y+ s 30. At about the same location, the peak of the rms

vertical component of the vorticity is located. The mechanics underlying this

behavior of the profile of < wl >1/2 will be discussed in the next section.

It is interesting to note that, in spite of large differences between

different components of rms < w" 2 > 1,i2 near the wall, away from the wall

(y+ > 70) they are virtually identical. This is in contrast to rms velocity

fluctuations, < u
i

2 >1/2. The difference between the two may be explained by

noting that the relative contribution of small scales to vorticity fluctua-

tions is significantly larger than their contribution to velocity fluctua-

tions, and away from the walls the small scales tend to be isotropic.

Exrloiting the "isotropy" of vorticity fluctuations may be very useful in

statistical analysis of c:ur;wlent shear flows.

The limiting wall value of vorticity fluctuations in the present calcula-

tions	 are	 U.20 Tw	 and	 0.13 Tw	 for < w32 >1/2	 and	 < wi >1/2$	 respec-

tively.	 The agreement of these computed values with experimental measurements

(see Kreplin and Eclelmann, 1979, for data from several measurements) is sat-

istactory.
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6.5. Statistics Involving Resolvable Pressure Fluctuations

The root-mean square value of the resolvable wall pressure fluctuations,

< P2 >1 /2/.Ew, is 2.05 for both walls. This value is in fair agreement with

the values of 2.64 obtained by Willmarth and Wooldridge (1962), 2.31 by Will-

march ( 1965), 2.6 by Elliot ( 1972), and of 2.0 and 2.5 reported by Cocos

;962) for fully developed pipe flows. however, the com puted values are con-

siderably lower than the 3.59 obtained by Blake (1970) or Emmerling's (1973)

measurements (see Willmarth (1975)).' The measurements of Blake and rmerling

were made with a pinhole microphone and by optical techniques, respectively.

Therefore, in these experiments the smaller-scale pressure variations are

expected to be better resolved. Thus, in view of these two experiments, it

appears that an appreciable portion of the pressure fluctuations may reside in

subgrid scale motions.

The profiles of the diagonal elements of the resolvable pressure strain

correlation tensor

8u	

;X̂i^ij	
< Y+	 >

,

are shown in Figs. 10 and 11. These terms govern the exchange of energy

between the three components of resolvable turbulence kinetic energy ( hinze,

1975). The negative sign for ¢Ai (no summation) indicates loss, or transfer

of energy from < u
R2 >112 to other components, whereas a positive sign

denotes energy gain. These profiles show that, except in the close vicinity

of the wall, as expected, the streamwise component of turbulent velocity

fluctuations transfers energy to the cross stream components. however, very

near the wall, there is a large transfer of energy from the vertical componeut

e5ee Willmarth (1975) for the above references, as well os values from

other sources.
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of turbulence intensity to the horizontal components. In this work, we shall

refer to this phenomenon as the "splatting" effect. It will be shown that the

r splatting effect is an important property of the flow in the vicinity of the

walls and should be taken into account in the modeling of near-wall turbu-

lence. In fact, this phenomenon was noted in a previous study by Daly and

F	
Harlow (1970), who included a term in their statistical model of Oij 

to

account	 its effect.

The p, • iile of the off-diagonal element ¢ 12 , together: with the pressure

diffusion term - ay < Pu ** > and their sum

Puv 	 y	 -J-x

in the vicinity of the lower wall are shown in Fig. 12. The last term, Puv'

appears in the governing equation for resolvable turbulence shear stress,

< u v >. The components of Puv' 012, and - < Pu t, >, have comparable

magnitudes and, as will be shown below, near the wall they provide important

contributions to the governing equation for < u •v >.	 As expected (Hinze,

1975) , except in the immediate neighborhood of the wall, the sign of ¢ 12 is

opposite to that of < u v >.	 However, near the wall, where the splatting

effect is present, 012 has the same sign as < u v >, 	 thus contributing to

the production of turbulence.

6.6. Resolvable Turbulence Intensity and Shear Stress Balance

In phenomenological turbulence modeling, the objective is to construct

rational models for the correlations that appear in the governing equations

for the Reynolds stresses. Fo, the resolvable portion of the flow field in

channel flow, these equations are.
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aul au
- 2 < (Re + vT) axl ax2 > + Alt	

(6.4)

It should be emphasized that the above equations are for the resolvable

portion rather than the total turbulent stresses. However, considerable in-

sight into the mechanics of energy transfer and the relative importance of

various terms in the Reynolds stress equations may be gained from the corres-

ponding terms in these equations.

In Figs. 13-17, all the correlations appearing in the above equations,

.`	 and in the governing equation for the resolvable turbulent kinetic energy,

f	 ;..	 +
q2 Z < ul + u2 + u3 > , are plotted in the vicinity of the lower wall (y

< 90) . The first term in the right-hand side of Eqs . (6.1) and (6.4) is the
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production term. In Figs. 13-17, the remaining five terms in the right-hand

side of each equation are labeled as convection, velocity-pressure gradient

(VPG), diffusion, cascade, and dissipation. The last term in each equation,

Aij , is a relatively complicated expression involving vT . They would be

identically equal to zero if vT were a constant. These terms were cal-

culated and found to be negligibly small compared to the other terms in each

equation.

In Figs. 13 and 17, the production and dissipation are clearly the domi-

nant terms in most of the region shown. In the immediate neighborhood of the

wall, however, where the production term is small, viscous diffusion carries

sufficient energy inward to balance the large viscous dissipation there. In

addition, it can be seen that, aside from the close vicinity of the wall (y+

< 15), energy is convected from the wall region, where production is high, to

the regions away from the wall.

The velocity-pressure gradient terms make large contributions to the

balance of the governing equations for normal and spanwise components of tur-

bulent kinetic energy. Near the wall, the triple correlation term ( convec-

tion) and pressure strain and pressure diffusion terms in the < 2 >

equation are very significant.	 In particular, the reduction of the normal

component of turbulent energy due to the splitting effect mentioned above is

compensated by the pressure diffusion term.

Near the wall ( y+ < 25), in the dynamical equation for Reynolds shear

stress, < u v >,	 the triple correlation and velocity-pressure gradient,

Puv , are the dominant terms. However, for y + > 25, the contribution of

Puv is small and the production term takes on a more active role. Moreover,

it should be noted that in this equation the viscous diffusion and "dissipa-

tion" terms appear to be negligible. This in turn implies that the governing

equation for < u v > has a hyperbolic c haracter.
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In Eqs. (6.2)-(6.4) and in Figs. 13-17, the terms involving molecular and

eddy viscosity were combined. In Fig. 18, the dissipation of turbulent kin-

etic energy due to molecular and eddy viscosity are plotted separately. It

can be seen that, near the wall, the dissipation due to eddy viscosity is neg-

ligible compared to that due to molecular viscosity. However, in the regions

away from the wall, they are comparable. Finally, in Fig. 18, the cascade

term, - < ui 8x 
lid > , 

is also plotted. Near the wall, its magnitude is

j
larger than the dissipation due to eddy viscosity, and away from the wall they

are of the same order of magnitude. Therefore, as was pointed out in Sect. 2,

inclusion of < ui 3x 
lid > 

in the modeling assumption for the subgrid scale

j
stresses is not recommended. As long as this term can be evaluated explic-

itly, one should do so.

7.	 Detailed Flow Structures

In this section we shall investigate the detailed structure of the com-

puted flow field. This will be done by examining contour plots of instanta-

neous velocity, pressure, and vorticity field, and by tracking passive

particles in the flow. The latter approach is a simulation of laboratory

flow-visualization experiments using hydrogen-bubble wire.

Figure 19 shows the contour plot of u 	 in the x-z plane at y+

6.26 and at the non-dimensional time, t - 4.3. In all the contour plots

shown here, positive values are contoured by solid lines and negative values

are contoured by dashed lines. In addition, all the instantaneous plots are

obtained at the non-dimensional time t - 4.3. The distinct feature of the

flow patterns in Fig. 19 is the existence of highly elongated regions of high-

speed fluid (u > 0) located adjacent to the low-speed regions. This pic-

ture of the flow in the vicinity of the wall is in agreement with laboratory

observations.	 In their visual studies, Runstadler et al. (1963) and, more
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recently, other investigators have clearly demonstrated that the viscous

sublayer consists of coherent structures of high- and low-speed streaks alter-

nating in the spanwise direction. These studies have also shown that the

streaks are the unique characteristic of the wall-layer turbulence, and they

are sheent in the regions away from the walls. Figure 20 shows the contour

plot of u	 in an x-z plane far away from the wall (y+ - 400) . In this

region, in agreement with experimental observations, it is clear that the

R —	 streaks and, for that matter, any definite organized structures are absent in

the computed flow patterns.

In Fig. 19, one can distinguish several localized regions of very high-

speed fluid ( large concentration of solid lines) that are located on the high-

speed streaks. Figure 21 shows the corresponding contour plot of pressure

fluctuations, obtained at the same vertical location (y+ - 6.26). It can be

seen that, in contrast to u , the pressure patterns are not elongated in the

streamwise direction. However, the regions of high-pressure fluctuations are

generally located in the vicinity of the "pockets" (see Falco, 1978) of high-

speed fluid. This correspondence together with examination of the contour

plots of v (see below) suggest that these pockets are "quasi -stagnation"

regions which are formed as a result of the arrival of high-speed fluid to the

wail layer.	 Moreover, the contour plots of normal and spanwise velocity

fluctuations siiow that, like the pressure patterns, they do not exhibit

elongated streaky structures. These observa^ions imply that the wall layer

may be viewed as a bed of low-speed fluid that is constantly subjected to the

arrival of energetic eddies from the layers above. These energetic eddies

(with the help of the strong mean shear) form the high-speed streaks in the

wall region.
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Figure 22 shows the cratour plot of spanwise vorticity fluctuation,

wz - Sx - T-

in the same x-z plane as in Fig. 19. Virtually all the regions with large

vorticity fluctuations are associated with negative wi (large concentration

of dashed lines). In these regions, the streamwise velocity profile has ex-

cess momentum with respect to the mean velocity (i.e., u > O). It should

be pointed out that, in the vicinity of the wall, the relatively large posi-

tive values of S(u ) ( Fig. 8) indicate that the existence of regions with

u < 0 are more probable than those with u > 0. However, the structures

with large magnitudes of u are most likely associated with positive values

of u . This is in agreement with the above observations.

Figures 23 and 24 show the u	 and v patterns in an x-y plane (z -

4h3 ) which pass through the high-speed region in the lower left-hand corner

of Fig. 19. In Fig. 24, a positive v (the solid lines) represents fluid

moving in the positive y-direction, and a negative v (the dashed lines)

represents fluid moving in the negative y-direction. It can be seen that, in

the vicinity of the walls, the high-speed fluid elements (u >> 0) _ corres-

pond to the sweep event, i.e., v < 0 near the lower wall, and v > 0 near

the upper wall. On the other hand, the low-speed fluid elements are generally

being ejected from the wall regions. Clearly, both the sweep and ejection

events have a positive contribution to the production of turbulent kinetic

energy. One of the distinct features of Fig. 23 is that the high-speed struc-

tures near the walls are inclined at oblique angles with respect to the walls.

This is the consequence of the action of mean shear on any fluid element from

the outer layers that is moving toward the walls. Similar large-scale struc-

tures have been identified in the laboratory by Rajagopalan and Antonia
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(1979). In their measurements, they report the mean angle of inclination of

these structures to be 130.

Figures 25 and 26 show the contour plots of u	 and v in a y-z

plane (x - 0) . In these plots, only the lower half of the channel is shown.

Throughout a significant portion of the region displayed, there is a negative

correlation between u 	 and v. Some of the regions where the correlation

between u^ and v is negative extend from the wall region to the channel

centerline.	 In the wall region, the vertical and spanwise extent of the

eddies is significantly smaller than in the regions away from the wall. In

particular, near the wall in Fig. 24 the array of high- and low-speed fluid is

clearly discernible.

Figure 27 shows the u , v, and w patterns in the close vicinity of

the wall (y+ < 46, yw/6 < 0.072) in the same y-z plane as in Figs. 25 and

26. Here, the region near the wall is magnified, and hence the contour lines

are highly distorted. 	 In Fig. 21a, the mean spacing between two adjacent

high-speed streaks (or low-speed ones) is about 250 in the wall units. The

mean streak spacing can also be obtained from the R11 (yw - 0.025, r3 ) pro-

file in Fig. 7. In this figure, the negative peak occurs at r3 , 125. This

is the distance between two adjacent high- and low-speed streaks. Therefore,

the corresponding distance between two high- (or low-) speed streaks is about

250 in the wall units. These two values are, surprisingly, in good agreement

with each other but are considerably larger than the generally accepted value

of J►+3m 7 100. Therefore, as was pointed out in Sect. 3 for the Reynolds num-

ber considered in this study, the computational grid resolution is inadequate

to resolve the streaks at their proper scale. However, as we have seen, the

computed flow patterns, in the wall region, do exhibit the streaky structures

at the finest scale permitted by the grid. The K 11 (yw - 0.025,r3) profile
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from Case 1 in liable 1 shows that the mean streak spacing in that calculation

is about 330 in the wall units. Thus, there is a definite improvement in the

computed streak spacings with refinement of the computational grid resolution.

In Fig. 27b, one can see an array of positive and negative regions of

•	 v-contour lines that correspond to fluid moving away from and toward the wall.

Intense shear layers are located at the interface between the energetic fluid

streams moving toward and away from the wall. These shear layers may undergo

Helmholtz-type instabilities in the y-z plane that result in the formation

of streamwise vortices. These vortices can clearly be identified in Fig. 28,

where the contour plot of wx in the same y-z plane is shown.

Comparison of Figs. 27b and 27c demonstrates that, in the close vicinity

of the wall (y+ < 10), the high-speed vertical streams with negative normal

component of velocity produce a flow pattern similar to that of a jet impinge-

ment on a plate. On the other hand, the high-speed vertical streams with

positive normal component of velocity are formed from two streams with op-

posite velocities in the spanwise direction. Since the high-speed fluid

elements arriving at the wall region are more energetic than the viscous-

dominated fluid moving away from the wall, there is a net transfer of energy

from the normal component of turbulence intensity to the horizontal components

(the splatting effect). This appears to be the reason for the behavior of the

pressure-strain correlations in the vicinity of the wall (Fig. 11). In addi-

tion, it should be noted that the impingement of fluid from outer layers on
4

wall leads to stretching of spanwise vorticity fluctuations (as well as

amwise vorticity) which can be an important mechanism for its amplifica-

Near the wall, in Fig. 27c, one can see large gradients of the spanwise

city component in the normal direction. On the other hand, due to the
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y	 wall-suppression effect, the vertical component of turbulence intensity is

degraded there. Large values of 3w/3y lead to high values of streamwise

vorticity fluctuations in the neighborhood of the wall.	 In Fig. 28, it can

be seen that the regions with large w  are concentrated near the wall.

Here, two distinct areas can be identified: the first is slightly above the

wall (10 < y+ < 40), where the large amplitudes of wx are due to revolving

fluid elements induced by the intense shear layers shown in Fig. 27b; the

second is in the immediate neighborhood of the wall (y+ < 10), where the

splatting effect and no-slip boundary conditions lead to large values of

3w/ By and consequently mx . In Fig. 9, the profile of < w2 >112 attained

its maximum at the wall and displayed a local maximum at y+ 2t 30. The maxi-

mum at the wall is a result of the splatting effect, and the local maximum is

located in the first region described above.

So far, we have examined the eddy structure of the turbulent channel

flow by considering two-dimensional contour plots of instantaneous velocity,

pressure, and vorticity field. To gain a better insight into the unsteady

dynamics of the flow, a computer motion picture simulating flow-visualization

experiments with hydrogen-bubble wires was made. Several sequences of film

were generated. At regular intervals in each sequence t L' - 0.015 in non-

dimensional time units), 128 particles were generated along a line either

parallel or normal to the walls. These particles were followed until the

memory capacity of the graphic display unit was depleted. Here, we briefly

discuss some of the still photographs taken from the film.

Nigure 29 shows the particles generated along a line parallel to the

z-axis ("z-wire") and located near the lower wall (y + a 12). In this figure,

the wall-layer streaks are clearly evident. on several occasions when viewing

the motion picture, it was observed that the particles generated near the wall

were violently ejected to regions as far away from the wall as y + - 400.
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Figure 30 shows the time history of the particles generated along a

"z-wire" which is located distant from the wall (y+ a 319). It can be seen

that the coherent streaky structures that are the characteristic of wall layer

turbulence are absent in the regions away from the walls.

In Fig. 31, the time history of the particles generated along a line

normal to the walls is shown. The formation of inflexional velocity profiles

and strong shear layers near the walls is very similar to the corresponding

photographs obtained by Kim et al. (1971) in their flow-visualization

studies. This resemblance is even more pronounced in Fig. 32, where 128

particles were generated along the same vertical line, as in Fig. 31, but

extended from the lower wall to y - -0.5. Here, one can see several profiles

with multiple inflexion points. In addition, in this figure, the formation of

a streamwise vortex with an axis of rotation which is tilted outward in the

flow direction and its ultimate breakup are clearly discernible.	 I

8. Summary and Conclusions

In this study, turbulent plane Poiseuille flow has been numerically sim-

ulated at a moderate Reynolds number. Most of the calculations were carried

out with 516,096 grid points on the ILLIAC IV comuter. The agreement of the

computed mean velocity profile and turbulence statistics with experimental

data is good.

The resolvable portion of the statistical correlations appearing in the	 II

Reynolds stress equations was calculated. The role and relative importance of

the various terms in these equations were discussed.

The structure of the flow field was examined in some detail. It was

found that, in agreement with experimental observations, the computed flow

pattern in the wall region war. characterized by coherent structures of low-

and high-speed streaks alternating in the spanwise direction. In this region,
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the large-amplitude, streamwise velocity fluctuations were primarily due to

the arrival of high-speed fluid elements from adjacent layers. The regions

with large-amplitude, streamwise vorticity, a x , were concentrated near the

wall. Slightly above the wall, these regions contained revolving fluid ele-

ments induced by strong shear layers in the cross-stream plane. In the imme-

diate neighborhood of the wall, the splatting effect led to large magnitudes

of	 W  
and instigated transfer of energy from the normal component of

turbulent kinetic energy to the horizontal components.

With three-dimensional, time-dependent, numerical simulation of turbu-

lence, one is capable of obtaining detailed, instantaneous information about

the flow at thousands of spatial locations. This information can effectively

be used to study the structure and statistical properties of the flow and

their relation to each other. Furthermore, with the aid of computer graphics

and the ability to move back in time and recreate an event in the flow after

it has already been observed, one has the unique opportunity to study the

mechanics of turbulent shear flows. Thus, with the anticipated advances in

computer technology, it is expected that in the near future numerical simu-

lation of turbulent flows will make important contributions to turbulence

research.

This work was carried out in cooperation with the Thermo- and Gas-Dynamic

Division of the Ames Research Center, NASA.	 We are indebted to our

colleagues, A. Leonard, R. S. Rogallo, and A. A. Wray, Ames kesearch Center,

and J. H. Ferziger and W. C. Reynolds, Stanford University, for numerous

1pful discuesions during the course of this study.
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Inte-
Case N i N3 L1 /6 L3/6 hi h3 hl / 6 h3/6 8ratipn Avera#e

Timer Time

1 64 64 4v
2 

w 125.7 20.9 0.196 0.033 4.0 1.6

2 64 128 4w w 125.7 15.7 0.196 0.025 3.65 0.75

3 64 128 3* n 94.2 15.7 0.147 0.025 3.9 1.6

4 64 128 2* 2 62.8 15.7 0.098 0.025 4.6 2.3

tIn 6/uT units.

Table 1. Specifications of the computed cases
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Fig. 23. Contours of u^ in the x-y plane at z - 4h3.
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Fig. 24. Contours of v in the x-y plane at z - 4h3.
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Fig. 25. Contours of u^ in the y-z plane at x - 0. (Only the lower half

of the channel is shown.)
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Fig. 26. Contours of	 v	 in the y-z plane at x - 0. (Only the lower half
of the channel is shown.)
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Fig. 28. Contours of	 streamwise vorticit^ fluctuations in the	 y-z	 plane

at x - 0;	 (a) y < -0.5;	 (b) y < 46.
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