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FIGURE CAPTIONS 

Figure 1. Isotherms for the Benard convection cell with 
P = 10. 

Fi gure 2. Isotherms for the Benard convection cell with 
P = 80. 

Fi gure 3. Driven cavity . 

Fi gure 4 . Stream function contours at R = 100 ( 41 x 41 

Figure 5. Stream function contours at R = 1000 ( 61 x 61 

Figure 6. Single vortex convected over a porous wall. 
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SECTION 1 - INTRODUCTION 

The turbulent bursting phenomenon is reco nized as a 

dominant feature of time - de pendent turbule t boundary-layer 

flow . The nature of the boundary laye r formed on a flat plate 

located beneath a convecting rectilinear ortex embedded in a 

uniform flow was investigated by Doligalski and Walker (1). 

They obtained numerical solutions for the temporal development 

of the boundary laye r induced by the motion of a rectilinear 

vortex. The boundary layer was expected to erupt from the wall 

into the inviscid flow. 

In the present study the flat plate is replaced by a porous 

wall where the velocity at the wall obey s Darcy 's law. The 

point of inflexion of the boundary layer velocity profile is 

controlled by varying the strength and / or the location of the 

vortex. Our interest lS focused on how the inflected velocity 

profile responds to wall mass transfer induced by the motion 

of the vortex. 

The governing equations for a two-dimensional incompressible 

viscous flow are the vorticity transpor t equation and the stream 

function equation. These equations can be solved simultaneously 

at each time step by means of a finite difference scheme. We 

p ropo se to use the wei ghted-mean scheme of Fiadeiro and Veronis 

(2) for the vorticity transport equation. This scheme is first 

applied to a series of test problems to determine its accuracy, 

stability and efficiency . For the stream function equation , we 

use the usual central difference scheme. 
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SECTION 2 - THE WEIGHTED-MEAN SCHEME 

The advection-diffusion equation is writte n in conservative 

form: 

aw + a (uw) 
at ax + 

a (vw) = ay v (1 ) 

where v is the diffusivity constant 

u and v are the velocity components in the 

x and y directions, respe ctively and 

w is the vorticity 

For cases when the vorticity field is subject to strong advection, 

c e ntered-finite differe nce procedures are inefficient; consequently, 

the weighted-mean scheme is adop ted for the present investigation. 

An explicit (leap-frog) c e ntered-t ime difference in equation 

(1) is used except for the c en tral 

the spatial differencing evaluated 

n term ( w . . ) 
1J 

n+l as ( w .. + 

that results from 

n-l 
w . . ) / 2 

1J 1J 

where the superscript denotes t he t ime step. When the weighted-

me an scheme is applied to t he s patial deri v atives the equation 

f o r the calculation of n+l 
w . . 

1J 

n+l 2 11 t 
( ex .' 1 

n 
U,) • . = w. 1 . 

1J l+ a li t 1- 1- , J 
0 

I-a li t 
n 0 

+ a j +1 Wi ,j+l) + l+a li t 
0 

+ 

n given v alue s at w .. 
1J 

n + a i +1 
w. . a. 1 1.+1,J J-

n-l w .. 
1J 

where li t is the time increment 

h is the spatial increment 
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n 
w .. 1 1, J-

n-l 
(jJ . . 

1J 

(2 ) 

is 



with all a's evaluated at time step n, we have: 

u . ~ h u . ;" 1+ [coth ( 1+ 2 1] a . 1 :: 
2h 2v ) -

1+ 

U. ~ h u. ;" 1-
[coth ( 1- 2) 1] a i - l = 211 + 2v 

( 3) 

v. k h v. ;" 
a j + l = ~ [coth ( J+2 - 1 '] 2h 2v ) • 

v. ;" h v . ;" 
a. 1 = ~ [coth ( J - 2) + 1 ] 
J- 2h 2v 

The error of approximation 1S O( 6t 2 , h 2 ). The formulation 

uses only a five point operator for two-dimensional flow and 

is antisymmetric in relation to the velocity field. When the 

component change sign, the c oefficients upstream a nd downstream 

of the point are automatically reversed, a feature particularly 

useful in computer progr ammi ng because the sign of the velocity 

components is not generally known a p r iori . 
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SECTION 3 - TEST PROBLEM I 

The one -dimensional advection-diffusion problem presented 

by Roache (3) to illustrate the weakness of the standard central 

difference relation is as follows: 

I aw u aw 
v at + v ax = o 

with boundary conditions 

w = 0 at x = 0 t > 0 

w I at x = 1 t > 0 

( 3) 

Regardless of the initial condition, the steady state 

solution for inc ompressible flow is 

I - e ux/v 
w = 

I - e u/v 

The time derivative is written as first - order forward-dif-

ference approximation and the weighted-mean scheme is applied 

t o the spatial derivative s. 

Steady state results appear in Table I for weighted-mean 

scheme, upwind differencing scheme and central difference 

scheme for various values of cell Reynolds number 

uh 
Rc = -

'J 

The steady state form of e q uation (3) lS 

= o (4 ) 

It can be sho~m that the solution of the finite difference 

analog of this equation agrees identically at the points x . 
l 

with the solution of the differential equation (4). We may 

3-1 



obse rve this rema rkable re sult in Table 1. Table 1 also reveals 

that the central di fferen ce scheme produce s wiggles for values 

of Rc greate r than 2.0. The upwind differencing scheme, although 

stable , is considerably in error at all value s of Rc. 
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SECTION 4 - TEST PROBLEM 2 

The problem is to determine the temperature field in a 

two-dimensional square, Benard convection cell for a fluid 

heated uniformly from below and cooled from above. The length 

scale L and the maximum ampli tude U of velocity are used in 

the non-dimensionalization. 

The non-dimensional temperature equation has the form: 

where 

P [ a (uT) + 
ax 

a (VT)] = 
ay 

P = Pee let number = UL 
K 

K = thermal conductivity 

The dimensionless velocity field lS given by 

u = sin x cos y v = cos x sin y 

Boundary conditions on Tare 

T = 1 at y == 0 

T == 0 at y = n 

c T = 0 at x = O, n ax 

O<x<n 

O<y<n 

A relatively co~rse grid s ys tem of 25 x 25 mesh points was 

used for different values of P. Although the scheme assures 

convergence to all iterative methods, we would like to compare 

the rates of convergences in Table 2. Line SOR combined with 

multigrid techniques are approximately four times faster than 

ADI method. Figures 1 and 2 show isotherms of the fluid for 

Peclet numbers 10 and 80. The intertwining tongue for the 
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case P = 80 indicates the effect of stro ng convection. A final 

point that we would like to bring out for the strongly con

vective case (P = 80) is that distortions of isotherms were not 

introduced with relatively coarse grid (25 x 25). 
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SECTION 5 - TEST PROBLEM 3 

We consider the flow in a driven square cavity. This problem 

is a standard test case for evaluating the accuracy, siability 

and efficiency of numerical schemes. For simplicity we choose 

a square with sides of length L = 1. The upper surface (fig. 

3) moves to the right with a constant transverse velocity U = 1. 

The flow of a viscous incompressible fluid in a square 

cavity is governed by the following coupled equations: 

dW 
at = 

+ 

a (uw) 
dX 

a (vw) + 1 
dY R 

= - w 

where ~ = stream function 

w = vorticity 

R Re yno lds number 

u = d~ ay v = - E1. , ax 

Boundary conditions: 

upper surface 

bottom, left, right 

surfaces 

UL -v 

=~ y 

(5 ) 

( 6 ) 

v = kinematic viscosity 

o 

The steady state solution of the s ys tem also may be reached 

by replacing equation (5) by its steady state form (the unsteady 

term is omitted) 

_ a (uw) 
ax 

--~--

a (vw) 

dY 
1 + -
R 
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The vorticity transport equation (5) becomes equation (2) in 

finite difference approximations . The stream function equation 

(6) can be discretized using central difference formula. For 

c oncreteness, we will describe the computation cycle for the 

time-dependent approach. 

The calculation starts at t = 0 where ~ and w are known 

eve r ywhere . From equation (5) we obtain the vorticity w for 
L 

all interiors points at t = 6 t. The numerical solution of (6) 

gives ~ at t = 6 t and hence u and v. The last step of the 

computational c ycle is to update the boundary values of w 

using the most current values of ~ and w at the interior points . 

This computational c ycle is repeated until the steady state 

is reached to a specified convergence level. If we use the 

steady state form of equation (5), instead of "marching" the 

vorticity transport forward in time, new values of w are obtained 

by an iterative process . The way in which the boundary value s 

of the vorticity are approximated affects both the rate of 

convergence and the accuracy of the solutions. This fact has 

been noted b y man y authors. In the p rese nt case we use a second 

order form for e valuating wall vorticity given b y 

w/w 
1 

= 
2h2 

(8 ~/w+l - (7 ) 

Studies indicated that instead of uSlng formula (7) at time step 

I
n I n-l n , the average (w wall + Wj wall) / 2 yielded a more stable proces s 

• 

for the time-dependent and steady state approaches . Contour 

plots of stream function are shown 'in figure 4 and 5 for various 
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grid sizes and Reynolds number. Numerical values also are listed 

in Table 3 for comparison. 
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SECTION 6 - COMMENTS ON THE VORTEX PROBLEM 

The pro?lem is shown schematically in figure 6. An isolated 

vor tex embedded inside a boundary layer convects to the right 

over a porous wall. The velocity at the wall is given by 

Darc y 's law: 

where c 1S a constant 

Pr is a reference pressure 

The wall mass transfer mechanism is driven by the wall 

pressure gradient induced by the motion of the vortex . Conseque!ltly , 

it is of interest to examine the effect of wall p ressure 

fluctuations on veloci t y profile with an inflexion point inside 

the boundary laye r. The point of inflexion initially may be 

created by varying the position and / or the strength of the 

vortex . 

It is worthwhile to first consider a non-porous wall. 

The effect of two counter-rotating vortices of opposite and 

equal strength is equivalent to having an impermeable wall 

between them. In an inviscid flow , a dimensionless stream 

function of the vortices may be defined by 

2 2 2 
r r + (x-x ) + (y - Yo) 

\)J v £'n c 0 
= 

2 2 n 2 2 
r + (x-x ) + (y+y 0) c 0 . I 

where r is the strength of the vortex 

r is the core radius 
c 

(xo'Yo) is the c en ter of the vortex 

6-1 



Let the vortex be convected in an inviscid flow. The convection 

speed of the vortex is composed of 2 parts consisting of the local 

mean velocity and the sel f induced velocity due to the vortex 

i mage below the wall. Note that the inviscid solution predi c t s 

that the vortex will remain at constant heiaht y . 
~ 0 However , 

t he inv iscid solution is not valid for o ur realistic problem 

be cause it fails to satisfy the no-slip boundary condi t ion on 

t he wall. 

We have also tested the possibility of satisfying the no -

slip c ondition by means of a smoothing function, s. The modified 

stream functi on is de fine d as: 

1); = s 1); 
modif orig 

and s vanishe s strongly ne ar the wall, to ensure zero derivatives 

of 1); d' ' f (z e r o ve l ocity ). mo l 
Far from the wall, s is identically 

1. However, th i s new st ream function p roduce d a reverse flow 

near t he wall , introducing new compl ication s i n the f low pattern . 

It wa s t here f o r e a b a ndoned . 
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SECTION 7 - CONCLUDING REMARKS 

The weighted-mean scheme has several significant advantages: 

it is locally a conservative scheme neither creating nor 
" 

destroying the advected quantity artifically. 

I 
it is stable for all grid spacings or cell Reynolds number s. 

I ~ 
The scheme thus has the practical advantage of yielding 

solutions for relatively large values of g~id s ize and i s, 

therefore, economical with computer time. One can use this 

crude solution to construct a good initial guess solution 

for a finer grid. 

it becomes a central difference scheme for strongly dif -

fusive cases and an upwind difference scheme for strongly 

advecti ve case s. Furthermore, when the components of the 

velocity change sign, the coefficients upstream and downstream 

of the point are automatically reversed, a feature particularly 

useful in computer programming because the sign of the 

velocity components ne ed not be known a priori. 

The only major disadvantage is the lo'ss in speed due to 

the computation of the hype r bolic tangent at each grid point 

ln multidimensional problems. 

For the vortex proble m, the initial conditions need to 

correspond to some real initial situation Slnce we are interested 

in the transient solution. Therefore one needs to satisfy 

initially the no - slip condition. One suggestion is that the 

vortex at time t equals zero, should be far away from the wal l 

in the inviscid region so that the velocity induced by t he 

vortex vanishes at the wall . 
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Table 1 

Rc = 1.0 

Grid point 

1 2 3 4 5 6 

ES 0 .0 0 .0 1 17 0.0433 0.1295 0 . 3636 1.0 

WMS 0.0 0 .0 117 0 . 0433 0.1295 0.3636 1.0 

UDS 0.0 0.0323 0 . 0968 0 . 2258 0.4839 1 .0 

CDS 0 . 0 0.0083 0 . 0331 0 . 1074 0.3306 1.0 

Rc = 2 . 0 

Grid point 

1 2 3 4 5 6 

ES 0 . 0 0 .0 003 0 . 0024 0 . 0183 0 . 1353 1.0 

WMS 0 . 0 0 . 0003 0.0024 0 . 0183 0.1353 1 . 0 

lDS 0 . 0 0 . 0082 0 . 0331 0.1074 0 . 3306 1.0 

CDS 0.0 0.0000 0 . 0000 0 . 0000 0.0000 1 . 0 

Rc = 4 . 0 

Grid point 

1 2 3 4 5 6 

ES 0 .0 0 . 0000 0 . 0000 0 . 0003 0 . 0183 1.0 

WMS 0 . 0 0 . 0000 0 .0 000 0.0003 0.0183 1.0 

eDS 0 .0 0.0013 0.0077 0.0397 0 . 1997 1.0 

CDS 0 . 0 0.0164 -. 0328 0.1148 - 0 . 3279 1.0 

ES exact solution 

WMS = weighted - mean scheme 

.. UDS = upwind differencing s cheme 

CDS = central difference scheme 



Table 2 

Ben ard :::e11 ( 25 x 2 5 ) 

MULTI GRID (8 ) 
P SOR ADI i n work uni t (wu ) 

SOR Line SOR 

1 0 140 8 5 38 20 

20 188 1 10 35 27 

4 0 6. 140 4 4 3 8 

80 6. 2 05 83 51 

160 6. 101 96 

6. The r e sults f o r t ho s e speci f ic Pec1e t numbe r s we r e 
not c omputed . 



r . 

Table 3 

Reference Grid \jI 
vc Iterations 

100 WMS 21 x 21 - 0.094 55 (TD) 

WMS 4 1 41 - 0.103 120 (s s) 

Burggraf (4 ) 41 4 1 - 0.101 

B + D (5 ) 51 5 1 - 0.103 

N + KP (6 ) 51 51 - 0.102 • 

1000 "(",MS 61 61 - 0 . 092 210 (ss) 

B + D ( 5 ) 51 51 - 0.081 

N + KP ( 6 ) 51 51 - 0.097 

Gosman et al . ( 7 ) 81 81 - 0.099 

WMS Weighted - mean scheme 

TD = time dependent app r oach 

ss steady state approach 

= stream functi on at vortex center vc 

-------
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