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SOUND MEASUREMENTS OF THE MOD-2 '>lIND TURBINE GENERATOR 

by 

H. H. Hubbard, K. P. Shepherd, F. W. Grosveld 

INTRODUCTION 

The development and siting of wind turbines which are acoustically ac

ceptable to the community requires an understanding of the principal sound 

generating mechanisms, as well as the human response to the associated 

sounds. To date very few acoustical data are available for large wind tur

bines (Refs. 1-8) upon which to develop prediction methods and criteria. 

The purpose of this paper is to report the results of a systematic ex

perimental study of the sound generated by the MOD-2 wind turbine under 

steady state operating conditions and for normal values of power generation, 

wind velocity and ambient temperature. The characteristic radiation pat

terns and spectra in this paper illustrate the type of sound input data used 

in subjective testing for the development of acceptance criteria. 

This effort is part of the Department of Energy wind energy program 

which is managed by the NASA Lewis Research Center. The MOD-2 machine was 

built under contract to NASA by the Boeing Engineering and Construction Co., 

and the utility selected to participate in the operational portion of the 

program is the Bonneville Power Administration. 

APPARATUS A..""l"D METHODS 

Description of Site 

The wind turbine site at which sOll1d measurements were made is at 

Goodnoe Hills near Goldendale, WA. (Fig. 1). The installation is on a 

rounded promontory on the north edge of the Columbia River gorge at a 

nominal elevation of 884 m (2900 ft). Three MOD-2 wind turbine generators 

are located on the site as indicated in the inset sketch. The recorded data 

for this paper were obtained from operations of machine no. 2 (Fig. 2). A 

limited number of observations from machine no. 1 are also included. 

Wind velocity and wind direction data were monitored and recorded con

tinuously from meteorological instruments located near the rotor hub. Like

wise temperature and wind gradient data for elevations up to 152 m (500 ft) 

were recorded from a nearby instrumented meteorological tower. For all data 
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reported herein the prevailing \V'ind direction was west, the wind velocity 

range was from 7. 6 to 13.4 m/sec (17 to 30 mph), and the temperature range 

was 7°-18° C. All data were recorded on May 4 & 6, 1981 between 0930 and 

1800 hrs. 

Description of 1.;rind Turbine 

The MOD-2 wind turbine has a two bladed 91.4 m (300 ft) diameter rotor 

mounted on a 61 m (200 ft) high, 3 m (10 ft) diameter (circular) cross sec

tion tower (Fig. 2) . It is an upwind machine with a max power rating of 2.5 

MW and an operational range of wind velocities from 6 . 7 to 19. 7 m/sec (15 to 

44 mph) . The outer 14 m (46 ft) section of each blade is movable in pitch 

angle and is adjusted by a hydraulic control system. Precise rotational 

speed control is maintained to provide an rpm of 17.5. Blades are tapered 

in chord from 1.43 m (4.7 ft) at the tip section (NACA 23012 airfoil) to 

4.3 m (14 . 1 ft) at the root (NACA 23028 airfoil). Rotor blades have a 

built-in t,V'ist of 8 degrees, a total area of 197 m2 (2120 ft 2
) and a tip 

speed f 83 . 8 m/ sec (275 ft/sec) (Ref. 9). 

A computer control system is provided to monitor the wind velocity and 

direction, to bring the machine on line when the wind velocity exceeds a 

minimum value, to determine the optimum blade angle setting during normal 

operations , and to take the machine off line when the wind velocity falls 

belmV' the minimum or when it exceeds the maximum allowable value. 

Sound Measurements and Observations 

All noise measurements were made with commercially available battery 

powered instrumentation. One half inch diameter condenser microphones with 

a useable frequency range 3- 20,000 Hz were used with t wo different tape re

cording s ystems. One of the systems included a two channel direct recording 

machine which provides a useful dynamic range of about 100 dB in the fre

quency range of 25 Hz to 20,000 Hz. This system provided high dynamic range 

recordings needed for direct playback in subjective listening tests . The 

other system included an FM four channel recorder having a useful dynamic 

range of about 40 dB in the frequency range of 0 Hz to 1,500 Hz. This FM 

system provided the recordings from which the data of this paper were ob

tained. For some recordings the microphone signals to both recorders were 

C-weighted in attempts to more effectively utilize the available dynamic 
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ranges. Sound pressure level measurements were also taken with a precision 

sound level meter on the linear scale as well as for weighting networks A 

and C. 

Data were obtained for distances up to about 275 m (900 ft), and at 

various azimuth angles from 0 0 (on axis upwind) to 1800 (on axis downwind) • 

The measurement locations for both tape recordings and sound level meter 

readings are shown in Fig. 3. 

Sound spectral data were obtained with the aid of conventional one

third-octave band and narrow band analyzers, and by means of a recording 

oscillograph with high frequency galvanometers. 

To minimize the detrimental effects of wind noise polyurethane foam mi

crophone wind screens were used and microphones were placed on the ground 

surface, where wind velocities were relatively low. 

Attempts were made to observe the far field radiation patterns and 

spectra during routine operations in order to define the extent to which the 

wind turbine noise is detectable above the background noise upwind, downwind 

and to the side of the machine. 

MEASUREMENT RESULTS fu~D DISCUSSION 

Sound pressure data contained herein were obtained from listening obser

vations, from precision sound level meters, and from FM tape recordings. 

Data are presented in the form of instantaneous pressure time histories, 

narrow band spectra, one third octave band frequency spectra and overall 

linear, C-weighted and A- weighted levels. In addition some observations are 

summarized to indicate the approximate distances at which the wind turbine 

noise generator can be detected above the background noise. 

Instantaneous Pressure Time Histories 

The near field data of Figs. 4 and 5 were obtained as an aid in sound 

source identification on the blades and to provide a basis for interpreting 

the data in the far field. The microphone used for the measurements was lo

cated in the plane of rotation about 23 m (75 ft) out from the base of the 

tower, and at ground level . The blade tips passed by at time intervals of 

1.72 sec. and were within about 18 . 3 m (60 ft) of the microphone. The in

stantaneous pressure time history traces of the figures are arranged to show 

the character of the noise associated with the passages of the blades for 
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f r qu n cies up to 1,000 Hz in each of several frequency bands. Note that the 

recordings of Figs. 4 and 5 were made at different gain settings . Peak sound 

pr e s s ure level scales are therefore included to the left of the time history 

traces to indicate the relative signal amplitudes. 

Fi g. 4 shows the time history trace of the sound in the frequency range 

3 t o 1,000 Hz as obtained with t he aid o f a real time analyzer and plotter. 

Indicated i n the figure are the approximate times at which each of three 

blade passages occurred. High frequency noise components seem to be most 

evide t 1~hen the blade tips are closest to the microphone. On the other 

hand Im~ fre quency peaks are seen at various times on the record. 

Si milar time history data for several one-third-octave bands are shown 

in Fig. 5 . Data for the one-third-octave band centered at 800 Hz is shown 

i n Fig. 5 (a ) . For this range of frequencies the signal is clearly amplitude 

modul a t ed at the blade passage f requency. The sound pressure signal rises 

out o f t he background noise to a maximum value and returns in about • 75 sec 

which i s equivalent to the time for the blade to traverse about 80 0 of arc. 

The same general result is noted for data in the 400 Hz and 200 Hz one-third

octave bands except that t he r e spective signals are not so well defined. It 

can a l so be conclude d from ins pectin g records in Figs. Sea) and 5(b) and 

ot her similar da ta that one blade of the machine generates less sound at 

these f r equen cies than doe s the other blade. The reason for this phenomenon 

is not known. 

Si milar data for lower frequency bands [see Figs. Sed) through 5( f )] 

are mor e diffi cult to interpre t. There are some suggestions of a peaking of 

the pressures near the times of the blade passages but the indications are 

not very clear, and the apparent correlation noted for the higher frequencies 

deteriorat es progre ssively as frequency decreases. An additional factor is 

the wi nd noise which is stronger at the lower frequencies and makes the in

t e rpr e t a t i on of the lower frequency records more dif f icult. 

A gene ral result of this study is that the sound due to the passage of 

the blades through the air is mainly broad band in character. No discre te 

f r equency components associated with tower wake interactions of the type 

note d i n Re f. 1 were observed for this machine at any of the test locations 

of Fig. 3 f or which recordings were made. 
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One-Third-Octave Band Spectra 

The broad band spectrum associated with the data of Fig. 4 is shown in 

Fig. 6. Although measured in the near field of the rotor this spectrum is 

believed to characterize the sound generated by the blades as they interact 

with the air during normal operation. It can be seen that there are two 

broad peaks, one in the range of 20-50 Hz and another in the range of 800-

1,300 Hz. Both of these spectral peaks are related to similar observations 

noted for propellers, helicopter blades and isolated airfoils, and are be

lieved to be predictable based on a knowledge of the geometry and aerodynamic 

flow conditions of the blades (Refs. 10-20). The low frequency peak is re

lated to the thickness of the airfoil and is believed to arise from the 

effects of inflow turbulence (Refs. 11 & 12). The high frequency peak is, 

on the other hand, related to the thickness of the turbulent boundary layer 

of the airfoil at the trailing edge and is believed to arise from the inter

actions of the boundary layer and the airfoil trailing edge (Refs. 16-18). 

The characteristic shape of the spectrum of Fig. 6 is also observed at 

all of the field points for which spectral data were obtained. For instance 

the spectra of Fig. 7 have the same general shape as seen in Fig. 6 but in 

addition show a decrease in sound pressure levels with increasing distance 

on t he axis upwind of the machine. Details of the spectra at the larger dis

tances are not well defined, particularly at low frequencies because of the 

presence of background noise. 

The spectral data of Fig. 8 are for comparable measurement positions at 

two different azimuth angles; on the axis of rotation upwind and at 90 0 to 

the axis in the plane of rotation. Although some differences are noted at 

the low frequencies, the high frequency levels and spectrum shapes are con

sistent. This latter result is also consistent with the observations which 

indicated that the quality of sound heard was similar in all directions. 

Narrow Band Spectra 

Magnetic tape recordings for several of the measuring points were ana

lyzed on a narrow band basis (.25 Hz effective band width) to check for the 

presence of discrete frequency components. The data of Fig. 9 are repre

sentative of some of the results. A number of discrete frequency components 

can be located in the range 20-60 Hz. The main components are at frequencies 

-5-



of 24, 30, 36 and 42 Hz . T .e shaft speed of the electrical generator is 30 

Hz. The other frequencies are believed to resul t from gearing and/o r other 

accessories. Dis crete frequencies were identified only on recordi ngs taken 

near the plane of rotation of the rotor. Only the 30 Hz signal was identi

fiable in any of the far field measurements, however it was not considered 

significant from detection or annoyance points of view for any operating con

ditions. At frequencies higher than 100 Hz no discrete frequency components 

were found at any location. 

Directivity Patterns 

Data obtained by hand held s ound level meters were analyzed to evaluate 

some of the effects of distance and azimuth angle. Dat a f or l inear , C-scale 

and A- scale networks are given in Figs . 10, 11 and 12 to document the noise 

radiation patterns of the machine . 

Fig. 10 contains data obtained by means of the two precision sound level 

meters for all of the distance and azimuth angle combinations of Fig . 3 . The 

hatched areas contain the values at all azimuth angles for the linear, C

weighted and A- weighted networks, respectively. Lower levels are seen to be 

associated with measurements using the C- weighted and A- weighted networks. 

This result tends to confirm the results of Figs. 6-8 which indicated the 

presence of significant low frequency spectral components. Because the data 

points for a wide range of angles seem to group together closely it is con

cluded that the machine radiates sound in a generally uniform manner in all 

directions . 

Fig. 11 contains a plot of measured A-scale sound pressur e levels as a 

function of distance. Data were obtained both from sound level meter read

ings and the playback of tape recordings for several different distances on 

the axis upwind and downwind. It can be seen that the levels fall 0£fin an 

orderly way with distance. The two dashed curves are drawn through the data 

points at small distances and their shapes are estimated for larger distances 

upwind and downwind. The measured A-scale background noise level in the test 

area is noted on Fig . 11 to indicate the probable limit in 4istance for aural 

detection of the machine. The observed limit of detection was 1400 m (4600 

ft) in the upwind direction. In the downwind direct ion on the other hand, 

n the noise was clearly audible at a distance of 2100 m (6900 ft), thus 
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confirming the existence of an elongation of the radiation pattern in the 

downwind direction. This elongation is believed due mainly to the refrac

tion effects of the wind rather than to any preferred directional properties 

of the source. 

Based on the data of Fig. 11 plus other measurements and observations 

the polar diagram plots of Fig. 12 have been constructed. Shown on the 

figure are estimated A-level 'contour lines for 65, 55, 45 and 35 dB values. 

Shown also is the detection limit distance for the southwest quadrant, for 

which the A-level background noise was about 30 dB. It was generally ob

served that the west direction (upwind) propagated noise signals were rela

tively steady in amplitude. On the other hand, in both the south direction 

(crosswind) and the east direction (downwind) the noise signal had a percep

tible amplitude modulation at the blade passage frequency. It has thus . been 

suggested that at the larger distances, the noise may be detectable from only 

the topmost portion of the rotor disk. 

NOISE PREDICTIONS 

In order to evaluate the environmental impact of any particular wind 

turbine generator design, validated methods are needed to predict with confi

dence the levels and spectra of the radiated sound, and to compare them with 

subjective criteria. The opportunity was taken to test some of the available 

prediction methods previously used for propellers, helicopters and isolated 

airfoils against the measured data for the MOD-2 machine. Information is pre

sented with reference to the prediction of the overall sound pressure levels 

as well as the anticipated frequency ranges of those sound pressure compo

nents associated with the fluctuating lift and boundary layer - trailing 

edge interactions. It is assumed that fully developed turbulent boundary 

layers exist on the airfoils and that there are no regions of separated flow. 

Likewise direct acoustic radiations from the turbulent boundary layers and 

the turbulent wake are not considered Significant . 

Fluctuating Lift Components 

One of the candidate mechanisms for airfoil generated sound is the phe

nomenon of fluctuating lift due to the interactions of the inflow turbulence 

in the atmosphere with the blade leading edge (Refs. 11 and 12). The random 

vertical and horizontal velocity fluctuations cause effective angle of attack 
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changes which in turn result in unsteady airfoil loads and associated sound 

radiation. This is an important component in the sound pressure spectra of 

propellers in static operation (Ref. 13) and of helicopter rotors in hover 

(Ref. 14); and experience to date suggests the following relationship for 

the peak frequency (Ref. 11): 

where 

SV 
d 

S = Strouhal coefficient (~.25) 

V Section velocity, m/sec 

d Wake projected airfoil thickness, 
t cos a + e sin a 

t Airfoil thickness, m 

C Airfoil chord length, m 

a Angle of attack, deg 

Assuming a linear taper in chord and thickness and an effective radius of 

0.75, the calculated value for f 
Pl 

34 Hz. This value is in general agree-

ment with the low frequency random noise peak of Fig. 6. The value of effec-

tive radius used here is arbitrary but the value O. 75 has been found useful 

by others in blade loading considerations. 

For particular configurations where laminar flow conditions exist and 

where airfoil vortex shedding sound may be significant (Ref. 10), the above 

relationship is also applicable for computing the peak frequency due to vor

tex shedding. Vortex generated sound is not expected to be detectable for 

the high Reynolds numbers (~ > 10
6

) and turbulent inflow conditions of 

these tests. 

Boundary Layer - Trailing Edge Interaction Components 

Another possible mechanism for generation of noise by an airfoil in mo

tion is the convection of the turbulent boundary layer past the trailing edge 

of the airfoil (Refs. 10 and 15). This mechanism is best represented by an 

edge dipole which radiates mainly forward and to the sides. The radiated 

random noise can be characterized by a broad spectral peak, the value of 

which is related by the well known Strouhal relationship to the conditions 

of the flow. Thus the peak frequency 
f SV 
P2 = T 
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where: S = Strouhal coefficient (,to. 25) 

V Section velocity, m/sec 

o Boundary layer thickness, m 

In evaluating 0 it is sufficient to assume flat plate conditions and 

c&lculate the thickness of the turbulent boundary layer for a plate length 

equal to the chord of the airfoil. Thus, from Ref. 20: 

where: 

where 

o = .37 C 
R 0 . 2 

e 

C = Chord length of airfoil, m 

R 
N 

v 

VC 
Reynolds No. = \) 

Kinematic viscosity = .0000157 m2/sec (.0001713 ft2/sec) 

In the above calculations it is customary to assume an effective radius of 

the blade. In the present study,va1ues of C, V and RN were determined for an 

assumed effective radius at the tip. Note that a higher value of effective 

radius is selected in this case than for the inflow turbulence case. The tip 

value is chosen because these boundary layer related phenomena are believed 

to be more sensitive to velocity (Ref. 21). The calculated boundary layer 

thickness of .0224 m (.073 ft) results in a predicted value of 940 Hz for f , 
P2 

which agrees well with the frequency of the second broad band peak in the 

spectra of Figs. 6-8. There is a suggestion from recent studies such as those 

of Ref. 12 that an alternate frequency prediction method, making use of de

tailed information about the structure of the inflow turbulence may also be 

useful. 

Other Components 

The main components of the sound from the blades of the MOD-2 machine 

are identified as those due to inflow turbulence and turbulent boundary 

layer interactions with the blade trailing edges. There are however a number 

of other sources (Refs. 10-20) which for certain combinations of geometry and 

operating conditions could also be important at low tip speeds. These in

clude such phenomena as direct radiation from the aerodynamic wakes of the 

blades and the turbulent boundary layers on their surfaces, vortex shedding 

associated with laminar flows, blade wakes due to finite thickness of the 

trailing edges, separated flows due to localized stalling, and the 
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interactions of the aerodynamic flow with surface roughness, proturberances. 

cavities and slots (as between the movable tip section and the rest of the 

MOD-2 blade). Experimental evidence to date suggests that none of these 

additional sources are important for the MOD-2 machine in normal operations . 

Overall Levels 

A summation of the significant broad band noise components has been pre

dicted using an approach proposed for propeller blades in Ref. 22. Basic 

ass umptions are that the rotor can be treated as a dipole source and for far 

field predictions the source is assumed to be concentrated at the hub . An 

empirical relationship based on that given in Ref. 22 for a fixed observation 

point has been modified for wind turbine application by adjusting for distance 

and directivity effects as follows: 

6 
SPL = 10 log KAV 

10 0.9 

where: 

K 

A 

-7 
5.10 x 10 (based on helicopter rotor data) 

Total blade area, m 2 

v = Velocity at 0 . 9 radius, m/sec 
0.9 

X = Slant distance from hub to observer, m 

8 = Angle of observer from plane of rotation, deg 

dB 

For large wind turbine applications an effective radius of 0.9 is chosen arbitrarily 

rather than the value of 0.7 used previously for helicopter rotors and propellers 

(Ref . 22). The dominant portion of the wind turbine spectrum is more sensitive 

to section velocity while the dominant portion of the spectrum for helicopter 

rotors, which operate at higher disk loadings, is more dependent on blade loading 

fluctuations. 

Calculations of the overall broad band noise levels for the MOD-2 wind 

turbine generator are plotted in Fig. 13 as a function of distance upwind of the 

machine at ground level for comparison with measurements. Two results can be seen. 

The predicted and measured values seem to be in excellent agreement except for 

the close- in stations. This good agreement may be fortuitous because of the 

necessary assumptions in the calculations and possible wind noise contamination of 

the measured data . The apparently good agreement for the predicted and measured 

fa lloff rate with increasing distance suggests that the machine can be repre

sented adequately as a concentrated dipole source for far field prediction 

pUI1poses . 
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CONCLUSIONS 

Measurements of sound from the MOD-2 wind turbine generator for a ~ange 

of wind velocities from 7.6 to 13.4 m/sec (17 to 30 mph) and electrical power 

outputs in the range 0.9 to 2.0 MW suggest the following: 

1. Two broad peaks of random noise are identified in the spectra. These 

peaks which occur in the 20-50 Hz and 800-1300 Hz ranges are evident in 

the near and far acoustic fields and in all directions from the machine. 

2. By comparison of the present results with published data for helicopter 

rotors, propellers and isolated airfoils it is apparent that the two 

broad band noise peaks arise from two different aerodynamic phenomena 

on the blades. The low frequency peak is related to the fluctuating 

forces on the airfoils due to the non uniform inflow to the rotor disk. 

The high frequency peak is related to the interactions of the turbulent 

boundary layers on the blade surfaces with the airfoil trailing edges. 

3. Due to the high frequency peak ~vhich is readily observable in all direc

tions, observers conclude that the machine is not very directional as a 

sound source. Thus the A-weighted noise level countours are roughly 

circular at distances up to about 1,000 ft. 

4. Strong wind effects are evident at the larger observer distances. The 

sound is detectable at greater distances downwind than upwind. Refrac

t ion effects due to wind gradients apparently play a significant role in 

propagation to distances of several thousand feet. 

5. No discrete frequency sound pressure components were identified with the 

rotor. Those which could be observed in the sound pressure data were 

below 100 Hz in frequency and are all believed to be associated with the 

power generation machinery components. 

6. Available methods for predicting the broad band spectrum peaks and the 

rate of decrease of sound pressure levels with distance give good agree

ment with experiment. 
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Figure 2. - Photograph of Wind Turbine Generator #2 in 

Operation During Acoustic Tests. 
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Data are Recorded 23 m from Base of Tower in Plane of Rotation. 
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