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NOMENCLATURE
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n
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Pa,n

pt

ambient speed of sound, m/sec

group velocity, m/sec

phase speed, m/sec

frequency, H2

unit step function, eqs. (22) and (23)
nunber of axial gria points

numper of transverse grid points
dessel function of order m

length of duct, m

spinning mode number

time-dependent dimensigniess acoustic pres-
sure, P(x.r.t), P'Ioacaz

time-dependent dimensionless acoustic pres-
sure associatea with m moge

analytical solution for m spinning mode
and n radial mode

time-depennent dimensionless acoustic pres-
sure with angular variations, P'{(x.r,e,t),
Pre/o§C?

ar

T

at

ax
l*

spatially dependent “steady state" acoustic
pressure, P(x,r)

radial coordinate, re/rg
radius of duct, m

radial grid spacing

period, 1/f*, sec
dimensionless time, t*/T*
time step

axial acoustic velocity, U*/C{
axial coordinate, x*/r§

axial qrid spacing

© acoustic impedance, kg/m? sec

eigenvalue (nth 2ero of Jpla))

eq. (12)

eq. {21)

specific acoustic impedance, 2*/o§/C§
specific acoustic impedance at exit
specific acoustic impedance of infinite duct

cutoff frequency
dimensionless frequency, rdf*/CQ
angular coordinate

dimensionliess axial wavelength




(4 cutoff ratio, ap/ngyt
o§ ambient air density, kg/m’
) angular frequency
Subscripts:

e exit condition

1 anial index (fig. 1)

radial index (fig. 1)

m spinning mode number
n radial mode number

0 ambient condition
Superscripts:

. dimension2] quantity
K time step
INTRODUCTION

With the introduction of strict aircraft noise
regulations in tne late 1960's the ngw atrcraft
nacelle designs required acoustic treatment in the
inlet and exhaust ducts to reduce engine fan noise,
To minimize the weight penalty of wall treatment,
the aerospace 1ngustry hay been concerned with re-
agucing the lengtn of a liner for a required sound
attenuation. Analytical tecnniques are needed to
nandle sound propagation in ducts with axial varia-
tions in cross-sectional area or in wall liner
1mpedance (absorbers) and with gradients in the flow
Mach number. In an attempt to mec' this need, both
finite difference and finite elemeny numerical tech-
niques were gevelopeaq,

At the present time both “steady state" and
transient numerical theories have veen appliea to
the prodlem of sounu propagation in ducts. In the
steady-state theory the pressure ana acoustic veloc-
1ties are assumed to be swmple harmonic functions of
time; thus the equations governing sound propagation
{ linearized gas aynamic equations) becoe indepenc-
ent of time, Generally tne steaoy-state finite
difference and finite element numerical algorithms
nave been liumitea to low frequency and short ducts
vecause of the large matrices associated with the
selutions of the time-indepenoent equations, for a
listing of recent publications and more detatls on
the techniques and proolems associatea with the
nurerical solutions of the souna propagation equa-
tions, rerer tu reference 1, wnich contains a com-
prehens)y e literature summary covering ooth £ ite
ditference ana finite element analysis of small-
asy litude ( 1near) souna propagation in straignt aau
variable-drea aucts.

As an alternative to the previously developed
steady-state theories, time-depengent numerical
solutions were developed for plane-wave noise propa-
gation i a two-aimensional rectanguiar duct without
tlow (ref. ¢), for paraliel shearey mean flow
{ret, 3), ana for nigner order mude propagation in a
cylhingricai aguct witn & uniform mean flow (ref, 4).
Aqvantageously matrix storage requirements are com-
pletely elminated in the time-gependent analysis.
Unly tne solution vecturs for pressure and velocity

need be storgd. Thus the transient solutions can
easily be applied in long ducts and in M‘n-
frequency applications, such as in the injet of a
turbofan engine. .

At tha present time, howsver, the transient
@0thod appears to have one major drawback. Thna
transient mechod, as formulated in reference 4, does
not converge for cutoff acoustic modes. This has
implications as to its use in a variable area where
modes may become cutoff in the small-area poriion of
the duct. wWnen a single acoustic mode be? ns to
move along a variable-area duct, part of its energy
will be continuously transfarved to the other duct
modes (ref, $). If the initial mode is near cutoff,
significant energy could oe transferraed to a cutoff
mode. Also, when abrupt changes in geometry or wall
impeaance occur in a duct, a full range of acoustic
moges (including cutoff) is required to match pres-
sure and velocity across the interface (ref. 6).
Consaquently the purpose of the present paper is to
resolve the stability problem associated with the
transient calculation af cutoff acoustic modes.

The numerical analysis to follow models the
closed-form pressure solutions for cutoff and propa-
gating acoustic modes in a semi-im .nite duct. Tne
first section of the paper presents the various
equations and boundary conaitions governing sound
propagation in a duct without a mean flow. Tne
second sertion then presents the difference form of
the governiny equations, Next analytical approxima-
tions (steepest descent) are presented as a guide to
the understanaing of the numerical resuits that
follow, Numerical calculations are presented at
forcing frequencies above, delow, and nearly at the
cutoff fregquency. At that time an explanation is
presentea for the computational instability asso-
cratea witn cutoff modes. Ffinally recommendations
are made on how to handle cutoff mooe propagation,

GUVERNInG EQUATIUNS ANV BOUNUARY CUNDITIONS

Tne propagation of sound in an axi;ymmetric,
cylinarical, narg-wall duct, as shown i figure 1,
1S gescrioea by the wave equation and &ppropriate
impedance boundary conditions.

wave tqQuation
The wave equation is a circular duct without a
mean flow can be expressed in dimensionless form as

we L 1 e gt ¥ (1)
7 or€ Far :{ “2 r .0
Tnese any otner symools are defined in tne nomencla-
ture. Tne dimensioniess frequency =, 1S defined
as

* @ ® ®

ruu rof 2
N = e (@)

Z'CO Co

Tne asterisks denote dimensional guantities.
Because of tnﬁ rotational nature of the rotor
blades on a typical turbofan jet engine, large cir-
cumf-rential variations in acoustic pressure will
occur aepending on blade numder and engine rpm,
A three-dimensional solution for sound propagation,
nowever, would be expensive to perform. Custom-
arily, swnce tnhe equations are linear, tne cir-
cumferential acoustic pressure variations are
decomposed into spinning moges mn:
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The summaiion is over those modes that are present
in a particular application. Considering solutions
with 2 single spinning mode number m
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the wave equation (1) reduces to
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Equation (5) in difference form will be solved to
determine the prassure in the duct
Hara-wall Boundary Condition
The boundary condition at the surface of a
hard-wall duct is
P
w0 (6)

Entrance Condition
‘The boundary condition at tne source plane

PLO,r.t) will De assumed to vary as elo"t" or in

3 A 4
fr o et et aR tation (v FECETDWINT ve
assumed to correspond to the eigenfunctions
Jm{amn?) associated with moge propagation in an
infinitely long nard-wall duct. The eigenvalues
associated with mode m,n are tadvulateu in refer-
ence 7 (p. 511) and reference 8 (p. 411). Therefore
the source boundary condition used herein is

et

PLOL) = J (agr)e ()

Exit l%gedance
e bounaary congition at the exit of the duct

can be expressed in terms of a specific acoustic
mpedance defined as

te® T (8)

where the equation describing tne acoustic velogity
U is

Y 1
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Substituting equation (8) into equation (Y) yjelds

» v P
- E; T (10)

I reference 4, Ce has Deen assumed to be
the steagy-state impedance associated with mode
propagation gown an infinite duct. for transmission
of a single acoustic mode witnout reflection, the
exit impeaance s

(11)
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for propagating modes and
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for cutoff acoustic modes. The negative root is
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All the otner equations and boundary conditions
are exact. The exit impedance (g was the only
condition that was modeled in an approximate man-
ner. As indicated by 1ts title, this paper con-
centrates on exact treatment of the exit impedance
conaition.

Centerline Condition

For plane-waveé propagation (m =« 0, n » 0},
aP/ar 1s zero at tua centerline; for modes with m
equal to or greater than l, P(x,0,t) is zero. Also
a3Plar s zero tor m grcater than 1,

Initial Condition

For times equal to or less than zero the duct
1S assumed to be quiescent; that is, the acoustic
pressures and velocities ar2 taken to be 2ero. For
times greater thar zero tne application of the noise
source (eq. (7)) will drive the pressure in the duct.

OIFFERENCE EQUATIONS

Instead of a continuous solution in space and
time tne finite~difference approximations will
uetermine the pressure at isolated grid points in
space as shown in figure 1 and at discrete time
steps at. Starting from the known initial condi-
tions at t = U ang the boundary conditivns, the
finite-difference algorithm will march out tne solu-
tion to iater times., No special starting equation
will be required, pecause both the pressure and
acoustic velocities are initially assumed to be
zero, a quiescent duct.

Drfference Equations

Away trom the duct boundaries, in cell 1 of
figure 1, the first ana second derivéiives in the
wave equation {(eq. (5)) can be represented by the
usualzgentral differences wn time ano space (ref, 9,
p. 45
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whare | and j denote the space tndices; k the
time index; and ax, ar, and st the space and time
mesh spacings, respectively.

Equation (14) can be rewritten as
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Equation (15) is an algorithm tnat permits marching
out solutions from known vi'.es of pressure at times
associated witn k and k - 1. 75z (ifference
equations for cells 2 ty 6 in fi ;4 1 are cf
sligntly aifferent form. Tnese . ations as xall as
tneir derivations are given in reterences 2 and 4,

Spatial Mesh size

‘the mesn spacings ax and ar must be re-
stricted to small values to reduce the truncation
error, To resolve the oscillatory nature of the
acoustic pressure, the required number of grid
points | in the axial direction and J in the v
dgirection were given n reference 4 as

1>Wan 550 (16)
"o
J2i2na (17)

dtapilit
In tne explicit time-marching approach used
nere roundoff errors can grow in an unocunved fash-

10n ana gestroy the solution if the time increment
at s too large or if the iteration scheme is im-
properiy posed, For spinning wave propagation in a
tnin annulus tne Von Neumann metnoa (ref. lu)
applied to equation (14) yields

n, ar
at < r

e e]

(18)

-

For circular aucts at was empirically gecreased oy
a factor of 0.5.

ANALYTICAL SOLUTION

Tne wave equattion (1) and its associated boundg-
ary ang initial conditions can oe solved directly
for tne semi-infinite duct snown in figure 2(a) by
the use of the Laplace transform (ref, >)., To ob-
tain a more useful solution, Pearson (ref. 5) has
also solved equation (1) by tne metnod of steepe-t
gecent to odtain

ﬂ%ﬂ  H(t - na) {:33182‘}

[ ]
x «{2en 8
o (":'r)"m('m") o et for o, »;-:‘“-
{19)

Pix,r,t transient
vt o Wt - ) {solutton}

*H (} - 25:) Jm(qmnr) e-.m"'l for n < ;%5
(20)

where H is the unit step function and

l/ 2e 2
Y= 1 -(:m":-':) (Zl)

The functional form of the transient solution {s
presented later,

In reference 5 the duct eigenfunctions were
left in a general form. Herein the cylindrical form
of tnhe eigenfunction is used, and the original
equatiuns of reference 5 are rewritten in a dimen-
sionless form. Also, only the real part of the
transient and steady-state solutions was presentc.
in reference 5. These solutions, however, are pre-
sented in complex form in equations (1Y) and (20).
Because the transient terms correspond to waves that
are propagating but are not simple harmonic in
nature, the usual restriction that rutsff uavei a0
not carry energy (ret. ll, p. 53) < not apply
during the transient,

As a result of the method of steepest decent
the acoustic pressure field inside the duct 1s Ssplit
into a transient motion and & stcaay-state solution
that s either propagatea (eq. (l9)) or attenuated
(eq. (2U0)) depending on wnether the frequency of the
forcing fiela is greater or les:, than tne cutoff
trequency of tne mode considered. The steady-state
solution is also the solition to equation (1) when
tne pressure is assumed .0 be a simole harmonic
function of time,

For propagating mod:s the physical significance
of the unit step functioss in equation (1Y) can dest
be described if the, are rewritten in dimensional
form:

LA |
H(t-nrx).ﬂ t - = (22)
c
0
and
R
n(z-%).u T (23)
)
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Thus the transient term in aquation {19) travels at
the signal velecity (ref. 7, p. 479) which is the
speed of sound of the medium. The transient front
1s defined as the surface beyond which the medium is
completely at rest at any given instant of time. On
the other hand the steady-state solution travels at

the group velocity Cg, which is simply

. Cgf
g (24)
9 c.

there o8, \faleacomaon Phase,ueiocttre sol

tions, The phage velocity C3 1is always
reater than s the group velocity 1s always
ess than (J.

SIMULATION OF SEMI-INFINITE OuCT

fhe form of the transient solution leads to
some observations that are pertinent to the numeri-
cal results to follow. First, the time in which to
perform the transient solution increases near the
cuto’? frequency. In fact, equation (23) indicates
that a moge exactly at cutoff can never exist at
steady state since its group velocity is 2zero.
Second, the impedance at any position will not be
equal to the steady-state impedance during the ini-
tial transient. Thus equation Xll) is not the exact
analytical condition for no reflections during the
transient. As a consequence of using equation (11)
during the transient, part of the acoustic energy
reaching tne exit will be reflected back toward the
source.,

For modes with small group velocities near the
cutoff frequency, the possibility exists that the
use of equation (11) as a boundary condition could
introduce an unstaole feedback 100p into tne numeri-
cal analysis. This computational instability could
prevent the estaplishment of the true steady-state
solution. Tnerefore the possibility that the exit
impeaance was the cause of tne instapility of cutoff
acoustic modes (ref, 4), as discussed in the intro-
duction, is now investigated.

The present analysis attempts to numerically
reproduce the steady-state analytical solutions
given by equations (1Y) and (20) for the acoustic
pressure in the aomai't 0 ¢ x < 1 in the semi-
infinite duct of figue 2(a).” A variety of fre-
quencies above and below the cutoff frequency are
chosen. In tne numerical simulation a finite-length
guct (L*/rd = 1}, shown in figure 2(b), and a
1ong auct (L*/ry = 40}, »>wown in figure 2(c),
are used, The ?atter case exactly simulates-an in-
finite duct if the numerical calculations are ter-
winated before the return of the initial reflected
wave from the duct exit,

DISCUSSION OF RESULTS

In tnis section the calculated axial pressure
profile of the 3,0 mode is exanined at frequencies
above, below, and nearly at the cutoff frequency.

In these problems the time-gependent numerical
results are compared with the exact solutions given
by the secona term in equations &19) ana (20). The
staoility of tne numerical solutions is examined for
source frequencies near tne cutoff frequency.

In the numerical computer program the values of
pressure are calculated at each grid point i,j for
each time step k. Only the values of pressure at

times k and k - 1 need to be stored since only
the pressures at two orevicus time sf e
needed for the p calculation (eq. {158)).

After sufficient tise has passed so that the steady-
state solution has traveled to the position xa l,
(H(t ~ ap/s) Or H(t = ap/y) = 1) and after an
additional time period elapses such that the tran-
sient terms have died out (checked numerically), the
t ime-dependent results can be compared with the
steady-state results. In this comparison ﬂt time-
dependent pressure is simply divides by e'ést to
obtain

p_ert (zs,

which represents a numerical approximation to the
Fourier transform of P(x,r,t) as stated in refer-
ence 12 (p. 11).

in all tne cases to be examined now the aumeri-
cal and analytical pressure profiles are displayed
for the domain 0 < x < 1 tor a hard-wall, semi-
infinite duct with an” ms3 spinning mode and the
lowest order radial eigenvalue a3 o = 4.20119).
The valuas of the acoustic pressure are displayed
at r « 1, along the duct wall, Also, to keep the
graphical displays simple, only the real components
of pressure are compared,

Tne ratio of the forcing frequency np to
the cutoff frequency ac,t 1S defined as ¢.
For he med spinning moae. the cutoff frequency is
acut = 0.66804. Therefore

r
¢ - oA 120}

Finally, in the discussion to follow, the

rgtig of the speed of sound to the group velocity

/Ca 1s cited. This ratio is equal to the
d uaasionloss time t required for the steady-
state solution to propagate to the x=l position in
the duct. This parameter is also used as a measure
of how close the forcing frequency is to the cutoff
frequency. The difference in the calculated time
t and the ratio C3/Cq represents the added
computational time vequired for the transient terms
to die out so that the steady-state terms become
dominant,

Propagating Acoustic Modes

The numerical and analytical profiles are com-
parea in figure 3 for ap e l. In nig case the
ratio of sonic to group velocity /
is 1,345 (g = 1.5). As shown in figure 3, at
t « 1.80 the analytical and the numercial results
for both the snort auct (fig. 2(b)) ana the long
duct (fig. 2(c)) are in good agreement.

For a source frequency negrer to cutoff,
np = 0.7 (€ = 1,047 with Cp/Cq = 2.365,

t;e time required to obtain a gteady-state solution
increases to 6 for the long duct and 10 for the
short duct. Again, tne numerical solutions converge
to the analytical solutions, as shown in figure 4.
Furtner improverent Detween the numerical and ana-
1ytical solutions coulo be obtained by using more
axial gria points (smaller ax{.

To 1)lustrate the temporal nature of the acous-
tic signal, tne time nistory of tne acoustic pres-
sure at the axial pusition x = 1 and at the duct
wall (r = 1) is presented in figure 5. In figure §
the solia line represents tne steaily-state solution,
which is cut on when H(t - npx/8) becomes 1. The

e mnitaidintade ..



3
!
1

3

solid line 18 calculated from the last tere in

The deshed tine in ﬂ?m § represants the
steepast-descent analytical approximations for the
transient prassure terss in eguations {19) and
{20). The real part of the transient acoustic pres-
sure was derived in reference 5 from Dedbye's forne
mula. [In dimensionless form the real part of the
transient term is

real (an )IIZ
transient 3 o of e
solution ¥Smn

y , 1/2
H(t - nrx)xto;n cos ‘mn(?e'"i - xz) - .I{]

1 .
nr(tz - uzof (le)z {tz - 'an‘ue}

R

{27)

Equation (27) applies to both equations {19) and
{¢V). The Debye form of the steepest-descent
approximation has a singularity at the time of
arrival of the transient (t e qpx) and at the
arrival of tne steady-state solution (t « npa/s).
Consequently the steetest-descent solutions are com-
pared with the exact numerical results away from
these two sin%ular points. A gap in the steepest-
gescent solution (dashed line) is left in figure §
about the singular points,

Tne circular sympols in figure 5 represent the
numerical finite gifference calculations. decause
the numerical time wncrements are chosen small for
numerical stability, ervors in the numerical solu-
tion can arrive slightly anead of tne acoustic
wave, However, these errors are quite small.

for the forcing frequency n, = 0./, as snown
in figure 5, the transient arrives at position
x =1 when t = 0.7; the steaoy-state signal arrives
at t « 2,30, [In general, as shown in figure > the
numerical and anmalytical theories are in reasonabie
agreement, The transient term tenas to suppress the
peaks of the temporal acoustic signal during tne
initial portion of tne transient. B8y a dimension-
less time of 7.0, nowever, the transient has dieo
out.

next a numerical solution was obtained for a
forcing frequency np « 0.0087 (& =« 1.0000¥) with
a (/i ratio of 50, In this case tne
«~Juer\c%l results for only the short duct (fig,
élb)) are aisplayea. As shown in figures 3 and &
tne use of a steady-state impedance exit condition
leaas to convergence to the steagy-state solution,

for tne snort cuct, as shown in figure o, con-
vergence between the numerical ang analytical
results is optained even very close to the cutoff
trequency. [n tms case the dimensignless time for
convergence 1s extremely long, [n a sense these
numerical results nave valigateo tne results of the
steepest-gescent appronimation to the transient duct
propagaton proslem, 8y a mental extrapolation, for
a forcing func. ‘on at the cutoff ‘requency, tne con-
cept of an infinite time to set up steady-state
conattions seems plausiple, This oiscontinuity in
group velocity at the cutoff frequency could pe sig-
nificant in transient-mode measuring schemes, such
as in reference 13,

Finally, for £ greater than |, the use of a
steady-state exit impedance dges not affect conver.
ggnce even in the extreme case of large
wlty values,

c ] orcing frequencies delow

cous
their cutoff fraquenty are said to be ronpropagit
because their time-averaged, steady-state acoustic
intensity is zerc (vef. 11, p. 53). Tne pressure
fields, however, do propagate down the duct accord-
ing to equation (20).

For the 3,0 acoustic aode at a forcing fre-
quency oy Of 0.6 (§ = 0.9), the steady-state
ene is nonpropagatiag. The dimensionless time
required for the steady-state pressure to reach
x =l 15 1,359, The numerical and anai;tical pro-
files for this moge are compared in figure 7 for the
exit impedance condition shown in figura 2(0). As
shown in figure 7 the numerical values of the acous-
tic pressure did aot convergs to the analytical
values, even when the calculational time was ex-
tended to 120, Tnis was the computational stability
prodblem alluded to in reference 4.

On tne other hand, when the same calculation
was performed for the L*/r] « 40 duct, the
numerical calculations quickly converged to the
analytical results, as shown in figure 8. Therefore
the conclusion was drawn that the assumption of a
steady-state impedance at x « 1 causes a finite~
amplitude instability in the numerical solutions.

In contrast to the case of a propigating mode
such as shown in figure 6, for cutoff aodes the
transient component initiallv dominates the steady-
state component of pressure Devause the ste2dy-state
component is damped by e~SmnYX, Figure 9
11lustrates the relatively larger magnitude ¢f tne
transient component of pressure as compared with the
steady state over the first three time periods. AS
snown in figure 9 the analyticai solution (dashed
line) is in reasonable agreament with the numerical
results,

Most likely, because the steady-state imoriance
is completely reactive {eqs. (11) ano (13)) for
steady-state cutoff wmodes, none of the acoustic
energy associated witr tne dominant transient solu-
tion can escape the duct. Recall that, when a
steaay-state wave impinges on a purely reactive
plane, the magnitude of the reflection coefficient
is unity {ref. 7, p. 20¢). Ur conversely, the
steady-state power radiated from a plane surface is
proportional to resistance (ref. 14, p. 247), which
is zero for the cutoff mode, Although we are not
dealing with a steaay-state wave, tne use of a
purely wmaginary exit impedance could induce large
reflections of the transient power, which would pro-
vent the ootaining of & steady-state condition in a
transient analysis. In contrast, in the conven-
tional steady-state numerical analysis, tne use i
a purely reactive exit impedance is acceptanle
(ref. 1o, fig. 5).

Clearly steady-state exit impedances cannot be
used in a transient stuay of cutoff acoustic modes.
In general a steagy-state exit impedance should only
be usea as an approximation for the duct exit ter-
minaton for a single propagating acoustic mode,

Up to tnis point the exit impedance employed
nas been associated witn a single propagating acous-
tic mode in 3 hara-wall duct. However, the exact
exit impedance is unknown for sultimode (including
cutoff modes) transient propagation in straight
soft-wall and hard-wall ducts with axially varying
area, Some general proceaures for overcoming the
difficulties of multimode exit conditions are dis-
cuss?a in tne following section on exit impedance
models,
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EXIT IMPEOANCE MOOELS

1~ applytng the finite difference or finite
element analysis to an actual engine inlet, the grid
system has generally been confined to the internal
portion of the engine. Thus the engine has been
wodeled as a short pipe. In this case an exit
impedance 18 chosan at the inlet face or jet exhaust
plane. However, the internal 2rid structure aay be
extended into the far field, in which case a far-
field exit fopedance would be employed, First, some
possible ways to choose the fmpedance at the enging
exits are discussed. Next, the advantages and pro-
cedures for moving the exit impedance plane into the
far fiela are presented.

A problem often encountered in inlet design is
the deterwination of the optimum attenuation of one
or more soft-wall (absording) liners. Figure 10(2)
shows a simple straight-duct model cf a turbojet
inlet that is assumed to have two different values
of wall impedance (absorpers) in series. For a
fixed spinning mode number m, the acoustic pressure
at the inlet face will be composed of many radial
modes that propagate down the duct.

If a single radial mode is assumea at x « 0 in
figure 10(a), the infinite hard-wall-duct impecance
associated with this mode {(eqs. (11) and (12)) would
De an appropriate assumption., Generally only propa-
gating modes at x = U would be used; therefore the
purely imaginative exit impedances associated with
cutoff modes would not be employed,

decause some modal scattering will generally
occur at the various cnan?es in wall impedance
(ref. 16), many modes will actually be present at
the duct exit. In the prediction of sound attenua-
tion in these cases, the tingle impedance used in
the numerical calculation (refs. 17 and 13) has been
found to be in ?ood agreement with the more enact
analytical models (refs. 1y ang 16). Apparently, oy
absorption the soft wall prevents tne reflected
waves from significantly affecting the acoustic
fiela in the duct.

Reference 17 (appendix £, eq. (ELO)) suggests
another possibility for more accurately simulating a
nonref lecting interface at the duct exit, 3y in-
creasing the len?tn of the last section (fig. 10(D))
the reflections from the duct exit will be effec-
tively aampea oefore they can reenter the original
portion of the duct. The actual attenuation of the
duct woula be geterminea from pressures and veloci-
ties at the original uuct exit shown by the dashed
line in figure 10(b). Because of these large
attenuations cutoff wouly not be a problem.

Tne additional dampi~g impedance could also be
aoded dowastrean of tne exit, as shown in figure
10(c). The programser might wish to consider some
narag-wall section {variah.e area pernaps) addea to
tne exit of liner l,. In this case, the possi-
bility of model reflections at the entrance plane of
the lwner 13 coula compiicate the proolem.

Finally, as discussed in this paper, reflec-
tions at tne duct exit could be eliminated by simply
extenaing the duct, as shown in figure LU{a), to
large lengtns, such that tne calculation is per-
formed prior to the return of the reflectes wave,
However, this could be expensive from tne standpoint
of computer storage and run times,

All the orevious cases attemptea to eliminate
or at least reduce reflections at the duct exit.
However, in the actual turpofan inlet or eahaust
termination, reflections could be important for
certain modes. Consequently continuing the gria

structure from tnside the nacelle into the far fleld
would stmulate the actual dynamic process occurring
at the engine Vip.

In the far field of the problems discussed
earlier are eliminated. For example, in the sbsence
of a solid wall boundary condition, all modes prope-
gate in the far field (ref. 12, p. 212). Therefore,
in establishing the exit boundary condition in the
far field, the problem of a cutoff mode computation-
al instability is eliminated. Alsg, all the various
duct modes have the identical ofCY exit
impedance far from the exit, which simplifies the
axit cu.gition even further.

In the far field the duct exit impedance would
be applied along a spherical surface, as indicated
by the dashed ling shown in figure 11(a). For a
harmonic diverging spherical wave (vef. 20, p. 80)
or far from tne face of a flat piston in an infinite
wall (ref. 21, p. 168), the far-field acoustic im-
pedance is

¢ 1 ——z'x 2 ’ (2 r)" z-—l 128
.
(Zlnrl‘, A ,r

In equation (28), if r s assumed to be large, the
limit 1s

el (e o;C; (29)

In applying the transient technique 0 the con-
figuration shown in figure 11(a), the method of
mapping coula be used. In pe-ticular, the mapping
procedure developed by Thomg.on, et al, (ref. 22)
provides for the automatic generation of a general
coordinate system with coordinate lines coincidgent
with all tne poundaries of an arbitary snaped duct.
This coordinate mapping procedure could be extended
to the case of the external impedance condition
shown in figure 11(a). An {nitial effort nas re-
sulted in the development of ine appropriate trans-
formed acoustic equations for a variable-ares duct
&ref. 23) for which theory and experimental data are

n good agreement,

Another approach to establisning the impedance
boundary condition is shown in figure 11(bp). In
this case a simple cylindrical geometry is used to
enclose the exit of the duct, This has the advan-
tage of allowing the use of the same rectangular
array of grid points usea in the interior of the
dguct, as shown in figure 1. Converting tne radia-
tion ooundary condition for a sphere to a cylindri-
cal poungary is discusseg in reference 24, The
authors also discuss a version of the exit impedance
that could satisfy the no-reflection condition for
more than one mode in a duct. In addition, refer-
ence 24 contains a comprehensive literature summary
of recent work on tne eaternal ragiation ooundary
condgition,

CUNCLUSIONS

The cutoff mode instability problem associated
with a transient finite difference solution to the
wave equation has been explained. The commonly used
*steady state" impedance ooundary congition was
found to produce acoustic reflections during the
initial transient, These reflections caused finite
instabilities in the cutoff modes. Extending the
duct lengtn to prevent transient reflections re-
solved tnis stability prodblem. [n addition, exit
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imgedance models are presented for use in the
practical design of turbotan inlets,

With the resolution of the cutoff mode in-
stability prodlem, the time-dependent analysis
appears to be ideally suited to handle all aspects
of numerical acoustic analysis. Recall that the
time-dependent analysis does not reauire dirge
matrix storage as do the steady-state rinite differ-
ence and finite element techniques. Also, because
aanipulation of matrices is omitted, the time-
dependent approach is relatively easy to pitogram and
debug.
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Figure 2. - Numerical grid structure for representation of acoustic mode propagation in an infinite duct
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