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SUMMARY

Axial-field permanent magnet motors have been shown

to be particularly suitable for electric vehicle drives,

as evidenced by the support for such advanced motors in

the Department of Energy's Electric and Hybrid Vehicle

Program. There were two most important factors in the

analytical modeling of this type of machine that had not

been extensively studied, and which were the subject of

this research. These are:

(i) The modeling of anisotropic alnico-type permanent

magnets. It is well-known that magnets with linear

demagnetization characteristics can be simply modeled

by an equivalent solenoid for the purposes of field

computation. However, those with nos y-linear de-

magnetization curves are very much more difficult to

model, since a non-uniform magnetization distribution

exists throughout the magnet volume. This research

was aimed at developing a realistic analytical model

for such materials, which predominantly include the

alnico types.

(ii) Modeling of the mechanical commutation in these motors.

The high coercive force of permanent magnets allows

large air-gaps to be tolerated, and this leads to the

use of iron-less disc-type armatures and the, axial-field
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topology. The advantages ai-e the elimination of eddy-current

and hysteresis power losses, and the gaining of high motor

power densities. However, the consequent field in the

magnetic neutral regions and the low inductances of the

armature coils leads to greater short-circuit currents during

commutation. The predominant power loss in this machine is

therefore associated with the mechanical commutation process,

which is analysed and measured as part of this research.

The results of this research project have been written

up in two major papers, the full texts of which are attached

as the essence of this final report. These papers reflect

the most important aspects of the work.

The first, entitled

"A MODEL OF ANISOTROPIC ALNICO MAGNETS FOR FIELD

COMPUTATION,"

has been submitted to the I.E.E.E. for publication in the

Transactions on Magnetics. It summarizes the text of the

University of Southern California Ph.D. Thesis by Saad A.

A1-Murshid, which has the same title.

The second, entitled

"COMMUTATION OF THE PERMANENT MAGNET AXIAL-FIELD

D.C. MACHINE,"

has been submitted to the I.E.E. for publication in the

proceedingb part B. It summarizes the text of the University
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of Southern California Ph.D. Thesis by Abdulhamid T.

6	 El-Kamodi, which has thi same title.
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A MODEL OF ANISOTROP[C ALNICO MAGNETS

FOR FIELD COMPUTATION

Peter Campbell and Saad A. Al-Murshid

ABSTRACT

The modelling of an anisotropic alnico magnet for the purpose of

field computation involves assigning a value for the material's permeability

in the transverse di:...:tion. This is generally based upon the preferred

direction properties, being all that are easily available. By analyzing the

rotation of intrinsic magnetization due to the self-demagnetizing field, it

is shown that the common assumptions relating the transverse to the

preferred direction are not accurate. Transverse magnetization

f ^,
	 characteristics are needed, and these are given for Alnico S. 5-7, and 8

magnets, yielding appropriate permeability values.
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INTRODUCTION

SIn the calculation of magnetic fields in permanent magnet devices,

modelling of the permanent magnet material itself usually relies upon data

acquired from the major demagnetization curve. Most of the magnets used

in electromechanical devices, such as rotating electrical machines, are

anisotropic. and a curve measured in the preferred direction does not

represent magnetic properties in any other direction. Unless the

permanent magnet is subjected to a uniform self-demagnetizing field,

some information on transverse magnetic properties will be required to

:ind the complete field distribution. Of course. practical magnets do not

approximate to the ellipsoidal shape required for a uniform internal field,

and the boundary conditions, in addition to the magnet's anisotropy, will

determine the extent of this field's non-uniformity.

a
This paper will briefly review the approximations that are

commonly made to account for the transverse properties of a permanent

magnet, leading to a comparison with actual characteristics measured on

some popular materials. By considering the analytical derivation of

anisotropy, a simple technique is suggested by which the directional

magnetic properties may be more accurately represented in a field

computation.

MAGNET FIELD EQUATIONS

The demagnetization curve for a permanent magnet relates the

components of B and H for the preferred direction. and these vectors are
R	 ^	 ^

also related to the material's intrinsic magnetization M via:

0	 B s NO (H+M) ,.	 (1)

r'
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It is convenient to express the dependence of M upon H as

M = x H + M	 (2j—0

and so

B = µ0p' H + µ0M0	(3)

where .j4' = (1+x) is an apparent relative permeability.

For an anisotropic material, x and ,fit' are tensors, and may also be

field dependent. However, the field quantities may be resolved into

components in the preferred (p) and transverse (t) directions, so that

x 0
x p (4)

0 xt

and

0	 (5)

0 µt

This permeability tensor has been used to solve the field in regions

containing soft-magnetic laminatiore [1], which are anisotropic but do not

possess M0.

In permanent magnets, M0 must be assumed to act only in the

preferred direction, to allow B t and Ht to fulfill transverse symmetry

conditions in the material. Hence,

M
M -	

op 1 .—0 -	 0

However, this does not mean that the intrinsic magnetization is fixed in

the anisotropic direction. rather that any rotation of M 0 will be accounted

for by 
P 

and xt.

In an isolated circular magnet (Fig. 1), the self-demagnetizing

(6)

-2-



c

C

H will only lie in the p-direction along the axis; elsewhere, there will

also be a t-component of H, leading to a rotation of M 0 that is governed

by the material's anisotropy. The equations of tke magnetization curves

for these mutually perpendicular directions are deduced from (2):

Mp = pHp + Mop	 (T)

Mt = xt It	 (8)

The major curve (7) is a commonly available design characteristic, and is

measured with a uniform field, H p, throughout the material. In contrast,

little work has been done in the past to measure transverse properties.

It has been assumed [2] that the permeability functions up and µt

are the same, and even [3] that µt is a constant, taking the value of pP at

remanence. The permeabilities to be used will actually depend upon the

operating conditions of the magnet. If these are static, the major curves

are appropriate, and if the material was initially saturated in the

p-direction, operation will be on the demangetization curve for the

p-direction and on the initial curve for the t-direction; these conditions

also satisfy the symmetry requirements setting M ot = 0. These magneti-

zation curves have been measured for Alnico 5-7 (Fig. 2) and Alnico 8

(Fig. 3). Dynamic operation involves recoil, in the 2nd and lot quadrants

for p- and t-directions respectively, and a number of measured recoil

loops are shown in Figs. 4 and 5 for the same materials. A constant value

for relative recoil permeability may be assumed throughout any quadrant.

provided that only small transverse fields exist, and Table I gives a

comparison of the values. It is apparent from the measured characteristics

that, dependent upon the material type, up and ui may be quite dissimilar.

-3-



Table I:

	

	 Relative recoil permeabilities measured from
Figs. 4 and S.

p-direction,	 t-direction,
2nd Quadrant	 1st Ouadrant

Alnico 5-7	 1.82	 6.70

Alnico 8	 1.83	 2.89

This use of the major magnetization curves implies that the p- and

t-components are independent, which is in accord with (5). However,

consider that in Fig. 1 there is a location at which only Ht exists. This

will rotate M 0 to give a component M t as in (8), but (7) implies that M 

remains with value Mop. This is a contradiction, and clearly the applica-

tion of H t must reduce M  by some amount. Therefore, (5) does not

provide a complete model of a permanent magnet, and we should include

"

	

	 at least the off-diagonal term µp t, if not µtp also. The more general

permeability tensor is

N'	 u'
V_' =
	 P	 Pt	 (9)

Pitp	 t

and we shall find values for all of these terms.

PERMANENT MAGNET ANISOTROPY

It may be shown that µpt = µip = 0 for magnets operating on a

linear demagnetization curve, such as the ceramic ferrites and rare

earth-cobalts, This linearity is derived from a constant M p qe 'M 
Opp

meaning that r1 0 is truly fixed in the p-direction. It is the rotation of

M0 that yields a nor.-linear curve, in materials such as the alnicos. The

1- 	 Ir. 	-4-



general case of an internal field H_ at angle 6 0 rotating the magnetization

M0 by 8 is shown in Fig. 6, and the energy associated with this field is:

Ef = µO HMO cos (60- 8) .	 (10)

The torque that H applies to M 0 is opposed by torques due to both

shape and crystal anisotropy in alnicos. Considering that they have a

cubic crystal lattice, the energies associated with these anisotropies are

approximately given by [4]:

Esh : K + Ksh sin 28	 (11)

and
E r = KO + 4 K 1 sin  26 4	 (12)

where K, Ksh, KO , and K  are material anisotropy constants. The

restoring torque on M 0 is found from:

BE t
T = - be

where E t is the total of the energies in (10), (11), and (12). Hence,

T z -ii HM0 sin (60-8) +Ksh join 26 + 2 K 1 sin 46	 (13)

The usual technique for evaluating K sh and K 1 is to rotate a thin

disc of the material in a torque magnetometer, measuring T and 6 0 . It is

necessary to make 6 0 6, and to eliminate the first term of (13), for which

a uniform saturating field H is applied.

iF 
The typical operating conditions of a magnet in a device do not

involve a saturating magnetic field, and so measurements of T vs. E0

cannot be interpreted. However, M O and 6 can be directly measured in

-5-



a vibrating coil magnetometer [51, in which a moderate H is applied

parallel to the plane of the disc. Two sets of coils, in line with and at

right angles to the field, provide signals from which M 0 is deduced, a::

the sample is rotated through -e0*

A disc of Alnico 5 has been tested in this way, and we shall consider

results obtained in a moderate field of 30 kA/m, which is somewhat less

than the value required for saturation. Figure 7 shows I M 0 I vs. the angle

of rotation of H. e 0 , and Fig. 8 shows the angular difference between H

and M0, 80- a vs. e0 . Shape anisotropy is predominant in Alnico 5, and

M0 is much stronger in the p-direction than in the t-direction, with a

preference for the axis of initial magnetization ( e 0= 0). As the sample

(i. e. , H) is rotated through 180°, M 0 stays closely aligned with .'.3 until

the t- direction is approached, when M 0 slips back almost to the preferred

direction, and this is accompanied by the magnetization being nearly

destroyed. However, as H approaches 180°, M 0 reverses into alignment

with H again, and the sample is pt •. rtly r+emagnetized.

These results are interesting as an illustration of the rotation of

M0 , but because of the large values of e o- a that occur, they cannot be

used to find the anisotropy constants. Even in a saturating field, i o - a is

still not small enough to counter the large value of H. to eliminate the

first term of (13). Figures 9 and 10 show measurements at 211 kA/m, ant?

now there is only a small variation in M0 with e0 , the maximum e0- 6 being

1. 2
0
 at eo ° 45°. It will later be shown that Ksh and K  make the

anisotropy energies small compared co the field energy here.

Unfortunately, the use of a magnetometer for permanent :^sagnet

materials does not yield the information needed to model their behavior,

Cs	 but we shall show that K sh and K 1 may be derived from the major

demagnetization curve. This is the same information from which µI

F ,	 -6-



was inaccurately deduced for field computation [2, 31, and we shall suggest

a more accurate rlodel based upon the same simple test. As seen from

Fig. 1, typical values for e 0 within a magnet are 150 0 < e0 < 2100. On the

axis of symmetry, e0 a 1800, and we shall find from the intrinsic demag-

netization curve that H ci a -53.7 kA/m, the field required to reverse MO.

However, we also saw in Fig. 8 that a similar sudden change in the direction

Of M0 occurs with a lower f told, 30 kA/m, directed at e 0 a 117°. In

general, a steady, predictable rotation of M0 will only occur within limits

of 1 H I and e 0 , and if 60 # 1800, the field at which a sudden change in e

occurs is less than Hci.

ROTATION OF MAGNETIZATION

An analytical mode's for a permanent magnet should include the

effect that H has upon M 0. This may be found from (13), setting T = 0

to find the equilibrium position for M0. Thus,

µ0 HM0 sin (e 0- e)= Ksh sin 2e + 1 K 1 sin 4e	 (14)

which may be rearranged as

µo HMO	sin ( eo-e) ]	 K1
Ksh	 sin 2e	 Ksh cos 2e - 1 a 0	 (15)

If the magnitude and direction (e0 ) of H are known, and since IM 0 I is being

considered a constant, this may be solved t ,3 give the rotation of M 0 which

is e.

The critical field, 'ci c , at which the sudden change in a occurs, is

C,
	 found by setting (4):

-7-
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Thus, from (13),

40 H c M0coo (6 0 -6) + 2Ksa cos 2 @ + 2K  cos 4e = o

Ksh cos 2e + ?.K 1 cos 4e

' He =	 40M0 cos ( Go - e)

For the major demagnetization curve, H`= Hci • e0= n. and M0 is originally

at6=0. so

2Ksh + 2K1
Hci =	 40M 0

It is useful to think of intrinsic coercivities due to the shape and crystal

anisotropies separately, being Hci, and Hcic respectivel; Hci becomes

Hcis if K  
= 0, and Hcic if K

sh : 0. Hence,

Hci " H cis + Hcic '	 (18)

and (16) may be rewritten:

H	 cos 2e + H	 cos 46cis	 ctc	
(19)

	

c	 -	 cos 0- 6

Thus, every angular rotation of M. may be considered to be unstable if

the critical field, He at e 0 , corresponding to that 6. is experienced.

It is more useful simply to know the value of H e corresponding to

any E 0 , for which F must be eliminated. The second expression needed

is (14). a general relationship between H_ and M_ 0 , which may similarly be

`	 rewritten as:

(16)

(17)
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H _ 2H cissin 28 + Hcic sin 48	
(20)4 sin 0-

The most familiar use of (19) is to draw the major demagnetilz-tion

curve for 80= n. 8 = 0. This theoretical characteristic is simply a square

loop, with M0 reversing abruptly between 8 = 0 and 8 = n at f H ci . The

hysteresis loop for any other 8 0 is plotted by calculating H from (20) and

the component of M at 8 0 from

M = M0 cos (8o- 8) .	 (21)

The continuous range of H is determined by (19). Values for the constants

are now needed.

From a large block of the same Alnico 5, small 10 mm cubes were

cut at loo increments (Fig. 11), and the intrinsic magnetization curves

were measured (Fig. 12). Because of slight flaws in some of the cube

samples, these curves do not exhibit an exactly study progression. M0

is taken as the saturation or spontaneous magnetization, and µ 0M0 = 1. 334 T.

Hci is measured from the major curve to be -53.7 kA/m. According to (11)

and (12), only crystal anisotropy gives a stable energy condition in the

t-direction, so the 900 demagnetization curve may be used to find

Hcic = -30.6 kA/m, and hence H cis = -23. 1 kA/m.

With these values, analytical intrinsic magnetization curves may

be plotted for different 80 as in Fig. 13. A study of 4ese curves indicates

any limitations in using (20) to model a real magnet. The most obvious

discrepancy is the absence of remanence in the t-direction, which is

because it was presumed that the spontaneous magnetization was in the

Cp-direction. If the magnet were saturated with an H t field, the crystal

anisotropy would then yield such a remanence.

-9-



It has been mentioned that realistic conditions with a magnet will

constrain H approximately to 150° < 6 0 < 210°. In fact, there is very

good agreement between the measured and calculated remanence values is

Figs. 12 and 13, from the 0° to the 60° curve, which encompasses

120
0
 < 60 < 240°. Apipsrently the abrupt reversal of M 0 does not occur

in practice as predicted by (19). one reason being that the theory for shape

)
anisotropy does not account for the interaction of neighboring magnetic

elements in the non-magnetic material matrix.
t

This method of modelling a permanent magnet from the rotation

Of M0 does not require tebting of the maerial in a magnetometer, and

will therefore be relatively simple to implement. It was mentioned that
4

K  and Ksh could not be evaluated in a torque magnetometer via (13),

because the first term was not small. We now have these constants from

Fig. 12, (17). and (18). which yield K I a 20.4 M/m 3 and Ksh s 15.4 U/m3.

These are small compared to µ 0HM0 = 281 U/m 3 at H : 211 kA/m.

PERMANENT MAGNET MOUE:.

We have already developed an analytical model that requires

information from only the p- and t-direction magnetization curves, and it

will now be shown how just these need be used to evaluate the terms of (9).

Consider in Fig. 6 that H is applied at e o = n/2, for which (15)

becomes;

µ0HtM0 cos e _ KI cos 2e - 1 = 0 	 (22)sin 26	 Ksh

The t-component of M O is found from (21) to be

Mt = MO sin a	 (23)

-10-

a



Eliminating a between these gives the transverse magnetization curve.

'	 Mt vs. H to from which X  is found. However, a simpler function will result

if it is assumed that only a small rotation of M O occurs, which is of course

the case with anisotropic magnets in most practical applications. For

small B.

POHtM0	
K1- 1 = 0	 (24)2Ks^ Ksh

Mt = MO B	 (25)

Eliminating Q.

M2
µ0Mt =	 0

2(K1+Ksh 	 Ht 	 (26)

.. Mt = C H 0 ^ H t 	(27)
c 

The rotation of MO will be reflected as a reduction of Mp. such that

M 2 = M 2 - M2p	 0	 t

2	 1/2
Mp = MO C 1	

H
- C H t ) 1

ci

Expanding this, remembering that IMO = Mop. and approximating to the

first term yields

=Mop 2 MO (9 ci
H 2

(28)

The permittivity !unctions may be written from (2) to include off-diagonal

terms, as

Mp

Mt = xtHt +N 
P 

H 
p
	 (t9)

-11-



M  = Mop + xpHp + xptHt	 (30)

^l
Comparison between (27) and (29), and between (28) and (30) yields:

M0
_	 (31)It	 Hci

x,_ = 0	 (32)

x= 0
p	

(33)

pt = _ C M 2 J Ht	 (34)
2H .

cl

For the t-direction, the theory assumes that the material was

spontaneously magnetized in the p- direction, and so Hp alone will yield no

Mt, which leads to (32). The initial curve is modelled by (31), which is the

I

	

	 tangent to the 90 0 curve in Fig. 13. This line coincides with the point at

which saturation is achieved on the major (0°) characteristic. For the

Alnico 5, the value of (31) is 19. 8, whereas the corresponding measured

initial slope from Fig. 12 is 7. 3. The discrepancy is due to the measured

value of Hci = 53. 7 kA /m used in ( 31), and Fig. 12 shows that saturation

actually occurs at a much higher field than this. There are two possible

ways to achieve an accurate model of xt.

x

	

	 If possible, the transverse magnetization characteristic should

be measured, yielding xt directly, but this may be inconvenient since

alnico magnets are difficult to grind, and their application most often does

ry	 s,	 not require parallel, ground sides. Alternatively, there is a general rule
F

r
in the magnetization industry [6) that the field required to saturate an

alnico is three times its coercivity. Surprisingly, this works very well
A

^ Z	 here, and the transverse curve is not needed. The coercivity is derived

s	 from the major curve in Fig. 12 as 50. 1 kA /m, and taking Hci in (31) as

pr

-12-
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3x50. 1 kA /m yields xt = 7. 1, compared to the measured 7. 3. Either of

these methods are a considerable improvement over existing techniques

[2, 3], and for comparison, the measured slope of the major intrinsic curve

at remanence is only 0.9.

For the p-direction, the assumption of spontaneous magnetization

sets xp 0, whereas one might prefer to model the actual characteristic

here as a function of Hp. Rotation of M0 will cause the magnet to operate

within the major hysteresis loop, as this process involves the loss of some

magnet energy. Dependent upon the transverse field H t. M  will be

reduced according to (34), but to take better account of the actual charac-

teristics, this should be rewritten as

xt
xpt -	 2M0 ) Ht

Using the values found for x  and M0 for Alnico 5, a field of Ht = 30 kA/m

will cause only a 0. 3% reduction in M p. This is extremely small, and

leads to the conclusion that although xpt is not actually zero, it may be

assumed to be so.

The apparent relative permeabilities equivalent to these xtfunctions

are written by combining (29) and (30) with (1). The analytical form of (9)

then becomes

1	
xtHt
2M0

1 
0	 1 + xt

However, in the light of the experiments described, it is preferable to

use the measured p- and t-characteristics directly. in which case (9)

reduces to its approximate form. (5).

(35)

L► ' (36)
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Different investigators will have their own preferred methods for

modelling the major demagnetization curve, with µp as a function of H p if

necessary. Generally, though, information on transverse properties is

not available, and we conclude with some further data obtained by grinding

cubes of Alnico 5-7 and Alnico 8. Their magnetization curves were shown

in Figs. 2 and 3 respectively. We have stated that symmetry requirements

dictate the initial t-characteristic be used for static field applications, and

thi3 is approximately linear in small fields. The constant values of µt that

should be used in (5) are given in Table II.

Table II: Relative Initial Permeabilities Measured in the
Transverse Direction.

Material	 (	 µ't

Alnico 5 8.3

Alnico 5-7 9.25

Alnico 8 1.9

CONCLUSIONS

Whereas it is common practice to set off-diagonal terms in the

permeability tensor to zero, experimental data and analysis have been

presented that justify this assumption. Moreover, important information

on the transverse characteristics of the three most common permanent

magnets will help to improve field computation. The values of µt for

Alnico 5 and 5-7 are particularly high compared to µp, as was the case

for recoil permeability, and this would tend to enhance transverse flux

-14-



in a magnet that directly experiences armature reaction in an electrical

machine. If an exact model of a permanent magnet is required. then the

rotation of M0 is found using (15) or (20).

C
-15-
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COMMUTATION OF THE PERMANENT MAGNET

AXIAL-FIELD D.C. MACHINE
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List of Principal Symbols

M2. M3 =

e.m.f, in one winding path.

e.m.f. in a single coil.

short-circuit current in a coil.

mesh current in neighboring winding paths.

contact resistance between one brush and commutator.

contact resistance between one brush and one commutator segment.

coil resistance.

time at onset and end of commutation.

vector magnetic potential.

flux density.

armature current.

winding current density.

coil self-inductance.

total self-inductance of two neighboring winding paths.

total mutual inductance between short-circuit coil and two
neighboring paths.

mutual inductance between short-circuit coil and first two
neighboring coils.

commutation power loss.

constant term of power loss.

resistance added in series with coils.

total machine resistance.

angular displacement between adjacent coils.

relative permeability.

angular position of short-circuit coil.

armature angular velocity.

total flux per pole.
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1. Introduction

The permanent magnet d.c. disc-armature motor has a well-known

topology $ I a heteropolar axial-field magnet structure being adjacent 	 -

i	 to an ironless armature. the winding being encapsulated in epoxy resin.

The characteristically long air-gap gives. this machine a low armature

inductance and a relatively high field about the magnetic neutrals. Both

of these are expected to result in high power losses associated with the

mechanical commutation process, and experiments on an early disc-armature

motor have supported this view. 2 However. data acquired on that machine

was limited because it was not possible to modify the armature for direct

reading of currents.

The addition of resistors in series with one end of each coil and the

commutator bars provides direct measurement of coil current via slip rings.3

A variation on this technique is used with a specially constructed disc-

armature motor, to verify computed short-circuit currents in a coil under-

going commutation, and thence to find the contribution that these make to

the power losses in the machine. The experimental motor has eight poles,

and a 72 coil lap-connected winding.. After conventional steady-state load

tests were performed, the armature was modified by the addition of the

series resistors. Although only one resistor is connected to the slip

rings for coil current measurement, a balancing resistor must usually be

placed in all other coils. 3 However. the total addition to a winding path

(9 coils) may adversely affect the performance of the machine.

The technique employed in this investigation involves the addition of

(1)
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E
Just one resistor to each parallel path, the value of 0.12n having little

s

effect on performance and yet providing an adequate measurement signal.

The armature of the experimental machine has an outer active diameter of

221mm (Fig. 1), and space is left between winding and commutator to accom-

modate the resistors and silver slip rings. Rather than having eight

resistances, one added to every 9th coil, there being 9 coils/pole, there

are nine resistances, one added to every 8th coil. The machine was con-

strutted with brush arc and commutator segment arc equal, so that just one

coil is commutated by each brush at any time. Therefore, c t any time each

parallel path has one added resistance, and one coil with a resistor is

being commutated (Fig. 2). 8rlanced parallel winding paths are maintained

while short-circuit coil current is recorded.

2. Equivalent circuit of the disc-armature motor.

An analytical technique is described for the evaluation of coil

current and the associated power loss of commutation, for the axial-field

permanent magnet d.c. machine. This will be verified by test data from the

experimental motor.

The appropriate equivalent circuit for a coil undergoing commutation

is shown in Fig. 3. This coil has resistance r c , self-inductance L. an4

encounters an induced e.m.f. ec . The particular coil under study will also

have the added series resistance R, and the short-circuit current will flow

through one resistive contact rbi to the brush, returning through another

contact rb2 . The circuit includes the neighboring armature paths, each of which

(2`
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shares mutual inductance V4 with the commutating coil. Since this is a

lap winding with an exact number if coils per pole. each neighboring path

has approximately the same e.m.f. e l , self-inductance hL, and resistance

8rc + R (9 coils/pole less one being comniutated). No field winding appears

in the equivalent circuit, but if the permanent magnet material is an

alnico type. there will be a salient-pole structure which will cause the

inductances to be dependent upon the armature's angular position. Because

of symmetry between the neighboring paths. each parameter in one will be

equal to that in the other.

By suitable choice for the mesh current i t in Fig. 3. the terminal

voltage V is eliminated and the e.m.f.s e l cancel. The two mesh equations

in i and i t are

IR + rc + rbl + rb2 + dL) i + Ldi + 14di 1 + IM - rbl - rb2, i 1 n ec	 (1)

13 - 
rbl - rb2li + "i + Ltdi l + I2R + 16rc + 2rbl + 2rb2J i l - 0.	 (2)

aL' 

These may be solved for the short-circuit current i, provided that all of

the resistances and inductances are known.

2.1. Resistances.

The resistance of a winding path is simply measured by a static drop-

test at rated current, from which r  is deduced as 0.042D. Brush contact

-	 resistance. however. will vary both with angular velocity and angular position

(3)
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s	 of the armature. The study of brush contact phenomena is alone a most

involved subject,4 and a simplified representation was employed for modeling

f	 this machine. It was assumed that the contact resistance between a brush

and a commutator segment is inversely proportional to the contact area, and

that 
rbl 

and rb2 (Fig. 3) vary with angular position wt according to

rbl = rb w
" - Wt  ; rb2 ' r  Wt  - wtl 	

(3)
Wt - Wt.1 	Wt2 -wt

where tI `^t <" 2 , t  and t2 give the times at the onset and end of commutation

for the coil under study. The parallel combination of r bl and rb2 is r  ,

which is independent of t; this is the effective resistance seen through a

brush, which may be deduced from load tests on the motor. This procedure is

described in sec. 3, from which the variations in r bl and rb2 are found with

the aid of Eq. (3).

2.2 Coil e.m.f.

To obtain the greatest power output from the experimental machine

with the given armature, the highest possible air-gap flux density should be

obtained. This is achieved with high remanence Alnico 5-7 permanent magnets,

assembled in two sets, one on either side of the armature. This arrangement

is preferable to having a single magnet set to one side and a steel ring on

the other, as described in Ref. 2, as it reduces the leakage flux.

Because the ironless motor of the disc-armature machine ensures that

negligible armature reaction occurs, a slow measurement of flux linking on

actual coil may be used to determine the e.m.f., e c . The flux variation was

^ y	found to be almost exactly sinusoidal, which is typical of this type of

1

U	 (4)



motor with a large air-gap. The experimental machine has 8 poles, the peak

flux linking a coil is • - 10.55 mWb, and so the coil e.m.f. is given by:

ec - 4wo.cos4wt

- .042io.cos4ot.
	

(4)

E

i

The armature angular velocity is w (rad/sec), and commutation occurs

`	 about the magnetic neutrals, corresponding to wt - v/8, 3v/8, 5v/8, etc.

The salient pole structure and the much smaller air-gap length of conventional

small d.c. machines tend to supress the coil e.m.f. somewhat during commuta-

tion, which isin contrast to the rapid increase in e.m.f. about the neutrals

indicated in Eq (4). Acting in conjunction with low inductance values, this

is the cause of significant short-circuit power losses in the disc-armature

motor.

t

2.3 Inductances, considering Permanent Magnet Properties.

Calculation of the self and mutual inductances of an armature coil

involves evaluation of the field resulting from rated current in the coil.

The permanent magnets are immediately adjacent to the armature; if these

were rare earth-cobalt or ferrite magnets, they would appear to the coil as

air-gap, but alnicos have non-linear demagnetization characteristics. The

relative permeability, u, is variable along the B-H curve of an alnico and

the recoil permeability is also different from unity. The consequent salient-

pole structure gives all the inductances their angular dependence.

Many alnico magnets are also anisotropic, as seen by the major B-H

(5)



loops of Alnico 5-7 in the preferred and transverse directions (Fig. 4).

These curves were measured on the actual material used for the experi-

mental machine, one magnet being ground to a cube for testing in a

permeameter. The conventional method of modeling such magnets that are

subjected to an external field, as by armature coil, is just to use the

recoil permeability from the second quadrant of the major B-H loop. Some

recoil loops for the Alnico 5-7 magnet are plotted in Fig. 5, for which a

constant recoil permeability of 1.82, the mean value, may be taken as a

good approximation.

However, it is well-known that field within a non-linear permanent

magnet may not be constrained to the preferred direction, 5 and so transverse

components must be considered. In this case, the first quadrant of the

magnetization loop should be used with recoil coming from the virgin curve.

This is to satisfy the necessary conditions of symmetry about some plane

within the magnet where no transverse field exists. Figure 6 gives the

measured recoil loops for the Alnico 5-7 magnet, and since only small

transverse fields will generally occur, a constant value of 6.70 may be

taken for the recoil permeability.

The recoil permeability used to model Alnico 5-7 is therefore almost

four times greater in the transverse direction than in the preferred

direction. Remembering that alnico permanent magnets are generally many

times longer than the air-gap, and that the steel backing rings are well

removed from the region, it is possible that the self-inductance of a coil

may be greater with its axis over the magnetic neutral than with it over

^ T 	the magnet center-line. This is contrary to the situation in a conventional

(6)
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salient pole machine.

Since the active conductors in the axial-field machine lie radially,

an approximate field distribution in the air-gap region may be found

from a numerical solution of Poisson's Equation in 2-dimensions, at a

fixed radius. The appropriate form of this will take account of the

directional dependence of the permeability u in the magnets, so that the

flux density 8 is calculated via vector potential A from the current

density distribution J. using

V x 6 =A.,	 (5)

and	 vxu ^Vx^ =U^J,	 (6)

Figure 7 shows a typical field distribution calculated at the average

active radius for rated current in a coil, whose axis is midway between

the magnetic neutral and the magnet center-line. The effect of having

the higher transverse permeability is to shunt magnets in the vicinities

of the conductors. Here we are evaluating inductance; however, it is

fortunate that armature reaction is small in this machine, because other-

wise this effect would seriously complicate any attempt to calculate the

resultant (permanent magnet plus armature reaction) field distribution.

Account was also taken of end-winding effects, but since these are

well removed from any magnetic materials, their contribution to inductances

was found to be small. The angular variations of inductances (Fig. 8),

determined from calculated field distributions, do verify that the

(7)



principal inductances are greatest with the coil axis over the magnetic

'	 neutral regions. The self-inductance L for this 8 pole machine may be

written as the series

L = LO + L1 cos8wt + L2 cosl6wt + L4 cos32wt,	 (7)

where	 L0 = S.06uH; L1 - 1.761jH; L2 s -.46uH; L4 = .160.

Mutual inductance with a neighboring coil depends both upon 9 = wt,

the position of the source coil, and the relative position between the

pair of coils: There is a strong coupling of the sinusoidal variation

with the immediate neighbor, M2, and also with the coil that is exactly

one pole pitch away, M10.

Measurements of inductance were obtained by constructing an armature,

identical to that in Fig. 1, but without a commutator and hence without

interconnections aetween coils. Assembled in the stator of the experi-

mental machine, with one coil excited at rated current, the actual varia-

tions of inductance with angular position were found directly (Fig.. 9).

These all have extremely low values, characteristic of the ironless rotor

permanent magnet machine, and are generally less than the calculated

figures. The discrepancy is due to having taken a two-dimensional field

approximation, neglecting the effect of the magnet boundaries at the inner

and outer active radii. A three-dimensional field computation should

yield more accurate results.6

For the parameters to be used in Eqs. (1) and (2), it is assumed

(8)



that L. M2 and M3 (the first two neighbors), have purely sinusoidal 	 .

variations with Wt, higher harmonics being ignored; mutual inductance

with all other coils is taken as constant. From the results of Fig. 99

L = L0 + L1 cosawt
	

(8)

F

	 M2 = M20 + M21 cos8(mt +)
	

(9)

X13 = M30 + M31 cos8(wt + -f)
	

(10)

where	 LO = 7.785uH; L 1	.2251sH;

M20 = 3.64UH; M21 = .51uH;

M30 = 2.61UH; M3 1 = .24uH.

If two adjacent coils are displaced by an angle Y, being 50 in this

72 coil winding, the peak mutual inductance between them will occur at

I1r from the position corresponding to the peak self-inductance (Eq. 9).

Similarly, with M3 the variation is shifted by 2 x Ift in Eq. (10).

The total self-inductance, L t, of the sixteen coils in the two

neighboring armature paths in Fig. 3 is deduced from Eq. (8) to be

8
Lt = 16L0 + 2L11 cos8M + nY)	 (11)

n=1

Similarly, the total mutual inductance linking these paths to the

short-circuited coil is found using Eqs. (9) and (10) to be

9
M = N12MN0 + 2M2 1 cos8(wt + 11y) + . 2M31 cos8(wt + Y)	 (12)

(9)



The first term is evaluated from Fig. 9 as 47.3NH.

An important conclusion of this analysis is that, when an electrical

machine topology involves alnico-type permanent magnets adjacent to the

armature, consideration must be given to the magnetic characteristics

perpendicular to the preferred (anisotropic) direction. Calculation and

measurement of inductances has demonstrated the importance of field

k

	

	 traversing the magnet faces. In Sec. 4, the calculated short-circuit

current during Commutation is compared favorably with measured variations.

3. Determination of Motor Parameters and Performance.

It was stated in Sec. 2.2 that the brush contact resistance will vary

with angular position according to Eq. (3), averaging to a value of rb

at each brush; it will also be dependent upon the motor's speed. It will

therefore be necessary to perform a load test on the motor at a constant

speed, to determine the resistance that is associated with that speed.

The experimental disc-armature motor is shown in Fig. 10, the armature

of Fig. 1 being located between the two sets of Alnico 5-7 magnets. In

addition to the added resistors (R) in the winding, there is a 0.20

resistance (mounted above the machine in Fig. 10) in series with each

brush lead for measurement of the brush current. The windings on the

permanent magnets are for the purpose of initial magnetization only.

Rated voltage and speed for this machine are 60V and approximately

2400 rev/min. A load test at this constant speed yields the relationship

between the total power losses and the square of armature current (I2)

given in Fig. 11. Except at very low current, the losses may clearly be

(10)



4	 represented by a constant term, Pt • 192W. and a constant resistance,

l	 % = .30911. Pt is conventionally treated as a mechanical loss torque.

TI a Pt/w, and % accounts for all the electrical losses at this speed.

An expression for the power losses involving output torque, T. is:

VI - 0= I2 R + PA.	 (13)

Considering• the values for the individual resistances in this eight

pole lap-wound machine. given here and in Sec. 2.1. the total resistance

of Ra • .30962 breaks down into the following components:

(i) armature winding resistance, including additional R in

each path:	 .0570

(ii) total brush contact resistance: 	 .1520

(iii) external resistances	 .10012

Total:	 .3090

At each brush contact, we deduced a value for r  = .3048, which is to be

used in Eq. (3) to solve for the short-circuit current from Eqs. (1) and -

(2),

The complete performance characteristics on this motor at 60V are

given in Fig. 12, and over the measured current range, speed is seen to

vary between rated speed and 11% less than this. Extrapolation of the

speed curve to a very high stall current is characteristic of permanent

magnet d.c. motors. With such a small variation in speed over this

current range, we would expect good correlation between the power losses

here and those at 2400 rev/min in fig. 11.

(11)
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This is so, and the value for r  derived from Fig. 11 may be used with.

confidence to evaluate motor performance at 60V for 0 < I 2 25.

With the added resistors in the armature winding and the brush leads,

the current was held below its normal rated value of 40 A for these tests.

Heating losses in these components cause the efficiency in Fig. 12 to

peak at about 80%. This figure is higher without these added resistors,

and performance' characteristics obtained on the machine prior to modifi-

cation of the armature (Fig. 13) show a peak efficiency of 85%. In this

case, the armature winding resistance was .042n, and the brush contact

resistance-of .152n represented 78% of the total resistance. This high

proportion is indicative of a problem occurring at the brush contacts,

and this will be shown to be the source of the dominant power loss in

this machine.

4. Commutation Power losses.

The objective is to compute the power loss associated with short-

circuit currents during commutation, and to determine whether they appear

in Fig. 11 as part of the constant term, Pt, or the variable I 2Ra loss.

4.1 Short-Circuit Currents during Commutation.

Equations (1) and (2) are solved for the mesh current i t (Fig. 3),

Aich will be Zero at the onset of commutation for the short-circuited

coil, and will only vary through the mutual inductance with i. This is

due to the path chosen for i l , and hides the fact that direct terminal

current flows in both of these neighboring paths, through the brush

(12)
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resistances rbl and 
r 	

Clearly, this was taken into account when

^. deriving values for 
rbl 

and 
rb2 

from the constant speed test, and these

resistances should now be used with the appropriate currents. This is

achieved by setting the initial and final values of i, at the onset and

end of commutation, equal to the normal path current.

As an example, a terminal current of 24.4A will divide into the 8

parallel paths, giving initial and final values for i of -3.05A and +3.05A.

At the onset of commutation for the coil in Fig. 3, it has just emerged

from the right-hand neighboring path, and the initial current of -3.05A

accounts for the losses in the rbl and rb2 contacts in that path. The

power losses in the contacts in the left-hand path are equal to this,

being accounted for by another coil entering commutation at the next brush.

There are, in fact, eight coils in the machine in the same condition cor-

responding to the eight parallel paths.

The calculated variation of current in a coil undergoing cormutation

is shown in Fig. 14, for operation at 60V, 24.4A, and a speed of 2171

rev/min derived from Fig. 12. Because the armature coils have very low

inductance values, commutation is achieved very rapidly. Mutual coupling

will cause a spike to appear on the current of the neighboring coils, and

conversely, spikes appear on Fig. 14 at the instants when neighboring

coils are commutated. these spikes should accumulate and appear on the

terminal current waveform. and Fig. 15 shows the measured current

entering one positive brush. The variations in the spikes are due to

non-uniformities in the armature winding and the magnets.

(13)



The measured variation of coil current is shown in Fig. 16, for the

same operating conditions. These oscillograms confirm the predicted rapid

reversal of current at the onset of commutation, but show it rising to a

higher peak than calculated during the first half of the commutation period.

One possible cause of such a discrepancy would be if the brushes could tilt,

commutation would be advanced and the peak current would increase. However,

solution of Eqs. (1) and (2) showed that this effect would not yield the

desired peak current.

It is postulated that the brush contact is not simply resistive, but is

also capacitive. In that case, the path for the short-circuit current, i.

in Fig. 3 forms a series resonant circuit, which would require a capacitance

of about 480 yF at a resonant frequency corresponding to 2171 rev/min. If

such a capacitance existed in a conventional machine, the normally much

higher coil inductance would reduce the resonant speed to a very much lower

value. and an effect such as this would not be detected. It is not expected

that such an effect will have a simple relationship with terminal current,

but it should still be evident for motor operation on no load. Figure 17

shows the coil current at 60V, 3.2A (no load), and indicates that the high

current peaks do still exist, but are variable and somewhat unpredictable;

this is typical behavior of brush contact phenomena. To support the

theory that capacitance exists. close examination of the coil current on

load (Fig. 16 (b)) shows that ringing occurs after the reversal of current

at commutation.

4.2 Power losses.

From the calculated variation of i in Fig. 14, the power loss in the

i__	 (14)



i

coil can be evaluated for the entire commutation period. A similar

variation, without the added resistor R in the coil, will yield the power

in the other seven coils being commutated. The effect of terminal current

has been accounted for in the initial and final values that were set for

i, and so these eight coils represent the total commutation power loss.

Some calculated values are given in Table I, together with the power loss

in the other fixed resistances in this machine.

The total calculated electrical power loss at 2400 rev/min is sub-

tracted from the measured curve in Fig. 11. The mechanical power loss

at this speed was measured , by demagnetizing the stator of the experimental

machine, and by driving it with another iron-less axial-field motor. There

remains a further component of the total losses in Fig. 11, which is also

associated with the commutation process. If this component is added to

the proportion of the calculated electrical loss already attributed to

commutation, then the commutation power loss is represented by:

P
cow s 145 + .152 I 2 M.	 (14)

Comparing this to the total power losses given in Eq. (13), commutation

accounts for 76% of the constant component, P t , 49% of the current depen-

4.
dent component in the experimental machine, which would be 78% of 

19 R 
in

the machine prior to modification of the armature.

That the commutation power loss is significant:-independent of

armature current, is supported by the oscillograms of short-circuit

current, which show that the peaks at the onset of -commutation on load

(Fig. 16) are still present on no load (Fig 17).

4
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Table I: Calculated 12  power losses for 60V supply, using r., measured at
240E rev/min. "

Total 12R loss in Total I R
Terminal commutation winding and all power loss
current, power added resistors in motor
I	 (A) loss (W) (W) (W)

3.2 8.1 1.6 9.7
18.0 87.7 50.9 138.6
24.4 154.0 93.5 247.5

,r
l^
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Armature reaction, not present in this machine, would cause this power

loss to be more heavily dependent upon terminal current. Although the

total power losses may be represented by Eq. (13), from which a steady

value for rb was deduced, this resistance does not have to account for

the entire brush contact loss. That is, the brush contact does not have

to be simply the constant r  as seen through the terminals. The evidence

is that the contact should be modeled also by a rf ctive term, chosen

such that the circulating current matches the oscillograms (Figs 16 9 17).

5. Conclusions.

Despite having a large proportion of its losses attributed to unwanted

circulating currents in coils during commutation, this experimental disc-

armature motor exhibits a peak efficiency of 85% at rated current, and

maintains above 80% efficiency over a wide current range from about 15A

to several times rated current (Fig. 13). This commutation power loss is

evident even without load, and must be considered to be the major problem

in obtaining optimum performance from this type of low inductance machine.

The ironless armature gives benefits such as elimination of rotational

Iron losses and armature reaction, but these must be weighed against the

effects of having significant field in the magnetic neutral regions,

creating the e.m.f. that drives the short-circuit currents. Under current

investigation is the inclusion of magnetic wedges between coil sides in

the armature, to enhance and constrain the field under the poles, these

wedges being :Wade from a low loss iron powder composite.7

f	
Since commutation power loss is the critical problem in this machine,

M1	 analysis should bir performed using an equivalent cir.:uit as described here.

L	 (16)
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However it is apparent from h	 i	 ram	 i	 ma no b,	 pp	 t	 the osc 11og sh that Fig. 3 y t o

f	 complete, because the short-circuit currents and power losses were found

to be predominantly independent of terminal current. Therefore, whatever

impedance is used for the brush contact should be derived from measurements

of the circulating current, rather than the terminal current. Further

and more detailed studies using this technique to measure i will be re-

quired to determine that impedance.

The very low values for the inductances in this machine cause

commutation to occur very rapidly, leaving a coil short-circuited for a

much longer'period than is necessary simply to reverse the current. The

benefit of having higher inductances appears to be that they would eliminate

any resonance that is causing i to rise to such high measured values.

This paper has described the calculation of inductances in this permanent

magnet machine, and so the effect upon performance of adding any magnetic

material to the armature could be computed. In this case, the properties

of the permanent magnets adjacent to the air-gap will be important, and

for the anisotropic Alnico 5-7 described here, the recoil permeabilities

in the preferred and transverse directions are quite different. Commu-

tation occurs with the coil and pole axes coincident, the position of

minimum coil self-inductance in this type of machine. Current research

is aimed at broadening the investigation to other important types of

permanent magnet material, in particular Alnico 8, to compare the effect

of different field distributions upon the short-circuit currents and power

losses.
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(two in. parallel for 0.12,E in every ei g ht coil), one connected to silver
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