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Calculations and measurements have been made for the design of

a laser system for instantaneous location of a longwall shearer.

Designs have been completed based on the calculations and measure-

ments. These designs, with usual engineering refinements, will

allow determination of shearer location to approximately one foot.

Additionally, the roll, pitch and yaw angles of the shearer track

can be determined to approximately two degrees.

The course of analysis lead away from the original concept

based on scattering from coal dust particles to two other approaches

The first is a concept using a small scanned stream of the water

already pumped to the longwall face for dust suppression. This

technique uses a single silicon sensor system and three gallium

arsenide laser beams. It is clear that all OSHA and MSHA require-

ments can be met with the design. Advantages of the water target

system rest not only with improved signal levels, but also with more

favorable geometries.

The second new technique is based on an arrangement similar to

that employed in aircraft omni-directional position finding. The

angle between two points is determined by combining information in

an omni-directional flash with a scanned, narrow beam beacon. This

approach is preferable to the first two because it maximizes signal

levels.
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1. INTRODUCTION

In longwall coal mining operations a matrix of tunnels is

developed in a coal seam as depicted in Figure 1. Two tunnels,

running parallel to one another, are separated a substantial

distance by the intervening coal seam. Distances of 400 feet are

typical. The longwall shearing machine is placed inside a cross

tunnel between the two parallel tunnels. The machine rests on

tracks which facilitate its traverse along the face of the wall

via mechanical engagement to propel the machine. A trough is

associated with the tract having a conveying mechanism to trans-

port coal cut from the lonqwall face out to an and tunnel and to

further conveyances leading to the surface of the mine.

Automation of longwall coal mining requires development of

a technique by which the shearer can be instantaneously located

at all times. This report summarizes studies to establish the

feasibility for techniques based on laser and electro-optical

technologies. Guidelines assumed for the analysis include use of

off-the-shelf components, the unfavorable environment typified by

Table 1 and the need to adhere to regulations put forth by the

Occupational Safety and Health Administration (OSHA), and the Mine

Health and Safety Administration (MSHA), and other applicable

regulating agencies.

ASWt	 1
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1.1	 REVIEW OF CONCEPT

tThe design concept discussed in this report for instantaneous

location of a longwall shearer is based upon the use of laser beams

to establish lines of reference.	 These lines of reference are

associated, in their turn, with survey reference at the end of

tunnels.

The energy of laser light in a vacuum is propagated in a

tstraight line.	 Therefore, beams of light directed along the long-

wall face can be detected only if the observation is made directly

on the axis of the beam, or if some imposed material deviates the

light's direction.	 In the case of the coal mine operation, parti-

cles of coal dust or water used in dust suppression can serve as

j potential deviators (scatterers) of the laser light. 	 The scattered

light could then be observed from the side by an optical device

which would image the illuminated dust onto some form of photo-

sensor.	 This would allow one to see light not originally directed

at them.	 Human experience of the same process is exemplified by

tdust particles floating through beams of sunlight in an otherwise

shaded area.

Figure 2 shays laser beams in the coal dust approach directed

alongside the path of the shearing machine. 	 A sensor is mounted

' on the machine body which monitors the image of coal particles

that pass into the beams. 	 The apparent angles between the scattered

' beams and the machine body provide data from which shearer orienta-

( 3
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t	 tion and position might be detormined. The concept is simple,
the realities of implementation can become sophisticated.

Figure 3 shows an arrangement which uses the water spray

technique. In this approach the laser beams are not monitored

from some perpendicular location. Instead, the beams intersect

a plane of water. The intersections appear as bright spots. The

sensor is located on the laser side of the water plane, slightly

off axis. Actually, as will be explained in later sections, the

water plane need not be a continuous sheet. In fact, the pre-

ferred design avoids this,using scanned water streams instead.

A figure of the scanned laser beam alternative will not be given

at this time. It will be introduced more appropriately in

Section 4.

E^

^I
1
i
1
1
i

1.2 SENSOR SYSTEM CONSIDERATIONS

Figure 4 is a good summary of how sophisticated the design

of the lonqwall sensor system is. This figure portrays, via

block diagram, the many interactive elements of the concept

analyzed in this design effort. The five general tasks in the

design study examine these elements in detail. The results of

analysis in each task are presented in each of the main sections

that follow this Introduction.

Section 2 presents the results of Task 1 analysis. Activ.,^y

under Task 1 addresses element blocks 41, t3 and 44 in Figure 4 in

order to assess the viability of using a narrow laser beam as a

5
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across-tunnel reference for determining shearer position.

Task 2, presented in Section 3, uses the results of the first

task to determine what sensor system characteristics are neede:, to

observe the laser light scattered by the coal and water particles

with a sensitivity and accuracy appropriate to ascertaining shearer

location. This task required investigation of elements #2, #3,

and #5 through #11.

The results of the first two tasks are incorporated into Task

3, which is presented later as Section 4 of this report. This task

addresses the practical realizability of design options when cast

into a functioning mine environment. Tasks 4 and 5 extend the design

analysis to allow not only location of the shearer, but also

determination of roll, pitch and yaw. These tasks are imbedded in

the discussions of Section 4.

Section 5 suwmnarizes the findings of the study. The coal

particles and water target techniques are compared with each other,

and with the scanned laser beam approach. The scanned beam approach

is shown to be prefered and an associated first order design is

shown.

i
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Sbeariog Drain Vibration (Supplied by US&/WC):

0.1 Loch peak to peak
0.02 Inch peak to peak
1 G Acceleration peak
3 G Acceleration peak

Dust Environment (from Visual Estimates):

Submill1meter particulates propelled by estimated 10 sigh
air stream along wall at rate providing 1002 coverage in
estimated 90 minutes at 10a from shearer. 1 minute at Zm
from shearer. Potential esplosiow hazard via electrical
spark.

Debris per Square Dater at 2a ( from Visual Estimate):

100 per minute
20 per minute
2 per minute

Table 1	 Environmental Concerns for the

tLaser Longwall Shearer Location System
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2. LASER BEAMS AS REFERENCES

(TASK 11)

Effort under Task 1 concentrated on estimation of mine and

laser variables to determine if a laser beam can be accurately

directed down 600 feet of longwall tunnel, and observed with an

arbitrary sensor of ideal performance.

2.1 TARGETS

The targets in this system are coal dust particulates and

water droplets. If it were not for these small airborn specks, the

presence of a laser beam directed down the tunnel could not be

detected from a position perpendicular to the optical axis. It is

by virtue of the scattering from the particles that the beam locatic

is possible. In fact, photographs of laser beams used in the

laboratory are often made by blowing smoke into the light path.

Several characteristics of these small particles have been

examined. Among these are the apparent spectral radiance resulting

from laser illumination. This will depend upon severatl variables,

including size, shape and observational fields of view. Additionally

movements of the particles in range and angle over the period of

observation are considered with regard to scintillation frequencies.

Delineation is made between the absorption and the scattering

components of the extinction coefficients, which in turn are related

Ito anticipated particle number densities.

10
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2.1.1	 Laboratory Reflectance Measurements of Coal

The arrangement shown in Figure 5 was used by Adjunct Systems

to make laboratory measurements of representative coal reflectance.

A flat piece of coal had a sheared face set at the center of an

indexed rotary table. A gallium arsenide injection diode laser

output was collimated with a microscope objective to strike the

coal at the center of rotation. The light reflected from the coal

face was sampled with a 1-cm 2 silicon detector placed in the plane

that would correspond to specular (mirror-like) reflection. An

infrared filter (Wratten 87C) was placed in front of the detector

to eliminate the effect of background lights in the visible regions.!

The detector output was read with an electronic amplifier and meter

system calibrated for 0.63um wavelength. The reflectance readings,

computed by normalizing to a standard solid angle and to the directly

measured output of the laser, is not influenced by the difference

in wavelength between the gallium arsenide (0.85um) and 0.65um

because both direct and reflected light were measured with the

same detector.

The results of the laboratory measurements are shown in

Figure 6. The diameter of the light as it struck the face of the

coal was approximately 3mm. The coal particles serving as targets

in the shearer location concept will be much smaller. Nevertheless,

the level of reflectance should be approximately the same in both

cases. Only the effective cross sections and directional character-

istics are likely to change.

11
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1 2.1.2	 published Measurements for Coal Reflectance

A literature survey was conducted to compare the Adjunct

Systems measurements with those of other researchers. it was

found that microscopic coal reflectance measurement is an establishe

analytical technique for coal classification. This technique

employs oil immersion microscopy of coal polished in a standardized

manner. Unlike the Adjunct Systems,measurements, which illuminated

a sample size of about 3 mm diameter, standard classification tech-

niques observe a spot size of between Sum and 10um. The ASTM

standard specifies a Sum diameter. However,, measurements at 20um

show no loss in accuracy.

Figure 7 shows published measurements of coal reflectance in

air and oil as a function of wavelength. it is significant to note

that, even though oil and air reflectances are quite different, they

vary only slightly with wavelength. Therefore, it is reasonable to

expect the reflectance near 0.6um (helium laser) and 0.9um (gallium

arsenide laser) will be the same. Comparison of Figure 6 and 7

confirm this to at least a first order.

For a selected wavelength region, the curves of Figure 8 result

from data of the Figure 7 type. This is helpful in conversion of

the oil immersion reflectance of Table 2 to air reflectances.

The handbook of optics provides reflectance data for diffuse

hemispherical reflectance of carbon blacks. Table 3 summarizes some

lof this published data. These are air reflectance values and are in

9
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accord with the data mentioned above. The sample areas are large,

but the individual particles are small. Based on this, as well as

tho aforementioned data, it is reasonable to assume that the airborn

particles in the longwall tunnel will have 	 between 31

and 150 over a hemisphere. Furthermore, based on anticipated

particle size, scattering of the reflected light should be in all

directijns.

2.1.3	 Calculated Particle Distribution for Coal Dust

The particle size and distribution along the longwall will

depend upon several factors. Among these are the proximity to

shearers and positions downstream (with respect to ventilation) from

the shearing process. The analysis discussed here assumes two

conditions prevail. The first condition is dominated by simple

equations of motion relating to large object trajectories in a

gravitational field. The second condition assumes the prevelance

of suspension forces similar in magnitude to those which maintain

fog.

12.1.3.1 Trajectory Sized Particles

The assumption is made, for want of other indicators, that the

rate of expulsion of sheared particles from the longwall face is .

constant in mass between the largest and smallest particles. Stated

otherwise, if the size of ejects are multiplied by their number

density, the result is a constant with size. Starting with this

AC
is
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assumption, a rough estimate can be made of the particle distri-

bution. eased on review of motion pictures of longwall operations

and typical shearer performance data it appears reasonable to

estimate that a shearer might produce up to 100 K9/sec of out coal.

Of this amount, only a few milligrams are likely to be small enough

for suspension in air. The rest are trajectory type particles which

w141 quickly fall to the floor. The distribution with distance will

depend primarily on the ratio of particle projected area-to-mass

ratio. This suggests the carrying power rapidly moving ventilating

air will have on it. The suspended particles are also diluted in

accordance with the airflow rate. These suspended particles are

Ithe principle targets for the laser beams.

12.1.3.2 Suspended Particles of Coal

Optics of the Atmosphere provides a number density curve for

various water droplet sizes in atmospheric fog. This general

distribution must be modified, however, for the difference between

the density of water and the density of coal. The Handbook of

Chemistry and Physics gives the density of carbon (graphite) as

2.2Sg/c 3^a . The cube root of the reciprocal of this value is 0.76,

which is the factor adopted in producing the number density plot of

Figure 9 from the fog water droplet data.

The area under the curve in Figure 9 was numerically integrated)

land divided by the total particle number to estimate the diameter

Jof the average particle. This was done to simplify estimates of

es
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attenuation  coefficients.	 Such estimates should be reasonably

accurate as starting values. 	 The average diameter calculated in

this manner is 17.6 um.	 Assuming a spherical particle, the average

particle mass is calculated to be 6.4 x 10 -9 grams.

The MSHA health standard for respirable particles (maximum) in

- the coal mine environment is 2uq/m 3 .	 Dividing the aforementioned

average p:;?:ticle mass into this standard leads to at maximum of

approximate_j 1 particle/cm3 .	 This value is based upon the defini-

tion of respirable particle being greater than 10um in diameter.

From the distribution of Figure 9, roughly 27% of the suspended

particles will be of this category.	 The number of respirable

particles allowable can be calculated from:
I

MSHA Standard for 12articles/cm2

r # respirable particles = calculated mass of 10um particle
f

This leads to:

0.3/0.27 = 1 particle/cm3

These values will be used later in Section 2.2 to compute the

attenuation of a beam of light passing along the longwall suspended

- particle path, as well as in Section 2.4 where scattered intensity

C and attenuation per unit pathlength are estimated.

Photographs2.1.4	 Inferences From

Motion picture photographs (16mm) were examined using a data

analysis projector.	 Line action showing a lonqwall shearer in

operation were reviewed on a frame by frame basis. 	 Pertinent frames

were locked in stop action. 	 The following observations were made.
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(a) Space beyond a few feet of the shearing drum had so

few particles as to make their detection improbable

without highly sensitive photodection systems.

(b) The water streams used for dust suppression are

highly visible.

Figure 10 is a photographic print from the cine action film

showing the low visibility of coal dust. Figure 11 shows a similar

photograph in which water jets are present.

2.1.5	 Reflectance From Water

Another target possibility exists along the lonqwall tunnel.

Water sprays are used for suppression of dust let fly by the shear-

ing process. In an effort to examine the potential for water as a

target, both radiometric and photographic-observations were made.

These are related in the following discussion. It is quite signifi-

cant to note that the use of water as target material affords far

greater control, with less health hazard, than coal particles.

2.1.5.1 Radiometric Measurements

Measurements were made of the influence of water streams on a

helium laser beam. The arrangement used is shown schematically in

Figure 12. The stream was formed by gravity fall from a standard

faucet. The laser beam diameter at intersection with the stream

was approximately 1.0mm full width, half power. Detection was made

22
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with a circular silicon sensor with 1 cm 
2 

area.	 As the plots of

Figure 13 show, the smaller the diameter of the water stream the

more laser light is deflected from the axis to the sides. 	 This

wider pattern becomes somewhat fixed when the stream diameter become

about five times the beam diameter.	 This appeared to be principally)

the result of surface ripple.

A two millimeter diameter flow was examine4 in two forms. 	 The

first form was a smooth flowing column-like stream.	 This vertical

stream spread the light in the horizontal plane much as a thin glass

rod would.	 In effect, it acted like a cylindrical lens.	 With the

photodector placed 33mm from the stream the horizontal spreading was

over tens of degrees.	 The vertical spreading was only enough to

expand the beam to approximately 2mm.

}
The second form of the 2mm water stream was turbulent flow.

This examination was made by simply looking at the smooth stream at

a lower point along its fall; where cohesive forces tended to begin

spherical formation. 	 In this case the light was dispersed more two

dimensionally. 	 This dispersion appeared axial) 	 s	 etric to theY	 P	 PP	 Y	 Ym

beam for all visual purposes. 	 Most of the laser energy seemed to

be unaltered.	 This was determined by making on-axis measurements

twith and without the	 flow in	 beam.water	 the	 Measured powers were

l.lmw and 1.8mw, respectively. 	 This corresponds to a 408 scattering

figure.	 Allowing that an entire target volume can be filled with

water droplets (an impossibility for coal dust) the use of water as

target material will provide a signal over a million times stronger

than that expected from coal. 	 For example, the measured value 450

26
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off axis is 60nW/cm at 33mm distance. Calculations in Section 2.4.1

suggest irradiances of 1 x 106nW can be expected for coal dust.

The isotropic nature of the water droplet scattering is very

important. Otherwise, the sensor would have to be in a narrow

t scattering plane. This would greatly impede practical implementatLon

for several reason, including the fact that the laser beams may not

all lie in the same plane, that the sensor locations may be vulner-

able to damage and that the plane of the laser is unknown (that is

the purpose of the measurement).

"	 Turbulant flow was not produced with the 4mm and 10mm water

(	 streams. Measurements of the smoothly flowing stream showed the

cylindrical lens analogy remained reasonably valid. However, the

vertical deflection was considerable more marked than in the 2mm

II stream.
The idea of imposing (and perhaps even scanning) streams of

ater droplets provides an entirely new potential. This will be

xploited in later design discussions.

The difference between water droplets as would be used in the

coal mine system and water droplets found in weather clouds is

worth noting. In the case of the coal mine water droplets the

fficiency of beam scatter is related to the ratio of laser beam

iameter to droplet size. In the case of clouds, the scattering is

eled by the ratio of laser beam wavelength to droplet size. The

roplets in the just described experiments were on the millimeter

rder, as was the beam diameter. For clouds the wavelength would be

28



on the order of a micrometer, with the droplets typically between

I= and 10mm. In the first case we measured about 40% scatter. Por i

clouds a typical albedo might be 70 %. Accordingly, it is seen that

no extreme benefit is afforded by creating a mist rather than

droplets. On the other hand, severe disadvantages are encountered.

Droplets are easier to form and their trajectories are not so easily.

aviated by air currents. These factors would play a significant

Ole.

.1.5.2	 Photographic Measurements

A 35mm camera was used in the arrang—:. t shown in Figure 14.

helium neon laser beam was projected unobscured in a darkened area.
i

e laser light was not visible to the camera because no scattering

ent was within the field of view. The camera shutter was opened

r a time exposure and the jet from a commercial Water Pik R was

ssed transversely through the field of view. When the water jet

sected the beam, the location of that event was readily

Observations were made with the laser only a few meters from the

and water jet. The water stream nozzle was within a meter

the beam. A second set of observations was made with the laser

eling approximately 100 meters and the water jet nozzle located

t three ( 3) meters away from the beam. The photographic prints

n in Figure 15 illustrate the clear detectability in both cases.
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.2 INTBRVSliIM MEDIUM

t
The intervening medium is significant because it can create

versions of the light which reduce both the signal strength as

by the detector and the discernible spatial extent of the

The first problem results from spectral attenuation. The

from degrading MT! (modulation transfer function). Both are

ect to "microweterology" and scintillation.

The analysis of Section 2.1.3 and 2.1.4 divided the intervening

between the laser source at the region near the shearer into

two catagories. One category included various large sized projec-

tiles following a trajectory between the region of mechanical shear

and the surrounding lower level along a course defiled by gravity

d initially imparted kinetic energy. This category was found to

ignorable. The second category considered suspended particles.

he second category is of concern.

Assuming the distribution of suspended particles to be that of

igure 9 in Section 2.1.3, the fraction of light passing through a

ength of one meter can be computed. The cross section of the

verage particle in suspension is 9.7 x 10-6=-2. This assumes

hat particles are not masked by one another. Such an assumption

s quite reasonable based on the relative values of the various

The fraction of non-scattered light exiting the one meter column

aced with the light entering the column will be very nearly 1000:
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1.00 - 9.7 x 10 4 1.00

This corresponds to an attenuation coefficient of 9.7 x 10 -4m 1.

( The total extinction coefficient 	 ex is the sum of the scat-

tering and absorption elements. 	 Therefore, the case at hand has

• 9.7 x 10-4i-I.4x
This coefficient is used in the standard exponential equation for

optical extinction which relates incident energy I 0 to output

tenergy I as the pathlenqth of propagation X is varied,

I • 1 0 exp (- /'ex X)'

This relationship shows that about 961 of the light would make its
k

ay uninterrupted down a 500 foot tunnel having the maximum respi-

rable particle density allowed by law. 	 Even if the factors assumed

in the analysis were collectively off by a factor of five, approx-

imately 471 of the light would still make its way down the tunnel.
a

For the numbers calculated, beam collimation degradation willti

be dominated by laser divergence.	 The contribution from scattering

by intervening medium will contribute negligibly to the degradation

for the limited fields of observation associa: .ed with any of the

[ 1contemplated designs.

I2.3 ILLUMINATORS

Low power lasers are used as illuminators in all the design

tptions. Two candidates are available. One is the helium-neon

aser. The other is the charge-injection gallium arsendie laser.

33
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Choicetween the two must be bas 	 nbe	 based o the spentsal and temporal

outputs, as well as the control optics which steer tha beam and

provide for minimal beam divergence. Furthermore, eye safety

considerations and power supply requirements must be accounted for.

Figures 16 and 17 show typical construction principles and

Operating specifications for the two candidate laser types. From a

spectral standpoint it is significant to note that the 0.85um wave-

length is favored for detection with silicon photosensors. From

a safety standpoint, tabulated values of accessible emmission limits
f

for laser products indicate for Class I CW operation with no scannin^

and 1-second integration time that only 0.7mw is allowed at 0.63um,

k	 while 1.4mw are allowed at 0.85um. Therefore, the gallium arsenide

laser would seem to be favored by both detection and safety factors.

However, since this laser is not visible to the human eye the

potential operational advantages of visually seeing the beam are lost

iCalculations which follow show that neither the 0.7mw nor the

r	 1.4mw levels are suitable to detection using the coal or water'

scattering approaches. Greater power is needed for reliable opera-

tion. It should be noted that a scanned laser, with failure guard,

uld allow a great increase in power output.

The power supply requirements favor the use of gallium arsenide

cause it is low voltage and displays low current drain. Ruggedness

temporal control and small size also favor this candidate. Never-

theless, calculated trades must be undertaken on an overall basis

I
More selections can be recommended.
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Figure 16.	 Schematic construction of gallium arsenide laser.

Typical parameter include: wavelength of 0.85 um,

operates on less than 3 vdc, 200 ma, size less

than 1 cubic inch.
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Figure 17.	 Schematic construction of helium neon laser.

Typical parameters of 0.63 um, operates at several

hundred volts, size greater than 50 cubic inches.
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2.4 TRADE CALCULATIONS

This section will establish the reasonable bounds for the use

of laser beams, scattered from coal particles and from water, as

references for instantaneous longwall shearer location. The sensor

system used for these trade considerations assumes certain ideal

istics which will become apparent thoughout the discussion.

.4.1 Available Light From Coal Dust

In this subsection we will examine how much light is available

for detection. This will start by assuming a laser output and

ddressing the question: How much light is scattered by a single

"average particle"?

Assume a lmw laser beam over a lcm2 diameter, if the particle

not absorb, the scattered power is

(1	 ) ( 9.73 x 10-6 
CID.	 9.73 x 10-6 mw

1 cm

= 9.73 x 10 -9W per particle

ssume we co-lect this with a 10cm 2 aperture at 1 meter to the side,

ith particle reflection of roughly 1 x 10 -4 and scattering evenly

istributed over 4v steradians. The power collected by the aperture

ill be

lOcm2

104cm2	9.7 x 10-16
4 Ir	 (1 x 10

-4
 ) (9.7 x 10-9W)	 4

pparticle ' 7.7 x 10-17 Watts
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If we assume 1000 optical efficiency and a detector IEP of 100 pw

t 1 Kas sampling frequency, we can calculate the number density

t
for detections

100 x 10-12„

7.7 X10
-17
 W

13 x 105 particles

If we change to a sampling frequency of 10 Hz we have

10
13 x 105	 1000 s 13 x 10 4 particles/cm, in our field vie

is limited to lcm2 . If we look lengthwise along the beam for 10cm,

number density becomes

1.3 x 10 4particles/cm3 for detection

The 1 x 10-4 assumption for reflection coefficient may be too

tive. Adjunct Systems measurements, as well as published

ata, suggest 0.03 to 0.15 is likely. The factor of 30 to 150 over

he assumption gives a needed density between 90 and 430 parti-

les/cm3 . Therefore, let's use a rule of thumb for now that detec-

ion unity signal-to-noise ratio requires 100 particles/cm 3 . This

s a thousand times the MSHA allowance.

.4.2	 Available Light from Water Stream

The water stream can be designed to completely intersect the

aser beam. This gives a cross section tens of millions of times

of 100 coal particles of 10um diameter. Additionally, the

ion of the water droplets is typically ten times less than

A 1-milliwatt beam scattered isotropically by the water could

better than 10 microwatts of radiant power on the detector
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fusing the optics of the previous section. Signals of this level

would allow use of large area detectors with rapid sampling. The

advantage of a large area detector is allowance of large angle

fields of view to minimize scanning the sensor.

2.5 IN-MINE EXPERIMENTAL APPARATUS

The key test associated with the original shearer location

concept is concerned with the visibility of the beam as scattered

by the coal dust particles and the degree of attenuation encountered

by the reference beams. An a pparatus was designed to conduct in-

mine experiments to ascertain such visibility and attenuation.

The experimental apparatus has been designed to avoid delays of

manufacture and certification. At the same time, the apparatus

provides for unambiguous determination of concept viability.
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3. SENSOR SYSTEM OPTIONS

(TASK #2)

t
The results of Task 1 as related in the previous section are

used here to determine what sensor system characteristics are needed

to observe laser beams as scattered from coal dust or water, along

the lingwail operation. Consideration is given to blocks #2, #3

and #5 through #11 of Figure 4 in the Introduction.

3.1 BACKGROUND

Generally speaking, the eletro-optical background to be seen by

sensor is favorable because of the tunnel's darkened condition.

Some concern must be given, however, to the possibility that some

tunnels may be fitted with lights or, at minimum, the miner's head

lamps will cross the sensor field of view from time to time. Such

possibilities can be overcome by rejecting them with optical

jalyzers on the basis of spectral, spatial and temporal features.

An appropriate bandpass filter is recommended for use with either

r	
he gallium arsenide or the helium neon laser. This bandpass filter

t would be placed immediately in front of the photodetector in the

IIs ensor system. All but the laser wavelength would be rejected.
T .2 INTERVENING MEDIUM

I
If the number density of particles between the reference beam
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and the sensor aperture is high, then the possibility exists that

an otherwise adequate laser scatter would be obscured. The positi,

ing:of sensors on the shearer body must take in account such a

potential. The physical relationships for this signal attenuation

C	 t
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are the same as detailed in Section 2.

The case of beam propagation down the longwall tunnel showed

suspended particle and small projectiles to be the main contributors

to beam attenuation. This circumstance was the consequence of the

beams being significantly distant from the shearer region path of

,direct trajectory. The sensor, by contrast, is located much closer

this path. However, the photographic analysis discussed earlier

showed neither major advantage nor disadvantage for this circum-

stance.

3.3 OPTICS

The aperture of the optics is restricted by several practical

iderations. Not least among these are MSHA requirements on

in explosion proof housing. Nevertheless, such require-

is are not the governing factor. The prevailing thought is to

an off-the-shelf collector with short enough focal length for

1 system packaging and the use of small photodetectors. The

1 package advantage is self evident. The value of the small

is minimization of detector inherent noises. These noises

approximately with the square root of the detector area.

a given target size (reference beam segment), the size of the
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image will increase with optical focal length. Accordinly, the

smaller focal length will decrease the detector dimensions.

The possibility exists for using a single element collector

lens in both the coal dust scatter and the water scatter concepts.

Typical camera lenses have multiple elements. one purpose of the

multiple lens element design is to reduce chromatic aberration.

That is, to eliminate the multiple focal lengths which characterize

a simple, single element lens, the cause of colorized blurring.

the laser light is monochromatic, chromatic aberration

not be a problem. However, other aberrations would still exit.,

of lenses having aspheric shapes can help somehwat in this

It turns out, however, that it is more difficult to obtain

required aspheric than to procure a standard camera lens having

e added advantages of field flatness and aperture control. There-

, lens type selection must await more detailed investigation of

specific design. For now, a commercial camera lens is assumed.

Packaging and detector sizing suggest a lens with a 35mm to 75mm

length for either approach. Signal strength requirements push

f-numbers between f/2 and f/1.4 for coal dust, with f/5.6

ate for water. Availability suggests use of 35mm photographic

a lenses or vidio camera lenses. These have been designed for

lent performance with regard to image plane flatness over a

field of view, with baffling suitable to conditions of direct

striking the lens system obliquely. The second factor also

commercial camera lenses are designed with very low scattering

ficients.
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3.4 ANALYZERS

The use of spectral bandpass filters has already been discussed.

Other analyzers have limited value. Polarizers would only serve in

this case to reduce signal-to-noise in the system by cutting down th

scattered light level. Since the lasers are monochromatic, gratings

and prisms are inappropriate.

C3.5 TARGET SCAN

Target scan options are extremely important to the dartgn of the

r

I.
^	 shearer locating sensor.	 The trade between total and instantaneous
s

field of view with scan raters and times is a major system parameter

•	 river.	 This isrinci all	 because the dwell time of the referenceP	 P	 Y
9 

am  image of the detector should be as long as possible to maximize

he system operational signal-to-noise ratio and the detection

rL threshold.
t
4.

The coal dust target approach requires the use of small detectors

his means an array of detectors and complex scanning in order to

obtain needed dwell.	 The water target concept has sufficient signal-

to-noise to combine a relatively large field of view in the sensor

an a whole with an artificial instantaneous field of view derived by

weeping the target water stream instead of the sensor. 	 This

Lo

nimizes the number of detectors required and avoids sophisticated

cal plane scanning. Long dwell times are achieved as long as

ckground conixibutions are low.
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The third a	 roach	 an
g
ular wept laser beams	 has signal-to -PP	 ^	 9^	 P	 .	 9=►al-to

noise ratios even far greater than the water target approach.

This allows use of staring (non-scanned) optics and detector with

( little concern over background.

3.6 BACKGROUND SCAN

The sensor configuration must regard scanning of the background.

dustThe concept using suspended coal 	 to make visible reference

laser beams, as shown in Figure 21	operates with a small instan-

taneous field of view (IFOV). matched spatially to the expected

beam appearance. 	 This IFOV is scanned within the sensor's total

tfield of view (TFOV) to derive angular location of the beam with

} respect to a shearer body reference.
t

The same particles of coal which provide the laser beam target

r

.

can scatter light from a miner's lamp or other mine illumination.

The use of a narrow spectral bandpass filter will keep contributions

from this background source to levels of the same order as the laser
i

signal.	 The headlamp contributions would be intermittent and

random.	 As such, they can be rejected by system logic.

t Steady illumination sources in the mine will not provide thei

same competition that a headlamp will. 	 The steady illumination*	 7
i
a arising within the sensor spectral passband will appear as an

extended source.	 Accordingly, as it is scanned by the sensor IFOV,

its major effect will be to increase the d . c. signal level.	 This
id.c. component is easily filtered by capacitance coupling in the
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electronics. Nevertheless, the random nature of the background

ibutions will provide some component within the sensor's

frequency passband, adding to system noise.

Steady illumination is a more serious problem for the sensor

f it provides glint from the coal mine walls and from mining

pment (e.g. support chocks). The scanning of this glint, even

ith optical spectral filtering, will very much compete with the

low level laser signals in the coal dust scatter approach. 	 The

effective scattering cross sections of the solid objects will be

tens of thousands of times greater than that of suspended dust.

filtering to extract the meaningful signals must be required.

filtering techniques would be applicable here, but might

ssitate considerable computer power.

The concept using an imposed water plane, illustrated in

igure 3 , is subject to the same background considerations of the

dust concept but with less severity. The principle difference

s that the target cross sections can be as big as the glint cross

ions and that the water plane can be stady enough to allow a

ier frequency on the laser beam to facilitate frequency rejec-

ion of the background.

f.
r.

a

i

i.

s

e	 1..

.7 DETECTORS

The radiance of the laser is I watts/steradian. The solid angle

thin which the radiance is contained is w steradians. For simpli-

:ity in calculation the assumption will be made that the subtence
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t
of beam is of square shape. This leads to a square beam of

dimension rA xJ7 for either concept. Reference to the Fraunhofer

photographs of the gallium arsenide laser which were made in the

laboratory suggests that the assumption of the square beam is not

particularly lees accurate than assumption of a beam with circular

s section.

3.7.1	 Detector Size

The distance from the source to the point where the beam

ses the sensor's instantaneous field of view (IFOV) in the coal

case is symbol ized by D. For the case at hand, the IFOV is
r efined by the dimensions of the photodetector and the length from

	

•	 the principle plane of the collecting optics to the detector plane,

esignated by 1d . A square photodetector is typical for commercially

vailable devices. Design practice is to match the detector size to

he anticipated target image size. If the detector is smaller than

he image some of the available signal will be lost. If the detector

s larger the system will have unnecessarily sacrificed spatial

esolution as well as have increased detector noise, which increases

as the square root of detector area.

The length 1  is related to the distance between the target

egion and the sensor lt, through the lens focal length f. The

imple thin lens equation is adequate for the accuracies required

ere. This is expressed as

1 	 It	 f

	

'
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The values of 1d and It also enter the matching of detector

and target image size. A target of height 8 and width. W will be

imaged proportionate to the scaling factor:

Scaling factor = ld/lt

The earlier assumption of a square target leads to a spatially

matches detector of sides

s s D 4—W (ld/lt)

3.7.2	 Irradiance at Detector

The amount of light traversing the tunnel for a distance D is

estimated from the relationship for the affective radiance of the

target region

N = Iw R esp 
(- /5 

DD) Watts/ster

Sere, the laser source output I expands according to the divergence

parameter W to be reflected by the volume of airborne particles

having a cumulative reflectance of R per unit solid eagle. The

exponential factor is simply the extinction for a coefficient 18D.

r	
values of R and AD for various circumstances were provided in

i	 Section 2. Example values will be used in later calculations. They

are not needed at this time as mathematical development continues

for the generalized case.

Only a portion of the power N will be intercepted by the

ollecting optics of the sensor. This will be in accordance with

the solid angle subtended by the collector, which has an area
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related to the opening diameter,

A = rd .

This corresponds to a solid angle
2Am A/1 t

- _ ird2/4112 steradians

Allowing the transmission efficiency of the optics to be represented

by R, the power of the light focussed onto a spatially matched

detector is, after adjustment for extention between the target and

collector,

P	 NnR exp (- Nlt)

= I	 R R exp (- (p DD + 1't1t) )
= I w R SId 2k exp (- ( /ADD +	 t1t ) )( PDD Watts.

t 41t

{ The relationship developed earlier for the detector dimension
4	 `^

an be recast into the form

It	 D rw- ( 1d /3)
`- Substitution into the equation for P yields, for the case f=ld

I - Rir Rs 2 exp (- (^ DD + ^3 tlt ) )
P =

4D F

If
ere F is the lens F-number, f/d. The asumption that f = ld

rives from 1 t>> ld ,as is reasonable for geometrical considerations

 the coal mine implementation.

L. 7.3	 Detection Signal-To-Noise Ratio

1
The performance of detector devices is often given in terms of

rradiant power needed to produce an electrical effect equal to
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the inherant detector electrical noises. Normalized for area, a,

and electrical bandwidth A f, the reciprocal of this noise equiva-

lent power (NEP) is often stated as specific detectivity.

D*	a ^, f

NEP	 W

However, in the case of fluctuations in the light due to coal mine

particles, this might not be appropriate. The scintillations of the

particles may cause noise effects much larger than the inherent

detector noise. The level of scintillation can be estimated to a

first order by taking the square root of the number of target parti-

cles and using it in the power equation. This estimate is based

upon the assumption of equally sized, randomly distributed isotropic

scattering particles contained in the laser beam scattering region

being viewed by the sensor.

tional scintillation is produced by distribution differences in

icles along the path D and the path l t . Nevertheless, the

es shown in the figure illustrate the idea that the noise may

inate more from target parameters than electronics performances.

All sensor optics, whether based on gallium-arsenide or helium-

eon lasers, will use silicon photodetectors. Figure 21 through 23

ndicate representative performances for commercially available

evices.	 These will be used in later Sections for tradeoff

alculations. The type designations are those used in the Handbook

f 2Etics. The data shown are for Type I and Type IV devices.
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3.7.3.1 Type I Detector

This form was historically the first to be developed. It is

generally used when high sensitivity is required and time constants

slower than lus are permissible (see types- III and IV for modified

ral distributions).

Sensitivity: D* (Apk) 1012 , D* (2,800R) t 2 X )04cm Hzh/W,

becoming amplifier-limited for small =area detectors.

Noise: As T drops, impedance rises, so that decreasing noise

current produces increasing noise voltage. However, the signal

increases even faster, yielding an improved signal-to-noise

ratio when cooling.

e Capacitance: Capacitance is proportional to area and increases

slightly with temperature.

• Responsivity: See Figure.

• Quantum efficiency: 90 percent quantum efficiency achievable

with antireflection coating.

• Sensitive area: 0.05 to 25mm (linear dimensions).

• Time constant: Inherently slower than_lns for high-sensitivity

applications, limited by RC.

• Operating temperature: Ambient

• Recommended circuit: See Figure. High impedance PET current-

mode amplifier to supply fixed bias voltage, regardless of

current.

• Manufacturers: Texas Instruments, Electro-Nuclear Labs, RCA,

Solar Systems, Inc., Honeywell, Mullard (Optoelectronics).
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3.7.3.2 Type V Detector

The avalanche photodiode is especially useful where both fast

response and high sensitivity are required. Whereas normal photo-

diodes become thermal-noise-limited when heavily loaded for fast

response, avalanche photodiodes make use of internal multiplication,

associated with reverse breakdown in the p-n junction. Stable

multiplication is made possible by a guard-ring construction, which

prevents surface breakdown. However, very careful bias contol is

essential for stable performance. An optimum gain exits below which

the system is limited by receiver noise and above which shot noise

dominates receiver noise and the overall noise increases faster than)

the signal.

In addition to fast-response applications, avalanche photodiod,

are useful whenever amplifier noise is limiting, e.g. small-area

arrays. Signal-to-noise ratio improvements of one to two orders of

magnitude over nonavalanche case can be achieved.

• Sensitivity: NEP x O.lpW at 10 MHz; A- 5 x 10 -4cm2 ; gain-800

• Noise: Typically 0.2 to 10 nA. As gain increases, noise

increases. Optimum gain is where avalanche noise equals system

noise. Thus optimum gain is a function of system noise.

• Responsivity: Depends on photocurrent gain. Gain-bandwidth

product 80 GHz at 633 nm. Spectral response depends on opera-

ting frequency.

• Quantum efficiency: Typically 35 percent peak.

0 Capacitance: Depends on bais and area.

• Sensitive area: 2 to 500 X 10 -5cm2.

AS



• Series resistance: Depends on area.

A, 10-4cm2	f,GRZ	 Rs, ohms

	

5	 90	 50

	

45	 0.9	 5

• Time constant: Depends on gain (gain bandwidth 80 GHz).

• Recommended circuit: Constant-current operation can be achieved

by using a reference diode to sense temperature and using its

output to xegulate a bias voltage, which properly varies with

temperature.

• operating Temperature: 208' to 398'K.

• Manufacturers: Texas Instruments, General Electric Co., Space

Technology Products, Honeywell.

Avalanche photodetection improve the prospects of the coal dust

concept somewhat. Ideally implemented the number density to obtain a

signal-to-noise ratio of 10 might be reduced considerably in the

absence of target noise. However, the reduced number density,

100/cm2 1 is still grossly above MSHA standards.

3.8 ELECTRONICS

A typical circuit for Type I silicon photodiodes is shown in

igure 24. Type V uses a variation on this circuit with thermally

controlled variable voltage bias. Figures 25 through 28 . give

xemplative curves for bias and frequency parameters. Data of this
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nature is readily available for most specific detectors on the

ccmmercial market.

3.9 OUTPUT DATA OPTIONS

NASA/MSFC prototyping for longwall automation thus far has

utilized analog voltage outputs for parameters such as height to

the last cut and for seam thickness. Analog signal output is also

possible for the shearer location system. However, the spatial

complexities suggest that multiple signals will have to be output.

This will necessitate other multiple data lines or signal multiplex-

ing. The state of the art in microprocessing suggests that a single

digital data link might be competitive with the analog link and

wou.*Ia allow for some degree of data processing at the sensor end of

the link.

Another option., discussed later in the section. on -econ„iend-
ations, is to link, the sensors and controllers over optical channels,

This eli^inates the Need for running cables several hundred Beet
alonZ t:ie aal'.:-.-!a.ys or conveyor structure.

f
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4. BUARn LOCATION SYST=

(TASKS 13 and 44)

Shearer location infers determination of the shearer in x, y

and z coordinates defined as follows:

x	 is the horizontal displacement when observing along the

z-axis (i.e. down the longwall tunnel).

y	 is the verticle displacement when observing along the

z-axis (i.e. down the longwall tunnel).

z	 is the distance down the longwall tunnel measured from

some origin near an end.

The collect of the x, y and z coordinates as the shearer moves along

the longwall defines the "trajectory" of the machinery. A key

observation about this shearer trajectory is that it is completely

defined by the tracks on which the machinery is propelled. A furthe^

refinement of nomenclature is the understanding that " instantaneous"I

location simply signifies that the determination of a set of x and y

is made with resolution in z equivalent to the smallest distance in

which some modification in track position is possible. In the case

of a longwall operation the movement of a single roof support

modifies track position. The appropriate z-axis resolution which

may be considered instantaneous will be equal to, or less than, the

z-axis dimension of a support element. Typically, this is five feet.

Additionally, the flexibility of the track governs the highest degree

of accuracy in x and y that is useful. For example, if the track

can only be given a curvature of five inches per roof support, then
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a resolution of one inch for the location se nsing system is of

questionable value. This is particularly true if a great deal of

added life cycle cost is incurred to obtain the high resolution.

In the following discussion, techniques for instantaneous

location of the shearer are discussed from the standpoint of

relevent geometries. (it is seen that positional and attitudinal

(roll, pitch and yaw) measurements are interactive.)

Section 4.1, which follows this introduction directly reviews

the original concept for observing shafts of light formed as laser

beams are scattered by coal dust particles. Section 4.2 examines

the concept wherein the lasers intersect a plane of water to produce

lighted points on that plane. Section 4.3 discusses techniques for

determining z-axis position. Section 4.4 presents the second laser

beam alternative to the coal dust and water plane techniques.

Section 5 summarizes the characteristics of the three systems and

I
loutlines a design for the recommended system.

1	 .1 LIGHT SHAFT TECHNIQUE GEOMETRIES

Location of the shearer in x and y using the light shaft tech-

;	 ique would be optimized if the sensor and the shafts were points

on the same plane. The z-axis extent of the shafts is useful for
k	 'scertaininq attividinal data on roll, pitch and yaw, but not for

E

sition. The ideal situation of all points lying in a plane will

used in discussion of systems using a simple sensor station and

 or more laser beams. it will be noted that little merit (but
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ch added cost and operation) accompanies the use of multiplePe	^P	 P

r	 sensors.

4.1.1	 Single Laser Case

If the system has a sensor located at point P and an in-plans.^	 po	 s	 p

spot of light at P1 . Determination of the single angle has no

slue in discovering the coordinates x and y. An infinite number

of sets of x and y will satisfy the condition of constant -0- defined

y

tan-e- - yl/xl.

Furthermore, without knowledge of the sensor (shearer) roll, the

angle -& only relates to a shearer -based coordinate system, not to

tunnel-based system.

4.1.2	 Two Laser Case

C
f	

The ideal situation with two lasers is shown in Figure 2.

1.	 ere two angles, ^ 1 and -e- 21 are determined with respect to the

sensor-based coordinate system. In the absence of roll, the sensor
t:

and tunnel coordinate systems are directly relatable. Otherwise,

Fhe shearer position still cannot be determined. The distance

between the lasers, d12 , is known because this parameter is set on

I:	 he fixed laser hardware at the end of the tunnel.

Analysis of the relationships between sides and angles of any

lane triangle, particularly in the proof of the law of sines for

__­ AS66
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umscribed triange of

= • b- _ - • diameter of a circumscribed circle.
Sin A Sin 8 Sin C

In the two laser case the value of "a" is constant, being d120

 for any given set $ 1 and 8 2 ,shearer position canrhsrefors,

ny be unambiguous if no roll is preent. If roll is present, the

sensor position can be an^ on a circle where one triangle side

is d12 . Emphasis should be placed on the fact that d 12 need not be

the diameter. Therefore, the general case is not a circle of

ty, but the intersected circles.

The situation is further complicated in the presense of pitch

[and yaw. Instead of circles of ambiguity, the surfaces of ambiguity

l'	 uggested by Figure 29 exist. These are formed as surfaces of

rotation of the ambiguity circles about the line between P 1 and P2.

1	 14.1.3	 Three Laser Case
The use of a third laser provides the added information to

educe the array of possible solutions of the two angular measure-

ments. The added laser provides two additional circles of ambiguity.

In the ideal planar case with no pitch and yaw, the position and the

roll of the sensor can be determined by noting the only acceptable

ewer is obtained by the simultaneous solution of the three circles

o find their common intersection, as shown in Fiqure 29 . The

resence of pitch and yaw complicates this, but can be handled by

equential observations along the z-axis as discussed later in
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.1.4	 Shafts versus Points

The actual implementation deals with shafts of light through

rots pl , P2 and P3 . The addition of a third dimension has an

fact if the sensor tilts toward the beams. The shafts no longer

pear parallel and spatial matching of the sensor IFOV (instanta-

ous field of view) to the light shaft becomes less effective.

4.2 TARGET PLANE TECHNIQUE GEOMETRIES

The original concept, described earlier, uses the offset

bservation of "lines" passing the photosensing system. The targets

hat produced these reference-lines are coal dust particles distri-

uted throughout a volume observable from the sensor position as

invited by the view fields of the individual photodector scans.

he problems with this approach included the following:

(a) The signal strength of the laser light scattered by the

coal dust particles is not detectable if MSHA standards

are met.

(b) The technique uses centroids of the laser line segments

which may require temporal coding to keep sorted.

(c) The geometry is not favorable to high accuracy.
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in this section the possibility of avoiding these undesirable

feat4aes will be examined using an alternate approach. This alter-

nate approach is based on the observation of the intersection of

the laser beams with a target plane. For simplicity in comprehend-

ing the discussions one might consider the beams striking a projec-

tion screen. This is only for understanding the involved geometries,

however. Ouch a solid screen could not be placed in the system for

reasons of mechanical damage, interference with mining activities

and other VrA*t"&l c0fisiderations. A target plane that is practice%

however, can be formed by V"sr spray.

As has been the case throughout this analysis, the intent is

to determine the several positional and attitudinal values for the

shearer with an accuracy, and with a timeliness, appropriate to

remote control. The discussion of the target plane technique in

this section will adhere to these criteria, but extend them to

their fuller meaning. Particular note will be made of the fact that

mechanical realities keep the rates for pitch and yaw of the shearer

track to values much less than roll. Because the desire is actually

control the orientation and trajectory of the shearer, the track

&meters determine the fundamental characteristics needed for

control. As long as these track parameters are determined at

rate coincident in z-axis movement resolution with the width of a

support section, the location is effectively "instantaneous".

4.2.1	 One point on a Plane

in the absence of attitudinal variations (roll, pitch and yaw),
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1
the shearer can be instantly located by observing a single laser

beam crossing the target plane xy. Figure 3 illustrates this for

a condition wherein the shearer is off the boresight coordinates.

This simple case is not sufficient in the presence of roll, pitch

and yaw.

The absence of roll allows the one-beam system to determine

pitch and yaw by serial observations as the shearer moves along its

rails. For example, an observation might be made at shearer positionl

z and again at shear position z + 5 feet. The point P will change

in x for a track that is yawed with respect to the tunnel. Changes

along y will indicate track pitch.

Determination of pitch and yaw assumes that variations in

these parameters is small over a distance of five feet due to the

mechanical constraints of the shearer and track system. This

suggests that determination of itch and yaw at five foot intervalsg	 P	 Y

s tantamount to instantaneous determination. On the other hand,

roll can be a rapidly changing parameter by comparison its companion

ngles (pitch and yaw). In the presence of this more rapidly chanq-

nq parameter, unambiguous determination of shearer displacement is

of possible in the single beam case.

.2.2	 Two Points on a Plans

LThe ambiguities associated with roll in the single beam case

f

	

	 ght be overcome by the use of a second beam. From the photosensing

tandpoint, this is equivalent to observation of two points in a
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1
plane from a position out of that plane. Contusion of variables hurt

two beam cases in the presence of roll, displacement, pitch and yaw.

It is not possible with a single observation to separate these

ariables. Different combinations can produce the same coordinates.

The occurance of yaw will result in an increase in the hori-

zontal separation of the points P 1 and P2 . This has an immediate

effect on the perceived value of the roll angle 41- R• Therefore,

measurements require two sequential positions along the z-axis to

etermine pitch and yaw. Once these are determined, their effects

an be backed out of the apparent displacement and roll calculations.

1	 4.2.3	 Three Points on a Plane
-"is n a plane c	 s	 t for determiningThree points o	 pl	 an be shown adequ e r 

risplacements and the three angular coordinates with observation at

single z-axis location. However, as will be discussed later, the

Edvantage of this approach over the two beam, two observation case

s questionable. Accuracy and implementation may be higher in this

ater technique. Additionally, most favorable implementations do

t use simultaneous detection of all points. Instead, sequential

j^	
bservations are made.

Consider the goemetrical arrangemnt wherein the Points in t

!4	 xy plane are observed from an out-of-plane point. P 0 (0,0,Z0). The

term Z0 indicates that the distance from the xy plane in this case

is constant. Measurement of the theta (^) angles allows direct

omputation of the positions P 1 , P2 and P3 by basic trigonometry.
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the desired boresight positions of these three points are known,

Fif no roil is encountered, the shearer can be quickly located

by coordinate subtractions. The presence of roll is readily dote

if

 the three sets of subtractions will be different. in

words, if the shearer location is only,translated in x and y,

the differences of the desired and measured positions can be

ouped in sets ( 0 xi , 4 yi ) • ( 0 x2,4y2) and (a x3 , a Y3) . if no

11 is present a xi = A x2 MAX 3  and A yi = aye&y3 . However,

an roll is encountered Ax 1  i a x2 0a, x3 and a Yl s Q Y2 10 ° Y3'

Location of the shearer in the presence of roll is accomplished)

restablishing the coordinate system. Rather than using sensor

ition PO as the origin of the xy plane, let the origin be the

point between the shearer wheels(as depicted in Figure 1 )as

y contact the guide rails. Cast into this coordinate frame

roll ac is simply calculated by any combination similar to

A y2- 4Y1
tano(

A x2- a X 

the roll is known its effect can be backed out by basic

thematics to obtain the offset in x and y.

As already mentioned, the shearer roll is obtainable from the

tion of any two points that the reference laser beams

sect the xy plane. Obvious mechanical considerations relegate

as the dominant attitudinal angle change possibility. Never

-ss, pitch and yaw can be cumulatively more significant even

h their instantaneous magnitudes are likely to be far less
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1
than roll. These two additional attitudinal angles can be deter-

mined by obtaining the distances between observed points in each

axial direction. if no pitch or yaw is present, than the separa-

tions in the x direction and the y direction will be the same as

the established boresight reference beam separations. However,

if yaw is encountered the sepa.xtion of points in x will increase.

Pitch will increase the separation of points in the y dimension.

This is most easily seen graphically by using the selected

coordinate system.

Changes in point separation along each axis are adequate to

ascertain the magnitude of pitch and yaw, but are not sufficient

to specify the direction of these changes in attitude. Specifica-

tion of direction in the worst case arrangement requires two addi-

tional beams to provide references. 	 in all

cases, corrections for roll are made first. By noting which

separations have the greater angular difference,, the direction of

the angle can be determined. The Cartesian coordinates difference

should be the same for each set of points.

Fortunately, the worst case arrangement is not used for several

reasons. Accordingly, the system does not require the three points

to fi: the axis of a Cartesian set. Therefore, something like an

isoceles or equilateral triangle might be used. in either case the

extra two beams can be dropped, allowing the return to a three beam

I system.
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4.3 $-AXIS D_ _ __WMTI0N

1
The position of the sensor along the z axis is best dIetermined

opto-mechanically.	 One straightforward mechanical approach

Mould count the togging of the shearer along the track. Another

approach Mould use acoustic ranging. This second approach, would

rely on optical signals to start a clock when a coded acoustic

waveform is launched from the laser location. The time of arrival

after the starting flash indicates the range, based on known

propagation velocity for sound. The acoustic frequency would have

to be high enough to allow directability, but low enough to avoid

high absorption by atmospheric gases. Furthermore, frequency

coding would be needed to improve signal-to-noise in the acoustical)

hostile region near the shearer. Operation from 50 KRz to 100 KRz

with an LPN (linear frequency modulated) waveform is recommended.

Compression would. require either a tape loop or an incoherent

processor.

	

'	 4.4TION 8YLOCA	 SCANUED LA38R 8EA!!8

	

E`	 The scanned laser beam system uses mechanical determination of

z-axis location and scanned laser beam angular measurements to

l `

	

j	 determine shearer location. Trajectory attitudinal angles for pitch

and yaw are ascertained by sequential position determinations.

Roll is determined by angle separation of signals returned from two

	

U	
separated locations on the shearer body when scanned with a fanned

	

n

	 beam.

	

G
	 *See Section S recommendations. 75
	 AS



0
D
D
u
ti
d
It
t

c

c

t
t
t
1
1
i

.
All electronic and optical devices, save for two retroreflectc

on the shearer, could be housed in a single 11 -I M1 agpiw" explosion

proof box placed at one end of the longwall tunnel. The dimensions

will be approximately 8" x 10" x 12 0 . Low voltage gallium arsenide

lasers would be used, but no laser safety glases or goggles would

be required by the miners. The table below summarizes realisable

performance goals.

Parameter	 Value

z-axis resolution 	 6 inches

y-axis resolution	 6 inches

x-axis resclution	 6 inches

Range	 600 feet

Electronics package	 8" x 10" x 12"

Input voltage	 12 volts

Retroreflector package 	 S" x 2" x 16"

The system block diagram of Figure 30 shows

interrelationships of the functional elements. This figure will

e as reference for an outline description.

The fan-shaped laser beams are scanned by mirrors whose angular

sitions are determined by monitoring pulses from a tine tooth gear

tached to the full speed shaft of the double shafted d.c. mirror

ive motor. The 'Low speed of the mirror motion is obtained from a

tor-integral speed reduction box at the opposite end of the full
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speed shaft. Accordingly, the full speed shaft will go through more

than a hundred rotations for every rotation of the slow speed shaft.

A fiber optic scanner monitors the passage of teeth on a gear as

shown in Figure 31. The resultant pulses are fed to counters which

sum the total number of pulses from the time the sweep mirrors are

in a start position to the time the system photodetectors receive

light reflected from the retrureflectors on the shearing machine.

Two counters are used. One for the horizontal sweep mirror and

one for the vertical sweep mirror. The start position of each of

these mirrors is indicated by fiber optic scanners which detect light

reflected from the mirrors using the same type scanner as for the

gear tooth monitoring. The mirror scan, in alternation, fan shaped

beams vertically and horizontally over mechanically fixed angles.

These beams are retroreflected from the shearer and stop the counter.

The counted pulses give a high resolution indication of the angle

moved from the reterence position to the shearer position. Knowledge

of the distance z gives an accurate indication of shearer position.

Figure 32 shows the synchronization of laser beam outputs and

sweep angles. The top graph shows an optional wide angle strobe

which can be used for opticaily obtaining a start signal to verify

the mirror fiber optic scanner start signals and to assure that the

shearer is actually in the optical line of sight if a stop signal is

found for the swept fan beams. This wide angle strobe is dif

from the swept beams by doubling the frequency of its

lation relative to the swept beams. This checking option has a

us which should be assessed after further study.
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Figure 31 Technique for obtaining angular mirror position,

providing laser cdc" ation reference and regulating motor

speed.
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t

In order to avoid the use of safety goggles, the laser sweep

action must be controlled in such a Way as to insure the stop of

sweep Will immediately shut down the laser output. This is accom-

plished by requiring an input from the motor's five tooth gear

rotation to drive the laser. Capacitive coupling between the gear

signal and the laser driver might be used for this purpose. Further-

more, to guard against sweeping mirror stoppage independent of motor

failure, consecutive counter start signals without associated stop

signals will shut down laser driver power.
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S. CONCLUSIONS & RECOMMENDATIONS

Three approaches have been analyzed for instantaneous

determination of the trajectory of a longwall shearer as it pro-

gresses along its track. The section will summarize the significam

of the results of those analyses. The summary will be comparative.

That is, key aspects of each approach will be compared on a point

by point basis.

The findings of the comparisons are essentially:

1. The initial concept based on coal dust scattering of

boresighted laser beams is unfavorable for laser power,

geometrical and safety reasons.

2. A variation on the initial concept would provide acceptable

performance. This second approach, using water streams

intersecting with boresighted laser beams, would require

operators to wear safety goggles and HEW rule variance.

3. A third concept uses scanned laser beams instead of

scanned sensors or targets. This approach is recommended.

It is the least expensive and most reliable. Furthermore,

more options exist for placement of the laser package, and

no safety goggles are required.

The later part of this section presents a first order design

for the reconoaendad system.

a
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5.1.1	 8-Locatie stemsr.rrrr.-.rwnr

The down-tunnel position (9-location) of the shearer any be

determined by counting cogs on the propelling mechanism, by monitor-

ing the propagation time of an acoustic pulse transmitted from a

reference location, and by triangulation using narrow beam optics.

These possibilities are collared in the matrix of Table 4• The

mechanical approach is clearly the most favorable on the sum basis

of accuracy, simplicity, cost and safety. The sound delay technique

would be acceptalbe. Triangulation is not favored, particulary with

regard to accuracy.

	

5.1.2	 XY-Location Systems

The shearer x- and y-axis locations (transverse axes looking

1 to longwall face) may be determined using faked beam or

scanned beam approaches. The fixed beam approaches are divided into

techniques • involving perpendicular observation of light scattered

from suspended coal dust particles and techniques using nearly on-

axis observation of light scattered from swept streams of water.

e two scanned beam approaches are more closely alike. The princil

fference reiAdes in whether photodetectors or retroreflectors are

ttached to the shearer body.

Table S compares the four systems cn a characteristic by

acteristic basis. The support of this evaluat4on can be found is

text and the calculations of the preceding sections. in summary,
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the table suggests that the study has shown unfavorable character-

istics for the coal particle concept with regard to signal levels

and implementation characteristics. The water stream approach is

clearly acceptable, but the scanned beam techniques are overall

more favorable yet. Either scanned beam technique is appropriate.

However, the system recommended later (Section 5,.2) uses retro-

reflectors. This eliminates the need to electrically communicate

signals from shearer to the tunnel end. In fadt, no electronics

need be installed on the shearer at all for this approach.

5.1.3	 Attitude Determining Systems

Table 6 compares the fouc xy-location systems with regard to

their abilities to determine the attitudinal angles of roll, pitch

and yaw. The use of a mechanical leveling readout device is also

for comparison.

The level sensor is favored for roll and pitch determination

r
r
r.
16'

t any given location. It should be noted, however, that since the

esired information is more appropriately trajectory, the instan-

ansous data might need low-pass digital filtering. The optical

ystems stack up for roll and yaw approximately as they did for

and y.

Analysis results are unfavorable for yaw-determination by

ither mechanical or coal dust scattering techniques. While the

echanical level concept is useful for roll and pitch, it is not

slid for yaw because there is no gravitational force in yaw. Such
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Table 6 Comparison of Attitude Determining Systems
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would have to be induced by machine movement in the xs-plans.

Q

Recording such movement with aeoeler= sews and processing the data

r"ropr

iately  would be an overtaxing endeavor.

The use of the coal dust scattering technique in yaw dGtermi-

j	 tion is uadesir Oabl* for the same unfavorable reasons cited on
li!!

	

	 earlJtr applications. Overall, the scanned laser approaches are

mout favorable.

S12	 NMZMDZD SYSTEM_

r	
If z-axis distance is known, then the x- and y-axis displace-

[^'

	

	 is can be determined from horizontal and vertical angular

asuremeuts between some boresight line and a reference point on
1

the shearer. The simplest approach would be to observe the shearer

body with a video camera. Allowing that some place on the shearer

could be made clearly apparent by increased brightness compared to

^-the rest of the machine, the video raster signal could be easily

rocessed to indicate the two needed angles. Two difficulties arise,

ow.:ver. One is practical realization of the bright fidueial.

he other concerns the desirability of using an image tube (or evan

harge transfer array) in the coal mine.

A light emitting diode (LED) might be placed on the machine body

appropriate narrow band filter in f ile sensor optics would then

*sure r,& very large contrast ratio between the LSD and any other

t of tte machine. Unfortunately, this highly preferred approach

s not usable in the near term due to the realities of the time

AS88



required for mine certification. The current schedule for the a=

Mineral Zxtraction Office necessitates being on line for demoustra-

tion in approximately six months. Given enough time to develop

and obtain certification on the right package, however, Mould pay

great dividends in location design simpliaity, and in transmission

of data.

Current designs for the various NASA-sponsored longwall

instruments use a data transmission cable between the shearer

machine and the control station. The use of a machine mounted light

emitting diode*, with modulation electronics, would allow trans-

mission of data without any objectionable cables! The sane sensor

used to obtain the horizontal and vertical angles could also monitor

the data modulations. Therefore, even though time may not allow

certification of a machine wjunted, Polid state light emitting diode

ifor an early demonstration, any system that is used for a demonstra-

tion should allow the eventual evolution of such operation.

Now, the same certification reality exists for the sensor as

exists for the source. At least the system is not complicated by

chine mounting. Nevertheless, certification of any new electronicm

in the short time frame would be difficult. One moist seek some

`	 usage of already acceptalbe gear in a demonstratio p that would make

it unchallengably clear that a design concept would work. it is

'	 improbable that any electronic video equipment nould ever be
s

Dote: Since an LED is not a laser, Bureau of Radiological Health

certification is avoided.
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assembled, let alone certified in the time frams. Sven if such

were possible, the acceptability and maintainability of video

equipment by the coal mines is doubtful for the very near future.

Furthermore, a video-based system has a very limited, fixed upper

bound of resolution elements. Zoom optic.q with tracking,, would be

required to overcome this limit for circumstances of the shearer

moving from close to far. Finally,, without intensifier stages,

video cameras have later less sensitivity than indi.v_lual photo-

detectors. For these and additional reasons a mechanically swept

scanning process is recommended. A viable artanning process would

incorporate a fanned beam.

The difficulties for near term demonstration of this concept

anise not only from hardware component availability, but also 'from

the same certification lead time that plagues the previous discuse

This leaves one to ask "Can I make a totally convincing demonstra-

tion of the preferred concept using already accepted devices in

such a wa;, that only the slightest modification would be needed to

configure it for a certified electronic version?" Adjunct Systems

has thought and puzzled over this problem„ It not; feels a positive

"Yea" answer is possible.

The solution centers around a second question. "Even if we

1had to electronic demonstrator, what use would the output be?"

r ivD	 ,>Art
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