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SUMMARY

The linear aeroelastic equations for one curved blade of a vertical
axis wind turbine are presented in state vector form. An attractive method,
based on a simple integrating matrix scheme together with the transfer ma-
.trix idea, is proposed as a convenient way of solving the associated eigen-
value problem for general support conditions.

INTRODUCTION

The troposkien shape has been frequently invoked in structural mod-
eling of vertical axis wind turbine (VAWT) blades [1]. Although it is free
of bending stress in the equilibrium position determined by a constant an-
gular velocity, tests have indicated that under certain conditions serious
vibrations about the original shape may occur. They involve bath chordwise
and flatwise bending as well as torsion of the blade.

: Few theoretical works have been published on the determination of
natural frequencies and vibration mode shapes of such special but neverthe-

‘ less important kinds of blade geometry [2-4]. The tendency among investiga-
tors has been to deal with a more general geometry, which brings perhaps un-—
necessary complexity into the problem and requires the use of strictly nu-
merical procedures for obtaining reliable results. Futhermore, the shape of
actual VAWT blades has been very close to the troposkien; good approxima-

\ tions like those suggested by Reis & Blackwell [5] are commonly used in prac-
tice. One can recall that the complicated flow field generated by VAWT al-
ready adds an important source of inaccuracy to the aerodynamic load esti-
mation and consequently to problems such as flutter speed determination.

. Therefore it is important for preliminary design purposes, to develop semi-
analytical methods based on the troposkien idealization, which will enable
quick analyses and general understanding of the conditions that may affect

blade stability. The intention of this paper is to present an approach with

the aforementioned characteristics.
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"OPTIMUM" LINEARIZED EQUATIONS OF MOTION

The general second-degree nonlinear aeroelastic equations of motion
for a slender, nonuniform and extensible blade were presented by Kaza & Kv-
artenik [6]. For physical understanding of the aeroelastic phenomena, how-
ever, such degree of complexity does not seem necessary. It would be more
interesting to seek a set of linear equations that allows the study of the
relative importance of various parameters on the solution. These parameters
include CG offset, shear deformations, rotary inertia and different kinds
of blade support, along with the possibility of extending the model to a
more realistic one containing the influence of tower and guy-cable stiff-
ness as well as the other blades.

When gravity effects are neglected, the troposkien can be seen as
the plane curve described by a light rope rotating at constant angular veloc—
ity. Its shape is known in closed analytic form [1]. Working in the same
fashion as Ashley [4], small perturbations from this equilibrium shape are
assumed. After adding torsion to chordwise and flatwise bending and by as-
suming simple harmonic motion in time, the final order of ‘the governing sys-
tem of differential equations is found to be 12. However, the choice of the
dependent variables remains open. If, as in reference 4, the three cartesian
components of the linear displacement related to the bending, the rotation
‘related to the torsion and the incremental tension are selected, a set of
coupled linear partial differential equations subject to one geometric con-
straint equation is obtained. Asymptotic solutions may be useful, but only
simplified versions of the problem could be carried out without a great deal
of difficulty. An integrating matrix approach, like the one suggested by
Hunter [7], could be employed in order to solve the eigenvalue problem for

the free vibration analysis. The choice of the spatial independent variable .

as the distance along the blade introduces technical difficulties however,
‘and the method fails. A more '"natural" spatial independent variable is dis-
covered to be the angle formed by the tangent to the undeformed shape and
the axis of rotation. Even then, however, an unnecessary degree of algebra-
ic difficulty is introduced. Without discarding the possibility of the so-
lutions by the aforementioned means, the Reissner's variational principle
of the elasticity suggests that the best dependent variables are likely to
‘be the 12x1 state vector of "natural" quantities connected with both equi-
librium and deformation of the blade: bending moments, torque, shears, bend-
ing slopes and displacements. The integrating matrix [7] together with the
transfer matrix method [8], is expected to constitute an efficient and pow-
erful tool for dealing with the vibration of such beams subjected to gener-
al boundary conditions. i



AEROELASTIC ANALYSIS OF THE BLADE

Assuming small perturbations from the equilibrium shape is equiva-
lent to constructing a linear field of deformations on a prestressed, un-
twisted, plane troposkien-curved rod. The governing equations for a three-—
dimensionally curved rod under such a general initial stress configuration
were obtained by different authors. Taking Nair & Hegemier's derivation [9],
based on the principle of virtual work, neglecting cross section warping
and introducing the conditions defined by the troposkien hypothesis, one
obtains a set of 12 linear first-order ordinary differential equations with
nonconstant coefficients. These govern the 12 perturbation quantities cho-
sen to be the dependent variables:
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where Figure-1l together with the list below, define the nomenclature used:
( )'= differentiation with respect to s; s= spatial independent variable,
taken as distance along the locus of the section shear centers (elastic ax-
is); Ql_ = internal shear components; T= tension along the blade; Ml_ _3=
internal moment components; u,v,w= elastic axis displacements; Xy_p,¥= "xo-

tations about the elastic axis (o= angle of attack); e local initial cur-
vature, given by the troposkien; To= local initial tension, given by the
troposkien; e= CG offset, constant along the blade; EIL EI = bending ri-

?
:gidities; EA= longitudinal rigidity; GJ= torsional rigisity?ncz= effective

shear rigidity; f _2_3,ml_2_3=‘externa1 loads (forces and moments) of both
inertial and aeroéynamic origin.

It became evident during the development that some extensibility
should be allowed in this formulation in order to get the most rational set
of equations. If inextensibility is assumed by simply letting EA become in-

finitely large, important information is lost. Shear deformation is also in-

cluded for completeness.
The analysis proceeds by grouping the dependent variables in a 12x1
state vector y, which contains generalized internal forces y_ and general-
ized displacements Yp* The external loads are also collected in a 12x1 vec-
tor p:

y {yrlyn}T fo M 01, T Ml uyy v x, w “}T
= 0 L
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where £ = £ + £ » respectively its aerodynamic and inertial components.



Hamilton's principle is involked to evaluate f as function of the
generalized displacements. By taking both the translational and.ro§9tiona1
parts of the kinetic energy, coriolis and rotary inertia effects are auto-
matically included. After the rigid blade inertial load 1s subtracted from
the equations, the following approximations appear to be significant to
bring all inertial terms into a convenient form:

f f £2dgdn (K _[ ﬁnzdidn % f fp(az+ n2)dgdn

Here coordinates £ and n are defined in Figure-1l, and p is the blade mass .
per unit of volume.

As a first approximation, any reasonable aerodynamic theory is ade-
quate to complete the aeroelastic problem formulation. The quasisteady strip
theory can be employed without a great deal of difficulty. The author cites
Kaza & Kvaternik's derivation as appropriate [6].

Simple harmonic motion is assumed in order to eliminate the timede-
pendence: this approach is known to be suitable for analyzing both free vi-
bration and flutter. It follows that the inertial (J) and aerodynamic (A)
‘loads can be written as:

T (R E )1

where J__ and are 6x6 submatrices dependent on the harmonic frequency.

In Appendix A the nondimensional forms of the equations are presented for
the free vibration problem in particular.

SOLUTION OF THE AEROELASTIC PROBLEM

The main objective of this paper is to propose a convenient method
for solving the foregoing aeroelastic problem. Numerical results are expect-—
ed to be published in a later work, Therefore, the author will now de-
scribe how to obtain the eigenvalue problem associated with either free vi-
bration or flutter analysis.

Lehman [10] presents a modified version of an integrating matrix
scheme apparently first used by Hunter [7] which can be adapted for obtain-
ing transfer matrices relating state vectors at different stations of aone-

-dimensional elastic structure. Appendix B gives a detailed derivation of the

global transfer matrix Un relating state vectors at the two ends of the
blade:
Y= Uo b

.The enforcement of any physically possible set of boundary condi-
tions. at L and y will lead to the determination of the corresponding eigen-
frequencies (as well as airspeed in the case of flutter). Such eigenfrequen-
cies are related to the complex roots of the so called frequency determinant
associated with the particular set of selected boundary conditions. The ac-—
curacy of the method relies on the number of discretization points taken dur-—
ing the integration process, as well as on the basic polynomial from which



the intégrating matrix is constructed (cf.ref.10). The transfer matrix capa-
bility for dealing with inhomogeneous boundary conditions, through the in-
troduction of a new transfer matrix of very simple form expressing the lo-’
‘cal inhomogeneity, is what really makes this approach attractive. The con-
struction of more elaborate models of VAWT, including for example guy wires
and tower stiffness, seems possible without difficulty. Spring type bound-
ary conditions are easily handled by a single matrix multiplication of the
Fogm n+1 n
U = KU

n+1 e ol
Here U is the new global transfer matrix and K is the spring transfer ma-
trix.

CONCLUDING REMARKS

A semi-analytical method based on an integrating matrix scheme was
proposed for obtaining the transfer matrix of a troposkien-curved blade.
Such an approach is expected to be very efficient to study both free vibra-
‘tions and flptte; of VAWT.
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APPENDIX A

NONDIMENSIONAL EQUATIONS FOR FREE VIBRATION IN STATE VECTOR FORM
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APPENDIX A

where the new symbols are: a,= EI /chA a, = [1- (x /x )2] 1. aB—EI /EIEE

- a,= EInn/GJ; GA= shear rigidity; ( )— dimensionless quantities: (force)/V,
(moment)/Ve, (displacement)/c; “( )= diagonal matrix; I= identity matrix;

= 1y
0= null matrix; ( ) = transpose matrix; (.)=zero element; x = dimension-
less cross section static unbalance (in units of chord); i dimensionless

cross section radius of gyration (in units of chord); £= blade length; c=
blade chord; m= blade total mass; V= vertical component of the initial ten-
sion (constant for a gravity-free troposkien); Q= angular velocity of the
VAWT; w= harmonic frequency; ¢= angle deflning the troposkien shape (Fig-
ure—Z), y= shear coefficient; s= s/f; K, =Lk ; w= w/Q; 3 =31n X; ¢ = cos x
£=v~1; sym= symmetric matrix. ke



APPENDIX-B
TRANSFER MATRIX DERIVATION WITH THE USE OF THE INTEGRATING MATRIX

In state vector form, the nondimensional aeroelastic equations can

be written as:
'= [S+J+A)y=2Zy (-1)

where S, J and A are 12x12 previously defined matrices and y is the 12x1
dimensionless state vector of the dependent variables. When the integral
operator L (cf.ref.1l) is applied, one gets:

y=LZy+k . ' (B-2)

where k is a constant vector, dependent upon the boundary conditions.Pre—

multiplying equation B-2 by a boundary condition matrix D_ (cf.ref.7),the

~ state vector at one end is isolated since, by their intrinsic structure,
DOL = 0. Therefore §° = k and B-2 can be rewritten as:

B = IGELZ ) § _ ©(B-3)

One notices that the term in parentheses is, by definition the inverse of
the transfer matrix U. Hence,

ST s (T LEICE Y (B-4)

where I stands for the unit matrix. In particular, premultiplying U by an-
other boundary condition matrix at the opposite end Dn’ yields:

yoin By U Y, (B-5)

that is, the relatlon between state vectors at the two ends of the blade.
The transfer matrix U" can be seen as a product of intermediate transfer
matrices relating congltlons at adjacent points along the integration
path. The manipulation of most of these matrices is facilitated by their
block structure and sparseness.
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Figure-1l: Blade Cross Section

Figure-2: Blade Element Definition
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