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1. Introduction

This report is the annual report on work done under NASA Grant NSG-1603,
NASA Langley Research Center, Hampton, Virginia. The grant task is to in-
vestigate numerical algorithms for analysis, and design of large space
structures. The report covers activities during the period March 16, 1980
to March 1%, 1981. The report for the previous period, March 16, 1979 to
March 15, 1980 was on matrix polynomials and their relationship to matrices
of the form sI-A. The report during the more recent period uses that material
to derive new results.

Section 2 of this report describes the sign algorithm and the application

to decoupling of differential equations such as the finite element equation

(1.1) Mx (t)+Cx(t)+Kx(t) = u(t)

The algorithm is useful for the decoupling procedure hut does not appear to
be efficient for large scale structures. Work is continuing on finding new
approaches to the decoupling (or model reduction) problem.

The werk given in Section 2 is extended in Section 3 with new results.
The generalized sign algorithm is given and its application to several prob-

lems discussed.

Sections 4 and 5 discusses the Laplace transforms of matrix functions
and the diagonalization procedure for the equation given in (1.1). It is

shown that the matrix

(1.2) =



can be transformed to the form

0 1
(1.3)

BD _w2 ~2Cw

by a constant matrix Q. The matrix polynomial requires a matrix polynomial

to diagonalize with
2 2 2, = .=
(1.4) (Is"+2zws+w”) = Q(8) [1s"+Cs+K]P(8)

Extensions of the results in Section 5 will be studied during»the period of
the present grant.

Identification of the mass, damping and stiffness matrices, M, C and K,
13 considered in Sections 6 and 7. It is shown that the quadrature inte-
gration algorithm can be used to determii.e the elements of the matrices.
It would appear that the algorithm is suitabli. for large space structures
although the algorithm requires further examination. Actual data will be
used with the algorithm to determine the accuracy of the procedure.

Some results have heen obtained on the computation of the damping matrix
C for prescribed eigenvalue locations. The work on this matter is not re-
ported due to the timing of the report as well as the need for additional
research. This problem will also be explored during the remaining period
of the present grant.

An interim report was filed earlier on the Ibrahamin identification
algorithm. Readers interested in that work should secure a copy from NASA

Langley Research Center.
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2. The Sign Matrix and Decoupling

There has been considerable interest in the analysis of dynaunic systems
by decoupling or order reduction, [1]-[4]. The decoupling of a system into
subsystems with different time scales has been described earlier by Yoo,

[5] and by Popeeva and Lupas, [6] where a block diagonalization scheme was
used to separate the modes. The mathematical theory of the block diagomnal-
ization procedure was given by Russgell, [7] in a earlier paper. The concept
of separating 'slow" and "fast" modes was the basic motivation for the work
by Lee, [3], and Yackel and Kokotovié [8] although their approach differs
from the procedure given in [1]-[6] and the algorithm to be presented.

This section will describe a general procedure for decoupling of a
system into subsystems. The number of modes in each subsystem is srbitrary
with the eigenvalues arranged according to their magnitudes. The resulting
subsystems will not be stiff even though the system may be stiff. The
system dynamics 1s recovered from the subsystem dynamics by using the de-
coupling matrices. The method is closely related to the work of Kron, [9],
and system decomposition, [10]. The concept as given here was first given
by Yoo, [5].

The algorithm to be presented is based on the solution cof algebraic
Riccati equations and the sign function, [4], conceived by Roberts. The
gign function and its application to system analysis has been investigated
by Beavers and Denman [11]-[15], as well as by others, [16]-[21]. It can
be shown that the spectral domain p(A) of a system matrix can be decomposed
into spectral subdomains, pi(A), by the sign matrix of A with the union of
pi(A) covering the domain p(A). The eigenvalues of A remain invariant under
the decomposition operation and the eigenprojectors [22], for the subdomains

3
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can also be generated as a byproduct of the decomposition.

The sign function for a system matrix will be described in this papars
as well as the decomposition procedure. The concept of eigenprojectors wili
be introduced as well as the numerical use of eigenprojectors.

The system equation to be considered will be of the form

2 .
(2.1) u 4 "2“) +C d;‘m + K x(t) = £(t)
dt t

where M, C and K are the mass, damping and stiffness matrices respective-
ly. The vectors x(t) and f(t) are nxl with M, C , and K nXn matrices.
The system matrix will be written as

0 1
(2.2) A=

- -

-K =C

1 1

where A is 2nx2n with K = -M K, and C = M "C . The system matrix A will
have 2n eigenvalues and it will be assumwed that all eigenvalues in the
spectrum p(A) occur in conjugate pairs with an even numb.r of zero values.

The form of system equation assumed occurs in structural dynamics.

The procedure will be valid for A in general “orm, the above form was
chosen since the procedure is applied to structural dynamics in the current
research effort.

Section 2.1 will describe the sign function which has an important
role in the decoupling algorithm. The eigenprojectors, or projectors, will
be introduced in Section 2.2 along with the application of eigenprojectors
to numerical analysis. Decomposition of the spectrum of A into subdomains

will be discussed in Section 2.3. The application of the decoupling al-

gorithm to system equations is given in Section 2.4.
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2.1 The Matrix Sign Function and Projectors

Let A be a 2nx2n matrix with 2n complex eigenvalues where Ai is the
ith eigenvalue., Assume that J denotes the Jordan form of the eigenvalue

matrix with Jordan blocks J, for 1 = 1,2,...,8<2n. An eigenvalue may be

i
repeated with multiplicity vy and the A matrix may have & null space less
than 2n requiring 321 generalized eigenvectors where li denotes the number
of generalized eigenvectors for Ai and 8 irdicates the number of Jordan
blocks of A,

The definition of a functior of a matrix is given by Gantmacher, [21].

If A and J are similar matrices such that ¢ transforms J into A,
-1
(2.1.1) A= 0JO .

Then the matrix functions £(A) and £(J) are sfmilar and ¢ transforms £(J)

into £(A);
(2.1.2) f£(A) = d>f(J)<x>'1 .

Defining the sign of a complex function as the sign of the real part by the

complex function, then sign (A) is given by
(2.1.3) S = sign(a) = dsign(s)0!

whera ¢ is the matrix of eigenvectors of A. Since J is the Jordan form,
the eigenvalues of A will be located on the diagonal of J with plus ones on
the off-diagonal of J provided that such is required for multiple eigen-

5
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values. The sign of J will be defined as
(2.1.4) sign (J) = sign (A)

where A = diag[J| thus S is defined as
(2.1.5) S = sign(A) = ¢ sign[Re(A)]¢™L

Roberts, [4], has shown that S can be computed by the iterative algorithm

(2.1.6) gitl -~% istesth 1 sO-a

which is the Newton algoritir for S2 = I, This algorithm will have quadratic

convergence and the iterative process can be terminated when trace (82)-n<e.
It should be noted that the sign of Re(Ai) does not exist when Ai = 0 or

Ai - jwi. A method of computing the sign under such an eigenvalue assignment

will be described later.

The eigenprojectors of a matrix are defined as the matrices

(2.1.7) p. =0 o1

10 10 i=1,2,...,842n

for the S Jordan blocks and secondary eigenprojectors Pij with

= 9E, o1 3 =1,2,...,0

(2.1.8) Pi j

3 i

for the repeated eigenvalues Ai where 21 is the number of generalized eigen-

vectors for that eigenvalue. The matrix EiO is given by
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(2.1.9) Ei = diag[0 0 ... C 1 ...10... 0]

0

where the ones occupy the same positions as Ai does in the ith Jordan block.

The matrices E are defined as the set of matrices with ones on the off-

1)
diagonals of the matrix. To illustrate. let Ji be defined as
Ai 1 0
(2.1.10) Ji = 0 Ai 1
0 0 Ai
then
1 0 0 0 1 0 0 1]
(2.1.11) Eio = |10 1 O Eil = 0 0 1 E12 - 0 0
0 0 1 0 0 O 0 0 0

The EiO matrix can be expressed in the compact notation
(2.1.12) EiO = diag[0, 0, 0 ... O, EiO’ 0, ... 0]

with a similar expression for Eij but where Eij will have li representations,

EiO’Eil""’Ei,ki'
The primary eigenprojectors, Pio will have rank ry where r, is the

Ned

multiplicity of the Ai eigenvalue. The secondary eigenprojectors, Pij

j = 1,2,...,21, will have rank ri-j. The eigenprojectors are idempotent

and have properties;

Ry P s -
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2P1. 121 Pio=1

2P2. PiOPiO - P10 (idempocent)

223, Pygkig ™ 0 i9¢]

R R T T A
2P5. 0 3 =1,2,...,8,-1 .,

PisPig4 ™ 1

It 1s not difficult to show that any square matrix A ras a spectral decom-

position
) ] ] ]
(2.1.13) A= A =5 ) P= §J AP 4+ } P
=1 1 {=1 10 1=1 110 =1 il
where PiO is the set of primary eigenprojectors and pil is the first second-

ary eigenprojector of a Jordan block 1f it exist.

The eigenprojectors of A, which is assumed to be time-invariant, can
be computed by repeated computations of the sign matrix. Assume that m
eigenvalues of A have eigeavalues with Re(k1)>0 and 2n-m eigenvalues have
Re(Ai)<0. This spectral splitting of the spectral domain can be achieved
in several ways, origin shifts, bilinear transformations, etc. The sign of

A will then have the form

(2.1.14) S =9 )
~Ln-mx2n-m

The lower identity matrix will vanish if 0.5(I+S) is computed whereas the

upper identity block will not be present in 0.5(I-S). The projector for

T A oot et g i e



the positive a:id negative spectra are then given by

(2.1.15) pt - —21- (1+5)

(2.1.16) P~ -% (1-5) .

The products AP+ and AP gives A+ and A" respectively where the nonzero
eigenvalues of A+ have Re(Ai)>0 and those of A  have Re(Ai)<0. The spectra
of A+ and A~ can now be altered by an origin shfft and the signs computed.
Repeated computation of the sign matrix, origin shift, and spectral decom-

position will give the eigenprojectors of all Jordan blocks if desired.

D SRR AT T TR e <0
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2.2 Decomposition of the Spectrum of A

The spectrum of a general nxn matrix A can be decomposed into m matrices
with subspectra pi(A) such that p(A) = pl(A)Upz(A)... upm(A) vhere m<s.
Each matrix Ai will have an associated set of r finite eigenvalues depending

on the spectral decomposition as well as n-r zero eigenvalues. The decom-

position of A 18 given by

) ] ]
(2.2.1) A= J AP+ ) P = T &
a1 11040 1ot

where A1 can be any partial sum over a selected set of eigenvalues. The
decomposition of A may be by eigenvalue magnitudes, reals, complex, imaginary
or any other desired eigenvalue property.

Suppose that all eigenvalues with magnitudes p1_1<‘)\5|<p1 are to be

assigned to a spectral domain p(A,), then A can be decomposed into m matrices

3
A1 such that
(2.2.2) A = E Ay 1=1,2,...,m
=k
with
m o
(2.2.3) A= ] A=A ] P
1=1 1=1

Each Ai will be 2nxX2n with 2n-(p-k) zero eigenvalues and p-k nonzero eigen-
values in the spectral domain pi(A).
The spectral decomposition described above is a decomposition of A into

m 2nx2n matrices. It is also possible to find m square matrices of lower

10
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dimension that will preserve the spectral domain of A. Let the eigenvector

matrix ¢ be partitioned as

¢11 012

(2.2.4) ¢ =

@21 Q22

where 011 and 022 are square matrices of dimension m*m and 2n-w*2n-m re-

spectively. Define the transformation matrix T as

-1
I )
11 12722

1 -1 - =
(2.2.5) T=3 ¢{diag[¢11 ¢22] 2

-1
%1% -I

The similarity transformations T_lAT and 'I‘A'I‘-1 will produce block diagonal-

ized matriceu. The first transformation T LAT gives

1 -1 ,-1

(2.2.6) AB = T "AT = diag[¢11-¢22]J diag[¢11-¢22]

= diaglag, Ap))

-1 s
The ABi submatrices are equal to ¢1i JB1 ¢ii where JBi contains the Jo.dan

blocks associated with the eigenvalues belonging to the set of eigenvectors

in ¢, . If J  has eigenvalues Ikil>pl and Jg, has all eigenvalues with

" " " 1"
IA1|<pl then Ag has only "fast" modes with the "slow" modes in ABZ'

1
The transformation matrix T can be constructed from the eigenprojectors
of A. Let P+ denote the sum of the eigenprojectors PiO for eigenvalues

|Ail>p1 and P the sum of the remaining eigenprojectors. The block eigen-

projector P+ is given by

R oA R

R g
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+ -1 -1
(2.2.7) P’ = ] Pigo= 0Ep 07 = 0L 0

{=1 0 1

k
where I, = diag[I,0) = diag[E_,,0] = diag[ ) E, ,0). The indexing over the
1 Bl =1 10
summation assumes that the eigenvalues of A have been arranged by descending
magnitudes. Since the sum of the eigenprojectors must be equal to the iden-

tity matrix, then

_ 2n -1
(2.2.8) P = ) P, =010

+
= (I-P )
t=k+1 10 2

It is not difficult to show that the sign of A can be computed from the
eigenprojector, or the eigenprojectors can be determined from the sign ma-
trices. Assume that k eigenvalues have Re(Ai)>0 and 2m-k eigenvalues have
Re(Ai)<0. If P+ is the sum of the eigenprojectors for Re(Ai)>0 and P~ the

sum of the eigenprojectors for Re(li)<0 then

k 2n
+ -
(2.2.9) S = gign(A) =P -P = ) P - ) P
1=0 10 jap4y 10

where PiO is the individual eigenprojector for a Jordan block. Noting that

P = I-P+. then

(2.2.10) S = sign(a) = 2PT-1
or
(2.2.11) P* = 3 (s+D)

with P~ determined from P+. The eigenprojectors PiO can be computed by

o T e TR A . s o e v P T SR




13

utilizing origin shifts or bilinear transformations. These procedures will
be discussed later.

The transformation matrix T was defined in (2.2.5) and this matrix can
be computed from the sign matrix o~ the eigenprojectors. According to

(2.2.9), the sign of A is given by P'-P” thus
+ - -1
(2.2.12) S =P -P = ¢ sign[Re(A)]d

provided that Re(Ai) ¥ 0 for all i. Let sign [Re(A)] = E = diag[Il,-Izl
then

"’1 —l \-1 -1
(2.2.13) T = [S+E] ~ = [QPE® “+4E) = $[PE+ED]

1
(2.2.5) and (2.2.5) can be reversed.

since [¢E+E®]-1 = diag($ i-¢;;]. It should be pointed out that the signs of

The analysis thus far has considered only block diagonalization for
two subblocks. It 1s not difficult to show that the procedure is valid for
8 blocks, the number of Jordan blocks in A. The limiting case is equivalent
to scalar diagonalization of A in which case AB - diag[\l,Az,...,Azn] when
the eigenvalues are distinct.

Knowledge of any one of the matrices, T, S, P+ or P, 1s sufficient tc
completely determine the other three matrices for two block diagonalization.
If m blocks are to be found, then additional informction must be available
from the eigenprojectors or the sign matrix. Details on the spectral de-

composition will be found in [23].

e -
S T A, VUK AROE S N




2.3 Matrix Sign Functions and Block Diagonalization

It was shown in the previous section that spectral decomposition and
block diagonalization is possible if the eigenprojectors are known. It will
be shown in this section how the matrix sign function is utilized for carry-
ing out the block diagonalization.

Assume that A has real and complex eigenvalues and A is to be block
diagonalized. It will be assumed that the spectral domains are such that
|A1|<a will be 1n p(Ag,) end |A1|>a will belong to p(Ag,). The only re-
striction on the procedure is that a be selected such that there is no

eigenvalue with magnitude equal to a. The bdilinear transformation will map
(2.3.1) Ay = (A-aD) (et

all eigenvalues |A1|<a into the left half plane of the complex space and all
|\i|>a into the right half plane. The spectral domain of pl(An) is the
entire left half plane and that of DZ(AD) is the right half plane with

p(AD) = l(AD)upz(AD). The sign of AD is then conputed by (2.6) with
(2.3.2) S = sign (A)) = ®{diagll 1,07t

The matrices 21 and fz will not be ordered in the general case with 1l
intermixed along the diagonal of the two matrices. The reason for this is
that the eigenvalues of A are not ordered and the iterative algorithm for
the sign of AD is independent of the order.

Assuming that I, has only plus ones which indicates an eigenvalue |A1|>a

1

and I, has only minus omes for |A1|<a then S can be written ss

2
14
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(2.3.3) S = sign (a) = 0EO™

where E is an elementary matrix. It follows that

(2.3.4) S+E = OEO L+E = [OE+E®)O™Y
-1

20,, O 1 %

0 =20, [ | % %y,
and the inverse of S+E is

-1
4 ¢, O ) I -R
(2.3.5) T=[s+E] L1 =319 1
2 o -¢1 2 R,, -I
22 21

-1 -1
where R12 - ¢12¢22 and R12 = ¢21¢11 .

The similarity transformation T-lAI will produce a block diagonalized

matrix similar to A, [24],with

Agy O AjgtAraRo At R1mR19A97R 989 Ry,

(2.3.6) =
AB A ,+A, . R

0 4g Ay *AyaRo1 R 14117 Ra1A9R 22%81%

where Rl2 and R21 are the solutions to the two algebraic Riccati equationms,

[13],
(2.3.7) AyogtA Ry o7 R g5 R oA Ry = O
(2.3.8) AyytAyaRy 1 RygA117Ro180Ry; = O

iz s e e e
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The solutions to these equations are given by the off diagonal blocks of T
as seen in (2.3.5). It is a simple matter to show that the mode decoupling
algorithm of Anderson, [1] is a special case of the above analysis requiring
a two step process, computation of Rl2 (or RZI) and the solution to an
associated Lypanov equation.

The diagonalization procedure given above was for diagonalization of

A into two blocks with the eigenvalues |Ai[>a in A, and all others in ABZ‘

Bl
Suppose now that the spectral domain is to be factored into three domains

with |A1|<a1 in p, (4), a1<|Ai|<a2 in p,(A) and |A1|>a2 in py(A). The pro-
cedure is the same as described for the two block decomposition except that

ABl is now used in the bilinear transformation with

(2.3.9) Ay, = (Ag-a,I) (Anmzx)'l .

The sign of ADl is computed and E, for the sign (ADl) is then used to find

1

T1 with

(2.3.10) Tl - (SI+E1)

The transformation matrix T1 is augmented with an identity matrix I having

the dimensions of ABZ with

(2.3.11) T, =

[}

If T. denotes the first transformation matrix and T, the second, then the

0 1

"N R A B S S e e R N e o
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product must be

) 12 M3
(2.3.12) TTT =g [Ry -1 R,
Ryp "Ry 1
from which it follows that
Ap1*A1aRy YA gy 0 0
(2.3.13) A = 0 Ayg*hy Ry y+Ay oo 0
0 0 A..+A,.R..+h,.R

33731713 732723

The Rij matrices satisfy coupled algebraic Riccati equations, [16].

An example is given tc illustrate the above procedure. Let A be de-

fined as [25]

s 1 -2 0 -2 5]
1 6 -3 2 0
-2 -3 8 -5 -6
0 2 -5 5 1 =2
-2 0 -6 1 6 -3
|5 6 0 -2 -3 8

with eigenvalues AI'AZ = -1,598734, A3,A4 = 4,455989 and AS’AG = 16.142744.

Values of Py = 2 and Py = 8 were selected to split the spectrum. The block

matrices are

16.1427 0

Ap =

0 16.1427
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[4.45599 0

%2 L 0 4.45599
[1.59873 0

*83 o -1.59873

The transformation matrix for the diagonalization 1s

-y

[ 0.25 0. 0.595655 0.407491 0.530013 0.120331
0. 0.25 -0.4012 -0.431213 -0.407491 -0.37346
T = 1.51992 -1.2999 -0.25 0. -0.397965 -0.167369
-0.116553 0.0515402 0 -0.25 0.231053 0.0710525
-0.678077 0.641664 -0.0845469 0.214427 0.25 0.
| -0.0496661 0.379825 -0.0885163 0.0860365 0. 0.25 i

which is ¢ since A is diagonalized. The computations were made in double
precision.

An important aspect of the integration procedure is controllability of
a mode. It can be shown that the system modes are controllable if and only
i1f the vectors in B spans the space of A. Let B be 2nxm with vectors bi
such that

2.3.14 =
( ) B=[b b, ... b]
The mode exp(Ait) is controllable if the sum of the column vectors in B is

linear dependent on the eigenvector for Ai. To show this, consider the

Laplace transform of z(t) = Az(t)+Bf(t) which is

3
=
&
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(2.3.15) Z(s) = lsI1-A]"1BF(s X j}nr(-)

=1 8785 4y €

where KiO denotes the primary matrix residues

(2.3.16) Kig ™ (s—si)”[sI-A]'1 1=1,2,...,8

8-81

and K, , the secondary matrix residues

1)

1

(2.3.17) Ky = -3— {(s -8 ) [sI-A]"}) 1 =1,2,...,r-1

8'51

where r is the multiplicity of an eigenvalue. It then followe that if xioa
and KijB are zero for all j, the ith mode will not appear in z(t). Since
the columns of B can always be constructed from a linear combination of the
eigenvectors of A, which must span a 2n dimensional space, and since the
residues are eigenprojectors, the absence of the ith eigenvector in B will
make KiOB and KijB zero. Modes that are not controllable will require the
inclusion of f(t).

- . S e ST R RO
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If £(t) is rapidly varying function with respect to a mode, the integration
step will be set accordingly.
Since A has the special form given in (2.2), the first n elements of
z(t) will be the displacements x(t) and the last n elements of the vector

will be x(t). If only x(t) is desired, it is easily shown that
(2.4.4) x(£) = g [v) (€)-Ry oV, (£)4R) 3V, (6D ]

where m is the number of diagonal blocks in A3.
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If £(t) is rapidly varying function with respect to a mode, the integration
step will be set accordingly.
Since A has the special form given in (2.2), the first n elements of
z(t) will be the displacements x(t) and the last n elements of the vector

will be x(t). If only x(t) is desired, it is easily shown that
1
(2.4.4) x(t) = 1 [Vl(t)-Rlzvz(t)+R13V3(t). oo

where m is the number of diagonal blocks in A3.
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2.5 Application to "ree-Free Beam Model

The algorithm was applied to a ifree~free beam model generated by NASA
LRC. The beam was 144 inches in length, the msss per unit length was 0.112
lbe with the EI constant equal to 6.25X105. The nodes were equi-spaced
with epacing 21 with the two end nodes located at a distance of 1/2 21 from
the ends. A total of 21 nodes was assumed although the computer model
allowed the number of nodes to be changed.

The decoupling algorithm was used to separate the highest frequency
mode from all others. In addition to obtaining the solution by decoupling,
the initial conditions were chosen such that only the highest mode was ex-
cited. The full set of equations were then integrated to obtain a benchmark
solution for comparison to the decoupled solution. A step size of h=0.0002
was selected fur the two computed solutions. The displacement for the high-
est mode 18 given below at three selected times where v(t) is the transformed

solution vector v(t) = T-lz(t), as given in Section 2.4 where z(t) 1is the

displacement of the free-free beam nodes.

t v21(t) (Full model) v,;(t)(Decoupled)
0.002 0.584225754E-3 0.58425754E-3
0.004 -0.11151369E-2 ~-0.11151369E-2
0.006 -0.13946460E~2 -0.13946460E-2

The difference between the two solutions was in the 1llth digit thus it can

be assumed that the decoupling algorithm performs in a satisfactory manner.
Test of the algorithm has been carried out for several other models and

the accuracy was excellent. There is no reason to believe that the algorithm

fails for any model, the major problem with the algorithm is the computational

overhead in computing the decoupling matrix T. Work continues on the al- %

gorithm but it appears that the algorithm is not suitable for large space ;

structures in its present form.

22
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(3.6.5) x(0) = (B*+p +pL4p%)x(0) = x*(0)+x” (0)+xL(0)+x°(0)
The solution to the system equation is then given by
(3.6.6) x(t) = exp(A t)x+(0)+exp(A t)x (0)+exp(A c)x1(0)+x0(0)

where the properties of the eigenprojectors has been utilized to obtain (3.6.6)

from (3.6.4) and (3.6.5) . Equations (3.6.4)-(3.6.6) are the mathematical expressions
for the decoupling concept. It is possible to continue the decoupling process
further such that the decoupled solution vectors include "fast" and '"slow"

-wodes although that procedure will not be given since it has been described

elsewhere, [5] and Section 2 of this report.

The following matrix has been used for illustration of the algorithm

where A has the following eigenvalues Al = 1.0 Az =-3,0 A, =42 A, = -2j

3 4

p—

(3.6-7) A=

12 -8 -1 =2

and the initial conditions for the system X = AX aie given by X(0) = [~-1.0,

4.0, 1.0, -3.0]1. The resultant eigenprojectors are

0.6 0.2 0.15 0.05
+ 0.6 0.2 0.15 0.05
0.6 0.2 0.15 0.05
0.6 0.2 0.15 0.05

R i N S N b B
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3. Generalized Sign Matrix
Applications of the matrix sign function have been previously given in
(15). The matrix sign function is a useful mathematical tool for spentral

decompositi | as it provides insight on the spectrum of the mstrix even
!

l

though the eigenvectors and eigenvalues are unknown.

The material given in this paper is an extension of earlier work with
the concept of a generalized sign matrix introduced and discussion of sevefal
applications. Knowledge of the generali:ed sign matrix is sufficient to

v ngtruct the eigenprojectors on the spectral domain of a nxn matrix. The
generalized sign matrix appears to have been introduced by Mattheys, [19]
as the extended matrix sign function. The computation of the generalized

sign matrix is given in the next section.

24 .
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3.1 The Generalized Sign Function of a Matrix
A general nxn A matrix can be represented by the form

(3.1.1) A=nunt

-

where M is the eigenvector matrix of A and J is the Jordan canonical form
with the cigenvaluz2s along the diagonal and ones or zeros on the superdiagonal.

If J is expressed as
(3.1.2) J o= diaglI(A Iy i (X))

Then any function f(A) which is analytical in the plane containing the eigen-

values Ai of A 1s defined [3] by

(3.1.3) £(A) = M{£(I) MY
where
(3.1.4) £(J) = diagl£(J),£(3,)..5£(J )]

with cach Jordan block having the form

. -

(ni—L)
I(Ai) ('(Ai)/ll - f (Ai)/(ni-l)l
(n1~2)
0 f(Ai) N f (Ai)/(ni~2)l
0 0 . f(Ai)

25
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If the sign function for a Jordan block is defined as the function with the

sign of the real part of f(ki), it then follows that
. "l
(3.1.6; sign (A) 5 1t sign(R_ J]M

where gign [ReJ] = diag (sign(Rekl) sign(ReAZ)...sign(ReAr)].
with ~

+1 Re(ki)>0

(3.1.7) sign(Reki) -
-1 Re(Ai)<0

The definition of the sign of A has a restriction in the sense that the
sign of zero or imaginary eigenvalue is not defined. To account for this

case define the generalized sign matrix [19] as

1 Re(ki)>0

(.1.8) signA) = { 0 R, (A)=0
-1 Re(ki)<0

with the generalized sign matrix of A denoted by S(A) with

(3.1.9) S(A) = M siga(i)M !

An efficient algorithm to find the sipn of a matrix has been glven by
2

Roberts [4] which is based on Newton's algorfchm for $° = 1. The iterative
algorithm
(3.1.10) s, =3 (s+s7h S, = A

o i+1 2 i 74 0

T o AR 3T
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has quadratic convergence with convergence in approximately k+3 iterations
where 2k>{max Ai and (min Ai)-l}. The stopping criterion ITr Sz-nI§; has
been used by the authors where € 18 a preselected error bounds. Several
versions of accelerated convergence algorithms have been given in the liter-
ature [4], [20].

It should be noted that the iterative algorithm in {(3.1.10) will fail
when A has a zero or imaginary eigenvelue. The singularity encountered in
(3.1.10)can be avoided by a translation of the spectrum or an origin shift

by adding pl to A with
-1 -1 -1
(3.1.11) A+pl = MAM “4pMM © = M(A+pI)M

where the direction of the shift is set by the sign of p. There 1s no assur-
ance that a random choice of p will not produce a new singularity thus care
should be taken in selecting p.

Assumc that p is selected such that p<|ReA1| for all eigenvalues having
a nonzero real part and further, let A+pl and A-pl be nonsingular. Let S(Al)
and S(Az) denote the signs of A+pl and A-pl respectively. The generalized
sign 9f<A_if then given by

(S(Al)+S(A2))
2

(3.1.12) S(A) =

The computational strategy 1s to move all eigenvilues along the jw axls into
the right half plane for S(Al) and into the left hand plane for S(AZ)' The
eigenvalues with Re(Ai) ¥ 0 must remain in the same spectral domains under
the shifts. The major task associated with computing the generallized sign is

the sclection of p.




3.2 Eigenprojectors of the Sign Spectrum Decomposition
The ability to compute the eigenprojector from the generalized sign matrix
makes the sign matrix a useful tool for system analysis. The availability of
the eigenprojectors makes it possible to generate new system matrices based
on various mathematical operations on the eigenvalues of the system., The
eigenvectors will remain invariant under the operatioms, [22].
Suppose that the eigenprojectors are defined to cover the entire spectrum

0

and let the eigenprojectors be denoted by P+, P-, P~ and PI with

3.2p.1p" Positive eigenprojector - the projection on the positive real
part of the eigenvalues of the matrix; Re(Ai)>0.

3.2p.2 p Negative eigenprojector - the projection on the negative real
part of the eigenvalues of the matrix; Re(A1)<0.

3.20.3 p° Null eigenprojector - the projection on the zero eigenvalues
of the matrix.

3.2p.4 p! Imaginary eigenprojector - the projection on the imaginary
eigenvalues of the matrix,

when these eigenprojectors are applied to the A matrix, a set of subspaces

will be obtained with

PTA

>
0

Z
0

with A'= A++A_+A0+Al. It shiould be obvious that A0 is a zero matrix but PU

will not be a zero matrix. The eigenvalues of the eigenprojectors will be
zeros and ones with the same eigenvectors as A. The definition of these

28
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projectors as eigenprojectors follows from the eigenvector property. The

eigenprojectors have the basic properties

0,1

3.2P.1 the sum of the eigenprojectors is the identity matrix, P +P +P-+P+-I

3.2p.2 the eigenprojectors are orthogonal, i.e. PPt =0
4-2P.3 the eigenprojectors are idempotent matrices, i.e. P+P+ - P+.

These-three properties are useful in system analysis and provide the essential

information for spectral decomposition cf A.

e, AR i, A A R 5 AT s s p M 2 g
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3.3 Computation of the Eigenprojectors
The eigenprojectors defined in Section3.2can be computed in & straight-

forward manner from the generalized sign matrix. The generalized sign matrix

must be sach tha:

-~

(3.3.1) $(a) = pT-p”

Since all eigenvalues along the jw axis will have sign(ReAi) = 0. The square

of the generalized sign matrix must be

(3.3.2) §2(a) = pr4p”

Since the eigenprojector are orthogonal and idempotent matrices. It the

follows that P and P~ are given by

(3.3.3) pt = §2(A);§(A)
A2 ~
(3.3.4) p- = §_£A2§§Lél

Recognizing that the sum of the eigenprojectors must give the identity matrix,

it follows that
(3.3.5) pOapl = ptop” = 1-82(0)

+ -
To compute Po and PI, the eigenvalues in the domains of P and P are eliminated

by multiplying (3.3.5) by A thus

30




k)|
(3.3.6) Ap = a0l =A%) - a(-8%a))
where Ao = 0. The square of 31 will have only real eigenvalues thereforc
the matrix 32 defined by

(3.3.7) A, = A+Ki = a+a?(1-5%(a))% = a+a?(1-5%(a))

will have a spectrum with only real, complex and zeroeigenvalues. All imagin-
ary eigenvalues Ai = jwi will have been shifted by JDi. The original
eigenvalues with Re(Ai) ¥ 0 will be preserved in the operation. The eigen-

projector for the imaginary spectral domain will then be given by

(3.3.8) Pl = S(A)-5(A,)
and finally
(3.3.9) P = 1-p"-pT-p = 1-5(0)-52(A)+5(A,)

The 'atter eigenprojector, Po, can be utilized for inverting singular matrices

as will be shown later.

Example 1 - The following matrix is used to find its spectral decompositiun

which has eigenvalues Al = 0 AZ = -2.0 A3 = 3.0 Aa = +j AS = -]

29.2  -24.2  69.5 49.8 7.0 ]
- 9.2 5.2 -18.0 ~-16.8 =-2.0
A= |-10.0 6.0 -20.0 -18.0 =-2.0
- 9.6 9.6 -25.5 =15.4 =2.0
| 9.8 -4.8 18.0 18.2 2.0

IR

o
Rt



32

PRSI L

‘ the result of the generalized sign algorithm is
' F' 11.94930 -2.24532 15.31728  21.65328 =-2.24532 |
- 3.84265 0.49866 - 4.59065 - 7.18665 0.49866
' §(A) = | - 4,07999 0.55999 - 4.91998 -~ 7.59998 0.55999
- 4.03465 1.04266 - 5.59865 - 7.02664 1.04266
' 4.15732 -0.50132 4,.90931 7.81331 -0.50133_1
' the set of eigenprojectors for the sign spectr.l decomposition are
|
" 2.08533  1.042¢6 0.52132 5.21332  1.04266 |
l - 0.93866 <-0.46933 -0.23466 -2.34666 -0.46933
P+ = - 0.95999 -0.48000 -0.23999 -2.39999 -0.48000
l - 0.36266 -0.18133 -0.09066 -0.90666 -0.18133
. 8 1.06133 0.53066 0.26533 2.65333 0.53066-1
- 9.86397 3.28798 -14.795956 -16.43995 3.28799.T
2.90399 -0.9679¢ 4.35598 4,83998 ~0.96799
P = 3.11999 -1.03999 4.67998 5.19998 * -1.03999
3.67199 -1.22399 5.50798 6.11998 -1.22399
L= 3.09599 1.03199 ~4.64398 ~-5.15998 1‘0319“_1
8.51195 -6.46416 14.40820 10.95989 =5.663Yl |
-2.03199 1.90406 - 4.,08809 - 2,55997 1.10396
PI = -2,15998 1.52006 ~ 3.44009 - 2.79996 1.51996
-3.17598 2.4720% - 5.48403 -~ 4.07996 2.07198
L 1.96798 -~2.09607 4.41211 2.43996 -0.89595d
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0.26668
0.06666
-0.00000
-0.13334

| 0.06667

eigenprojectors given earlier.

2.13350
0.53326
-0.00006
-1.06670
0.53341

-0.13358
-0.03323
0.00010
0.06671
-0.03345

0.26674
0.06664
-0.00002
-0.13335
0.06669

33

1.33326
0.33336
0.00003
-0.66665
0.33329

it can be shown this set of eigenprojectors satisfy the properties of the
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3.4 Computing the pth Root of a Positive Semidefinite Matrix

Several recent papers have appeared on the computation of roots of matrices
that are generalizations of Newton's method. Hoakins and Waltom, (5]}, described
a8 method of computing the pth root of a positive definite matrix with » an in-
teger. Denman [17)described an extension to the Hoskins and Walton algorithm
with the only restriction that the matrix not have eigenvalues along the jw axis.
An algorithm will be given in this paper that removes the restriction on the
presence of zero eigenvalues. The procedure can be extended for complete removal
of the restriction on eigenvalues along the jw-axis.

Let A be a general positive semidefinite nxn matrix with the possibility

of a zero eigenvalue. Define A as the p-th root of A such that
(3-4.1) A= RP

The Newton algorithm as given by Hoskins and Walton is

1-p

i ] X =1

1
(3.4.2) Xy = 5 [-D)X +aX

i+l

which will converge to A in the limit as €+0 with stopping criteria

(3.4.3) 1% ,=%, | |<e

i+l

where ¢ 1s a preselected error bound. It can be seen that the above iterative

algorithm fzils when there is a zero eigenvalue.
The generalized sign matrix provides the mathematical tool to eliminate

the problem due to the zero eigenvalue. If A is positive definite, then the

34
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sign of A will be I. The generalized sign matrix will give

(3.4.4) sa) = p¥

from which it follows that the null eigenprojector is given by

(3.4.5) P* = 1-p* = 1-5(a)

The null eigenprojector will have the same eigenvectors as A but will have
eigenvalues +1 for all zero eigenvalues of A and zero eigenvalues for all
Re(A1)>0 of A. Since the eigenvectors of PO are the same as those of A,
the sum of A and Fo will have the game eigenvectors as A but A+P° will be a

positive definite matrix with +1 eigenvalues in place of the zero eigenvalues

(3.4.6) A_ = A+P

then the p-th root of AD will be correct aside from the inclusion of the p-th

root of 1 rather than the p-th root of zero., The root due to P0 is removed
+

from the p-th root of AD by multiplying A:)jpby P or

(3.4.7) A= (AR - 20}/ Pp*

An example is given where A is 4x4 and its eigenvalues are Al =0, AZ =0,

= = 1
X3 3.258 and A“ 10.741

’ cf &. 1If AD is defined as

e g amﬂwm‘.m' S et
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2.0 -1.0 1.0 -1.0
-1.0 4.0 3.0 =3.0
1.0 3.0 4.0 <4.0
-1.0 =3.0 -4.0 4.0

Using p = 0.5, the generalized sign matrix is obtained with 7 iterations for

the right and left shifts when € = 10°° with

~

0.6 =0.4 0.2 =-0.2
-0.4 0.6 0.2 <-0.2
0.2 0.2 0.4 -0.4
-0.2 -0.2 -0.4 0.4

s(a) = PY

The square root, p=2, was obtained from the Newton algorithm in 5 iterations

with

1.091906 -0.662353 0.429553 =-0.429553
-0.662353 1.485410 0.823057 -~0.823057
0.429553 0.823057 1.252610 =-1.252610
-0.429553 -0.823057 -~1.252610 1.252610

The 5-th root was obtained for the same ratrix and converged in 7 iteratiouns

0.761942 -0.492761 0.269181 -0.269181
-0.492761 +0.853145 0.360339 -0.300384
0.269181 0.360384 0.629565 =-0.629565
~-0.269181 -0.360384 -0.629565 0.629565

The error in teconst;ucting A from Al/2 and Alls was no greater than 1E-05

s e ~ YT s R R e

Tt e



for all elements, that is

1/p

-(Aij

IAij

B 7 PE L A

)P|<1.:-05
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3.5 Computation of the Generalized Inverse Matrix of A

The generalized inverse matrix can also be obtained from the eigen-
projectors as given earlier. The null eigenprojector will be used in the
same manner 88 it was used for finding the p-th root.

Let A be an n*n matrix with zero and nonzero eigenvaluss and can be

represented as

~

-1
(3'5'1> A M(di.s[kl.o.o.ooo.Ar.Aﬁl,oco.An-l.xn))u

The generalized inverse matrix is obtained when the nonzero sigenvalues are
replaced by the reciprocal with the zero eigenvalues unchanged. 1If Af is
the generalized inverse matrix with

3.5.2 t . -1 -1 ,-1 =1 ,=1l,y,,1
( ) A = H{diag(A[740,0,...,0, X "\ A L e AT AT

it follows that Af satigfies the four properties of Penroge [26]) which are

3.5p.1 AA*A - A
3.5P.2 AfAA* = A+
3.5?.3 (A’rA)T - A+A
3.5P.4 (M+)T = M‘t

Assume that the generalized sign matrix of A has been found. It then

follows that

A e
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where Po has been computed as in (3.3.9) for the most general case. This matrix

will have rank n since

(3.5.4) n = rank(A) + tank(Po)

Al

and is invertible. The inverse of A is given by

(3.5.5) Al e ap®)l o atep?

Since tihe ejgenvectors of Po are the same as those of A. The generalized

inverse oi A is then given by
(30506) A = A _P

or AT = X.l(I-PO).

The matrix given in Section 4 was used to compute A+ by this method with

[ 2.41117  19.45559 -30.77219  8.67789  -11.74442
~1.18890 - 4.34446  6.32779 -3.12226  2.85556
At = | -1.00002 - 5.00001  7.49999 -3.00006  2.9999y

~0.78890 - 7.14446  11.42778 =2.92226  4.95554
| 1.47780  3.98890 - 5.50555  3.54449  -2.81111

1t can be shown that the eigenvalues of this matrix are given by Al =0,

A, = =0.5, A

) 3= 0.33333, Ab = -} and A

s =+




gy —_—

3.6 Decoupling n2f Linear Time-Invariant System Equations

The last topic to be discussed in this paper is the use of the spectral

decomposition concept for solving system equations of the form
(3.6.1) x(t) = Ax(t) x(0) = x eR"

where A is nxn and x(t) is nxl. The solution x(t) can be expressed in the

form
(3.6.2) x(t) = ¢(t,0) x(0) = exp(At)x(0)

where ¢(t,0) is the state transition matrix with ¢(t,t) = I,

The general matrix A can be decomposed into

(3.6.3) A = atea +alea®

where A+, A, Al and A? are as defined in Section 3.2. It follows that (3.6.2)

can be modified with

I

(3.6.4) x(t) = exp[(A++A'+A +A0)tlx(0)

= exp(A+t)exp(A-t)exp(AIt)x(O)

since Ap = 0. The exponential matrices are comwutative as each matrix has the

same elgenvectors.

The initial condition vector can also be dgcomposed with

40
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0.07692 -0.07692 0.01923 -0.01923
- ~-0.23076 0.23076 =-0.05769 0.05769

P =
0.69230 -0.69230 0.17307 -0.17307
-2.07692 27.07692 -0.51923 0.51923
0.32307 -0.12307 -0.16923 -0.03076
PI - -0.36923 0.56923 -0.09230 -0.10769

-1.29230 0.49230 0.67692 0.12307
-1.29230 -2.27692 0.36923 0.43076

the resultant eigenprojectors on the initial condition vector are

0.2 -0.307692 -0.892308 0
x“w) = | 02 X" = | 0-923077 xlo) =| 2876923 o0 |0
0.2 -2.769231 3.569231 0
0.2 8.307693 -11.507692 0

The initial condition vectors given above were used to compute the vectors
x+(t), x (t) and xI(t). The different modes were separated by the algorithm
according tc the spectral domains. Table 3.1 gives the third element of

the vectors as well as the third element of x(t) as computed dircectly from

(3.6.1).




t (sec)
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6

4.0

X4(t)
1.000000
-2.176561
-5.661723
-5.930082
-2.259451
3.492468
8.246650
9.688690
7.780616
4.924292

4.707674

X3(0)
0.200000
0.298365
0.445108
0.664023
0.990606
1.477811
2.204635
3.288929
4.906506
7.319647

10.919630

X5(t)
-2.769231
-0.834076
~0.251218
~0.075665
-0.022789
-0.006863
-0.002066
-0.000620
~0.000183
-0.000049

-0.000006

xg(c)
3.569231
-1.640849
~-5.855612
-6.518440
-3.227268
2.021520
6.044082
6.400383
2.874297
-2.395300

-6.211941

42

All computations were in single precision. The value of x3(t) should

be equal to the sum of x;(t), x;(t) and x;(t). The difference between x(t)

and the sum of the individual terms was 9><10.6 at

t = 4 seconds.



4., Laplace Transform of Matrix Functions

Assume that a system is defined by a set of differential equations of

the form
(4.0.1) ii(t)+A‘li:(:)+A2x(t) = Gu(t)

where Al, A2 and G are constant matrices. The matrices A1 and A2 are nxn
and G is nxm. Since this type of equation is encountered in structures,
the closed form solution in the time domain is of interest. Thke Laplace

and inverse-Laplace transforms are therefore of interest.
4.1 Laplace Transform

Consider a system defined as in (4.0.1) with initial conditions x(0)

and Q(O) from which it follows that

X\ N 0 I X(t) 0 _ —
(4.1.1) = . + u(t) =A x(t)+Gu(t)
x(t) -A, ~-A, x(t) G
with
8X(8)~-x(0) 0 I X(s) 0
2 . = + u(s)
8 X(8)-sx(0)-x(0) -A2 -Al 8X(s)-x(0) G

The second equation of (4.1.2) gives

(4.1.3) 82X (8)-5x(0)-x(0) = ~A,X(8)-A, 8X(s)+A, x(0)+GU (s)

43

B S T,



44

which can be rearranged with
(4.1.4) [521+A18+A2]x(s) = [sT+A; 1%(0)+x(0)+GU(s)

Premultiplying by [s21+A s+A2]-1 gives

1

(4.1.5) X(s) = [s2I+A s+A21'1{[s1+A1]x<0)+;(o)+cu(s)}

1
Suppose that the inverse of [sI-a] is now considered where

sl -1 -1 821+A15+A2 0 -1 SIH+A, 1
(4.1.6) - 2
Az sI+A1 0 8 I+Als+A2 -A2 sI

which will be written in the compact form

1 sI+Al 1

4.1.7) (s1-A]7) = [521+A15+A2]-

for convenience. It should be noted that the upper row of [SI-a]-1 contains

the two terms of interest in (4.1.5).

If (4.0.1) has a leading term Ao, then (4.1.5) becomes
2 -1 .
(4.1.8) X(s) = LAos +A,8+A, ] {[SI+A1]A0x(0)+A0x(0)+Gu(s)}

which requires that [8I-a] be modified. A general form for A  in [sI-a] is

0

not known thus (4.1.7) will be used with Ao included as shown in (4.1.8).



4.2 Inverse Laplace Transform

The inverse Laplace of the desired matrix equation can be obtained

from (4.1.7). Consider the eigenvalue-eigenvector problem for A where

Al !
(4.2.1) AI-A =

Az )\I+Al

where A and s are interchangeable in the mathematical operations. It is

known that the eigenvector matrix of (4.0.1) has the general form

g1 7!
A N,

(4.2.2) o =

with ¢2 = ¢1* and A2 = Al* for a system with all eigenvalues in pairs, real
or complex conjugate. Since the structure problem is of that type, then ¢

can be assumed to be

%*
¢1 ¢1
(4.2.3) o = . s
A A
It then follows that
* x 1-1
b % o] Tep o)
(4.2.4) A= l
 * * * %
010 A 0 A oA A

Using the property that a function of a matrix is given by

45
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(4.2.5) £QA) = 0£(A)OL
then
-1 -1

(4.2.6) exp(At) = £ “[sI-a) = 0f(s)¢
from which it follows that

exp(Alt) 4]
(4.2.7) exp(At) = o oL

0 exp(A;t)

It 18 not difficult to show from (4.1.8), (4.2.4) and (4.2.7) that

-1, 2 -1 -1
(4.2.8) L s I+A s+A,] © = exp(Blt)sin(th)B2
(4.2.9) L e 1+a 544, 17Y = exp (B, t) [cos (B, t)-sin(B,¢) (B2 1B.)]
1" 72 1 2 2 21
Ya.ve Bl+jnz is a spectral factor of [sZI+Als+A2] or
2
(4.2.10) [81+Bl+j32][SI+Bl-jBZ] = [g I+A18+A2]

with Bl+j32 in the upper half plane and Bl-jBZ in the lower half plane.
Subatituting back into (4.1.5) with Ao = I, x(t) is given by
(4.2.11) x(t) = {exp(B,t) [cos (B,t)-s1n(B,t) (B;'B)) 1}x(0)

+ {exp(Blt)sin(th)(BEI}Q(O)

t
+ I exp[Bl(t-T)]sin[Bz(t-T)](B;l)ﬂu(T)dT
0
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4.3 Facorization of A(e)

Let A(s) be defined as

A(s) = 182+A 8+A

1772

for which the factors [sI+B,+J32] and [sI+Bl-j32] are to be obtained. It

can be shown that there exists a matrix R such that

2
(4.3.1) R +A1R*A2 =0

where R is given by either

-1
(4.3.2) R, = A$” = -B.-3B,
or
-1
(4.3.3) R, = $*A%G* " = -B +jB,

The matrix R will be complex and can be computed from the eigenvalues and

eigenvectors of A where

(4.3.4) A=

It can also be shown that A(s) can be written as

48
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2
A A
(4.3.5) Ae) = (ot 5D 4 a, - A
which factors as
A 2, .1/2 M 2, .1/2
(4.3.6) A(s) = {Is+ 7 [Az-Alllo) Hies+ 7 -3 [AZ—AI/Io] }
therefore
A
(4.3.7) B, = - ?1_
2,,,1/2
(4.3.8) B, = [A,-A]/4]

provided that A -Ai/b is a positive definite matrix. Provided that thie

2

reitriction is satisfied, it is not necessary to compute the algebraic

solution to (4.3.1). The square root of A -A:/é can be computed by the

2
procedure given by Denman [17] or Hoskins and Walton [20].

The equation given in (4.3.1) 18 a algebraic matrix Riccati equation
and plays an important role in system analysis and particularly in spectral
factorization. To show that R 1s as given (4.3.2) consider (4.3.1) and

(4.3.4). It 1s known that the eigenvector of a is as given in (4.2.2) thus

AL -1 ¢, 0
(4.3.9) -

A2 AI+A1 ¢1A 0

thus if A = Al then

(4.3.10) A2¢1+A1¢1AitAl¢1Al =90

o
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Now {f A1¢1 - olh then
2.-1 -1
(4.3.11) ¢1A1®1 +A1¢1A1®1 +A2 =0
therefore R = ¢1A1¢Il as given in (3.2). Now from (2.4)
* * . -1
°o 1 o o A O 9 4
(4.3.12) - xR * * &
“Ay A o8y HALILO A L 44 oA
thus
-1 %, %2 %=1 -1 %, % %=1 -1
-1 &k & #-] -1.-1 *-1 #-1 -1
where it i8 necessary to prove that
A 2,,.1/2 -1
(4.3.15) Ry = = 3= +J(A,-A, /)77 = &, A 0,
*
If Rl = R2 - —nl+332 then
(4.3.16) A, = -[(-B,+JB.)2- (-B,~4B,)2][-B,+jB_-B +iB, ]~}
*e 1 1772 1972 1772 "1'972
-1 -
- -(BlBZ+BZBl(BZ) = -2B, iff Ble BzBl
-1 -1.-1
(4. 3.17) A2 b -[(-Bl+j32)-(-31-‘182)][(-BI+JBZ) -(-31-332) ]

—2132(-81-132)(-2j82)-1(-31+j32) - Bi+8§ 1ff_§;32-8231
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Subgtituting back into R, for A, and Az.

1l 1
28
1 2,.2 2 - -
where
A 2
(4.3.19) Bl =--5 32 = [Az-Al/lo].

A R
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5. Diagonalization of Matrix Polynomials

There has been numerous comments made at technical meetings regarding
tha diagonalization of matrix polynomial of the form

1/2

2 1/2[132+E§¥f]M p

(5.1) A(8) = Mg"4+Cs+K = M

It has been stated that the second order matrix polynomials of the
general form cannot be diagonalized into the form

(5.2) D(s) = M2 (162 25wer0? /2 « M 25 (a)u!/?

where 2;u and w are diagonal forms. It is true that there does not exist a

constant matrix such that
(5.3) D(s) QA(s)Q}

but it is not true that A(s) cannot be diagonalized. As will be shown in

the following sections, polynomials do exist such that
(5.4) D(s) Q(8)A(s)P(s)

To show ti‘s, it will be assumed that the mass matrix is invertible so that

1/2

M exists. This assumption may be too restrictive but will be used.

5.1 Diagonalization of Block Companion Matrix

Since it has been assumed that M 1is invertible, a block companion form
]
matrix a can be defined with

52
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(5.1.1) A=

where K = Ml/ZKMIIZ. and C = MI/ZCMllz. If K and C are symmetric then K
and C will be symmetric when Ml/2 is symmatric.

The matrix A can be de”ined as
(5.1.2) A= ono”l

where ¢ is the nxn matrix of eigenvectors of a and A is the eigenvalue
matrix, Let A have distinct eigenvalues with real and complex eigenvaluea
in conjugate pairs. The eigenvalues and eigenvectors of A can always be

ordered such that

* * ]
(5.1.3) A= lyyyYe¥y VYo m Yme2 * *Y2n!

*

* *
diaz[llklkzkz...Amkmkm+lkm+2...Azn]

. x % ]-1
(yy¥1Y5¥50+¥on

and thus

-1 * *

(5.1.4) A

Consider any pair of eigenvalues including the real eigenvalues. The com~

parison form of the 2x2 subblocks can then be written as

-

0 1 1 1 A 1

(5.1.5) A = |, - * N *

i ~wg -2€1wi Ai Ai o Ai Ai N

>
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with a new matrix defined as ABC glven by
r
“31 07 o2 1 0 0 .. 0
ABZ -wl —2C1w1 0 0 .o 0 0
. 0 0 0 1 .o 0 0
2
- - v - -
(5.1.6) ABC . 0 ( w, 2C2w2 e 0 0
" . . 3 . e o o 1
0 A llo o 0 0 .. - 20w
L Bn L
It follows that a row-column interchange can row be made to t 'ansform
ABC into the form
0 I T
S - =
(5.1.7) ADC 2 EABC E
- ~20w
where E is an elementary matrix. For example, consider the 4x4 matrix ABC
with
(o 1 0 o ]
-w ~2L.Ww 0 0
(5.1.8) Agy = 1 11
c 0 0 1
0 0 -wz -2L W
| 2 2% |
then
(1 0 0 0]fo 1 o0 o 1[1 0 0 0]
. |00 1 o]l -xw o 0 0010
(5.1.9) EAhCE -
01 0O 0 0 0 1 01 0 0
2
_0 00 IJ 0 0 —Wy -ZQZwZJ _0 0 0 1 ]
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The transformation process requires three transformations with

(5.1.10) Apc ™ £00~Lapo~1ET

where E is the elementary matrix, O is a block diagonal matrix with

or a suitable pair of real eigenvalues and ¢ is the usual eigenvector matrix.
The Gi matrix must be invertible which is a valid assumption for conjugate

pairs of eigenvalues and distinct real eigenvalues.



5.2 Matrix Polynomial Form

The analysis given in Section 5.1 was concerned with the "state vari-
able" or block companion form and does not give the required transformation
in matrix polynomial form. The objective of the diagonalization form 1is
to obtain Q(s) and P(s) as given in (5.4). The desired Q(s) and P(s) can
be found from the work in Section 5.1. It 1is not difficult to show that

81 N [K(s)]'l SI4C 1

(5.2.1) [A@) ™ - - .
K sI+C (4] [A(s)] -K s8I

which was shown in a previous report. The diagonalization process given in

the previous section holds for a(s) with

8l =1
(5.2.2) £0e 1 [A(s) 1007 LET - )
W sI+2zw
with
sI -1 -1 [5(3)1—1 sI+2tw I
w sI+2zw 0 [D(8)] - sl

= 00 L[A(s)] too 1ET

Suppose that the product E0¢-1 is defined as Q-1 thus

()]} sI+2tw I R YO 7t 0 sI+C I
(5.2.4) Y 2 = Q — -1
0 {(D(s)] -W sI 0 [A(s)] -K sI
56
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(5.2.5) D(a) = [(s14€)Q, ,+Q,,]1  [A(8) 11sQ; 40, ]
as well as

(5.2.6) D(s) = [8QyKQy, ] "A(8) [8Q5,+Q,,]

for the quadratic matrix polynomial with

Q; 9,
(5.2.7) qQ =
Q1 O

where Qij is an nxn partitioned block of Q. It follows from further analy-

sis that

(5.2.8) W - Q30 = (CQpH0,,) kY,
and

(5.2.9) 20w = Q5510,,+6Q,,KQ, ,]

-1
= Q)510,,-0;,]
The usual transformation to normal coordinates
(5.2.10) x(t) = dq(t)

is replaced by a coordinate transformation of the form

B P
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(5.2.11) szt.l(t)'Pan(t) = x(t)
thus
(5.2.12) [182+Cs'0'K][Q225+Q21]q(s) - U(s)

If the force vector u(t) is transformed with
(5.2.13) szf(t)-Klef(t) = u(t)

then the resulting equation is

(5.2.14) [1s2+Ce+K] [Q,,5+Q,,1a(8) = [Q,,8-KQ, ,1£(s)
therefore
(5.2.15) [szs-“x'oul'lus%s#il [Q,,84Q,,]a(s) = £(s)

It follows from (5.2.6) that
(5.2.16) D(s)q(s) = £(8) = [Le*+2zwstw?1q(s)

A different form of (5.2.15) can be obtained from (5.2.5) although (5.2.16)

is the same.

The mass matrix must now be taken back into the equation since Ml/z was

factored out.

-l @Fi N T BN S T S D S s ans on s oo oy eaw mae o




5.3 Examples

As an example of the above procedure, let

o o0 1 o0
Ao o o o0 1
-35 -40 12

with A= [15 5 5 -1] and

-1 -5 103 -1
-1 -4 -23
-15 =25 515
-15 =20 -115 -1

as computed with by EISPAK with column vector scaling. The transformed ADC

matrix was computed as

-1.9E-6  -2.86E~6 1 -4.76E-6
A | -2.30E-6  2.62B-6 2.98E-8 1
DC -75.0 ~1.22E-4  20. -7.63E~5
2.386-7 5 ~7.45E-9 4
with
el - -75.3 -3.81E-6
12721 -1.29E-7 5
and
59
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-2.0 3.81E-6

-1
2w = Q,,(Q,,-Q,,) =
12722 “f11 -2.98E-8 -4

-
il SR O s e e e e o

All computations were in single precision except for the eigenvalue. The Q

matrix required for the block diagonalization of A was computed and is given

by
"'70
-505
Q ™~
-30
=-22.5
with
Q= 0o 1 .

16.3333
-3

86.6667
-20

0.4 17.333

0.3 - 10.0
1 85.6667
0.5 =19

The example indicates that the block diagonalization of A 1is valid.

The matrices ¢,0, and E will always exist thus Q will transform A into a

diagonal block companion matrix,



6. Quadrature Method and Laplace Transforms

The quadrature formula for numericel integration is a useful mathe-
matical tool for system analysis. The primary use in the work described
in this report is that related to system identification aithough the
procedure has other related uses. Readers that are not familar with the
work should consult Bellman, Kalaba and Lockett for details as well as
applications, [27]. Numerous papers are also available in the literature
on the use of other orthogonal polynomial rather than the Legendre poly-
nomials as used in [28].

Consider a function f(t) that is Laplace transformable, that is

(6.1) r [£(t) e tde<e
0

fcr a real positive 0. The Laplace transform of f(t) is given by

6.2) F(s) = Iw £(t)e Stde
0

where the inverse Laplace transform is given by

(6.3) £(t) = =i F(s)e®tds

o+iw
2mi [

o-iw

The Laplace transform of f(t) will be denoted by F(s) with the notation

(6.4) LI£(t)] = F(s)

and the inverse transform by

61
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(6.5) % Lir@e)) = £(0)

The Laplace transform and the inverse Laplace transforms also hold for
vector and matrix functions. If f{(t) is a nxl vector then F(sg) will be a

nxl vector where
(6.6) F,(s) = r fi(t)e-udt
0

with a similar expression for the inverse transform. Let A(t) represent a
matrix, then the elements of the matrix have Laplace transforms Aij(e) de-

fined by
(6.7) A, (8) = Im A (t)e-stdt
1] o 1

The op¢.ations are always performed on each element of the matrix rather
than as a matrix operationm.

6.1 Properties of Laplace Transforms

Some important properties that will be useful in the work that follows

will be given

a) Real differentiation. If Z{[f(t)] = F(s) then

(6.1.1) 2 4] - sre)-£(0-)

and

Vi T e B EGNET AT EVELS S Tatey Sy % Yoo WS Lo @ N T e e
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a"f n n-1 n-2:
(6.1.2) L) = o F(s)-8 £(0-)-8" “£(0-)...
dt
- f(n-l) (0")
where E(O-) indicates the first derivative with respect to time and f(“'l)(o-)

indicates the (n-1)th derivative. The argument 0- represents the initial

condition on £f(t).

b) Real integration. Let ‘A[f(t)] = F(s) then

t
_ £(nar) = Eel

0

(6.1.3) ‘1[[

c) Differentiation by s. If s is the Laplace variable, then

(6.1.4) L [e£(t)] = - -‘%ﬂl

6.2 Laplace Transforms and Quadrature Integration

Let f(t) represent a Laplace transformable variable, scalar or vector,

then [£(t)] = F(s) with

N
(6.2.1) F(s) = | f(t)e®fde = § w,rle(r,) 8 =1,2,3,...,®
i1 i
0 i=1
where the summation form is the quadrature integration of f(t). The weights

are denoted by w, and the roots by r,6 with - -log(r,). Details of the

i i
derivation of (6.21) are given in [27]. The weights and roots are given in
the appendix to this report for N = 3,4,...,15. Extensive tables can be

found elsewhere [29].
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The properties given in Section 6.1 can be used to derive

other ''seful expressions. From property a)

N df(t,)
- s-1 i
(6.2.2) 8F(s) = £(0 ) = 1§1 w,r, T

with t(0 ) the initial condition on the function f(t). From b)

N t
(6.2.3) !Kﬁl - ) wir:‘l [J L g(rydn)
1=1 0

and finally

N
dF(s) _ _ s-1
(6.2.4) s 121 wor ot f(e)

As examples of each of these, let

(6.2.5) £(t) = 1-e ¢

which has the Laplace transform of

1
(6.2.6) F(g) = m‘
with
df -t

(6.2.7a) -

t -1 -t
(6.2.7b) J (l1-e )dT = t+e -1

0

"'lwi'rh“ﬁiﬁﬁm'ﬂ [, %
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(6.2.7¢) tf(t) = t(l-e F)

The table below gives computed values from (6.2.1), (6.2.2), (6.2.3) and
(6.2,.4) with exact values for quadrature orders N=7 and N-11. The functions
F(s) and sF(s) are correct to six digits whereas dF(s)/ds and F(s)/s have
significant errors. The errors in the latter two functions decrease with
the quadrature orders. It is therefore necessary to select the quadrature

order higher if f(t) is not a smooth function over the range of time used

in the procedure and particularily if f(t) has variations between the

sampling points. Since the interval time between the sample times t1 in-
creases a8 1 get larger, less information is available for lerge ti.
S F(s) 8F(s) dF(s)ds F(s)/s
EXACT 0.5 0.5 -0.75 0.5

(N=7) COMPUTED 0.5 0.5 -0.738658 0.488739
(N=11) COMPUTED 0.5 0.5 -0.745205 0.495219
2 EXACT 0.166666 0.333333 -0.138888 0.083333
(N=7) COMPUTED 0.166666 0.333333 -0.138972 0.0834144
3 EXACT 0.083333 0.250000 -0.048611 0.0277777
(N=7) COMPUTED 0.083333 0.250000 -0.048609 0.0277758
(N=11) COMPUTED 0.083333 0.250000 -0.048611 0.0277776
4 EXACT 0.050000 0,200000 -0.022500 0.012500
(N=7) COMPUTED  0.050000 0.200000 -~0.022500 0.012500
(N=11) COMPUTED 0.050000 0.200000 -0.022500 0.012500
5 EXACT 0.033333 0.166666 -0.012222 0.006666
(N=7) COMPUTED 0.033333 0.166666 -0.012222 0.006666
(N=11) COMPUTED 0.033333 0.166666 -0.012222 0.006666

The quadrature formula given in (6.2.1) fails for noninteger values of

s. It has been shown in [27] that values of F(s) other than the integer
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values can be computed by modifying the formula., Let a be an arbitrary

scalar, then

N
(6.2.8) F(s/a) =a | w,r* Li(at,)

o 14 1
Equatic:s (6.2.1) and (6.2.8) can be used to compute F(s) such that rapidly
changing values of f(t) are included in the data set for F(s). This pro-
cedure will assure that variations of f(t) for large t, has been included

in the s-domain information.

Vs AL R S AR R e
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6.3 Inverse Laplace Transforms and Quadrature Formulas

The time function f(t) at times ti can be computed from F(s) by noting

that a set of linear equations can be defined from F(s) with

N
s-1
(6.3.1) F(s) = § wr T Uf(e,)
1=1
Let § = 1,2,3,...,N, then
-
(7 (1) r“1 v,
F(2) w. I w.I
(6.3.2) - 11 22
N-1 N-1
O B A

- WNEN J I f(tN) J

. oW b r f(tl) )

w.r f(tz)

Equation (6.3.2) can then be considered as having the form Ax = b which can

be solved by iaverting A with x = A—lb.

The A matrix is ill-conditj-ned and

will require care in selecting the algorithm to compute f(t).

The computed values from (6.3.2) and the exact values of the f(t) given

in (6.2.5) are tabulated in the table below.

were used with a 7th order quadrature formula.

position was used to compute the f(ti) values.

Single precision calculations

The singular value decbur

ty f(t
i (sec) Exact Computed Error
1 0.025772 0.0254458 0.0254146 3.12E-5
2 0.138382 0.129234 0.129285 -5.1E-5
3 0.352509 0.297077 0.297007 7.E-5
4 0.693147 0.5 0.50009 -9.E-5
5 1.213762 0.702923 0.702812 1.11E-4
6 2.046127 0.870766 0.87088¢% -1.23E~4
7  3.671195 0.974554 0.97445 1.04E-4

Table 6.2 Compute Value of f(ti) from F(s)
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Additional values of f(tl) could be obtained by using a higher order quad-
rature rormula or by utilizing (6.2.8). The accuracy of the computed values
of f(tt) will depend upon the order ~f the quadrature Icrmula as well ag
the vi:iation of f(t). There is no assurance that a low order quadratusi
formula will give a unique vector f(t) when the s-domain information is in-
adequate. For example, a resonance peak may be missed entirely or else the
s~domain information may not cover a region in which F(s) varies rapidly as
at cutoff. The same is true for the computation of F(s) from £(t).

The above procedure can be utilized to compute the response of the

structure to a forcing fun tion. Let X(s8) be defined by
(6.3.3) x(s) = [Me+cs+K] cu(s)

where [M32+CS+K]-1 can be expanded as

R

2
2 -1 {
. 3 + = e —
(6.3.4) [Ms™+CS+K] 121 s*s, R, nXn

b

1 and are given by the outer product

wiiere R, 18 the matrix residue of the root s = _81’ The residues have rank

) U Gy T I 22N NN N e P BN I =

(6.3.5) R, =

where ;i is the right latent vector of MB2+CS+K and ;i is the left latent

vector. If M52+CS+K i8 symmetric then ;1 = ;i. The vectors A and ;i‘must

be properly normalized. Acsuming that the roots s, appear in conjugate

i

* *
parrs, tre residue for 8y must be given Ri vhich means that all of the
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residues can be stored in n2 locations, n vectors of dimension nxl. An )
additional storage of n locations must be available for the n roots.

The values of X(s/a)/a can therefore be computed by using

2& Ri
(6.3.6) X(s/a)/a = — Gu(s)
1oy 87ats

It follows that x(ti) can be computed by using (6.3.2) with

(6.3.7) x(-alnri) = 1§1 Pix(s/a)/a = X(ti)

where Pi is the first row of the inverse of the matrix in (6.3.2). Apprgki-
mately n2+n storage locations will be required by using the above algorithm
which exceeds the storage requirement for a 4th order Runge-Kutta when the
sparse matrices M, C, ..d K are handled properly in the integration algorithm.
The sparse nature of M, C and K cannot be used in the quadrature algorithm

as described.

PP - B
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7. Identification of Linear Systems by Quadrature Method

The identification or parameter estimation problem in linear system
theory is that of determining the system parameters from a sequence of
input-output data. In some cases, only statistical prop- "“ies of the input
are known with measured output data available. It will be & .s3umed that the
inp 14(t), and the output, y(t), are known. Since the identification prob-
lem >f interest is to estimate the parameters of a vibrating system or a
structure, u(t) will be the excitation of the system with y(t) measured
displacements of points or nodes of the structure. The variables u(t) and
y(t) may be vectors and x(t) will be the vector of all nodes of the structure.

It will be assumed that the excitation u(t) is that signal applied to
a set of transducers that apply mechanical forces to the structure whereas
y(t) will be the output of sensors that measure the displacement of the

nodes. With those assumptions, the vector x(t) can be defined by
(7.1) MHCx+Kx = Gu(t)
where M is the mass matrix, C the damping matrix, K the stiffness matrix

and G the input matrix. The mczreices, M, C and K will be n*n, G is nxm,

x(t) 1s nx1 and u(t) is mxl. The ontput vector y(t) will be given by

(7.2) y(t) = Hx(t)

with H a 2xn matrix and y(t) a X1 vector. G and H will be considered as

constant, matrices with known values.
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The input and output variables, u(t) and y(t), may be sampled with
values taken at a fixed sampling rate, fs’ or at specified time intervals
which are not equal. If fs is fixed, then samples are available every T
seconds. The nonequal interval sampling strategy will be to take samples
at a set of specified times, teo where t1+1—bi ¢4 T for all 1. The two
sampling strategies will be denoted as uniform and nonuniform sampling
rates.

If uniform sampling is chosen, the mathematical theory fcr the linear

system should be formulated in the z-domain. It can then he shown that
(7.3) Y(z) = T(2)U(z) = Hx(z)
where T(z) is the transfer function in the z-domain given by

(7.4) T(z) = Z{H[Ms2+Cs+K]—IG} - l-ml/z{(I-exp(BlT)fcos(BzT)
- 8,8, 610 (B,T) 1z+exp (B, T) [exp (B,T)- (cos (8,T)-B, 8, s1n (8, ) ]}

. {zzI-Zzexp(BlT)cos(BzT)+exp(ZBlT)}_lnl/zc .

The details for the derivaticn of (7.4) are given in the appendix. The
major problems associated with thig approach is that the parameters of the
system are dependent on matrix functions, i.e. exp(BlT), cos(BzT) and
sin(BzT). Small errors in the elements of the matrix elements may be mag-
nified in the recovery of Bl and 62.

Although the nonuniform sampling strategy appears to he less desirable

than the uniform sampling, there exist unique sampling times that leaves
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the system in the s-domain. The system parameters can be estimated by
application of linear algebra theory. In the Laplace domain, the system

equations are

(7.5) Y(s) = T(s8)U(s) = Hx(s)
with

2 -1
(7.6) T(s) = H[Ms“+Cs+K] ~G

The quadrature formulas hold if the sampling times are conslstent with the

quadrature integration procedures.
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7.1 Sampled Values and the s-domain

Assume that the inputs “(ti) and outputs y(ti) have been measured at

the times ti specified by the quadrature order N. The system equations can

then be defined by

N -1
(7.1.1) Y(s) = 121 wry y(e))
(7.1.2) v = ) wrtlucey)
I 8 L wiri u i
N s-1
(7.1.3) Y(s) = 121 v, Hx(t))

where H is assumed to be known. The vectors Y(s) and U(s) can be computed
from (7.1.1) and (7.1.2) when the sequence of inputs u(ti) and outputs y(ti)
are known. The state vector x(ti) can then be computed by use of (7.1.3)
although not all x(ti) can be determined when H is xm with Y(s) ¥ f[xl(s),
xz(s),...,xn(s)]. Since yi(s)axi(s), then Y(s) will be incomplete in the
sense that not all values of xi(s) are measured.

If H {8 an identity matrix, then x(ti) can be determined from (7.1.2)

with X(s) then equal to Y(s). It follows that

(7.1.4) [Ms+Cs+K]X(8) = Gu(s)

where M, C and K are unknown matrices with G known. A set of linear alge-

braic equations can then be determined with
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4x¥(2)  2x5(2)  xY(2) vT(2)6T”
(7.1.5) C -

X @ X X @ ROt

If M, C and K are nxn, then q must be equal to or greater than 3n. Exact
values of X(s) and x(ti) requires that only 3n rows be used as additional
information would be redundant. This ideal situation will not occur as the
best measuring device can only resolve the measured values to a certain
accuracy. Numerical errors will also be introduced. To overcome these
sources of errors, a set of overdetermined equations should be used which

means that q>3n. Algorithms, such as SVD, are then used to compute the

[30] has been used with good result, a listing of that program is given in

the Appendix.

Measurements of all of the node displacements is uneconomical as well
as unfeasible for a large structure. This means that H will be &xn with
only £ nonzero elements in H under the assumption that £ arbitrary node
displacements are measured. Suppose that the first £ nodes are measured,
thus the first % elements of x(ti) can be computed. The resulting equations

from (7.1.3) would then be

- -

r* - A A ~ ~
Y(1) [ le w2H w3H e wNH F X(tl)

Y(2) wrl  wrd  warH ... wrd X(t,)
(7.1.6) ) 1 33 NN 2

 Y(q) | A e w3r§-1ﬁ . rigmlﬁj i ﬁ(tN)J

l parameters of M, C and K. A version of the SVD algorithm given in Clarebout,

W A MR A e e
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where
x (e [ by, ]
xz(ti) h,, 0
R x,(t,) n h
(7.1.7) =) = | 31 i - 23
I xg(ti) ] I 0 hog |

with the last n-£ columns of ﬁ deleted since the elements are zeros. The
resulting matrix in (7.1.6) will be q*in where gq>fn. The matrix ﬁ is
diagonal with sensor gains along the diagonal. As stated earlier, the
displacement sensors and force transducers are collocated.

Consider now the mass, damping and stiffness matrices in the form

(7.1.8) M= diag<mll My, Wy o o & mnn>
12 €23 Cr
(7.1.9) C = tridiag €11 Cy9 Caq =+ o+ o C
c21 C32 . . . .
klz k23 . . . -
(7.1.10) K = tridiag kll k22 k33 e e e e knn
kzl k32 . * . .
The first two equations of M52+CS+K would then be
2 -
(7.1.11a) m,,8 yl(s)+cllsy1(a)+c125y2(s)+k11y1(s)+k12y2(s) ul(s)
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(7. 1. llb) mzzezyz (s)+c215y1 (8)+0228y2 (.)'0235)'3 (B)'k21y1 (5)'k22YZ (8)

+ k23y3(8) - uz(s)

where it has been assumed that yi(s) - xi(s)-
Equation (7.11a) could then be used to write a set of algebraic equa-
tions with s as the varying parameter with
r 11 - r -
b oy @ oy, oy, y,| |my, u, (1)
4y;(2) 2y1(2) 2y2(2) y1(2) y2(2) 13 u1(2)

. . . . . Cc .
(7.1.12) | . : : : . SR
. . . . . ll .

2
9 7100 (@ @ v, @ v @) |k, | vy (@) |

The values of mit will be the same, as will Ciy and kii’ for the simple

structure with evenly spaced nodes, similarily cij = cJi and kij = kji'
The above equation will be the only one required for complete determination

of the structure parameters.

Suppose now that a beam has equally spaced nodes except for the end

and k

k will not be equal to m22’

elements m 11° 12* S21° kl2 21

The first two equations are then used to

11’ €11’

k and k

€220 Kp2» 30 €330 Kp3 32°
compute the parameters with (7.1.12) being solved first followed by the
solution of the algebraic equations of (7.1.11b).

If all of the coefficients in M, C and K are different, a full set of
measurements will be required. The important property of the parameter
identification procedure is that the s“ructures symmetry can be utilized to

reduce the dimensions of the matrices thus permitting large space structures

to be identified.

I ones which are located at one-half spacing from the ends of the beam. The

B S s R R -




7.2 Numerical Results

The identification algorithm described in the previous section was used
to identify the coefficients of the M, C and K matrices as given in Table
7.1. The algorithm was first used to identify all 36 coefficiente by equa-
tion (7.1.5). The results were fair in the sense that the accuracy was
approximately one part in 104 or an error of 0.1%Z. The vectors x(s) and
u(s) were exact for the numerical test. The resulting matrix equation
Ax = b as given in (7.1.5) was with A a 18x19 matrix, X a 6x6 matrix, and
U a 6x19 matrix.

The second test performed used the structure of the matrices M, C and
K as explained in the text and given by equation (7.1.12). The estimated
parameters are given in Table 7.2 where the diagonal and tridiagonal ele-
ments only were computed, all zeros were expressed as zeros. The parameters
were correct to 12 digits with all computations in double precision on a
Honeywell 60/60 machine (36 bit word length).

The elements of the C matrix were then reduced by two orders of magni-
tude to test the algorithm for less damping. The results are given in
Table 7.3. Table 7.4 gives the estimated values when the stiffness matrix
elements were increased by one order of magnitude with C the same as given
in Table 7.4. The estimated values of the parameters in C were in error in
the eight digit indicating that lightly damped structures will be more
difficult to identify by the algorithm,

The test matrices are not representative of any structure. The model
used was for convenience. Further studies will be made to test the effect

of noise on the estimated parameters.

17




®
™~

*UOTIBDTIFIUSP] 3Yl UL PpaIs() SIITIAJER Y pue ) ‘W a4yl T°¢ 319qel

€0 00000000000000°0 €0 00000000000002°0~ ‘o ‘o 0 ‘0
€0 00000000000002°0~ 90 10000000000001°0 €7 G0000000000000°0e *0 ‘0 B e ]
°0 €0 00000000000000°0= O 0C00000N0OOTTI®0 §0 GON0000009000E ue _ ] 0 -
‘e 0 €€ (0000000000005 0= §oO an000000000§01°0 €0 ooeoeooeoooemnéd ‘s
. - ‘0 ‘o ‘0 €0 000000000000SL°0~ %0 10000000000S21°0 €0 00000000000005°D=
o ‘o ‘o 0 £0 00000000000005°0= 0 (0000000003051 "0
XTuivw ¥ 3Wd {
h - . .L
— 20 00000000000101°0 00 0000000000004 °0~ . _ *0 *o .
00 002300000000046°0= 20 00000000000522°0 20 00000000000012°0= ] ‘o ‘e .
- T TTTTTTTTTTT0 20 0e000000000032°0- 20 00000000000002°0 10 G0000000000002°0- ToTTTTTITT Tyt T T quL
B - __ .70 10 00000000000082°0= 20 000000000092T°0 20 0000000000200~ ‘0 |
‘o *0 *0 20 00000000000201°0= 20 00000000000L01°C¢ 10 0000000000005 ° 0=
I D TTTve T T ] T "7 0 10 OOTVO00TOOVVSN D= 20 400000000BUSIT Y

XTuivw 3 M2

1 .. .- , Cm . m—— . e~ ————— e ———— ;
¥
4 &

16 GOAEULIVONOCTT I ey T - —ep R { — , Y JaH._.M

. _____ __*e 06 00e0e0c)r000008°0 *0 - 0 %t
i *0 10 00000000000002°0 *o *0 ‘o

Tt b I R *0 00 Q0000000000000°0 -~ = = 2T T Teg T T T TUTT T e
_ _ _*e % ) ) ‘o . . _ "0 06 _gooooo0oocooot*® 0 ‘0
‘e ‘0 *0 *0 ‘0 10 G0000000000351°0

STt T o ‘ ATSLiVe W WL

e i R TR AT i s



"1°L 3Tqel UT USATH SIDTIIBH Y3 10J Y PU® ) ‘N JO SONTEA POIPWFIST Z°/ OTQEL

R
'
€0 00100000000000°0 0 00000000000002°0~ 0 0 0 0
T £0 00000000000002°0> 20 G0000000000001°0 €0 00000000000000°0~ o *o I I
__ _. "0 £8 00000000000000°0= 0 00000000000015°0 €0 0000000000005 °0= ‘o e
o ‘0 §£0 0000000000000€°0= »0 A0000000000S01°0 §0 0000000000062 °0= ‘0
A ) . o ‘0 €0 (100000000000S.°0= »0 00000000000S21°0 §0 00000000000005°0e
R o ‘e 0 ‘0 £0 G0000000000005°0= »0 G0000000000051°0
XTulve » 3INL
20 C0000000000101°0 00 Gessacsessssess= %o L .
00 C6000000660008°0= 20 10000000000522°0 20 00000000000012°0= 0 ‘s - %0 s
T T T T TR0 a0000000000012%0= 20 00000600000092°0 10 00000000000092°0~ T ey T T e
o e _ .__."0 10 00000000006002°0= 20 0000200A000821°0 20 (0000000000208°6= ‘e
‘e *o ‘0 29 00000000000201°0= 20 10000000000L8t°0 10 1000000000005 ° 0 m
B D R *0 o *0 °0 10 G00000000D00ge 0= 20 GOSIGVO0ONOTET Y
o e L o __ RBuive D Ik
T 10 00060B00000NCT™S ~ I N Y | _ o0 ‘ ) B A IIII.!.JJ
. ‘000 00000000000000°0 0040000302020 0 L S __ % ‘e
‘e ‘0 1o 00000000000002°0 ‘0 _ T %o A
I D ~ 77 %0 00 0000c%00000000°0 T < T °9 T T T T ey
o ‘e I T I _ %o 00 aoooo00e000001%® @ M)
‘0 ‘e *0 °0 °0 10 00000000000058°0
) T ’ , o XTuivM W INL T

'l"ill'llllllll'l‘i




*T1°L @1qel <F ueyl Zuydmeq SSIT YIFA N Pue D ‘W jJO sanjep pajewmylIsy ¢°/ I[qel

3

€0 00000000000000°0 €0 (10000000000002°0~ *0 °0 ‘0 *0
€0 00000000000002°0= 90 10000000000001°0 S0 10000000000000°0= *e 0 *0
) ‘0 €0 00000000000008°0= 80 (0000000000011°0 §0 (1000000000000§°0~ _ %0 ‘0
‘o *0 €0 0000000000000£°0= w0 0000000000501°0 £0 0000000000006, °ne *0

] ‘o ‘0  £0 000000000000S.°0= 0 00000000000S21°0 ¢ *:400000008°0=

T ‘e ‘o ‘0 £0 G0000000000005°0~ 80 0000¢-<.,000081°0

XI¥ive ¥ 3Ml

_ 00 02000000000101°0 20=09900000000004 0~ *0 0 o L ]
20-09900000000006°0= 00 N[000000000S22°0 00 090000000 -912°0~ °c *0 ‘o
7T T 707 00 00000003600012°0- 08 00000000000002°0 10-08100000000092°0= ) e A

L L ‘0 L ‘0 10=09100000000002°0= 00 Q0000000020921 °0 00 ooor;o,o.onomool.,@noc-i L
] °0 ‘0 00 09666666666101°0= 00 0L666666660901°0 10002666656666600°0
- I ] *o ‘0 ‘0 10=02666066606000°0~ D0 08466660066901°0

e o _ _ e . __ __¥Tuive 3 3mb
10 J00000000000¢£1% T ‘e °0 %0 TTTT T ooepr T °e
. __ _ __ _*e 0 aeceeccescoccs’e *o e . _* ) ‘0
*e °0 10 00000000000002°0 ‘0 ‘o ‘0
- - B e *0 00 00000000000009°0 R ] ‘0
o e ‘o °0 ‘0 00 0000L000200001°0 - %e
*o ‘o *0 *0 °0 10 60000000000058°0

XTNlve » ML




—t
-]

$0 00000000000000°0 G0 G0000000000002°0=

§0 00000000000002°0~ 90 10000000060001°0 SO 00000000000008°0~
*0 S0 00000000000008°0= 90 0000000000001 °0
‘0

00 OVSLEAE06H001 0  20-0906066666660° 0~

202000a0000060400°0~ 00 A0T0C006606022°0 00 009EV6606606512°0=

T 10 aree0sseeetecto
*o

‘0

- g

i

‘o

*8urdmeq IYSy7 L1874 YITM Y pPuR ) ‘N JO SanTep pajemyIsy ¢°/ ITQEL

‘0

‘0

S0 0v000000000005 0~

°0 S0 00000000000005°0= 90 Q0000000000600

°0

‘o
‘0

S0 Q000000000006 °0e

‘0 S0 JV0000000000S.°0= 90 (10006000000521°0 SO0 00000030000005°0= -

‘o

‘o

00 000EV644600512°0= 00 0L0KT1660666652°0

10-09920L000606:-32°0= 00 0§2.0666666521°0 00 0e691000000201°0~

‘6

°0
‘o
50 04000000008002°0
‘0
*0

*0

‘o

10=00920L606606682°0~

*0
*0
.°|

00 Q6691000000201 °0~ 00 Q9652000000in1°0

*0

‘o
)
‘0
00 avlssob6beb06L°0
‘o

‘0

10=06L469000000060 "0~

—_——— *
‘o
‘o
°o0
10=0666606660600606066°0

]

10 4000000000005 °0

*n S0 00000000000005°0= 90 000000000000S1°0

XINivW ¥ Ind

—— _ 10-

10=06L690000000S0°0°
00 a969TLON000SOT D

!-...c:»l..um.u...!»
*0

- .“|

.° M

.

*e

XTuiym W 3INL




8. Summary

The research effort under NASA Grant NSG-160" has continued with the
major objective of developing numerical algorithms for large space structures.
The research is directed to finding algorithms for analysis, synthesis and
identification of large structures.

Since the finite element model gives rise to the equation Mx+Cx+Kx=f (t),
considerable effort has been expended toward understanding matrix polynomial
which play an important role inthe obtaining the dynamics of systems. In

addition, the dimensions of the matrix ccefficients are lower by one half,

than the state variable model. Analysis of the structure from the state
variable model appears to be out of the question when one assumes ths* the
matrices M, ¢ and K, although sparse, may exceed the size of 1000x1000. It
is difficult to handle matrices of this dimension and much more difficulc
to manipulate matrices of twice the dimension.

The decoupling algorithm for analysis has continued but the procedure
does not appear to have the efficilency required for the desired analysis.
The research has been redirected with more emphasis on the theory of matr?i
polynomials,

This report discusses the decoupiing algorithm, the theory of Laplace

transforus of matrix polynomials and identification of the three matrices

S W aE E Em ae

M, C and K. The identificatiun algorithm is promising and work will continue
~n that aspect of the lar -~ space structure. Data from the NASA LRC beam
facility will be cobtained in the near future and the algorithm will be test-
ed on this data. Work will continuc on the assignment of damping to a
structure whichk requires a better understanding of tiansformations in a
multi-dimensional space.
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A.1 Derivation of the Discrete Transfer Function

Let T(s) denote the transfer function in the Laplace domain with

(A.1.1) T(s) = H[Ms2Ce+K] LG

1/2 .~1/2 1/2KM—1/2 1/ZG

cM T CseM M

8+A2 ]"lul/zc

.V A

- HM1/2[132+A1

where Al and Az are as defined. The discrete transfer function T(z) is

given by
(A.1.2) T(z. = uu1/2(1—z'1)z{s'l[1s2+Als+A2]’1}M1/2c

The term inside the braces can be expanded into a partial fraccion with

-1 -1

-1..2 -1 -1 2 -1
I (A.1.3) 8 [Is +A1s+A2] = A2 s —A2 [s+A1][Is +Als+A2]
I which can be rewritten as

(A.1.4) 8-1[]82+A ss+A2]"l = A':jl{ls’l_ (a+Al/2)[(Is+A1/2)2+A2—Ai/4]

1

2,,,-1/2 2,,,1/2 2 2,,,-1
A, /20A)-A /4] T (A -AL J4) T T (Ta+A, /2) THA,-AT /4] )

for which the z-transform is

2
A A
(A.1.5) Z{s'l[Isz+Als+A2]'1} a Agl{z(z-l)-ll-[zzl-zexp(- -2-1- T)cos (A,~ fl-)l/zT]
A 1/2 A /2

. [zZI—Zzexp(- ?]; T)cos (Az-Ai/&) T+exp(-A1'1')]- '2'1" [AZ-Ai/lol_l

A Ai 1/2,.. .2 A AL1/2
« [zexp (- 7 T)sin(Az- T) T)[2°1I~2zexp (- 3 T)cos(Az- re T

+axp (—Al'l') 1}
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Since (2-1) ie a scalar, (A.1.5) can be rearranged* as

A2
A
4.1.5)  z{s”![1s +A18+A 1} = A Liz(2? I-2zexp(- 3 L T)cos (A,- 61 /2,
A 2
+ exp(-A;T) I-[2*1-zexp (- ;L T)cos(a,- 41 120y 15-1)
2
Ay Aj A
- [zexp(~ ——‘T)sin(A - ——)l/ZT][z-l]}[2—1]-1[221-22exp(- il T)cos(A2
+ exp(-AlT)]
which 1s
A2
A A 1/2,
(A.1.6) z{s~ [Is +Als+A 1} = {(I-exp(- -—- T){coa(A2 )
2 A2
A Ay A A
-y DVt 25 2 srenp (- 7 D(exp(- 32 1)
2 2 A2
A A A]
- leoaaym 7Y 71 32 (a ) M atna,- )l/ZT])z}{(z-l)-l
2
Ay Ay
. [zZI-Zzexp(- ——-T)cos(A2 ’ )1/2T+exp(-A1T)]-l}
where
(A.1.7) A= w1/ 2g1/2
(A.1.8) A, = M1/ 20471/2
Defining
A1 -1/2.-172
(A.1.9) Bl =-5= M CM

A

2

)1/2
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A
(A.1.10) B, = - (A, z1)1/2 - o 2722 % v Lo 1)1/2
(A.1.6) can be written in the compact form
(A.1. 2{8"1{182+A1s+A21'1} - {(I-exp(BlT)[cos(BzT)-Blﬁglsin(Bzr))zz

+ exp (B, T (exp (B, T)-[cos (B,1)-8 87 's1n (B, 1) D)z} { (z-1)

. [221--22exp(Bl'l')cos(BzT)+exp(281'1‘)]}_1
Returning to (A.1.2), the discrete transfer function T(z) is then

(A.1.11) T(z) = HMl/Z{(I-exp(BlT)[cos(BZT)-Blelsin(BZT))z
+ exp(8,T) (exp (B, T)~[cos (8,T)-8, 8 s1n(8,T)) Hz?1-2zexp (8;T)

 cos (B,T)+exp (28, 1)) 1t %

where Bl and 82 are defined as in (A.1.9) and (A.1.10).




APPENDIX 2

ROOTS OF THE SHIFTED LEGENDRE POLYNOMIALS
AND CHRISTOFFEL WEIGHTS

e o

MRS med  eend e

oo,

oy &

WO~

O\ & OWI\W = o+

89

ROOY'S WEIGHTS
3
.1270166E-1 2. 77TTTT7TTE-1
. 0000000E-" L LuhuhhLE-1
.8729833E-1 2.TTTTTTTE-1
5
.gg%go7zz-2 1,1846344E-1
.3076524E-1 2.3931433E-1
.O000000E-1 2.83344333-1
.6923465E-1 2.3931&333-1
.5308992E-1 1.1846344E-1
= 7
.5446043E-2 6.4742483E-2
.2923440E-1 1.3985269E-1
.9707742E-1 1.9091502E-1
. 000000VE-1 2.0897959E-1
.0292257E-~1 1.9091502E-1
.TOT6559E-1 1.29852692-1
.T455395E-1 6.4742483E-2
= 9
.5919880E-2 4. 0637194E-2
.198L446E-2 9.032L080E-2
.9331428E-1 1.3030534E-1
.3787328E-1 1,5617353E-1
.0000000E-1 1.651196TE-1
.6212671E-1 1.5617353E-1
.06685T1E-1 1.3030534E-1
.1801555E-1 9 03524080E-2
.8408011E-1 4 .0637194E-2
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ROOTS

1.0885670E-2
5.6468700E-2
1.54 2399E-1
2.4045193E-1
3.6522842E-1
5.0000000E-1
6.3477157E-1
7.5954806E -1
8.6507600E-1
9.4253129E-1
9.8911432E-1

7.9084726E-3
4 ,1200800E-2
9.9210954E-2
1.7882533E-1
2.7575362E-1
3.8477084E-1
5.0000090E-1
6.1222915E-1
7.2424637E-1
8.2117466E-1
9.0078904E-1
9.5879519E-1
9.9209152E-1

6.003T409E-3
3.1363303E-2
7.5896708E-2
1.5779113E-1
2.1451301E-1
3,02924325-1
3.9940295E-1
5.0000000E~-1
6.0059T04E-1
6.970756TE-1
7 .8548608E-1
8.6220886E-1
9.2410329%-1
9,6863669E-1
9.9399625E -1

(PPN V R PR

N =

N:

<
]

11

13

15

WEIGHTS

2.7834283E-2
6.2790184E-2
9.3145105E-2
1.1629688E-1
1.3140227E-2
1.3646254E-1
1.3140227E-1
1.1629688E~l
9.3145105E-2
6.2790184E-2
2.7834283E-2

2.0242002E-2
4 ,6060749E-~2
6.9436755E-2
8.9072990E-2
1,03908C2E-1
1.1314159E-1
1.1627577E-1
1.1314159E-1
1.0390802E-1
8.9072990E-2
6.9436725E-2
4 6060749E-2
2.0242002E-2

1.5776620E-2
3.5163023E-2
5.3579610E-2
6.9785338E-2
8.3134602E-2
9.3080500E-2
9.9215742E-2
1.0128912E-1
9
9.3080500E-~2
8.3134602E-2
6.9785338E-2
5.3579610E-2
3.5183023E-2
1.5376600E-2

.9215T42E-2
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e T = S

4

Soren

o

PN B i end Gl el e

9l

NEGATIVES OF LOGARITHMS OF ROOTS OF SHIFTED

N= 3

2.193011
0.593147
0.119574

4

2'6:4 438
1.643
1.08508h
0.693147
0.412298
0.214821
0.005541
0.0160u48

LEGENDRE POLYNOMIALS

N =11

.520308
87406

. 00304

425235
.007232
454490
.275032
.144938
.058126
.010945

N =13

.839821
.189298
.310507
. 721346
. 288247
.955107
.693147
485760
.32362&
.19701

.10&&82
.042074
.007940

OOOO0OO0OOHHFMNMND &=

OOO0OO0OO0OO0OO0OOHHFNWE

N =15

5.11537¢
3,462117
2.578382
1,982016
1'538381
1,194272
0.917784
0.693147
0.509831
0.360861
0.241453
0.148258
0.078931
0.031866
0.006022
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Appendix 3 Axvh Version of Golub Algorithm

SURROUTINE GULUBCA» X RyMyN)
ACMeN)Y ¢ B(M) GIVEN WITH MIN SOLVES FOR XON) SlLMH THAY
J IS A MINIMUM
C METHOD OF G. GOLURs» NUMERISCHE MATHEMATIK 7 206-2164 ( 194%
INPLICIT DOULLE PRECISION (D)
REAL A(10»10sX(10 0 B(10)»U(50)
C.o.....PERFORM N ORTHOGONAL TRANSFORMATIONS TO Af .».) TO
Cineee UPPER TRIANGULAKRIZE THE MATRIX
DO 3010 Kri,N
DSUM=0.0D0
DO 1010 Isx,M
DAJ=A(IyK)
1010 LISUM=DSUM+DAJIXE2
DAI=A(KsK)
DSIGMA=DCIGNC DSART( USUM ) »DAT )
DBI=DSART( 1.0D0+DAI/DSIGMA)
UCK )=DRI
FACT=DFACT
KPLUS=K+1
DO 1020 I=KPLUS/M
1020 UC1)=FACTRA(I,K)
Coveve J-UNUNAT IS SYMMETRICr» ORTHOGONAL MATRIX WHICH WHEN ARPLYED
CoveeeeTO Al Lr. ) WILL ANNIHILATE THE ELEMENTS BELOW THE DTAGONA. W
N0 2030 J=KsN
Coeee APFLY THE OPTHOGONAL TRANSFORMATION
FRiT=0.0
DO 2010 I=KsM
2010 FACT=FACT+U( I XA(T,J)
PO 2020 I=K»M
2020 A(TeJ)=ACT»J)-FACTHRUCT)
2030 CONTINUE
FACT=0.0
PO 2040 I=KyM
2040 FACT=FACT+U(I )xB(I)
DO 2050 I=KeM
2050 M 1)=B(I)-FACTRUCI)
2010 CONTINUE
C.veusoBACK SUBSTITUTE TO RECURSIVELY YIELD X(.)
XCNDI=R(NY/A(NsN)
LIM=N-1
DO 4020 I=1,LIM
IROW=N-T
SUM=0.0
DO 4010 J=,.{
4010 SUM=SUM+X( N-J+1 YXA( IROW»N-J+1)
4020 X( IROW )=( BC IROW )-SUM ) /A IRDW» IROW )
RETURN
END

O

From Clarebout, {30].
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