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ABSTRACT

Several important aspects of the Regulator with a Prescribed Degree of
Stability (RPDS) methodology and its applications are considered. The
solution of the time-varying RPDS problem as well as the characterization
of RPDS closed-loop eigenmstructure properties are obtained. Based on the
asymptotic behavior of RPDS root-loci, a novel one-step algorithm for
designing Regulators with Prescribed Damping Ratio (RPDR) is developed. i
The robustness properties of RPDS are characterized in terms of the pro-
perties of the return difference and the inverse return difference matrices
for the RPDS state feedback loop. This class of regulators is found to
possess excellent multi-loop margins with respect to stability and degree
‘ of stability properties. The ability of RPDS design to tolerate changing
' operating conditions and unmodelled dynamics are also illustrated with a
multi-terminal DC/AT power system example. The output feedback
realization of RPDS requires the use of Linear-Quadratic-Gaussian (LQG)
methodology. Several interesting issues that arise in the application of
robustness recovery procedures to the design of RPDS based LQG compensators
are also examined.
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CHAPTER I

INTRODUCTION

1.1 Thesis Motivation

A linear time-invariant (LTI) system of the form
x(t) = A x(¢) (1.1)
is said to have a degree of stability q if all the poles of A are located
to the left of the lineg = - @ (where @ is real and positive) in the left-
half complex plane (see Figure 1.1). The Regulator with a Prescribed
Degree of Stability (RPDS) problem is onme of determining the weighting

matrices Q and R in the cost functional of a Linear Quadratic (LQ) regulator

problem.
Y
min lim [x'(t) Q x(t) + u'(t) R u(e)lde 1.2)
u(e) £,
to

subject to the dynamic constraint
x(t) = A x(t) + B u(r) (1.3)

so that the resulting state feedback design has a prescribed degree of
stability.

The RPDS problem for LTI systems was first formulated and solved
by Anderson and Moore [An 1]; their work is one of the many attempts to
combine the poleplacement techniques and LQ methodology in some useful
fashion. Other major contributions in this area include the asymptotic
LQ poleplacement technique of Harvey and Stein [Ha 1] and the sequential

poleplacement method of Solheim [So 1]}. Both of these methods address



[ S

(O,0)

AN

FIG. 1.1 Region (shaded) of Allowable Closed-Loop Poles
for a RPDS Design with Stability Factor Equals
toa . (a>0)



the problem of finding the appropriate Q and R matrices that correspond
to a prescribed set of eigenvalues.

The RPDS problem is useful from the application point of view. 1In
many engineering problems of interest, the exact position of the closed-

loop poles may be of secondary importance. As a result, the designers

are interested only in locating all the closed-loop poles in some regions of

the left-half complex plane.

One such example which motivates the research in this thesis is

the design of a state feedback law for a reduced order model of a m-terminal

DC/AC power system({Gr 1], [Ch 1]). This is the preliminary stage of
design for a decentralized output feedback control scheme. A standard
power system model of this type, with n aggregated areas, has (2n-2)
modes of iterarea oscillationsl. Such modes are usually poorly damped
in the absence of compensation. The two remaining modes are real. The
one located at the origin is the clock error mode. The ome located
slightly to the left of the origin is the average frequency mode. I'or
physical reasons, it is desirable for both of these modes to remain

unchanged under state feedback. This could be trivially accomplished

in the LQ design by making such modes unobservable in the cost functional?

The primary design objective is to find a state feedback control law that
results in sufficient damping for the (2m-2) oscillatory modes. One

natural way to specify the damping criterion is simply to require all the

1 See Figure 5.1 of Section 5.1 for an example of such pole configuration

2 A detailed discussion of such a poleplacement technique is given in
Section 5.2

a e iy e e o1 S



closed-loop poles to lie to the left of some line § = ¢ in the complex
plane. This class of problem can be effectively handled using non-
asyuptotic LQ poleplacement techniques such as RPDS and Solheim's method
[(So 1]. With respect to the computational requirements, RPDS is the
simpler of the two methods. In every design iteration using RPDS method,
one needs to solve a Riccati equation and an eigenvalue problem. In the
case of Solheim's method, one may have to solve as many as n Riccati
equations and n eigenvalue problems for each iteration. Although the
above mentioned design objective can also be handled by asymptotic
techniques such as Harvey/Stein's method [Ha 1] with relative ease; the
use of which in the multiterminal DC/AC power system is however inappro-
priate. From an engineering point of view, it is undesirable to speed up
some of the oscillatory modes as required by the asymptotic poleplacement
method in order to allow the poles of the remaining modes to approach their
specified locatioms.

Despite the potential usefulness of RPDS as evidenced in the above
discugsion, research on this class of regulators has been largely over-
looked in the literature. Apart from a few brief remarks found in the
original work of Anderson and Moore [An 1], little is known to date
about the relation between the prescribed degree of stability and the
feedback properties of a RPDS system. This is partly a result of the
lack of appropriate tools for effective analysis of multivariable feed-
back systems. It is only recently, in the context of studying the robust-
ness properties of controllers derived using Linear-Quadratic-Guassian
(LQG) technique that an appropriate formulation has emerged ([Le 1], [Do 4]).

One major objective of this thesis is therefore to analyze the feedback



properties of RPDS with special emphasis on robustness properties.

Anotiier important problem of interest here is the possible
application of RPDS to the design of LQ regulators with specifications
other than prescribed degree of stability. One such example is the
design of regulators with prescribed damping ratio (RPDR). This class
of LQ regulators has all its poles lying inside a convex cone centered
at the origin and symmetric about the negative real axis (see Fig. 1.2).
Such designs are of potential anplication in the power system example
mentioned above. .

It is hoped that thc new insights on properties of RPDS obtained
in this thesis will help the control system designers to better appreciate

the benefits that they may expect from this class of regulators.

1.2 Thesis Organization

This thesis is organized as £ollows:

In Chapter II we first formulate and solve the generalized RPDS
problem for linear time-varying systems. A precise notion of degree of
stability that applies to all finite dimensional linear system is
introduced for this purpose. We then specialize these results to the time-
invariant case which was the original form of RPDS problem addressed by
Anderson and Moore. Extension of RPDS techniques to the dual problem of
designing a Kalman Bucy filter with a prescribed degree of stability
(FPDS) is also considered, and interpretations of the FPDS design procedure
in the context of estimation are given.

In Chapter III, the eigenstructure properties of time-invariant RPDS

are examined., We first derive some sensitivity formulas for the closed-
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loop poles with respect to the stability factor o . This is followed
by a study of the behavior of RPDS root-loci as the relative weight
between the state and control weightings varies. It turns out that this
problem can be formulated in a fashion similar to the conventional LQ
root-locus problem [Kw 1]. The control weighting matrix is chosen to

be of the form PR. The relative weight between the state and control
weightings can be adjusted by varying the scalar p . We are particularly
interested in the asymptotic behavior of the root=loci as p{(p > 0) becomes
very large or close to 0. Based on the asymptotic properties of the
RPDS root-loci as p approaches infinity, a novel algorithm for solving
the regulator with prescribed damping ratio problem is derived.

The robustness properties of RPDS are discusse& in Chapter IV.Adopting
the framework developed in (Do 2] and [Le 1], we use the minimum singular
value of the return difference and the inverse return difference matrices
as basic robustness measures for multiple-input multiple-output (MIMO)
feedback systems. The dependence of the robustness properties on the
stability factor O is analyzed by using the frequency domain inequalities
for the RPDS return difference and inverse return difference matrices.

The dual robustness problem for FPDS is next formulated, and the FPDS
robustness properties are interpreted in the context of estimation.

In Chapter V, we consider an example where the RPDS technique is
used to design a state feedback control law for a reduced order model
of a multi-terminal DC/AC power system. Besides validating theorems and
conjectures stated iv previous chapters,the results obtained here alsc
reveal several desirable features of RPDS designs not predicted by the

theorems developed in this thesis. This provides considerable justification



Lade s S NP

—— e iam ot

for the use of RPDS methodology in power systems control.

Since full statce feedback can never he realized in real life, we
are thus motivated to study the feedback properties of RPDS based LQG
compensators in which the feedback gain is designed by using the RPDS
technique and where a KBF is used to provide the state estimates. This
problem is considered in Chapter VI. LQG compensators are known to
possess no guaranteed uncertainty tolerance in general (Do 4]. As a
result, we only focus our discussion in this thesis on the class of RPDS
based LQG compensators that are designed with the robustness recovery
procedures ([Do 1] and [Fw 1]). Such procedures allow one to approximate
the state feedback transfer matrix (and consequently their robustness
properties) with the LQG loop-transfer matrix in a systematic manner.
Severzl difficulties encountered in attempts to combine the RPDS technique
and robustness recovery methods in designing LQG compensators are
illustrated with numerical examples.

Chapter 7 consists of conclusions and suggested directions for

future research.

1.3 Contributions of This Thesis

The major contributions of this research are:
(1) Formulation and solution of the time-varying RPDS problem.

(2) Development of a simple procedure for studying the asymptotic
behavior of the RPDS root-loci.

(3) Development of a novel algorithm for solving the regulator with
prescribed damping ratio problem.

(4) Clarifying the robustness properties of RPDS



(5) Uncovering some potential problems that one may encounter
in combining the RPDS technique with robustness recovery
methods in designing LQG compensators.



1.4 Notation

SIS0 single-input single-ocutput

MIMO multiple-input multiple-output

LQ liner-quadratic
LQG linear~quadratic Guassian
KBF Kalman Bucy filter

RPDS regulators with a prescribed degree of stability
FPDS Kalman Bucy filter with a prescrided degree of stability
LTI linear time=-invariant |
2(s) loop transfe: matrix
(s) loop transfer matrix for RPDS with a degree of stability a

I,
!c.(‘) ioop transfer macrix for FPDS with a degree of stability a

L(s) sultiplicative perturbation of I(s) or Iu(a)
AA) an eigenvalue of A
AH complex conjugate transpose of A 1

g___(A) wmaximum singular value of A 4 kmz (f A)
Py
Opin(®) wminuoum singular value of A DY m:l.nz (éﬂ A)
defined as

>8 A -B8is a positive definite matrix

A~ B is a positive semi~definite matrix

I Identity matrix

L e s m——
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CHAPTER II

THE TOR A PRESCRIBED D OF
STABILITY PROBLEM AND ITS DUAL

2.1 Introduction
In this chapter, we formulate and solve the RPDS problem for finite
dimensional linear system., By 'linear systems' we mesan a pair of

equations of the form

x(x) = A(t) x(c) + B(t) u(c) 2.1)
y(t) = c(t) x(c) (2.2)

We make an assumption at this point that is to hold throughout this
chapter. The elements of the matrix A(t) are continuous ard bounded
functions of time defined on -= < t < ®» ., The elements of the matrices B(t)
and C(t) are piecewise continuous and bounded functions defined on -—m<e<w ,

The formulation and solution of the time-varying RPDS problem is
given in section 2.3, 1In order to study this problem, a precise definition
for 'degree of stability' that applies to both time-varying and time-
invariant systems is introduced. The time~invariant version of the RPDS
problem studied by Anderson and Moore [An 1] becomes a special case of
our formulation.

The problem of designing Kalman Bucy Filter with a prescribed degree
of stability (FPDS) is considered in Section 24 . In view of the dual
nature between the Kalman Bu;y Filter problem and the LQ regulator problesm,

the design techniques for RPDS can be readily applied to FPDS. Several
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interpretations of the formulation and solution of the FPDS problem are

given.

2.2 Degree of Stability for Linesr Systems
The concept of 'Degree of Stability' for linear time-invariant (LTI)

systems is directly celated to the system pole locations.

Definition 2.1 An autonomous system x(t) = A x(t) is said to possess a
degree of stability &, for some real positive constant &, if all the
eigenvalues of A are located to the left of the line U = =G in the left-
half complex plane.

Incuitively spesking, a LTI system with a degree of stability @ will
attenvate any given initial state perturbation at a rate faster than or
equal to ¢ %%, To motivate the extension of such concepts to the time-

varying case, let us first recall the following definition of exponential

stability for finite dimensional linear system.

Definition 2.2 ([Br 11]), Section 29)

The systcn'i(t) = A(t) x(t) is said to be exponentially stable if
there exists some positive constants Y and A , such that for all ¢

and t  in the half plane ¢ > t , we have

-A(:-co)
l¢ese )] < ve (2.3)
where .
o(e,t ) = A(e) ¢(e,t.) (2.4)
and

St he) = L 2.5
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It is well known that the exponential stability of LTI systems
can be easily established by checking the pole locations of the system
matrix. The following theorem clarifiles the relationship between the poles of
a LTI system x(t) = A x(t) and the induced norm® of the respective

transition matrix eéF .

Theorem 2.1 Consider the autonomous system
x(t) = A x(t) (2.6)
Let ¢ be some given positive constant. Then

max (ReQ, (&) < = (2.7)
i

if and only if there exists a positive comstant Y such that

ﬁ(c-co) —a(t-t )
|le [l <ye for all t > t_ (2.8)

Proof: Sufficiency: Suppose that (2.8) is true for some positive Y and
max Re(Ai(A)) (t:-t:o)
a given @. Observe that e is the spectral radius

A(t-t )
of e o, Using the fact that the spectral radius of a matrix is

always less than or equal to its spectral norm, we get

ewitx R @A (e-t )

A(t-t )
He™ I

~o(t=t )
<  Ye ° .

A

(2.9)

Since the inequality (2.9) holds if and only if

All the vector norms considered here are the Euclidean norm. The
corresponding induced norm is the 2-matrix norm {(See(De 1]).

'
!
:
¢
¢
'
3
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max Reai(é)) < <0 (2.10)
i

this completes the proof of sufficiency.

Necessity: Suppose that max(Re(/\i(é)) < -0 . We can find
i
a similarity transformatiun that reduces A to its Jordan form

éj =P A_l_’_.l ([B 1] Section 12). For system in Jordan Form, the tramsition

matrix is block diagonal with each of the nonzero element being one of

the three forms

A
tk e ot cos wt, t:k eoc sin wt or tk e t (2.11)

where o’i jo and A are eigenvalues of A. It follows from our assumption
on the eigenvalues of A that each element of eé-jt approaches 0 at a rate

faster than e.'at as t approaches infinity.

A

This in turn implies the existence of some positive comstant Y

such that
A (c-c ) A -a(c-c )
[Je 3 ©°1 < Ye ° (2.12)

Since A=P A P, it follows that

A(t-t )
e <11

A, (t=-t_)
Hp-l e-j o

2||

(t-t )
Y] eS0Tzl

y LT (el e-a<c-c°) . (2.13)

I

In

This completes the proof of necessity.
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Corollary 2.1 The autonomous system (2.6) has a degree of stability @

if and only if there oxists a positive constant Y such that for all

A(t-t ) -a(t-t_ )
e “l<ye ° (2.14)

Proof: This is a trivial consequence of Definition 2.1 and Theorem 2.1l.

It seems natural from the result of Corollary 2.1 that we should

define the stability of a linear system x(t) = A(t) x(t) in terms of the

norm of its transition matrix.

Definition 2.3

A linear system _:.g(t:) = A(t) x(t) is said to have a degree of stability

o if there exists some positive comstants Y such that for all t > co’

-a(t-:o)
lHetee )l < ve (2.15)
The following theorem characterizes the degree of stability using

Lyapunov's Direct Method.

Theorem 2.2 Let V(x(t),t) be a Lyapunov function of the form
v(x(t),t) = gr(t) Q x(t) for x(t) -'A(t) x(t) on the whole state space.
If for some constant € > 0,

Q(t) >e 1 for all et > ¢ (2.16)

then the system described by é(t) = A(t) x(t) has a degree of stability o

if for all t > to’
V(x(t),t) < = 20 V(x(t),t) (2.17)
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Proof: It follows from (2.17) that V(x(t),t) is bounded above by

o2 (tot,) V(x(£ )tg). Since V(x(6),) > € |[x(e)||? this means tha:

%) -a(t-t )

FEIOIN g(—é— vix(t)),t )" /e (2.18)

Dividing both sides of (2.18) by lL;(to)ll and taking the supremum

on the right, we obtain

Hze L -t
TE-(t—on i(e Amax (Q(to))) e o (2.19)
Now, by taking the supremum on the left side of (2.19), we
obtain
1 % ~a(t-c.)
Hoce,e )] < (2 rmax @ )2 e © (2.20)

which establishes the degree of stability.

Remark In situations such as designing feedback laws with optimal control
methods where a Lyapunov function is available, Theorem 2.2 provides
a convenient mean of evaluating the degree of stability for a feedback

design. This point will be made clear in Theorem 2.4,

2.3 Formulation and Solution of the Continuous Time RPDS Problem

In this section, we formulate the RPDS problem for finite dimensional
linear systems. Although the RPDS problem studied by Anderson and Moore
is a special case of that considered in this thesis, their solution of

time-invariant problem extends readily to time-varying case.
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2.2.1 The RPDS Problem Statement

Consider the following LQ regulator problem

1
min J = lim _:f(vc) Q(t) x(t) + gT(t) R(t) u(t) dt
u(t) 6 Je, (2.21)

 subject to the dynamic constraint

x(t) = A(t) x(t) + B(t) u(t) (2.22)
z(to) = 50 (2.23)

where (A(t), B(t)) is uniformly completely controllable.
The RPDS problem is to find the appropriate weighting matrices Q(t)
and R(t) such that the steady state control law that minimizes the cost

functional (2.21) has a degree of stability a.

2.2.2 Solution of the RPDS Problem

The solution of the RPDS problem is given in the following

theorem,

Theorem 2.3 Consider the deterministic LQ regulator problem in

Section 2.2.1. The weighting matrices are chosen as

Q) = Q 20t (2.264)
R(t) = i!_ ezq't (2.25)

2ot 20¢

where ‘Q(t) e and _i(t:) e are piecewise continuous and bounded on
[t»»] with

Q(e) 2B, I and R(t) 28, I for all t  (2.26)

PO
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1
where Bl and 32 are some positive constants. Furthermore, (g(:)z. A(t))

is uniformly completely reconstructable. Then the solution §a(t) of

the Riccati equation

.ga(:) = @A) +a DT gam + K (t) (A(t) + a D) + Q(t)

= N 5t T >
- K, (£) B(t) R “(t) B(e) 2, (¢t) (2.27)

~

with terminal condition ga(r.l) = 51 converges to Ea(t) as t; approaches ®

for any gl 2> 0 and the steady state optimal comtrol law given by

u(e) = -RH(e) BT(e) Ry(e) x(e) (2.28)

has a degree of stability a. .

Proof: The assumptions on A(t), B(t), Q(t) and R(t) relating to
continuity, boundedness, uniform complete controllability and uniform
complete reconstructability guarantee the existence of an exponentially
stable steady state optimal control law that minimizes the given cost
functional. To establish the degree of stability of the control law,

we introduce the following transformations

R a(t-t )
5(:)9- e ° x(t) (2.29)
. A a(c-co)
u(t) = e u(t) (2.30)

Then, :':5(:) and .g(t:) are related dynamically by
a(e-t )

x(t) = & (e x(0)) (2.31)
= (A(t) +a D x(t) + B(t) u(t) (2.32)

The initial condition of i(c) is given by

el

e W S da e vt e e

I 7T o I O
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~

x(t) = x (2.33)

The cost functional J in (2.21) can now be written as

J=1m | 1 [T 3e) x(e) + u(e) R(E) a(edlde (2.34)
£, 4o
™ Je,

Observe the strong comnection between the transformed LQ regulator
problem described by (2.32) and (2.34) and the original problem described
by (2.21) and (2.22). Supbose that g*(t) is the optimal control at time
t for the original problem, then ;f(c) = &t 5f(t) is the value of the
optimal control at time t for the transformed problem. The resulting

~ had *
value of the state 5*(t) is given by x *(t) = ot x (t), provided that

.~ at *

x (ty)=e ° x (to). Thus, a feedback control law obtained for the
transformed problem readily yields a feedback control law for the original
problem. Moreover, the resulting minimum value of the cost functional

is the same for each problem.

Our next step is to study the transformed LQ regulator problem

t
1
min J = lim ["f(c) Q(t) x(t) + ur(e) R(t) Q(:)]d:
u(t) tl“‘” %
(2.35)

subject to dynamic comstraint

X, (2.36)

E(t) = (A) +o D x(t) +B(O) u(®) ; x(c) =
We need to check all the technical conditions that ensure the
existence of an exponentially stable steady state optimal control law
for the above optimization problem. It is trivial to see that A(t) +al

is bounded and continuous. Moreover, the piecewise contiruity and
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boundedness of B(t), §(t) and i(c) follows from the assumption of the
original LQ regulator problem. To guarantee the 2xistence of an
exponentially stable steady state concrolllaw, we also require the
uniform complete reconstructability of (gz(t:), A(t) +a I). The uniform
complete controllability of (A(t) +a I, B(t)) follows from that of
(A(t), B(t)) by observing the equivalence of the following four state-

ments. 1

(1) (A(t), B(t)) is uniformly completely controllable

(15) There exists some positive numbers J,Y_, Y,, Bo’ 31 such
that

-w
° »
@ vy, I i/;o ~[2(to +a)B(1) f(‘r) ¢T(to +c,'r)]d‘r <v, L
(2.37)

toto .
(b) 8, I< ot ,t t0) [[t [g(co +0,7) B(t) BY(D) f(co+ c,t)]d'r]
o

T
¢ (t,t +0) <8, I for all ¢, (2.38)

(111) There exist some positive real numbers O, Y, Yp0 Bo’ Bl

such that
toto

[ a(t +o-T) T T
@y, L < e (e +0,7) B(D) B (D) (¢ 49,T)
cC)

a(t_+0-T)
° ]dT iezucY 1 for all ¢, (2.39)

€ 1

1 Readers are referred to Chapter I of [Kw 1] for a detailed discussion
on uniform complete controllability and uniform complete observability

P
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toto cx(:°+ 0=T)

(®) e-Zac Bo 1< % g(to,go-p a) f [9;_(:04- g,T)e

t
(")

a(t + gt
B(t) gT('r) ;Q_T(c°+ ) e ° ’]d‘t

DRI N 4 for all t_ (2.40)

(1v) (A(t) + o I,B(t))is uniformly completely controllable.

The equivalence between (iii) and(iv) follows from the observation
a(t=-t )
that ¢ (t,t:o) e © is the state transition matrix of the system

described by (2.32).

—

By duality, the uniform complete reconstructability o{ (Q?(t), A(t))
also implies the uniform complete reconstructability of (Q:(t),é(t) +al).
Thus, it follows from Theorem 3.6 of [Kw 1] that ‘Ka(c), the
solution of the Riccati Equation (2.27) with terminal condition
Z(_G(tl) = K,, converges to K,(t) as t; >« for any K, > 0. Moreover,
,&aﬂt) is also a solution of (2.27). The resulting steady state optimal

control law is given by

w0 =Kt BT k) xe (2.41)

It follows from the uniform complete observability of

—

(Qz(t). A(t) + alI) that the closed~loop system

x(t) = (A(r) + al - B(t) RI(t) BT(e) X (eNx(t)  (2.42)
is exponentially stable. Applying the feedback law (2.41) to the original

system (2.22), we get

x(6) = (A(t) = B(t) K H(6) B(e) K (£)x(¢) (2.43)



[
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Let.?cu(t’to) and‘gc(c,co) be the state transition matrices of
systems (2.42) and (2.43) respectively. Since system (2.42) is exponen-
tially stable, there exists some positive constants A and Y such that

for all t > to’ we have

o @testnyl] <y e %) (2.44)
a(t-t )
Since Ec(t’to) e O - ‘2 (t,to), this means that
o (et )] = [lo g, (el e~ Mt=t0) (2.45)

i‘f“)‘ (t=t ) e-a(c-co)

which establishes the prescrived degree of stability of system (2.43)

and this completes the proof.

Remark The proof of the above theorem is parallel to that given by
Anderson and Moore {An 1] for the time-invariant version of the theorem.
It is also possible to prove Theorem 2.3 without resorting to a trans-
formed LQ regulator problem. Consider the Riccati equation of the

minimization problem defined in the statement of the theorem

R(t) = =K(t) At) - AT(E) K(t) + ¢ 2 k(r) (o) R(e)™! 3(o)T k(v
- Q(t) et (2.46)

Let us postulate a solution of the form

t

K(t) = i(u(t) e (2.47)

where Koft) is some positive definite matrix function. Substitutiag

(2.47) into (2.46), we obtain
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() =X (0 A@®) +3D + Q@ +aDT K (e) + ()

A

~-1 T
a(‘) B(t) R “(2) B () K,(t) (2.48)

-k
which is the same Riccati equation as (2.27) obtained from the trans-
formed LQ problem. If we further assume that the boundary conditions

~ ~ 26t
at tl for equations (2.48) and (2.27) match, thean K(t) = ga(c) e for
(to,cl) vwhere z(-u(C) is the positive definition solution of (2.27). As

~

3 approaches *, we have K, (t) approaches K,(t) for any

ga(tl) = 51 > 0. Hence i(t) approaches ga(t) eZat for
i (tl) - il ezm1 > 0. It follows that the feedback control law is
given by
() = -&® 297 3T () k(0 ¥ x(®
- -El 270 K (®) 260 (2.49)

which agrees with that given in Theorem 2.3 and this establishes our
claim.
An alternate way to verify the degree of stability for the closed-

loop system

A(6) = A - 3o KL 8Te) Ky (e x(®) (2.50)

is to use the result of Theorem 2.2. The following theorem identifies

the Lyapunov function required for such ‘pu:pose.

Theorem 2.4 V(x(t),t) = 3_1(:) ga(:) x(t) 1s a Lyapunov function
for the closed-loop system (2.50) with the property that

v(x(t),t) < =2a V(x(t),t).
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Proof: To show that V(x(t),t) is a Lyapunov function, we haye to

establish the following:
(1) Vv(x(t),t) 4is once differentiable with respect to time

(11) There exists some positive constants LERD LP and 8 such that

wll_:gc_lz $VE< Ty, |J_:,]2 (2.51)
and
av(x,t) 2
l—'ac—" <Blx |°, for all t > t, (2.52)
(111) ‘.I(g(t).t) <0 aslong the trajectory of

x(e) = (A()) = B(6) R H(e) BT(e) K (8)) x(0)
for all t > ¢t (2.53)
For any given X € R", g-: (x,t) = 51: K (t) x. Since K,(t) 1s the
steady state solution of the Riccati equation (2.27), it follows that
V(x,t) is once differentiable with respect to t. By Theorem 3.4 of

{Kw 1], we have

t ~ ~
Vix,o) = lim x fl[gu’(r.c) [96) + & @) B@) K7y B'@) K )]

t. »
1 t
° gucr,r.)] dtlx (2.54)
where
L 45(1,0) = (A + ol - BT K1) BT (@ E () g, (T,0) (2.55)

Since x(t) = (A(t) + aI - B(t) R ~/t) BT(£) K (£)) x(t) is exponen-
tially stable by problem definition, and

[Q(e) + K, (&) B(e) R 1(e) BT(e) Ky(t) ] is a bounded positive definite
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matrix function by the properties of the time-varying Riccati equations,

it then follows from Theorem 6 in section 3.1 of [Br 1] that there exists

constants 7, and T, such that for all t and x € Y,

o< |x?<v@o <, (22 (2.56)

To show the boundedness of |—

a (x :)l , take the norm oa both sides

of the Riccati equation {2.27) and obtain
[k g1l < 26+[[a@[D [[g, ol + ]|
+ ll!u(t)llz Il!‘t)lli/,CNin (éﬁt)) for all t >t (2.57)

Since all the matrices on the tvight hand side of the above inequality
are bounded from above and since R(t) is also bounded from below as
assumed in Theorem 2.3, it follows that there exists a constant 8 such

that

< k@l 1s*8 8 |x? (2.58)

ac &,
To compute the derivative V(x(t),t) along the trajectory of
x(t) = (A(t) +al - B(t) R (c) (c) L5 (t)) x(t), observe that
V(x(0),6) = x7(e) (K (6) At) = Ko (e) B(E) R1(e) BT(e) Ky(e)
TSCEACREACFION ROF YOB 4O
+ K (£)] x(c) (2.59)
. x'(t) [-2K K, (e) - Q(t) - X (0 B(t) K WORNO) % (£)]) x(t) (2.60)
< - 2alx’ (1) K (2) x(0)) (2.61)

= = 20 V(i(;)'t) <0 (2-62)
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In going from (2.59) to (2.60), we used the Riccati equation (2.27).
The inequality (2.61) is obtained dy observing that the matrix function
di(t) + Eu(t) B(e) i:l(:) g?(:) §u(c)) is positive semi-definite for
all t 2, Inequality (2.62) follows from the positive definiteness
of V(x,t) and the assumption that a is positive. Hence V(x,t) is a
Lyapunov function for é(:) = (A(t) - B(v) i_.l(t) BT(:) §Q(t))§_(:)

with the property é(g(t).t) < =2a V(x(t),t) and this completes the proof.

Remark By Theorem 2.2, the condition V(x(t),t)€ -2 aV(x(t),t) implies
that the system x(t)=(A(t) - B(t) Brl(t) 2?(t) K, (£))x(t) has a degree of
stability a. This agrees with the result given in the proof of

Theorem 2.3.

Remark The result of this theorem is not new. The LTI version of
Theorem 2.4 was used by Anderson and Moore [An 1] to establish the

asymptotic stability of LQ regulators. Safonov has employed the same
type of Lyapunov function t> induce conic sectors that were used to

analyze the stability robustnews of LQ regulators.

1f the matrices A(t), B(t), §(c) and £(t) {o Tlcorem 2.3 are time-
invariant, then the resulting state feedback control law is also time-
invariant. Observe that the cost functional is still time-warying because
it includes the factor ‘z::. Tuat the feedback law should be constant
in this case 1s not at all obvious. The proof of this fact simply
follows from that of Theorem 2.3. Applying the cransformation (2.26)

and (2.30) to the cost functional
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1 2=t ) o~ T~
J = lim e [5 (t) Q x(t) + u (¢t) gg(c)] dt (2.63)

1l o

ard the dynamic constraint

x(t) = A x(t) + B u(t) (2.64)
we get
Ft - -~ o~ - -~ -
I = 1z j 1 [E(c)T Q x(t) + ul(t) 32«)]:1: (2.65)
t,
& L
and
5(t) = (A + o) x(t) + B u(t) (2.66)
respectively.

Since the transformed minimization problem is time-invariant, the

resulting feedback law for this problem is of the form

ace) =R L 8T

B K, X(t) (2.67)

where K, 1s the unique positive definite solution to the algebraic

Riccati equation

&a(é-t-a.l-)-i-(é-l-ap'r_l_(_a-!(_ug_& BTk, +Q=0 (2.68)

The controllability of (A + al, B), which is implied by that of

. The stability of the control law

(2.67) follows from the observability of (§;/2, A + ol) which is implied

by that of (§}/2,§). Reversing the transformation (2.29) and (2.30)

(A,B), ensures the existence of K,

we obtain the optimal control law for the original problem

-a(t=t ) _ o(t=-t )
u(t) = -e CE B Rge O x®
= .g'l ET K, x(t) (2.69)



which is time-invariant. That the closed-loop system
L 8T

i(t) =(A-BR™B Ea) x(t) has a degree of stability a follows from
the stability of x(t) = (A+al - BR ' B K ) X(t). In terms of the

closed-loop eigenvalues, we have

5=1 T
Re@, (A+al-BR "B K))<O0
which in turn implies that
Re \,(A-BRLBK)) <-a (2.70)
i 23 Y —a ﬂ - -

and this establishes the degree of stability of the feedback lavr (2.67).

We summarize the results of the above discussion in the following

theorem
Theorem 2.5 Consider the LQ regulator problem
1 [.1 T
min J = lim [5 (e) Q(t) x(t) + u () R(t) g_(t)]dt: (2.71)
u(t) €™
t.?.to %

subject to the dynamic constraint
x(t) = A x(t) + B u(t) (2.72)

where (A, B) is controllable.
The weighting matrices are chosen as

Q(t) = :0; et and R(t) = ;_(. eZac

(2.73)
wherejqio and R > 0.

Furthermore, supposed that (§l/2, A) 1is observable. Then the

optimal control law for the given LQ regulator problem is given by

P —



u(e) = =KL BT K x(o) (2.74)

where 5& is the unique positive definite solution of the algebraic

Riccati equation

. T _

l(a(_&i-al)i-(é-f-al) E, +g-§ag§ B K, ] (2.75)
Moreover, the closed-loop system
. -1 T

x(t) = (A-BR "B K) x(t) (2.76)

has a degree of stability at least a.

In view of the timne-invariant control law that results from the
minimization problem considered in Theorem 2.5, one might suspect the
possibility of constructing a cost functional with time-invariant matrices
Q and R such that the control law obtained from minimizing the cost
functional is the same as that derived in the preceding theorem with

-

Q em:t and g_e21t. Pairs of weighting matrices Q, R with the above
mentioned properties do indeed exist. The following corollary to

Theorem 2.5 shows how such matrices may be chosen.

Corollary 2.5 If Q(t) and R(t) in Theorem 2.5 are chosen to be

Q(e) = § + 20 Ky 2.77)

and -~
R(t) = R v (2.78)

respectively, where Ea is the unique positive definite solution of the
algebraic Riccati equation (2.75), then the resulting optimal feedback
law is given by

a(e) = -2 BT K x(0) (2.79)
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and the closed-loop system i(t) = (A - _1!_5_ B K,) x(t) has a
degree of stability at least o .

Proof: Note that (A, B) is controllable by assumption and that
/2

- 1
Q-+ 20 K,)7"")A) 1s observable as a result of K, > 0.

It follows that the algebraic Riccati equation

T

KA+A K+ @Q+20K)-KBE B

K = (2.80)

o

associated with the given minimization problem has a unique positive
definite solution. Comparing (2.68) with (2.80), it is clear that gu,

which is the solution of (2.68) is als> a solution of (2.80). This completes
the proof.

Remark While constant matrices Q and R can be chosen such that the
associated regulator problem leads to a closed=-loop system with degree
of stability a, it does not seem possible for us to obtain such
matrices without first solving a LQ regulator problem with weighting

2t PR3

matrices of the form Q e“" and R e .

Remark It is clear from the preceding corollary that RPDS for LTI
systems is just a particular class of LQ regulator with a very special
choice of weighting matrices. This is an important observation for
it implies that all the feedback properties of LQ regulators are shared

by RPDS.

2.4 Kalman-Bucy Filter with a Prescribed Degree of Stability (FPDS)

In this section, we turn to the problem of designing a Kalman-Bucy

filter with a prescribed degree of stability. By stability of a filter,

we refer to the stability of the estimation error dynamics. Mathemati-

AT e
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cally, this is a problem dual to the RPDS problem considered in the
last section. To make clear the connection between the regulator problem

and the filter problem, we consider a linear system of the following

type
x(t) = A(E) () + T (t) (2.81)
y(t) = ¢c(e) x(t) + 8 () (2.82)

where Z(t) and 8§ (t) are uncorrelated zero mean white noises with
spectral intensity Z(t) and Q(t) respectively. We wish to obtain a

linear estimate of x(t) given y(t), -» < T < t, such that the mean square

estimation error is minimized. Under the assumption that ,

(1) A(t) 1is continuous and bounded, C(t), E=(t) and ©(t) are

plecewise continuous and bounded for all t (2.83)

(11)  =(t) 2 Blland 0(e) > B, L for all t where g8, and 8,

are some positive real constants (2.84)

(11i) ( €(t),A(t)) 1is uniformly completely reconstructable and

(A(t), Sl/z(t)) is uniformly completely controllable (2.85)

it is well known (see Chapter 4 of [Kw 1]) that the optimal linear state

estimate x(t) is pecified by

2(E) = AG) £(6) +L(B) C{t) 00~ (x(o) - c(v) x(8))

(2.86)
where I (t) is the steady state solution of the Riccati equationm.
Ile) = A 5() + () Al(e) +2(0) = (&) ¢T(e) 2740 c(v) (o)
(2.87)
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as t approaches - ® for any initial condition Eo > 0. Moreover, the

state estimate error dynamics specified by
e(t) = (A(e) = H(t) € (£)e(t) (2.88)

where e(t) = X(t) - x(t) is the state estimation error and where
H(t) = T(t) cir(t) Q(t)-l » the filter gain, is asymptotically stable.
Given an initial estimation error, the rate of decay of e(t) is

determined by that of JQF(t’to) where ;
Sty ) = (A(r) - H(r) C(£)) (e, ) (2.89)

The decay rate ofllQF(t,to)}l is in turn dependent on the ncise intensity

matrices Z(t) and 9(t).

In some applications, one may require a state estimate error dynamics
that is faster than the one specified by the noise characteristics
given by the physical systems. This can be accomplished by making
appropriate adjustment of Z(t) and @(t) in the filter design equation
(2.87) so that for a given positive comstant &, there exists some positive
Y such that Ilgf(t,to)l[ A ¢ eql(t-to) for all t >t We call a
filter with such property a KBF with degree of stability & . In view
of the dual relationship between the KBF and the LQ regulator problem,
the technique for designing RPDS discussed in the previous section 1s
réadily applicable to the design of FPDS. This is illustrated by the
foilowing theorem,

Since the duality between the LQ regulator problem and the KBF

problem is well known, we will omit all the dual proofs in this section,

and simply formulate the dual problems and state the corresponding
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results., Special emphasis will, however, be given to result inter-

pretetions that are unique to estimation problems.

Theorem 2.6 Consider the linear dynamical system described by the
equation pair (2.81) and (2.82). Suppose that g(t) and ©(t) ;re zero
mean, uncorrelated white noises of spectral intemsity Z(t) e-Zat and

o(t) e-Zac respectively, and that o is some positive constant. The
matrices Z(t) and ©(t) are assumed to be bounded and piecewise continuous
with 2(t) 2 8, T and O(c) 2 B, I for all t where 5, and B, are positive

constants. Furthermore, suppose that (C(t), A(t)) is uniformly completely
=1/2

reconstructable and that (A(t), £ “(t)) is uniformly completely control-

able. Then the KBF gain }_la(t) obtained from solving the linear least

square estimate of x(t) given y(t), - =< 1<¢t,is

o -1
B0 = I () @ o7 (2.90)
where §a(t) is the steady state solution of the Riccati equation
() = I, A +an® + @A) + oD I () + Z@)
~ 7 -1 ~
- §a(°) C (t) © “(t) ¢(t) §a(c) (2.91)

as t approaches -»for any ga(to) > 0.

Moreover, the state estimate error dynamics has a degree of
stability of at least o .

As we specialize the results of Theorem 2.6 to the time-invariant
case by setting A(t), B(t), Z(t) and G(t) equal to some constant matrices
A, B, 5,0 that satisfy the required controllability, observability and

positive definiteness conditions, the KBF gain obtained above is also



3=

time-invariant. A precise statement of the results is stated in the

following theorem which is the exact dual of Theorem 2.5.

Theorem 2.7 Consider the linear dynamical system
x(t) = A x(¢) +g(t) (2.92)
2(8) = ¢ x(t) + 0(c) (2.93)

Suppose that Qﬂt) and ;(t) are zero mean white noise with spectral

ge' 2at ie- 2at

intensity matrices and respectively and a being some

positive constant. The matrices O and £ are assume to satisfy

@>0and E>0 (2.94)
and (é,g}/z) is controllable. Furthermore, suppose that (QJ é) is
observable. Then the KBF gain ga obtained from solving the linear

least square estimate of x(t) given y(Tr) == < T < t is given by

T -1
B = L, ¢ ¢ (2.95)

where Ea is the unique positive definite solution of the algebraic

Riccati equation

(é+a1)§a+§_a(§_+a1)'r+ g gagT@'l

cI, =0 (2.96)
Moreover, the estimation error dynamics described by
e(t) = (a-H o e®) (2.97)

has a degree of stability o .

Remark Observe that both noises specified in Theorem 2.7 have spectral

intensity matrices that decay exponentially with time. The resulting

DS e man e fw
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FPDSwill therefore give more emphasis to the recent data in view of its
greater accuracy. This has the desirable effect of enhancing the filter's
tolerance of modelling errors, In the classical Weighted Least Square
approach to estimation, the same effect of giving more emphasis to recent
data is achieved by penalizing the recent estimation errors more than

the old ones [Sc 1].

We now state the dual of Corollary 2.5.

Corollary 2.7 If =(t) and 9(t) in Theorem 2.7 are chosen to be

E(e) =242 I and 8() =0 (2.98)

respectively, where Ea is the unique positive definite solution of the

algebraic Riccati equation (296) then the resulting KBF gain is given

by
T -1
B = r.c'@ (2.99)
and the error dynamics of the filter
&) = (4 ~B O e(o) (2.100)
has a degree of stability at least a.
Remark It is clear from Corollary 2.7 that one needs to introduce

a very special choice of process noise in order to design a KBF with a
prescribed degree of stability. One common approach tc speed up the
filter error dynamics is to use an observation noise with spectral
intensity matrix of the form pQ(p > 0). The value of o is then
decreased toward zero until a satisfactory design is obtained. Intuiti-

vely, decreasing the value of p will improve the speed of the state
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reconstruction since less attention is now paid to the filtering of
observation noise. However, this procedure does not always lead to
improvement of error dynamics. Consider the case where { (t) is of the
form g (t) = gi(r.) with F having the same dimension as QT and ‘5-_(:)

being a zero mean white noise. Let the spectrali intensity of F(t) be z

a
-~
-
=
=
=

where 1s positive definite. The spectral intensity of ;(t) is then

E?. Then, as o approaches 0,the P filter poles will

jun>

given by Z = F

approach the p values Gi where

vy 1f Re(v)) £ 0 (2.101)

<O
[ |

-Re(vi) + 3 Im(vi) if Re(vi) >0,
i ad 1’;;’ooo.p

and v, 's are the values of s (complex) that give rise to rank deficiency

i

of the matrix

-4 1/2

¢ 2

It is possible that some of the V,6's may be located very close to

i

jw=axis. The filter poles driven toward such v 's as p approaches 0

i
will result in poor error decay for certain initial values of the filter

error.

There are however situations where a filter designed with the
latter procedure is preferable to one designed using the method suggested
in Theorem 2.3. If the observation noise intensity ¢ © (s small compared

1/

with the process noise intensity = , and 1f (C, A, 2 2) constitutes a

ninimum phase system, it can be shown that

Wy i A
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s E {(g(c) - x0T @@ - x(e) }- 0 (2.102)
p+0

In this limiting case, the structure of the system to be observed is
so exploited that the estimate error e(t) cannot be driven into the
subspace spanned by the eigenvectors of those filter poles that are
located in the neighborhood of the jw-axis. Employing a FPDS with an
arbitrarily large degree of stability in such Liguations may in fact

give rise to a large error covariance.

2.5 Concluding Remarks
We have studied in this chapter the extension of the RPDS method

to the linear time-varying systems, Given an appropriate definition of
‘degree of stability' for such systems, the exponential weighting
technique developed by Anderson and Moore for solving the time-invariant
RPDS problem is readily applicable to tne time-varying case.

We also obtain a characterization of the degree of stability in
terms of Lyapunov function. This is a natural generalization of the
known results in Laypunov stability theory and is useful for establishing
the degree of stabili:y cf feedback laws which are designed using RPDS
technique .

The formulation and solution of the time-varying FPDS problem
follows dually from that of RPDS. For the time-invariant case, the
FPDS solution admits interpretation of interest to design of fast
response filters. It is not possible in general to speed up the filter
dynamics by simply scaling up the process noise. The solv:ions to the

FPDS problem specifya class of spectral intensity of the process noise

that is useful for such purpose.



CHAPTER 111

ZIGENSTRUCTURE PROPERTIES OF THE TIME-INVARIANT
REGULATORS WITH A PRESCRIBED DEGREE OF STABILITY

3.1 Introduction

This chapter explores several important eigenstructure properties
of time-invariant RPDS and their potential applications.

Some equations are obtained for the derivatives of the RPDS closed-
loop eigenvalues with respect to the stability factor ¢. These equations
are useful for the purpose of recomputing the closed-loop eigenvalues
given a small change of &.

Equations that describe the asymptotic behavior of RPDS root-loci

are also derived. Specifically, we consider a cost functional of the

form
t1
J=1lim 25 (x"(2)  x(t) + uT(t) pR u(t)de; p > O
tl*" (o]

(3.1)

and examine the various branches of the loci traced by the closed-loop

eigenvalues as (o varies.
To close this chapter, we employ the asymptotic property of RPDS
poles as o approaches infinity to obtain a novel solution of the

Regulator with Prescribed Damping Ratio (RPDR) problem.

3.2 Properties of the Solution of the RPDS Algebraic Riccati Equation

In this sectica, we state two lemmas that will be used extensively



in the remainder of this chapter and in the next one. Both lemmas address
the behavior of the matrix 50 , which is the unique positive definite
solution of the RPDS algebraic Riccati equation (2.68) in Theorem 2.3,

with respect to the increment of the stability factor .

Lemma 3.1 Let gu and 'l'(u be the unique positive definite solutions
1

of the algebraic Riccati equations

T -1 .7
Kg A*aD + QoD K, +Q-K, BE B K =0 (3.2)
1 1 1
K A+a,D) + A+a,DTK +Q-K BRIB K = 0 (3.3)
oy, T 2= = <, oy, ST T T =
respectively.
The following conditions
(1) @20 and R>Q (3.4)
(11) (A, B) controllable (3.5)
1/2
(111) @ / » A) observable (3.6)

that are sufficient to guarantee the existence of K, &nd K, are assumed
to be satisfied. Then one has Ky > Ky 1if a) > a,.
1 2
Proof: Let AK =K =K . We need to show that AK is positive definite ‘
9 TR ‘
1fa_>a,. Substitute K = 502 +4K {ato (3.2) to obtain

l 2

(K +4K) A+ oD +(A+aD’ K +0K) +Q

ay
-k +2K) BRLBT(X +aK) =0
a, Ay 22 2 “a, - (3.7)

DOIIMMIDIITERRRR R Rmimi 2 2 e
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Rearranging the terms in (3.7), we obtain

k@-BE BTR +@ -app+a-BREE G -a)DT
2 2
-2k BRI BT LK+ 2(a, - a)K =0
T T S 2%, = (3.8

Observe that (3.8) is an algebraic Riccati equation ia AK. To find
out if there exists a unique positive defiuite solution 4K for (3.8), we

need to check the controllability of (A + (a, - az)_l'; -3 3-1 _B,T K ,B)

1 —a,
d the ob 11ty of M2 A -BRYETx 4G -a)D
and the observability o ([2(<:t1 - “2)50;2 s A-BR 3 ~a2 1 2/ 2.
The controllability of (A - B 5-1' _B_T gu + (al - az)L, B) is implied
2

by the controllability of (A + (cx1 - 0.2)_1,. B), since controllability is not
affected under state feedback. The coatrollability of the latter in turn
follows from that of (A, B) as shown in the proof of Theorem 2.3. Since
the controllability of (A, B) is assumed in the original problem state-

-

ment, this proves the controllability of (A + (3, = a,)1 - BR "B K ,B).

d
|

-1 _T
The observability of ([Z(ml - az)g.uzlllz. A-BR "B Eaz + (Otl - Gz)Q

follows from the positiva definiteness of _l_(u .

In order to prove the positive definiteness of AK, we need to

demonstrate the stability of the matrix (see Theorem 3.7 {Kw 1})

7\2 A-BR.]'BTI( + (o -q)I-BR—IBTAK (3.9
. 7 1 2= == = 0=

By definition of AK, we can rewrite :\_ as
Aea-BRIBTK + (q = o)l (3.10)
- - T =™ 1 2’=

[T S

_ - S
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stnce A= BE T BT K +a,I is stable by definition and a, > 0, the

1
stability of A follows immediately and this completes the proof.

Remark: Lemma 3.1 establishes the fact that §u is an increasing
function of & . We shall make extensive use of this result in our study

of the RRDS robustness properties in Chapter 4.

Lemma 3.2 Let K; be the unique positive definite solution of the

algebraic Riccati equation

K@+aD + @+aD’ K - gagg'lfga+g-g (3.11)
The following conditions
(1) 920 and R>0 (3.12)
(11) (A, B) controllable (3.13)
(i1) (2%, A) observable (3.14)
that are sufficient to guarantee the existence of Eu are assumed to be
satisfied. Then the derivative matrix ;fé_ is positive definite for all
(o3

values of .

Proof: Differentiating the left side of (3.11) with respect to &, we

obtain
K r %K,
o
) (A+al) +@Q +al) s +2K
aK oK
-1 T -1 T, ‘= -
"Ja:n' (BR™ B Ea)'(&x.a.ﬁ .3.)3a +Q Q. (3.15)

After rearranging terms, we obtain the following Lyapunov'equation
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% A+GI- BG) + (A +al = 1%
so AW+0I- BG) + (A+al=~BG) =+ (@Q+2K) =0
(3.16)
=1 T _
where G, = R~ B" K is the state feedback gain.

K
To show the existence of a positive definite solution f to (3.16),

we need to check the stability of (A +al - B ga) (i.e. that all eigenvalues
of (A+al -B ga ) have negative real part) and the positive definiteness
of (Q+ 2K).

The stability of (A +al - B ga) is a direct consequence of conditioms
(1), (41) and (iii) (see Theorem 3.7 [Kw 1]). The positive definiteness
of (Q+ 2 50:) simply follows from that of 50. Since we have thus far made

IK
no reference to the sign of a, the matrix derivative —5—% is therefore

positive definite for all values of o and this completes the proof.

3.3 Eigenvalue Sensitivity with Respect to the Stability Factor a.
AA

In this section, we present two methods for finding e the

derivative of the RPDS poles with respect to the stability factor.

Lemma 3.3 For any value of o and for any distinct eigenvaluz z\i of

5-_3___'15T5a » We have
3K
3 -y, BRT B 2B x (3.17)
Ja H T
L3
wher d 1 d left el fa-BR B
ex and y, are the right and left eigenvectors of A-BR ~ B K,

which are defined in the usual way by

[OPPY NP
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@-3R'E'K - ADx =0 (3.18)
AN ES § S O S R (3.19)
regpectively.

Proof: First, we differentiate (3.18) with respect to o to obtain

x
£ @-3R'F R - A\Dx +@-BRUEE - D=0
Multiplying both sides of the above equation by the left eigenvector
ziH cancels the second term on the left hand side and one gets
5" L a-3xtefx - aDx =0 (3.21)
By rearranging the terms, we obtain
H 3 -1 . T
Ny 4 5 @-BR B K)x (3.22)
3 a H .
L4 %4
oK .
yleBET BT Ry x (3. 23)
i &
3K
The existence of '%g for an arbitrary real constant & follows from

Lemma 3.2, and this completes the proof.

: A
Remark: Lemma 3.3 is adapted from the standard result for finding "—p—
]

-

where >\ is a closed-loop eigenvalue of the system matrix (A - 72 KQ)
ok

(see [Th 1] Chapter 3). The derivative —?- can be computed from a
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A

Lyapunov equation of the form (3.16). An alternate way to compute -4

aa

is via the Hamiltonian system matrix we define now.

Definition 3.1 Consider a LQ regulator problem with cost functional

J -/ [5(1:)T Q x(t) + gT(c) R u(t)]dt (3.24)
0

and dynamic constraint

x(t) = A x(t) + B u(e) (3.25)

Suppose that all the conditions required to guarantee the existence

of a stable state feedback law minimizing J are satisfied, then the

Hamiltonian system associated with the LQ regulator problem is given by

where

z(t) = 2 z(t) (3.26)
-1 ._T
l= A -BR"B (3.27)
-Q -A"
z(t) = [x(t) (3.28)
é(t)

The matrix Z is of interest because its eigenstructure describes

the solution of the LQ regulator problem defined by (3.24) and (3.25)

(see Chapter 3 of [Kw 1]). The eigenvalues of Z are symmetric about the

Jw-axis.

Moreover, the eigenvalues in the left-half complex plane are

exactly those closed-loop eigenvalues of the LQ regulator. If

[Ei(c)r, ii(t)T]T is a right eivenvector corresponding to a left-half

plane eigenvalue of Z, then gi(t) is also a closed-loop right eigenvector
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of the LQ regulator and
g (&) =Kx (t) (3.29)

where K is the positive definite solution of the algebraic Riccati

equation
KA+A K-RBRTBK+Q = 0 (3.30)
Ay
In order to compute~§;- for the RPDS problem solved in Theorem 2.3, we

consider the following Hamiltonian system

Z(e) = 2 z(¢) (3.31)
where
Z, = [aA+ ol - gg’l BT (3.32)
-Q - a+apT

This system is obtained by considering the LQ regulator problem with

coet functiomal
J= lim ftl [f(t) Qq x(t) + f(c) R u(t)]dt (3.33)
t >
1l t,

and dynamic constraint
x(t) = (A +al) x(t) + B u(t) (3.34)

It follows from the proof of Theorem 2.3, and the property of Hamiltonian
Systems, that the eigenvalues li of the matrix (Zy - aI) positioned to

the left of 0 = -0 are the closed lovp eigenvalues of the RPDS obtained
A 3
i

in Theorem 2.3. We can therefore obtain UEL by computing -3y for
-~ I
Xi = Xi. To determine 5;£ , simply use the following lemma which follows

eagily from the result of Lemma 3.3, The proof of which is omitted.
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Lemma 3.4 For all values of & > 0 and any distinct eigenvalue A "

of Z s we have

A T T
= — (3.35)
3 W H x, +V i 9
=1 =5 -
where
[Ai I~ za +°'I][§'L] =0 (3.36)
g
and 1
[w i \'4 H] [; I1 -2 +al]l] =20 (3.37)
I 1=" 24772 T2 .
. T T.T
Remark If the right eigenvectors [5i gi ]1* and the left eigenvectors

H . H,T
- are available as is the case when solving the algebraic
" 1,707 of 2, - oL,
Riccati equation using diagonalization method (see Chapter 3 of [Kw 1l]), the

A, .
computational effort required to obtain 551 using (3.35) is negligible.

This is a definite advantage over the method introduced in Leamma 2.3

which involves solving a nath order Lyapunov equation.

3.4 Asymptotic Behavior of RPDS Root-Loci

In this section, we examine the behavior of RPDS root-loci as the
weight on the control vector goes to zero(or infinity). More precisely,
the following problem is considered.

Given a LQ regulator problem with cost functional

51
20t
e

J = lim [x(e)T Q x(t) + u'(t) PR u(t)ldt;

tl*“ 0
pP>0 (3.38)

and dynamic constraint

x(t) = A x(6) + B u(t) (3.39)

b
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Our objective is to study the root-loci traced by the closed-loop
regulator poles as p varies. We first consider the case of a single-
input KPDS in section 3.4.1. Then we extend these results to the multiple-

input case in section 3.4.2.

3.4.1 The Single-Input Case

Assume a state weighting matrix of the form

Q= S—.E.T (3.40)

where (g?, A) 1is observable. If a = (, this reduces to a conventional
optimal roct-locus problem. Either the root-square locus method of
Chang [Chg 1] or the root-locus method of Kwakernaak and Sivan [Kw 1] may
be used for this purpose.

In order to adapt these techniques to cases where & > 0, we will
used the transformed LQ problem employec. in the proof of Theorem 2.3.

The cost functional and the dynamic constraints are given by

St

I = lim [x(t) Q x(¢) + u(t) R u(t)]de (3.41)
t 00
and 1 0
x(t) = (4 +aD) x(t) + B u(t) (3.42)

respectively, where x(t) = éxt<5(t) and u(t) = eatlg(t). This transformed

problem is in a form where conventional optimal root-loci techniques

are applicable. Moreover, recall from our discussion of Theorem 2.4

that the closed-loop regulator poles of the original problem can be
easily obtained by subtracting & from those of the transformed problem.
We can therefore plot the optimal root-loci of RPDS as a functional of

P 1in two steps.
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Step 1: Plot the optimal root-locus of the transformed LQ regulator

problem using conventional techniques.

Step 2: Shift the entire root loci to the left by -a .

The following theorem summarizes the asymptotic properties of RPDS

root~loci in the single-input case.

Theorem 3.1 Consider the LQ regulator problem with cost functional (3.41)

and dynamic constraint (3.42) where u(t) is a scalar. Suppose that

T

(A, b) is controllable and that Q has the form Q = c ¢~ where (_c_T, A)

is observable. Let the transfer function c (sl - A) ' b be

- P
sT(SL-A)lh- kw (s=-v) ; k $0 (3.43)
i-1
n
T (s = T)
1=1 1

where v;s and nis are the zeroes and poles of the transfer function

g?(s I- A)-l b respectively.

Then the following properties ho.d

(a) 1f p approaches 0, p of the n closed-loop poles of the RPDS
asymptotically approach the number Vyo i=1,2,....p where
vy if Re(vi) < - (3.45)

~

Vi

-V -20 1if Re("i) > -

(b) As p approaches 0,the remaining n-p optimal closed-loop poles
asymptotically approach straight lines which intersect at

(=a, 0) and make angles with the negative real axis of magnitude

@ . e e
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+5 =L 2 =0,1,2,0.. EBL 4f np s 0dd
-" n=-p 2
1
@+ 3w
hf n-pz 2 =0,1,2,... %2- 1l 4if n-p 1s even

(3.46)

These faraway closed-loop poles of RPDS are asymptotically at a distance

1
2
0 = %% \2(a-p) from (~a, 0). Moreover, k is independent of .
0 p 3

(c) As p approaches ®, then n closed-loop poles approach the
numbers ?ri, i=1,2,3,... n where
N Ty if Re('ni) <-a (3.47)
Tri =
-Ty - 20 if Re(ni) > -0

Proof: When a= 0, Theorem 3.1 reduceé to Theorem 3.11 of [Kw 1]. The
cagses where a >0 trivially follow from the construction procedure of
the. RPDS root-loci described above.

The following example gives several root-loci plots obtained using

the previous construction procedure.

Example 3.1 Consider the RPDS problem with cost functional given by

&1 T 2 2
J = lim elat [5 (t) [ ] (2 1] _:5(:)] +pPu (t)]dt

t o 1
1= <0 (3.48)

subject to the dynamic constraint



x(t) =}o 1| x(c) + [o] u(t) (3.49)
-3 -4 1

- +
The transfer function g?(s}_- A) 1 b is given by (;:5§_?;%27_ « The loct

of the cloged-loop poles corresponding to RPDS design with values of a
equal to 0,1,2.5 and 3.0 are plotted in Fig. 3.1 a,b,c and d respectively.
As expected, the RPDS root-loci lie to the left of the 0 = - 1line
in all 4 cases. When the value of & is less than 2.0, one of the closed-
loop pole is drawn to -2.0 with the remaining pole going off to infinity
along the negative real axis. (Thus forming a first order Butterworth
pattern). In cases where & 1is larger than 2.0, the finite poles approach
-2.00 + 2.0 asymptotically. (Property (a) of Theorem 3.1).
It is interesting to note that -2.0a + 2.0 equals 3.0 when 2 = 2.5,.4s
a result, the open-loop pole located at -3.0 remains fixed as p varies (Fig.3.lc)
Property (a) of Theorem 3.1 has important design implicationms.
Let us consider a LQ state feedback design configuration of the form
depicted in Fig. 3.2 where the output matrix g? in the figure is identical
to the square root of the state weighting matrix Q in (3.48). If © = 0.0
and if f?(s I- 471 b 1s nininum phase, then by Theorem 3.1 the p
finite closed-loop poles will asymptotically approach the p minimum phase
zeroes of g?(s I- é)-l b as p approaches 0. These finite modes are
therefore hidden from’che output y(t). The remaining n~p visible modes
form a Butterworth pattern which is known to give step response of small
overshoot. In cases where O > 0, the root-loci are constrained to lie
to the left of 0 = -0 ., By property (a) of Theorem 3.1, the p finite modes

will be hidden from the output only if the p minimum phase zerces of

- o
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QT(; I- A)‘l b are located to the left of ¢ = -,

In light of the above observation, one needs to exercise caution
ian using RPDS for state feedback design. If the finite optimal poles
can be made ‘'reasonably' unobservable at an acceptable bandwidth, then
the use of RPDS may not be desirable since it may introduce sowme slow
modes in the observed output which would otherwise be absent. However,
there may be situations where excessive bandwidth is required before some
of the finite modes are made unobservable in the output. It is advantageous
in such cases to consider the use of RPDS so that the finite modes that
appear in the output are guaranteed to decay at a certain rate.

The following example demomstrates the relationship between the
stability factor & and the observed output y(t) as the weight on the

control becomes vanishingly small.

Example 3.2 Consider a RPDS state feedback arrangement of the form
shown in Fig. 3.2. The underlying system dynamics is specified by the
differential equation (3.49) and the state variables x(t) are related

by the observed output y(t) by y(t) = [2,1] x(t). The RPLS state feedback
gain gciis obtained by solving the RPDS problem described in Example 3.1
with a chosen to be 1.0 and 3.0 and the scaling factor o in (3.48) set
to 10000.

An initial state perturbation equal to [10.101T is apolied. ‘The
resulting time simulation for the observed output y(t) and the control
u(t) are plotted for the closed-loop RPDS systems with & = 1.0 (Fig.3.3(a))
and o = 3.0 (Fig. 3.3(b)).

Despite the presence of a slow mode near -2 (Recall from Example 3.1
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and Fig. 3.1), the RPDS design with a= 1,0 is noted to decay rapidly.
This is a result of the fact that the closed-loop eigenvalue near -2 is
hidden from the output y(t) as a result of pole-zero cancellation. However,
the same type of cancellation does not occur for the design with @ equal
to 3.0. In this case, all the closed-loop poles are constrained to lie
to the left of ¢ = =3.0 line, thus preventing them from being hidden by
the system zero at -2.0. This is evident from the slower decay observed
in this case.

The presence of the slow mode is also responsible for the relatively
long settling time of the feedback signal u(t) observed in both Figs.3.3(a)

and (b).

3.4.2 The Multiple-Input Case

The procedure described for constructing the RPDS root-loci in the
single-input case is equally applicable to the multiple-input case. The
asymptotic behavior of the modes that stay finite as P approaches 0 are
the same for both cases. However, the far-off closed-loop poles in the
multiple-input case generally do not form a single Butterworth patterm,
but group into several Butterworth cenfigurations of different orders and
different asymptotic raii. The exact detail of such patterns is not
considered here. Interested readers may consult [St 1] and [Kw 2] for a
thorough treatment of this subject. The corresponding multiple-input RPDS

results are summarized in Theorem 3.2 and demonstrated in Example 3.3.

Theorem 3.2 Consider the LQ regulator problem with cost functional (3.38)

and dynamical constraint (3.39). Suppose that (A, B) is controllable and
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that Q 1s of the form Q = g? where C has the same rank as B, and

where (g?, A) is observable. Let H(s) be the transfer function matrix
H(s) = C(sI-a"1s (3.50)

Suppose that ¢(s) = det(sl- A) and write

.CO ML
det (ﬁ(s)) ¢(S) k i:rl (S \)i) (3.51)
n
T (s=-m,)
i=1 1

where k # 0 and where the ni's are the poles of A. Then the following

facts hold.

(a) As p approaches 0, p of the optimal closed-loop poles approach

the values vi, i=1,2,... p where

if Re(vi) < -0
(3.52)

-v, - 20 if Re(vi) > =q

The remaining closed-loop poles go to infinity and group into
. several Butterworth configurations of different orders and different

radii.

(b) As p approaches ® , the n clogsed-lcop RPDS poles approach the

numbers T,, 1 = 1,2,...n where

i’

i T if Re(r,) < - (3.53)

-’ - > =
T 20 if Re(ﬂi)

}
4
©

3 o
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Proof: The results follow trivially from Theorem 3.12 of {Kw 1] and the
root-loci construction procedure described above. The detail of the proof 1s

omitted.

Example 3.3 ~ Consider the following multiple-input RPDS problem

mio J = lim ez c T x(e) +  uT(e) u(e)lde (3.54)
u(t t.+oo
where
c = Jo -5 2 =271 (3.55)
8 =<=14 o0 2
and subject to the dynamic comstraint
6 7 1 13 0 1
x(t) = 0o 1 o0 2| x(e) #| 1 0] u(e) (3.56)
4 7 =6 8 2 0
i o -1 0 2‘ :2 OJ

It can be readily shown that the system zerces for [A, B, g?] are
located at -1.0 + j 1.0. The loci of the closed-loop poles corresponding
to RPDS designs with values of O equal to 0.0, 0.5 And 2.0 are plotted
in Figure 3.4 a,b,c respectively. In all three cases, the various branches
of the loci stay im the half plane to the left of the =0 line. More-
over, two of the four branches asfmptotically approach infinity along
the negative real axis, forming.two first-order Butterworth patterns.

The asymptotic behavior of the two remaining branches depends on the

value of ¢. For & less than +1.0, these branches eventually arrive at
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the system zeroes -1.0 + J 1.0. If a is larger than 1.0, these branches

approach instead =20 +1 + j 1.0.

3.4 Regulators with Prescribed Damping Ratio

A class of LQ regulators are those with prescribed damping ratio
(RPDR). A LQ regulator is said to have a damping ratio cos 8 if it is

g
stable and each of its closed-loop poles 0, + v satisfies Lj;l-'titan 6
i

for some given 8. Diagramatically (Bigure 1.2), all the closed-loop
poles are found in a cone centered at the origin of the complex plane with
edges extending along an angle of size 2 which is symmetric about the
negative real axis. For stability, the value of 8 has to lie between

E'. The procedure described in the following theorem solves the

2
RPDR problem as a special case of the RPDS problem.

0 and

Theorem 3.3 Consider the following LQ regulator problem

t

1
min J = lim 2t (xT(e) g x(r) + uT(r) PR u(t)ldt
u(t) t,*Jo
; P>0 (3.57)
subject to the dynamic constraint
x(t) = A x(t) + B u(t) (3.58)

Suppose that all the requirements on A, B, Q and R that guarantee
the existence of a stable minimizing control law are satisfied and that
the scalar P is an arbitrary positive constant. The factor & 1is
selected in the following manner. For each open-loop pole oi + jwi of A,

we associate a positive scalar <11 which is defined by
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o,

0 if m( tan 6
i

a, = 3.59
L7 | loy -t ol -39
Z.Q otherwise.

a 1is then chosen to be the largest of the a,'s and used in (3.57).

i

1

Let u(t) = =R~ E? K, x(t) be the feedback control law obtained

from the above minimization problem as p approaches ® , where
55 = lim Sm(p) and Ed(p) is the unique positive definite solution

phe
of the algebraic Riccati equation

-1

K@ @+aD+@+aDT K - K (0 B%g Bk +Q=0

(3.60)
The LQ regulator resulting from the application of u(t) = -5:1 g? K x(t)

to (3.58) haes a damping ratio equal to cos 6.

Proof: Llet ¢, + j mi's be the poles of the closed-loop system described by

i
i(c)'- (a - 3.5'1 g? gu) x(t). Applying the results of the property (c)

of Theorem 3.2 to the previous minimization problem, we obtain

~ ~ g, +jw if g, <~-a
o, +du, = 1 1 1 (3.61)
-0y - ] wy = 20 if 03 2=a
@

We need to show that for each i, the inequality

—il < tan 8 1is
Oi —-—

satisfied. There are two different situations that need to be considered

individually.

Case (I)

W
Eil < tan 8
i

It follows irom (3.61) that o, < = Iail for all values of 0,. This
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in turn implies that

Oq1 194
04 i
Case(1I)
Wy
- > tan 68
i

By definition of o, and |wi| > loiltan 8, we have

I
‘o - luyl
tand
a > 2
lo,d s,
tand > (3.63)
2 - 01
Hence gy 2o and 51 = -0, - % .
Applying the definition of @ and ai’ we obtain
Ui = -Gi - 20
L0 By
w
= ‘2("‘6" : - )/2
i tan 17/
’lmil
o7 T 3-64)
It follows from (3.64) and W, =W (Property (c) of Theorem 3.2) that
w ©
L o |t4d < tand (3.65)
% 9y
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3.6 Concluding Remarks

We have developed in this chapter several techniques for analyzing
the eigenstructure properties of RPDS.

Two methods for computing the sensitivity of the closed-loop RPDS
poles with respect to the stability factor o are introduced. The ome
based on the Hamiltonian system is computationally useful for updating
the closed-loop poles given small variation of a.

We also present a two-step procedure for plotting the root-loci
for single-input RPDS. This procedure also provides the necessary frame-
work for derivation of asymptotic root-loci properties for multiple-input
RPDS. Using the property of the RPDS root-loci as the state weightings

become vanishingly small, we obtain a novel one-step solution to the

Regulator with Prescribed Damping Ratio problem.
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CHAPTER IV

ROBUSTNESS PROPERTIES OF REGULATORS WITH A
PRESCRIBED DEGREE OF STABILITY

4,1 Introduction

A critical property of feedback systems is their robustness, 1i.e.
their ability to maintain system performance in the face of uncertainties.
In particular, it is important that a closed-loop feedback system remains
stable despite the difference between the model used for design and the
actual plant in the absence of feedback gain recomputation. Such
differences commonly arise as a result of unknown and/or unmodelled
dynamics of a plant.

So far in this thesis, we have been looking at RPDS design from a
transient response point of view {(i.e. the ability of the feedback system
to attenuate the initial state perturbation at a prescribed rate). The
robustness specifications, commonly quantified in terms of stabilicy
margins and noise attenuation requirements, have been absent from the
RPDS problem formulation. The purpose of this chapter will be to
discuss the robustness properties, particularly those related to stability
of RPDS and its dual, the Kalman Bucy filter with a prescribed degree
of stability (FPDS).

Many of the results (e.g. Theorems 4.8 and Corollaries 4.2, 4.3

and 4.4) presented in this chapter and their robustness interpretations




have been treated by Anderson and Moore for the single-input RPDS problem.
The objective of this chapter is to generalize these results for the
single~input case to the multiple-input systems.

Required background for robustness analysis of linear time-invariant
MIMO feedback systems is briefly reviewed in Section %.2. The use of
minimum singular values of the return difference and inverse return
difference matrices as measures of MIMO feedback system's ability to
tolerate modelling uncertainties is emphasized.

In Section 4.3, an appropriate framework for robustness analysis
of RPDS is introduced. It is shown that the RPDS state feedback loop
can be'redrawn as a unity negative feedback system, which is the cannonical
feedback structure assumed in the current works on robustness theory.
Based on such a framework, the properties of the return difference
matrices and the inverse return difference matrices of RPDS and their
corresponding robustness implications are studied in Sections 4.4 and
4.5 respectively. RPDS is shown to possess excellent stability margius
with respect to the stability and degree of stability properties.
However, the ability of RPDS to tolerate modelling uncertainties only
improves with increasing value of & under very specific context.
Section 4.6 discusses the issue of roll-off requirement at high frequencies.
This problem is of importance from the robustness point of view because
the quality of a nominal design model inevitably deteriorates at high
frequencies as a result of unmodelled and/or unknown dynamics. An

explicit relation between the cross-over frequency and the choice of a

is derived. The robustness results obtained in Sections 4.4, 4.5 and
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4.6 are briefly summarized in Section 4.7,
This chapter closes with a discussion on the dual robustness

results of FPDS in Section 4.8.

4.2 Robustness Analysis of Linear Time-Invariant MIMO Systems

The robustness analysis of feedback systems requires the determinstion
of regions about the nominal model for which a particular system property
is preserved. We shall focus only on the robustness with respect to
the closed-loop stability property.

The importance of obtaining robustly stable feedback control systems
has long been recognized ([Bo 1], [Ho 1]). 1In classical frequency domain
techniques for single-input single-output (SISO)control system design,
the robustness issue is naturally handled. The various graphical means
(e.g. Bode plots, Nyquist diagrams and Nichols charts) for displaying the
system nodel in terms of its frequency response allow the control syst: 2
designers to determine by inspection the minimum change in the frequency
response of the model dynamics that leads to instability. These changes
are commonly quantified in terms of the gain and phase margins.l

Extension of these SISO robustness measures to the MIMO case is by
no means straight forward. A satisfactory notion of stability margins
for a multi-loop feedback system must be able to characterize the
ability of a system to tolerate gain and phase variations in all of
its loops simultaneously. It is not until recently that an appropriate

framework for this purpose has become available. The basic work in this

1 Readers are referred to section 3.2 of [Le 1] for a comprehensive

discussion uf these measures.

s i o 4 s, « - s~ —-
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area is due to Safonov [Sa 2]. His work was formulated in the time

domain and used some basic concepts of functional analysis, as in modern

input-output formulation of stability theory. The approach adopted here

for analyzing robustness properties of time-invariant RPDS is based on the

frequency domain formulation developed by Doyle [Do 4] and Lehtomaki (Le 1].
A review of MIMO system robustness results that are relevant to

the subsequent development of this chapter are presented in subsections

4.2.1 to 4.2.4.

4.2.1 Characrerization of Model Exror

We shall base our discussion for the remainder ot‘this chapter on
the unity negative feedback system depicted in Fig. 4.1. T(s) is assumed
to be a strictly proper rational transfer matrix ({.e. the state space
realization has no feedthrough term) which represents the plant and any
compensation that is used. The perturbed version of T(s) is denoted by
'i(s) where 1(:) is again & proper rational transfer matrix. Before .
introducing the variougs robustness tests for MIMO feedback systems, we
need to define some appropriate measures of deviation between ijs) and
I(s). There are many ways that one can represent the model uncertainties.
It 1s important to point out that diffsrent types of modal error repre-
sentation will emphasize different aspects of the differeuces between
TI(s) and T(s) and will thus give essentially different assessment of

the robustness properties under certain circunatances.l

1

Fo~ a concrete illustration of this point, rcaders are referred to
section 4.5 of thias chapter.
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FIG. 4.1 Unity Negative Feedback System with
Loop Transfer Matrix Given by T(s)
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Following the notation of [Le 1], we let the matrix Ei(s) denote
the particular modelling error under consideration whe:2 the index i is
used to distinguish between different types of error models. The two

most intuitive characterizations of model error are given by

Efs) = I(s) -I(s) (4.1)
which is the absolute error in T (s) and

Ey(s) = THe) (E(s) - 1(s)) (4.2)

which is the relative error in T.(s). It is convenient for the subsequent

development to define the multiplicative perturbation matrix L(s) by
T(s) = I(s) L(s) (4.3)

Note that L(s) has a nominal value cof I. Based on the above definitionm,

we can reexpress (4.2) as
_§2(S) = L(s) -1 (4.4)

A feedback representation of the perturbed system using I(s) and L(s)
is depicted in Fig. 4.2. The two error measures introduced above are
obvious multivariable generalization of the error measures t(s) - t(s)
and (t(s) - t(s))/t(s) which are commonly employed in classical stability
analysis using the Nyquist diagrams.

In view of the use of the inverse transfer function g-l(s) in
stability results employing the inverse Nyquist diagram [Ro 1], it
seems natural to introduce an alternative definition of the absolute and
relative error between the ncminal and the perturbed system in terms of
zfl(s) and ifl(s). With this tvpe of error representation, the absolute

ervor is given by

N T A b ST AL - A B T TS
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g6 = I - 176 .5)

and the relative error by
E ) = @ He) - 17He)) 1) 4.6)
=Lt -1 .7

Several comments are in order here. First, the absolute type of errors
defined above are additive in nature whereas the relative type of errors
are multiplicative in nature. While both types of errors can be used to
derive robustness theorems, the notions of gain and phase margin are
associated only with the relative type of errors. Second, the magnitude
of the absolute type of errors is affected by both the modelling un~-
certainties and the compensator gains. This in turn makes it very
difficult to assess the improvement of uncertainty tolerance due to
compensator adjustments. Problems of this nature do not occur with
relative type of errors, since the scaling effect of the compensator
gain is natu?ally handled by normalization (i.e. by multiplication of
T(s) and zfl(s)). In this thesis, we shall only work with robustness

theorems that are based on relative type of errors.

4.2.2 Multivariable Nyquist Theorem and its Genmeralization

All robustness results that we are going to present in the sequel

are based on the multivariable Nyquist theorem. This theorem can be

stated as follows.

Theorem 4.1 The MIMO system in Fig. 4.1 is closed-loop stable if and

only if the image of the Nyquist contour (Fig. 4.3) under the map



FIG. 4.3 Nyquist Contour Enclosing all the Unstable
Open-Loop Poles of T(s)




Tl

det (I + I(s)) encircles the origin P times in the counterclockwise
direction where P 1s the number of unstabie poles of I(s) that are
encircled by the Nyquist contour as the radius R of the half circle

becomes sufficiently large.

Remark This theorem is a natural generalization of the familiar
Nyquist criterion with det(L + T (s)) taking the place of 1 + t(s). It

is derived using the relationship

¢CL(s)
det(I +I(s)) = ;0:_(3_)- (4.8)

where %L(s) and %L(s) are respectively the open-loop and closed-loop
characteristic polynomials of the underlying system, and the Principle

of Argument of complex variable theory.

Remark The Nyquist diagram of det(l + T(s)) is commonly called the

multivariable Nyquist diagram. Despite the similarity in form between.

the above theorem and the Nyquist criterion for SISO system, it is not

possible to infer robustness properties of a MIMO system by insgection

of its multivariable Nyquist diagram. In other words, the distance

between the multivariable Nyquist diagram to the origin of the complex
plane does not constitute an appropriate measure of stability margin.
The reason for this will become clear in the next section.

The multivariable Nyquist theorem provides a procedure for checking
the preserce of closid-loop poles inside the domain enclesed by the
Nyquist contour. Generalization of such procedure to regions enclosed

by other contnurs in the complex plane is straightforward.



This can be accomplished by plotting the image of the contour in question
under the map det(I + T(s)) and counting the resulting number of en-
circlements about the origin, If this number turns out to de identical
to the number of open-loop poles enclosed by the countour of interest,

we can then conclude the absence of closed-loop poles inside the region

enclosed by such contour.

Remark A rigorous justification of the above discussion follows
directly from the application of the Principle of Argument and (4.5).

A coatour of significance for the analysis of feedback systems is
- the a = Nyquist contour. This contour is obtained from the conventional
Nyquist contour by shifting che jw-axis to the line ¢ = -0 (see Fig.4.4)
Applying the procedure discussed above to this contour results in a
graphical test for checking the degree of stability. A precise

description of this resul: is given in the following theorem.

Theorem 4.2 The MIMO system in Fig. 4.1 has a degree of stability o
if and only if the image of the @ - Nyquist contour (Fig. 4.4) under the
map det(I + T(s)) encircles the origin P times in the counterclock-
wise direction where P 1s the number of poles of T(s) that are enclosed
by the & - Nyquist contuur as the radius R of the.half circle becomes

sufficiently large.

Remark The SISO version of the above theorem was employed by Anderson

and Moore [An 1] for interpretation of KPDS rebustness properties.
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4.2.3 Robustness Theorems for MIMO Systems

In this section, we reviaw several theorems that are key to the
study of RPDS robustness properties. The derivation of these results
from the basic theorems (Theorems 4.1 and 4.2) are skerched in a tutorial
fashion. For convenience, we will assume that in all the remaining
theorems and corollaries,the Nyquist contour (@-Nyquist contour) is
chosen with R sufficiently large so that Theorem 4.1 (Theorem 4.2)
may be applied.

Suppose that the nominal closed-loop system in Fig, 4.1 is stable
and that I(s) and iﬁs) have the same number of unstable poles. Then it
follows from Theorem 4.1 that the perturbed system is stable if and only
if the image of the Nvquist contour under det(I + T(s)) and det(I +-i(s))
have the same number of encirclements about the origin.

Consider the rase where iﬁs) is a continuous deformation of I(s).
For a sufficiently smull deformation, the number of.encirclemants of
the multivariable Nyquist diagram about the origin stays unchanged.
Consequently, the perturbed system will remain stable. However, if
the deformation makes the multivariable Nyquist diagram crossing the
origin, the number of encirclements about the origin will change as a
result and the perturbed system becomes unstable. The point where

crossing of the origin takes place is characterized mathematically by
det(I + go(jw)) = 0 (4.9)

for some value of w > O where io(s) i{s the deformation of I (s) that
. touches the origin for the first time. This point clearly marks the

borderline between stability and instability. 1t seems natural from
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the abcve discussion to characterize the stability margin of a system at
each frequency ® by the nearness of the nominal return difference
matrix (I + T(jw)) to singularity.

The determinant det(I + T(jw)) appears to be an obvious candidate
for such measure since the determinant of a matrix is zero if and only
if it 1s singular. Moreover, the size of det (I + I(s)) at each
frequency @ can be readiiy obtained by inspection of the multivariable
Nyquiast diagram. Unfortumately, the determinant of a nomsingular matrix
turns out to be an unreliable measure of closeness to singularity. It
is well known that a matrix with a reasonably large determinant can be
made singular by a small perturbation (compared with the determinant
of its elements). The standard measure for closeness to singularity of a
matrix is given in terms of rhe matrix norms. When the 2-norm is used
(as is the case of this thesis), the distance from singularity for a
given matrix A is quantified by the minimum singular value Cmin(A). 1
The precise use of Omin (_p:) in detection of closeness to singularity

is given in the following theoren.

Theorem 4.3 Given a nonsingular complex matrix A, a solution to

the following minimization problem

min {|[E|| ¢+ A+E is singular (4.10)
is given by
He [l = cmin (@ f4.11)
and
E = omin O U ¥ (4.12)

1 Readers unfamiliar with singular value may refer to [Str 1] fer an

overview of their properties

o e 47
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where U and V are the right and left singular vectors of A corresponding
to Cmin(a).

In other words, if A + E is singular, then
[(El| =omax (E) > omia (&) (4.13)

The following corollary to Theorem 4.3 is the key to the derivation of

robustness theorems that are based on the multivariable Nyquist theorem.

Corollary 4.1 Let A be a nonsingular complex ma'7iX and

omax (E) < omin(A) (4.14)

then A + E is nonsingular.

Kemark The condition (4.14) is sufficient but not necessary, because
only magnitude information of A and L are employed.

Before applying the previous corollary to derive the robustness
theorems for MIMO feedback systems,note that we can rewrite the perturbed

return difference matrix

([ 1

I1+I(s)=1I+T(s) L(s) (4.15)

in two different ways

I+T(s) I(s) = (L T(s) +1I(s)) L(s)

[(T+I(s) + @ s ~ DI L)  (4.16)

and

I+1(s) L(s) = T(s) (T 1(s) +L(s))

T(s) [(L+T Ys) + (L) - D] (4.17)
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Direct application of Corollary 4.1 to (4.1f5) results in the following

condition that guarantees the nunsingularity of (I + T(s) L(s)).
omax(L " Y(s) - I) < omin(l + I(s)) (4.18)

In view of the discussion at the beginning of this section, it is clear
that any perturbation matrix L(s) satisfying condition (4.18) for all
values of s along the dyquist contour will not destabilize the closed-

loop system. This result is formally stated in the following theorem.

Theorem 4.4 1f the MIMO feedback system in Fig. 4.1 1{s stable, then

the perturbed system in Fig., 4.2 is stable if

(1) I(s) and i(s) = T(s) L(s) have the same number of unstable

poles (4.19)
(11) TI(s) has no pole along the ;w-axisl (4.20)
(111) L(jw) has no eigenvalue at 0 or on the negative real
axis for © > 0 (4.21)
(tv)  omax(L () - 1) = omax(E, ()
< Omin (I +I(w) {4.22)
where E (s) = é_l(s) -3-1(8 )) I(s) (4.23)

Another useful nonsingularity characterization of (I + I(s) L(s)))
1s provided by the condition

omax(L(s) - I) < omia(l +T *(s)) (4.26)

This is readily obtained by applying Corollary 4.l to the altermative

1
This condition can be relaxed by indenting the Nyquist contour along

the jw-axis at lccations of open-loop tmaginary poles

e
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expression of L+ T(s) L(s) as given in (4.17). The related robustness

theorem is atated below.

Theorem 4.5 If the MIMO feedback system in Fig. 4.1 is stable, thea

the perturbed system in Fig. 4.2 is stable if

(1) I(s) and T(s) = I(s) L(s) have the same number of unstable
poles (4.25)
(11) I(s) has no pole on the jw-:xis (4.26)
(111)  owax(L(jw) = 1) = omax(Ey(j0)) < omin(L + I ~(Ju))
for all @ 20 (4.27)

where E, (s) = fl(s) (i(s) - I(s)) ‘ (4.28)

Remark Strictly speaking, the¢ arguments given above are not enough
to prove the robustness theorems in this seuction. A major part that
has been omitted is the embedding argument which ensures that the
perturbed multivariable Nyquist diagram associated with I + _':f_(jw) can
be reached through a continuous deformation of the original Nyquist
diagram which preserves the number of encirclement of the origin. The
results presented in Theorems 4./ and 4.5 are however correct. Readers
interested in more technical details should consult [Le 1].

We shall make several brief comments on the relationship between
Theorems 4.4 and 4.5. Obgerve from inequalities (4.22) and (4.27)
that as Omin(l + T(j»)) and cmin(I_-b-_‘l_‘-l(jw)) increcses, bounds on the
respective kind of model error become less stringent, For purpose of

improving the system’s ability to tolerate uncertainties, it would
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seen desirable to make both the quantities omin(I + T(§)) and

omia(l + fl(Jw)) as large as possible. Thia is however impossible
because the roturn difference matrix (I + T(jw)) and the inverse return
difference matrix (I + fl(jm)) are related by the following matrix

{dentity

@+T ™« @rzou -1 (4.29)

which prevents us from making borh Jmin(l + T(jw)) and omin(l + fl(jw))
large independently.

In the low fraquency regilons where Omin(T(jw)) is large (i.e. large
loop gain in all feedback loops), the quantity Omin(l + T(jw)) is also
large. This in turn constralnts omin(I + fl(jw)) to assume values
close to unity. Corsequently, Theorem 4.4 will tend to give a less
conservative test with regpect to the multiplicative errors (i.e. errors
of the form i(s) = T(s) L(s)) than will Theorem 4.3 at low frequencies.

Likewise, when Cmax(I(jw)) is small (as 1s the case in the high
frequency region), Theorem 4.4 will provide a less conservative tast
with respect to the multiplicative errors. This is a consequence of
omin(l + I.l(jw)) being large and Omin(l + I(jw)) being near to unity.

Using det(I + T(s-a) L(s=a)) (i.e. the image of the O~-Nyquist
contour under det(l + T(s)) in place of det (I + 1(s) L(s)), and
repeating the argument (based on the deformation of the multivariable
Nyquist diagram) employed in the derivation of Theorems 4.2 and 4.3
leads directly to the following theorem on robustness with respect to

degree of stability.



Theorerm 4.6 If the MIMO feedback system in Fig, 4.1 has a degree of
stability o, them the perturbed system in Fig. 4,2 possesses the same

degree of stabiliiy if

(1) T(s~a) and }_(s-ﬁ) = T(s-a:) L(s-a) have the same number of
unstable poles (4.30)
(11) TI(s-a) has no pole aiong the jw=-axis (4.31)
(111) L(ju-¢) has no eigenvalue at 0 or on the negative
real axis for w > 0 _ (4.32)
(iv) cmax({l(j»-a) = I) = omax ga(jm-c) < min(I + I(-0))

(4.33)
for all a > 0

where E,(s) = @ 1(s) - T1(s)) L(s) (4.34)
Theorem 4.7 If the MIMO feedback system in Fig. 4.1 has a degree

of stability & , then the perturbed system in Fig. 4.2 has the same

degree of stability if

(1) I(s=a) and i‘_(s-a.) = T(s=a¢) L(s~0} have the same
number of unstable poles (4.35)
(11) T(s~0) has no pole on the jw-axis (4.36)
(111) Omax(L(ju~®) = I) = Omax(E,(jw-a))

< omin(L + Tl(ju-a) for allw> 0 (4.37)

where E,(s) = T (s) (I(s) = 1(s)) (4.38)
Remark Our remark on the relative effectiveness of the robustness

tests prescribed by Theorems 4.4 and 4.5 at different frequency regions

also applies to Theorems 4.6 and 4.7.

C"L
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4.2.4 Multi-loop Stability Margins

A natural extension of the gain and phase margin measure to MIMO
systems can be obtained by using Theorems 4.4 and 4.5, It turns out
that these stability margins can be couveniently characterized in terms
of the lower bound of omin(l + T(j)) and omin(L +1-l(jn)) for
@ > 0. The definition of the multi-loop margins given below are due to
Lehtomaki [Le 1]. Diagonal (i.e. noninteracting) perturbation of the

multiplicative type is assumed throughout (see Fig, 4.5).

Definition 4.1 The multi-loop gain margin is the pair of real numbers ¢,

and c, defining the largest interval (cl,cz) such that when 21(3),

1{i=1,2,...m in Fig. 4.5 are all real, and satisfy the inequalities
¢, < 21 <e, i=1,2,...m (4.39)

the closed-loop system remains stable.

Definition 4.2 The multi-loop phase margin is the pair of real numbers

91 and -91 defining the largest interval (-61,61) such that when
j¢
zi(jm), i=1,2,...m in Fig. 4.5 are of the form e 1 where ¢i's are

real and satisfy the inequality
-el < ¢i < el i = 1,2..-.m (4040)

the closed-loop system remains stable.
Following the notation in [Le 1], we denote the multi-loop gain
margin of (4.39) by

GM = (Clocz)

and the multi-loop phase margin of (4.40) by

O AR Bo—— e mmt i - o
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M = (-e,el)

In a similar fashion, we can define multi-loop gain and phase margins
that guarantee a prescribed degree of stability for the cloased-loop
system. These bounds are useful for characterization of a system's

ability to maintain a specified speed of response in the face of un~-

certainties.

Definition4.3  The multi-loop a - gain margin (denoted by GM,) is the
p;ir of real numbers <y and ¢y defining the largest interval (cl, c2)
such that when li(juﬂ, {=1,2,...m in Fig. 4.5 are of the form 11,
where li's are real and satisfy the inequality

c, < 11 <c i=1,2,...m (4.41)

1 2 ’

the closed-loop system retains a degree of stability o .

Definition 4.4 The multi-loop o-phase margin (denoted by PMy ) 1is
the pair of real numbers -61 and 61, defining the largest interval
(—61,01) such that when Zi(ja&, i=1,2,...m in Fig. 4.5 are of the

b
form e 1 where ¢i's are real and satisfy the inequality

- el < ¢i < el Y i = 1,2,ooaom (“042)

the closed-~loop system retains a degree of.scability «,
The interpretation of the two types of gain and phase margins
defined above require some explanation. First of all, these margins

are valid for perturbations (either pure gain or pure phase changes)



applied simultaneously at each input channel. This does not exclude
the possibility of having pure gain changes at some channels and pure
phase changes at others. Thus, they differ from those stability margins
obtained by breaking cne loop at a time. However, the word ‘'simultaneously'
does not suggest that one can change the gains and phases of each input
channel simultaneously inside the limit prescribed by (4.39) and (4.40)
«4.41) and (9.42)) without causing instability (the degree of stability
to go below a). Secondly, the multi-loop margins only ~over a limited
class of perturbations. In particular, they are based on the assumption
of diagonal L(s).

The following corollaries to Theorems 4.4 and 4.5 provide a
characterization of multi-loop GM an@ PM in terms of the lower bound for

omin(L + T(j)) and omin(I + T 1(#)).

Corollary 4.1 1f the nominal closed-loop systea in Fig. 4.1 is stable

with no open-loop pole on the jw-axis and

omin(L +T(jw)) >B, 0<B<1l, forallw>0 (4.43)

then the multi-loop gain and phase margins are characterized by

1 1
MOGFE » 1R ) (4.44)
and
MO (-2sint 8, 2e1a7 &) (4.45)
respectively.
Remark The case for B < 1 is not considered because it is in-

consistent with the strict properness assumption of I (s).
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Corollary 4,3 If the nominal closed-loop system in Fig, 4.1 is stable

with no open-loop pole on the jw-axis, and
omtn(L + T (jw))> B for all & > 0 (6.46)

then the multi-loop gain and phase margins are characterized by

GMD (1 -8, 1+ 8) (4.47)

and

MO (-2 sin ! % , 2 sint %) (4.48)

respectively.

Likewise, we can characterize the multi-loop margins with respect
to degree of stability in terms of the bound for omin(I + T (o-jw)) and
Gmin(L,+'!:l(arjm)) respectively. The result is summarized in the

following corollaries to Theorems 4.5 and 4.6.

Corollary 4.4 If the nominal closed-loop system in Fig. 4.1 has

a degree of stability a with 10 open-loop pole on ¢ = -Q, and

Omin(l + I(jw-a)) > B , 0 <5 <1 forall w20 (4.49)

then the multi-loop gain and phase margins with respect to the degree of

stability o are characterized by

1 1 .
GMa D (l+B ? l_B) (4-50)
and
PM, S (-2stn 18 |, 2s1a71 8 (4.51)
o 2 2
respectively.
Corollary 4.5 If the nominal closed~loop system in Fig. 4.1 has a degree of

of stability o with no open-lonp pole on ¢ = -0, and

i v - - -
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omin(L + I F(@-2)) > B for all w >0 (4.52)

then the multi-loop gain and phase margins with respect to the degree of

stability o is characterized by

M, C A-B,1+8) (4.53)

and
PMG C (=2 sin.l-g y 2 sin-l

Nlw

) L (4.58)
respectively,

It i3 important to emphasize that the bounds on the multi~loop gain
and phase margin characterization provided by the above corollaries are
in general very conservative. This is a result of the fact that only
magnitude but no structural information on I + T(jw) and I + fl(j w
are employed in the derivation of these bounds. These stability margins

are commonly known as the guaranteed gain and phase margins.

4.3 Formulation of the RPDS Robustness Problem

Consider * LTI system described by the dynamical equations

x(t) = A x(t) + B u(t) : (4.55)

y(t) = C x(t) (4.56)
Let

u(e) = -G x(t) (4.57)

be a state feedback control law f'or the above system. The resulting state
feedback configuration is shown in Fig. 4.6.

Since the stability of a RPDS is characterized by the eigenvalues
of the closed-loop matrix (A - B G, it is strictly a property of the

state feedback loop and is independent of the output matrixC, To
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perform robustness analysis, we can redraw the RPDS state feedback loop

in a unity negative feedback form (see Fig. 4.7) that is compatible with
the robustness theorems considered in the last section. The RPDS feed-
back system is therefore akin to that found in classical situation where
unity negative feedback is applied around a system with loop-transfer
matrix given by Gqo (sL - A)-l B.

Now, it becomes clear that we can characterize the robustness

properties of RPDS in terms of the two quaantities dmin(I + I,(jw))

and O min(I + _'I;a'l(jw)) where we define

A .
U0 = GGuL - a7t B (4.58)

4.4 Properties of RPDS Return Difference Matrices and Related Robustness
Results

Several well known feedback properties of LG regulators are characte-
rized in terms of its return difference matrices by the Kalman Frequency
Domain Equality([Ka 1], [Le 1]). Since RPDS represents a special case of
LQ regulator, it seems natural to begin §ur study of its return difference
by introducing two modified versions of Kalman Frequency Domain Equality
that are obtained directly from the RPDS Riccati equation. The derivation
of these results are given in section 4.4.1. The three subsections that
follow discuss three important consequences of these equalities and their

respective robustness interpretations.

4.4.1 Two Fundamental Equalities
There are two versions of Kalman Frequency Domain Equality for

RPDS. Each of them results from a different arrangement of the RPDS



algebraic Riccati equation. These results can be stated as follows.

Theorem 4.8 Let the matrix K, be the unique positive definite

solution to the algebraic Riccati equation

@+aDT R +KfA+aD +Q-EBE B Ky = O (4.59)
with
(1) Q>0 and R> O (4.60)
(11) (A, B) controllable ~(4.61)
(11) @2, o) observable (4.62)
then
@ + I 080" R (1 +T (-a+s)) = R + E(-s,8) (4.63)
and
@+ I.m(-s))T R +I,(s)) = R+ H,(-8,3) (4.64)
vhere H(i,8) = B (L-al- AN lgsl-al-a)lB (4.65)
and
B (Gs) = BRGL-ADM ek +Q (s1-M71 3 (4.66)
Proof: Direct manipulation of (4.59) yields
(s1-A-oDTK +K(s1-A-aD +E BE BE, =Q

(4.67)
- T
upon premultiplying and postmultiplying (4.67)by ((=sl - &I = A) 1 3]
and ((sl - of - A)-l B] respectively, we obtain
T T e H(=
RI(s-0) +I, (s-0) R+ T (-s-%RL; (s -a) = B(-s,s) (4.68)
adding R to both sides of (4.68) gives (4.63).

To derive (4.64), note that we can rewrite (4.59) as follows

paver'y
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l>._,

Xt A+ Q+20Kk)-K BROB K =0 (4.69)

by regrouping the two terms involving GK, . Repeating the same algebraic
manipulations as before with (4.69)we obtain (4.64) and this completes the

proof.

Remark As expacted, both equalities (4.63) and (4.64) reduce to the
familiar Kalman Frequency Equality for LQ regulators when a = 0. ‘

Furthermore, if

dec(JuI - A) ¥ O for all w > 0 (4.70)
we can rewrite equality (4.64) as
@+ MY R @ +T,(30) = R + B (~3a Ju) (4.71)

for values of s on the jw-axis.

Similarly, if

det(jJul ~ A-oal) # 0 for allw>0 (4.72)

we can rewrite equality (4.63) as

@ +Iy-a+ 30 R + Iy(-a + Jw)) = R + B(-ju, J) (4.73)

for values of s on the jw-axis.

4.,4,2 Common properties w 4 ulators i

It was pointed out in our remark to Corollary 2.5 that RPDS is
a special case of LQ regulators. As s result, it possesses all the
robustness properties of the latter. A formal verification of this
fact is provided ia this section. The following corollary to Theorem 4.8

1s key to the derivation of all the subsequent results on LQ-related
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properties o: RPDS .

Corollary 4.6 Let the matrix 5a be the unique positive definite solution
of the algebraic Riccati equation (4.59) (with all conditions on A, B,

Q and R satisfied), and dat(juwl - A) # 0 for allw > O.

Then
@+, RL+T GuD>R  forall ¢>0  (h.74)
Proof: The inequality (4.74) holds if and only if H,(~jw,jw) > 0

for w > 0. The positive definiteness of Hy(=jw,jw) in turn follows from

that of K, and this completes the proof.

Remark The result described in this corollary is the well known Kalman
Inequalicy for LQ regulators. In the single-input case (4.74) reduced to

the following scalar inequality [Ka 1)
1 +e,00)] > 1 for w > 0 4.7%)

By inspection of the Nyquist diagram corresponding to (4.75) (see Fig.4.8)

it is straightforward to observe that a single-input RPDS state feedback

regulator has a guaranteed GM of (-]2‘, ») and a guaranteed PM of (-60°,60°).
In the multiple-input case, the inequality (4.74) does not provide

a bound on the quantity onin(l + L(jm))- for arbitrary choices of R.

In cases where R is chosen to be a scaled identity (i.e. R = cl for

some ¢ > 0), then (4.74) reduces to
@+, 00" @+ 100 > 1 for all w > 0 (4.76)

which in turn provides a lower bound
omin(l + T4 (Jw)) > 1 for allw > 0 4.77)
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for the minimum singular value of I + T4(jw. It follows immediately
from Corollaries 4.2 and 4.3 and (4.74) that RPDS designs with R chosen
to be a scaled identity matrix have a guaranteed multi-loop gain margin
given by (0.5,») and a guaranteed phase margin given by (-600,600) .
It turns out that these guaranteed stability margins also apply
to RPDS designs with R chosen to be diagonal. The derivation of this
more general results is due to Lehtomaki (see {Le 1], [Le 2]) and is
included here for completeness. The proof is motivated by the observation

that (4.74) can be rewritten as
@+ LG @+d o> 1 for all w > 0 (4.78)

where we define

. L ol/2 -1/2
I,Gw) =R T (Ju) R (4.79)

Inequality (4.78) then provides a bound
omin(l + L (ju)) > 1 for all o > ¢ (4.80)

on the minimum singular value of I +T (jw). If T (jw) is used instead

of (jn) in the stability test based on Theorem 44 , it is necessary to

manipulate Fig. 4.7 into the equivalent form depicted in Fig. 4.91

Ty
Using Theorem 4.4 and (4.80) leads directly to the following result

Theorem 4.9 Given a RPDS system with loop-transfer matrix T, (s), the
perturbed regulator with loop-transfer matrix_'!a(s) * Za(s) L(s) is

closed-loop stable if

1 This ensures the equivalence (from stability point of view) of che feed-

back loops in Fig. 4.7 and Fig. 4.9.
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(1) ga(s) and ga(s) have the same number of unstable poles (4.81)

(i1) ;f_a(s) has no pole on the ju—-axis (4.82)
(111)  omax(®/? 11w V3D <1 for all w >0  (4.83)
- - - hd
Observe that the condition Omax(R 1/2 L l(jw) 51/" -I) <lin
(4.83) can be written as (see [Sa 3])
RL(Gw) +t8Gw) R-R >0 for all @ >0  (4.84)

If R and L(jw) are diagonal, (4.84) simplifies to the following conditious

1 for all @ > 0 (4.85
Re(li(jw) _>_.2 or a o > )

and i = 1,2,...m
The corresponding guaranteed gain and phase margins properties can be
readily obtained from (4.85) by assuming 2 j.(jm) to be a real scalar and

i¢
Li(jw) = e 1 » respectively, for i = 1,2,...m.

4.4.3 The Effect of the Stability Factor @ on RPDS Return Difference
Matrices

Tte effect of the stability factor @ on the matrix
(L+ _'[_m(-s))'r R(I + Ty(s)) is provided by the followinz corollary to

Theorem 4.4.

Corollary 4.7 Let the matrices 5“1 and Eaz be the unique positive
definite solutions of the RPDS algebraic Riccati equations
@+oDTR +K @A+0D+Q-K BRYBE, = 0 (4.80)
1 1 L Hie !

11: can be trivially shown that condition (iii) in (4.79) automatically
guarantees condition (1ii) of Theorem 4.4.
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and
@+a,D'K +K (A+q,D+Q-E BETEK (4.87)
T2 T % )
respectively with
1) ¢>0, R>0 (4.88)
(i1) (A, B) controllable (4.89)
(i1) (@2, o) observable (4.90)
aad (V) det(wI - A) #0 for ally > 0 (4.91)
then
H
@L+I W RQA+I (o)
1 1
> @+1, G R @+1, (ju))  for all @ > 0 (4.92)
) 2

if a.l> "'21 0

Proof: Direct application of Theorem 4.4 to the algebraic Riccati equations

(4.86) and (4.87) yields

a +;ql(jm))“ @I, () = By Cdeod) +R (4.93)
and

@+ E“z Gon' R @+ -Taz(J“‘)) - E‘oz(‘j‘“’j“" +R (4.94)

respectively. It follows from Lemma 3.1 and condition (iv) im the

theorem statement that

B (<Jw.dw) > By (<ju,iw) for allw > 0 (4.95)
1 2

Adding R to both sides of (4.95) yields

R+ (-jw,jw) > R + l_!u (=Jw,jw) for all w >0 (4.96)
2

H
1

© e p——————
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and the theorem is proved.
FPor single-input RPDS (4,92) reduces to the following scalar in-

equality

1+ t, Go)| > |1+, (o for all @ >0  (4.97)
1 2

Geometrically, (4.97) means that for each value of frequency w , the point
tal(Jw) in the complex plane is always farther away from the critical
point (-~1,0) than the point gmz(Jm) (see Fig. 4.10)).

In the multiple-input case, the inequality (4.92) does not in general
imply (L + z‘,‘l(jm))H L+I, ) > @+ qu(Jm))H L +1, (o)) for
@, > a,. However, if R is chosen to be z scaled identity matrix, (4.92)
then simplifies to

@+ gcl(jm))u @+1, () > @+ zazum»“ @+I, G0)  e9®)

1
for all a >0

The following inequality on the minimum singular value of RPDS return
difference can be readily derived from (4.98) by using the properties

of singular vaiues

omin(L + I, (jw)) > omin(1 + lu (Ga)), for all w >0 (4.99)
1 2

Inequalities (4.98) and (4.99) allow us to assess the effect of @ on the
robustness properties of RPDS design with R chosen to be a scaled identity
matrix. It follows directly from condition (4.21) in Theorem 4.4 that
the tolerance of modelling error of the form E, (s) = (i?%z(s) - 17%1(3» I,()
improves with increasing values the stability factor a. Unfortunately, the
use of the matrix function 2?%,(3) is not common, thus making the above

conclusion somewhat difficult to interprete. We shall explore further
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Im ta(s)
/'y
|
»Re ta(s) |
——t(!z‘j(ﬂ)
tai(jW)

FIG. 4.10 Nyquist Diagrams for RPDS Loop Transfer

Functions tq'l(S) and caz(s) with a; > a,
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consequences of this result by restricting ourselves to perturbation
matrices L(s) that are diagonal., Then condition (4,22) in Theorem 4.4

simplifies to

27 Gw) - 1 <BGw) 2 omta(z + I, ()
for all w >0 (4.100)
1=1,2,....n
The allowable values for 21(109 as defined by (4.100) are depicted in
Fig. 4.11. It is clear from the diagfam that the area of allowable
(shaded) region for zi(jw) increases with 8 (jw) which is itself and
increasing function of a. This represents a very special type of
robustness improvement for RPDS made possible by increasing the value of a.
Attempts the find a characterization of robustness variations with a for
error models defined in terms of T (s) have not been successful. This {s so
because robustness theorems relating omin(l + I, (jw)) and error models
defined in terms of Za(s) are only available for the absolute type of
error representation. We have already pointed out in section 4.2 the
difficulty in accounting for the effect of compensator with this type of
error model. Indeed, an increase in the value of a will increase both
the error and the quantity Omin(Il+I,(jw)), thus making it impossible to
ascertain the effect of o on robustness.
We shall conclude this section by discussing the effect of @ on
the guaranteed and actual stability mergins of RPDS. SinceI (s) 1s a

strictly proper, rational matrix function, it follows that
lim omin(I +I,(jw)) =1 for all values of a > 0 (4.101)

[Nge
This in turn implies that we cannot find a lower bound larger than 1 for
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Im 4(s)

+B,

FIG. 4.11 Set of Allowable Values (shaded) for li(s) Corresponding

to omin(l + _Ial(jm)) = 8, (4.12a) and omin(L + Zaz(Jw)) =8,

(4.12b) a, >a,
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omin(I + zu(jw)) that holds for all values of w. As a result, the
guaranteed gain and phase margins for RPDS with R chosen to be a scaled
identity matrix is unaffected by the choice of a. It can be shown that
this result also holds for RPDS design when R is chosen to be diagomnal.
The effect of o on the actual stability margins of RPDS turms out
to be highly system dependent. As expected, the upward gain margin is
always « (since actual gain margin can be no worse than guaranteed gain
margin). The downward gair margin and phase margin may however either
improve or deteriorate with increasing «. The following simple example

illustrates this point.

Example 4.1 Consider the following RPDS problenm

t

1
min lim o2t (x2(¢) + ud(r))dt (4.102)
u(t) t*o

x(t) = ax(t) + u(t) (4.103)
If a = -1, the RPDS feedback gain is given by
g = @=-1+@-D2+1H? (4.104)

and the corresponding gain and phase margin are given by

GM = (- ga-l.'”) (4.105)
and
- 1/2
PM = (-7 + tan—l(sof -»Y2, 7 - tan l(la? -0
(4.106)

respectively. It follows from the fact that g, 1is an increasing function

of o that both the downward gain margin -30:1 and the phase margin given
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by (4.106) deteriorate with increasing o (see Fig. 4.12a). If we have
a = 1 instead, (i.e., the open-loop system is unstable) then the gain and

phase margin of the resulting design become

GM = (sqtl.w) (4.107)
and

PM = (-tan-;(gaz - 1)1/2, can,-l(ga2 - i (4.108)
respectively, where 8y 1s now given by

g = @+1)+(@+1n2+1)t? (4.109)

Note that in this case, both the downward gain margin and the phase margin

increase monotonically with o (see Fig. 4.12b).

4.4.4 Properties of the RPDS Return Difference Matrices om_the
a-Nyquist Contour

Thus far, we have not been using the version of the RPDS Frequency
Domain Equality given by (4.64). A useful matrix inequality similar to

(4.74) can be derived from this equation.

Corollary 4.8 Let the matrix K, be the unique positive definite
solution of the algebraic Riccati equation (4.59) with the respective
conditions on A, B, Q and R satisfied and det(u I - A -al) # 0 for

all o >0, then

(1+7, (0 + NPT R+ T, (a + W) 2 R for all © > 0 (4.110)

Proof: The inequality (4.110) holds if and only if H(-jw, jw) > 0, for all

@w > 0. The positive semi-definiteness of H(-jw,jw) in turn follows from
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FIG. 4.12(a) Nyquist Diagrams for — and

g+l s+l ’ c‘1>°"2
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Im 10(5)
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FIG. 4.12( F1 i
« 4.12(b) Nyquist Diagrams for 1 and =T ; a; > a,
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2> 0, (9,1/2

this completes the proof.

» A) observable and det(ju 1 - A= aqal) ¢ 0 for all 4 > 0, and

Note that inequalities (4.74) and (4.110) become identical when
a = 0. For the case a ¥ 0, we can ragard (4.110) as arising from (4.74)
by replacing + jw by + j w-o . Indeed the values of the matrix function
for w > 0 on the left hand side of (4.110) can be obtained by evaluating
the RPDS return difference matrix along the a-=Nyquist coatour showm in
Fig. (4.4). For the single-:}nput casy, (4.110) simplifies to the following

scalar inequality
1+ :a(-auml > 1 for allw > 0 (4.111)

which admits the sams gesometrical interpretation as (4.75) in that every
point on the Nyquist diagram of ta(s) evaluated along the a~-Nyquist
contour 1is away from the critical point by a distance of at least unity
(see Pig. (4.8)).

Recognizing the similarities between inequalities (4.74) and (4.110)
it seems natural to use the closed-loop system depicted in Fig. 4.9 in
order to interprete robustness implications of (4.110). The following

result can be readily obtained using inequality (4.110) and Theorem 4.6.

Theorem 4.10 Given & RPDS with loop transfer matrix T,(s) and a
presczibed degrce of stability a , the perturbed regulator with loop‘
transfer matrix T,(s) =T ,(s) L(s) will recain a degree of stability

1f
(1) 1Iy(s-a) and T (s-a) have the same number of unstalie
poles (4.112)

(11) Iu(s-a) has o pole on the ju—-axis (4.113)
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1/2

(111) Om(guz !-,.1 Qu-a) R-“=-1 <l forall w0

(4.114)

Note that condition cm(&uz I_._.l'(jw -a) {112 =D <1i4n (4l114) can

be rewritten as

RL(w-0a) +L%m -a) RO R for all w > 0 (4.115)

1f both R and L(s) are chosen to be diagonal, then (4.115) above simplifies

to the following set of inequalities

Re(L, (o - @) > % for all > 0 (4.116)
‘nd 1 = l.2,....ﬂ

For case of 1% { representing a pure gain change, it is clear from

(4.116) that the perturbed regulator will retain a degree of stabilicy a
1 iey

if each !'i satisfies !.1 > 7 Similarly, for 9..i - e

from (4.116) that the perturbed regulator will retain a.degree of stabi-

, We can conclude

lity o for I¢i| <60°, 1«1,2,...,m. It is interesting to note that
these guaranteed margins with respect to degree of stability are identical

to the guaranteed stability margins derived in Section 4.4.2.

4.5 Proper f the RPDS Inverse g fferanc tric
Related Robugtness Results

We have noted in section 4.2 that useful robustness characterizations
(including the guaranteed gain and phase margins) for MIMO systems can be
stated in terms of the minimum singular value of the inverse return
difference matrix. It was also mentioned briefly in section 4.2 that
this quantity is a useful complement to the minimum singular value of

the return difference matrix. The purpose of this section i{s to examine
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several important properties of RPDS inversereturn difference matrix
and the related robustness interpretations. Results in this section

are presented in a fashion which closely parallels that of section 4.4.

4.5.1 Progtués in Common with LQ Regula.ors

Unlike the case of the return difference matrices, no useful
frequency domain characterization of inverse return difference matrices
is known for LQ regulators. However, when the control weighting matrix
is chosen to be a scaled identity matrix,then a lower bound for the
minimum singular value of the L{ inverse return difference matrix can be
obtained in terms of the lower bound for the minimum singular value of the
LQ return difference-mati:ix derived in the last section. A precise |

statemen: of this result is given by the following theorem.

Theorem 4.11 Let the matrix K, be the unique positive definite

solution of the algebraic Riccati equation (4.59) with conditions on

A, B, Q and R satisfied. Also assume that

det(jw L - 4) #0 for all w > O (4.117)
and that
E_G(jm) is invertible at all w > 0 (4.118)
Then N cuin(l + I, (J0))
L. for all >0 | (4.120)
Proof: The relation (4.119) follows from direct application of an

inequality due to Nuzman and Sandell [Nu 1]. To derive (4.120) from
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(4.119), we make uge of the Kalman's Inequality (4.80) derived in the
last section and this completes the proof.

It follows from Corollary 4.1 and the above theorem that RPDS design
with R chosen to be a scaled identity matrix has a guaranteed gain margin
given by (%, -g-) and a guaranteed phase margin given by (-30°, 30°) . Both
of these margins turn out to be more conservative than those derived using the
RPDS return difference matrix.

It is also possible to obtain these guaranteed stability margins
for RPDS designs with R chosen to be a diagonal matrix. The derivation
is analogous to that of Theorem 4.5 and requires the use of the equivalent
system depicted in Fig. 4.9. Based on the equivalent system, we can
rewrite (4.119) and (4. 120) in Theorem (4.11) as

omin(I +_a(3m))
T2 1 +omn(L +1I,(9))

omin(L +1,” (4.121)

> 2 (4.122)

Using inequality (4.122) together with Theorem 4.5 leads directly to the

following result . Invertibility of g‘a(jm) for @ > 0 is assumed.

Theorem 4.12 ' Given a RPDS withloop~-transfer matrix Ty (s), the

loop-transfer matrix Hs) =T, (s) L(s) 1is stable if

(1) ga(s) and fa(s) have the same number of unstable poles (4.123)
(11) I,(s) has no pole on the ju-axis (4.124)
(110) omax &2 10w £Y2-p<d forannwo (4.125)

When R and L(s) are chosen to be diagonal, condition (4.125) in the above

theorem reducesg to
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la () =1 <3 for all w> 0 (4.126)
and {1 = 1,2,...,m
We can now employ (4.126) to establish the guaranteed gain and phase
margins by assuming £ i(s) to be real and £ 1(3) = e‘m- » respectively,
for i = 1,2,...,m.

It is important to emphasize that the guaranteed stability margins
derived above and those in section 4.2 are margins that apply to all
RPDS designs with diagonal R. The remarkable generality of these results
in turn account for their conservative nature. Less conservative margins
can be obtained if the actual values of the design parameters A, B, R
and Q are taken into account in the robustness test. For a given RPDS

design, the quantity 8 o defined by

8, = min Omin(I + I, (jW)) (4.127)
@0
is in fact often greater than % In cases when this is true, we can

replace condition (4.125) in Theorem 4.12 with a less stringent bound

omax(rY/2

L@w EY2 - <p for all @ > 0
(4.128)
If R and L(s) are both chosen to be diagonal, then the inequality
(4.125) implies an improved guaranteed gain margin of (1 - Bo’ 1+ 80)~
and a guaranteed phase margin of (-2 sin -1 -2-2, 2 :?.:i.n.l %2 .
It is also noteworthy that guaranteed stability margins obtained
from robustness tests based on omin(I + I,(jw)) cannot be further tightened
by taking into considerations the specific values of the design parameters.
The quantity omin(l + T,(jw)) is always lower bounded by unity as a result

of T,(s) being strictly proper.
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Combining the guaranteed stability margins obtained in this section
and the last, we arrive at the following improved guaranteed mar;ins that

are valid for RPDS designs with R chosen to be diagonal.

MC Q-8 o) (4.129)
1 B
PM C (min(-2 sin ' 2 > 60 , (4.130)
B
(max(2sin”t 2, 60 (4.130)

(4.129) and (4.130) above represent the tightest guaranteed margins one
can obtain using Theorems 4.4 and 4.5. This is an example where appropriate

combination of robustness tests can lead to a reduction in conservatism.

4.5.2 The Effect of the Stability Factor @ on the RPDS Inverse

Return Difference Matrices

if
det(joI - A) #0 for @ >0 (4.131)
and
det(@,(J0)) # 0 for w > 0, (4.132)
we can rewrite the RPDS frequency domain equality (4.63) in the following
form

@+ Nt R+ Ge))

= !n.u(jm) (R + Hy (~jw,jw)] ga"l(jm) for w >0 (4.133)

Recall from the derivation of Corollary 4.2 that the effect of & on
L+ Iy ) )a R(I + '_ra(jm)) is readily obtained by considering the
effect of a on H,(~jw,ju;. To obtain a similar characterization for

a+ _’l_.‘a-l(-jw)) R(L + ga'l(jw)). we need to consider the effect of a on
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1

a4 . -
B(-s,8) =1 T(-s) @ + & () I N(a) (4.134)

- @ - 0T BT R+ 2 o1 - 7! @+ 1K )1 - 07 B
R EGL-07t g (4.135)

where _l_(m is the positive definite solution of the RPDS algebraic Riccati
equation (4.59). The coefficients of both rational matrices %(s) and
_Hu(-s,s) are dependent on the stability factor o through the matrix 51 s
which 1s known to be an increasing function of a (Lemma 3.1). Unfortunately,
Sa. enters the matrix l_lo(-s,s) in a highly nontrivial fashion and thus
makes it difficult to precisely characterize the effect of @ on go(s).

When R is chosen to be a scaled identity matrix fI we can approximate

the RPDS inverse return difference with matrix with
T T

BKB B"K B
-1 H -1 ; o -1 —7
I+ Gen® @+ 5w <£+(-m) )(L"( Tog >
2 T -2 .2
= B B
I+eo” B K B "8 (4.136)

at values of w where juI dominates the matrix (JWI - A). Using the

incremental property of Eu (Lemma 3.1), we can readily show that
22,.T -2

I1+Bw (BK, B) " i35 a monotonically decreasing function of a (i.e.
2 2 - -

I+8% (ATKG' B) 2.1 "'Bzmz(BT K B) 2 for a, > a, and for all

1 - = Gz - 1 2
@ > 0). It follows from this observation that (I + _T;l(Jw)) (and thus
omin(l + ;r;l(jm)))is a decreasing function of & in the high frequency

- -1
region. Attempts to characterize (I + T i(jm))u 1+ !a. (jw)) at frequencies

where the approximation (4.13) fails to hold has not been successful.

However, it is our conjecture that (I + g;l(jm))u I+ Eu. (Jw)) will
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generally behave as a decreasing function of o at all @ > Q for R
chosen to be a scaled identity matrix, If this is indeed the case,
then two important design implications follow, First, the quantity
Bo defined in (4.127) also becomes a decreasing function of a }' As
a result, the guaranteed downward gain margin given by 1 - B° will
deteriorate with increasihg Q. 2 Second, the maximum RPDS system

bandwidth wmax defined as the highest value of w (see [Ch 1] section

7.7) at which
omin(L + I, (jw)) =1 ' (4.137)

will increase monotonically with o . This can be readily verified by
inspection of the gmin(I +I, (jw)) plots of a RPDS design (Fig. 4.13)
with the minimum singular value of the inverse return difference matrix

being a decreasing function of a.

4.5.3 Properties of the RPDS Inverse Return Difference Matrices om
the a-Nyquist Contour .

The results presented in this section are stronger versions of

those considered in section 4.5.1. All the margins derived here apply
to the stability as well as the degree of stability property of the
underlying RPDS. To begin with, we shall consider RPDS designs where

R is chosen to be a scaled identity matrix and obtain a lower bound
1

See section 5.4 for an example where Omin(l + T (jw))is a decreasing
function of @ for all w > 0.

2 Recall from Example 4.1 that the same result may not hold for the

actual stability margins.
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for the quantity omin(l + I"1(ju-0)) that is valid for allw > 0. A

precise statement of the result is given by the following theorem.

Theorem 4,13 Let the matrix K, be the unique positive definite
solution of the algebraic Riccati equation (4.59) with conditions oum A,

B, Q and R satisfied. Also assume that

det((Jw -QI - A) %0 for all w > 0 (4.138)
and that
'_ra(-a + jw) 1is invertible at allw > 0 (4.139)
Then
. -1
omin(l + T ~(-a + ju))
omin(l + I, (<a + ju))
>
= 1l+omin( + T, (0 + ) for allw 2 0 (4.140)
Proof: We shall prove this result from a standpoint different from

that adopted in Sectiom 4.4.4. Recall from the proof of Theorem 2.5
that we introduced a time-invariant LQ problem on our way to obtain a
solution for the RPDS problem. It was also shown that the desired RPDS
feedback gain is identical to that obtained from the related LQ problem

where the objective is to minimize

b Y | T
" J = 1im (x° Q x(t) + u (t) R u(e)lde (4.141)
t 4o
1 t

subject to the dynamic constraint

x(t) = (A +aI) x(t) + B u(c) (4.142)

e a i . B o ¢ e
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The controllability and the cost observability of this LQ problem
follows from those of the original RPDS problem and the RPDS state feed-
back gain is given by G_ = 5-1 2’1‘ K vhere K is the positive definite
solution of the RPDS Riccati equuation (4.59). Applying the result of
Theorem 4.10 (which also holds for LQ regulator problems with R chosen
to be a scaled identity matrix) to the solution of the above LQ problem
leads directly to (4.140) and this completes the proof.

Baged on the equivalent system given in Fig. 4.9, the following
inequality that holds for arbitrary R (i.e. R not necessarily be diagonal)
can be readily obtained

1/2 1

omin(l + R ‘_I‘;I(Jw -a) 5‘1/2)1 3 forall w>0 (4.143)

The proof of (4.143)is similar to that given in Theorem 4.13 with
Ia(s) replaced by 51/ 21.'“(3.0,) 5"1/ 2, The result below is a direct

consequence of (4.143) and Theorem 4.13. Invertibility of !u(jw-a.) for
@w > 0 is assumed.

Theorem 4.14 Given a rational transfer matrix Ia(s) of a RPDS

system with a prescribed degree of gstability a, the perturbed system with loop

transfer matrix given by T (s) = T (s) L(s) has a degree of stability

a if
(1) !a(s'a) and T(s -0) have the same number of unstable poles
(4.144)
(11) ‘_rq(s-a) has no pole on the jw-axis (4.145)
(111) cmax(gl/z Ljw - a) 5'1/2 -1 < -;-' for all w > 0 (4.146)

If both R and L are diagonal, then (4.146) reduces to the

following set of scalar inequalities
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8,Gu =) -1 < 3 forall w20 (4.147)
and i - l"Z'ooom
For case of % 1 representing a pure gain change, it is clear from
condition (4.147) that the perturbed system will retain a degree of
3 3%y

stability a for 2.1 satisfying %< 2.1 < E Similarly, for 2-1 = e

the condition {4.147) implies that the perturbed system will not lose
the degree of stability for |¢ il < 30°, A RPDS design with R chosen
to be diagonal therefore possesses a guaranteed GMa of (%,-g- )and a
guaranteed ma of (—30°, 30°). These margins are found to be more
conservative than those derived from (4.116).

To characterize the margin for a given RPDS design, we place

condition cmm:l:(g]'/2 L{jw - o) 3_.1/2 -D < % in (4.142) by

omax(Rl/ 2

L(jw - a) 5-1/2, - 1)< fa (4.148)
where Ba is defined to be

Bo = min omin(Il + ggl(jm -a)) (4.149)
w>0

This quantity Ba turns out to be greater than% for most RPDS designs,
and thus enables us to obtain an improved guaranteed Gua of

- _1B
(1 - Ba, 1 + Ba) and an improved guaranteed PM“ of (=2 sin 1 2—° » 2 8in 1_2_0. ).

Combining the guaranteed GMG and PMG obtained here with those derived
in section 4.4.5, we arrive at the following guaranteed cua and PHG that

hold for a given RPDS design with diagonal R

GMG D (1-Ba, =) (4.150)

My O (min(-60°, -2sin t 83) ,max (60°, 28107 gﬁ)
(4.151)
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These are the best margins that one may derive using Theorems 4.10 and

4.14.

4.6 Roll-Off Requirements at High Frequencies

In our discussion of RPDS robustness properties thus far, we
have neglected the imporcant design consideration of having the nominal
loop gain sufficiently attenuated over the frequency range where the
magnitude of the multiplicative perturbation L(jw) becomes large compared
to unity. It is a physical fact that the quality of a nominal design model
inevitably deteriorates at high frequencies a3 a result of unmodelled
and/or unknown dynamics of various types. In the multiplicative form of
perturbation L(s), this means that omax(L(jw)) will assume value close to
1.0 at low frequencies but will increase to 2 and beyond at high frequencies.
In the face of such uncertainties, the seemingly excellent guaranteed RPDS
stability margin is clearl— inadequate. In the high frequency region,
the + 60° phase margin is of no value since a neglected time delay
will ultimately produce phase error in excess of 180°. Moreover, the
return difference inequality (4.74) from which the guaranteed RPDS
stability margins are derived does not hold at high frequencies since
the frequency response of any physically realizable system must have a
roll-off at a rate greater than or equal to s~2. The roll-
off requirement of RPDS (and for LQ regulator in general) in the face
of uncertainties can be derived from the basic inequality (4.27) in

Theorenm 4.5.
At frequencies where all the feedback loops of Zﬁ(Jw) are rolled

off, the quantity amax(zu(Jw» = anin'l(z;l(Jw)) becomes small. As a
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result, we can approximate the minimum singular value of I + g}l(;m) as

omta(l + I, Uw)) = omin(Ty (u))
- -1 4.152
omax (Iu(j(u)) ( )

Substituting this approximation into (4.27) gives

omax(L(jw) - I) omax(T,(Jw) <1 (4.153)

It is now clear from (4.153) that the loop transfer matrix T,(jw) has
to attenuate faster than ow‘l(g(jw) =:1) 1in order to satisfy the stability
requirements at frequencies where the physical process is ill-represented
by the model. But the roll-off rate of I, (juw) is limited to ol as
evidenced by the following appr;ximtion

B'KB

~ ="o
Iu(Jm) o (4.154)

which holds for values of w sufficiently large. Substituting (4.154)

into (4.153) we obtain

omax(L(u) - D oumex (& K B[yt <1 (4.155)

It follows from (4.155) that the cross-over frequency of Iq(jw) has to
be located well below the frequency where gmax(L(jw) = I)starts growing
large.

Equation (4. 155) also makes explicit the relationship between the
roll-off frequency of I,(jw) and the stability fector a . 1f we define
the maximum cross-over frequency & Jmsx of ;ra(jm) to be the frequency
when

onax(Ty(jw) = 1 (4.156)

it can then be readily shown that the quantity Om(gT Ky B) provides
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an upperbound for wCmax. Moreover, we can deduce from Lemma 3.1 that
am(BT %p_) is an increasing function of &. The implication of the roll-
off requirement (4.155) on the choice of stabilicy factor G now becomas
clear. While a large value of a will improve the system's speed of
response, it may also extend the bandwidth into regions where L(j0) 1is
large. In picking a value for the stability factor a , the designer

needs to find a compromise between the requirements for stability ir

face of uncertainties and speed of performance.

4.7 Summary of RPDS Robustness Properties

We shall summarize in this section the various robustness

properties of RPDS discussed in the two previous sections.

(1) Guaranteed gain and phase amargins for stability
If the matrix R is chosen to be diagonal, then a RPDS

design possesses the following guaranteed stabilicty margins

Ql D (eoic ) (‘0157)
-1 5

M D (min(-60°, -2sin ) (6.158)

nax(60°, 201> 22))

vhere § is given by (4.127)

(11) Guaranteed gain and phase margins for the prescribed degree
of stability.
If the mstrix R is chosen to be diagonal, then a RPDS design
possesses the following margins with respect to the

prescribed degree of stabilicy
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M, O Ba, =) (4.159)
8
ma ) (min(,-Zsiu.; —;— ’ -60%)
pax(2sin Y <, 6% (4.160)

(111) Effect of the stability factor a on the robustness properties
of RPDS

The RPDS's ability tc tolerate modelling error (quantified in
terms of the magnitude of the modelling error in question) improves with
increasing value of the stability factor a only for some special choices
of error representation. Among the four types of modelling error presented
i3 this thesis, we only obtain an improved tolerance for
5‘(3) - (_-’r_.l(a) - fl(a)) T(s) wit.h increasing a . The guaranteed RPDS
margins summarized in (1) and ({i) above may deteriorate with increasing
a if somd eamm out to be a monotonically decreasing functions of o
(see section 5.4 for an example of 50 being a decreasing function of 3).

It was shown in section 4.4.4 that the behavior of the actual RPDS
gain and phase margins with changing value of a is highly system dependent.

(iv) High frequency roll-off requirement

The tound cnm;x(_n_‘r Ky B) for the maximum cross-over frequency of
RPDS is an incressing function of a(see section 4.6). This in turn imposes
an upper limit on the value of a that wve may employ in RPDS design.
It is well known to control system designers that too large & cross-over
frequency may result in excitation of the unmodelled and/or unknown dynamics
at high {requencies which is undesirable from a stability robustness point

of view.
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It is important to emphasize that the conclusions summarized
in this section are only valid with respect to the types of model error
under investigation. The relative error in Zal(s) is particularly useful
for our purpose, because its associated robustness theorems (Theorems 4.4
and 4.6) allow simple derivation of RPDS multi-loop margins with respect
to stability and degree of stability. Further study on the ability of
RPDS “o tolerate model errors other than those considered here (see
{Le i; Seciion 3.9 1is needed for a more complete understanding of

its robustness properties.

4.8 Robustness Properties of Kalman Bucy Filter with a Prescribed
Degree of Stability (FPDS)

As we have noted in Chapter II, KBF with a prescribed degree of
stability (FPDS) is the mathematical dual of RPDS. Dual robustness
results are therefore obtainable for such designs. These robustness
properties ensure the nondivergence of the filter under variation in the
nominal model of the plant which is to be estimated. In section 4.8.1
we set up the framework for robustness analysis of FPDS. The robust-
ness properties for this class of filter are discussed in sectioms

4.8.2. to 4.8.4.

4.8.1 Formulation of the Ropustpess Problem for Kalman Bucy Filters
with a Prescribed Degree of Stability

The basic FPDS problem considered here is identical-to that

discussed in Theorem 2.5. The underlying linear system is given by

x(t) = Ax(t)+ g(t) (4.161)

PO S R s e TR TR
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z(t) =C x(t) + g(¢t) (4.162)

where Z(t) and 9 (t) are zero mean white noise processes with spectral

intensity matrices = and © respectively. We also assume the observ-

1/ 2)

ability of (C, A) and controllability of (A, = . The state estimate

Ag(t) is then specified by

X(t) = A x(8) +H  v(E) 4o
v(t) = y(e) - ¢cx(t) (4.164)
where .
E = I, cfot (4.165)

and 22_“ is the unique positive definite solution of the Riccati equation

A+aDE, +I,(A+aD’ +2 - I otgz, =0 (4.166)

A useful method for describing the state estimate dynamics of
FPDS (in fact for KBF in general) is given by the following set of

feedback equations

e(t) = A e(t) + w(t) ‘ (4.167)

s(t) = c e(t) -g(t) (4.168)

w(t) = -H s(t) -g(e) (4.169)
where s(t) = y(t) - y(t) (4.170)
and

e(t) = x(t) - x(t) (4.171)

A block diagram representation of these equations is given in

Fig. 4.14., By ignoring the noise sources, this can be rearranged iato

a unity feedback of the type considered in Section 4.2. It is now readily
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Qpen-loop Error Dynamics
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FIG. 4.14 Feedback Representation of the Error Dynamics of FPDS
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FIG. 4.15 Feedback Configuration for Robustness Analysis
of FPDS Error Dynamics
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apparent that
F_(s) A C(sl - A)“l H (6.172)
-G —-— 3 - --a

the loop transfer matrix of the error dynamics loop of KBF with prescribed
degree of stability is the dual of Ty(s) for RPDS. The discrepancy
between the linear model employed in the design of the filter gain and

the actual system dynamics are modelled as multiplicative perturbations

L(s) inserted in the closed-loop after C (see Fig. 4.153).

4.8.2 Common Robustness Propeiciies with KBF

Based on the feedback representation of the FPDS error-dynamics,
we are ready to characterize the stability margins of KBF with a prescribed
degree of stability. The nominal error-dynamics model corresponds to
the ideal situation in which the linear design model represemnted by (4.161)
and (4.162) §te exact. Since all the results developed in this section
are mathematically dual to the RPDS results obtained in sections 4.4
and 4.5, the respective derivacioqf will be omitted. The main emphasis
will be on the interpretation of robustness results in the estimation
context. All the FPDg robustness properties presented in this section
are known properties of KBF, and are included here for completeness.

To begin with, we state two frequency domain equalities for FPDS.

These are the exact dual of (4.63) and (4.64) in Theorem 4.8 and are

basic to the derivations of the robustness results given in this section.

Theorem 4.15 Let the matrix Ea be the unique positive definite

solution of the algebraic Riccati equation
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T
J g = Z = .
EG(A-HIQ +(A+a£‘§a +Z gqg_e Cin 'R (4.173)
with
(1) £ >0and 8> 0 (4.174)
1) (& 2Y%)  controllable (4.175)
(111) (C, A) observable ’ (4.176)
then
Q+EGa+3) OL+E ()T =0 +M(s,ms) (4.177)
and
@+ E () e@+E sNT "0 + 1 (s,-9) (4.178)
where we define
-1 - -T T
M(%,8) = c(ZI-al -4A) " E(sI-0al-4a) " C (4.179)
and
M G,s) = CEl-A)t (nr, +5) (sL- AT’ (4.180)
- =H= = = = V==
Remark The equalities (4.179) and (4.180) are derived from the

FPDS algebraic Riccati equations using manipulations similar to those

employed in the proof of Theorem 4.8.

Remark The two frequency domain equalities stated in Theorem 4.14
correspond to the two interpretations of FPDS given in section 2.4,

Using the positive definitness of and equation (4.180) we

%

can readily obtain the following corollary to Theorem 4.15.

Corollary 4.9 1f Eais the unique positive definite solution of
the FPDS algebraic Riccati equation (4.173), with the respective require-

ments on A, C, Z, and O being satisfied and 1f det(jwl - A) # 0 for
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all 4 >0, we have
H
a+ %(jm\) _e_(; + ga(jm)) >0 for all w > 0 (4.181)

Combining inequality (4.181) with Theorem 4.4 readily leads to the

following robustness theorem which holds for KBF in general.

Theorem 4.16 Given a FPDS with loop transfer matrix of error
dynamics given by ¥,(s), the mismatched error dynamics with loop transfer

~

matrix Fn(s) = L(s) Fy(s) t is closed-loop stable if
(1) Fy(s) and F{s) have the same number of unstable poles  (4.182)

(11) F,(s) has no pole on the ju-axis (4.183)

2

(111) omax (@21 B(g0) /2 -1 <1 for alrw> 0 (4.184)

The condition (4.184) describes the inherent robustness properties
of the FPDS design procedure. It says that every FPDS design can tolerate
at least multiplicative perturbation L(s) satisfying the bound (4.184)

If the observation noise at each output channel are uncorrelated (i.e.
_6_ is diagonal) and if the model mismatch can be represented by a

diagoual multiplicative perturbation of the error dynamics, condition
(4.184) can then be interpreted in terms of the gain and phase margins
of each output channel in the feedback repr'esentation of error dynamics

(Fis 4.15).

The derivation follows from recognizing the equivalence between

omax@ /2 1w M2 - p <1 for allw > 0  (4.185)

1
It can be readily shown that Theorems 4.4 to 4.7 also apply to model

error described by T(s) = L(s) T(s)
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Y e A mtn
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and

otlyw +LUw 8-8 >0 for all w > 0 (4.186)
When © and L(s) are both diagomal, (4.182) further simplifies to

2Re(f (JW) 21 for all w > 0
1=1,2,.000m (4.187)

1f zi(;w) is real, then (4.187) becomes

> 3 (4.188)
#,
Alternately, if 2.1(1 w) = e —, then condition (4.187) becomes
lo,l < 60° (4.189)

The conditions (4.188) and (4.189) can be interpreted as implying that
FPDS design employing uncorrelated observation noise leads to a guaranteed
gain margin of (%. ®) and guaranteed phase margin of (-600, 60°) 1n each
output channel of the error dynamics feedback system (Fig. 4.14).
These matgins. are relative to the ideal situation that (4.161) and (4.162)
are exact.
It is important to stress that the guaranteed margins thus derived
holds for every FPDS design using diagonal © . The generality of this
result in turn accounts for its comservatism. Less conservative margins
can be obtained for a given FPDS design if we combine the bounds derived ]

above with those derived using Theorem 4.5 and Corollary 4.3. The resulting

guaranteel gain and phase margins obtained from the latter are given by

-1 Yo -1 Yo:»
(1= v, 1+vy,) and(-2sin = 7=, 2sin 7~ ) respectively where Y  is
defined to be

v, = mta omtaq+ ¢ Y2 B oY (4.190)
ata g g
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and O 1s diagonal.

Since the value of Y o usually lies between % and 1, the down-
ward gain margin 1 - ﬂo results from application of Corollary 4.3 is
therefore always less than or equal to % However, the ralated guaranteed

1Y

- -1Y
phase margin (-2sin 2—? 28in 1 -2—°-) will extend beyond the interval

(-60°, 60°) only when Y, > L

It 1s clear from the above discussion that the following guaranteed
GM and PM hold for error dynamics of a given FPDS design with © chosen

to be diagonal

M OQA-v,, (4.191)
Y Y
PM O (min(-60°, 2sin”t 72, max (60°, 2sin~t 2 (4.192)

(4.191) and (4.192) indeed yield the least conservative guaranteed margins

one can obtain using Theorem 4.4 and 4.35.

4.8.3 The Effect of the Stability Factor a on the Robustness Properties
of RPDS

Like the case of RPDS, the effect of @ on the robustness properties
of the FPDS error-dynamics can be characterized in terms of the effect
of & on the matrix function I + %(s) and I + gﬁ'l(s) .
The result described in the following corollary to Theorem 4.14

makes precise the tehavior of I + F,(s) as a varies. It is the exact

dual of Corollary 4.2.

Corollary 4.10 Let the macrix;a and _2;“ be the unique positive
1 2

solutions of FPDS algebraic Riccati equations
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T = T,.=-1
@A+aD)z +I (A+al) " + E-L CO"CL =0 (4.193)
b W e =%
and
(A+al) +7T (A-é-aI)T-l-"'"-}: cre'lcz - 0 (4.194)
STOVI) Tm, BTV TETL) 22 2 2 '
where
¢)) E2>20 9>0 (4.195)
(11) (C, A) observable ’ (4.196)
(111) §}/2, A) observable (4.197)
and (1v) det(jul - A) $ 0 for w >0 (4.198)

Then one has (I + F (Jw))e (T +F J‘“))
1 "Q

> (L-’-zuz(m))g + gaz(jm)) for all w >0

if a1>

ay > 0 (4.199)
When © is a scaled identity matrix (i.e. the noises at each output channel
have the same intensity and are uncorrelated), the following inequality

on the minimum singular value of FPUS can be readily derived from (4.199)

by using the properties of singular values.
omin(L + F, (jw)) > omin(I + F (jw)) for all w > 0  (4.200)
1

This inequality provides us with a useful way of assessing the effect of
a on the robustness properties of the FPDS designs.Using condition (4.22)
of Theorem 4.4 together with condition (4.198) leads directly to the

conclusion that FPDS tolerance of model mismatch represented byl

E,(8) = (ET(-8) = E;T(-8)) Ej(-e) (4.201)

1 The singular values of

thoge of _§4 defined by

(s) given in (4. 2011 will be different from
(s) = (Fl(s) - E;7(8)) B (s)

NLH

L oradhan S S S

' . |, ||||’ . | | |_|;‘ ~|I-|- |~llll'.| lllww 7 ‘ —
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improves with @ . As we have noted before, error measure of this type is
unintuitive and difficult to interprete.

Like the case of RPDS, a precise characterization of I + g;u(jw)
with respect to change of a is not available. However, when € is an identity
matrix, it can again be shown that Onin(;,+‘§;n(jw)) is a decreasing

function of & for sufficiently large value of w.

4.8.4 Robustness Properties with Respect to the Degree of Stability g

We shall first examine the robustness interpretations of equality
(4.179) for FPDS. The following corollary to Theorem 4.15 that characte-
rizes the behavior of the FPDS return difference matrix on the a=Nyquist

contour is the exact dual of Corollary 4.8

Corollary 4.11 Let Ea be the unique positive definite solution
of the algebraic Riccati equation (4.163), with the respective requirements
onA, C,Z and O being satisfied and det(jwI - cl) # 0 for allw > O.

Then
(L+E(a+30)0 (L+E(=+ Nt > e (4.202)

Working with the equivalent feedback representation of the FPDS error
dynamics given by (4.167) to (4.171), the theorem given below is a direct

consequence of (4.202) and Theorem 4.5.

Theorem 4.17 Given a FPDS with a prescribed degree cf stabilicty a and a loop
transfer matrix g&(g). The mismatched error-dynamics with loop transfer

matrix i&(s) = L(s) E,(s) has a degree of stability a if
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1) iﬁa - a) and iﬂs = a) have the same number of unstable
poles (4.203)
(11) ga(s - a) has no pole on the ju-axis (4.204)
(110  omax@ Y2 1w -a) 62 - 1) <1 for all w >0 (4.208)

If the margin with respect to the degree of stability a derived
from (4.205) is combined with those derived using Theorem 4.5 and
Corollary 4.3, we obtain the following improved guaranteed margins that .

apply to a given FPDS design employing uncorrelated .observation noise.

(24“ at each output {4.206)

- channel C (1 - Yo * )

ma at each output (4.207)
-1 Y
channel C (min(-60°, -2sin”t =)

-1 Y
max (60°, 2sin 1 z—q- b))

where Y, is defined by

-H
= min omin(l + T (=a + jw)) (4.208
Ya mi,: al+I, (et )

4.8.5 Concluding Remarks
As we have commented before (see section 2.4), exponential weighting

of data is a technique well known to filter designers for curing the filter
divergence problems. The general thinking is that this will prevent the

old data from saturating the filter. In section 4.8.2 to 4.8.4, intuition
of this type is subject to rigorous examination using the recently deveioped

results in robustness analysis for MIMO systems. The results obtained

here however apply only to those cases where mismatch between the actual
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and the design model can be represented as a multiplicative perturbation
at the output matrix C in the feedback representation of the filter error
dynamics (Fig. 4.15).

It is clear from the discussion of the three previous subsections
and the summary remark in section 4.7 for the dual results of RPDS, that
improvement of FPDS's ability to tolerate model mismatch of the type
depicted in Fig. 4.15 only occur for very special choices of model error
representation. The exponential weighting technique is thereforae not
a universai cure for every possible type of divergeance problem. The
insights obtained from this section help to identify situations where
such technique can be effective.

In many applications of interest, the above conclusion may be
excessively conservative. This follows from the fact rhat we have only
used some magnitude information on the model mismatch in our robustness

analysis. In the case where structural information is available, the

results in Chapter 4 of [Le 1] may be applicable.




~136-

CHAPTER V

APPLICATION OF THE REGULATOR WITH A PRESCRIBED

DEGREE OF STABILITY TECHNIQUE TO STATE FEEDBACK
DESIGN POR MULTI-TERMINAL DC/AC POWER SYSTEM

5.1 Introduction

The purpose of this chaptar is to demonstrate the applica;ion of
the RPDS technique to design of a state feedback control law for a
9-machine, 4-terminal DC/AC power system. Based on this
exauple, the various robustness properties of RPDS designs discussed i{n
the previous chapter will be illustrated.

Two versions of the 9-mach1nc1 power system model are available
around 5 operating points. They differ in their details of machine
description. In the simple version of the model, every generator is
represented by a second-order classical machine. Thias gives a total
system order of 18. The open-loop poles of the system are plotted in
Fig. S.1. Each of the 16 complex poles corresponds to a mode of inter-
machine oscillation. Frequencies of such oscillations range approximately
from 0.3 to 1.0 Hz, The two remaining poles are located on the negative
real axis. The one located 2t the origin correspondes to the mode of clock

error. The mode located at .375 1s the mode of average frequency.

1

The pover system models employed here are gensrated by Sherman Chan
using the Possim program of the General Electric Company




i ,e |

«137=~

jw
~-70

=20 -

t-Xo -2.0 =10

T

FIG. 5.1 Open-Loop Poles of the Simple Model For the
9-Machine Power System at Operating Point 1




-138-

Readers interested in the physical interpretation of these modes may
consult Chapter 3 of [Ch 1]).

In the detailed version of the model, two of the generators are
modelled with four rotor circuits (two in the direct axis and two in the
quadrature axis). They are also equipped. with IEEE Type 1 exciters and
third order power system stabilizers. The total order of this system
is 38. The open-loop eigenvalues of this system at operating point 1
are plotted in Fig. 5.2. The complex poles of the system that are
associated with machine oscillations are numbered in Aescending order
of their ftequency.ICOmparing the oscillatory modes given by the two
models show that they are in good agreement. It is also noteworthy
that 6 sairs of the oscillatory modes have no counterpart in the 18-state
model, because they are associated with the stabilizing components of
the power system.

The basic design objective is to move the open-loop oscillatory
poles of the system to an appropriate region in the left~half complex
plane. This region is determined approximately by using engineering
judgement on how large the closed-loop bandwidth may be without allowing
unmodelled high frequency disturbance or dynamics to destabilize the
system. For physical considerations, the average frequency mode and
the clock error mode are to be kept intact.

In section 5.2, several full state feedback designs are obtained

by using the RPDS methodology. A different value of the stability

1
Only one pole of each complex pair is displayed in Fig. 5.2 .
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9-Machine Power System Model at Operating Point 1
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factor o 1is employed for each design. The resulting closed-loop systems
are found to display some desirable properties which are not predicted
by the theory developed in the previous chapters.

The robustness properties of the RPDS design are evaluated in two
ways. In section 5.3 we apply the control laws obtained for the simple
model at operating point 1 to the other four operating points. The
resulting movements of the closed-loop poles provide a good indication of
the system tolerance to change in operating conditions. The control law
obtained for the simple design model are also implemented on the detailed
38 state model at various operating points. This allows us to study the
effect of the unmodelled dynamics due to the exciters on RPDS designs -
an issue that we feel to be important since in this case the neglected
dynamics are no longer separated from the intermachine dynamics.

In section 5.4, we turn to the frequency domain robustness analysis
formulated in Theorems 4.4 and 4.5 with emphasis given to the effect of
the stability factor o on the quantities omax(I + _‘ga(jw)) and

omax(y + za'l(jm)).

5.2 RPDS Designs

The design parameters to bc chosen in a RPDS problem are the
stability factor o , the state weighting matrix Q and the control
weighting matrix R. In the absence of information concerning the relative
cost of control for the different DC-terminals, we shall simply pick R
to be an identity matrix. The state weighting matrix Q is chosen to

satisfy the following objectives:
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(1) Only the oscillatory modes associat«d with the intermachine
oscillation but not the modes associated with the real poles
are penalized. This is done to limit the control amplitude
and to avoid ’nteraction between the multi-terminal DC
controller and existing mechanisms for correcting the
generation mismatch and clock errors.

(11) The damping ratio of the oscillatory modes should be around

0.2. This choice is somewhat arbitrary although it serves
to provide a reasonable LQ regulator & = 0) design to
start from. This is not the only method of specifying

the Q matrix in relation to transieant response requirements.
Indeed, a suitable choice of Q has to be considered jointly
with the stability factor a.

In cases where & = Q0 (i.e. the LQ problem), the previous require-
ments on Q can be easily met by application of modal weighting techniques
such as Solheim's method {So 1] -Whena is nonzero, an additiomal trick
is required tc prevent the two real modes from being moved under feed-
back. To make clear the underlying problem we consider the case where
a 1is picked to be 0.5. This choice of stability factor will result in
a matrix (A +ol) with 2 unstable real poles. If the matrix Q is chosen
to make these poles unobservable, then it follows from the properties
of algebraic Riccati equations and ché discussion in Chapter 3 concerning
the construction of RPDS root-loci that the resulting RPDS feedback law
will shift the average frequency mode to -0.625 and the clock error mode

to -1.0. A scheme to avoid this problem is outlined below.l
1

This scheme was first suggested to the author by N.A. Lehtomaki
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Step 1 Compute a positive semi-definite matrix S which is defined as
4 T T
s 8 @ 7 +x; 7)) (5.1)

where %, ¥, are the right and left eigenvectors respectively of the
average frequency mode, X, ¥, are the right and left eigenvectors respecti-
vely of the clock error mode and B is set to be any positive real number

larger than a.

Step 2 Pick a state weighting matrix Q that makes the two real poles
(A + S) cost-unobservable and the closed-loop oscillatory poles possessing

a damping ratio about 0.2.

Step 3 Using A = A +S in place of A in the RPDS design (i.e. solution
of the RPDS algebraic Riccati equation). Theresulting feedback control

law is given by

u(t) = - 8 ia x(t) (5.2)

where -I-(a is the unique positive semi-definite solution of the equation

ia(@_+a_1_)+;+apga-£(agfia+g = 0 (5.3)
It can be readily verified that the procedure described above

results in feedback laws that leave the clock error mode and the average
frequency mode unchanged. First, note that the matrix ; has two real

poles located at -8 and - 8- 0.375 with their left and right eigeavectors
given by I x5 and Y, 5 respectively. Moreover, by the choice of B,

these two poles will remain in the left-half complex planme upon addition
of o to their real parts (as is done in the RPDS design with stability

factor given by o ). It then follows from the choice of the matrix Q
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and the properties of algebraic Riccati equations that the matrix
(.‘A +al -8 f 7&) which is obtained by applying the state feedback law
(5.2) to x(t) = (; +al) x(t) will have two real poles located at
-8 +a and -0.375 f + a, Moreover the eigenvectors of these two poles
are identical to those of the clock error mode and the average frequency
mode respectively. Subtracting S +al from (; +al -3 gT }h) will return
these real poles back to their original positions (-8 +a = 0.375 to
~.375 and -8 +a to 0) with their corresponding eivenvectors remaining un-
changed. It should be emphasized that the matrix S is used only for the
purpose of computing the feedback law.

The simple model of the 9-machine power system at operating point 1
is chosen to be the nominal model for design. Several values of O
ranging from 0.0 to 0.6 are tried in the design. These values of & are
compatible with the damping rate observed in the actual power systems.
Too large a value of o will result in faster performance at the cost of
having inputs with unacceptably large magnitude.

The closed-loop poles of the resulting RPDS design with @ equals 0.0,
0.2, 0.4 and 0.6 are plotted in Fig. 5.3. Given the increment of * equals
to Aa, all the oscillatory modes move further out to the left by an
amount roughly equal to -Aa. This is by no means a property common to
all RPDS at all values of positive &. Such behavior of RPDS closed-loop
poles is probably a result of the fact that all modes to be controlled
in the multiterminal DC/AC powe system are of the same nature (i.e. they
all represent modes of intermachine oscillatioums), It is also note-
worthy that changes in the imaginary part of the closed-loop poles with

respect to O are negligible compared to changes in the real part.
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Mode Loop = 0.0 = 0,2 = 0.4 = 0.6
1,2 -0.18 -1.44 -1.61 -1.82 =2.056
677 #1677 +16.71 43 6.66 + 6.60
3,4 -0023 -1034 -1051 -1.70 1-92
#1632 +§ 6.32 4 6.31 4§ 6.30  +§ 6.30
5,6 -0.17 -1.06 -1.20 -1.38 ~-1.60
+ 5.32 4§ 5.32  +§ 5.34 +] 5.41 +1 5.47
7,8 -0.23 -0.97 -1.11 -1.29 -1.518
+1 4,18+ 418 +4.20 +§ 4.20 +§ 4.21
9,10 -0.16 -0.68 -0.83 -1.01 -1.32
45 3.45 4] 345 +3.39 +3.32 +1 3.30
11,12 -0.17 -0.60 -0.72 -0.94 -1.25
+1 2.80  +§ 2.80  +f 2.83 +] 2.87 +1 2.90
13,14 -0.19 -0.52 -0.65 ~0.88 -1.18
+] 2.60  +§ 2.58  +§ 2.60 +1 2.60 +§ 2.60
15,16 -0.18 -0.46 -0.56 -0.77 -1.09
+ 2,20+ 219 +§ 2.23 +§ 2,25 +§ 2.26

N——

TABLE 5.1

Closed-Loop Poles of the Norminal Design
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The maximum cross-over frequencies for the various RPDS deadgns are
also computed and listed in Table 5.2. The incremental behavior of this
quantity with o agrees with our discussion in section 4.6.

We shall analyze the stability robustness properties of the

above designs in the next two sections.

5.3 Behavior of the Closed-Loop Poles in the Face of Perturbations

In this section, we examine the movement of the closed-loop RPDS
polas subject to change of operating points and introduction of un-
modelled exciter dynamics. In the face of such perturbations, the
abilicy of a state feedback design to hold each closed-loop pole within
a small neighborhcod of its nominal position is a good indication of
its robustness properties. The RPDS designs considered in this section
are those obtained in section 5.2 using the simple model of the 9-machine
power system at operating point 1. We shall study the robustness
properties of such designs in section 5.3.1 and the effect of & on the

robustness properties in sectiom 5.3.2.

5.3.1 Robustness Properties with Respect to Change in Operating
Points and Unmpdelled Exciter Dynamics

In section 5.2 several RPDS control laws were designed for the simple
model of the 9-machine power system at operating point 1. We now
apply these designs to the other four operating points as well as the
detailed 38 state model of the power system, and study the behavior of
the resulting closed-loop poles. In Fig. 5.4, the closed-loop poles

of the nominal design with choice of stability factor & equals
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Maximum

o Crossover Frequencies (Hz)
0.0 0.75
0.2 0.886

: .

{
0.4 1.078
0.6 1.328

TABLE 5.2

Crossover Frequencies for RPDS Designs
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0,41 are plotted together with those obtained from application of the same
nominal control law to operating points 2 through 5. It can be seen that
for each of the oscillatory modes, the closed-loop pole locations at
different operating points agree very well with one another. Indeed,

with the exception of mode 5,6 and 11,12 locations of the closed=loop
poles corresponding to each mode are found to lie within circle of diameter
less than 0.5 in the complex plane.

In Fig. 5.5 ﬁhe ogscillatory modes of the detailed model at operating
point 1 are plotted alongside those of the simple model for controller
design with o = 0.4. It is clear from the figure that there is a lack of
agreement between the closed-loop poles of the two models. With the
exception of modes 5,6 and 9,10 the poles of the detailed model are in
general less well damped than those of the simple model. Six oscillatory
modes (modes 3,4, 11,12 and 15,16 o. the detailed model in fact
possess damping ratio of value less than 0.2. Moreover, among these
six modes, four of which (modes 11, 12 and 15, 16 have real part of
their closed-loop poles less than the stability factor 0.4.

Figure 5.6 displays the closed-loop poles obtained by application
of the nominal control law of o = 0.4 to the detailed model at all five
operating points. Except for the case of modes 5,6,7,8 and 9,10, the
closed-loop poles at different operating points for each mode are very
close to one another. This indicates the dominance of the unmodelled

exciter dynamics over the change of operating points.

1 Throughout this section and section 5.4,2 only those results of the RPDS

design with o = C.4 are displayed. The pattern of the closed-loop pole
behavior observed for such design is typical of those obtained from the
RPDS designs with other values of .



—— g W et i s w8 wimew

-149-

LECEND 0
O Opersting Point 1 .
Q@ Operating Point 2 W
O Opersting Point 3
,---""‘“\1 O Operating Point 3 -170
! =] %s m"  Operating Point §
- -
o) o) =16.0
t -_’L\
,4‘\--—-" ~
-» \5
-7 -] ga)
(@ __o-m==mT -15.0
ﬁ-’
,’---E“?
‘\S_-—’ -140
2--‘.‘“‘-\\
/
‘oo 8_.-
RINEY 2 TSy 10
—- - e 1 -
- 5;80 vi'Qw
»”~ & /
4 & ’r‘ S/’
‘/ P < \‘-‘l
/8 il —20
] T o
1 ’--‘
t ,
\?,’
-11.0
1 1 1
-20 -1.9 =1.0 -Q3

FIG. 5.4 Closed~Loop Poles Result from Application of the
Nominal Control Law (Based on the Simple Model at
Operating Point 1; a = 0.4) to the Simple Power
System Model at Various Operating Points

e S S——

B m——— b o




Qs

-150-

jw
=170
'R A
X3 3
-16.0
Xs a7
-150
89
Xq —14.0
X
Xy4 3 30
x13 & 18
15
Q20
LECEND y
3 Nowinsl Design Applied to the Simple Power
System Modet at Operating Point ! -11.0
O Nominal Oesign spplied to the Detailed Power
System Aodel at Operating Point 1
| i {
-1.5 =4.0 LX)

0-

FIG. 5.5 Closed-Loop Poles Related to Machine Oscillation that

Results from Application of the Nominal Control Law
(Based on the Simple Power Svetzu rodel at Operating
Point 1; a=0.4) to ths Simple and the Detailed Power
System Models a: Operating Point 1

T e e s
e



-151-

.
jow
1 -17.0
A gy
'\ 1‘ ' :
=-16.0
- e 5 pan an an o, 7
-7 ! {ADX \
P s V | ’ Se 1
PR~ pomm—- ~ s 9 -18.C
H D , ‘---I "o ‘ \‘ o :
\--.‘/ : v x " ¢ \~ -l
s
= 14.0
i1
C O )
13 '\O‘ ¢ 3.0
"os\' --../
19
LECEND :g: '
\.J : | )
X Opersting Point 1 ) /' 72‘0
Q) Opersting Paint 2 S -
i Operatina Point 3
A  Opersting Foint &
¢ Operating Point § =11.0
{ L 1
-3‘0 '2-0 -1‘0 0“

FIG. 5.6 Closed-Loop Poles Related to Machine Oscillations that

Result from Application of the Nominal Control Law

(Based on the Simple Model at Operating Point 1 with

¢ = 0.4) to the Detailed Power System Model at Various
Operating Points



=152~

bt 4 s e -

It is clear from the above discussion that the RPDS designs
obtained in section 5.2 have reasonabley good tolerance of changing
operation conditions and unmodelled exciter dynamics. This observation
1s consistent with the excellent guaranteed stability margins derived

for RPDS in Chapter IV.

5.3.2 Effect of the Stability Factor o on Robustness Properties

We next examine the effect of the stability factor & on the
behavior of the closed-loop poles subject to perturbation of the system
dynamics. This is carried out by applying the RPDS designs with different
values of & to operating points 1 through 5. Recall from the last section
that the magnitude of the real part of all the closed-loop oscillatory
modes display an incremental behavior with a for values of a between 0.0
and 0.6. Moreover, such increment is uniform in the sense that if a
is increased by an amount equals to Aa , then every closed-loop complex
pair will be shifted horizontally to the left by a distance roughly
equal to Aa.

Figure 5.7 displays the closed-~loop poles that result from applying
the RPDS designs of Section 5.2 (which are based on the simple 9-machine
model at operating point 1) to operating point 1 for values of a
equals to 0.0, 0.2, 0.4 and 0.6. It is observed that as we increase
the value of o , all the oscillary modes move further out to the left
in the complex plane. However, unlike the case of the aominal design,
the amount of pole shifting observed here is no longer proportiomal to

the increment of &, It is also observed that the shift with respect

to increment of ® tends to be larger for higher values of a.
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The effect of & on the ability of RPDS to tolerate unmodelled
exciter dyramics is examined next. The closed-loop poles corresponding

to machine oscillations of the detailed model at operating point 1 are

plotted in Figure 5.8 for state feedback designs with value of a equals to
0.0, 0.2, 0.4 and 0.6.

It is clear from the figure that the resulting pole pattern again
displays an incremental behavior with &, in that the closed-locop poles
associated with RPDS design using larger value of & are hold further
back from the jw-axis in the face of unmodelled exciter dynamics.

The above observations suggest improvement of RPDS ability to
maintain stability in the face of changing operating points and un-
modelled excitor dynamics with increasing value of a . This is a
consequence of the fact that large value of & will result in the
closed-loop poles being positioned further away from the jw-axis. It
does not however suggest that the ability of RPDS to hold the closed-loop
poles near their nominal position under perturbations improves with

increasing value of a .

5.4 Frequency Domain Robustness Analysis

Based on the unity negative feedback representation of RPDS in
Figure 4.7, frequency domain robustness characterization for the state
feedback controllers derived in section 5.2 can be readily obtained.

All cthe RPDS designs studied in this section are again based on the simple
model of the 9-machine power system at operating point 1. The behavior
of Omin(L + T,(J0)) and Omin(L + Ty (ju)) with changing & are examined

in section 5.4.1. Robustness analysis of the type described in Theorems 4.4
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and 4.5 are given in section 5.4.2.

5.4.1 Effect of the Stability Factor a on the Return Difference and

Inverse Return Difference Matrices

Minimum singular values of the return difference matrices are plotted
in Figure 5.9 for the RPDS designs obtained in Section 5.2. All the
singular value plots are found to display a peak in the vicinity of
0.5 Hz, and thereafter roll off in a first order fashion. Moreover, it
is clear from the plots that the quantity Omin(Il + T, (jw)) increases
monotonically with a for all values of w . This latter observation is
consistent with our conclusions in Section 4.4.4 regarding the
behavior of RPDS return difference matrices with increasing Gl-

The plots for the complementary quantity cmin(£.+Agh-l(jn)) of
the same RPDS designs are displayed in Figure 5.10. In view of the
peak pear O.SAﬁz observed in the plots for omin(Il + I, (jw)), it is not
at all surprising that the plots for Omin(l + z;l(jm)) should display
a valley at about the same frequency. Beyond this frequency, the plot
for omin(l + gu-l(jn)) began to rise proportionately with w in a
first order fashion. It can also be seen from the plots in Figure 5.10
that omin(l + E;I(jw)) is a decreasing function of a for each value of w.
Consequently, the guaranteed margins (as givean in (4.12) and (4.13)) \

for such design will deteriorate with increasing value of .

1 Due to the presence of the matrix S in the algebraic Riccati equation
(5.3), one may question the applicability of the conclusions in Chapter IV
to the present design example, A closer look at the problem however
dismisses such a suspicion. Using the construction of the matrix Q
and the property of _the algebraic Riccati equation, it can be readily
demonstrated that K, S = 0 where R, is the unique positive definite
solution of (5.3). This in turn reduces the Riccati equation (5.3)
to one identical to (4.59).

PP e e = - o o —————
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5.4.2 Robustness Tests Based on Singular Values

In order to apply the robustness tests described in Theorems 4.4
and 4.5 to the present example, the multiplicative error matrix L(s) with
respect to the nominal system model are computed for different perturbed
system dynamics. The nominal system model consists of the simple model
for the open-loop power system at operating point 1 which is regulated by
a state feedback controller with prescribed degree of stability equal
to 0.4. This controller is taken directly from the respective RFPDS
design in Section 5.2.

The various singular values specified by conditions (4.22)and(4.27)
are plotted in Figures 5.11 and 5.12 respectively for perturbations
corresponding to change of operating points. The singular values plots
for Gmax(grl(jm) - I) and omax(L(jw) - I) ar found to display drastically
different behavior for different operating points. In particular, the
values of Umax(gfl(jw) - I) and omax(lL(ju) -';) result from switching
from operating poiant 1 to operating point 2 are noted for their excepticnally
large magnitude at low frequencies. This pattern of behavior is in
contrast with the insignificant change of the clbaed-loop pole positions
observed in the last section for precisely the same class of perturbations
(1.e. change of operating points). It becomes clear from this observation
that robustness characcerization based on matrix norms can be very
conservative. <{onservatism of the norm-based robustness test is further
manifested by the fact that conditions (4.22) of Theorem 4.4 and (4.27)

of Theorem 4.5 are violated for some nondestabilizing perturbations

(such as the change of operating condition from operating point 1 to

operating point 2).
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The above observationn also apply to perturbations that result
from introduction of unmodelled exciter dynamics in addition to change
of operating points (Fig. 5.13 and 5.14). The respective value of
omax(L(jw) - I) and cnlx(gfl(Jm) = I) at each value of « are found to
be larger than the corresponding quantities result from changing of
operating conditions alone (compare Fig. 5.11 and Fig. 5.12 with
Fig. 5.13 and Fig. 5.14 respectively). This again indicates the

dominance of the unmodelled dynamics over the change of oparating point.

5.5 Coucluding Remarks
We have studied in this chapter the application of RPDS technique

to dasign of state feedback control laws for a multi-terminal DC/AC
povwer system. Our major objective is to demonstrate with the aid of a
nontrivial multivariable design exanpls the various properties of RPDS
discussed in the previous chapter.

With regard to the positioning of closed-loop poles, the RPDS
design obtained in section 5.2 are found to possess an interesting
property which is oot predicted by the results developed in this thesis.
For values of a between 0.0 and 0.6, a given increment of a will shift the
cloced - loop oscillatory modes horizontally to the left by approximataly
the same amouat. This unexpected property of the REDS design is probably .
a result of the fact that all the open~lcop modes to be stabilized are
of the same nature (i.e. they all correspond to modes of intermachine
oscillations). It is by no means a result that applies in general.

Robustness properties of the RPDS designs 1in section 5.2 are

evaluated in two complementary ways, In section 5.3, movement of the
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closed=loop poles that result from change of operating points and intro-

duction of unmodelled cxciter dynamics is axamined. 1In all cases under ;
consideration, the RPDS state feadback controllers ars found to maintain i
a treasonable degree of damping for all the closed-loop oscillatory modes. |
Moreover, the closed-loop poles associated with RPDS designs that employ

a larger value of a are always held further away from the jw-axis in the

face of perturbation. These observations are consistent with the excellent
stability margins derived for RPDS systems in Chapter IV. In section 5.4,

the frequency domain robustness tests prescribed by Theorem 4.4 and 4.5 are

applied to the RPDS designs under consideration. Perturbation of system

dynamics that prodvce closed-loop patterns similar to one another are

found to display drastically different behavior in the plots for their

respective omax(L >(ju) - I) and omex(L(jw) - I). This is an indication

of the conservatism associated with the norm-based robustness tests.

Conservatism of such. tests is further reflected by the fact that condition

(4.22)of Theorem 4.4 and (4.27) of Theorem 4.5 are both violated in case

of nondestabilizing perturbation. We alio examine the behavior of the

two MIMO frequency domain robustness measures Jmin(l + Ia(J“)) and

Omin(I + 3;1(10)) with respect to change in a. They are shown to be

wmonotonically increasing and decreasing functions of a respectively for

all values of w . The result obtained for the quantity Omin(l + zu(Jw))

ag:ies with our concliusion in section 4.4.3 while that obtained for

Ovin(l + g;l(jm)) confirms a conjecture we made in section 4.5.3 concerning

the property of RPDS inverse return difference matrix.




-166-

CHAPTER VI

DESIGN OF REGULATOR WITH A PRESCRIBED DEGREE
OF_STABILITY BASED LOG COMPENSATORS

6.1  Introduction

A basic practical limitation associated with the RPFDS design is
the assumption of full state feedback. In many practical applications
full state feedback can never be exactly realized and often it is either
impossible or too expensive to provide enough sensors for achieving even
an approximate realizatiom.

The way this problem is handled in modern control theory is
through the use of LQG methodology [Ath 1], in whick a Kalman-Bucy filter
i3 used to provide the necessary state estimates using noisy output measure-
ments. The class of LQG comtrollers considered here are the RPDS based LQG
coutrollers. The state feedback gains for such coatrollers are obtained
using the RPDS design methodology discussed in Chapter II.

The standard configuration for a RPDS based LQG control system
is depicted in Fig. 6.1 with various points of the lvop marked. To
determine the robustness prope:ties of the design, we shall imsert milti-
plicative perturbation of the type considered in Section 4.2 at points

(2) and (3) and find out the tolerable magnitude of the model error thac
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will not destabilize the system. The other two points (l) and (4) are
internal to the LQG compensator and are therefore less significant for
robustness analysis. However, they have some desirable loop properties
that can be related to the other two points.

Following the notation employed in [Le 1], we shall denote the
loop transfer matrix at point (K) by I_K(s). Each _';'_K(s) is calculated
by breaking the loop at (K) and treating this point as both the input

and output. For the four points marked in Fig. 6.1, we have

T,(s) = Go(s) B (6.1)
6 = 6 @M +36, +EO T HC () B 6.2)
I,() = Co(s) BG @) +36 +EOE (6.3)
I,4) = Co(s) B (6.4)

where $(s) & (s1 - &2 (6.5)
G, is the RPDS state feedback gain and H is the KBF gain.

Note that points (1) and (4) have loop transfer matrix identical to those
of RPDS and XBF respectively. Thus at point (1) the RPDS robustness
properties apply.Similarly, the KBF robustness properties are valid at
point (4). No guaranteed stability margin 1s however available at both
points (2) and (3), which are the actual interface between the control
system and the real world. It was demonstrated by Doyle [Do4] with a

simple example that a reasonable lookirngLQG design may have arbitrarily
1

It is important to point out that only the state feedback gain of the
RPDS based LQG compensators but not the KBF gain is designed with a
prescribed degree of stability, Robustness properties of KBF are
identical to those of FPDS discussed in section 4.8.2.

Py N
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small stability margins.

For conventional LQG design (one for which the state feedback
gain is obtained by using the LQ instead of the RPDS method),there are
two dual robustness recovery procedures that allow us to approximate
the transfer matrices T,(s) and ga(s) with 32(5) and IB(S) respectively
in a systematic fashion. These procedures use the asymptotic pole pro-
perties of LQ regulators and KBF respectively (see [Do 3] for a review
of such properties), and can be applied only if the plant is minimum
phase.

The robustness recovery procedure Cue to Doyle and Stein [Do 1]
makes zz(a) to approximate gl(s) by using a process noise with spectral
intensity of the form p __g? + Z in the KBF Riccati equation and letting
p 80 to infinity. As a result, the LQ robustness margins at point (1)
can be recovered asymptotically at the input (2). In a dual fashionm,
the robustness recovery procedure due to Kwakernaak [Kw 3] is used té
recover the stability margin for (4) at the output (3). This is
accomplished by using a state weighting matrix of the form Q +p QT [}
and letting p go to infinity.

The objective of this chapter is to study the various issues
that arise in the application of robustness recovery procedures to

design of RPDS based LQG compensators.

6.2 Design of RPDS Based LQG Compensators Using Robustness Recovery
Methods

In this section, we illustrate with the aid of numerical examples

some considerations that are of importance to design of RPDS based LQG
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compensators.

6.2,1 Relationship Between the Stability Factor & and the Minimum
Phase Condition

If the stability margins associated with the loop transfer matrix
13 (s) 6f a given RPDS based LQG compensator (with prescribed degree of
stability a) is found to be unsatisfactory, an obvious way to improve the
design is to employ the robustness recovery procedure of Kwakernaak
([Kw 1] and [Kw 3]). Recall from the last section that Kwakermaak's method
requires the adjustment of the state feedback gain Qa for making 13 (s)
appropriate the KBF transfer matrix _T_a(s) . This is accomplished through
the introduction of a state weighting matrix of the form Q + pgT [
into the LQ Riccati equation and letting p go to infinity. The finite
closed=-loop regulator poles will then asymptotically approach the zeroces
of C(sI - g._)'l B (see Theorem 4.13 of (Kw 1]). However, the LQ regulator
thus obtained is no longer guaranteed to possess the same prescribed
degree of stability as the original RPDS desigu. This is the case when

-1 B have real parts larger than - a.

some zeroes of C(sI - A)
If the RPDS Riccati equation (4.59) is used as the design
equation, it follows from Theorem 3.2 that the resulting regulator poles
will always lie to the left of O = -0 Ior every value of P . But the
asymptotic location for these finite poles may amot coincide with those
of C(sl - :_x_)-l B unless C(sl - A - a_I_)-l B 1s also minimum phase., If
C(sl - A~ a;)-l B fails to be minimum phase, the asymptotic state

feedback gain will satisfy
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as p approaches infinity where,ﬁ ¥ C and W is some orthonormal matrix
(see Chapter 3 of [Kw 1]). It can be readily demonstrated with the use
of elementary matrix manipulations that full state KBF loop cannot be
recovered asymptotically as a result of C # C.

Defining

7o) & 1-a-807t (6.7)

we can rewrite ;a(s) as
I,(8) =C () B

) -F@ 3 a+s 5 B e T@1E

=C9(s) BG,IQ
-1 (6.8)
=C9(s) B(L+GF(s) B "G §() B (6.9)

To go from (6.8) to (6.9), we employ the matrix inversion lemma
(see for example Appendix A of {Sc i]). As p approaches infinity the
following approximation follows immediately from (6.6) and (6.19)

€06 BU+GH() BTG T B
+ Co) B ETE BT B (6.10)

It can be shown that the matrix function on the right side of (6.10) is
equal to the KBF loop transfer matrix _é:g(s) H when C= é. IfC$C,
there exists no useful simplification of this matrix function and the
robustness properties of the KBF loop i3 not recovered as a result.

The following example illustrates the effect of o on the design

of LQG compensators using Kwakernaak's robustness recovery procedure.
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Example 6.1 Consider the LQG problem

:1 2ot T T
min J=E|lim e [x (t) Q x(t) + u (c) R u(t)]de
u(e) € £(y(t)) tl‘”’ 0
(6.11)
subject to the dynamic constraint
x(t) = [o :] x(t) + [o]_g(c) +[ 3ﬂ % (t) (6.12)
=3 1 -6
and the observation constraint
y(e) = [2 1] x(t) +6(t) (6.13)
(6.14)

where
q = sol'/s—s] v 1]
1

L

and ; (t), ©(t) are zero mean white noise processes of spectral intemsity

equal to 1.0.

The plant in thig example is a stable minimum phase system with

transfer function given by

Z%E% - s + 2
uts (s+1) (5+3) :

(6.15)

Solution of the above LQG problem for o = O results in a state feedbazk

gain given by

gu = {50 10]

and a Kalman Bucy Filter gain given by

L

(6.16)

(6017)

AV e AR s e s

et R T L aeban by

L st s -
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Inspecting the Nyquist diagram of the LQG loop transfer function reveals
poor stability margin (GM = (=6.75 d,b ®) and PM = (-15°, 15°)) for the
resulting LQG design., This is due to the presence of a instable pole in
the LQG loop transfer function. In order to improve the robustness
properties of the feédback loop,we employ the robustness recovery pro-

cedure of Kwakernaak. A new choice of the state weighting matrix given

by

9 '9+p[1 2 1] (6.18)

1

1s employed in the LQ algebraic Riccatl equation

kK|o 1|+ Jo -4 R-k]O| [0 1] E+Q =0

-4 -3 1 "3 l (6019)

The state feedback gains for various values of p are computed and the
respective LQG loop transfer functions t3(s) are plotted %n Fig. 6.2.

It is observed that the stabtility margins of the resulting designs improve
steadily with increasing p {see Table 6.l1l). For a > 0 we replace

equation 6.19 with the following RPDS algebraic Riccati equation

K 1 a =4 - of [0 1] + =0 (6.20)
x [ . & - K g -2

-4 =3+4a] |! -3 1
the resulting LQG design is always guaranteed to possess a degree of stabi-
lity o. However, asymptotic recovery of the KBF loop with this modified
procedure is only possible for values of o less than 2,0, This is vividly
demonstrated by the Nyquist diagrams depicted in Fig. 6.3 and Fig, 6.4.

When o is chosen to he 1.8 (Fig. 6.3), the stability margins of the
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P a 25100

(CO

Full State

FIG. 6.2 Nyquist Diagrams for Design Iteration of RPDS
Based LQG Compensators (a = 0) Using Kwakernaak's
Recovery Procedure
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o} Pnl GMZ d3
0 15,3° -2.0db 0.29
100 21.8° -2.7db 0.39
500 35° -5.51db 0.58
1000 45.4° -9.6db 0.9
10000 72° -34ap ¢ 0.917

TABLE 6.1

Summary of Stability Margin for Design Iteration of
a RPDS Based LQG Compensator ("= 4.5) in Example 6.1

1 This is in violation of the notation introduced in Chapter IV.

The angle given here corresponds to the value of 6§ in the
definition of PM.

2 Only the downward gain margin is given here. The upward gain

wmargin is infinity for all cases.

3 d is the nearest distance between the Nyquist diagram and ihe

critical point (~1,0).

)
' The actual gain reduction margin is lower than the valus indicated




~176~

» 1000 223500
p*100

// (-1,0) (0.0)
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c

_ 2230000
\
Full State ~+

FIG. 6. 3 Nyquist Diagrams for Design Iteration of RPDS
Based LQG Compensator (o =1.8)Using Kwakernaak's
Recovery Procedure
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FIG.

0.4

Full Stute}

Nyquist Diagrams for Design Interaction of a
RPDS Based LQG Compengator (o = 2.2) Using
Kwakernaak's Recovery Procedure
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£*1000 5500

/ 23100

/ p*100
4:‘0) (0,0

#+10000

/

Full Sicte

FIG. 6.5 Myquist Diagrsms for Design 7teration of 13
RPDS Based LQG Compensator (o = 4.5) Using
Doyle/Stein's Robustness Recovery Method
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design improve steadily with increasing value of p and reasonably good
stability margins are obtained for value of p equals to 1,000, For

case where o equals 2,2 (Fig. 6.4) the stability margins of the resulting
design remains unsatisfatory even when large value of p is employed.

The above problem is not shared by the robustness recovery pro-
cedure due to Doyle and Stein. Nyquist diagraug of the transfer functions
that result from the design {terations of a RPDS based LQG compensator
using Doyle/Stein's metnod are depicted in Fig. 6.5. The choice of a
chosen for this case is 4.5. 1t 1s clear from the figure that the stability
marging vf the design improve as larger value of p is used demonstrates

satisfactory improvement.

6.2.2 Rate of Robustness Recovery with Respect to the Noise Scaling
Parameter

The robustness recovery method of Doyle and Stain [Do 1]
requires the use of a process noise with spectral intensity of the

form

+p gf (6.21)

jin @t
Ji0

and letting o go to infinity for asymptotic recovery of the full state
RPDS stability =margins. This procedure provides characterization of the
LQG feedback loop as the noise scaling parameter ¢ approaches infinity.

It does not, however, give us any clue as to the behavior of the LQG loogp
when o varies. We shall examine in this chapter the effect of & on the
rate of recovering the RPDS stability margins with cespect to changes in ¢.
In the SISO case, this can be simply accomplished by inspection of the

respective Nyquist diagrams. 1Ian the MIMO case, the siagular value
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plots of the respective loop transfer matrices have to be used (For an

example of this, see {Do 1]). PFor ease of exposition, only SISO systems

will be considered in the following example.

Example 6.2 Consider the RPDS based LQG design problem defined in Example
6.1. Design iterations with noise scaling factor ¢ = Q, 100, 500, 1000 and
10000 are performed for several choices of the stability factor & . The
Nyquist diagrams of the LQG design with & chosen to be 0, 3, 4.5, 6 and 9
are plotted for each of the five iterations (Fig., 6.6) and the resulting
stability margins tabulated (Table 6.2 and Fig. 6.7). Several interesting
observations are in order.

First it is noticed that the Nyquist diagrams of the LQG designs
with value of o equals to 0, 3 and 4.5 move further away from the critical
point (-1,0) than those designs with & equals to 6 and 9 as the value of p
increases. Consequently, the stability margins of the designs with a
eqnﬁls to 0,3 and 4.5 are superior to those with values of & equals to
6 and 9 for a fixed value of p (see Table 6.2 and Fig. 6.7) . Secondly,
the rate of robustness recovery with respect to p does mot strictly
decrease with a for the values of a under consideration. It is clear
from the Nyquist diagrams in Fig. 6.6 and the data presented in Table 6.2
that the stability margins for LQG designs with & equals to 4.5, 6.0 and 9.0
decreases with increasing value of ¢ for a fixed value of ¢. This is
however not the case for designs with o equals to 0 and 3.

In view of the above observation, it does not seem likely that one
can make any conclusive statement concerning the effect of & on the rate of

robustness recovery. However, these observations do illuminate a potential

el L  yegery .
SNl sy
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Fig 6.6b

Nyquist Diagrams for Design Iterations of RPDS Based
LQG Compensators (o = 0.0, 3.0, 4.5, 6.0 and 0.0)
Using Doyle/Stein Method
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a390

Fig.66¢f Full State!'

L Since the Nyquist Diagram of the RPDS Transfer Functions
Corresponding to & = 0.0, 0.3 and 0.45 are very closed
to one another, only that of ¢ = 0.0 is Displayed
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\a 0 3 4.5 & 9
ot -1.9db -1.9db -2.02db | -1.27d6 | -0,72db
2 16.5° 16.5° 16.5° 11.5° 8°
a3 0.2 0.22 0.208 0.15 0.1
o 0
\\a 0 3 4.5 6 9
et -2.65db ~2.83db -2.67db ~1.25db -1.0db
PM 21° 21° 20.6° 14.5° 11°
0.36 0.375 0.354 0.187 0.133
p = 10Z
\\a 0 3 4.5 6 9
et -5.0db -5.5db -5.32db -3.65db -1.9db
PM 32.5° 32° 32.5° 25.5° 16°
d 0.733 0.8 C.8 0.45 0.25
0 500

Table 6.2 to be continued

£ i S
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\a. 0 3 4.5 6 9
oM -8db -8,5db -8,3db -5db -3db
PM 43° 42,5° 43° 34° 21°
d 0.917 0.95 0.95 0.73 0.33
103
\a. 0 3 4.5 6 9
4 4 4
oM >-37db" | >-43db >-38db -28.5db | -14db
PM 75° 75° 75° 67° 56°
d 0.95 0.95 0.95 0.87 0.80
10%

Table 6.2 to be continued
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\a Q 3 4,5 6 Q
oM ~odh —=db ~odb -»db —db |
]
™ 86.5° 89° 85.5° 87° 82° 3
d 1 1 1 1 1 '
Full state E
|
TABLE 6.2 f

Summary of Stability Margins for Example 6.2

1 This is a violation of the notation introduced in Chapter IV. The angle

given here corresponds to the value of 8 in the definition of PM

2 Only the downward gain margin is given here. The upward gain margin

is infinity for all cases.

3 d 1is the nearest distance betveen the Nyquist diagram and the

critical point (~1,0). The actual gain reduction margin is lower
the value indicated.

4 The actual gain reduction margin is lower than that indicated.
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0 3 45 6 9 a

FIG. 6.7 Effect of o on the Distance from the Critical Point

(-1,0) at Different Design Iteration of a RPDS Baged
LQG Compensator
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problem that may occur in the design of RPDS based LQG compensator using

robustness recovery procedures, It is apparent from this example that
large values of o (@ = 6,9) may slow down the recovery of RPDS stability
margins and thus necessitate the introduction of high filter gains for

securing good robustness peroperties. The use of high filter gain in

e P S A e

feedback loop often leads to degradatiom of observation noise rejection

that is undesirable from the performance point of view. The resulting .
situation is one where a satisfactory compromise among the need for :
speed of response (as specified by the choice of o), noise rejection and ;

stability robustness has to be made by appropriate choices of a and p.

6.2.3 Effect of the Stability Factor & on the Noise Rejection Properties

To conclude the discussion in this section, we axamine the effect
of the stability factor & on the noise rejection properties of RPDS
based LQG compensaturs. Such effect can be characterized in terms of the

behavior of the state covariance matrix (assuming zero mean for the random

vector x(t)

I, = Ex® £©) | (6.22)

with different values of &.
Recall f:rom the definition of the state estimate error e(t) in

(4.171) that
e(t) = x(t) - x(t) (6.23)
It is useful to point out that x{t) and e(t) are uncorrelated

random vectors (Chapter III of [An 2] and Chapter IV of [Kw 1]). As a result

of this, we can express Ex as a sum of two covariance matrices
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I, =ZI) + I, (6.24)
where
L e EEC 2©T (6.25)
and
I, = Ele(®) ()] (6.26)

Moreover, the dynamics of the LQG con;rol system can be conveniently

described by using [2(:)T gx:)T] as a state vector. The underlying
differential equation in this case is given by

¢ [e®] [a-2c o |few] F1 g
® lzo| [2e  a-pgllze| e Hfew

(6.27)
which can be readily derived by inspection of the block diagram in
Fig. 6.1.

Using the above dynamical equation, and Theorem 1.53 of

(Kw 1] (which 1s a standard result in stochastic process theory) leads
directly to the following result.

Lemma 6.1

Given a LQG control system de.cribed by (6.27) the steady
state covariance matrix

[ 129] e’ 2o I, -0
x(t) "\o £~

(6.28)
=x
satisfies the algebraic matrix equation
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A-HC 0 L 0 0 A-HC =-HC B
+
ac  a-sgffo zgl le ]l & a-mg
z+EE  BEN 2 9
+ - (6029)
198 BOF ]

It is straightforward to show that the solution of equacion 6.29 can be

obtained by solving the two following decoupled matrix equations

T, ,= .
W-BQ L,+L A-BOT+(Z+BQE) = 0 (6.30)

T

R T
“@-BG)ZIr + LL(A-BG) +1

jo
=

=0 (6.31)

This 1is a direct conmsequunce of the fact that %(t) and e(t) are uncorrelated.
It becomes clear from (6.30) and (6.31) that the RPDS state feedback gain
(and hence the stability factor a) only affects the matrix 5_; Differen~

tiating both sides of (6.31) with respect to & and rearranging, we obtain

Z
A- !-u e B-u) (6.32)
where
A -1 T a& ~ a&
2- _3_5 ! —5-a£-x- + —_X_ G-‘ B (6.33)
2Ly
The matrix vy allows us to access the effect of stability factor
. ey

on the noise covariance matrix z x at a= g , If the ith diagonal

e A s e
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ala
element of -s-a‘- is positive, then the variance of the ith state will

incresse with & at G =& , Likewise, if the ith clement of

L’
o is negative, then the variance of the ith state will decrease

da!a=a

with @, ac a =%.Since(4 ~ B G ) is a stable matrix, we can thus conclude

from the well known properties of algebraic Lyapunov equation that
)y

ﬂ
o0 ja=

states increases (decreases) with o at a = a), 1f the matrix D is

is positive (negative) semidefinite (i.e the variance of all

negative (positive) semidefinite. If D turmns out to be indefinite,

the resulting °5x| _  is also indefinite. In this case, the
 |qmu

increase of ¢ will increase the variance for some states and decrease
that for others.
The following example is again based on LQG problem considered

in Example 6.1. It demonstrates the behavior of k with increment

of a .,

Example 6.3 Consider the RPDS based LQG controller design
problem in Exsmple 6.1. The noise covariance matrixl x is computed for
the resulting designs at five different values of a and p 1is chosen
to be O (see Table 6.3). It is clear from the tabulated results that
the variance of the first state decreases with a while that of the

second state increases with a.

6.3 Concluding Rexarks
We have identified in this chapter several potentisl problems

that may result from the use of robustness recovery procedu~e in :legign




: I,
0 189.5 - 554.9
-5560 9 191002
1.5 18606 -55409
-554.9 1930.2
4.5 177.4 =-554.9
=554,9 2055.5
6.0 155.3 -554.9
9.0 139.7 =-554.9
"’55‘0 9 396103

TABLE 6.3

Noise Covariance Matrices of the State Vector x(t)
for Different Values of a; o =0
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of RPDS based LQG compeomsator. Too large a choice of the stability factor
is found to prevent the recovery of the full state KBF stability

margins with the Kwakernaak's procedure and slow down the rate of

robustness recovery with the Doyle/Stein's procedure, However, it is

important tu point out that the result on rate of robustness recovery

is obtained only for a particular single-input system, More practical

experience with application of robustness recovery method to MIMO RPDS

based LQG compensator design is needed before the nature of this problem

can be fully comprehended,
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CHAPTER VII

SUMMARY, CONCLUSIONS AND SUGGESTED DIRECTIONS FOR

FUTURE _RESEARCH

7.1 Summary
We have examined in this thesis a wide range of problems related to

RPDS methodology and its applications. This includes attempts to

1)

(11)

(114)

(iv)

v)

explore the use of RPDS methodology for time-varying systems
adapt RPDS methodology for LQ regulator problem with design
specifications other than prescribed degree of stability
develop methods of eigenstructure analysis for RPDS control
systems

clarify the robustness properties of RPDS in the multiple-
input case

identify potential problems that may occur in the design of

RPDS based LQG compensators.

We began our investigation in Chapter IIwith a formulation of the

RPDS problem for linear time~varying systems. A generalized notion of

'degree of stability' that applies to all finite-dimensional linear

systems is introduced. This definition has the desirable property that

it reduces to characterization in terms of eigenvalues for the LTI systems.

It turns out that the exponential weighting technique for solving the

time-invariant RPDS problem is equally applicable to the time-varying

O ARt S Al e nneta S s W
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case. The related problem of designing Kalman Bucy filters with prescribed

degree of stability (FPDS) is formulated and solved in a dual fashion.

For case of LTI systems with stationary noiseg, the optimal filter solution

admits interesting irterpretations in terms of the special form of noise
intensity matrices required for speeding up the error dynamics.

In Chapter III, several eigenstructire characterizations of the
time-invariant RPDS are derived. The sensitivity equations for the
RPDS poles are obtained in two different ways. The first approach is
a direct application of the classical eigenvalue sensitivity result.

The second approach utilizes the special eigenstructure properties

of Hamiltonian System associfated with RPDS problem. The computational
requirements for these methods are briefly compared. Asymptotic
behavior of the RPDS root-loci is studied next. It is shown that the
properties of the RPDS root-loci can be readily der;ved from the optimal
root-loci properties of a related LQ regulator problem. Based upon the
behavior of RPDS poles as the control weighting on the states becomes
vanishingly small, a novel algorithm for designing regulators with

btescribed damping ra:ib (RPDR) is developed.

The important design issue of robustness is considered in Chapter IV.

Based on the framework of frequency domain robustness analysis due to
Lehtomaki [Le 1], various robustness properties of RPDS are characterized
in terms of the minimum singular value of the RPDS return difference and
inverse return difference matrices. In particular, the RPDS designs

with R chosen to be diagonal are found to possess excellent gain and
phase margins with respect to the stability and degree of stability

property. However, tolerance of uncertainties for RPDS will improve

T —— e e e - 7 . - e m———— ¢ mim rmmn m e
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with increasing value of stability factor only for specific types of
model error represeatation such as E (s) = (1™1(s) - iﬂs)) Ifl(s)

Chapter V continues the discussion of Chapter IV with a multi-
terminal DC/AC power system example. RPDS state feedback design for
several choices of the stability factor & are applied to a 9-machine,

4 terminal DC/AC power network. Robustness properties of the closed-

loop system thus obtained are evaluated in two ways. First, the closed-
loop pole pattern results from change of operating points and introduction
of unmodelled dynamics are studied. Second, the minimum singular value

of the return difference and the inverse return difference matrices are
computed and compared with the magnitude of the respective type of model
errors as specified in the robustness tests of Chapter IV.

Output feedback realizacion of RPDS using LQG methods is considered
in Chapter VI. In view of the lack of guaranteed stability margins for
such compensators, only those RPDS based LQG control systems designed with
the rcbustness recovery precedures are considered. Particularly, we examine
the effect of @ on the recovery of stability margins for full state
feedback loop. It is found that too large a value of & may prevent
the recovery of the KBF loop stability margin using Kwaakernaak's method
and slow down the rate of recovering the RPDS stability margin using

Doyle/Stein's method.

7.2 Conclusions '
The major contributions of this thesis are basically of two

categories. In the first category are results related to the extension

of RPDS methodology. The classical RPDS problem formulation and its

solution rechnique (due to Anderson and Moore) is found to be useful
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for solving a number of RPDS related problems not previously considered

in literature. These include

(1) tha extension of exponential weighting technique to
solution of the time-varying RPDS problem
(i1) the formulation of RPDR problem as a special case of
RPDS problem
(ii1) the adaptation of optimal root-loci results to RPDS root-loci
(iv) the adaptation of LQ eigenvalue sensitivity results to

the respective problem of RPDS

While most of these results are of theoretical imterest, those obtained
for RPDS rooc-loci'are also of importance from the design point of view.
The contributions in the second category are mainly related to design
implications of RPDS. While a large value of o can lead to regulators
with good damping properties, other design considerations will put an
upper limit on the actual value of O to be used. Some of such design

considerations discussed in this thesis are

(1) effect of & on the cross-over frequgncy - too large a value
of a may extend the cross-over frequency of RPDS well inco
regions dominated by unknown and/or unmodelled dynamics

(i1) effect of @ on robustness propettie§ - increasing the value
of a will lead to improvement in tolerance of modelling error
only in very specific context. In other words, such improve-
ment is only valid for certain type of model error representations.
For instance, we have demonstrated that the guaranteed stability

margins of a RPDS may in fact deteriorate with increasing value

of a.
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(111) effect of the stability factor @ on robustness recovery
of LQG - too large a choice of @ may lead to failure in
recovering the KBF loop with Kwakernaak's procedure and
impede the rate of recovery of RPDS stability margin with

Doyle/Stein's procedure.

To summarize, RPDS method is not merely a procedure to be used
blindly for design of fast response sytems. It is clear from our
discussions in Chapters IV, V and VI that a fair amount of iteration on
the design of RPDS, with due regard given to various design considerations
such as stability robustness and noise rejection is necessary to obtain
satisfactory results.

Like the LQ regulator method of which it is a special case, the
RPDS design procedure is basically a multi-loop procedure. With the
aid of the various recently developed frequency domain tools (such as the
singular value-based robustness tests for MIMO systems and the robustness
recovery procedures), it should provide a reasonable starting place to

design feedback systems with a prescribed degree of stability.

7.3 Suggestions for Future Research

Due to the lack of time, we were not able to pursue in depth the
many interesting avenues of research opened up by this work. As
suggestion for future research, we list the following:

(1) The effect of the stability factor oa the tolerance of

structured model errors

The robustness tests considered in this thesis use only the magni-

tude information of the error. As a result, they can be unduly conservative

vt g bt e
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in that some of the small pertubations that will theoretically destabilize
the system will not occur physically. These tesats can be further refined
to take into account the difference between model errors that increase

the stability margins of the feedback systems and those that decrease it
(see [Le 1] Chapter 4). A useful avenue of research is to study the
effect of o on the robustness properties of RPDS when structural infor-
mation of the error E(s) (i.e. numerical relations among elements of E(s))

is taken into account.

(11) Discrete Time RPDS

The formulation and solution of discrete time RPDS problems have
been considered by several authors ([Sa 2], [An 2]). In the LTI case,
the corresponds to picking a state feedback gain G, such that the

quadratic performance index

3= 5 o[’ @ Qxm +2u’ Mx@ +u @) Ru@]
n=0 (7.1)

is minimized subject to

x(ot+l) = A x(n) + B u(n)
n =0,1,2,... (7.2)

~ -~

where Q , M, R are some weighting matrices having the property that

I pot
w1 1K

[ T] is positive definite, and a > 1 is the stability factor. Provided

that the system is controllable and cost observable, then the optimal

state feedback gain is given by [Sa 2]

G = R+E B @ ma+w 7.3)

e ke oarm ks < pora e e ot



-200-

where K, is the unique symmetric positive definite solution of the

discrete RPDS Riccati equation

B - otk Aa+0-@Tx a+wT @+ K B @k A+m)
(7.4)

The eigenstructure and robustness properties for this class of
regulators have not been treated in the literature thus far. In view
of the similarity in structure between the continuous time and the
discrete time RPDS problem, we expect the eigenstructure characterization
of discrete time RPDS to follow from that of continuous time RPDS given
in Chapter III.

The generality of the framework for robustness analysis developed
in [Le 1] (which we have extensively applied in Chapter IV) also allows
us to characterize the robustness properties of discfete time RPDS in
terms of the minimum singular value of its return difference and inverses
return difference.matrices. The derivation of the respective robustness
theorems are based on the discrete multivariable Nyquist theorem, which
is essentially identical to Theorem 4.1 with the Nyquist contour replaced
by thea unit circle centered at the origin., Based on such a framework,
the effect of a on the robustness properties of discrete time RPDS can
be studied in a fashion similar to that of Chapter IV..

A significant difference between the crntinuous time and discrete
time RPDS occurs when one tries to solve the discrete time RPDS problem
using only time-invariant weighting matrices (compare with corollary 2.5).
It can be readily shown by algebraic manipulation of the discrete Riccati

equation (7.4) that an appropriate choice of constant matrices Q, M and

e ———
-
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R for such purpose is given by

g =ga’+@2-1aTK A (7.6) |
= 2, .2 T |
M =Ma"+ (@ =-1)Bp K A (7.7) :
)
R =Ra’+ G -DEE B (7.8

where 5& is the unique positive definite solution of the algebraic Riccatdi
equation. The intresting point to observe is the expression for M as
given by (7.7). M turms out to be a nonzero matrix even if the cross-
weighting matrix i_in the time-varying cost furctiomal (7.1) is chosen to
be zero. In the dual problem of FPDS design, this implies the need to

use correlated process noise and observation noise that are second order
stationary. A proper explanation of the above observation is not obvious.
Understanding of this problem is probably important to a better appreciation
of the robustness properties of discrete time RPDS, for it is well known
in the case of continuous time optimal regulators that the use of cross-
weighting matrix between u(t) and x(t) can lead to deterioration of the

stability margins.

(111) Alternative formulation of the Regulators with Prescribed
Damping Ratio (RPDR) prcoblem.
In Chapter III of this report, the RPDR problem is formulated
and solved as a special case of the RPDS problem. It is of interest to
know if there exists a more direct approach to formulate and solve the

RPDR problem.
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