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CHAPTER I

IMODUCTION

1.1 Thesis Motivation

A linear time-invariant (LTI) system of the form

_(t) = A x(t)	 (1.1)

is said to have a degree of stability a if all the poles of A are located

to the left of the line a - - a (where a is real and positive) in the left-

half complex plane (see Figure 1.1). The Regulator with a Prescribed

Degree of Stability (RPDS) problem is one of determining the weighting

matrices Q and R in the cost functional of a Linear Quadratic (LQ) regulator

problem.

t
min lim	 1[xT (t) Q x(t) + uT(t) R u(t)]dt	 (1.2)
u(t) ti

t0

subject to the dynamic constraint

x(t) = A x(t) + B u(t) 	 (1.3)

so that the resulting state feedback design has a prescribed degree of

stability.

The RPDS problem for LTI systems was first formulated and solved

by Anderson and Moore [An 1]; their work is one of the many attempts to

combine the poleplacement techniques and LQ methodology in some useful

fashion. Other major contributions in this area include the asymptotic

LQ poleplacement technique of Harvey and Stein [Ha 1] and the sequential

poleplacement method of Solheim [So 1]. Both of these methods address
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FIG. 1.1 Region (shaded) of Allowable Closed-Loop Poles

for a RPDS Design with Stability Factor Equals

to a . (a > 0)
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the problem of finding the appropriate 4 and R matrices that correspond

to a prescribed set of eigenvalues.

The RPDS problem is useful from the application point of view. In

many engineering problems of interest, the exact position of the closed-

loop poles may be of secondary importance. As a result, the designers

are interested only in locating all the closed-loop poles in some regions of

the left-half complex plane.

One such example which motivates the research in this thesis is

the design of a state feedback law for a reduced order model of a m-terminal

DC/AC power system([Gr 11, [Ch 1]). This is the preliminary stage of

design for a decentralized output feedback control scheme. A standard

power system model of this type, with n aggregated areas, has(2n-2)

modes of iterarea oscillations 1 . Such modes ate usually poorly damped

in the absence of compensation. The two remaining modes are real. The

one located at the origin is the clock error mode. The one located

slightly to the left of the origin is the average frequency mode. Vor

physical reasons, it is desirable for both of these modes to remain

unchanged under state feedback. This could be trivially accomplished

in the LQ design by making such modes unobservable in the cost functional?

The primary design objective is to find a state feedback control law that

results in sufficient damping for the Un!--2) oscillatory modes. One

natural way to specify the damping criterion is simply to require all the

1 See Figure 5.1 of Section 5.1 for an example of such pole configuration

2 A detailed discussion of such a poleplacement technique is given in

Section 5.2

i
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closed-loop poles to lie to the left of some line a - -a in the complex

plane. This class of problem can be effectively handled using non-

asymptotic LQ poleplacement techniques such as RPDS and Solheim's method

[So 11. With respect to the computational requirements, RPDS is the

simpler of the two methods. In every design iteration using RPDS method,

one needs to solve a Riccati equation and an eigenvalue problem. In the

case of Solheim's method, one may have to solve as many as n Riccati

equations and n eigenvalue problems for each iteration. Although the

above mentioned design objective can also be handled by asymptotic

techniques such as Harvey/Stein's method [Ha 1] with relative ease; the

use of which in the multiterminal DC/AC power system is however inappro-

priate. From an engineering point of view, it is undesirable to speed up

some of the oscillatory modes as required by the asymptotic poleplacement

method in order to allow the poles of the remaining modes to approach their

specified locations.

Despite the potential usefulness of RPDS as evidenced in the above

discussion, research on this class of regulators has been largely over-

looked in the literature. Apart from a few brief remarks found in the

original work of Anderson and Moore [An 11, little is known to date

about the relation between the prescribed degree of stability and the

feedback properties of a RPDS system. This is partly a result of the

lack of appropriate tools for effective analysis of multivariable feed-

back systems. It is only recently, in the context of studying the robust-

ness properties of controllers derived using Linear-Quadratic-Guassian

(LQG) technique that an appropriate formulation has emerged ([Le 11, (Do 41).

One major objective of this thesis is therefore to analyze the feedback
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properties of RPDS with special emphasis on robustness properties.

Anott;er important problem of interest here is the possible

application of RPDS to the design of LQ regulators with specifications

other than prescribed degree of stability. One such example is the

design of regulators with prescribed damping ratio (RPDR). This class

of LQ regulators has all its poles lying inside a convex cone centered

at the origin and symmetric about the negative real axis (see Fig. 1.2).

Such designs are of potential application in the power system example

mentioned above.

It is hoped that the new insights on properties of RPDS obtained

in this thesis will help the control system designers to better appreciate

the benefits that they may expect from this class of regulators.

1.2 Thesis Organization

This thesis is organized as follows:

In Chapter II we first formulate and solve the generalized RPDS

problem for linear time-varying systems. A precise notion of degree of

stability that applies to all finite dimensional linear system is

introduced for this purpose. We then specialize these results to the time-

invariant case which was the original form of RPDS problem addressed by

Anderson and Moore. Extension of RPDS techniques to the dual problem of

designing a Kalman Bucy filter with a prescribed degree of stability

(FPDS) is also considered, and interpretations of the FPDS design procedure

in the context of estimation are given.

In Chapter III, the eigenstructure properties of time-invariant RPDS

are examined. We first derive some sensitivity formulas for the closed-
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FIG. 1.2 Region (shaded) of Allowable Closed-Loop Poles

for a Regulator with a Prescribed Damping Ratio

core (o < 6 < 2)
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loop poles with respect to the stability factor a . This is followed

by a study of the behavior of RPDS root-loci as the relative weight

between the state and control weightings varies. It turns out that this

problem can be formulated in a fashion similar to the conventional LQ

root-locus problem [Kw 11. The control weighting matrix is chosen to

be of the form PR. The relative weight between the state and control

weightings can be adjusted by varying the scalar p . We are particularly

interested in the asymptotic behavior of the root-loci as p(p > 0) becomes

very large or close to 0. Based on the asymptotic properties of the

RPDS root-loci as p approaches infinity, a novel algorithm for solving

the regulator with prescribed damping ratio problem is derived.

The robustness properties of RPDS are discussed in Chapter IV-Adopting

the framework developed in [Do 2 1, and [Le 1], we use the minimum singular

value of the return difference and the inverse return difference matrices

as basic robustness measures for multiple-input multiple-output (MIMO)

feedback systems. The dependence of the robustness properties on the

stability factor a is analyzed by using the frequency domain inequalities

for the RPDS return difference and inverse return difference matrices.

The dual robustness problem for FPDS is next formulated, and the FPDS

robustness properties are interpreted in the context of estimation.

In Chapter V, we consider an example where the RPDS technique is

used to design a state feedback control law for a reduced order model

of a multi-terminal DC/AC power system. Besides validating theorems and

conjectures stated in previous chapters,the results obtained here also

reveal several desirable features of RPDS designs not predicted by the

theorems developed in this thesis. This provides considerable justification
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for the uae of RPDS methodology in power systems control.

Since full state feedback can never be real'.zed in real life, we

are thus motivated to study the feedback properties of RPDS based LQG

compensators in which the feedback gain is designed by using the RPDS

technique and where a KBF is used to provide the state estimates. This

problem is considered in Chapter X11. LQG compensators are known to

possess no guaranteed uncertainty tolerance in general [Do 41. As a

result, we only focus our discussion in this thesis on the class of RPDS

based LQG compensators that are designed with the robustness recovery

procedures ([Do 11 and [Kw 1]). Such procedures allow one to approximate

the state feedback transfer matrix (and consequently their robustness

properties) with the LQG loop-transfer matrix in a systematic manner.

Several difficulties encountered in attempts to combine the RPDS technique

and robustness recovery methods in designing LQG compensators are

illustrated with numerical examples.

Chapter 7 consists of conclusions and suggested directions for

future research.

1.3 Contributions of This Thesis

The major contributions of this research are:

(1) Formulation and solution of the time-varying RPDS problem.

(2) Development of a simple procedure for studying the asymptotic

behavior of the RPDS root-loci.

(3) Development of a novel algorithm for solving the regulator with

prescribed damping ratio problem.

(4) Clarifying the robustness properties of RPDS

Y

i
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(5) Uncovering some potential problems that one may encounter

in combining the RPDS technique with robustness recovery

methods in designing LQG compensators.
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1.4 Notation

SISO single-input single-output

MIMO multiple-input multiple-output

LQ liner-quadratic

LQG linear-quadratic Guassian

KBF Kalman Bucy filter

RPDS regulators with a prescribed degree of stability

FPDS Kalman Bucy filter with a prescribed degree of stability

LTI linear time-invariant

T(s) loop transfe ;: matrix

T,.M (a) loop transfer matrix for RPDS with a degree of stability	 a

Fa (s) loop transfer matrix for FPDS with a degree of stability	 a

L(s) multiplicative perturbation of ?(s) or 	 ?a(a)

x	 ) an aigenvalue of A

AR complex conjugate transpose of A 	 1

amax W maximum singular value of A $ 	
lM&X2

(e A)

1

amin(h) minumum singular value of A	 an2 LR A)

defined as

A> B	 A- B is a positive definite matrix

A? B	 A- B is a positive semi-definite matrix

I	 Identity matrix
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CHAPTER II

THE R TLATOR WITH A PRESCRIBEDDECREE OF

STABILITY PROBLEM AND ITS DUAL

2.1 Introduction

In this chapter, we formulate and solve the RPDS problem for finite

dimensional linear system. By 'linear systems' we mean a pair of

equations of the form

x(t) n 	 A(t) x(t) + B(t) u(t) (2.1)

Y  C(t) x(t) (2.2)

We make an assumption at this point that is to hold throughout this

chapter. The elements of the matrix A(t) are continuous ar4 bounded

functions of time defined on - m < t < ® . The elements of the matrices a(t)

and C(t) are piecewise continuous and bounded functions defined on -•ct<= .

The formulation and solution of the time-varying RPDS problem is

given in section 2.3. In order to study this problem, a precise definition

for 'degree of stability' that applies to both time-varying and time-

invariant systems is introduced. The time-invariant version of the RPDS

problem studied by Anderson and Moore (An lj becomes a special case of

our formulation.

The problem of designing Kalman Bucy Filter with a prescribed degree

of stability (FM) is considered in Section 2A . In view of the dual

nature between the Kalman Bucy Filter problem aad the LQ rebulator problem,

the design techniques for RPDS can be readily applied to FPDS. Several



-12-

interpretations of the formulation and solution of the BPDS problem are

given.

2.2 Degree of Stability for Linear Systems

The concept of 'Degree of Stability' for linear time-invariant (LTI)

systems is directly :elated to the system pole locations.

Definition 2.1 An autonomous system x(t) - A x(t) is said to possess a

degree of stability a, for some real positive constant a, if all the

eigenvalues of A are located to the left of the line o -a in the left.

half complex plane.

Intuitively speaking, a LTI system with a degree of stability a will

attenuate any given initial state perturbation at a rate faster than or

equal to eat . To motivate the extension of such concepts to the time

varying case, let us first recall the following definition of exponential

stability for finite dimensional linear system.

Definition 2.2 ([Br 11), Section 29)

The system x(t) - A(t) x(t) is said to be exponentially stable if

there exists some positive constants Y and a , such that for all t

and to in the half plane t > to , we have

It(t.to)I < Ye	 0)
	 (2.3)

where	 .
m(t.to) - A(t) V t.to )	 (2.4)

and
m(to.to) - I	 (2.5)

i

-	 -	 - -- 	 -
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It is well known that the exponential stability of LTI systems

can be easily established by checking the pole locations of the system

matrix. The following theorem clarifies the relationship between the poles of

a LTI system X(t) A x(t) and the induced norm  of the respective

transition matrix eAt

Theorem 2.1	 Consider the autonomous system

i(t) -A M(t)	 (2.6)

Let a be some given positive constant. Then

max (Re (A i (A)) < -a	 (2.7)
i

if and only if there exists a positive constant Y such that

A(t-t )	 -a(t-t )
lie	 ° 11 < Y e	 for all t > t°	(2.8)

Proof: Sufficiency: Suppose that (2.8) is true for some positive Y and
max Rs(X

i
 (A)) (t-t )

a given a. Observe that e i	 ° is the spectral radius

A(t-t )
of e	 °	 Using the fact that the spectral radius of a matrix is

always less than or equal to its spectral norm, we get

mix Re(ai (A) (t-to))
e

< lie
A(t-t°)11

< Ye -a(t-t°)	
(2.9)

Since the inequality (2.9) holds if and only if

1 All the vector norms considered here are the Euclidean norm. The
corresponding induced norm is the 2-matrix norm :See(De 1]).

k
1



-14-

max Re QL i (A)) < -a ,	 (2.10)
i

this completes the proof of sufficiency.

Necessity:	 Suppose that max(Re(a i (A)) < -<x . We can find
i

a similarity transformatiun that reduces A to its Jordan form

A
t
 - P A P 1 ([B 11 Section 12). For system in Jordan Form, the transition

matrix is block diagonal with each of the nonzero element being one of

the three forms

t  e 
CT 

cos W t, t  e t sin W t or t  e t	 (2.11)

where a± jw and a are eigenvalues of A. It follows from our assumption

on the eigenvalues of A that each element of e  t approaches 0 at a rate

faster than a-at as t approaches infirity.

This in turn implies the existence of some positive constant Y

such that
-a(t-t )

11 a zrl (t-t
° ) I I < Y•e	 (2.12)

Since	 A - P 1 
Aj P ,	 it follows that

l 
eA(t-t°) 

I I
11P71 eA (t-t°) 

PI

A(t-t)
I iP 1 11 11 e;"71	 ° 11 I IPI I

_	 -att-t >
<	 Y	 IIP 1 Ii IIPII e	

o

This completes the proof of necessity.

(2.13)

J_
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Corollary 2.1 The autonomous system (2.6) has a degree of stability a

if and only if there :txists a positive constant Y such that for all

t > t
— o

H,

(1A(t-t
 ) ! _ Y 

-a ct—t )
e	 o	 e	 o

(2.14)

Proof: This -Is a trivial consequence of Definition 2.1 and Theorem 2.1.

It seems natural from the result of Corollary 2.1 that we should

define the stability of a linear system x(t) - A(t) x(t) in terms of the

norm of its transition matrix.

Definition 2.3

A linear system x(t) - A(t) x(t) is said to have a degree of stability

CL if there exists some positive constants Y such that for all t > to,

-a (t-t )
II^(t, to) iI < Y e
	 °	 (2.15)

The following theorem characterizes the degree of stability using

Lyapunov ' s Direct Method.

Theorem 2.2	 Let V(x(t),t) be a Lyapunov function of the form

V(x(t),t) - 2E (t) Q x(t) for i ( t)	 A(t) x(t) on the whole state space.

If for some constant s > 0,

Q(t) > C I	 for all t > 
t 0
	 (2.16)

then the system described by x(t) = A(t) x(t) has a degree of stability a

if for all t > to,

V(x(t),t) < - 2a V(x(t),t)	 (2.17)

j
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Proof:	 It follows from (2.17) that V(x(t),t) is bounded above by

e 2a(t-to) V(x(t0)to). Since V(x(t),t) > E ,Ix(t)1+ 2 this means that

1 - to )-t )

11(t) 111 < 01 V(x(to).to)) 2 )e	o	 (2.18)

Dividing both sides of (2.18) by 11r(to)11 and taking the supremum

on the right, we obtain

a t	 1 -a(t-t )
< (1 a max (Q(t ))12 e	 o	 (2.19)

x(to I — IE	 o /

Now, by taking the supremum on the left side of (2.19), we

obtain

r 1	 (t- )
1(t,t0)^^	 \E Amax (Q(to)) )

,z a
-a,	 to

(2.20)

which establishes the degree of stability.

Remark	 In situations such as designing feedback laws with optimal control

methods where a Lyapunov function is available, Theorem 2.2 provides

a convenient mean of evaluating the degree of stability for a feedback

design. This point will be made clear in Theorem 2.4.

2.3 Formulation and Solution of the Continuous Time RPDS Problem

In this section, we formulate the RPDS problem for finite dimensional

linear systems. Although the RPDS problem studied by Anderson and Moore

is a special case of that considered in this thesis, their solution of

time-invariant problem extends readily to time-varying case.

1__ -A
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2.2.1 The RPDS Problem Statement

Consider the following LQ regulator problem

t
min J - lim	 1 xT (t) Q(t) x(t) + uT (t) R(t) u(t) dt
R(t)	 t Sao1 fto	 (2.21)

subject to the dynamic constraint

1(t) - A(t) x(t) + B(t) u(t)
	

(2.22)

_(to) - X 	 (2.23)

where (A(t), B(t)) is uniformly completely controllable.

The RPDS problem is to find the appropriate weighting matrices Q(t)

and R(t) such that the steady state control law that minimizes the cost

functional (2.21) has a degree of stability a.

2.2.2 Solution of the RPDS Problem

The solution of the RPDS problem is given in the following

theorem.

Theorem 2.3	 Consider the deterministic LQ regulator problem in

Section 2.2.1. The weighting matrices are chosen as

Q(t) - 4 e2at	 (2.24)

R(t) - R e2at
	

(2.25)

where'Q(t) e2at and R(t) e2at are piecewise continuous and bounded on

[to ,-] with

Q(t) ? 6 1 I and R(t)? S 2 I	 for all t	 (2.26)

}

i
i
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1

where 
a  and $2 are some positive constants. Furthermore, (Q(t) 2 , A(t))

is uniformly completely reconstructable. Then the solution KK(t) of

the Riccati equation

-K
a
(t) 	 (A(t) + a 1) T K (t) + Ka(t) (A(t) + a t) + Q(t)

- Ka (t)B(t) R-1(t) BT(t) 	 (t)	 (2.27)

with terminal condition K(t l) Kl converges to K a(t) as tl approaches °D

for any K.l > 0 and the steady state optimal control law given by

IL(t) _ -171 (t) BT (t) K(t) x(t)	 (2.28)

has a degree of stability a.

Proof: The assumptions on A(t), B(t), Q(t) and R(t) relating to

continuity, boundedness, uniform complete controllability and uniform

complete reconstructability guarantee the existence of an exponentially

stable steady state optimal control law that minimizes the given cost

functional. To establish the degree of stability of the control law,

we introduce the following transformations

a a(t-t°)
X(t) = e	 X(t)

p a(t-t
° )u(t)	 e	 u(t)

Then, x(t) and u(t) are related dynamically by

a(t-t
° )x(t) = dt (e	 x(t))

_ (A(t) + a I) x(t) + B(t) u(t)

The initial condition of x(t) is given by

(2.29)

(2.30)

(2.31)	 }

(2.32)

Y

r

i.	 3



-19-

x(to) = X 	 (2.33)

The cost functional J in (2.21) can now be written as

J - lim	 tl	 [x(t ) T Q(t) x(t) + -a W R (t) u(t) Jdt	 (2.34)^tl fto	 —

Observe the strong connection between the transformed LQ regulator

problem described by (2.32) and (2.34) and the original problem described

by (2.21) and (2.22). Suppose that u 
* 
(t) is the optimal control at time

t for the original problem, then %P(t) - e t u
* 
(t) is the value of the

optimal control at time t for the transformed problem. The resulting

value of the state x * (t) is given by x *(t) - e t x (t), provided that
at

° *
	

—

x (to ) = e	 a ( to). Thus, a feedback control law obtained for the

transformed problem readily yields a feedback control law for the original

problem. Moreover, the resulting minimum value of the cost functional

is the same for each problem.

Our next step is to study the transformed LQ regulator problem

t 

min J - lim	 [xT(t) Q(t) x(t) + uT (t) R(t) u(t),dt
u(t)	 ti ft o

(z.3s)

subject to dynamic constraint

x'(t) _ (A(t) + a I) x(t) + $(t) u 	 ; 1(t 0 ) - xo	 (2.36)

We need to check all the technical conditions that ensure the

existence of an exponentially stable steady state optimal control law

for the above optimization problem. It is trivial to see that A(t) + a I

is bounded and continuous. Moreover, the piecewise continuity and
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boundedness of B(t), Q(t) and R(t) follows from the assumption of the

original LQ regulator problem. To guarantee the existence of an

exponentially stable steady state control 
1.
law, we also require the

uniform complete reconstructability of (Q2 (t), A(t) + a I). The uniform

complete controllability of (A(t) +-a I, B(t)) follows from that of

(A(t), B(t)) by observing the equivalence of the following four state-

ments.1

(i) (A(t), B(t)) is uniformly completely controllable

(ii) There exists some positive numbers a,Y o , Y1 , ao, S1 such

that
to+Q

(a) Yo I < '	 ^(to + OT)B(T) BT (T) ^T ( to +Q,T) dT < Y1 I
to C

(2.37)

to+Q

(b) ¢o I < ^(toIto+v)	
It(

to +Q,T) B(T) 
AT (.r)

 ¢T ( o+C,T)JdT

	

fto	 L	 —

^T (to ,t0 + a) < $11	 for all to	(2.38)

(iii) There exist some positive real numbers Cr, Y
o , Y1' so , 11

such that

to+Q
	a(to+Q-T)	 T	 T

(a) Yo I <	 le 	— 0 ,T) B(T) B (T)	 (t+a. T)

to	
—

a( o^ T) 
IdT = e 

2aQ
e	 Y1 I	 for all to	(2.39)

1 Readers are referred to Chapter I of [Kw 11 for a detailed discussion

on uniform complete controllability and uniform complete observability
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^
(b) a-2aa 00 I < e-aa O(t0 ,to a)	

t° 
r¢(ta+ a,T)e a(t

o+ a-r)

ft	 `
0

a (t + a-•T
B(T) BT (T) OT (t°+ a,T) e °

	I dT

^T (t0 ,to a) e-W < S1 I	 for all t0	 (2.40)

(iv) (A(t) + a I,B(t))is uniformly completely controllable.

The equivalence between (iii) and(iv) follows from the observation
a(t-t )

that 0(t,t0) e	 ° is the state transition matrix of the system

described by (2.32).	 1

By duality, the uniform complete reconstructability of (Q2 (t), A(t))

also implies the uniform complete reconstructability of (Q^(t),A(t) + a I).

Thus, it follows from Theorem 3.6 of (Kw 11 that K a(t), the

solution of the Riccati Equation (2.27) with terminal condition

Ka t1 ) = K1 , converges to K a(t) as tl -► - for any L1 .1 0. Moreover,

K a(t) is also a solution of (2.27). The resulting steady state optimal

control law is given by

u(t) --1-1 (t) BT (t) K a(t) x(t)	 (2.41)

It follows from the uniform complete observability of
1

(Q2 (t), A( t) +, x I) that the closed-loop system

A(t) _ (A(t) + MI - B(t) R 1(t) BT (t)Ka(t))x(t)	 (2.42)

is exponentially stable. Applying the feedback law (2.41) to the original

system (2.22), we get

x(t) _ (A(t) - B(t) -R-l(r)  BT (t) Ka(t))x(t)

P

(2.43)

i
i
3
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Let ^ca(t,to) and Jc (t,to) be the state transition matrices of

systems (2.42) and (2.43) respectively. Since system (2.42) is exponen-

tially stable, there exists some positive constants X and Y such that

for all t > to , we have

-A(t-t )
{ I^^ (t. to) I ( < Y e	 o

a(t-t )
Since ^ (t,to) e	 ° _ ^ ca (t,to), this means that

(2.44)

110 (t, t0 ) I I= 1 J mca (t, t° ) I I 
e-a.(t-t°)	 (2.45)

<-* -X(t-t 0 )  a a(t-to)

which establishes the prescrii^ed degree of stability of system (2.43)

and this completes the proof.

Remark The proof of the above theorem is parallel to that given by

Anderson and Moore (An 11 for the time-invariant version of the theorem.

It is also possible to prove Theorem 2.3 without resorting to a trans-

formed LQ regulator problem. Consider the Riccati equation of the

minimization problem defined in the statement of the theorem

K(t) _ -IK(t) A(t) - AT (t) K(t) + e tat K(t) 9(t) 1(t) -1 B(t) T K(t)

Q(t) 
2at

e
	

(2.46)

Let us postulate a solution of the form

K(t) _ K W eft	 (2.47)

where 2 (t) is some positive definite matrix function. Substitutiag
—a

(2.47) into (2.46), we obtain

i

J
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-I (t) = K a(t) (A(t) + M .1) + (A(t) +a 1) T Ka (t) + q(t)

K	 B(t) R 1 (=) BTa(t)	 (t) Ka(t)	 (2.48)

which is the same Riccati equation as (2.27) obtained from the trans-

formed LQ problem.

at t  for equations

(t 
0

' t where i (t)

t  approaches 00 , w,

Ka(tl) = Kl	> 0.

If we further assume that the boundary conditions

tat
(2.48) and (2.27) match, then K(t) = K a(t) a	 for

is the positive.definition solution of (2.27). As

e have Ka(t) approaches K., (t) for any
2at

Hence K(t) approaches Ka(t) a	 for

K (tl) Kl 
e2atl > 0. It follows that the feedback control law is

given by

u(t) _ -(R(t) 
e2at) -1 BT(t) Ka (t) e

2at 
x(t)

_ -R 1 (t) BT (t) Ka(t) x(t)	 (2.49)

which agrees with that given in Theorem 41 .3 and this establishes our

claim.

An alternate way to verify the degree of stability for the closed-

loop system

(t) _ (A(t) - B(t) R
%J
	 BT (t)(t)) x(t)	 (2.50)

is to use the result of Theorem 2.2. The following theorem identifies

the Lyapunov function required for such purpose.

Theorem 2.4	 V(x(t),t) = xT (t) Ka(t) x(t) is a Lyapunov function

for the closed-loop system (2.50) with the property that

V(x(t) , t) < -2a V(x(t) , 0 .
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Proof: To show that V(x(t),t) is a Lyapunov function, we have to

establish the following:

(i) V(x(t),t) is once differentiable with respect to time

(ii) There exists some positive constants 7r l , n 2 and S such that

1r l lxl 2 < V(x,t)< 'T2 Ixi2
	

(2.51)

and

I
aV(^,t)

a t	 , 	 Six i 2 ,	 for all t > to	 (2.52)

V(x(t),t) < 0	 along the trajectory of

(A(t) - B(t) R 1 (t) BT (t) -% (t)) x(t)

for all t > to 	(2.53)

For any given x e Rn, at (A, t) = xT 16 (t) x. Since x
(t) is the

steady state solution of the Riccati equation (2.27), it follows that

V(x,t) is once differentiable with respect to t. By Theorem 3.4 of

(Kw 1], we have

t	 _
V(x,t) = lim xT	 1[^T(T,t) Iq(T) + ^(T) B(T) 

R(T) 
BT (T) Kam (-rt*M

to t) dT x	 (2.54)

where,

F 
ta(T,t) _ (A(T) + ^ - B(T) R 1 (T) IT (T) _K,(T))t,(T,t) 	 (2.55)

Since x(t) _ (A(t) + nI - B(t) R 1!t) IT (t)r.,(t)) A(t) is exponen-

tially stable by problem definition, and

Ig(t) + ICa (t) B(t) R 1 (t) BT (t) rr	 ] is a bounded positive definite

i
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matrix function by the properties of the time -varying Riccati equations,

it then follows from Theorem 6 in section 3.1 of JRr lJ that there exists

constants it  and ir 2 such that for all t and x E Rn,

0 < ir1 1x12 < V(g,t) < a2 jai 

To show the boundedness ofla (x,t)

(2.56)

, take the norm on both sides

of the Riccati equation (2.21) and obtain

Il i 4011 < 2(a+ IIA(t)(1) I IK i 1 t)i I +I Izol I

+ IIK (t)11 2 I I B(t) 112amin (R(t)) for all t > to (2.57)

Since all the matrices on the right hand side of the above inequality

are bounded from above and since R(t) is also bounded from below as

assumed in Theorem 2.3, it follows that there exists a constant a such

that

I v (X ' 0 1  < I li (t) I I 111 2 4 a 1112	 (2.58)

To compute the derivative V(x(t),t) along the trajectory of

x(t) - LW + al - B(t) R 1 (t) IT (t) Ka (t)) x(t), observe that

y((t) ' t) . xT ( t) [16( t) A(t) - &(t) B(t) A 1 ( t) BT (t) F

+ AT (t) (t) - (t) B(t) R 1 (t) IT ( t) „KC(t)

+ X Ac)] x(t)	 (2.59)

xT (t) I-2 K	 — q( t) - !xO (t) B(t). R 1 (t) BT ( t) ^ (t) l x_(t) (2.60)

- 20L VLx(t),t) < 0	 (2.62)



-26-

In going from (2.59) to (2.60), we used the Riccati equation (2.21).

The inequality (2.61) is obtained by observing that the matrix function

(Q(t) + k(t) B(t) R 1 (t) BT (t) K(;:)) is positive semi-definite for

all t > to . Inequality (2.62) follows from the positive definiteness

of V(x,t) and the assumption that a is positive. Hence V(x,t) is a

Lyapunov function for i(t) - (A(t) - B(t) R 1 (t) BT (t) k(t))x(t)

with the property V(x(t),t) < -2a V(x(t),t) and this completes the proof.

Remark	 By Theorem 2.2, the condition V(x(t),t)< - 2 aV(x(t),t) implies

that the system x(t) O (A(t) -B(t) R 1 (t) IT (t)% (t))x(t) has a degree of

stability a. This agrees with the result given in the proof of

Theorem 2.3.

Remark	 The result of this theorem is not new. The LTI version of

Theorem 2.4 was used by Anderson and Moore (An 11 to establish the

asymptotic stability of LQ regulators. Safonov has employed the same

type of Lyapunov function 0 induce conic sectors that were used to

analyze the stability robustntos of LQ regulators.

If the matrices A(t), B(t), C&(t) and R(t) in Tl--zarea 2.3 are time-

invariant, then the resulting state feedback control law is also time-

invariant. Observe that the cost functional is still time- a ►arying because

it includes the factor e ft . That the feedback law should be constant

in this case is not at all obvious. The proof of this fact simply

follows from that of Theorem 2.3. Applying the transformation (2.25)

and (2.30) to the cost functional
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t 	 2a(t-t )
1 = lim	 e	 ° [ xT (t) Q x(t) + U

T (t) R u(t), dt	 (2.63)
t  mooft

o 	 — 	—
a.3 the dynamic constraint

k(t) = A x(t) + B u(t)	 (2.64)

we get

A t

1	 1 -x	
1 [x- (t) 

T 4 x(t) + uT (t) R u(t)] dt	 (2.65)

and

x(t) _ (A + al) x(t) + B u(t) 	 (2.66)

respectively.

Since the transformed minimization problem is time-invariant, the

resulting feedback law for this problem is of the form

u(t) _

	

-R__l BT Ka s(t)	 (2.67)

where K. is the unique positive definite solution to the algebraic

Riccati equation

Ka (A+aI)+(A+aI) T Ka - _KM BR1 B
T K

a +s=0	 (2.68)

The controllability of (A + aI, K), which is implied by that of

(A,B), ensures the existence of K a . The stability of the control law

(2.67) follows from the observability of (Q 1/2 , A + MI) which is implied

by that of (Q1/2 ,A). Reversing the transformation (2.29) and (2.30)

we obtain the optimal control law for the original problem

-a(t—t0 )	 l T	 a(t—t0)
u(t) _ -e	 R B Ka a	 x(t)

= -i7
1 

BT Ka x(t)	 (2.69)
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which is time-invariant. That the closed-loop system

x(t) _ (A - B R 1 BT Kam ) x(t) has a degree of stability a follows from

the stability of x(t) _ (A + aI - B R 1 BT Ka) x(t). In terms of the

closed-loop eigenvalues, we have

Re(A i (A+aI-BRI BT KKa)) <0

which in turn implies that

Re (Ai (A - B R l BT Ka) ) < - a
	

(2.70)

and this establishes the degree of stability of the feedback lair (2.67).

We summarize the results of the above discussion in the following

theorem

Theorem 2.5	 Consider the LQ regulator problem

min J = lim	 t  [x T(t) g(t) x(t) + uT (t) R(t) L(t), dt (2.71)
U(t)	 tl^	

—	 —	 —

t?to	to

subject to the dynamic constraint

S(t) = A x(t) + B u(t)	 (2.72)

where (A, B) is controllable.

The weighting matrices are chosen as

4(t) = 4 e2at and R(t) - R 
e2at	 (2.73)

where 4 > 0 and R > 0.

Furthermore, supposed that (Q1/2 , A) is observable. Then the

optimal control law for the given LQ regulator problem is given by
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u	 R7 1 BT K-xx (t)	 (2.74)

where Ka is the unique positive definite solution of the algebraic

Riccati equation

Ka (A + aI) + (A+ aI)T 
-yr'a +4 - -a B R 1 BT !

fiM	
0	 (2.75)

Moreover, the closed-loop system

x(t) _ (A - B R7 1 BT Kam) x(t)
	

(2.76)

has a degree of stability at least a.

In view of the tine-invariant control law that results from the

minimization problem considered in Theorem 2.5, one might suspect the

possibility of constructing a cost functional with time-invariant matrices

_Q 	 R such that the control law obtained from minimizing the cost

functional is the same as that derived in the preceding theorem with

Q e2at and R eft . Pairs of weighting matrices Q, R with the above

mentioned properties do indeed exist. The following corollary to

Theorem 2.5 shows how such matrices may be chosen.

Corollary 2.5 If Q(t) and R(t) in Theorem 2.5 are chosen to be

Q(t) = Q + 2a U	 (2.77)

and
R(t) = R	 (2.78)

respectively, where K.a is the unique positive definite solution of the

algebraic Riccati equation (2.75), then the resulting optimal feedback

law is given by

u(t) _ -R-1 BT K.a x(t)	 (2.79)
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and the closed-loop system x(t) _ (A - B $ 1 BT Kam ) x(t) has a

degree of stability at least a .

Proof: Note that (A, B) is controllable by assumption and that

((4 + 2a K) 1/2,A) is observable as a result of Ka > 0.

It follows that the algebraic Riccati equation

KA+AT K+(q+2aKa) -RBR I BT K - 0	 (2.80)

associated with the given minimization problem has a unique positive

definite solution. Comparing (2.68) with (2.80), it is clear that Kam,

which is the solution of (2.68) is al.s^ a solution of (2.80). This completes

the proof.

Remark	 While constant matrices 4 and R can be chosen such that the

associated regulator problem leads to a closed -loop system with degree

of stability a, it does not seem possible for us to obtain such

matrices without first solving a LQ regulator problem with weighting

matrices of the form Q eft and R eft.

Remark	 It is clear from the preceding corollary that RPDS for LTI

systems is just a particular class of LQ regulator with a very special

choice of weighting matrices. This is an important observation for

it implies that all the feedback properties of LQ regulators are shared

by RPDS.

2.4	 Kalman-Buoy Filter with a Prescribed Degree of Stability (FPDS)

In this section, we *_urn to the problem of designing a Kalman-Bucy

filter with a prescribed degree of stability. By stability of a filter,

we refer to the stability of the estimation error dynamics. Mathemati-
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tally, this is a problem dual to the RPDS problem considered in the

last section. To make clear the connection between the regulator problem

and the filter problem, we consider a linear system of the following

type

x(t) = A(t) x(t) +	 (t)
	

(2.81)

Y 	 = c(t) x(t) + e (t)
	

(2.82)

where ^ (t) and e(t) are uncorrelated zero mean white noises with

spectral intensity -- (t) and 0(t) respectively. We wish to obtain a

linear estimate of x(t) given-Y(T), — < T < t, such that the mean square

estimation error is minimized. Under the assumption that ,

(i) A(t) is continuous and bounded, C (t) , ---(t)  and e(t) are

piecewise continuous and bounded for all t 	 (2.83)

(ii) _(t) ? S 1 I and 0 ( t) > S 2 I for all t where $1 and S2

are some positive real constants	 (2.84)

(iii) ( C(t),A(t)) is uniformly completely reconstructable and

(A(t), ? 1/2 (t)) is uniformly completely controllable 	 (2.85)

it is well known (see Chapter 4 of [Kw 11) that the optimal linear state

estimate x(t) is pecified by

x(t) = A(t) x(t)	 (0 -1 E (t) C (t) 0 (t) -1 (Y_(t) - C(t) x(t))

(2.86)

where E(t) is the steady state solution of the R.iccati equation.

E tt) = A(t) E (t) + E WA W + ^(t) - E (t) C T (t) 3 1 (t) c (t) L (t)

(2.81)
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as to approaches - m for any initial condition Z  > 0. Moreover, the
state estimate error dynamics specified by

e(t) - (A(t) - H(t) C (t)) e(t)
	

(2.88)

where e(t) - x(t) - x(t) is the state estimation error and where

H(t) - T'(t) C T (t) 0(t) -1 , the filter gain, is asymptotically stable.

Given an initial estimation error, the rate of decay of e(t) is

determined by that of	 O F 
(t't 0 ) 

 where

$F (t,to) - (A(t) - H(t) C(t)) !F (t,to )	 (2.89)

The decay rate of114(t,t o )J1 is in turn dependent on the ncise intensity

matrices =(t) and 0(t).

In some applications, one may require a state estimate error dynamics

that is faster than the one specified by the noise characteristics

given by the physical systems. This can be accomplished by making

appropriate adjustment of =(t) and 0(t) in the filter design equation

(2.87) so that for a given positive constant a, there exists some positive

y such that 110 (t,to)JI < Y e	 °	 for all t > to . We call aL-F

filter with such property a KBF with degree of stability a . In view

of the dual relationship between the KBF and the LQ regulator problem,

the technique for designing RPDS discussed in the previous section is

readily applicable to the design of FPDS. This is illustrated by the

following theorem.

Since the duality between the LQ regulator problem and the KBF

problem is well known, we will omit all the dual proofs in this section,

and simply formulate the dual problems and state the corresponding

r
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results. Special emphasis will, however, be given to result inter-

pretations that are unique to estimation problems.

Theorem 2.6	 Consider the linear dynamical system described by the

equation pair (2.81) and (2.82). Suppose that ^ ( t) and 0(t) are zero

mean, uncorrelated white noises of spectral intensity ? (t) a 2at and

A(t) a Zat respectively, and that a is some positive constant. The

matrices '^( t) and 0(t) are assumed to be bounded and piecewise continuous

with _(t) > a l I and 0(t) > a 2 I for all t where ^s l and a 2 are positive

constants. Furthermore, suppose that (C(t), A(t)) is uniformly completely

reconstructable and that (A(t), I1/2 (t)) is uniformly completely control-

able. Then the KBF gain Ha (t) obtained from solving the linear least

square estimate of x(t) given y(T), - < T< t,is

	

„Ba (t) _ Ea (t) CT(t) 0-1(t)	 (2.90)

where Z (t)is the steady state solution of the Riccati equation

Ea (t) _	 (t) (A(t) + aI) T + (A(t) + a I) E-a (t) + _(t)

- Ea (t) E.	 0 1 (t) ^(t) Ea (t)	 (2.91)

as to approaches - for any Ea (to ) > 0.

Moreover, the state estimate error dynamics has a degree of

stability of at least a .

As we specialize the results of Theorem 2.6 to the time-invariant

case by setting A(t),B( t),=( t) and 0(t) equal to some constant matrices

0 that satisfy the required controllability, observability and

positive definiteness conditions, the KBF gain obtained above is also
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time-invariant. A precise statement of the results is stated in the

following theorem which is the exact dual of Theorem 2.5.

Theorem 2.7	 Consider the linear dynamical system

1(t) - A x(t) + ^ (t)
	

(2.92)

Y_(t) - C a(t) + 0(t)
	

(2.93)

Suppose that 0(t) and ^(t) are zero mean white noise with spectral

intensity matrices Oe 2at and _e 2at respectively and a being some

positive constant. The matrices 0 and ? are assume to satisfy

0 > 0 and = > 0	 (2.94)

and(A,w1/2) is controllable. Furthermore, suppose that (C, A) is

observable. Then the KBF gain ,H^ obtained from solving the linear

least square estimate of x(t) given y (T) — < T < t is given by

H-a - Ea c  0-1	 (2.95)

where Ea is the unique positive definite solution of the algebraic

Riccati equation

	

(A + aI) E-^x + E
a (A + ai) T + _ Ea C T 0-1 C Ea = 0	 (2.96)

Moreover, the estimation error dynamics described by

e(t) - (A - H-a c) e(t)
	

(2.97)

has a degree of stability a .

Remark Observe that both noises specified in Theorem 2.7 have spectral

intensity matrices that decay exponentially with time. The resulting
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FPDS will therefore give more emphasis to the recent data in view of its

greater accuracy. This has the desirable effect of enhancing the filter's

tolerance of modelling errors. In the classical Weighted least Square

approach to estimation, the same effect of giving more emphasis to recent

data is achieved by penalizing the recent estimation errors more than

the old ones [Sc 1).

We now state the dual of Corollary 2.5.

Corollary 2.7	 If 3(t) and 0(t) in Theorem 2.7 are chosen to be

+ 2a Ea and 6(t) - 0	 (2.98)

respectively, where Ea is the unique positive definite solution of the

algebraic Riccati equation (2.96) then the resulting KBF gain is given

by

-Ra _ Ea 
C T 0-1	 (2.99)

and the error dynamics of the filter

e(t) _ (A -H C) e(t)	 (2.100)

has a degree of stability at least a.

Remark	 It is clear from Corollary 2.7 that one needs to introduce

a very special choice of process noise in order to design a KBF with a

prescribed degree of stability. One common approach tc speed up the

filter error dynamics is to use an observation noise with spectral

intensity matrix of the form p0(p > 0). The value of p is then

decreased toward zero until a satisfactory design is obtained. Intuiti-

vely, decreasing the value of p will improve the speed of the state
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reconstruction since less attention is now paid to the filtering of

observation noise. However, this procedure does not always lead to

improvement of error dynamics. Consider the case where Z(t) is of the

form ;(t) = F;(t) with F having the same dimension as CT and w

being a zero mean white noise. Let the spectral intensity of i(t) be

where = is positive definite. The spectral intensity of 4(t) is then

given by = = F _ FT . Then, as p approaches O,the P filter poles will

approach the p values v i where

vi	if Re(vi) 	 0	 (2.101)

vi =

-Re(vi) + i Im(v i)	 if Re(vi
) > 0, i • 1,%,....P

and vi 's are the values of a (complex) that give rise to rank deficiency

of the matrix

s I - A	
1/2

C	 0

It is possible that some of the v i 's may be located very close to

jw-axis. The filter poles driven toward such v i 's as P approaches 0

will result in poor error decay for certain initial values of the filter

error.

There are however situations where a filter designed with the

latter procedure is preferable to one designed using the method suggested

in Theorem 2.3. If the observation noise intensity 0 9 is small compared

with the process noise intensity _ , and if 	
_1/2) 

constitutes a

minimum phase system, it can be shown that

s
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lim E I (t) - x(t) T (Q(t) - x(t)) } 0 	 (2.102)
pi0

In this limiting case, the structure of the system to be observed is

so exploited that the estimate error e(t) cannot be driven into the

subspace spanned by the eigenvectors of those filter poles that are

located in the neighborhood of the jw-axis. Employing a FPDS with an

arbitrarily large degree of stability in such situations may in fact

give rise to a large error covariance.

2.5 Concluding Remarks

We have studied in this chapter the extension of the RPDS method

to the linear time-varying systems. Given an appropriate definition of

'degree of stability' for such systems, the exponential weighting

technique developed by Anderson and Moore for solving the time-invariant

RPDS problem is readily applicable to the time-varying case.

We also obtain a characterization of the degree of stability in

terms of Lyapunov function. This is a natural generalization of the

known results in Laypunov stability theory and is useful for establishing

the degree of stability of feedback laws which are designed using RPDS

technique .

The formulation and solution of the time-varying FPDS problem

follows dually from that of RPDS. For the time-invariant case, the

FPDS solution admits interpretation of interest to design of fast

response filters. It is not possible in general to speed up the filter

dynamics by simply scaling up the process noise. The solutions to the

FPDS problem specify a class of spectral intensity of the process noise

that is useful for such purpose.
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CHAPTER III

SIGENSTRUCTURE PROPERTIES OF THE TIME-INVARIANT

REGULATORS WITH A PRESCRIBED DEGREE OF STABILITY

3.1 Introduction

This chapter explores several important eigenstructure properties

of time-invariant RPDS and their potential applications.

Some equations are obtained for the derivatives of the RPDS closed-

loop eigenvalues with respect to the stability factor a: These equations

are useful for the purpose of recomputing the closed-loop eigenvalues

given a small change of a.

Equations that describe the asymptotic behavior of RPDS root-loci

are also derived. Specifically, we consider a cost functional of the

form

tl
J- lim	 e2at(xT(t) 4 x(t) + 11 (t) p R u(t)]dt; p> 0t i°' fo1

and examine the various branches of the loci traced by the closed-loop

eigenvalues as p varies.

To close this chapter, we employ the asymptotic property of R?DS

poles as p approaches infinity to obtain a novel solution of the

Regulator with Prescribed Damping Ratio (RPDR) problem.

3.2 Properties of the Solution of the MS Algebraic Riccati Equation

In this sectloo, we state two lemmas that will be used extensively
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in the remainder of this chapter and in the next one. Both lemmas address

the behavior of the matrix Ka , which is the unique positive definite

solution of the RPDS algebraic Riccati equation (2.68) in Theorem 2.5,

with respect to the increment of the stability factor a.

Lemma 3.1 Let K and K	 be the unique positive definite solutions
-a1	 -'M2

of the algebraic Riccati equations

KQl (A + a 1 I) + (A + alI )T K + 4 - Kal B R 1 BT K 	 0	 (3.2)

K (A + CL i) + (A + a2I) T Ka
 +

.Q - Ka2 BR-1  BT K = 0	 (3.3)

respectively.

The following conditions

(i) Q? 0 and R > 0
	

(3.4)

(ii) (A, B) controllable
	

(3.5)

(iii) (1/2 , A) observable
	

(3.6)

that are sufficient to guarantee the existence of K a and Ka are assumed
1	 2

to be satisfied. Then one has Ka > .a if al > ot2.
1	 2

Proof: Let 4K - K - Ka2. We need to show that AK is positive definite

if a 1 > a 2 . Substitute K
01 

= K a2 +A K into (3.2) to obtain— —

( Ka2 +^ K) (A + al I) +(A + al. ) T (Ka2 +nK) + Q

(Ka2 +4 E) B 1 1 1 (K
a2 

+ ^JC^ = 0	 (3.7)
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Rearranging the terms in (3.7), we obtain

4K(A - .11  11 
a 2 + (a

l - a2) j) + (A - I I I Ka 2 + (al - a2) I) T AK

•. AK B R7 1 BT GK + 2(a
1
 - a2 )Ka - 0

2
(3.8)

Observe that (3.8) is an algebraic Riccati equation in AK. To find

out if there exists a unique positive definite solution AK for (3.8), we

need to check the controllability of (A + (al - a2)I - B R7 1 BT 
-Ka 

,B)
2

	

and the observability of ((2(a
1
 - a2)K 

0'

	 A - B R-1 BT a + (a
l 	

- a2)I)

	

z	 2

The controllability of (A - B R7 1 BT -at + (al - a2 )t, 1) is implied

by the controllability of (A + (al - a2)I, B), since controllability is not

affected under state feedback. The controllability of the latter in turn

follows from that of (A, B) as shown in the proof of Theorem 2.3. Since

the controllability of (A, B) is assumed in the original problem state-

T
meat, this proves the controllability of (A + (al - a2

 )I- B R71 B KK ,B).
2

The observability of ((2(al - a2A 1 1/2 . A - B 
R71  

BT !Sa + (al - a2 )I)

2	 2

follows from the positive definiteness of K 	 .
-a2

In order to prove the positive definiteness of &K, we need to

demonstrate the stability of the matrix (see Theorem 3.7 (Kw 11)

-A 	 A- B R 1 BT K + (a
1
 -a2)I - B R 1 BTpK 	 (3.9)

'M2
ti

By definition of pK, we can rewrite A as

	

A - A - B R 1 BT KK+ (al - a2)I	 (3.10)
I
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Since A - B R7 1 BT KK + (% I is stable by definition and a2 > 0, the

stability of A follows immediately and this completes the proof.

Remark:	 Lemma 3.1 establishes the fact that Kis an increasing

function of a . We shall make extensive use of this result in our study

of the RRDS robustness properties in Chapter 4.

Lemma 3.2 Let Kit be the unique positive definite solution of the

algebraic Riccati equation

KK (A + aI) + (A + aI) T K^ - -Ka R-1B 	 BT K + 4 = 0	 (3.11)

The following conditions

(i) Q> 0 and R> 0	 (3.12)	 s

(ii) (A, B) controllable	 (3.13)

(iii)
Qq , A) observable	 (3.14)

that are sufficient to guarantee the existence of % are assumed to be
31

satisfied. Then the derivative matrix 	 a is positive definite for all
8a

values of a.

Proof: Differentiating the left side of (3.11) with respect to a, we

obtain

8K	 8K

d a 
a 

(A + aI) + (A + a I) T M +2K

- at (B R I BT K.) - ( -a B R 1 BT) aa— +g	 0	 (3.15)

s"

After rearranging terms, we obtain the following Lyapunov equation

lak r
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aK
aL + a I - B ^ + (A + a I - B Ga) T 8a + (Q + 2 Ka) 0

(3.16)

where G.a	 R71 BT Ka is the state feedback gain.

3K
To show the existence of a positive definite solution 

8a 
to (3.16),

we need to check the stability of (A + a I - B G 
a ) 

(i.e. that all eigenvalues
— —

of (A + a I - B G a ) have negative real part) and the positive definiteness

of (Q + 2 Ka) .

The stability of (A + a I - B G) is a direct consequence of conditions
—	 — —a

(i), (ii) and (iii) (see Theorem 3.7 [Kw 1J). The positive definiteness

of (Q + 2 Ka) simply follows from that of Ka. Since we have thus far made
3K

no reference to the sign of a, the matrix derivative 8a is therefore

positive definite for all values of a and this completes the proof.

3.3 Eigenvalue Sensitivity with Respect to the Stability Factor a.
P ai

In this section, we present two methods for finding 	 the

derivative of the RPDS poles with respect to the stability factor.

Lemma 3.3 For any value of a and for any distinct eigenvalue 
k  

of

A-BR 1 BT K a ,we have

8R
2 a	 - ►̂i B R 1 BT a -:3L xi	 (3.17)

a
as	 H

V , i

where xi and y,i	 are the right and left eigenvectors of A - B R7 1 BT K a

which are defined in the usual way by

f

i	 1

L-_
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(A - B R 1 BT K 	 0	 (3.18)

and	
y,H 

(A - B R71  BT KK - a iI) = 4	 (3.19)

respectively.

Proof: First, we differentiate (3.18) with respect to a to obtain

3x

da (A- B R71  BT Ka - X,. )Ai + (A- B R71  BT Ka - XiI) a ai = 0

(3.20)

Multiplying both sides of the above equation by the left eigenvector

yiM cancels the second term on the left hand side and one gets

y^g 
as 

(A - B R 1 BT Ka - aiI)	 0	 (3.21)

By rearranging the terms, we obtain

1'ig as (A - B R 1 BT Ka)
(3.22)

3 p 	 H
A

y iR(-B R71  BT 
a 
MK )
	

(3.23)

_ H
yi Xi	 ,

aK
The existence of ^ for an arbitrary real constant a follows from

Lemma 3.2, and this completes the proof.

aXi
Remark: Lemma 3.3 is adapted from the standard result for finding

Op

where Ja i is a closed-loop eigenvalue of the system matrix (A - P B K
aK

(see [Th 11 Chapter 3). The derivative ^ can be computed from a

a..
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871 i
Lyapunov equation of the form (3.16). An alternate way to compute 80t

is via the Hamiltonian system matrix we define now.

Definition 3.1 Consider a LQ regulator problem with cost functional

J	 [a(t)T _q 	 + uT (t) R u(t)Idt	 (3.24)

0

and dynamic constraint

i(t) = A x (t) + B u(t)	 (3.25)

Suppose that all the conditions required to guarantee the existence

of a stable state feedback law minimizing J are satisfied, then the

Hamiltonian system associated with the LQ regulator problem is given by

'z(t) = Z z(t)	 (3.26)

where

Z	 A	 - B R71 BT	
(3.27)

z(t)	 x(t)	 (3.28)

(t)

The matrix Z is of interest because its eigenstructure describes

the solution of the LQ regulator problem defined by (3.24) and (3.25)

(see Chapter 3 of [Kw 1]). The eigenvalues of Z are symmetric about the

jW-axis. Moreover, the eigenvalues in the left-half complex plane are

exactly those closed-loop eigenvalues of the LQ regulator. If

[Si(t)T, 
^'(t)T]T is a right eivenvector corresponding to a left-half

plane eigenvalue of Z, then xi
 
(t) is also a closed-loop right eigenvector

1	 -	 — - . - ___	 -.	 r^	 — --1 — -	 ----- . _-1 -A
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of the LQ regulator and

I, (t) = K xi (t)	 (3.29)

where K is the positive definite solution of the algebraic Riccati

equation

KA+AT K - KBR I BT K+Q = 0	 (3.30)

In order to compute 
sa

aai 
for the RPDS problem solved in Theorem 2.5, we

consider the following Hamiltonian system

i (t) = z  z(t)
	

(3.31)

where

Z 
	 A+ a I	 - B R71 BT	 (3 .32)

-Q	 - (A + aI)T

This system is obtained by considering the LQ regulator problem with

coat functional

J = lim	 [xT(t) Q x(t) + uT (t) R u(t)Idt	 (3.33)
tl to —
	 —	 —

and dynamic constraint

x(t) _ (A + a1) x(t) + B u(t)
	

(3.34)

It follows from the proof of Theorem 2.3, and the property of Hamiltonian

Systems, that the eigeavalues li 
of the matrix (a - al) positioned to

the left of c = -a are the closed loop eigenvalues of the RPDS obtained
ax i	 axi

in Theorem 2.3. We can therefore obtain a by computing —^ for

aai

Xi ai . To determine 8a , simply use the following lemma which follows

easily from the result of Lemma 3.3. The proof of which is omitted.

-A,--
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Lemma 3.4 For all values of a > 0 and any distinct eigenvalue a i

of Z a , we have

i	 -2 ViH tai

8a = w H x + V H	
(3.35)

Ai -Vi ii

where

	

z a + ail xi	 0	 (3.36)

and	
Oi

[X i I - Z a+ aI]	 0	 (3.37)

Remark	 If the right eigenvectors [31 Ci T]T and the left eigenvectors

[1,iH YiH]T of Z
a
 - aI, are available as is the case when solving the algebraic

Riccati equation using diagonalization method (see Chapter 3 of [Rw 1]), the

8ai
computational effort required to obtain ^- using (3.35) is negligible.

This is a definite advantage over the method introduced in Leamma 2.3

which involves solving a nth order Lyapunov equation.

3.4 Asymptotic Behavior of RPDS Root-Loci

In this section, we examine the behavior of RPDS root-loci as the

weight on the control vector goes to zero(or infinity). More precisely,

the following problem is considered.

Given a LQ regulator problem with cost functional
tl

J = lim	 e2at [x(t) T Q x(t) + uT (t) pR u(t)]dt;
tl^o 

0	
-	 -	 -

P > 0	 (3.38)

and dynamic constraint

x(t) = A x(t) + B u(t)	 (3.39)

ti

s
.I
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Our objective is to study the root-loci traced by the closed-loop

regulator poles as p varies. We first consider the case of a single-

input kPDS in section 3.4.1. Then we extend these results to the multiple-

input case in section 3.4.2.

3.4.1 The Single-Input Case

Assume a state weighting matrix of the form

4 = c C 	
(3.40)

where (cT , A) is observable. If a = 0, this reduces to a conventional

optimal root-locus problem. Either the root-square locus method of

Chang [Chg 1] or the root-locus method of Kwakernaak and Sivan [Kw 1] may

be used for this purpose.

In order to adapt these techniques to cases where a > 0, we will

used the transformed LQ problem employee, in the proof of Theorem 2.3.

The cost functional and the dynamic constraints are given by

ti
J = lim	 [x(t) ,Q x(t) + u(t) 1 ,a (t)]dt	 (3.41)

t -rte	 —	 —  

and	 1 fo
x(t) _ (A + aI) x(t) + B u(t)	 (3.42)

respectively, where x(t) = eat x(t) and u(t) = eat u(t). This transformed

problem is in a form where conventional optimal root-loci techniques

are applicable. Moreover, recall from our discussion of Theorem 2.4

that the closed-loop regulator poles of the original problem can be

easily obtained by subtracting a from those of the transformed problem.

We can therefore plot the optimal root-loci of RPDS as a functional of

p in two steps.
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Step 1: Plot the optimal root-locus of the transformed LQ regulator

problem using conventional techniques.

Step 2: Shift the entire root loci to the left by -a .

The following theorem summarizes the asymptotic properties of RPDS

root-loci in the single-input case.

Theorem 3.1 Consider the LQ regulator problem with cost functional (3.41)

and dynamic constraint (3.42) where u(t) is a scalar. Suppose that

(A, b) is controllable and that 4 has the form 4 = c cT where (.s , A)

is observable. Let the transfer function cT (sI - A) -1 b be

P
c_T ( s I - A)

-1
 b = k it (S - v i)	 k # 0	 (3.43)

i-1
n
A (s - 'ri)

i-1

where v  and ais are the zeroes and poles of the transfer function

cT (s I - A) -1 b respectively.

Then the following properties homed

(a) If p approaches 0, p of the n closed-loop poles of the RPDS

asymptotically approach the number v i , i = 1,2.....p where

v i	if Re(vi) < -a	 (3.45)

Vi =

-vi -2a if Re(v i) > -a

(b) As p approaches O,the remaining n-p optimal closed-loop poles

asymptotically approach straight lines which intersect at

(-a, 0) and make angles with the negative real axis of magnitude
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± fn 
-r	

R = 0,1,2,... 
n	

if n p is odd

1

+ (kn-p2
	

R = 0,1,2.... ^ - 1 if n-p is even

(3.46)

These faraway closed-loop poles of RPDS are asymptotically at a distance

1
2 

2(a-p) from (-a, 0). Moreover, k is independent of a .wo = C
p /

(c) As p approaches 00 , then n closed-loop poles approach the

numbers	 'rri, i = 1,2,3,... n where

Iri 	if Re Ord !-a	 (3.47)

ITi '

-ri - 2 a	 if R.eOri) > - M

Proof: When a- 0, Theorem 3.1 reduces co Theorem 3.11 of [Kw 1]. The

cases where a >0 trivially follow from the construction procedure of

the RPDS root-loci described above.

The following example gives several root-loci plots obtained using

the previous construction procedure.

Example 3.1 Consider the RPDS problem with cost functional given by

J = lim	 t e2at

P
( t) 	 [2 1] x(t)l	

J

+ p u2 (t) dt
tfo
w0

	

[12]

	 J
(3.48)

subject to the dynamic constraint

1
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x(t)	 0	 1 x 	 + 0 u(t)	 (3.49)

	

-3	 -4	 1

The transfer function cT (sI -	 -1 b is given by (a+3) +2
	 The loci

of the closed-loop poles corresponding to RPDS design with values of a

equal to 0,1,2.5 and 3.0 are plotted in Fig. 3.1 a,b,c and d respectively.

As expected, the RPDS root-loci lie to the left of the Q - -a line

in all 4 cases. When the value of a is less than 2.0, one of the closed-

loop pole is drawn to -2.0 with the remaining pole going off to infinity

along the negative real axis. (Thus forming a first order Butterworth

pattern). In cases where a is larger than 2.0, the finite poles approach

-2.Om + 2.0 asymptotically. (Property (a) of Theorem 3.1).

It is interesting to note that -2.Om + 2.0 equals 3.0 when x - 2.5-AS

a result, the open-loop pole located at -3.0 remains fixed as p varies (Fig.3.1c)

Property (a) of Theorem 3.1 has important design implications.

Let us consider a LQ state feedback design configuration of the form

depicted in Fig. 3.2 where the output matrix c  in the figure is identical

to the square root of the state weighting matrix Q in (3.48). If a - 0.0

and if CT (a I - A)
-1
 b is minimum phase, th%n by Theorem 3.1 the p

finite closed-loop poles will asymptotically approach the p minimum phase

zeroes of cT (a I - A) -1 b as p approaches 0. These finite modes are

therefore hidden from the output y(t). The remaining n-p visible modes

form a Butterworth pattern which is known to give step response of small

overshoot. In cases where a > 0, the root-loci are constrained to lie

to the left of a - -a . By property (a) of Theorem 3.1, the p finite modes

will be hidden from the output only if the p minimum phase zeroes of

1
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FIG. 3.1 Root-Loci of a Single-Input RPDS with

Different Values of a
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t  (a I - A) -1 b are located to the lef t of Or - -a .

In light of the above observation, one needs to exercise caution

in using RPDS for state feedback design. If the finite optimal poles

can be made 'reasonably' unobservable at an acceptable bandwidth, then

the use of RPDS may not be desirable since it may introduce some slow

modes in the observed output which would otherwise be absent. However,

there may be situations where excessive bandwidth is required before some

of the finite modes are made unobservable in the output. It is advantageous

in such cases to consider the use of RPDS so that the finite modes that

appear in the output are guaranteed to decay at a certain rate.

The following example demonstrates the relationship between the

stability factor a and the observed output y(t) as the weight on the

control becomes vanishingly small.

Example 3.2 Consider a RPDS state feedback arrangement of the form

shown in Fig. 3.2. The underlying system dynamics is specified by the

differential equation (3.49) and the state variables x(t) are related

by the observed output y(t) by y(t) - (2,1] x(t). The RPDS state feedback

gain G a is obtained by solving the RPDS problem described in Example 3.1

with a chosen to be 1.0 and 3.0 and the scaling factor p in (3.48) set

to 10000.

An initial state perturbation equal to (10.101 T is applied. The

resulting time simulation for the observed output y(t) and the control

u(t) are plotted for the closed-loop RPDS systems with a - 1.0 (Fig.3.3(a))

and a - 3.0 (Fig. 3.30)).

Despite the presence of a slow mode near -2 (Recall from Example 3.1



-53-

FIG. 3.2 aPBS State Feedback Configuration
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FIG. 3.3 (a) Time Response of a RPDS where the Slow Mode

is Cancelled by the System Zero
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FIG. 3.3 (b) Time Response of a RPDS where the Slow Mode

is not Cancelled by the System Zero

..r
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and Fig. 3.1), the RPDS design with a- 1.0 is noted to decay rapidly.

This is a result of the fact that the closed-loop eigenvalue near -2 is

hidden from the output y(t) as a result of pole-zero cancellation. However,

the same type of cancellation does not occur for the design with a equal

to 3.0. In this case, all the closed-loop poles are constrained to lie

to the left of a - -3.0 line, thus preventing them from being hidden by

the system zero at -2.0. This is evident from the slower decay observed

in this case.

The presence of the slow mode is also responsible for the relatively

long settling time of the feedback signal u(t) observed in both Figs.3.3(a)

and (b).

3.4.2 The Multiple-Input Case

The procedure described for constructing the RPDS root-loci in the

single-input case is equally applicable to the multiple-input case. The

asymptotic behavior of the modes that stay finite as A approaches 0 are

the same for both cases. However, the far-off closed-loop poles in the

multiple-input case generally do not form a single Butterworth pattern,

but group into several Butterworth configurations of different orders and

different asymptotic raii. The exact detail of su:h patterns is not

considered here. Interested readers may consult [St 11 and [Kw.2] for a

thorough treatment of this subject. The corresponding multiple-input RPDS

results are summarized in	 Theorem 3.2 and demonstrated in Example.3.3.

Theorem 3.2 Consider the LQ regulator problem with cost functional (3.38)

and dynamical constraint (3.39). Suppose that (A, B) is controllable and

"J.
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T where C has the same rank as B andthat 4 is of the form ,Q ^ C C	 _•

where (CT , A) is observable. Let H (s) be the transfer function matrix

H(s) - CT (S I - A) -1 B	 (3.50)

Suppose that O(s) - det(sI - A) 	 and write

P
det (^(s) ) - O 

(
ss^ - = k i-1 (s - v i )	 (3.51)

U

n (s - 7r

i-1

where k # 0 and where the n i 's are the poles of A. Then the following

facts hold.

(a) As p approaches 0, p of the optimal closed-loop poles approach

the values v i , i - 1,2,... p where

Vi
v =i -vi- 2a

if Re (v i) < -a

if Re(vi) > -a

(3.52)

The remaining closed-loop poles go to.infinity and group into

several Butterworth configurations of different orders and different

radii.

(b) As P approaches 00 , the n closed- .lc.^p RPDS poles approach the

numbers zt i , i - 1,2,...n where

y	 ni	 if Re(tt 1 < -a 	(3.53)
n
i	 -ni - 2a	 if Re(ni) > -a
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Proof : The results follow trivially from Theorem 3.12 of [Kw 11 and the

root-loci construction procedure described above. The detail of the proof is

omitted.

Example 3.3 Consider the following multiple-input RPDS problem

1
min J = lim	 e2at IsT C CT x(t) + uT (t) u(t)]dt	 (3.54)
u(t)	 t +W

1	 0

where

c =	 o

8

and subject to the dyi

-6

X(t)	 0

4

0

	

-5-	 2

-14 0

iamic consl

	

7	 1

	

1	 0

7 -6

	

-1	 0

-2 T	(3.55)

2

:Taint

	

13	 0 1

	

2	 x(t) + 1	 0	 u(t)	 (3.56)

	

8	 2 0

	

2	 -2 0

It can be readily shown that the system zeroes for [A, B, C T] are

located at -1.0 + j 1.0. The loci of the closed-loop poles corresponding

to RPDS designs with values of a equal to 0.0, 0.5 and 2.0 are plotted

in Figure 3.4 a,b,c respectively. In all three cases, the various branches

of the loci stay in the half plane to the left of the -a line. More-

over, two of the four branches asymptotically approach infinity along

the negative real axis, forming two first-order Butterworth patterns.

The asymptotic behavior of the two remaining branches depends on the

value of a. For a less than +1.0, these branches eventually arrive at
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FIG. 3.4 Root-Loci of a Multiple-Input RPDS with Different Values of a
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FIG. 3.4 Root-Loci of a Multiple-Input RPDS with Different

Values of a	 continuation from pg 59
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the system zeroes -1.0 + j 1.0. If a is larger than 1.0, these branches

approach instead -2a +1 ± j 1.0.

3.4 Regulators with Prescribed Damping Ratio

A class of LQ regulators are those with prescribed damping ratio

(RPDR). A LQ regulator is said to have a damping ratio cos 8 if it is

stable and each of its closed-loop poles a i + jW satisfies

	

	 tan 9
i

for some given e. Diagramatically (Bigure 1.2), all the closed-loop

poles are found in a cone centered at the origin of the complex plane with

edges extending along an angle of size 2e which is symmetric about the

negative real axis. For stability, the value of 8 has to lie between

0 and 2 . The procedure described in the following theorem solves the
RPDR problem as a special case of the RPDS problem.

Theorem 3.3 Consider the following LQ regulator problem

t

min J - lim	 1 e2'a' t [xT(t)	 4 x(t) + uT (t) pR u(t) Idt
U(t)	 tl 0fo	 _	 —

P > 0	 (3.57)

subject to the dynamic constraint

	

i(L) - A s(t) + B u(t)
	

(3.58)

Suppose that all the requirements on A, B, 4 and R that guarantee

the existence of a stable minimizing control law are satisfied and that

the scalar p is an arbitrary positive constant. The factor a is

selected in the following manner. For each open-loop pole a i + jwi of A,

4
	 we associate a positive scalar ai which is defined by

..
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Q	 if
Icil
^ < tan 8

_	 i
ai	

Iii 
-(tan e )-1 1 Wi

1 
1 

/2-0

(3.59)

 otherwise.

a is then chosen to be the largest of the a i 's and used in (3.57).

Let u ( t) _ -R7 1 BT K x(t) be the feedback control law obtained,a -

from the above minimization problem as p approaches 	 where

KKlim KK (p) and KK (p) is the unique positive definite solution
P'p°°

of the algebraic Riccati equation

K (p ) (A + a I) + (A + a I)T K (p) - KK (p) B 
n 

R7 1 BT K.a (A) + Q = 0

(3.60)

The LQ regulator resulting from the application of u(t) - -R71 BT Ka x(t)

to (3.58) has a damping ratio equal to cos 6.

Proof: Let ai + j ai 's be the poles of the closed-loop system described by

x(t) - (A - B R7 1 BT Ra) x(t). Applying the results of the property (c)

of Theorem 3.2 to the previous minimization problem, we obtain

a +jam	 if Q < - a
(3.61)

-ai - j wi - 2a	 if ci > - a
M

We need to show that for each i, the inequality 	 i < tan 6 is
I a i

satisfied. There az; two different situations that need to be considered

individually.

Case I	 (—I,, < tan 9
lai l

It follows iron (3.61) that ai < - Jai l	 for all values of a i . This
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in turn implies that

r;-ii

< 	 < taa 6	 (3.62)

 ai r

Case(II)

I^i
Q > tan 6

i

By definition of a, and 1w i I > ja i Itan 8, we have

i
i ai -	

t

tan6
a >	 2

l^il - ai
tans

2	
(3.63)

= 

a 

Hence a i > -a and a i = -a i 2a

Applying the definition of a and a i , we obtain

a i	 -a i 2m

< 
--ai 2'i

\ IW I
i	 l I

2 tang - si I / 2
1

-1wil(3.64)tanT—

It follows from (3.64) and m i = W i (Property (c) of Theorem 3.2) that

	

i	 < tan6	 (3.65)
a	 c

	

i	 i
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3.6 Concluding Remarks

We have developed in this chapter several techniques for analyzing

the eigenstructure properties of P.M.

Two methods for computing the sensitivity of the closed-loop RPDS

poles with respect to the stability factor a are introduced. The one

based on the Hamiltonian system is computationally useful for updating

the closed-loop poles given small variation of a.

We also present a two-step procedure for plotting the root-loci

for single-input RPDS. This procedure also provides the necessary frame-

work for derivation of asymptotic root-loci properties for multiple-input

RPDS. Using the property of the RPDS root-loci as the state weightings

become vanishingly small, we obtain a novel one-step solution to the

Regulator with Prescribed Damping Ratio problem.
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CHAPTER IV

ROBUSTNESS PROPERTIES OF REGULATORS WITH A

PRESCRIBED DEGREE OF STABILITY

4.1 Introduction

A critical property of feedback systems is their robustness, i.e.

their ability to maintain system performance in the face of uncertainties.

In particular, it is important that a closed-loop feedback system remains

stable despite the difference between the model used for design and the

actual plant in the absence of feedback gain recomputation. Such 	 is

differences commonly arise as a result of unknown and/or unmodelled

dynamics of a plant.

So far in this thesis, we have been looking at RPDS design from a

transient response point of view (i.e. the ability of the feedback system

to attenuate the initial state perturbation at a prescribed rate). The

robustness specifications, commonly quantified in terms of stability

margins and noise attenuation requirements, have been absent from the

RPDS problem formulation. The purpose of this chapter will be to

discuss the robustness properties, particularly those related to stability

of RPDS and its dual, the Kalman Bucy filter with a prescribed degree

of stability (FPDS).

Many of the results (e.g. Theorems 4.8 and Corollaries 4.2, 4.3

and 4.4) presented in this chapter and their robustness interpretations
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have been treated by Anderson and Moore for the single-input RPDS problem.

The objective of this chapter is to generalize these results for the

single-input case to the multiple-input systems.

Required background for robustness analysis of linear time-invariant

MDW feedback systems is briefly reviewed in Section 4.2. The use of

minimum singular values of the return difference and inverse return

difference matrices as measures of MIMO feedback systems ability to

tolerate modelling uncertainties is emphasized.

In Section 4.3, an appropriate framework for robustness analysis

of RPDS is introduced. It is shown that the RPDS state feedback loop

can be redrawn as a unity negative feedback system, which is the cannonical

feedback structure assumed in the current works on robustness theory.

Based on such a framework, the properties of the return difference

matrices and the inverse return difference matrices of RPDS and their

corresponding robustness implications are studied in Sections 4.4 and

4.5 respectively. RPDS is shown to possess excellent stability margins

with respect to the stability and degree of stability properties.

However, the ability of RPDS to tolerate modelling uncertainties only

improves with increasing value of a under very specific context.

Section 4.6 discusses the issue of roll-off requirement at high frequencies.

This problem is of importance from the robustness point of view because

the quality of a nominal design model inevitably deteriorates at high

frequencies as a result of unmodelled and/or unknown dynamics. An

explicit relation between the cross-over frequency and the choice of a

is derived. The robustness results obtained in Sections 4.4, 4.5 and
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4.6 are briefly summarized in Section 4.7.

This chapter closes with a discussion on the dual robustness

results of FPDS in Section 4.8.

4.2 Robustness Analysis of Linear Time-Invariant MIIW Systems

The robustness analysis of feedback systems requires the determination

of regions about the nominal model for which a particular system property

is preserved. We shall focus only on the robustness with respect to

the closed-loop stability property.

The importance of obtaining robustly stable feedback control systems

has long been recognized ([Bo 11, [Ho 11). In classical frequency domain

techniques for single-input single-output (SISO)control system design,

the robustness issue is naturally handled. The various graphical means

(e.g. Bode plots, Nyquist diagrams and Nichols charts) for displaying the

system model in terms of its frequency response allow the control syst,a

designers to determine by inspection the minimum change in the frequency

response of the model dynamics that leads to instability. These changes

are commonly quantified in terms of the gain and phase margins.l

Extension of these SISO robustness measures to the Maio case is by

no means straight forward. A satisfactory notion of stability margins

for a multi-loop feedback system must be able to characterize the

ability of a system to tolerate gain and phase variations in all of

its loops simultaneously. It is not until recently that an appropriate

framework for this purpose has become available. The basic work in this

1 Readers are referred to section 3.2 of (Le 11 for a comprehensive

discussion of these measures.

fi

4
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area is due to Safonov [Sa 2). His work was formulated in the time

domain and used some basic concepts of functional analysis, as in modern

input-output formulation of stability theory. The approach adopted here

for analyzing robustness properties of time-invariant RPDS is based on the

frequency domain formulation developed by Doyle [Do 41 and Lehtomaki (Le 11.

A review of MIlKO system robustness results that are relevant to

the subsequent development of this chapter are presented in subsections

4.2.1 to 4.2.4.

4.2.1 Characterization of Model Error

We shall base our discussion for the remainder of this chapter on

the unity negative feedback system depicted in Fig. 4.1. T(s) is assumed

to be a strictly proper rational transfer matrix (i.e. the state space

realization has no feedthrough term) which represents the plant and any

compensation that is used. The perturbed version of T(s) is denoted by

T(s) where T(s) is again a proper rational transfer matrix. Before

introducing the various robustness tests for MIMO feedback systems, we

need to define some appropriate measures of deviation between T(s) and

T(s). There are many ways that one can represent the model uncertainties.

It is important to point out that different types of model error repre-

sentation will emphasize different aspects of the differeures between

T(s) and T(s) and will thus give essentially different assessment of

the robustness properties under certain circumstances.1

1
Fot a concrete illustration of this point, readers are referred to
section 4.5 of this chapter.
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+ E	 T(s)	 —^

FIG. 4.1 Unity Negative Feedback System with
Loop Transfer Matrix Given by T(s)
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Following the notation of [Le 1J, we let the matrix E i (s) denote

the particular modelling error under consideration whew the index i is

used to distinguish between different types of error models. The two

most intuitive characterizations of model error are given by

El ;s) - T(s) - T (s)
	

(4.1)

which is the absolute error in T(s) and

=E2 (s) - T 1 (s) (T(s) - T(s))	 (4.2)

which is the relative error in T.(s). It is convenient for the subsequent

development to define the multiplicative perturbation matrix L(s) by

T (s) - T (s) L(s)	 (4.3)

Note that L(s) has a nominal value of I. Based on the above definition,

we can reexpress (4.2) as

E2 (s)- L(s) - I
	

(4.4)

A feedback representation of the perturbed system using T(s) and L(s)

is depicted in Fig. 4.2. The two error measures introduced above are

obvious multivariable generalization of the error measures t(s) - t(s)

and (t(s) - t(s))/t(s) which are commonly employed in classical stability

analysis using the Nyquist diagrams.

In view of the use of the inverse transfer function g l (s) in

stability results employing the inverse Nyquist diagram [Ro 11, it

seems natural to introduce an alternative definition of the absolute and

relative error between the nominal and the perturbed system in terms of

T 1 (s) and T l (s). With this type of error representation, the absolute

error is given by
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rPerturbed System T(s) I

so	

I
l	 I

L(s)	 w T(s)
—	 ^	 I

I	 I

FIG. 4.2 Feedback System with Multiplicative

Representation of Uncertainties in T(s)
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E3 (s) = T-1 
(s) - T_

1
 (s)
	

(4.5)

and the relative error by

E4 (s)	 T 1 (s) - T-1 (s))T(.$)	 (4.6)

= L-1 (s) - 1	 (4.7)
Several comments are in order here. First, the absolute type of errors

defined above are additive in nature whereas the relative type of errors

are multiplicative in nature. While both types of errors can be used to

derive robustness theorems, the notions of gain and phase margin are

associated only with the relative type of errors. Second, the magnitude

of the absolute type of errors is affected by both the modelling un-

certainties and the compensator gains. This in turn makes it very

difficult to assess the improvement of uncertainty tolerance due to

compensator adjustments. Problems of this nature do not occur with

relative type of errors, since the scaling effect of the compensator

gain is naturally handled by normalization (i.e. by multiplication of

T(s) and T 1 (s)). In this thesis, we shall only work with robustness

theorems that are based on relative type of errors.

4.2.2 Multivariable Nyquist Theorem and its Generalization

All robustness results that we are going to present in the sequel

are based on the multivariable Nyquist theorem. This theorem can be

stated as follows.

Theorem 4.1	 The MIMO system in Fig. 4.1 is closed-loop stable if and

only if the image of the Nyquist contour (Fig. 4.3) under the map
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jw

FIG. 4.3 Nyquist Contour Enclosing all the Unstable

Open-Loop Poles of T(s)

.,	 i
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det (I + T(s)) encircles the origin P times in the counterclockwise

direction where P is the number of unstab:e poles of T(s) that are

encircled by the Nyquist contour as the radius R of the half circle

becomes sufficiently large.

Remark	 This theorem is a natural generalization of the familiar

Nyquist criterion with det(I + T(s)) taking the place of 1 + t(s). It

is derived using the relationship

^ CL (S)
det(I + T (s)) 

_ ^OL(s)
(4.8)

where oL (s) and 0(s) are respectively the open-loop and closed-loop

characteristic polynomials of the underlying system, and the Principle

of Argument of complex variable theory.

Remark	 The Nyquist diagram of det(I + T(s)) is commonly called the

multivariable Nyquist diagram. Despite the similarity in form between.

the above theorem and the Nyquist criterion for SISO system. it is not

possible to infer robustness properties of a MIMO system by inspection

of its multivariable Nyquist diagram. In other words, the distance

between the multivariable Nyquist diagram to the origin of the complex

plane does not constitute an appropriate measure of stability margin.

The reason for this will become clear in the next section.

The multivariable Nyquist theorem provides a procedure for checking

the presence of closed-loop poles inside the domain enclosed by the

Nyquist contour. Generalization of such procedure to regions enclosed

by other contours in the complex plane is straightforward.
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This can be accomplished by plotting the image of the contour in question

under the map det(I + T(s)) and counting the resulting number of en-

circlements about the origin. If this number turns out to be identical

to the number of open-loop poles enclosed by the countour of interest,

we can then conclude the absence of closed-loop poles inside the region

enclosed by such contour.

Remark	 A rigorous justification of the above discussion follows

directly from the application of the Principle of Argument and (4.6).

A ccatour of significance for the analysis of feedback systems is

the a - Nyquist contour. This contour is obtained from the conventional

Nyquist contour by shifting the jw-axis to the line a - -a (see Fig.4.4)

Applying the procedure discussed above to this contour results in a

graphical test for checking the degree of stability. A precise

description of this result is given in the following theorem.

Theorem 4.2	 The MIMO system in Fig. 4.1 has a degree of stability a

if and only if the image of the a - Nyquist contour (rig. 4.4) under the

map det(I + T(s)) encircles the origin P times in 	 the counterclock-

wise direction where P is the number of poles of T(s) that are enclosed

by the a - Nyquist contour as the radius R of the.half circle becomes

sufficiently large.

Remark	 The SISO version of the above theorem was employed by Anderson

and Moore (An 11 for interpretation of kPDS rebustness properties.
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4.2.3 Robustness Theorems for MIMO Systems

In this section, we review several theorems that are key to the

study of RPDS robustness properties. The derivation of these results

from the basic theorems (Theorems 4.1 and 4.2) are sketched in a tutorial

fashion. For convenience, we will assume that in all the remaining

theorems and corollaries,the Nyquist contour (a-Nyquist contour) is

chosen with R sufficiently large so that Theorem 4.1 (Theorem 4.2)

may be applied.

Suppose that the nominal closed-loop system in Fig. 4.1 is stable

and that T(s) and T(s) have the same number of unstable poles. Then it

follows from Theorem 4.3 that the perturbed system is stable if and only

if the image of the Nyquist contour under det(I + T(s)) and det(I + T(s))

have the same number of encirclements about the origin.

Consider the rase where x(s) is a continuous deformation of !(a).

For a sufficiently small deformation, the number of encirclements of

the multivariable Nyquist diagram about the origin stays unchanged.

Consequently, the perturbed system will remain stable. However, if

the deformation makes the multivariable Nyquist diagram crossing the

origin, the number of encirclements about the origin will change as a

result and the perturbed system becomes unstable. The point where

crossing of the origin takes place is characterized mathematically by

det(I + To (Jm) )	 0	 (4.9)

for some value of w > 0 where To (s) is the deformation of ?(s) that

.	 touches the origin for the first time. This point clearly marks the

borderline between stability and instability. it seems natural from



is singularmin IIE II : A+E

is given by

I I E I I - 6 miu (A)

and
E - a min (A) U 0

(4.10)

( 4.11)	 t
4

1

(4.12)
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the above discussion to characterize the stability margin of a system at

each frequency w by the nearness of the nominal return difference

matrix (I + T(jw)) to singularity.

The determinant det(I + T(jw)) appears to be an obvious candidate

for such measure since the determinant of a matrix is zero if and only

if it is singular. Moreover, the size of det(I + T(s)) at each

frequency w can be readily obtained by inspection of the multivariable

Nyquist diagram. Unfortunately, the determinant of a nonsingular matrix

turns out to be an unreliable measure of closeness to singularity. It

is well known that a matrix with a reasonably large determinant can be

made singular by a small perturbation (compared with the determinant

of its elements). The standard measure for closeness to singularity of a

matrix is given in terms of the matrix norms. When the 2-norm is used

(as is the case of this thes13),the distance from singularity for a
	 C 1

given matrix A is quantified by the minimum singular value C min(A).1

The precise use of amin(A) in detection of closeness to singularityr

is given in the following theorem.

Theorem 4.3	 riven a nonsingular complex matrix A, a solution to

the following minimization problem

1 Readers unfamiliar with singular value may refer to [Str 11 for an
overview of their properties
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where U and V are the right and left singular vectors of A corresponding

to cmin(A).

In other words, if A + E is singular, then

1Bl I = Amax (E) ? Qmin (A)
	

(4.13)

The following corollary to Theorem 4.3 is the key to the derivation of

robustness theorems that are based on the multivariable Nyquist theorem.

Corollary 4.1	 Let A be a nonsingular complex	 and

omax (E) < amin(A)
	

(4.14)

then A + E is nonsingular.

Remark	 The condition (4.14) is sufficient but not necessary, because

only magnitude information of A and L_ are employed.

Before applying the previous corollary to derive the robustness

theorems for MDM feedback syatems,note that we can rewrite the perturbed

return difference matrix

I + T (s) = I + T (a) L(s)
	

(4.15)

in two different ways

I + T(s) 1.(s) _ (L 1 (s) + T(a)) L(s)

I(I + T(a)) + (L 1 (s) - I)] L(s)	 (4.16)

and

I + T(s) L(s) = I(s) (T 1 (s) + L(s))

= T(s) ((I + T 1 (s)) + (L(s) - I)1	 (4.17)
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Direct application of Corollary 4.1 to (4.15) results in the following

condition that guarantees the nonsingularity of (I + V ia) L(s)).

Qmax(L 1 (s) - I) < amin(I + T(s))	 (4.18)

In view of the discussion at the beginning of this section, it is clear

that any perturbation matrix L(s) satisfying condition (4.18) for all

values of s along the Jyquist contour will not destabilize the closed-

loop system. This result is formally stated in the following theorem.

Theorem 4.4	 If the MIMO feedback system in Fig. 4.1 is stable, then

the perturbed system in Fig. 4.2 is stable if

W T(s) and T(s) = T(s) L(s) have the same number of unstable

poles
	

(4.14)

(ii) T(s) has no pole along the goy-axis l	(4.20)

(iii) L(jw) has no eigenvalue at 0 or on the negative real

axis for w > 0	 (4.21)

(iv) Q max (L 1 Q) — I) = a max (E4(jw))

< a min ( I + T. ( jw )	 "4.22)

where E4 (s) 1 (s) - T -1 (s )) T(s)	 (4.23)

Another useful nonsingularity characterization of (I + T(s) L(s)))	 I

is provided by the condition

amax(L(s) - I) < Qmin(I +T -1 (s)) 	 (4.24)

This is readily obtained by applying Corollary 4.1 to the alternative

1
This condition can be relaxed by indenting the Nyquist contour along
the jw-axis at locations of open-loop imaginary poles
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expression of L + T(s) L(s) as given in (4.17). The related robustness

theorem is stated below.

Theorem 4.5	 If the HD O feedback system in Fig. 4.1 is stable, then

the perturbed system in Fig. 4.2 is stable if

(i) T(s) and T (s) - T(s) Jr,(s) have the same number of unstable

poles
	

(4.25)

(ii) T(s) has no pole on the j!w-; .xis	 (4.26)

(iii) awm(L(jw) - I) = amax(E3 (jw)) < Cmin(I + T 1(ja'))

for all w 10 (4.27)
1

where E3 (s) • T 1 (s) (T (s) - T (s) )
	

(4.28)

Remark	 Strictly speaking, the arguments given above are not enough 	
A

to prove the robustness theorems in this section. A major part that

has been omitted is the embedding argument which ensures that the

perturbed multivariable Nyquist diagram associated with .1 + ? (jw) can

be reached through a continuous deformation of the original Nyquist

diagram which preserves the number of encirclement of the origin. The

results presented in Theorems 4.4 and 4.5 are however correct. Readers

interested in more technical details should consult [Le 11.

We shall make several brief comments on the relationship between

Theorems 4.4 and 4.5. Obeerve from inequalities (4.22) and (4.21)

that as aminQ+ T (jw)) and amin(I + T -l (jw)) increases, bounds on the

respective kind of model error become less stringent. For purpose of

improving the system`s ability to tolerate uncertainties, it would

-y
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seem desirable to make both the quantities a min(I + T(jw)) and

Q min(I + T
-1 Qcu))  as large as possible. This is however impossible

because the return difference matrix (I + T(jw)) and the inverse return

difference matrix (I + T 1 (jw)) are related by the following matrix

identity

(I + T-1 Qw))-i
  + (I. + T(jw)) -1 - I	 (4.29)

which prevents us from making both amin(I + T(jw)) and amin(I + T l(jw))

large independently.

In the low frequency regions where Cmin a Q w)) is large (i.e. large

loop gain in all feedback loops), the quantity Cmin(I + T(jw)) is also

large. This in turn constraints =in(' + T 1 (jw)) to assume values

close to unity. Consequently, Theorem 4.4 will tend to give a less

conservative test with respect to the multiplicative errors (i.e. errors

of the form T(s) - T(s) L(s)) than will Theorem 4.3 at low frequencies.

Likewise, when Cmax(T_(jw)) is small (as is the case in the high

frequency region). Theorem 4.4 will provide a less conservative test

with respect to the multiplicative errors. This is a consequence of

amin(I + T-1 (jw)) being large and Cmin(I + T(jw)) being near to unity.

Using dat(I + T(s-a) L(s-a)) (i.e. the image of the a-Nyquist

contour under det(I + T(s)) in place of det (I + T(s) L(s)), and

repeating the argument (based on the deformation of the multivariable

Nyquist diagram) employed in the derivation of Theorems 4.2 and 4.3

leads directly to the following theorem on robustness with respect to

degree of stability.
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Theorem 4.6 If the MIMO feedback system in Fig. 4.1 has a degree of

stability a, then the perturbed system in Fig. 4.2 possesses the same

degree of ^tabiliiy if

(i) 1(9--a) and T (s-a) - T (s-a) L (s-a) have the same number of

unstable poles	 (4.30)

(ii) T(s-a ) has no pole along the jw -axis	 (4.31)

(iii) L(jw-a) has no eigenvalue at 0 or on the negative

real axis for w > 0	 (4.32)

(iv) amaa(L 1 (jw-a) - I) = amax E4 Qw-a) < min(I + T(jw-Q))
(4.33)

for all w > 0

where E4 (s) _ a 1 (s) - T-1 
W)  T(s)
	

(4.34)

Theorem 4.7	 If the MIMO feedback system in Fig. 4.1 has a degree

of stability a , then the perturbed system in Fig. 4.2 has the same

degree of stability if

(i) :[(s-a) and T (s-a) - T(s-(%) L(s-a) have the same

number of unstable poles	 (4.35)

(ii) T(s-a) has no pole on the jw-axis	 (4.36)

(iii) amax(L(jw-a) - I) - amax (E3(jw-a))

< amin(I + T 1 (jw-a)) for allw > 0 (4.37)

where E3 (s) - 771(s)  ( T(s) - T(s))
	

(4.38)

Remark	 Our remark on the relative effectiveness of the robustness

tests prescribed by Theorems 4.4 and 4.5 at different frequency regions

also applies to Theorems 4.6 and 4.7.

C -, Z
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4.2.4	 Multi- loop Stability Margins

A natural extension of the gain and phase margin measure to MIM

systems can be obtained by using Theorems 4.4 and 4 . 5. It turns out

that these stability margins can be conveniently characterized in terms

of the lower bound of Qmia(I +. 	 and amin(I + T-1 (jw)) for

w > 0. The definition of the multi-loop margins given below are due to

Lehtomaki [Le 11. Diagonal (i.e. noninteracting) perturbation of the

multiplicative type is assumed throughout (see Fig. 4.5).

Definition 4.1 The multi-loop gain margin is the pair of real numbers cl

and c2 defining the largest interval (cl ,c2) such that when I i(s),

i - 1,2,...m is Fig. 4.5 are all real, and satisfy the inequalities

cl < Z  < c2	 1 - 1,2,...m	 (4.39)

the closed-loop system remains stable.

Definition 4.2 The multi-loop phase margin is the pair of real numbers

6 l and -81 defining the largest interval (-61 ,61) such that when

Z Qw), i - 1,2,...m in Fig. 4.5 are of the form e^^i where pi 's are

real and satisfy the inequality

-61 < 0
1 

< 6 1	i - 1,2....m	 (4.40)

the closed-loop system remains stable.

Following the notation is (Le 1), we denote the multi-loop gain

margin of (4.39) by

GM - (cl.c2)

and the multi-loop phase margin of (4.40) by

i

M
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Perturbed Plant

uc1	 +	 I	 I-U1

T(s)	 I
u .	 +	 I	 —	 i-um

cm	i
I	 Nominal Plant	 J

FIG. 4.5 Configuration for Definition of Multi-Loop Margins

--1--
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PM -	 (-91 , 91)

In a similar fashion, we'can define multi-loop gain and phase margins

that guarantee a prescribed degree of stability for the closed-loop

system. These bounds are useful for characterization of a system's

ability to maintain a specified speed of response in the face of un-

certainties.

Definition 4.3 The multi-loop a- gain margin (denoted by GMa) is the

pair of real numbers c1 and c2 , defining the largest interval (c1 , c2)

such that when yj w), i - 1,2,...m in Fig. 4.5 are of the form Li,

where Z i 's are real and satisfy the inequality

c1 < L  < c2	 ,	 1 - 1,2,...m
	

(4.41)

the closed-loop system retains a degree of stability a .

Definition 4 . 4 The multi-loop a-phase margin (denoted by PMa ) is

the pair of real numbers -e 1  and 6l , defining the largest interval

(- 61 , 81) such that when ii Q w), i - 1,2,...m in Fig. 4.5 are of the

form eJ ^i where 
0, is 

are real and satisfy the inequality

	

- 81 <^i <61	 1-1929....m	 (4.42)

the closed-loop system retains a degree of stability CL.

The interpretation of the two types of gain and phase margins

defined above require some explanation. First of all, these margins

are valid for perturbations (either pure gain or pure phase changes)

f



	

1	 1
	GM D (l+s 	 1-8 ) (4.44)

K
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applied simultaneously at each input channel. This does not exclude

the possibility of having pure gain changes at some channels and pure

phase changes at others. Thus, they differ from those stability margins

obtained by breaking one loop at a time. However, the word ' simultaneously'

does not suggest that one can change the gains and phases of each input

channel simultaneously inside the limit prescribed by (4.39) and (4.40)

((4.41) and (4.42), without causing instability (the degree of stability

to go below a). Secondly, the multi-loop margins only lover a limited

class of perturbations. In particular, they are based on the assumption

of diagonal L(s).

The following corollaries to Theorems 4.4 and 4.5 provide a

characterization of multi-loop CM and PM in terms of the lower bound for

Qmin ( I + T(jw)) and Cmia (I + T-1(j^i^)).

Corollary 4.1 If the nominal closed-loop systea in Fig. 4.1 is stable

with no open-loop pole on the jw-axis and

amia ( I + T ( jw) ) > B	 0 < $ < 1,	 for all w > 0	 (4.43)

then the multi-loop gain and phase margins are characterized by

and

PM :) (-2 sin7l 2. , 2 sin-1 2 )	 (4.45)

respectively.

Remark	 The case for S < 1 is not considered because it is in-

consistent with the strict properness assumption of T(s).
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Corollary,_ 4_3 If the nominal closed-loop system in Fig, 4,1 is stable

with no open-loop pole on the jw -axis, and

amin(I + T 1 (jw))> S	 for all w > 0	 (4.46)

then the multi-loop gain and phase margins are characterized by

GM D (1 -a,	 1 + R)	 (4.47)

and

PM D (-2 sin -1	 2 sin-' 0)	 (4.48)

respectively.

Likewise, we can characterize the multi-loop margins with respect

to degree of stability in terms of the bound for amin(I + T(a--jw)) and

Cmin(I + T 1 (a-jw)) respectively. The result is summarised in the
following corollaries to Theorems 4.5 and 4.6.

!I

Corollary 4.4	 If the nominal closed-loop system in Fig. 4.1 has

a degree of stability a with :io open-loop pole on a - -a, and

amin(I + T(3w-a)) > S , 0 < 5 < 1 for all w > 0	 (4.49)

then the multi-loop gain and phase margins with respect to the degree of

stability a are characterized by

and

	 GMq D (l+s , lls)	 (4.50)

PM a :) (-2 sin -1	 , 2 sin 1 )	 (4.51)

respectively.

Corollary 4.5	 If the nominal closed-loop system in Fig. 4.1 has a degree of

of stability a with no open-loop pole on a - -a, and

L__
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amin(I + T-1 
OW -M) ) > S	 for all w > 0	 (4.52)

then the multi-loop gain and phase margins with respect to the degree of

stability a is characterized by

GMa 	+S)
	

(4.53)

and 
PMa C(-2 sin- l 2-a , 2 in7l 2)	 (4.54)

respectively.

It is important to emphasize that the bounds on the multi-loop gain

and phase margin characterization provided by the above corollaries are

in general very conservative. This is a result of the fact that only

magnitude but no structural information on I + TQ w) and I + T 1 (j w)

are employed in the derivation of these bounds. These stability margins

are commonly known as the guaranteed gain and phase margins.

4.3 Formulation of the RPDS Robustness Problem

Consider LTI system described by the dynamical equations

a(t) = AM(t) + B u(t)
	

(4.55)

Y(t) = CM(t)
	

(4.56)

Let

u(t) _ -Ga x(t)	 (4.57)

be a state feedback control law for the above system. The resulting state

feedback configuration is shown in Fig. 4.6.

Since the stability of a RPDS is characterized by the eigenvalues
C

of the closed-loop matrix (A - 	 it is strictly a property of the

state feedback loop and is independent of the output matrix C. To
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FIG.	 State Feedback Configuration for RPDS

!a (S)

GQ(SI-A)-'B
	 -Um

FIG. 4.7 Feedback Configuration for Robustness Analysis of RPDS
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perform robustness analysis, we can redraw the RPDS state feedback loop

in a unity negative feedback form (see Fig. 4.7) that is compatible with	 j

the robustness theorems considered in the last section. The RPDS feed-

back system is therefore akin to that found in classical situation where

unity negative feedback is applied around a system with loop-transfer

matrix given by ja (sI - -1 B.

Now, it becomes clear that we can characterize the robustness

properties of RPDS in terms of the two quantities amin(I + T-,aQw))

and Q min (I + T x 1 ( j w) ) where we define

TaQW)	 Ga Q qI - A) -1 B	 (4.58)

4.4 Properties of RPDS Return Difference Matrices and Related Robustness

Results

Several well known feedback properties of LQ regulators are characte-

rized in terms of its return difference matrices by the Kalman Frequency

Domain Equality([Ka 1], [Le 1]). Since RPDS represents a special case of

LQ regulator, it seems natural to begin our study of its return difference

by introducing two modified versions of Kalman Frequency Domain Equality

that are obtained directly from the RPDS Riccati equation. The derivation

of these results are given in section 4.4.1. The three subsections that

follow discuss three important consequences of these equalities and their

respective robustness interpretations.

4.4.1 Two Fundamental Equalities

There are two versions of Kalman Frequency Domain Equality for

RPDS. Each of them results from a different arrangement of the RPDS
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algebraic Riccati equation. These results can be stated as follows.

Theorem 4.8	 Let the matrix K., 	 the unique positive definite

solution to the algebraic Riccati equation

(A +a .1) T K a + KjA +al) + 4 - B a B R7 1  BT & a - 0	 (4.59)

with

(i) 4> 0	 and R> 0	 (4.60)

(ii) (A, B) controllable	 (4.61)

(-q , A) observable	 (4.62)

then

(I + Ta(-a-s) ) T R (I + *,(-a+s)) = R + H(-s , $)	 (4.63)

and

(I +(-s))T R(Z + T a(s))	 R + ^(-s,.a)	 (4.64)

where	 —H(;. a) - IT ( 4.L - ax - AT) -1 S(sI - aI - A) -1 B	 (4.65)

and

Ha(4,$) = 'IT (;.L - AT)-1 (2G K.a + 	 (sI - A) -1 B	 (4.66)

Proof:	 Direct manipulation of (4.59) yields

(-sI -A - aI) T Ka +K I-A- CE) +laBR1BAa -Q
(4.51)

upon premultiplying and postmultiplying (4,67)by [(-si - ai - A)-1 BST

and [(sI - aI - A)
-1 

BJ respectively, we obtain

R Ta(s-a) + 1,3T  (s-a) x + T IT (-s-a)RTa (s -a) • V-s,$)	 (4.68)

adding R to both sides of (4.68) gives (4.63).

To derive (4.64), note that we can rewrite (4.59) as follows
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AT K a+ K A + (S + 26 .K,a ) -	 B R7'  BT K
-a	

0	 (4.69)

by regrouping the two terms involving a1	 Repeating the same algebraic

manipulations as before with(4-69)we obtain (4.64) and this completes the

proof.

Remark	 As expected, both equalities (4.63) and (4.64) reduce to the

familiar Kalmar, Frequency Equality for LQ regulators when a 	 0.

Furthermore, if

det(jw. - A) ^ 0	 for all w > 0	 (4.70)

we can rewrite equality (4.64) as

(I +T w(jw)) H R (I +T (X(jw)) = x + Ha(-j w. jw)	 (4.71)

for values of s on the jw-axis.

Similarly, if

det(J - A - aI) # 0 for all w > 0 	 (4.72)

we can rewrite equality (4.63) as

(I + T a(-a + jw)) H R(I + Ta(-a + jw)) = B + H(-jw, jw)	 (4.73)

for values of s on the jw-axis.

4.4.2 Common grooerties with U, Regulators	 s
I

It was pointed out in our remark to Corollary 2.5 that RPDS is

a special case of LQ regulators. AA a result, it possesses all the

robustness properties of the latter. A formal verification of this

fact is provided is this section. The following corollary to Theorem 4.8

is key to the derivation of all the subsequent results on LQ-related
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properties of RPDS.

Corollary 4.6

	

	 Let the matrix 1C be the unique positive definite solution
a

of the algebraic Riccati equation (4.59) (with all conditions on A, 8,

4 and R satisfied), and det(jwI - A) # 0 for all w > 0.

Then

(I + T QQW ) R R(I + T MOW) > R	 for all w > 0	 (4.74)

Proof:	 The inequality (4.74) holds if and only if H%(-%( 	 > 0

for w > 0. The positive definiteness of %(-jw,jw) in turn follows from

that of K.,. 	 this completes the proof.

Remark	 The result described in this corollary is the wall known Kalman

Inequality for LQ regulators. In the single-input case (4.14) reduced to

the following scalar inequality Me 11

11 + to (Jw) I > , 1	 for w > 0	 (4.75)

By inspection of the Nyquist diagram corresponding to (4.75) (see Pig.4.8)

it is straightforward to observe that a single-input RPDS state foedback

regulator has a guaranteed Qt of (Z, oa) and a guaranteed PM of (-60°,60°).
In the multiple-input case, the inequality (4.74) does not provide

a bound on the quantity vmin(i + _Tm(jw)) for arbitrary choices of R.

In cases where R is chosen to be a scaled identity (I.e. R - cl for

some c > 0), than (4.74) reduces to

Q +Ta (jw)) R (I +To (Jw)) > I	 for all w > 0	 (4.76)

which in turn provides a lover bound

Qmin(I + TTa()w)) > 1	 fur all w > 0	 (4.77)



Re to (s )

-95-

I  to W

FIG. 4.8 Sat of Allowable Values (shaded) of ta(s)

when 11 + ta (s)l > 1



T(jw) =	 ^R1/2 T(jw) R 1/2a (4.79)
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for the minimum singular value of I + Ta (j (4 . It follows immediately

from Corollaries 4.2 and 4.3 and (4.74) that RPDS designs with R chosen

to be a scaled identity matrix have a guaranteed multi-loop gain margin

given by (0.5,-) and a guaranteed phase margin given by (-600,600).

It turns out that these guaranteed stability margins also apply

to RPDS designs with R chosen to be diagonal. The derivation of this

more general results is due to Lehtomaki (see [Le 1], [Le 2]) and is

included here for completeness. The proof is motivated by the observation

that (4.74) can be rewritten as

(I + TM jw))R (I +T(jca)) > I	 for all w > 0	 (4.78)

where we define

Inequality (4.78) then provides a bound

amin(I + laQU)) > 1	 for all 0) > 0	 (4.80)

on the minimum singular value of I + T a(jw) . If Ta (jw) is used instead

of T,(jw) in the stability test based on Theorem 4.4 , it is necessary to

manipulate Fig. 4.7 into the equivalent form depicted in Fig. 4.91

Using Theorem 4.4 and (4.80) leads directly to the following result

Theorem 4.9	 Given a RPDS system with loop-transfer matrix T,(s), the

perturbed regulator with loop-transfer matrix Ta(s) _ .T.a (a) L(s) is

closed-loop stable if

1 This ensures the equivalence (from stability point of view) of ;he feed-
back loops in Fig. 4.7 and Fig. 4.9.
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r

(i) T.,(s) and To ts) have the same number of unstable poles (4.81)

(ii) To (s) has no pole on the jw-axis 	 (4.82)

(iii) omax(x	 L 1 (jw) 8 
1/2 I) S 1	 for all w > 0	 (4.83)

0

Observe that the condition amas(R 
1/2 

L-l (jw) R 1 - I) < 1 in

(4.83) can be written as (see JSa 31)

	R L(jw) + L 00) R - R >O	 for all w > 0	 (4.84)

If R and L (jw) are diagonal, (4.84) sim.)lifies to the following conditions

i

t

S

Re(ii (jw) > 2 for all w > 0	 (4.85)

and i = 1,2,...m

The corresponding guaranteed gain and phase margins properties can be

readily obtained from (4.85) by assuming Zi (jw) to be a real scalar and

Ri (jw) = eJ^i , respectively, for i = 1,2,...m.

4.4.3 The Effect of the Stability Factor a on RPDS Return Difference

Matrices

Tte effect of the stability factor m on the matrix

(I + T(11-s)) T  R(I + T o(s)) is provided by the following corollary to

Theorem 4.4.

Corollary 4.7	 Let the matrices K o and Ka be the unique positive
1	 2

definite solutions of the RPDS algebraic Riccati equations

(A+ ali) T Ko + Ko (A+ alI) + 4 - Kol B R7 1 BT Rol	 0 (4.86)

1	 i

It can be trivially shown that condition (iii) in (4.79) automatically
guarantees condition (iii) of Theorem 4.4.
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and

(_A + a Z11
) T

 K+ KK (A + a 2,I) + 4 - K B R71 BT K	 (4.87)

respectively with

(i) Q > 0,	 R > 0	 (4.88)

(ii) (A, B) controllable	 (4.89)

(iii) (Q1/2 , A) observable	 (4.90)

and	 (iv) det(jw I - A) # 0	 for all w > 0	 (4.91)

then

(I + T Qw)H R (I +T (jw))
_a 1	 ^ 1

> (I + T	 (jw)) R R (I + T (jw))	 for all w > 0	 (4.92)
— 2	

-a 2

if al > a2 > 0

Proof: Direct application of Theorem 4.4 to the algebraic Riccati equations

(4.86) and (4.87) yields

( I + -TO OW) ) R R ( I + TT	 Qw)) H	 (-jw,jw) + R (4.93)

1 1 1
and

((I + T	 (jw)) H R (I + T	 (jw)) : g	 (-Jw,jw) + L (4.94)
-a 2 —	 ^t2 -^t2

respectively.	 It follows from Lemma 3.1 and condition (iv) in the

theorem statement that

-%1
(-jw,jw) >

2
(-j(,I, jw) for all w > 0 (4.95)

Adding R to both sides of (4.95) yields

R + H	 (-jw,jw) > R + H	 (-jw,jw)	 for all	 w	 > 0 (4.96)
-n1 -a2 —

I'
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and the theorem is proved.

For single-input RPDS (4.92) reduces to the following scalar in-

equality

11 + t (jw )I > 11 + t (jw)I	 for all w > 0	 (4.97)
al 	a2

Geometrically, (4.97) means that for each value of frequency w , the point

to Qw) in the complex plane is always farther away from the critical
1

point (-1,0) than the point ta2 (jw) (see Fig. 4.10)).

In the multiple-input case, the inequality (4.92) does not in general

imply (I + TalQw)) R (I + T
a,

(j(d)) > (I + T  rjw))R 	(I + T  QW) for

al > a2 . However, if R is chosen to be a scaled identity matrix, (4.92)

then simplifies to

(I + T(jw) ) H (I + T (^w)) > (I + T QW) ) H (I + T (jw))	 (4.98).a	 -a2	 — -a2

for all w > 0

The following inequality on the minimum singular value of RPDS return

difference can be readily derived from (4.98) by using %he 2roperties

of singular vaiues

amin(I + =a (jw)) > amin ( I + 
-Ta 

(jw)),	 for all w > 0 (4.99)
1	 2

Inequalities (4.98) and (4.99) allow us to assess the effect of a on the

robustness properties of RPDS design with R chosen to be a scaled identity

matrix. It follows directly from condition (4.21) in Theorem 4.4 that

the tolerance of modelling error of the form E4(s) _ (T^ a(s) - T-1 (s 	 a(s)

improves with increasing values the stability factor a. Unfortunately, the

use of the matrix function fl (s) is not common , thus malting the above

conclusion somewhat difficult to interprete. We shall explore further

r

^t
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FIG. 4.10 Nyquist Diagrams for RPDS Loop Transfer

Functions to (s) and to (s) with a1 > a2
1	 2
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consequences of this result by restricting ourselves to perturbation

matrices L(s) that are diagonal. Then condition (.4,221 in Theorem 4.4

simplifies to

Qw) - 1 < 0QW) a Gain  f. TaQw))
for all w > 0	 (4.100)

i = 1929....m

The allowable values for 
Z  

Q w) as defined by (4.100) are depicted in

Fig. 4.11. It is clear from the diagram that the area of allowable

(shaded) region for R i (jw) increases with S Qw) which is itself and

increasing function of a. This represents a very special type of

robustness improvement for RPDS made possible by increasing the value of a.

Attempts the find a characterization of robustness variations with a for

error models defined in terms of Ta (a) have nor- been successful. This is so	 ,I

because robustness theorems relating amin(I + 1,00) and error models

defined in terms of TT (s) are only available for the absolute type of

error representation. We have already pointed out in section 4.2 the

difficulty in accounting for the effect of compensator with this type of

error model. Indeed, an increase in the value of a will increase both

the error and the quantity amin(I + -TMQw)), thus making it impossible to

ascertain the effect of a on robustness.

We shall conclude this section by discussing the effect of a on

the guaranteed and actual stability margins of RPDS. Since Ta (s) is a

strictly proper, rational matrix function, it follows that

lim omin(I + T a (jw) ) - 1	for all values of a > 0	 '4.101)
WIND

This in turn implies that we cannot find a lower bound larger than 1 for
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FIG. 4.11 Set of Allowable Values (shaded) for I i (s) Corresponding

to Qmin(I +;m QW) - B 1 (4.12a) and amin( I + Ta Qw)) = S2
1	 2
(4.12b) al > a2
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amin(I + Ta Qw)) that holds for all values of w. As a result, the

guaranteed gain and phase margins for RPDS with R chosen to be a scaled

identity matrix is unaffected by the choice of a. It can be shown that

this result also holds for RPDS design when R is chosen to be diagonal.

The effect of a on the actual stability margins of ppDS turns out

to be highly system dependent. As expected, the upward gain margin is

always = (since actual gain margin can be no worse than guaranteed gain

margin). The downward gain. margin and phase margin may however either

improve or deteriorate with increasing a. The following simple example

illustrates this point.

Example 4.1	 Consider the following RPDS problem

t

min lim	 1 e21t (x2 (t) + u2 (t))dt	 (4.102)
u(t) row fo

x(t) - ax(t) + u(t)	 (4.103)

If a - -1, the RPDS feedback gain is given by

k - (x - 1) +[ (a - 1) 2 + 1J 1/2	 (4.104)

and the corresponding gain and phase margin are given by

GM - •(- ga-1 50 ) 	 (4.105)

and	
1/2

PM - (-Tr + tan-1 (ga - 1)1/2,	
- tan 1(fa - 1) )

(4.106)

respectively. It follows from the fact that ga is an increasing function

of a that both the downward gain margin -g a 1 and the phase margin given

s
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by (4.106) deteriorate with increasing a (see Fig. 4.12a). If we have

a - 1 instead, (i.e. the open-loop system is unstable) then the gain and

phase margin of the resulting design become

GM - (g OL 1 ,°D )	 (4.107)

and

PM = (-tan l(ga2 - 1) 1/2 , tan 1(ga2 - 1) 1/2 )	 (4.108)

respectively, where ga is now given by

ga - (a + 1) + [ (a + 1) 2 + 13 1/2	 (4.109)

Note that in this case, both the downward gain margin and the phase margin

increase monotonically with a (see Fig. 4.12b).

4.4.4	 Properties of the RPDS Return Difference Matrices on the

a-Nyquist Contour

Thus far, we have not been using the version of the RPDS Frequency

Domain Equality given by(4.64). A useful matrix inequality similar to

(4.74) can be derived from this equation.

Corollary 4.8	 Let the matrix Rn be the unique positive definite

solution of the algebraic Riccati equation (4.59) with the respective

conditions on A, B , 4 and R satisfied and det(jw I - A - aI) 0 0 for

all w > 0, then

(I + Ta (-a + jw)) R RQ + Ta(-a + jw)) 2 R	 for all w > 0 (4.110)

Proof: The inequality (4.110) holds if and only if H( -jw, jw) > 0, for all

w > 0. The positive semi-definiteness of H(- jw,jw) in turn follows from

i
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Q Z. 0, %1/2 , A) observable and det(jw I - A - aD f 0 for all w > 0, and

this completes the proof.

Note that inequalities (4.74) and (4.110) become identical when

a - 0. For the case a 0 0, we can regard (4.110) as arising from (4.74)

by replacing ± jw by ± j w-a . Indeed the values of the matrix function

for w > 0 on the left hand side of (4.110) can be obtained by evaluating

the RPDS return difference matrix along the a-Nyquist contour shown in 	
4

Fig. (4.4). For the single-input case, (4.110) simplifies to the following

scalar inequality

11 + to (-a + jw) I > 1	 for all w > 0	 (4.111)

which admits the same geometrical interpretation as (4.75) in that every

point on the Nyquist diagram of ta(s) evaluated along the a-Nyquist

contour is away from the critical point by a distance of at least unity

(see Fig. (4.8)).

Recognizing the similarities between inequalities (4.74) and (4.110)

it seems natural to use the closed-loop system depicted in Fig. 4.9 in

order to interpret* robustness implications of (4.110). The following

result can be readily obtained using inequality (4.110) and Theorem 4.6.

Theorem 4.10	 Given a RPDS with loop transfer matrix ?a(s) and a

prescribed degree of stability a , the perturbed regulator with loop

transfer matrix T a (s) • T cv(s) L(s) will retain a degree of stability

if

(i) TL(s-a) and T a(s-a) have the same number of unstable

poles	 (4.112)

(ii) TQ(s-a) has no pole on the jw-axis	 (4.113)
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(iii) QmaxL /2 L 
1 

(jw - co z7 1/2 -	 < 1	 for all w > 0

(4.114)

Note that condition Amax (R^1J2 L 1(jw - a) 171/2 -	 < 1 in (4.114) can

be rewritten as

R L(jw - a) + LR(jw - a) R > R	 for all w > 0	 (4.115)

If both R and L(s) are chosen to be diagonal, then (4.113) above simplifies

to the following set of inequalities

Re(Ri (JCO - a)) > 2
	 for all w > 0
	

(4.116)

and i • 192,....m

For case of Ii representing a pure gain change, it is clear from

(4.116) that the perturbed regulator will retain a degree of stability a

jaif each I
i satisfies R i 

>12 . Similarly, for Ri 
e i , we can conclude

from (4.116) that the perturbed regulator will retain &-degree of stabi-

lity a for 1^ii < 600 , 1 • 1 9 2,... 9m. It is interesting to note that

these guaranteed margins with respect to degree of stability are identical

to the guaranteed stability margins der,(ved in Section 4.4.2.

4.5	 Properties of the RPDS Inverse Return Dlfferance Matrices and

Related Robustness Results

We have noted in section 4.2 that useful robustness characterizations

(including the guaranteed gain and phase margins) for MIM systems can be

stated in terms of the minimum singular value of the inverse return

difference matrix. It was also mentioned briefly in section 4.2 that

this quantity is a useful complement to the minim= singular value of

the return difference matrix. The purpose of this section is to examine

I 
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several important properties of RPDS inversereturn difference matrix

and the related robustness interpretations. Results in this section

are presented in a fashion which closely parallels that of section 4.4.

4.5.1	 Properties in Common with LQ Regulators

Unlike the case of the return difference matrices, no useful

frequency domain characterization of inverse return difference matrices

is known for LQ regulators. However, when the control weighting matrix

is chosen to be a scaled identity matrix ,then a lower bound for the

minimum singular value of the LQ inverse return difference matrix can be

obtained in terms of the lower bound for the minimum singular value of the

LQ return difference matrix derived in the last section. A precise

statement of this result is given by the following theorem.

Theorem 4.11 Let the matrix L be the unique positive definite

solution of the algebraic Riccati equation (4.59) with conditions on

A. B, 4 and R satisfied. Also assume that

det(,jw I - A) # 0	 for all w > 0	 (4.117)

and that

T a Qw) is invertible at all w > 0 	 (4.118)

Then	
Amin (I + T (^w) )

vmin (I +	 1 ( ► )) ' 1 + amin (I + T, a(jtr	 (4.119)

>	 1	 for all w > 0	 (4.120)
2

Proof:	 The relation (4.119) follows from direct application of an

inequality due to Nuzman and Sandell (Nu 11. To derive (4.120) from

I

.i_
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(4.119), we make use of the Kalman's Inequality (4.80) derived in the

last section and this completes the proof.

It follows from Corollary 4.1 and the above theorem that RPDS design

with R chosen to be a scaled identity matrix has a guaranteed gain margin

given by (1 9 2) and a guaranteed phase margin given by (-30 0 , 300). Both

of these margins turn out to be more conservative than those derived using the

RPDS return difference matrix.

It is also possible to obtain these guaranteed stability margins

for RPDS designs with R chosen to be a diagonal matrix. The derivation

is analogous to that of Theorem 4.5 and requires the use of the equivalent

system depicted in Fig. 4.9. Based on the equivalent system, we can

rewrite (4.119) and (4. 120) in Theorem (4.11) as

Qmin(I +?	 (}) I 
1 + Qmin(I +Ta(jw))	 (4.121)

Using inequality (4.122) together with Theorem 4.5 leads directly to the

following result . Invertibility of LOW) for w > 0 is assumed.

Theorem 4.12	 Given a RPDS with loop-transfer matrix Ta , (s), the

loop-transfer matrix -Us) - Ta (s) L(s) is stable if

(i) Ta (s) and Ta (s) have the same number of unstable poles	 (4.123)

(ii) Ta (s) has no pole on the jw-axis	 (4.124)

(iii) Amax (11" L(jw) R 112 - L)<  2 for all w > 0	 (4.125)

When R and L(s) are ebosen to be diagonal, condition (4.125) in the above

theorem reduces to
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R i (jw) - ii < 2	
for all	 w > 0	 (4.126)

and i = 1,2,...,m

We can now employ (4.126) to establish the guaranteed gain and phase

margins by assuming Ri(s) to be real and t i (a) = ejo, , respectively,

for i = 1,2,...,m.

It is important to emphasize that the guaranteed stability margins

derived above and those in section 4.2 are margins that apply to all

RPDS designs with diagonal R. The remarkable generality of these results

in turn account for their conservative nature. Less conservative margins

can be obtained if the actual values of the design parameters A, B, R

and Q are taken into account in the robustness test. For a given RPDS

design, the quantity 0° defined by

	

Ro M min Qmin(I + T-at(jw))	 (4.127)
W>0

is in fact often greater than 2. In cases when this is true, we can

replace condition (4.125) in Theorem 4.12 with a less stringent bound

Qmaa(R112 L(jw) 1/2 - I) < 0o	 for all w > 0

(4.128)

If R and L(s) are both chosen to be diagonal, then the inequality

(4.125) implies an improved guaranteed gain margin of (1 - Q° , 1 + S°)
a	 a

and a guaranteed phase margin of (-2 sin -1 Z°, 2 sin 1 2 ).

It is also noteworthy that guaranteed stability margins obtained

from robustness tests based on vmin ( I + ,T^(jw)) cannot be further tightened

by taking into considerations the specific values of the design parameters.

The quantity amin(I + T a (jw)) is always lower bounded by unity as a result

of Ws) being strictly proper.
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Combining the guaranteed stability margins obtained in this section

and the last, we arrive at the following improved guaranteed margins that

are valid for RPDS designs with R chosen to be diagonal.

GH C (1 - S OP)	 (4.129)

PM C (min(-2 sin -1 1 -20- , 60°)	 (4.130)

1
s

(max(2sin 2° , 600)	 (4.130)

(4.129) and (4 .130) above represent the tightest guaranteed margins one

can obtain using Theorems 4.4 and 4.5. This is an example where appropriate

combination of robustness tests can lead to a reduction in conservatism.

4.5.2 The Effect of the Stabilitv Factor a on the RPDS Inverse

Return Difference Matrices

If

det (jwI - A) # 0	 for w > 0	 (4.131)

and

det(TT Qw)) # 0	 for w > 0,	 (4.132)

we can rewrite the RPDS frequency domain equality (4.63) in the following

form

(I + Ta 1QW)R RU + 1^1(jw))

T , R(jw) (R + _,(-Jw , jw ) l Ta-1Qw)	 for w > 0 (4.133)

Recall from the derivation of Corollary 4.2 that the effect of a on

(I + ^jw))H R(I + T,(jw)) is readily obtained by considering the

effect of a on Ha (-jw,jw). To obtain a similar characterization for

(I + Ta 1 (-jw)) R(I + T 1Qw)), we need to consider the effect of a on

A
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o f-s,$)	 T -T (-s) (R + R (s)) T a1 (s)	 (4.134)

CR 1 BT KK (-sI - A)-1 B]-T [R + BT (-Si - A)-1 (Q + Zbt ) (sI - A)-1 ^]

[R 1 BT KK(sI - A) -1 g]
	

(4.135)

where KKis the positive definite solution of the RPDS algebraic Riccati
ZL

equation (4.59). The coefficients of both rational matrices TT (s) and

H (-s,$) are dependent on the stability factor a through the matrix

which is known to be an increasing function of a (Lemma 3.1). Unfortunately,

,KtZ enters the matrix R (-s,$) in a highly nontrivial fashion and thus

makes it difficult to precisely characterize the effect of a on H0(a).

When R is chosen to be a scaled identity matrix sI we can approximate

the RPDS inverse return difference with matrix with

^,TR B	 BT K B
I + 1 (jW))H (I + ?a1Ou ))	 I + ( - S)-1 I + ( ^^a )-1

= I + w
2 (BT Ka B)-2 $2	

(4.136)

at values of w where jW I dominates the matrix QW I - A). Using the

incremental property of 
-Ka (Lemma 3.1), we can readily show that

2 2 T	 -2
I + R W (B -a B)	 is a monotonically decreasing function of a (i.e.

I +S 2W2 (BT-Ka B)-2 < I +02W2(gT R 
a 

B) -2 for al > a2 and for all
1	 -	 2

W > 0). It follows from this observation that (I + 7; 1 (jW))(and thus

amin (x + -T6 Ow))) is a decreasing function of a in the high frequency

region. Attempts to characterize (I +T 1 (jW)) H (I + ^;1 (jw)) at frequencies

where the approximation (4.136) fails to hold has not been successful.

However, it is our conjecture that (I + Ta1 (Jw)) H (I + TT (jw)) will
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generally behave as a decreasing function of a at all w > 0 for R

chosen to be a scaled identity matrix. If this is indeed the case,

then two important design implications follow. First, the quantity

Bo defined in (4.127) also becomes a decreasing function of a 1 As
a result, the guaranteed downward gain margin given by 1	 Q will

deteriorate with increasing a. 2 Second, the maximum RPDS system

bandwidth wmax defined as the highest value of w (see [Ch 11 section

7.7) at which

amin(I + T;l (,)w))	 - 1	 (4.137)

will increase monotonically with a . This can be readily verified by

inspection of the Cmia(I + Te l Qw)) plots of a RPDS design (Fig. 4.13)

with the minimum singular value of the inverse return difference matrix

being a decreasing function of a.

4.5.3 Properties of the RPDS Inverse Return Difference Matrices on

the a-MYauist Contour

The results presented in this section are stronger versions of

those considered in section 4.5.1. All the margins derived here apply

to the stability as well as the degree of stability property of the

underlying RPDS. To begin with, we shall consider RPDS designs where

R is chosen to be a scaled identity matrix and obtain a lower bound

l See section 5.4 for an example where Qmin(I + T; l (jwl)is a decreasing
function of a for all w > 0.

2 Recall from Example 4.1 that the same result may not hold for the
actual stability margins.
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for the quantity vmin(I + T l ( jw--a) ) that is valid for all W > 0. A

precise statement of the result is given by the following theorem.

Theorem 4.13	 Let the matrix _% be the unique positive definite

solution of the algebraic Riccati equation (4.59) with conditions on A,

B, g and R satisfied. Also assume that

det ((jW -0)I - A) # 0	 for all W > 0	 (4.138)

and that

Ta (-a + jw) is invertible at all w > 0
	

(4.139)

Then

amin(I + Ta 1 (^t + jw))

amin(I + T 
(-a + jw) )

1 + amin(I + T-a (-.a+ jw) )	 for all > 0	 (4.140)

Proof:	 We shall prove this result from a standpoint different from

that adopted in Section 4 . 4.4. Recall from the proof of Theorem 2.5

that we introduced a time-invariant LQ problem on our way to obtain a

solution for the RPDS problem. It was also shown that the desired RPDS

feedback gain is identical to that obtained from the related LQ problem

where the objective is to minimize

t

J - lim	 l Ex  4 x(t) + uT (t) R u(t)Idt	 (4.141)

tl to —

	 — —

aubject to the dynamic constraint

	

x(t) s (A +a i) x(t) + B u(t)	 (4.142)
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The controllability and the cost observability of this LQ problem

follows from those of the original RPDS problem and the RPDS state feed-

back gain is given by G a	 R-1 BT K where R a is the positive definite

solution of the RPDS Riccati equation (4.59). Applying the result of

Theorem 4.10 (which also holds for LQ regulator problems with R chosen

to be a scaled identity matrix) to the solution of the above LQ problem

leads directly to (4.140) and this completes the proof.

Based on the equivalent system given in Fig. 4.9, the following

inequality that holds for arbitrary 1 (i.e. R not necessarily be diagonal)

can be readily obtained

Qmin(I + R 1/2 T-1 (jw - a) R 1/2)> 
1 

for all w > 0	 (4.143)

The proof of (4.143)is similar to that given in Theorem 4.13 with

T^a (a) replaced by R1/1T (s-a) 
R71/2.  The result below is a direct

consequence of (4.143) and Theorem 4.13. Invertibility of ,T QW-(X) for

W > 0 is assumed.

Theorem 4.14	 Given a rational transfer matrix T,(s) of a RPDS

system with a prescribed degree of stability a, the perturbed system with loop

transfer matrix	 given by T (s) T,(a) L(s) has a degree of stability

M if

(i) Ta (s-a) and T(s -a) have the same number of unstable poles

(4.144)

(ii) Tu (s-a) has no pole on the ,)w-axis	 (4.145)

(iii) am= 1/2 LQw - a) 
R71/2 -	 < 2 for all w > 0	 (4.146)

If both R and L are diagonal, then (4.146) reduces to the

following set of scalar inequalities

9

4

d
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a) - 11 < 2	 for all w > 0	 (4.147)

and i = 1929..6m

For case of I  representing a pure gain change, it is clear from

condition (4.147) that the perturbed system will retain a degree of

stability a for Ri satisfying 2 < Z <-!.	
j^

.S imilarly, for li = e i

the condition (4.147) implies that the perturbed system will not lose

the degree of stability for 10 i   < 300 . A RPDS design with R chosen

to be diagonal therefore possesses a guaranteed GM, of (2,2) and a

guaranteed PMa of (-300 , 300). These margins are found to be more

conservative than those derived from (4.116).

To characterize the margin for a given RPDS design, we place

condition cmax(R1/2 L(jw - a) R7 3/2  - .1) < 2 in (4.142) by

amax(Rl/2 L QW - a) R 71/2.- ) < $a	 (4.148)

where Sa is defined to be

Sa = min amin(I + ;;1 (jw - (1))	 (4.149)
w>0

This quantity Pa turns out to be greater than 
2 

for most RPDS designs,

and thus enables us to obtain an improved guaranteed GMa of

00(1 - Oa, 1 + Oa) and an improved guaranteed P% of (-2 sin 1 Z , 2 sin 12 )•

Combining the guaranteed GMa nd PM obt ained here with those derived

in section 4.4.5, we arrive at the following guaranteed GMa nd P a that

hold for a given RPDS design with diagonal R

G aD	 (.1 -Sa. m)	 (4.150)

PMa :) (min(-600 , -2sin 1 ),max (600, 2sin 1 )

(4.151)
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These are the best margins that one may derive using Theorems 4.10 and

4.14.

4.6 Roll-Off Requirements at High Fra°uencies

In our discussion of RPDS robustness properties thus far, we

have neglected the important design consideration of having the nominal

loop gain sufficiently attenuated over the frequency range where the

magnitude of the multiplicative perturbation L(jw) becomes large compared

to unity. It is a physical fact that the quality of a nominal design model

inevitably deteriorates at high frequencies as a result of unmodelled

and/or unknown dynamics of various types. In the multiplicative form of

perturbation L(s), this means that cmax(L Qw)) will assume value close to

1.0 at low frequencies but will increase to 2 and beyond at high frequencies.

In the face of such uncertainties, the seemingly excellent guaranteed RPDS

stability margin is clearl •- inadequate. In the high frequency region,

the + 600 phase margin is of no value since a neglected time delay

will ultimately produce phase error in excess of 180°. Moreover, the

return difference inequality (4.74) from which the guaranteed RPDS

stability margins are derived does not hold at hiEh frequencies since

the frequency response of any physically realizable system must have a

roll-off at a rate greater than or equal to a -2 .  The roll-

off requirement of RPDS (and for LQ regulator in general) in the face

of uncertainties can be derived from the basic inequality (4.27) in

Theorem 4.5.

At frequencies where all the feedback loops of T(jw) are rolled

off, the quantity omax(TT Qw) m Cmia 1 (Tal Qw)) becomes small. As a



-121-

result, we can approximate the minimum singular value of I + 1(w) as

aMin(I + Ta (jw)) cmin(_T^l(Jw))

' amax 1 (?a(jw))	 (4.152)

Substituting this approximation into (4.27) gives

max (L (j (0) - j) max (Ta(j W) ) < 1
	

(4.153)

It is now clear from (4.153) that the loop transfer matrix Ta(j w) has

to attenuate faster than cmax l (L(jw) -- .L) in order to satisfy the stability

requirements at frequencies where the physical process is ill-represented

by the model. But the roll-off rate of Ta(j(o) is limited to w 1 as

evidenced by the following approximation

BTBC B

TT Qw) _ — j-w	 (4.154)

which holds for values of w sufficiently large. Substituting (4.154)

into (4.153) we obtain

cmax(L_(jw) - P c max (BT 
Ka 1)Iw1-1 < 1	

(4.155)

It follows from (4.155) that the cross -over frequency of TOQW) has to

be located well below the frequency where cmax (L(jw) - 1) starts growing

large.

Equation (4. 155)also makes explicit the relationship between the

roll-off frequency of T,(jW) and the stability factor a . If we define

the maximum cross-over frequency w Amax of Ta (jw) to be the frequency

when

cmax(Ta(jw)) - 1	 (4.156)

`	 it can then be readily shown that the quantity cmax (BT K B^ provides
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an upperbound for wamax. Moreover, we can deduce from Lamina 3.1 that

o max(BT 111) is an increasing function of a. The implication of the roll-

off requirement (4.135) on the choice of stability factor C& now becomes

clear. While a large value of a will improre the system's speed of

response, it may also extend the bandwidth into regions where L(P) is

large. In picking a vales for the stability factor a , the designer

needs to find a compromise between the requirements for stability it

face of uncertainties and speed of performance.

4.7 Summary of RPDS Robustness ProBIEU*—s

We shall summarise in this section the various robustness

properties of RPDS discussed in the tvo previous sections.

(i) Guaranteed gain and phase sardins for stability

If the matrix H is chosen to be diagonal, then a RPDS

design possesses the following guaranteed stability margins

GM	 (so . ^)	 (4.157)

PM D (min(-600 , -2sin 1 00 ),	 (4.158)

max(600 , 2siu 1 2))

where 00 is given by (4.127)

(11) Guaranteed gain and phase margins for the prescribed degree

of stability.

If the matrix R is chosen to be diagonal, then a RPDS design

possesses the following margins with respect to the

prescribed degree of stability
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(Sat , • )	 (4.159)

PMa D (min(-2sin 1
d 2 , -6003a

msx(2sin 1 L , 600))	 (4.160)

(iii) Effect of the stability factor o on the robustness properties

of RPDS

The RPDS's ability to tolerate modelling error (quantified in

terms of the magnitude of the modelling error in question) improves with

increasing value of the stability factor a only for some special choices

of error representation. Among the four types of modelling error presented

is this thesis, we only obtain an improved tolerance for

E4 (s) a (T 1 (s) - T 1 (s)) T(s) with increasing a • The guaranteed RPDS

margins summarized in (i) and (ii) above may deteriorate with increasing

CL if 00and Saturn out to be a monotonically decreasing functions of a

(see section 5.4 for an example of S0 being a decreasing function of a).

It was shown in section 4.4.4 that the behavior of the actual RPDS

gain and phase margins with changing value of a is highly system dependent.

(iv) High frequency roll-off requirement

The bound amsx(BT Ka 8) for the maximum cross-over frequency of

RPDS is an increasing function of a(see section 4.b). This in turn imposes

an upper limit on the value of a that we may employ in RPDS design.

It is well known to control system designers that too large a cross-over

frequency may result in excitation of the unmodalled and/or unknown dynamics

at hl.gh fraquencies which is undesirable from a stability robustness point

of view.
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It is important to emphasize that the conclusions summarized

in this section are only valid with respect to the types of model error

under investigation. The relative error in Ta l (s) is particularly useful

for our purpose, because its associated robustness theorems (Theorems 4.4

and 4.6) allow simple derivation of RPDS multi-loop margins with respect

to stability and degree of stability. Further study on the ability of

RPDS to tolerate model errors other than those considered here (see

[Le 1I Section 3.9 is needed for a more complete understanding of

its robustness properties.

4.8 Robustness Properties of Kalman Bucy. Filter with a Prescribed

Degree of Stability (FPDS)

As we have noted in Chapter II, KBF with a prescribed degree of

stability (FPDS) is the mathematical dual of RPDS. Dual robustness

results are therefore obtainable for such designs. These robustness

properties ensure the nondivergence of the filter under variation in the

nominal model of the plant which is to be estimated. In section 4.8.1

we set up the framework for robustness analysis of FPDS. The robust-

ness properties for this class of filter are discussed in sections

4.8.2. to 4.8.4.

4.8.1 Formulation of the Robustness Problem for Kalman Bucv Filters

with a Prescribed Degree of Stability

The basic FPDS problem considered here is identical-to that

discussed in Theorem 2.5. The underlying-linear system is given by

x(t)	 A x(t) +	 (4.161)

i
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Y(t) - '2 x(t) + Q (t)	 (4.162)

where r.(t) and 9 (t) are zero mean white noise processes with spectral

intensity matrices	 and A respectively. We also assume the observ-

ability of (C, A) and controllability of (A, -112). The state estimate

A(t) is then specified by

x(t) - A AW + H a 
v_(t)	 (4.

v (t) - Y 	 - C x(t)	 (4.164)

where

= Ê x C T 0 -1	 (4.165)

and E. is the unique positive definite solution of the R.iccati equation

(A + al4(1 + Ea (A + a U T + = - EaC T 0-1 C r.	 = 0	 (4.166)

A useful method for describing the state estimate dynamics of

FPDS (in fact for KBF in general) is given by the following set of

feedback equations

eW - A e(t) + w(t)	 (4.167)

'1(t)  - C e(t) - 9 (t)	 (4.168)

w(t) _ - (t) -t^(t)	 (4.169)

where s(t) = Y(t) - Y(t)	 (4.170)

and
e.

e(t) -  a(t) - x 	 (4.171)

A block diagram representation of these equations is given in

Fig. 4.14. By ignoring the noise sources, this can be rearranged into

a unity feedback of the type considered in Section 4.2. It is now readily
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apparent that

Fa (s) A C(,SI - A) ^l Ma 	 (4.172)

the loop transfer matrix of the error dynamics loop of KBF with prescribed

degree of stability is the dual of Ta(s) for RPDS. The discrepancy

between the linear model employed in the design of the filter gain and

the actusl system dynamics are modelled as multiplicative perturbations

L(s) inserted in the closed-loop after C (see Fig. 4.15).

4.8.2 Common Robustness Progei^.ies with KBF

Based on the feedback representation of the FPDS error-dynamics,

we are ready to characterize the stability margins of KBF with a prescribed

degree of stability. The nominal error-dynamics model corresponds to
r

the ideal situation is which the linear design model represented by (4.161)

and (4.162) are exact. Since all the results developed in this section

are mathematically dual to the RPDS results obtained in sections 4.4

and 4.5, the respective derivations will be omitted. The main emphasis

will be on the interpretation of robustness results in the estimation
i

context. All the FPDS robustness properties presented in this section

are known properties of KBF, and are included here for completeness.

To begin with, we state two frequency domain equalities for FPDS.

These are the exact dual of (4.63) and (4.64) in Theorem 4.8 and are

basic to the derivations of the robustness results given in this section.

Theorem 4.15	 Let the matrix Ea be the unique positive definite

solution of the algebraic Riccati equation
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(A+aI)T + (A+a I 	 +__ -z C T O -1 C	 _	 (4.173)

with

(i) > 0 and 0 > 0	 (4.174)

(ii) (A, _1/2) controllable	 (4.175)

(iii) (C, A) observable	 (4.176)

then

(I + Fa ( + s)) 0 (I + F	 a))T = 0 + M (s,-s)	 (4.177)

and

(I+ Fix (s)) 0 (I +Fa (-s)) T = 0 + Ma (s,-s)	 (4.178)

where we define

M(^,$) = C ( I - aI - A? -1	 al - A)
-T 

CT	 (4.179)

and

m	 A)-1 (24. +_) (sI - A)
-T 

CT	 (4.180)
MM

Remark The equalities (4.179) and (4 . 180) are derived from the

FPDS algebraic Riccati equations using manipulations similar to those

employed in the proof of Theorem 4.8.

Remark	 The two frequency domain equalities stated in Theorem 4.14

correspond to the two interpretations of FPDS given in section 2.4.

Using the positive definitness of Z. and equation (4.180) we

can readily obtain the following corollary to Theorem 4.15.

Corollary 4.9	 If pis the unique positive definite solution of

the FPDS algebraic Riccati equation (4.173), with the respective require-

ments on A, C, ?, and 0 being satisfied and if det (JwI - A) 0 0 for

^k
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all w > 0, we have

+ Fa (ian 0(I + Fauw))
R
 > 0	 for all w > 0	 (4.181)

Combining inequality (4.181) with Theorem 4.4 readily leads to the

following robustness theorem which holds for KBF in general.

Theorem 4.16	 Given a FPDS with loop transfer matrix of error

dynamics given by F,($), the mismatched error dynamics with loop transfer

matrix FQ(s) - L(s) Fa(s) 1 is closed-loop stable if

(i) Fa(s) and F s)have the same number of unstably poles	 (4.182)

(ii) ,(s) has no pole on the jw-axis	 (4.183)

(iii)
am= (07112 

L H (jw) 01/2 - I) < 1 for all w > 0	 (4.184)

The condition (4.184) describes the inherent robustness properties

of the FPDS design procedure. It says that everyry FPDS design can tolerate

at least multiplicative perturbation L(s) satisfying the bound (4.184)

If the observation noise at each output channel are uncorrelated (i.e.

0 is diagonal) and if the model mismatch can be represented by a

diagonal multiplicative perturbation of the error dynamics, condition

(4.184) can then be interpreted in terms of the gain and phase margins

of each output channel in the feedback representation of error dynamics

(Fig 4.15).

The derivation follows from recognizing the equivalence between

amax(6 1/2 L B(jw) 01/2 - I) < 1	 for all w > 0	 (4.185)

1
It can be readily shown that Theorems 4.4 to 4.7 also apply to model

error described by T(s) - L(s) T(s)

S {



s

a

-130-
i
i

and

I
pLg(jw1 + L(jw) 8 - 6 > 0	 for all w > 0	 (4.186)

When A and L(a) are both diagonal, (4.182) further siuplifies to

ZRe(j(jw)) > 1	 for all w > 0

	

i a 1,2,....,m	 (4.187)

If RiQw) is real, then (4.187) becomes

f!1 > Z	 (4.188)

Alternately, if ii (f w) . e
jo

 i , then condition (4.187) becomes

(m i ff < 600	(4.189)

The conditions (4.188) and (4.189) can be interpreted as implying that

FPDS design employing uncorrelated observation noise leads to a guaranteed

gain margin of (Z, 00 ) and guaranteed phase margin of (-60 0 , 600) in each

output channel of the error dynamics feedback system (Fig. 4.14).

These margins are relative to the ideal situation that (4.161) and (4.162)

are exact.

It is important to stress that the guaranteed margins thus derived

holds for ev ry MS design using diagonal 0 . The generality of this

result in turn accounts for its conservatism. Less conservative margins

can be obtained for a ig ven FPDS design if we combine the bounds derived

above with those derived using Theorem 4.5 and Corollary 4.3. The resulting

guarantee! gain and phase margins obtained from the latter are given by

YO
(1 - Y0 , 1 + Y0 ) and(-2sin 1 2 2sin 1 2—°) respectively where Y0 is

defined to be

Yo 	min amin(I + 6-112	 a ow)  6112)	 (4.190)

ae0	
—
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and 0 is diagonal.

Since the value of Y o usually lies between 2 and 	 1, the down-

ward gain margin 1	 ° results from application of Corollary 4.3 is
therefore always less than or equal to Z. However, the ralated guaranteed

phase margin (-2sia l 2—°, 2sia l 2°) will extend beyond the interval

(-600 , 600) only when Yo > 1.

It is clear from the above discussion that the following guaranteed

GM and PM hold for error dynamics of a given FPDS design with 0 chosen

to be diagonal

GM :) (1 - Yo , a)
	

(4.191)

Y	 _ Y
PM D (min(-60°, 2sia 1 Z ), max (60°, 2sin l 2 ))	 (4.192)

(.4.191) and (4.192) indeed yield the least conservative guaranteed margins

one can obtain using Theorem 4.4 and 4.5.

4.8.3 The Effect of the Stability Factor a on the Robustness Properties

of RPDS

Like the case of RPDS, the effect of a on the robustness properties

of the FPDS error-dynamics can be characterized in terms of the effect

of a on the matrix function I + !^ (s) and I + ^Fcc

The result described in the following corollary to Theorem 4.14

makes precise the behavior of I + F r (s) as a varies. It is the exact

dual of Corollary 4.2.

Corollary 4.10	 Let the matrix E and E be the unique positive—a 1	 a2

solutions of MS algebraic Riccati equations
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(A + ai) E + E (A +a^ T + = - E CT 0 -1 C E • 0	 (4.193)..a 
l 

—al 	—al —	 —al

and

(A +	 + r (A + ai) T + ` - ^a CT g-1 C	 0	 (4.194)

	

1	 2	 2	 2

where

	

W= ? 01 0 > 0	 (4.195)

(ii) (C, A) observable	 (4.196)

(iii) (_1/2 , j) observable	 (4.197)

and	 (iv) det(jwI - A) 0 0	 for w > 0	 (4.198)

Then one has ( I + F
Ml 

Qw))6 (I + F
a1 

(jw))g

> (I + FF Q(a) )A (I + Fa2 (jw)) g for all w > 0

if a1 > a2 > 0	 (4.199)

When A is a scaled identity matrix (i.e. the noises at each output channel

have the same intensity and are uncorrelated), the following inequality

on the minimum singular value of FPDS can be readily derived from (4.199)

by using the properties of singular values.

aminq + Fag Qw)) > vmin (I + FaR QW) for all w > 0 (4.200)
1	 2

This inequality provides us with a useful way of assessing the effect of

a on the robustness properties of the FPDS designs-Using condition (4.22)

of Theorem 4.4 together with condition (4.198) leads directly to the

conclusion that FPDS tolerance of model mismatch represented by 

	

-94 (a) - (,F,aT (-s) - Fa T(-s)) Q-s)	 (4.201)

1 The singular values of EE (s) given in (4.201 will be different from
those of 14 defined by 4(s) 	{l(s) - -Fa (s)) Fa(s)
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improves with a . As we have noted before, error measure of this type is

unintuitive and difficult to interprets.

Like the case of RFDS, a precise characterization of I +P^g(Jw)

with respect to change of a is not available. However, when 6 is an identity

matrix, it can again be shown that Qmin(I + 
4__%
F 

-H
is a decreasing

function of a for sufficiently large value of w.

4.8.4	 Robustness Properties with Respect to the De gree of Stability- a

We shall first examine the robustness interpretations of equality

(.4.179) for FPDS. The following corollary to Theorem 4.15 that characte-

rizes the behavior of the FPDS return difference matrix on the a-Nyquist

contour is the exact dual of Corollary 4.8

Corollary 4.11	 Let 
E 

be the unique positive definite solution

of the algebraic Riccati equation (4.163), with the respective requirements

on A, C, _ and 0 being satisfied and det(jwl. - rI) 0 0 for all w > 0.

Then

(I + a(-a + jw))0 (I + Fa (-a + jw)) H > 0	 (4.202)

Working with the equivalent feedback representation of the MS error	
a

dynamics given by (4.167) to (4.171), the theorem given below is a direct

consequence of (4.202) and Theorem 4.5.

Theorem 4.17 Given a FPDS with a prescribed degree of stability al and a loop

transfer matrix F(s). The mismatched error-dynamics with loop transfer

matrix IF, (s) - L(s) F (s) has a degree of stability a if
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(i) F(a - a) and F(s - a) have the same number of unstable

poles	 (4.203)

(ii) F (s - a) has no pole on the jw-skis 	 (4.204)

(iii) amax(A 
112 L H(jw - a) A1/2 -D < 1 for all w > 0 (4.205)

If the margin with respect to the degree of stability a derived

from (4.205) is combined with those derived using Theorem 4.5 and

Corollary 4.3, we obtain the following improved guaranteed margins that

apply to a given FPDS design employing uncorrelated.observation noise.

GM at each output
	

(4.206)

• channel C (1 - Ya, 0°)

PMa at each output	 (4.207)

channel C (min(-600 , -2sin 1 2a ) ,

max (600, 2sin Y1 2 ))
where Ya is defined by

Y - min cmin(I + T -H(-.(X + jw))	 (4.208)a W>Q	 -a

4.8.5 Concludinit Remarks

As we have commented before (see section 2.4),exponential weighting

of data is a technique well known to filter designers for curing the filter

divergence problems. The general thinking is that this will prevent the

old data from saturating the filter. In section 4.8.2 to 4.8.4, intuition

of this type is subject to rigorous examination using the recently developed

results in robustness analysis for MIMO systems. The results obtained

here however apply only to those cases where mismatch between the actual
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and the design model can be represented as a multiplicative perturbation

at the output matrix C in the feedback representation of the filter error

dynauics (Fig. 4.15).

i

	

	 It is clear from the discussion of the three previous subsections

and the summary remark in section 4.7 for the dual results of $PDS, that

improvement of FPDS's ability to tolerate model mismatch of the type

depicted in Fig. 4.15 only occur for very special choices of model error

representation. The exponential weighting technique is therefore not

a universal cure for every possible type of divergence problem. The

insights obtained from this section help to identif y Situations where

such technique can be effective.

In many applications of interest, the above conclusion may be

excessively conservative. This follows from the fact r.hat we have only

used some magnitude information on the model mismatch in our robustness

analysis. In the case where structural information is available, the

results in Chapter 4 of [Le 11 may be applicable.
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CHAPTER V

APPLICATION OF THE REGULATOR WITH A PRESCRIBF.ij

DEGREE OF STABILITY TECHNIQUE TO STATE FEEDBACK

DESIGN FOR MULTI-TERMINAL DC/AC POWER SYSTEM

5.1	 Introduction

The purpose of this chapter is to demonstrate the application of

the RPDS technique to design of a state feedback control law for a

9-machine, 4-terminal DC/AC power system. Based on this

example, the various robustness properties of RPDS designs discussed in

the previous chapter will be illustrated.

Two versions of the 9-machine 1 power system model are available

around 5 operating points. They differ in their details of machine

description. In the simple version of the model, every generator is

represented by a second-order classical machine. This gives a total

system order of 18. The open-loop poles of the system are plotted in

Fig. 5.1. Each of the 16 complex poles corresponds to a mode of inter-

machine oscillation. Frequencies of such oscillations range approximately

from 0.3 to 1.0 Hs, The two remaining poles are located on the negative

real axis. The one located at the origin corresponds to the mode of clock

error. The mode located at .375 is the mode of average frequency.

1 The power system models employed here are generated by Sherman Chan
using the Possim program of the General Electric Company
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FIG. 5.1 Open-Loop Poles of the Simple Model For the
9-Machine Power System at Operating Point 1
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Readers interested in the physical interpretation of these modes may

consult Chapter 3 of [Ch 1].

In the detailed version of the model, two of the generators are

modelled with four rotor circuits (two in the direct axis and two in the

quadrature axis). They are also equipped.with IEEE Type 1 exciters and

third order power system stabilizers. The total order of this system

is A. The open-loop eigenvalues of this system at operating point 1

are plotted in Fig. 5.2. The complex poles of the system that are

associated with machine oscillations are numbered in descending order

of their frequency.) Comparing the oscillatory modes given by the two

models show that they are in good agreement. It is also noteworthy

that 6 ?airs of the oscillatory modes have no counterpart in the 18-state

model, because they are associated with the stabilizing components of

the power system.

The basic design objective is to move the open-loop oscillatory

poles of the system to an appropriate region in the left-half complex

plane. This region is determined approximately by using engineering

Judgement on how large the closed-loop bandwidth may be without allowing

uumodelled high frequency disturbance or dynamics to destabilize the

system. For physical considerations, the average frequency mode and

the clock error mode are to be kept intact.
	 4

In section 5.2, several full state feedback designs are obtained

by using the RPDS methodology. A different value of the stability

1
Only one pole of each complex pair is displayed in Fig. 5.2 .
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FIG. 5.2 Open-Loop Poles of the Detailed Model for the

9-Machine Power System Model at Operating Point 1
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factor a is employed for each design. The resulting closed-loop systems

are found to display some desirable properties which are not predicted

by the theory developed in the previous chapters.

The robustness properties of the RPDS design are evaluated in two

ways. In section 5.3 we apply the control laws obtained for the simple

model at operating point 1 to the other four operating points. The

resulting movements of the closed-loop poles provide a good indication of

the system tolerance to change in operating conditions. The control law

obtained for the simple design model are also implemented on the detailed

38 state model at various operating points. This allows us to study the

effect of the unmodelled dynamics due to the exciters on RPDS designs-

an issue that we feel to be important since in this case the neglected

dynamics are no longer separated from the intermachine dynamics.

In section 5.4, we turn to the frequency domain robustness analysis

formulated in Theorems 4.4 and 4.5 with emphasis given to the effect of

the stability factor a on the quantities amax(I + Ta (jw)) and

amax (t, + T 1 (M ) .

5.2	 RPDS Designs

The design parameters to be chosen in a RPDS problem are the

stability factor a , the state weighting matrix 4 and the control	
'1

weighting matrix R. In the absence of information concerning the relative

cost of control for the different DC-terminals, we shall simply pick R

to be an identity matrix. The state weighting matrix 4 is chosen to

satisfy the following objectives:
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(i) Only the oscillatory modes associatr:d with the intermachine

oscillation but not the modes associated with the real poles

are penalized. This is done to limit the control amplitude

and to avoid 'Ateraction between the multi-terminal DC

controller and existing mechanisms for correcting the

generation mismatch and clock errors.

(ii) The damping ratio of the oscillatory modes should be around

0.2. This choice is somewhat arbitrary although it serves

to provide a reasonable LQ regulator (a - 0) design to

start from. This is not the only method of specifying

the 4 matrix in relation to transient response requirements.

Indeed, a suitable choice of 4 has to be considered jointly

with the stability factor a.

In cases where a - 0 (i.e. the LQ problem), the previous require-

meats on 4 can be easily met by application of modal weighting techniques

such as Solheim's method [So 11 .Whence is nonzero, an additional trick

is required to prevent the two real modes from being moved under feed-

back. To make clear the underlying problem we consider the case where

a is picked to be O.S. This choice of stability factor will result in

a matrix (A + al) with 2 unstable real poles. If the matrix 4 is chosen

to make these poles unobservable, then it follows from the properties

of algebraic Riccati equations and the discussion in Chapter 3 concerning

the construction of RPDS root-loci that the resulting RPDS feedback law

will shift the average frequency mode to -0.625 and the clock error mode

to -1.0. A scheme to avoid this problem is outlined below.1

1This scheme was first suggested to the author by N.A. Lehtomaki
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Step 1	 Compute a positive semi-definite matrix S which is defined as

S	 -S (X1 Y-1+ x2 y2)	 (5.1)

where xl yl are the right and left eigenvectors respectively of the

average frequency mode,x2 y2 are the right and left eigenvectors respecti-

vely of the clock error mode and S is set to be any positive real number

larger than a.

Step 2 Pick a state weighting matrix Q that makes the two real poles

(A + S) cost-unobservable and the closed-loop oscillatory poles possessing

a damping ratio about 0.2.

Step 3	 Using A = A + S in place of A in the RPDS design (i.e. solution

of the RPDS algebraic Riccati equation). The resulting feedback control

law is given by

u(t) _ - BT Ka x( t)
	

(5.2)

where 
a

 is the unique positive semi-definite solution of the equation

Ka (A + aI) + A + aI) ,K -	 B BT Ka + s	 0	 (5.3)

It can be readily verified that the procedure described above

results in feedback laws that leave the clock error mode and the average 	 a

frequency mode unchanged. First, note that the matrix A has two real

poles located at -S and - S- 0.375 with their left and right eigenvectors

given by yl xl and y2 a2 respectively. Moreover, by the choice of S,

these two poles will remain in the left-half complex plane upon addition

of a to their real parts (as is done in the RPDS design with stability

factor given by a )• It then follows from the choice of the matrix Q

___,1.4J
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and the properties of algebraic Riccati equations that the matrix

(A + (11 - B BT W which is obtained by applying the state feedback law

(5.2) to x(t) • (A + aj) g(t) will have two real poles located at

-S + a and -0.375 -$ + a. Moreover the eigenvectors of these two poles

are identical to those of the clock error mode and the average frequency

Tmode respectively. Subtracting S + a I from (A + a I - B B 16) will return

these real poles back to their original positions (-S + a - 0.3,75 to

-.375 and -S + a to 0) with their corresponding eivenvectors remaining un-

changed. It should be emphasized that the matrix S is used only for the

purpose of computing the feedback law.

The simple model of the 9-machine power system at operating point 1

is chosen to be the nominal model for design. Several values of a

ranging from 0.0 to 0.6 are tried in the design. These values of a are

compatible with the damping rate observed in the actual power systems.

Too large a value of a will result in faster performance at the cost of

having inputs with unacceptably large magnitude.

The closed-loop poles of the resulting RPDS design with a equals 0.0,

0.2, 0.4 and 0.6 are plotted in Fig. 5.3. Given the increment of (% equals

to 11A, all the oscillatory modes move further out to the left by an

amount roughly equal to -da. This is by no means a property common to

all RPDS at all values of positive a. Such behavior of RPDS closed-loop

poles is probably a result of the fact that all modes to be controlled

in the multiterminal DC/AC powe system are of the same nature (i.e. they

all represent modes of intermachine oscillations), It is also note-

worthy that changes in the imaginary part of the closed-loop poles with

respect to a are negligible compared to changes in the real part.
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Open
Mode Loop - 0.0 - 0.2 - 0.4 - 0.6

1,2 -0.18 -1.44 -1.61 -1.82 -2.056
+j 6.77 +j 6.77 +j 6.71 +j 6.66 + 6.60

3,4 -0.23 -1.34 -1.51 -1.70 1.92
+j 6.32 +j 6.32 +j 6.31 +j 6.30 +j 6.30

5,6 -0.17 -1.06 -1.20 -1.38 -1.60
+j 5.32 +j 5.32 +j 5.34 +j 5.41 +j 5.47

7,8 -0.23 -0.97 -1.11 -1.29 -1.518
+j 4.18 +j 4.18 +4.20 +j 4.20 +j 4.21

9,10 -0.16 -0.68 -0.83 -1.01 -1.32
+j 3.45 +j 3.45 +3.39 +3.32 +j 3.30

11,12 -0.17 -0.60 -0.72 -0.94 -1.25
±j 2.80 +j 2.80 +j 2.83 +j 2.87 +j 2.90

13,14 -0.19 -0.52 -0.65 -0.88 -1.18
±j 2.60 ±j 2.58 +j 2.60 +j 2.60 +j 2.60

15,16 -0.18 -0.46 -0.56 -0.77 -1.09
±j 2.20 +j 2.19 +j 2.23 +j 2.25 +j 2.26

TABLE 5.1

Closed-Loop Poles of the Norminal Design
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The maximum cross-over frequencies for the various RPDS deal4.gas are

also computed and listed in Table 5.2. The incremental behavior of this

quantity with a agrees with our discussion in section 4.6.

We shall analyze the stability robustness properties of the

above designs in the next two sections.

5.3 Behavior of the Closed-Loop Poles in the Face of Perturbations

In this section, we examine the movement of the closed-loop RPDS

poles subject to change of operating points and introduction of un-

modelled exciter dynamics. In the face of such perturbations, the

ability of a state feedback design to hold each closed-loop pole within

a small neighborhood of its nominal position is a good indication of

its robustness properties. The RPDS designs considered in this section

are those obtained in section 5.2 using the simple model of the 9-machine

power system at operating point 1. We shall study the robustness

properties of such designs in section 5.3.1 and the effect of a on the

robustness properties in section 5.3.2.

5.3.1 Robustness Properties with Respect to Change in Operating

Points and Unmodelled Exciter Dynamics

In section 5.2 several RPDS control laws were designed for the simple

model of the	 9-machine power system at operating point 1. We now

apply these designs to the other four operating points as well as the

detailed 38 state model of the power system, and study the behavior of

the resulting closed-loop poles. In Fig. 5.4, the closed-loop poles

of the nominal design with choice of stability factor a equals

t

e y
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cx

Maximum

Crossover Frequencies (Rz)

0.0 0.75

0.2	 ; 0.886

0.4 1.078

0.6 1.328

TABLE 5.2

Crossover Frequencies for RPDS Designs
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0.4 
1
are plotted together with those obtained from application of the same

nominal control law to operating points 2 through 5. It can be seen that

for each of the oscillatory modes, the closed-loop pole locations at

different operating points agree very well with one another. Indeed,

with the exception of mode 5,6 and 11 9,12 locations of the closed-loop

poles corresponding to each mode are found to lie within circle of diameter

less than 0.5 :.n the complex plane.

In Fig. 5.5 the oscillatory modes of the detailed model at operating

point 1 are plotted alongside those of the simple model for controller

design with a - 0.4. It is clear from the figure that there is a lack of

agreement between the closed-loop poles of the two models. With the

exception of modes 5,6 and 9,10 the poles of the detailed model are in

general less well damped than those of the simple model. Six oscillatory

modes (modes 3,4, 11,12 and 15,16 a. the detailed model in fact

possess damping ratio of value less than 0.2. Moreover, among these

six modes, four of which (modes 11, 12 and 15, 16 have real part of

their closed-loop poles less than the stability factor 0.4.

Figure 5.6 displays the closed-loop poles obtained by application

of the nominal control law of a - 0.4 to the detailed model at all five

operating points. Except for the case of modes 5,6,7,8 and 9,10,the

closed-loop poles at different operating points for each mode are very

close to one another. This indicates the dominance of the unmodelled

exciter dynamics over the change of operating points.

1 Throughout this section and section 5.4.2 only those results of the RPDS
design with a - 0.4 are displayed. The pattern of the closed-loop pole
behavior observed for such design is typical of those obtained from the

i
	 RPDS designs with other values of a.

t

t
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It is clear from the above discussion that the RPDS designs

obtained in section 5.2 have reasonabley good tolerance of changing

operation conditions and unmodelled exciter dynamics. This observation

is consistent with the excellent guaranteed stability margins derived

for RPDS in Chapter IV.

5.3.2 Effect of the Stability Factor a on Robustness Properties

We next examine the effect of the stability factor a on the

behavior of the closed-loop poles subject to perturbation of the system

dynamics. This is carried out by applying the RPDS designs with different

values of a to operating points 1 through 5. Recall from the last section

that the magnitude of the real part of all the closed-loop oscillatory

modes display an incremental behavior with a for values of a between 0.0

and 0.6. Moreover, such increment is uniform in the sense that if a

is increased by an amount equals to Da , then every closed-loop complex

pair will be shifted horizontally to the left by a distance roughly

equal to Aa.

Figure 5.7 displays the closed-loop poles that result from applying

the RPDS designs of Section 5.2 (which are based on the simple 9-machine

model at operating point 1) to operating point 1 for values of a

equals to 0.U, 0.2, 0.4 and 0.6. It is observed that as we increase

the value of a , all the oscillary modes move further out to the left

in the complex plane. However, unlike the case of the nominal design,

the amount of pole shifting observed here is no longer proportional to

the increment of M. It is also observed that the shift with respect

to increment of a tends to be larger for higher values of a.
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The effect of a on the ability of RPDS to tolerate unmodelled

exciter dynamics is examined next. The closed-loop poles corresponding

to machine oscillations of the detailed model at operating point 1 are
e

plotted in Figure 5.8 for state feedback designs with value of a equals to

0.0, 0.2, 0.4 and 0.6.

It is clear from the figure that the resulting pole pattern again

displays an incremental behavior with a, in that the closed-loop poles

associated with RPDS design using larger value of a are hold further

back from the jw-axis in the face of unmodelled exciter dynamics.

The above observations suggest improvement of RPDS ability to

maintain stability in the face of changing operating points and un-

modelled excitor dynamics with increasing value of a . This is a

consequence of the fact that lare value of a will result in the

closed-loop poles being positioned further away from the jw-axis. It

does not however suggest that the ability of RPDS to hold the closed-loop

poles near their nominal position under perturbations improves with

increasing value of a .

5.4 Frequency Domain Robustness Analysis

Based on the unity negative feedback representation of RPDS in

Figure 4.7, frequency domain robustness characterization for the state

feedback controllers derived in section 5.2 can be readily obtained.

All the RPDS designs studied in this section are again based on the simple

model of the 9-machine power system at operating point 1. The behavior

of amin(I + Ta (jw)) and Qmin(I + TL1 (jw)) with changing a are examined

in section 5.4.1. Robustness analysis of the type described in Theorems 4.4

li
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and 4.5 are given in section 5.4.2.

5.4.1 Effect of the Stability Factor a on the Return Difference and

Inverse Return Difference Matrices

Minimum singular values of the return difference matrices are plotted

in Figure 5.9 for the RPDS designs obtained in Section 5.2. All the

singular value plots are found to display a peak in the vicinity of

0.5 Hz, and thereafter roll off in a first order fashion. Moreover, it

is clear from the plots what the quantity a min(I + T-a ( )) increases

monotonically with a for all values of (a . This latter observation is

consistent with our conclusions in Section 4.4.4 regarding the

behavior of RPDS return. difference matrices with increasing a1.

The plots for the complementary quantity Qmin(I + T,-1 Ow)) of

the same RPDS designs are displayed in Figure 5.10. In view of the

peak near 0.5 Hz observed in the plots for a min(I + T ( ,)w)), it is not

at all surprising that the plots for amin(I + -Ta 1 (Jw)) should display

a valley at about the same frequency. Beyond this frequency, the plot

for Qmia(I + Ta QW)) began to rise proportionately with w in a

first order fashion. It can also be seen from the plots in Figure 5.10

that Qmin(I + T; 1 (jw)) is a decreasing function of a for each value of w.

Consequently, the guaranteed margins (as given in (4.12) and (4.13))	 ;

for such design will deteriorate with increasing value of M.

1 Due to the presence of the matrix S in the algebraic Riccati equation
(5.3), one may question the applicability of the conclusions in Chapter IV
to the present design example. A closer look at the problem however
dismisses such a suspicion. Using the construction of the matrix Q
and the property of_the algebraic Riccati equation, it can be readily
demonstrated that Y., .j - 0 where !6 is the unique positive definite
solution of (5.3). This in turn reduces the Riccati equation (5.3)
to one identical to (4.59).
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FREQUENCY (Radian/sec)

FIG. 5.10 Plots of Qmia(I + T^ 1 (jw)) for Nominal RPDS Designs
Based on the Simple Power System Model at Operating
Point 1 with a equals to 0.0, 0.2, 0.4 and 0.6
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5.4.2 Robustness Tests Based on Singular Values

In order to apply the robustness tests described in Theorems 4.4
i

and 4.5 to the present example, the multiplicative error matrix L(s) with

respect to the nominal system model are computed for different perturbed

system dynamics. The nominal system model consists of the simple model

for the open-loop power system at operating point 1 which is regulated by

a state feedback controller with prescribed degree of stability equal

to 0.4. This controller is taken directly from the respective RPDS

design in Section 5.2.

The various singular values specified by conditions (4.22)and(4.27)

are plotted in Figures 5.11 and 5.12 respectively for perturbations

corresponding to change of operating points. The singular values plots

for amax(L 1 Qw) - I) and amax(L Qw) - I) ar found to display drastically

different behavior for different operating points. In particular, the

values of amax(L-1 (ja) - I) and amx(L(ya) - .1) result from switching

from operating point 1 to operating point 2 are noted for their exceptionally

large magnitude at low frequencies. This pattern of behavior is in

contrast with the insignificant change of the closed-loop pole positions

observed in the last section for precisely the same class of perturbations

(i.e. change of operating points). It becomes clear from this observation

that robustness characcerization based on matrix norms can be very

conservative. Canservatiism of the norm-based robustness test is further

manifested by the fact that conditions (4.22) of Theorem 4.4 and (4.27)

of Theorem 4.5 are violated for some nondestabilizing perturbations

(such as the change of operating condition from operating point 1 to

operating point 2).

i
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i

FIG. 5.12 Singular Value Plots for the Robustness Tests Given in
Theorem 4.5. Nominal Design is Obtained by Applying the
RPDS Design in Section 5.2 (That is Based on the Simple
Power System Model at Operating Point 1; a - 0.4) to the
Simple Model of the Open-Loop System at Operating Point 1.
The Perturbations are due to Change of Operating Points



20

is

10

S

- o

i

-s

bE - 
t0

1

3 -iS

20

b-

2S

30

I

-162-

FIG. 5.13 Singular Value Plots for the Robustness Test Given in
Theorem 4.4. T'ne Nominal System is Obtained by Applying
the RPDS Designs in Section 5.2 (That are Based on the
Simple Power System Model at Operating Point 1; a - 0.4)
to the Simple Model of the Open-Loop System at Operating
Point 1. The Perturbations are due to both Change of
Operating Points and Unmodelled Exciter Dynamics
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FIG. 5.14 Singular Value Plots for the Robustness Tests Given
in Theorem 4.5. Nominal Design is Obtained by Applying
the RPDS Design in Section 5.2 (That are Based on the
Simple Power System Model at Operating Point 1. a - 0.4)
to the Simple Model of the Open-Loop System at Operating
Point 1. The Perturbations are due to Both Changes of
Operating Points and Unmodelled Exciter Dynamics
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The above observationn also apply to perturbations that result

from introduction of unmodelled exciter dynamics in addition to change

of operating points (Fig. 5.13 and 5.14). The respective value of

amax(L(jw) - I) and Amax (L:1 (jw) - I) at each value of w are found to

be larger than the corresponding quantities result from changing of

operating conditions alone (compare Fig. 5.11 and Fig. 5.12 with

Fig. 5.13 and Fig. 5.14 respectively). This again indicates the

dominance of the unmodalled dynamics over the change of operating point.

5.5 CoLcludint Remarks

We have studied in this chapter the application of RPDS technique

to design of state feedback control laws for a multi-terminal DC/AC

power system. Our major objective is to demonstrate with the aid of a

nontrivial multivariable design example the various properties of RPDS

discussed in the previous chapter.

With regard to the positioning of closed-loop poles, the RPDS

design obtained in section 5.2 are found to possess an intarest:Lng

property which is not predicted by the results developed in this thesis.

For values of a between 0.0 and 0.6, a given increment of a will shift the

cloned - loop oscillatory modes horizontally to the left by approximately

the same amount. This unexpected property of the REDS design is probably

a result of the fact that all the open-loop modes to be stabilized are

of the same nature (i.e. they all correspond to modus of intermachine

oscillations). It is by no means a result that applies in general.

Robustness properties of the RPDS designs in section 5.2 are

evaluated in two complementary ways. In section 5.3, movement of the
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closed-loop poles that result from change of operating points and intro-

duction of unmodalled exciter dynamics is examined. In all cases under

consideration, the RPDS state feedback controllers are found to maintain

a reasonable degree of damping for all the closed-loop oscillatory modes.

Moreover, the closed-loop poles associated with RPDS designs that employ

a larger value of"a are always held further away from the jw-axis in the

face of perturbation. These observations are consistent with the excellent

stability margins derived for RPDS systems in Chapter IV. In section 5.4,

the frequency domain robustness tests prescribed by Theorem 4.4 and 4.5 are

applied to the RPDS designs under consideration. Perturbation of system

dynamics that produce closed-loop patterns similar to one another are

found to display drastically different behavior in the plots for their

respective cmax(L 1 (jw) - .1) and a=x(L(jw) - L). This is an indication

of the conservatism associated with the norm-based robustness tests.

Conservatism of such tests is further reflected by the fact that condition

(4.22)of Theorem 4.4 and (4.27) of Theorem 4.5 are both violated in casc

of nondestabilizing perturbation. We also examine the behavior of the

two MIM frequency domain robustness measures Cmin(I + Ta (jw)) and

Cmia(I + ^'(jw)) with respect to change in a. They are shown to be

monotonically increasing and decreasing functions of a respectively for

all values of w . The result obtained for the quantity amin(I + TaQw))

agrees with our conclusion in section 4.4.3 while that obtained for

gain(!.+ T^l (jw)) confirms a conjecture we made in section 4.5.3 concerning

the property of RPDS inverse return difference matrix.
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CHAPTER VI

DESIGN OF REGULATOR WITH A PRESCRIBED DEGREE

OF STABIZLITY WED LQG COMPENSATORS

6.1 Introduction

A basic practical limitation associated with the RPDS design is

the assumption of full state feedback. In many practical applications

full state feedback can never be exactly realized and often it is either

impossible or too expensive to provide enough sensors for achieving even

an approximate realization.

The way this problem is handled in modern control theory is

through the use of LQG methodology [Ath 11, in which a Kalman-Bucy filter

is used to provide the necessary state estimates using noisy output measure-

ments. The class of LQG controllers considered here are the RPDS based LQG

controllers. The state feedback gains for such controllers are obtained

using the RFDS design methodology discussed in Chapter II.

The standard configuration for a RFDS based LQG control system

is depicted in Fig. 6.1 with various points of the loop marxed. To

determine the robustness propelties of the design, we shall insert aalti-

plicative perturbation of the type considered in Section 4.2 at points

(2) and (3) and find out the tolerable magnitude of the model error that
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will not destabilize the system. The other two points Cl) and (4) are

internal to the LQG compensator and are therefore less significant for

robustness analysis. However, they have some desirable loop properties

that can be related to the other two points.

Following the notation employed in [Le 11, we shall denote the

loop transfer matrix at point (K) by Tg(s). Each TT (s) is calculated

by breaking the loop at (K) and treating this point as both the input

and output. For the four points marked in Fig. 6.1, we have

T1 (s) - C (s) B

T2 (s) _ a (0-1 (s) + B Ga+ H C) -1 H C 0(s) B

T3(s)	 C (s) B -GM (0-1 (s) + B G  + H C)-1 g
14(4)	 C 0(s) H

where O(s) 4 (sI - A)-1

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

GM is the RPDS state feedback gain and H is the KBF gain.

Note that points (1) and (4) have loop transfer matrix identical to those

of RPDS and KBF respectively. Thus at point (1) the RPDS robustness

properties apply.Similarly, the KBF robustness properties are valid at

point (4). No guaranteed stability margin is however available at both

points (2) and (3), which are the actual interface between the control

system and the real world. It was demonstrated by Doyle [Do 4] with a

Simple example that a reasonable lookiig LQG design may have arbitrarily

1It is important to point out that only the state feedback gain of the
RPDS based LQG compensators but not the KBF gain is designed with a
prescribed degree of stability. Robustness properties of KBF are
identical to those of FPDS discussed in section 4.8.2.

J
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small stability margins.

For conventional LQG design (one for which the state feedback

gain is obtained by using the LQ instead of the RPDS method),there are

two dual robustness recovery procedures that allow us to approximate

the transfer matrices T1 (s). and T (s) with 12 (s) and T3 (s) respectively

in a systematic fashion. These procedures use the asymptotic pole pro-

perties of LQ regulators and KBF respectively (see [Do 3] for a review

of such properties), and can be applied only if the plant is minimum

phase.

The robustness recovery procedure due to Doyle and Stein [Do 11

makes T 2 (s) to approximate 11 (s) by using a process noise with spectral

intensity of the form p B BT + _ in the KBF Riccati equation and letting

p go to infinity. As a result, the LQ robustness margins at point (1)

can be recovered asymptotically at the input (2). In a dual fashion,

the robustness recovery procedure due to Kwakernaak [Kw 31 is used to

recover the stability margin for (4) at the output (3). This is

accomplished by using a state weighting matrix of the form s + p CT C

and letting p go to infinity.

The objective of this chapter is to study the various issues

that arise in the application of robustness recovery procedures to

design of RPDS based LQG compensators.

6.2 Desisn of RPDS Based LQG Compensators Using Robustness Recovery

Methods

In this section, we illustrate with the aid of numerical examples

some considerations that are of importance to design of RPDS based LQG
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compensators.

6.2.1 Relationship Between the Stability Factor a and the Minimum

Phase Condition

If the stability margins associated with the loop transfer matrix

13 (s) of a given RPDS based LQG compensator (with prescribed degree of

stability a) is found to be unsatisfactory, an obvious way to improve the

design is to employ the robustness recovery procedure of Kwakernaak

([Rw 11 and [Kw 3]). Recall from the last section that Rwakernaak ' s method

requires the adjustment of the state feedback gain G. for making 13(s)

appropriate the KBF transfer matrix T 4 (a). This is accomplished through

the introduction of a state weighting matrix of the form Q + pC T C

into the LQ Riccati equation and letting p go to infinity. The finite

closed-loop regulator poles will then asymptotically approach the zeroes

of C(sI - A)-1 B (see Theorem 4.13 of [Kw 1]). However, the LQ regulator

thus obtained is no longer guaranteed to possess the same prescribed

degree of stability as the original RPDS design. This is the case when

some zeroes of C(sI - A) -1 3 have real parts larger than - a.

If the RPDS Riccati equation (4.59) is used as the design

equation, it follows from Theorem 3.2 that the resulting regulator poles

will always lie to the left of Q - - a for every value of P . But the

asymptotic location for these finite poles may not coincide with those

of C(sI - A)-1 B unless C(sI - A - aI)-1 B is also minimum phase. If

C(sI - A - aI) -1 B fails to be minimum phase, the asymptotic state

feedback gain will satisfy
I

^Y

Y

r
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♦ R1/2 WC	 C6.6)

as p approaches infinity where C # C and W is some orthonormal matrix

(see Chapter 3 of jKw 1]). It can be readily demonstrated with the use

of elementary matrix manipulations that full state KBF loop cannot be

recovered asymptotically as a result of C #

Defining

j7(s) d (sI - •A - H C)
-1
	(6.7)

we can rewrite 13 (s) as

13 (s)= C j.(s) B G( -1 (s) + B GG + H C)
-1 

H

= C i (s) B %[F(s) - T(s) B (i + % 
1(s) 1)

-1 
-Ga 

i(s) l H

= C (s) B (I + G T(s) B)-1 Ga T(s) H	 (6.9)

To go from (6.8) to (6.9), we employ the matrix inversion lemma

(see for example Appendix A of [Sc 1]). As p approaches infinity the

following approximation follows immediately from (6.6) and (6.19)

C (s) B (I + _Gj(s) B) -1 G ^(s) H

+ C (s) B (C T(s) B) -1 C T(s) H	 (6.10)

It can be shown that the matrix function on the right side of (6.10) is

equal to the KBF loop transfer matrix C ±(s) H when C= C. If C #

there exists no useful simplification of this matrix function and the

robustness properties of the KBF loop is not recovered as a result.

The following example illustrates the effect of a on the design

of LQG compensators using Kwakernaak's robustness recovery procedure.
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Example 6.1	 Consider the LQG problem

min	 J = E lim tl ez00C jxT (t) 4 z(t) + uT (t). R u(t) 1dt
u(t) E f (y(Q. )	 ti 0

(6.11)

subject to the dynamic constraint

x(t) _	 1 	 + 31

	

(t)	 (6.12)
C_ 3	

x(t) + [ 01 .2(t)

and the observation constraint

y(t) _ [2 11 x(t) + 0 (t)	 (6.13)

where

Q	 s0 r/-35]  IM 11	 (6.14)
$-1

and ^ W , 0(t) are zero mean white noise processes of spectral intensity

equal to 1.0.

The plant in this example is a stable minimum phase system with

transfer function given by

s

UL(s) _	
(s+l) (S+3)	

(6.15)

Solution of the above LQG problem for a 0 results in a state feedback

gain given by

GG _ 150	 101	 (6.16)

and a Kalman Bucy Filter gain given by

H = 	
(6.17)

[30

50

r
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Inspecting the Nyquist diagram of the LQG loop transfer function reveals

poor stability margin CGM - (-6 . 75 d,b oo ) and PM - C- 15 
0 

0  150D for the

resulting LQG design. This is due to the presence of a insta;)le pole in

the LQG loop transfer function. In order to improve the robustness

properties of the feedback loop ,we employ the robustness recovery pro-

cedure of Kwakernaak. A new choice of the state weighting matrix given

by

-% 
=Q+p 2 [2 1]

	
(6.18)

1

is employed in the LQ algebraic Riccati equation

K 0 1+ 0 -4 K - K 0 [0 11	 K+^	 0

-4 -3 1 -3 1 (6.19)

The state feedback gains for various values of p are computed and the

respective LQG loop transfer functions t 3 (s) are plotted in Fig. 6.2.

It is observed that the stability margins of the resulting designs improve
4

steadily with increasing p (see Table 6.1). For a > 0 we replace

equation 6.19 with the following RPDS algebraic Riccati equation

K	 a	 1	 a -4	 I- I	 0	 [0	 11 +	 0	 (6.20)
a	 +

	

-4	 -3 + q	 1 -34a	 1

the resulting LQG design is always guaranteed to possess a degree of stabi-

lity a. However, asymptotic recovery of the KRF loop with this modified

procedure is only possible for values of a less than 2,0, Th is is vividly

t	 demonstrated by the Nyquist diagrams depicted in Fig. 6.3 and Fig, 6.4.

t	 When a is chosen to be 1.8 (Fig. 6.3), the stability margins of the

t

f

E
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4 Iw

FIG. 6.2 Nyquist Diagrams for Design Iteration of RPDS

Based LQG Compensators (a - 0) Using Kwakernaak`s
Recovery Procedure
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PM1 GM2 d3P

0 15.30 -2.Odb 0.29

100 21.80 -2.7db 0.39

500 350 -5.5ldb 0.58

1000 45.40 -9.6db 0.9

10000 720 -34db 4 0.917

TABLE 6.1

1
	

Summary of Stability Margin for Design Iteration of
a RPDS Based LQG Compensator (a • - 4.5) in Example 6.1

1 This is in violation of the notation introduced in Chapter IV.
The angle given here corresponds to the value of 8 in the
definition of PM.

2 Only the downward gain margin is given here. The upward gain
margin is infinity for all cases.

3 d is the nearest distance between the Nyquist diagram and Lhe
critical point (-1,0).

The actual gain reduction margin is lower than the value indicated

i

i
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FIG. 6. 3 Nyquist Diagrams for Design Iteration of RPDS

Based LQG Compensator (a -1.8)Using Kwakernaak's
Recovery.Procedure
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FIG. 6.4 Nyquist Diagrams for Design Interaction of a
RPDS Based LQG Compensator (a - 2.2) Using
Kwakernaak's Recovery Procedure
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i

FIG. 6.5 Myquist Diagrams for Design ;aeration of s
RPDS Based LQG Compensator (a - 4.5) Using
DoyWStein's Robustness Recovery Method
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design improve steadily with increasing value of p and reasonably good

stability margins are obtained for valt:a of p equals to 1,000. For

case where a equals 2.2 (Fig. 6.4) the stability margins of the resulting

design remains unsatisfatory even when large value of p is employed.

The above problem is not shared by the robustness recovery pro-

cedure due to Doyle and Stein. Nyquist diagrams of the transfer functions

that result from the design iterations of a RPDS based LQG compensator

using Doyle/Stein's method are depicted in Fig. 6.5. The choice of a

chosen for Lhis case is 4.5. It is clear from the figure that the stability

margins of the design improve as larger value of p is used demonstrates

satisfactory impravement..

6.2.2	 Rate of Robustness Recovers► with Respect to the Noise Scalinst
Parameter

The robustness recovery method of Doyle and Stain [Do 1]

requires the use of a process noise with spectral intensify of the

form

+ p B BT	(6.21)

and letting p go to infinity for asymptotic recovery of the full state

RPDS stability margins. This procedure provides characterization of the

LQG feedback loop as the noise scaling parameter p approaches infinity.

It toes not, however, give us any clue as to the behavior of the LQG loop

when p varies. We shall a-amino in this chapter the effect of a on the

rate of recovering the RPDS stability margins with respect to changes in P.

In the SISO case, this can be simply accomplished by inspection of the

respective Nyquist diagrams. In the MIMQ case, the sLigular value
6

f



plots of the respective loop transfer matrices have to be used ( yor an
k

example of this, see [Do 1]). For ease of exposition, only SISO systems

will be considered in the following example.

Example 6.2	 Consider the RPDS based LQG design problem defined in Example

6.1. Design iterations with noise scaling factor p - 0, 100, 500, 1000 and

10000 are performed for several choices of the stability factor a	 The

Nyquist diagrams of the LQG design with a chosen to be 0, 3, 4.5, 6 and 9

are plotted for each of the five iterations (Fig. 6.6) and the resulting

stability margins tabulated (Table 6.2 and Fig. 6.7). Several interesting

observations are in order.

First it is noticed that the Nyquist diagrams of the LQG designs

with value of a equals to 0, 3 and 4.5 move further away from the critical

point (-1,0) than those designs with a equals to 6 and 9 as the value of p

increases. Consequently, the stability margins of the designs with a

equals to 0,3 and 4.5 are superior to those with values of m equals to

6 and 9 for a fixed value of p (see Table 6.2 and Fig. 6.7) . Secondly,

the rate of robustness recovery with respect to p does not strictly

decrease with a for the values of a under consideration. It is clear

from the Nyquist diagrams in Fig. 6.6 and the data presented in Table 6.2

that the stability margins for LQG designs with a equals to 4.5, 6.0 and 9.0 
f

decreases with increasing value of a for a fixed value of p. This is

however not the case for designs with a equals to 0 and 3.

In view of the above observation, it does not seem likely that one

can make any conclusive statement concerning the effect of a on the rate of

robustness recovery. However, these observations do illuminate a potential

l
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a 2 3.0,,E

a =4.5

yQ 29.0
°
^f

a =6A

Cl = 0.0	 _
p=0

Fig. 6.6a

jw

G'

La=4.5

-9.o

a=3.0

i0

14 6.0

p	 I
Fig 6.6b

Nyquist Diagrams for Design Iterations of RPDS Based

t	 LQG Compensators (a - 0.0, 3 .0, 4.5, 6. 0 and 0.0)

Using Doyle/Stein Method
f
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`	 Fiq.64f	 Full Statel

1 Since the Nyquist Diagram of the RPDS Transfer Functions
Corresponding to a - 0.0, 0.3 and 0.45 are very closed
to one another, only that of a - 0.0 is Displayed
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a 0 3 4.5 6 9

GM -1.9db -1.9db -2.02db -1.27db -0.72db

PM2 16.50 16.50 16.50 11.50 So

d 3 0.2 0.22 0.208 0.15 0.1

A	 0

`a 0 3 4.5 6 9

GM -2.65db -2.83db -2.67db -1.25db ;	 -1.Odb

PM 210 210 20.60 14.50 110

0.36 0.375 0.354 0.187 0.133

p - 102

`a 0 3 4.5 6 9

GM -5.Odb -5.5db -5.32db -3.65db -1.9db

PM 32.50 320 32.50 25.50 160

d 0.733 0.8 G.8 0.45 0.25

p - 500

Table 6.2 to be continued



-185-

`a 0 3 4.5 6 9

GM -8db -8.5db -8.3db -5db -3db

PM 430 42.50 430 340 210

d 0.917 0.95 0.95 0.73 0.33

p - 103

V
0 3 4.5 6 9

GM >-37db4 >-43db4 >-38db 4 -28.5db -14db

PM 750 750 750 670 560

d 0.95 0.95 0.95 0.87 0.80

p - 104

k

Table 6.2 to be continued
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`a 0 3 4.5 6 9

GM -mdb Ddb --adb Ddb -p°db

PM 86.50 890 85.50 870 820

d 1 1 1 1 1

Full state

TABLE 6.2

Summary of Stability Margins for Example 6.2

1 This is a violation of the notation introduced in Chapter IV. The angle
given here corresponds to the value of 8 in the definition of PM

2 Only the downward gain margin is given here. The upward gain margin
is infinity for all cases.

3 d is the nearest distance bet%reen the Nyquist diagram and the
critical point (-1,0). The actual gain reduction margin is lower
the value indicated.

4 The actual gain reduction margin is lower than that indicated.

i
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problem that may occur in the design of RPDS based LQG compensator using

robustness recovery procedures, It is apparent from this example that

large values of a (;x • 6 0 9) may slow down the recovery of RPDS stability

margins and thus necessitate the introduction of high filter gains for 	 3

securing good robustness peroperties. The use of high filter gain in 	 r

feedback loop often leads to degradation of observation noise rejection

that is undesirable from the performance point of view. The resulting

situation is one where a satisfactory compromise among the need for

speed of response (as specified by the choice of a), noise rejection and

stability robustness has to be made by appropriate choices of a and p.

6.2.3 Effect of the Stability Factor a on the Noise Rejection Properties

To conclude the discussion in this section, we examine the effect

of the stability factor a on the noise rejection properties of RPDS

based LQG compensators. Such effect can be characterized in terms of the

behavior of the state covariance matrix (assuming zero mean for the random

vector x(t)

E x	 E[x(t) xT (t)J	 (6.22)

with different 1 ►alues of a.	 i

Recall from the definition of the state estimate error e(t) in

(4.111) that

s(t) - SW - x(t)	 (6.23)

It is useful to point out that i(t) and e(t) are uncorrelated

random vectors (Chapter III of [An 21 and Chapter IV of [B,w 1]). As a result

of this, we can express Ex as a sum of two covariance matrices
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LX LA + Es	 (6.24)

where

	

Ex	 E(x(t^ x(t) T]	 (6.25)

and

	

C e	 E(e(t) e(t) T ]	 (6.26)

Moreover, the dynamics of the LQG control system can be conveniently

described by using (e(t) T a(t) T] as a state vector. The underlying

differential equation in this case is given by

d	 e(t)	 A- H C	 0	 e(t)	 -I 8	 (t)

dt
+

	

x 	 -H C	 A - B G	 (t) x	 0 fl ® (t)

.(6.27)

which can be readily derived by inspection of the block diagram in

Fig. 6.1. Using the above dynamical equation, and Theorem 1.53 of

(Kw 11 (which is a standard result in stochastic process theory) leads

directly to the following result.

i

t	 Lemma 6.1	 Given a LQG control system described by (6.27) the steady

i	 state covariance matrix

t	 .

1

E	
e(t)	

[e(t) T x(t) T J	 0	
(6.28)

	

x(t)	 0	 E

r	 satisfies the algebraic matrix equation
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A - RC	 0	 E 	 0	 E 	 0	 A-HC -HC	 T

-H C	 A- B Ga 	0 E A	 0 E^	 0	 A- B Ga

	

? +H 6HT 	H ®HT 	0	 0

+	 (6.29)

H 9HT 	H 6HT 	0	 0
M.

It is straightforward to show that the solution of equation 6.29 can be

obtained by solving the two following decoupled matrix equations

+	 (A	 T+(_+HOHT)	 0	 (6.30)

and

{—A-BGa E + ^(A -BGG	 +H9HT. 0	 (6.31)

This is a direct consequence of the fact that u(t) and e(t) are uncorrelated.

It becomsp clear from

(and hence the stabil.

tiating both sides of

14
Q - B G as

(6.30) and (6.31) that the BPDS state feedback gain

lty factor a) only affects the matrix Ems". Differen-

(6.31) with respect to a and rearranging, we obtain

+ aax LA - B ia) - D• 	(6.32)

where
a	 a

D 
b 

B R 1 BT E " + E" 	 B R71  
sT	

(6.33)as x 1 ^a--

aE"
The matrix as
	

allows us to access the effect of stability factor
a-a

on the'noise covariance matrix E x at a - a , If the ith diagonal
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aE.,
element of	 is positive, then the variance of the ith state will

increase with a at a a	 Likewise, if the ith element of

aE^-'c	 is negative, then the variance of the ith state will decrease
as a^a

with as at a uW* Since (& - 8 G ) is a stable matrix, we can thus conclude

from the well known properties of algebraic Lyapunov equation that

arcis positive (negative) semidefinite (i.e the variance of-all
M— a--a
states increases (decreases) with a at a a), if the matrix D is

negative (positive) semidefinite. If D turns out to be indefinite,

the resulting a c 	 is also indefinite. In this case, the
as +a•u

increase of a will increase the variance for some states and decrease

that for others.

The following example is again based on LQG problem considered

in Example 6.1. It demonstrates the behavior of &. with increment

of a .

Example 6.3	 Consider the RPDS based LQG controller design

problem in Example 6.1. The noise covariance matrixE x is computed for

the resulting designs at five different valises of a and p is chosen

to be 0 (see Table 6.3). It is clear from the tabulated results that

the variance of the first state decreases with a while that of the

second state increases saith CL.

6.3	 Concludin`Remrks

'	 We have identified in this chapter several potential problems
E

that may result from the use of robustness recovery procedure in Aesigri

i
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al E-ic

0 189.5 — 554.9
—554.9 1910.2

1.5 186.6 —554.9
—554.9 1930.2

4.5 177.4 —554.9
—554.9 2055.5

6.0 155.3 —554.9
—554.9 2550.1

9.0 139.7 —554.9
—554.9 3961.3

TABLE 6.3

Noise Covariance Matrices of the State Vector s(t)

for Different Values of a; p • 0
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of RPDS based LQG compensator. Too large a choice of the stability factor

is found to prevent the recovery of the full state KSF stability

margins with the Kwakernaak's procedure and slo g down the rate of

robustness recovery with the Doyle/Stein's procedure. However, it is

important to point out that the result on rate of robustness recovery

is obtained only for a particular single-input system. More practical

experience with application of robustness recovery method to MIMO RPDS

based LQG compensator design is needed before the nature of this problem

can be fully comprehended.
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CHAPTER VII

SUMARY, CONCLUSIONS AND SUGGESTED DIRECTIONS FOR

FUTURE RESEARCH

7.1 Sunmary

We have examined in this thesis a wide range of problems related to

RPDS methodology and its applications. This includes attempts to

(i) explore the use of RPDS methodology for time-varying systems

(ii) adapt RPDS methodology for LQ regulator problem with design

specifications other than prescribed degree of stability

(iii) develop methods of eigenstructure analysis for RPDS control

systems

(iv) clarify the robustness properties of RPDS in the multiple-

input case

(v) identify potential problems that may occur in the design of

RPDS based LQG compensators.

We began our investigation in Chapter II with a formulation of the

RPDS problem for linear time-varying systems. A generalized notion of

'degree of stability' that applies to all finite-dimensional linear

systems is introduced. This definition has the desirable property that

it reduces to characterization in terms of eigenvalues for the LTI systems.

It turns out that the exponential weighting technique for solving the

time-invariant RPDS problem is equally applicable to the time-varying
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case. The related problem of designing Kalman Bucy filters with prescribed

degree of stability(MS) is formulated and solved in a dual fashion.

For case of LTI systems with stationary noises, the optimal filter solution

admits Interesting irterpretatious in terms of the special form of noise

intensity matrices required for speeding up the error dynamics.

In Chapter III, several eigenstructt.re characterizations of the

time-invariant RPDS are derived. The sensitivity equations for the

RPDS poles are obtained in two different ways. The first approach is

a direct application of the classical eigenvalue sensitivity result.

The second approach utilizes the special eigenstructure properties

of Hamiltonian System associated with RPDS problem. The computational

requirements for these methods are briefly compared. Asymptotic

behavior of the RPDS root-loci is studied neat. It is shown that the

properties of the RPDS root-loci can be readily derived from the optimal

root-loci properties of a related LQ regulator problem. Based upon the

behavior of RPDS poles as the control weighting on the states becomes

vanishingly small, a novel algorithm for designing regulators with

prescribed damping ratio (RPDR) is developed.

The important design issue of robustness is considered in Chapter IV.

Based on the framework of frequency domain robustness analysis due to

Lehtomaki [Le 11, various robustness properties of RPDS are characterized

in terms of the minimum singular value of the RPDS return difference and

inverse return difference matrices. In particular, the RPDS designs

with R chosen to be diagonal are found to possess excellent gain and

phase margins with respect to the stability and degree of stability
i

property. However, tolerance of uncertainties for RPDS will improve

E
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with increasing value of stability factor only for specific types of

model error representation such as E4 (a) - (T71 (s) - T(s)) T 1(s)

Chapter V continues the discussion of Chapter IV with a multi-

terminal DC/AC power system example. RPDS state feedback design for

several choices of the stability factor a are applied to a 9--machine,

4 terminal DC/AC power network. Robustness properties of the closed-

loop system thus obtained are evaluated in two ways. First, the closed-

loop pole pattern results from change of operating points and introduction

of unmodelled dynamics are studied. Second, the minimum singular value

of the return difference and the inverse return difference matrices are

computed and compared with the magnitude of the respective type of model

errors as specified in the robustness tests of Chapter IV.

Output feedback realization of RPDS using LQG methods is considered

in Chapter VI. In view of the lack of guaranteed stability margins for

such compensators, only those RPDS based LQG control systems designed with

the rcbustness recovery precedures are considered. Particularly, we examine

the Effect of a on the recovery of stability margins for full state

feedback loop. It is found that too large a value of a may prevent

the recovery of the KBF loop stability margin using Kwaakernaak's method

and slow down the rate of recovering the RPDS stability margin using

Doyle/Stein's method.

7.2 Conclusions

The major contributions of this thesis are basically of two

categories. In the first category are results related to the extension

of RPDS methodology. The classical RPDS problem formulation and its

solution rechnique (due to Anderson and Moore) is found to be useful 	
t

i

f
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for solving a number of RPDS related problems not previously considered

in literature. These include

(i) tha extension of exponential weighting technique to

solution of the time-varying RPDS problem

(ii) the formulation of RPDR problem as a special case of

RPDS problem

(iii) the adaptation of optimal root-loci results to RPDS root-loci

(iv) the adaptation of LQ eigenvalue sensitivity results to

the respective problem of RPDS

While most of these results are of theoretical interest, those obtained

for RPDS root-loci are also of importance from the design point of view.

The contributions in the second category are mainly related to design

implications of RPDS. While a large value of a can lead to regulators

with good damping properties, other design considerations will put an

upper limit on the actual value of a to be used. Some of such design

considerations discussed in this thesis are

(i) effect of a on the cross-over frequency - too large a value

of a may extend the cross-over frequency of RPDS well into

regions dominated by unknown and/or unmodelled dynamics

(ii) effect of a on robustness properties - increasing the value

of a will lead to improvement in tolerance of modelling error

only in very specific context. In other words, such improve-

ment is only valid for certain type of model error representations.

For instance, we have demonstrated that the guaranteed stability

margins of a RPDS may in fact deteriorate with increasing value

of a.

E_



-198-

(iii) effect of the stability factor a on robustness recovery

of LQG - too large a choice of a may lead to failure in

recovering the KBF loop with Kwakernaak's procedure and

impede the rate of recovery of RPDS stability margin with

Doyle/Stein's procedure.

To summarize, RPDS method is not merely a procedure to be used

blindly for design of fast response sytems. It is clear from our

discussions in Chapters IV, V and VI that a fair amount of iteration on

the design of RPDS, with due regard given to various design considerations

such as stability robustness and noise rejection is necessary to obtain

satisfactory results.

Like the LQ regulator method of which it is a special case, the

RPDS design procedure is basically a multi-loop procedure. With the

aid of the various rezently developed frequency domain tools (such as the

singular value-based robustness tests for MIMO systems and the robustness

recovery procedures),it should provide a reasonable starting place to

design feedback systems with a prescribed degree of stability.

7.3 Suggestions for Future Research

Due to the lack of time, we were not able to pursue in depth the

many interesting avenues of research opened up by this work. As

suggestion for future research, we list the following:

(1) The effect of the stability factor on the tolerance of

structured model errors

The robustness tests considered in this thesis use only the magni-

tude information of the error. As a result, they can be unduly conservative
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in that some of the small pertubations that will theoretically destabilize

the system will not occur physically. These teats can be further refined

to take into account the difference between model errors that increase

the stability margins of the feedback systems and those that decrease it

(see [Le 11 Chapter 4). A useful avenue of research is to study the

effect of a on the robustness properties of RPDS when structural infor-

mation of the error E(s) (i.e. numerical relations among elements of E(s))

is taken into account.

(ii) Discrete Time RPDS

The formulation and solution of discrete time RPDS problems.have

been considered by several authors ([Sa 2], [An 21). In the LTI case,

the corresponds to picking a state feedback gain Cox such that the

quadratic performance index

J	 E a2n [xT (a) Q x(n) + 2 uT M x(n) + uT (n) R u(n) ]

is minimized subject to

x(n+l) = A x (n) + B u(n)
n = 0 9 1,2,...	 (7.2)

	

where 4 , M, R are some weighting matrices having the property that 	 i

i

4 M is positive definite, and a > 1 is the stability factor. Provided
M R

that the system is controllable and cost observable, then the optimal

state feedback gain is given by [Sa 21

'r	 Ga = (R + BT K& B )-1 (BT K^ A + M)	 (7.3)
E	 — —

t
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where dot is the unique symmetric positive definite solution of the

discrete RPDS Riccati equation

s CL	 K A + 4 -
(BT 'R

-ot A + 
11) T

(A + BT 
I(	

B) (BT -Rot A + V l

(1.4)

The eigenstructure and robustness properties for this class of

regulators have not been treated in the literature thus far. In view

of the similarity in structure between the continuous time and the

discrete time RPDS problem, we expect the eigenstructure characterization

of discrete time RPDS to follow from that of continuous time RPDS given

in Chapter III.

The generality of the framework for robustness analysis developed

in Me 1](which we have extensively applied in Chapter IV) also allows

us to characterize the robustness properties of discrete time RPDS in

terms of the minimum singular value of its return difference and inverse

return difference.matrices. The derivation of the respective robustness

theorems are based on the discrete multivariable Nyquist theorem, which

is essentially identical to Theorem 4.1 with the Nyquist contour replaced

by the unit circle centered at the origin. Based on such a framework,

the effect of a on the robustness properties of discrete time RPDS can

be studied in a fashion similar to that of Chapter IV,

A significant difference between the continuous time and discrete

time RPDS occurs when one tries to solve the discrete time RPDS problem

using only time-invariant weighting matrices (compare with corollary 2.5).

It can be readily shown by algebraic manipulation of the discrete Riccati

equation (7.4) that an appropriate choice of constant matrices Q, 11 and

i

i

i

{
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R for such purpose is given by

	

= .Q a2 + (a2 - 1) AT 
_M 

A	 (7.6)

	

M = M a2 + (a2 - 1) LT 
KM 

A	 (7.7)

	

R = R a2 + (a2 - 1) BT R
-a 

B	 ( i .8)

where „R,a is the unique positive definite solution of the algebraic Riccati

equation. The intresting point to observe is the expression for M as

given by (7.7). M turns out to be a nonzero matrix even if the cross-

weighting matrix M in the time-varying cost functional (7.1) is chosen to

be zero. In the dual problem of FPDS design, this implies the need to

use correlated process noise and observation noise that are second order

stationary. A proper explanation of the above observation is not obvious.

Understanding of this problem is probably important to a better appreciation

of the robustness properties of discrete time RPDS, for it is well known

in the case of continuous time optimal regulators that the use of cross-

weighting matrix between u(t) and x(t) can lead to deterioration of the

stability margins.

(iii) Alternative formulation of the Regulators with Prescribed

Damping Ratio (RPDR) problem.

In Chapter III of this report, the RPDR problem is formulated

and solved as a special case of the RPDS problem. It is of interest to

t	
know if there exists a more direct approach to formulate and solve the

MR problem.
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