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SUMMARY 

An unsteady potential flow analysis, which accounts for the effects of blade 
geometry and steady turning, is being developed to predict aerodynamic forces and 
moments associated with free-vibration or flutter phenomena in the fan, compressor, 
or turbine stages of modern jet engines. Based on the assumption of small-amplitude 
blade motions, the unsteady flow is governed by linear equations with variable 
coefficients which depend on the underlying steady flow. These equations are 
approximated using difference expressions determined from an implicit least-squares 
development and applicable on arbitrary grids. The resulting linear system of 
algebraic equations is block tridiagonal,which permits an efficient, direct (i.e., 
non-iterative)solution. 

In previous work unsteady solutions were obtained on a rectilinear-type, non- 
orthogonal, body-fitted, and periodic grid (termed "the cascade mesh") for cascades 
of sharp-edged airfoils aligned with the steady flow. Under the present effort the 
solution procedure has been extended to treat blades with rounded or blunt edges at 
incidence relative to the inlet flow. As part of this effort analytical studies 
have been conducted to clarify the behavior of first-order perturbation solutions 
in the vicinity of blade edges. Further, the numerical approximation has been 
applied to determine unsteady solutions for blunt leading-edge blades on the 
cascade mesh and on a dense "local" mesh surrounding the leading edge. 

Numerical results are presented to illustrate the influence of blade geometry 
(including leading edge curvature), inlet Mach number, and inlet flow angle on 
unsteady response. Cascade and local mesh solutions indicate that leading edge 
curvature effects must be taken into account to accurately predict unsteady force 
and moment components in-phase with blade displacement. Predictions for staggered 
and unstaggered cascades of NACA 0012 and flat plate airfoils reveal that unsteady 
aerodynamic response is strongly dependent on blade thickness and inlet Mach 
number. In particular, present results indicate that the torsional stability 
margin for staggered cascades is substantially less for NACA 0012 than for flat 
plate blades. Further, the stability of out-of-phase bending or torsional motions 
is enhanced with increasing inlet Mach number. For subsonic attached flow, inlet 
flow angle or mean incidence variations appear to have only a minimal effect on 
unsteady force and moment. However, inlet flow angle variations do cause 
substantial changes in unsteady pressure distributions near blade leading edges. 



INTRODUCTION 

A research program is being conducted to develop an aerodynamic analysis 
for predicting unsteady subsonic or transonic flow in a compressor or turbine 
blade passage. This analysis is intended to eventually serve as the aerodynamic 
component of a flutter or resonant stress design prediction system for turbo- 
machinery blade rows. To date, the effort has been concentrated on the subsonic 
flutter or free-vibration problem, but extensions of the analysis to treat 
transonic flows and forced aerodynamic excitations are planned as future work. 

Background 

Substantial progress has been achieved on the development of semi-analytical, 
subsonic and supersonic, unsteady cascade solutions (e.g. Refs. l-5). However, 
these are essentially based on classical linear aerodynamic theory in which the 
unsteady flow is treated as a small disturbance about uniform steady flow. Such 
solutions do not apply if velocity gradients due to incidence, blade shape, or 
operation in the transonic Mach number regime are significant. Hence, they fail 
to meet the needs of turbomachinery designers over a wide range of practical 
operating conditions. 

To partially overcome the foregoing limitations an aerodynamic model has been 
formulated for subsonic inlet and exit conditions which includes the effects of 
blade geometry and flow turning on unsteady response (Refs. 6, 7). Here, the 
unsteady flow is considered as a small-amplitude, harmonic fluctuation about 
nonuniform steady flow. An asymptotic expansion of the time-dependent velocity 
potential then provides equations which govern the steady and small-disturbance 
unsteady flows in a single, extended, blade-passage region of the cascade. The 
steady flow is determined as a solution of the full-potential equation and the 
unsteady flow is governed by linear equations with variable coefficients which 
depend on the steady flow. Key features of this formulation which permit 
efficient numerical prediction of unsteady forces and moments are as follows: 
the unsteady boundary value problem is linear and time-independent; boundary 
conditions are applied at the mean position of blade and w&e surfaces; the unsteady 
flow is periodic from blade to blade; and near-field numerical solutions are matched 
to far-field analytical solutions. Thus a numerical approximation is only required 
over a single blade-passage region of finite extent. 

Numerical solutions of the nonlinear steady problem are currently available 
for subsonic (Ref. 8) and transonic (Refs. 9, 10) flows. A numerical model for 
solving the unsteady equations on a rectilinear-type mesh which spans the extended 
blade passage region, but is not sufficiently detailed to permit an accurate 
resolution of the flow in the vicinity of blunt leading or trailing edges, has 
been developed as part of the present research program (Ref. 11). Unsteady 
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equations are solved on a nonorthogonal, body-fitted, and periodic mesh (herein 
called the cascade mesh) which facilitates the implementation of blade, wake 
and cascade-periodicity conditions, but disallows the use of standard difference 
approximations. Instead difference approximations are based on an implicit 
least-squares development applicable on arbitrary grids. This permits flexibility 
in the choice of difference neighbors and the simultaneous approximation of 

differential equation and boundary condition at boundary points, strategies which 
can significantly improve numerical accuracy. 

Unsteady response predictions based on the foregoing aerodynamic and numerical 
models have been reported (Refs. 7, 11) for subsonic cascades of sharp-edged 
blades with mean camber lines aligned with the steady flow. Response predictions 
for flat-plate cascades are in very good agreement with those based on Smith's 
analytical solution (Ref. 2) for both subresonant and superresonant blade 
motions (Ref. 7). Predictions for unstaggered cascades consisting of double- 
circular-arc or thin-circular-arc profiles reveal that blade thickness produces 
significant coupling between the steady and unsteady flows while steady blade 
loading (or flow turning) due solely to blade camber causes only weak steady/ 
unsteady interactions (Ref. 7). Recent results for staggered cascades of flat- 
plate and double-circular-arc blades (Ref. 11) indicate that the coupling between 
steady and unsteady flows caused by blade thickness is particularly strong at 
high Mach number and at low vibration frequency. 

Similar linearizations with respect to a nonuniform steady flow have been 
considered in Refs. 12-16. Guiraud-Vallee, et. al. (Ref. 12) have studied 
compressible flow past an oscillating airfoil in a channel and have presented 
numerical results for subsonic and transonic flows past double-circular-arc and 
NACA 63A015 airfoils. Atassi and Akai (Refs. 13, 14) have derived analytic 
solutions for incompressible flow past a cascade of Joukowski airfoils. They 
have presented extensive results which indicate that blade thickness and incidence 
have a significant impact on unsteady response. Whitehead and Grant (Ref. 15) 
have developed finite-element steady and unsteady solution algorithms for subsonic 
cascade flows and have determined results for unsteady moments on a turbine 
cascade which are in agreement with experiment. Finally, Ni and Sisto (Ref. 16) 
regard the fluid properties as dependent variables and employ an explicit time- 
marching numerical procedure to determine solutions to the Euler equations of 
motion. This approach requires substantial computing time, but it is,applicable 
to transonic cascade flows with strong shocks. 

Scope of the Present Effort 

It has been clear from previous work that improvements in the unsteady 
numerical approximation would be required before a practically useful flutter 
prediction scheme could be realized. Of most immediate concern was the development 
of solution procedures for general blade profiles (i.e., rounded or blunt-edged 
blades) and the effects of mean flow incidence. Thus under the current phase of the 
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overall research program, a numerical approximation based on concepts Crom singular 
perturbation theory (Ref. 17) has been adopted for resolving the unsteady boundary 
value problem. Unsteady equations are first solved on the "rectilinear" cascade mesh 
to obtain an "outer" approximation to the linear unsteady flow, and then solutions are 
determined on dense local meshes to obtain "inner" approximations in limited regions 
of high velocity gradient. The solution on the cascade mesh provides outer boundary 
condition data for the subsequent local solutions. 

This procedure is applied here to determine the unsteady flow past cascades of 
blunt leading-edged airfoils. The unsteady numerical approximation on the cascade 
mesh has been modified so that errors caused by an inaccurate resolution of the flow 
near a blunt leading edge are confined to a limited region containing the leading edge. 
In particular, mesh points are not placed "too close" to the leading edge, and steady 
flow gradients are replaced by outer approximations in the vicinity of the leading 
edge. In addition, solutions on a dense local mesh which conforms to the shape of the 
airfoil and surrounds the leading edge are obtained using the implicit, least-squares, 
numerical approximation previously developed for the cascade mesh calculation. Unsteady 
response predictions for cascades of vibrating NACA 0012 and flat plate airfoils are 
presented to demonstrate the solution procedure and to investigate the effects of 
compressibility, blade geometry and mean incidence on unsteady response. 

As a part of the current effort an analytical study has been conducted for the 
limiting case of quasi-steady, imcompressible flow to gain a better understanding of 
the impact of leading and trailing edge geometry on the behavior of a first-order 
perturbation solution. Results of this study are described in detail in the APPENDIX 

to this report. They indicate, that for a blunt-edge airfoil, the asymptotic 
series used in the present aerodynamic model will converge to the exact solution 
for the flow, if the airfoil displacement is sufficiently small. Further, the first- 
order term of the asymptotic series will be analytic throughout the flow, and is thus 
susceptible to a numerical resolution, provided that a sufficiently dense mesh is 
employed in the vicinity of a blunt leading or trailing edge. 



II 

THE UNSTEADY AERODYNAMIC MODEL 

Basic equations which describe the flow past a finite-deflection cascade 
of airfoils undergoing small amplitude, harmonic vibrations are presented below. 
These equations apply to subsonic or transonic flows; i.e., flows with subsonic 
inlet and exit velocities, but with embedded supersonic regions adjacent to 
blade surfaces. The derivation essentially involves a perturbation expansion 
of the velocity potential which provides a nonlinear boundary value problem 
for the zeroth order or steady flow potential and a linear,variable-coefficient 
boundary value problem for the first order or unsteady potential. In the 
following discussion all quantities are dimensionless. Lengths have been 
scaled with respect to blade chord, time with respect to the ratio of blade 
chord to upstream free-stream speed, and pressure with respect to the upstream 
free-stream dynamic pressure. 

Description of the Problem 

Consider isentropic and irrotational flow, with negligible body forces, 
of a perfect gas past a two-dimensional oscillating cascade (Fig. 1). The 
velocity potential, $(Z, t), is governed by the time-dependent, full-potential 
equation; i.e., 

i2v2i=8+, + 2va d++ v& -v wb2/2 

The speed of sound propagation, 2, and the fluid pressure, B , are detdrmined from 
Bernoulli's equation and the isentropic relations. It follows that 

(M-,p= (yMI,b,2fy-‘)‘y = I-(y-I)M-5 {&++[dL]/2} 

where M is the Mach number, y is the specific heat ratio of the fluid and the 
subscript -m refers to upstream free stream conditions. 

The blades of the cascade have finite thickness, camber and mean incidence 
angle relative to the inlet flow, and are undergoing identical, small amplitude, 
harmonic motions at frequency w and constant interblade phase angle, u. The 
mean or steady state positions of the blade chord lines coincide with the line 
segments mG, 2 x < 1 + mGx, y = mG - 
the x and y - 

Y' m = 0, * 1, ? 2z.., where G, and Gy are 
components of the cascade gap vector, G, which is directed along 

the locus of blade leading edges with magnitude equal to the blade spacing 
(Fig. 1). Blade shape and orientation relative to the stream, and the amplitude 
and frequency of the blade motion are assumed to be such that the flow remains 
attached to the blade surfaces; i.e., 

(vi a, =a3l,/at=ii~ m=O,fl,f2,... 
m m’ 
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Heregm is a vector measuring the displacement of points on the instantaneous 
position of the mth blade surface,S,, relative to their mean positions, t is 
time,and ii is a unit outward normal vector. In addition to Eq. (3), the fluid 
pressure and normal velocity must be continuous across wake surfaces,W,, and 
acoustic energy must radiate into the far field. In the inviscid approximation 
the wakes are represented by thin vortex sheets, each of which, emanates from 
a point in the vicinity of a blade trailing edge and extends downstream. 

To first order the relative displacement vector for the mth blade is given 
by 

3 
- i(wt+mu) 

m= re (4) 

where < defines the amplitude and direction of blade translations, a defines 
the amplitude of blade rotations, and % 

is a vector extending from the mean 
position of the mth axis of rotation (i.e., Xp + mGx, 
mean position of the mth blade surface, Sm. 

Yp + mGy) to points on the 
Only rigid motions are considered; 

however, the formulation could be readily extended to include elastic deformations 
of the blades. The components h,, hy, and c1 of the vectors h and a are, in general, 
complex to permit phase differences between the translations in the x and y-direc- 
tions and the rotation. These rigid two-dimensional motions describe chordwise, 
bending, and torsional vibrations of actual rotor blades. 

Perturbation Procedure 

A perturbation approach serves to replace the nonlinear, time-dependent 
boundary value problem for the velocity potential, 8(x', t), by two time-indepen- 
dent boundary value problems for a zeroth order or steady potential, 0 (z), and 
a first order or unsteady potential, 4 (2) eiwt. In addition, unsteady boundary 
conditions can be applied at the mean positions of the blade and wake surfaces, 
and blade pressure distributions and aerodynamic response coefficients can be 
evaluated in terms of information prescribed at blade mean positions. The 
velocity potential is expanded in an asymptotic series in c; i.e., 

a(TT,t) = E 
j’0 

ti+jtT,t) = O(T)+ 9(K) Ciu++ Ok21 

where x'is the position vector and E is a small parameter related to the 
amplitude of the blade motion. In addition, Taylor series expansions; e.g., 

(5) 

(6) 
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are applied to refer boundary conditions to the mean positions of the blade and 
wake surfaces. The mean positions, Wm, of the unsteady wakes are assumed to 
coincide with the steady flow stagnation streamlines. After substituting the 
foregoing series into the full governing equations, equating terms with like 
powers in E, and neglecting terms of second and higher order in E, nonlinear 
and linear variable-coefficient boundary value problems are obtained, respectively 
for the zeroth and first order potentials. 

As E + 0 the blade and wake surfaces collapse to their mean positions. 
Hence, the zeroth order term in the power series expansion, Eq. (5), is the 
velocity potential, Q, (?), due to steady flow past a stationary cascade. The 
cascade geometry, the prescribed form of the blade motion, and the linearity 
of the first order equations, require that the first order or unsteady potential 
be harmonic in time (i.e., ~@l (2, t) = $ (2) eiwt), and that the steady and 
first order unsteady flows exhibit blade-to-blade periodicity; i.e., 

&I = +i;+ mZ)e-imu 1 

m = O,fl,f2,... (7) 

The periodicity conditions permit numerical solutions for the steady and unsteady 
flows to be determined in a single,extended, blade-passage region of the cascade 
(e.g., the region Bin Fig. 2). Equations governing the steady potential, assumed 
to be ~CIIOWTI in the present study (Refs. 8-lo), follow from the differential 
equation, Eq. (l), Bernoulli's equation5 Eq. (2), and the flow tangency condition, 
Eq. (3), after replacing 6 (%,t) by 0 (X) and omitting time derivative terms. 
Steady subsonic velocities are assumed to be approximately uniform beyond some finite 
distance from the blade row (e.g., c<C,- or CZ+<+ in Fig. 2); i.e., 

(8) 

The Unsteady Boundary Value Problem 

It follows from Eqs. (l), (2), and (5) that the unsteady potential is governed 
by a linear differential equation of the form 

(9) 



DS ~+=~+V~~V=iw+V~.V (10) 

and A is the local speed of sound in the steady flow. The influence of 
blade shape and steady turning appears in this equation through the variable 
coefficients (A2, (y-1)V20, etc.) which depend on spatial derivatives of the 
steady potential. Upon substituting the series expansions,Eqs. (5) and (6), 
into the flow tangency relation, Eq. (3), and noting the?" = nS+(?&7$)eiwt + 
Ok2>, it follows after some algebra that the first order flow tangency condition 
has the form 

V #I . ?; = [ iu7 + 0’ x V@- C;.V)V@] *7;eimu= [iG-VF-VQ)]*;iaimu 

0” sm, m= O,fl,f 2 ) . . . 

(11) 

The first term on the right-hand-side of Eq. (11) is the surface velocity. 
The second term accounts for the effects of blade rotation relative to the 
mean flow and motion through a varying mean velocity field. The conditions 
of continuity of pressure and normal velocity across blade wakes and the blade- 
to-blade periodicity of the unsteady flow require that 

0" wm, m=O,fl,f2,... 

A,(V#*i;) =o 

(12) 

where A 4 denotes a difference across the mth wake; e.g., m 

A,t#s=t#t (?-,-+(z+) = #(~-+~)e-iu-$(?++), 2 onw, (13) 

The unsteady potential in the reference extended passage (i.e., the region 
bounded by the upper and lower surfaces of the zeroth and first blade, respectively, 
periodic lines upstream of the blade row, and by the zeroth and first steady flow 
stagnation streamlines downstream of the blade row (Fig. 2))is determined as a 
solution of the variable coefficient differential equation, Eq. (9), subject to 
the flow tangency requirement, Eq. (ll), at the upper, Sif, and lower, Si, surfaces 
of the zeroth and first blades, and the continuity conditions, Eq. (13), across 
the zeroth wake, Wo. The unsteady velocity is continuous and differentiable 
upstream of the blade row, and hence, the blade-to-blade periodicity condition, 
Eq. (71, is used in conjunction with the unsteady differential equation to 
determine values of the unsteady potential along upstream periodic boundaries. 
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Unst-ady Far-Field Solutions 

To complete the specification of the unsteady boundary value problem conditions 
at upstream and downstream boundaries of the extended blade passage region must be 
established. In general, unsteady disturbances do not attenuate in the far-field 
of the cascade, and hence, it is difficult to place explicit conditions on the 
unsteady potential, 4, at upstream and downstream boundaries of the extended blade 
passage region. Instead, analytic far-field solutions, based on the uniform steady 
velocity approximation, Eq. (8), have been determined for subsonic inlet and exit 
conditions. These solutions can be matched to the near field numerical solutions 
at finite distances upstream and downstream of the blade row (e.g., on the lines 
5=5 

i 
in Fig. 2). 

The unsteady potential is continuous far upstream of the blade row (i.e., 
$=$c. for 5 < c-) and has both continuous and discontinuous components downstream 
of the blade row (i.e., +=$, + #I~ for 5 > E+). The continuous potential accounts for 
acoustic wave propagation into the far-field. Fourier methods can be used to provide 
expressions for the continuous components of the far-field potential in terms of 
the independent variables 5 and n where the 5, n-coordinate axes are perpendicular 
and parallel, respectively, to the cascade inlet plane (Fig. 2). It follows that 
(cf., Refs. 6 and 7) 

where the coefficients, b. ,are obtained from the relation 
J,z 

(14) 

(15) 

The discontinuous component of the unsteady potential far downstream results from 
the counter vorticity shed from the trailing edges of the blades and convected 
along the blade wakes. A closed form solution (Refs. 6, 7) for this potential 
has been determined; i.e., 

in terms of the Cartesian coordinates T and u, with the T-axis coinciding with the 
far-downstream, zeroth wake (Fig. 2). The constants q 
F(u) in the foregoing equations are defined explicity i 

,Yjdiand the function 
n Ref. 7. 
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Aerodynamic Response Coefficients 

Solutions to the steady and unsteady boundary value problems are required 
to determine blade pressure distributions and aerodynamic force and moment 
coefficients.. The pressure at the mth blade surface is given by (c.f. Eq. (7)) 

b= m ps+ PI e i(w++mu)+ b(r2), m =O,fl,f2 (17) 

where P and pelwt are the zeroth (steady) and first (unsteady) order components 
of the fluid pressure, and 8 and S denote the moving and mean reference blade 
surfaces respectively. After expanding the velocity potential,$(z, t), in the 
manner indicated by Eqs. (5) and (6) and substituting the result along with 
Eq. (17) into Bernoulli's equation Eq. (I?), it follows that 

2Y/(Y-1) 
ps= 2 (yM%.z,-' h-,A)S 

and 

ps 
= -2(hL6)A) r. 2/(y'1) D,(# 

- Dt +c;*v,P s 1 

(18) 

(19) 

Thus the steady and unsteady components of the pressure acting on a moving blade 
surface, P 

m’ are evaluated in terms of information supplied at the mean position 
of the reference blade, S. The first term on the right-hand-side of Eq. (19) is 
the unsteady pressure at the mean position of the blade and the second is due to 
motion through a varying steady pressure field. The force and moment coefficients 
acting on the mth blade, i.e. 

A 
T,+FFe iWt+mc)+~(&, m=O,fl,f2,... (20) 

and 
A 

‘Mm 
= CM + CM eiLW++mu) + b(r2), m= 0,f I,* 2,.. (21) 

are determined by simple integrations over the mean position of the reference 
blade. 
z 

After some algebra it follows that the steady, ?F and CM, and unsteady 

F 
and c 

M' 
force and moment coefficients are given by 

10 

(22) 



(23) 

where d3i.s a differential vector tangent to the mean blade surface. It should 
be noted that the moment is taken about the moving pitching axis. The unsteady 
force and moment coefficients are the important results of an aerodynamic 
analysis intended for flutter predictions. Knowledge of these coefficients 
permits the evaluation of aerodynamic work per cycle and/or aerodynamic damping 
(Ref. 18) either of which can be used to determine whether the airstream supports 
or suppresses a prescribed blade motion. 
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THE UNSTEADY NUMERICAL MODEL 

In the approximate representation of a physical problem by a discrete 
numerical model, several components must be constructed. For the present case, 
these components include the discrete domain (or calculation mesh), the approxi- 
mating algebraic equations, and the solution procedure. Such components are 
generally not independent of each other with the choice of one influencing the 
choice of another. For instance, if the algebraic system is linear with proper 
structure, a direct solution procedure may be used, but if the system is nonlinear 
or linear but large and without particular structure an iterative technique may 
be necessary. It is important that the choice of one component not place overly 
restrictive constraints on the other components. 

Calculation Meshes 

Flow about a blunt edged airfoil has two length scales associated with it. 
The effects of airfoil geometry and motion on the undisturbed stream generally 
scale with blade chord and can be modeled on a calculation mesh of moderate 
density. However, flow phenomena near a blunt edge scale with edge radius and 
can be accurately modeled only on a much finer mesh. In this study, which 
involves flow through a cascade of airfoils with blunt leading edges and pointed 
trailing edges, the large scale effects of airfoil geometry and motion and their 
resulting flow are termed "cascade" while the small scale effects of the blunt 
leading edge and their resulting flow are termed "local". It would be difficult 
to approximate accurately and efficiently on a single mesh both the cascade and 
local effects because of the different length scales involved. Instead, in this 
study, the cascade flow is modeled on a cascade mesh of moderate density and the 
local flow is modeled on a local mesh of high density. 

The definition of an appropriate cascade mesh is much more difficult than 
the definition of an isolated airfoil mesh. For the latter there are easily 
defined orthogonal meshes, e.g., potential-streamline meshes, "polar" meshes 
composed of normal and circumferential lines, and "parabolic" combinations. 
For a cascade these meshes are not so easily employed. For instance, the 
potential-streamline mesh is not periodic since potential lines generally are 
not parallel to the cascade. Boundary conditions arising from cascade periodicity - 
in this case the periodic and wake boundary conditions of Eqs. (7,12) - can be 
approximated on such a mesh only with difficulty, since the mismatch of the 
mesh across the periodic boundary will require some sort of interpolation. 
Furthermore, the resulting linear system will not be tightly banded precluding 
the use of direct solution techniques. Orthogonal "polar" type meshes can be 
defined using conformal mapping as in Ref. 9. However, the necessary mappings 
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are not presently known for all cascades particularly those with high turnings 
or small gap to chord ratios. In contrast, the definition of an appropriate 
local mesh depends only on airfoil geometry and so is independent of whether the 
airfoil is isolated or placed in a cascade. 

The cascade mesh used in this study is the periodic and body fitted but 
nonorthogonal one shown schematically in Fig. 3. It is composed of "axial" 
lines, which are parallel to the blade row making the mesh periodic, and 
"tangential" curves, which are percentile averages of the upper and lower 
boundaries making the mesh body fitted. The leading and trailing edge axial 
lines are not in the cascade mesh eliminating the need for special considerations 
at leading and trailing edge points. The local mesh is the "polar" mesh shown 
schematically in Fig. 4. It is composed of "radial" lines normal to the airfoil 
surface and "circumferential" lines which roughly parallel the airfoil surface. 

Two Step Calculation Procedure 

The unsteady boundary value problem of Eqs. (9-16) is modeled on the 
cascade mesh using the algebraic approximations described below. In order to 
remove local phenomena induced by a blunt leading edge from the cascade solution, 
steady potential derivatives are modified to remove leading edge curvature effects. 
This results in a cascade solution which is akin to an "outer" solution. These 
leading edge effects are then restored to the solution calculated on the local 
mesh with unmodified steady potential derivatives. Cascade effects are introduced 
to the local solution by interpolating the potential calculated on the cascade 
mesh to the outer radial and circumferential boundaries of the local mesh and 
imposing the interpolated potential distribution as a boundary condition. The 
solution to the unsteady boundary value problem is then taken to be the 
local solution in the local mesh region and the cascade solution elsewhere. 

To date, the cascade and local flows have been calculated by the two-step 
procedure described above, in which the local solution is essentially a correction 
to the cascade solution near the leading edge. Because the local leading edge 
effects are not in the cascade calculation, it is necessary to choose the local 
region extensive enough so that leading edge effects become insignificant on the 
local mesh boundaries. This insures that the local boundary value problem has 
valid information on the outer boundary. It is planned eventually to iterate 
between cascade and local solutions until the two solutions balance at the 
interface. When this is done a much smaller local region will suffice. 

Algebraic Approximations 

Thenonorthogonalityofthe cascademeshprecludes theuseof Cartesiandifference 
approximations based on Taylor series expansions and so requires the development 
of more general approximations. These approximations are then used in both the 
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cascade and local problems. Consider a linear differential operator,f, which 
operates on a constant by multiplying that constant by q 0. ff$- is to be approximated 

. at the mesh point Q. in terms of the values of 4 at Q. and at certain neighboring 
mesh points, Q 1, . . . . Q,, which, with Qo, are called a neighbor set. Quantities 
subscripted with0 or m are evaluated at the corresponding neighbor set member. 
The approximation is developed in terms of an implicit interpolation of the form 

(24) 

where the f" are prescribed interpolating functions which vanish at Q. - homogeneous 
polynomials, for instance - and the y" are interpolating coefficients, which must 
be determined. The definition of y depends on the specific interpolation used, 
but, in any case, it is assumed to%depend on values of 0 at QO and its neighbors; i.e., 

7 =ey +~O+()+ CI (25) 
h, 

and the interpolating matrix, e, and vectors, r;O and 
of the neighbor set but are independent of I$. In the 

arises from a least squares fit, described 
below, and thus the method is termed an implicit least squares approximation. 
After replacing 154 by its interpolate, it follows that 

(f #,o = f (#o + F)()= qO+o+Ltf),Ty (26) 
N-u 

where Af is the Nxl vector with components Pf". Further, after combining 
Eqs. (25) and (26), the differential expression PI$ is approximated by the 
difference expression 

(27) 

where L is the difference operator derived from 1 and the coefficients of the 
difference operator are given ,by 

(28) 
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5 being the Mxl vector with components 0,. 

Since the differential operator f has no inhomogeneous term, (L$)o might be 
expected to have the form 

(29) 

which emphasizes the "difference" aspect of its definition. Equations (27) and (29) 
would be equivalent if the vectors z" and ,CQI were zero. Although this is the case 
for most interpolations, CO and CT are nontrivial if the interpolate F is constrained, 
as it may be at a boundar; where-4 satisfies both a boundary condition (which is 
defined by the operatorf ) and the field equation (which becomes the constraint). 
Thus at a boundary, both the field equation and boundary condition can, in effect, be 
simultaneously approximated - a powerful feature of the implicit least squares 
approximation. 

Least Squares Difference Approximation 

The difference operator, L, which approximates the differential operator 1 
is defined by Eqs. (27, 28) once the interpolation matrix and vectors are 
determined. First the interpolating functions, f", of Eq. (24) must be chosen. 
Common choices are the polynomials 

N=Ss f’=& f2= 8T) I f3= st2, f” S[.Slj , fS= 8$ (30) 

where , etc. Here, 5 and Q could be any convenient 
coordinates but in this study, are taken to be the cascade axial and tangential 
coordinates indicated in Fig. 2. The interpolation coefficients must then be 
defined. With eight neighbors but only five interpolating functions, it is 
impossible to define ;y. such that F implicitly agrees with S@ at all neighbors. 
On a rectangular mesh the reasonable but ad hoc aecisions that F agree with 6$ 
at the neighbors above, below, right and left and that a certain combination of 
F values at the corner neighbors agree with the same combination of 69 values 
leads to an interpolation matrix which produces the familiar difference 
coefficients obtained by Taylor series expansions. On a general mesh these ad 
hoc decisions are no longer reasonable. What is needed is a formal method of 
defining the interpolating coefficients from the available data regardless of 
the geometry of the neighbor set. Least squares techniques provide such a 
method. 
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A measure of the error in replacing 64 with its interpolate, F, in Eq. (24) is 

(31) 

where the over bar indicates complex conjugation and the wm are chosen to give 
proper importance to the various neighbors. In practice wm is usually given by 

Urn= I/IQm-001 

but it may be set to zero if the corresponding neighbor is to have no influence. 
The real, nonnegative function e is minimized as a function of the real and imaginary 
parts of y. There results the following complex linear system to determine y: 

2. ,I, 

The NxN matrix A and NxM matrix 9 are given in terms of the MxN matrix, 
(fn(Om)) and the MxM diagonal matrix, W = diag (w,, . . . . wm) by 

5J= (fi) = 

u = Pwq 

3,d*w (34) 

where the superscript * indicates conjugate transposition. The interpolation 
matrix is then given by 

e= R-9 
and the interpolation vectors are zero. 

(35) 

At a boundary point, QO, the operator, f , to be approximated usually is 
derived from a boundary condition rather than from the field equation, which 
probably also holds at Qo. Suppose the field equation, Eq. (q), is generalized 
to have the form 

&=hl (36) 
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where A is a linear differential operator which operates on a constant by 
multiplying the constant by ho. Approximate 
Q. to obtain 

A$ by e#(@, + F) and apply at 

‘J(Y) - ~ (&:y+ hodo- h’=O 
(37) 

where g(y) is a complex constraint functional and df has components AE". 
Equation%(37) describes an algebraic constraint on%e interpolate, F. The 
coefficient vector, 3 

is then determined by minimizing the error function, 
e, subject to this constraint. This is accomplished by using a complex Lagrange 
multiplier and minimizing the constrained error function 

e,$ ,A)= etz )+Re{$ Re{g(_y)} +Im {X)Im{g(_r)) (38) 

with respec t to the real and imaginary parts of 2 and the Lagrange multiplier,X. 
Equation (33) becomes 

(~-f,&- = h’-h”+o 

The interpola tion matrix and vectors are then given by 

where H is the scalar 

Let s be the scalar 

Then, from Eq. (28) 

(39) 

(40) 

(41) 

(42) 

Thus f3 is defined as if the operator f -sd( were being approximated; i.e., 
the oserator being constrained is a particular linear combination of the boundary 
condition operator and the constraint operator. 
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Solution Procedure 

For the cascade calculation, the neighbor sets are generally defined as shown 
in Fig. 3; i.e., "centered" neighbor sets are defined if QQ is a field point, and 
"one-sided" neighbor sets are defined if QQ lies on a blade or wake boundary. 
In any case, all neighbors fall on the axial mesh line through QQ and on the two 
immediately adjacent axial lines. This placement is important to obtain a desirable 
structure for the solution matrix. Derivatives of the unsteady potential 
exhibit singular behavior at sharp edges, 
and ~~O(T-~/~) 

in that ~+~o(r~/~) near leading edges 
near trailing edges where rEdenotes distance from the edge (Ref. 19). 

Rapid, near-singular, variations are also observed near blunt edges. Thus for 
cascade calculations, either the first point(s) on the blade or the first point 
off the blade on the upper and lower boundaries of the passage (Fig. 2) is deleted 
from neighbor sets near blade edges to ensure that differences are not taken 
across singularities. Affected neighbor sets are said to be adjusted. 

At field points the unsteady differential equation, Eqs. (9,10), is 
approximated using centered neighbor sets. For points on the upstream periodic 
boundary (Fig. Z), $ values at neighbors above the mesh region are related to I$ 
values at points within the mesh region by the periodic condition,Eq. (7). On 
the lower periodic boundary the periodic condition is directly applied, since to 
approximate the field equation on both upper and lower periodic boundaries would 
be redundant. For points on the far-upstream boundary (c = c->, @ values at 
neighbors upstream of the mesh region are related to 6 values on the boundary 
using the far field condition, Eq. (14), with the Fourier coefficients being 
evaluated using Eq. (15). The infinite sum in Eq. (14) is truncated after a 
few terms - usually three- in each direction, and the integral in Eq. (15) is 
approximated using a trapezoid rule quadrature. A similar procedure is followed 
on the far-downstream boundary (5 = <+), but here the discontinuous component of 
C given in Eq. (16) must be taken into account. At blade points the flow tangency 
condition, Eq. (IO), is approximated using "one-sided" neighbor sets. At wake 
points the pressure continuity and normal velocity conditions of Eq. (12) are 
also approximated using "one-sided" neighbor sets. Letting LW; and L represent 
either one of the approximating difference operators on the upper and ower 
wakes respectively, the resulting difference equations take the form 

Lwi# (Q,-I-eiuL,; $(Q,+o )=O 
I (44) 

where Q-@ is a mesh point on the lower wake and Q 
Wl 

- is the corresponding point 
on the upper wake. One of these (continuity of pressure) is applied on one 
wake boundary and the other (continuity of normal velocity) is applied on the 
other wake boundary. At both blade and wake points, the difference equations are 
constrained to satisfy the field equation. 

18 



For the local calculation matters are much simpler since no special 
considerations (e.g., neighbor set adjustment) need be taken at the leading edge 
and the many types of boundary conditions have become only two. Neighbor sets 
are chosen as for the global calculation, i.e., centered at field points and 
one-sided at boundary points. The unsteady differential equation, Eqs. (9, lo), 
and the flow tangency condition, Eq. (ll), are approximated as above at field 
points and blade points respectively. At points on the outer boundary of the local 
mesh the unsteady potential is given the value interpolated from the cascade 
calculation. 

Let $ be a vector of the 0 values on the Ilth axial mesh line for the cascade 
calculati% or on the Filth radial mesh line for the local calculation. Because 
neighbor sets of points on the Filth line include points only from lines L-1, II, 
11+1, (and because the cascade calculation mesh is periodic,) the systems of 
linear algebraic equations for both cascade and local calculations have the 
following block tridiagonal form. 

(45) 

With this structure, the systems can be solved directly and efficiently using 
Gaussian elimination as described in Refs. 20 and 21. The sub-matrices A and 

%' are sparse (as is BE) being basically scalar tridiagonal. This can b% taken 
advantage of to improve computational efficiency during the foi-ward elimination 
phase of the solution (Ref. 21). If a non-periodic mesh were employed for the 
cascade problem, the block tridiagonal structure would be lost and an iterative 
procedure would be required to obtain a solution. 
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=RICAL RESULTS 

The unsteady aerodynamic model accounts for the effects of blade geometry, 
including blunt leading and trailing edges, and mean incidence on unsteady 
response. However until recently, the unsteady numerical model was applied 
only on a rectilinear-type mesh which spanned the extended-blade-passage region 
(the cascade mesh shown in Fig. 3). Thus previous unsteady response predictions 
were restricted to cases in which the flow near blade edges could be reasonably 
approximated on this mesh; i.e., to cascades consisting of sharp-edged blades 
with mean camber lines aligned with the steady flow (Refs. 7 and 11). Predictions 
for flat plate cascades were shown to be in good agreement with Smith's (Ref. 2) 
semi-analytical results for both subresonant and superresonant blade motions.- 
Further predictions for double-circular-arc and thin-circular-arc blade profiles 
revealed that blade thickness produces a strong coupling between the steady 
and unsteady flows, particularly at high Mach number or low vibration frequency, 
while steady flow turning due to blade camber causes only weak steady/unsteady 
interactions. 

Under the present research program the numerical model has been developed 
further to treat cascades of blunt leading-edged airfoils at incidence relative 
to the inlet flow. 'Ihe approximation on the cascade mesh has been modified so 
that errors due to an inadequate resolution of the large unsteady gradients near 
a blunt leading edge are confined to a limited region surrounding the leading edge. 
In addition, the numerical model has been applied on a dense local mesh (Fig. 4) 
to capture details of the rapidly varying flow in the neighborhood of a blunt 
leading edge. Thus for a cascade of blunt leading-edged airfoils, a numerical 
solution is first determined on a cascade mesh for the entire extended blade- 
passage domain, and then, a detailed solution is determined on a local mesh in 
the vicinity of the leading edge. The solution on the cascade mesh supplies 
boundary condition information (i.e., the unsteady potential distribution) on 
the outer boundary of the local mesh for the latter calculation. 

Present Examples 

The foregoing procedure has been applied to determine the unsteady flow 
past cascades of vibrating NACA 0012 airfoils. The mean position of the 
zeroth or reference blade surface is defined by the equation (Ref. 22) 

+0.2843x~-Q1Ol~x',O~~~~ 1 (46) 
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where T = 0.12 is the blade thickness. The leading edge radius of the airfoil is 
1.1019T2 = 0.015867. For the present application the coefficient of the x4 term 
has been changed to 0.1036 so that the upper and lower surfaces close at x = 1 
in a wedge-shaped trailing edge. Results have been determined for unstaggered 
(@= 0 deg.) and staggered (with O= 45 deg.) cascades with unit gap-chord ratio 
(G = 1) for prescribed steady inlet Mach numbers, M,,, and flow angles, G-,. 
Corresponding exit Mach numbers, &, and flow angles, R,, are determined by a 
global mass balance and the application of a Kutta condition, i.e., 

-G -d; I = -Teds 1 ,x= I s- S+ 

at blade trailing edges. Unsteady pressure difference distributions; i.e., 

Ap(~)=p~-(~~-p~+(~)= p,-(~+~)e-‘“-ps+i;;) 
I 0 

(47) 

(48) 

+ + 
and aerodynamic response coefficients, cL = cF'ey and CM, will be presented for 
cascades of NACA 0012 airfoils undergoing unit-frequency (w = l), out-of-phase 
(CT = * 180 deg.), single-degree-of-freedom, heaving (with hy = (1, 0)) or pitching 
(with a = (1, 0)) motions about an axis at mid-chord ((Kp, Yp) =(0.5, 0)). These 
rigid, two-dimensional, motions model bending or torsional vibrations of actual 
rotor blades. When the imaginary parts of the bending or torsional amplitudes 
are set equal to zero, the real and imaginary parts of the response coefficients, 
Ap, CL, and CM, are in-phase with the blade displacement and velocity, respec- 
tively. The stability of single-degree-of-freedom bending motions with Im (hyj = 
0 is governed by the sign of the imaginary part of the lift coefficient. If Im 
{CL) < 0 the airstream tends to suppress the motion, and hence this motion is 
stable according to linear theory. Similarly, if Im {a} = 0, single-degree-of- 
freedom torsional motions are stable when Im {CM] < 0 (Ref. 23). In addition 
to the NACA 0012 cases, for purposes of comparison, numerical results will be 
presented for oscillating flat plate cascades with blade mean positions aligned 
parallel to the free-stream direction. In this case 0 = x and the unsteady 
equations reduce to those of classical small-disturbance theory (Ref. 19). 

Unsteady solutions for NACA 0012 and flat plate cascades were determined 
for a blade passage region extending two axial chords upstream and downstream 
of the blade row with far-field Fourier expansions, Eq. (14), being truncated 
after j = 3. For the NACA 0012 cases unsteady solutions were calculated on 
both cascade (Fig. 3) and local (Fig. 4) meshes. In addition, steady flows 
have been calculated on similar but coarser meshes using the finite area 
approximation developed by Caspar, Hobbs, and Davis (Ref. 8), and steady 
data has been defined on the unsteady meshes using constrained, polynomial, 
least-squares interpolations in an explicit manner. For the flat plate 
cases the steady flow is known and unsteady calculations are only required on 
the cascade mesh. 
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The unsteady results reported here were determined on cascade meshes con- 
sisting of 15 tangential lines and from 69 to 73 axial lines, 25 to 28 of which 
intersect blade surfaces. To minimize the effects of local errors on the cas- 
cade mesh solution, axial mesh lines did not intersect blade leading and trailing 
edges. Further, steady derivative behavior in the vicinity of a blunt leading edge 
was modified to depend on a position vector emanating from the leading edge 
rather than on a position vector emanating from the center of the leading edge 
circle (c.f. the APPENDIX to this report) using an extrapolation based on the 
Prandtl-Glauert transformation. The spacing of the axial mesh lines as a 
percentage of axial chord varied from 20 percent at far-field boundaries to 
approximately 2 percent near blade edges to 5 percent near midchord, while the 
spacing between the tangential mesh lines as a percentage of distance between 
the upper and lower, extended-passage, boundaries varied from 2 percent near 
the boundaries to 15 percent near the middle of the passage. 

The local mesh employed for the NACA 0012 examples consisted of 12 circum- 
ferential lines which wrapped around the leading edge of the airfoil and 
extended from normal lines to the upper and lower surfaces at midchord, and 
l?O "radial" or normal lines which extended outward from the airfoil to one- 
half the minimum distance (i.e. the throat) between adjacent blades. The 
normal lines were spaced so that circumferential distances half way out (i.e., 
at 25 percent of the throat) were equal. The distance between circumferential 
lines as a percentage of the throat varied from 0.125 percent near the airfoil 
to 10.5 percent at the outer boundary of the local region. Once steady derivative 
information has been stored, unsteady solutions on the cascade and local meshes 
described above require approximately 30 and 20 seconds, respectively, of CPU 
time on a UNIVAC 1100/81 system. It appears that the cascade and local meshes, 
used presently, are more dense than necessary for an accurate resolution of the 
unsteady flow, and hence, substantial reductions in computing time should be 
realized in future studies. 

Unstaggered Cascades 

Results for unstaggered NACA 0012 and flat plate cascades are shown in Figs. 
5 through 13. For the NACA 0012 cascade, inlet Mach numbers, IL,,of 0.3, 0.5, 
and 0.6 and inlet flow angles, R-,, (Fig. 1) of 0 deg., 5 deg., and 10 deg. have 
been considered. For the flat plate cascade the inlet Mach numbers are 0.3, 0.5, 
0.6, and 0.7 and the inlet flow angle is 0 deg. in each case. Cascade and 
local mesh solutions for unsteady pressure difference distributions near the 
leading edge of the reference NACA 0012 blade are shown for out-of-phase bending 
and torsional vibrations in Figs. 5 and 6, respectively, for M.-, = 0.5 and 
i-2-m = 0 deg. Here the pressure difference is plotted versus the square-root 
of the distance along the airfoil chord from the leading edge. Solutions on 
the cascade mesh approximate analytical singularities in Ap at the leading edge, 
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which are removed by the subsequent local solution. The latter determines a 
zero pressure difference at a blunt leading edge and local extrenm in unsteady 
pressure difference near the leading edge. For the bending motion (Fig. 5) there 
is a local minimum in Re {Ap) at x % 0.0035 and in Im (Ap? at x s 0.013, while 
for the torsional mtion (Fig. 6) the real and imaginary pressure differences 
reach local maxima at x 2, 0.0009 and x s 0.012, respectively, and the real 
component has a local minimum at x s 0.03. It should be noted that the singular 
behavior predicted by the cascade mesh solution for the real component of the 
pressure difference due to torsion (Re {Ap) + 0~ as x + O+; c.f. Fig. 6) differs 
from that predicted by classical linear theory (Re (Ap) -+ -0~ as x + O+; c.f. 
Fig. 11). This difference is due to the contribution of higher order singular 
terms (i.e., (Re (p) so (x-~/~) as x + 0) which appear in an "outer" approx- 
imation to the unsteady flow near a blunt leading edge. As indicated in Figs. 
5 and 6, significant differences exist between the real components of the lift 
and moment coefficients predicted by the cascade mesh solution and the combined 
(i.e., cascade plus local) solution. In the latter case local mesh results 
apply in the region covered by the local mesh and cascade mesh results apply 
elsewhere. However, the cascade solution provides a good approximation to the 
imaginary components of the response coefficients. 

The effect of inlet Mach number variation on the unsteady response to a 
cascade of vibrating NACA 0012 airfoils is illustrated in Figs. 7 through 9 for 
inlet Mach numbers of 0.3, 0.5, and 0.6. In each case the inlet flow angle is 
0 deg. Steady Mach number distributions on the reference blade surface are 
shown in Fig. 7. For the prescribed inlet conditions surface Mach numbers reach 
maximum values of 0.379, 0.667, and 0.864 at x = 0.132, x = 0.152 and x = 0.195, 
respectively. Results depicted in Figs. 8 and 9 indicate that the unsteady 
response is strongly dependent on inlet Mach number, particularly at high Mach 
number. For out-of-phase bending motions (Fig. 8) the imaginary component of 
the unsteady pressure difference increases near the leading edge, but decreases 
over the remainder of the airfoil as inlet Mach number increases. Ibis behavior 
results in a decrease in imaginary lift component; i.e., an increase in aero- 
dynamic force opposing the blade motion. For out-of-phase torsional vibrations 

(Fig. 9>, as Mm increases the imaginary component of the unsteady pressure difference 
increases substantially over the forward 40 percent of the airfoil and decreases over 
the remaining 60 percent resulting in an increase in the unsteady moment opposing 
the motion (i.e., Im {CM) decreases). Hence, the effect of higher inlet Mach number 
is stabilizing for the two motions. 

Similar results are shown in Figs. 10 and 11 for flat plate cascades. Here 
the steady Mach number is a constant. An increase in Mach number has a stabil- 
izing effect on the motions of a flat plate cascade, but Mach number variation 
has a less pronounced effect on the aerodynamic response to vibrating flat 
plate blades than it does for the NACA 0012 profiles. A comparison between 
unsteady predictions for the NACA 0012 and flat plate cascades for a given inlet 
Mach number reveals the important influence of blade geometry on unsteady aero- 
dynamic response. The results provided in Figs. 8 through 11 ind'cate that the 
effect of blade thickness is stabilizing for the subsonic attached flows con- 
sidered, particularly at high Mach number. 
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The.effect of mean incidence on the response to single-degree-of-freedom 
uwtions of unstaggered NACA 0012 cascades has been examined by computing 
unsteady solutions for an inlet Mach number of 0.5 and inlet flow angles of 
0 deg., 5 deg., and 10 deg. The numerical results indicate that an inlet flow 
angle variation from 0 to 10 deg. has little impact on overall unsteady pressure 
difference distribution, and hence, unsteady lift and moment coefficients. An 
increase in mean incidence angle caused significant variations in unsteady sur- 
face pressure near the leading edge of the airfoil, but produced only a slight 
increase in stability margin for the bending or torsional vibrations. Real and 
imaginary unsteady surface pressure distributions near the leading edge of the 
reference blade are shown in Figs. 12 and 13, respectively, for the torsional 
case. Although there are substantial differences in unsteady pressure in the 
immediate vicinity of the leading edge (0 _< V'% 5 0.2) these do not persist over 
the entire airfoil, and therefore unsteady force and moment coefficients are 
relatively unaffected by the changes in inlet flow angle. 

Staggered Cascades 

Results for staggered cascades of NACA 0012 and flat plate airfoils are 
shown in Figs. 14 through 18 for a stagger angle of 45 deg. and inlet Mach numbers 
equal to 0.3, 0.5 and 0.7. The inlet flow angle is 5 deg, for the NACA 0012 
and 0 deg. for the flat plate cases. Surface Mach number distributions for 
NACA 0012 profile are shown in Fig. 14. Peak Mach numbers on the suction sur- 
face are 0.379, 0.649, and 0.970 and occur at x = 0.053, x = 0.068, and x = 0.095, 
respectively. The steady flows stagnate on the lower surface of the airfoil 
within a distance of 0.03 percent of blade chord from the leading edge and the 
stagnation point moves closer to the leading edge as inlet Mach number increases. 
Unsteady response predictions for out-of-phase bending (Fig. 15) and torsional 
(Fig. 16) vibrations of the NACA 0012 profiles follow similar trends with Mach 
number, M_,, as do the corresponding results for unstaggered cascades (Figs. 
7 and 8). For the bending case the real component of the pressure difference 
distribution decreases substantially over the forward half of the airfoil leading 
to a reduction in real lift component and an increase in the real counterclockwise 
moment. The imaginary component of the pressure difference distribution increases 
near the leading edge, but decreases over most of the airfoil providing a sub- 
stantial increase in the magnitude of the force opposing the motion and a 
reduction in counterclockwise moment at high Mach number. For the torsional case 
real pressure differences decrease over most of the blade providing a reduction 
in lift and an increase in counterclockwise moment. Further, imaginary pressure 
differences increase on the forward 30 percent of the blade and decrease over 
the remainder of the blade, leading to a reduction in lift and an increase in the 
moment opposing the motion. Hence, the effect of increasing inlet Mach number 
is to enhance the stability of both motions. 
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Results for the staggered flat plate cascades reveal a reduction in the 
imaginary component of the unsteady pressure difference due to bending (Fig. 
17) over most of the airfoil, and hence, an increase in the unsteady force 
opposing the motion with increasing Mach number. Further, there is a substantial 
increase in Im {Ap) due to torsion (Fig. 18) over the front-half of the airfoil, 
and hence, an increase in the moment opposing the motion, as Mach number increases. 
A comparison of the results given in Figs. 15 through 18 indicates that for the 
subsonic Mach number range considered, blade thickness enhances the aerodynamic 
stability of the bending motions, but causes a reduction in stability margin 
for the torsional motions. 

Unsteady Moment Due to Torsion 

In an effort to briefly examine the effect of blade geometry on overall 
torsional stability, limited additional calculations have been performed for the 
staggered(G = 1, O= 45 deg.) cascades of NACA 0012 and flat plate airfoils 
undergoing single-degree-of-freedom torsional vibrations about midchord. For 
these cases the inlet Mach number was set at 0.7 and the inlet flow angle was set 
at 5 deg. for the NACA 0012 cascade and at 0 deg. for the flat plate configuration. 
Results were first determined for unit frequency motions over the entire interblade 
phase angle range (i.e., -180 deg. < o < 180 deg.), and then for motions at 
a= 0.5 over the subresonant range of positive interblade phase angles. At unit 
frequency, superresonant conditions (i.e. acoustic waves persist far upstream 
and/or far downstream of the cascade, c.f. Ref. 7) exist for -28.6 deg. 
< IJ -c 112.4 deg. for the NACA 0012 cascade and for -29.4 deg. < a < 107.3 deg. 
for the flat plate cascade. The results for the imaginary component of the 
moment coefficient are depicted in Fig. 19. For superresonant motions the 
aerodynamic damping (which is proportional to -Im{cM;) is greater for the NACA 0012 
than for the flat plate blades. However, this situation is dramatically reversed 
over most of the subresonant region. The maximum calculated values of Im {CM ] 
were -0.157 at a= 120 deg. ( su resonant) b for the NACA 0012 cascade and -0.408 
at o= 60 deg. (superresonant) for the "classical" flat plate configuration. 
Hence, at least for this example, the effect of blade geometry is to cause a 
substantial reduction in torsional stability margin. In addition, the predic- 
tions at the lower frequency (0=0.5) indicate that the NACA 0012 cascade will 
experience subresonant torsional instabilities (according to linear aerodynamic 
theory) at low vibration frequencies. 
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CONCLUDING REMARKS 

The aerodynamic analysis described here has been developed to determine the 
flow past a finite-deflection, oscillating cascade operating in subsonic free- 
stream conditions. This analysis is intended to serve as a basis for investigating 
flutter or free vibration phenomena in jet engine fan, compressor and turbine blade 
rows. The unsteady aerodynamic model assumes small-amplitude fluctuations about a 
nonuniform steady flow and fully accounts for the effects of blade geometry and 
steady flow turning on the response to an oscillating cascade in fully-attached 
subsonic flow. The steady flow is governed by the full-potential, boundary value 
problem and the unsteady flow is governed by a linear boundary value problem with 
variable coefficients defined by the steady flow. With the present formulation 
a numerical resolution of time-independent, linear, unsteady equations is required 
only over a single extended blade-passage region of finite extent. Further, an 
incompressible model problem study (cf. the APPENDIX) indicates that the first- 
order or unsteady flow is analytic, but rapidly varying, near a blunt leading or 
trailing edge, and is thus susceptible to numerical resolution provided that a 
sufficiently detailed computation grid is employed in such regions. 

The unsteady numerical model is general and comprehensive enough to approximate 
accurately the unsteady equations despite the difficulties posed by cascade 
periodicity, nonrectangular geometry, and limited regions of rapid flow variation. 
Differential quantities are approximated in the physical plane using finite 
differences determined by an implicit least-squares interpolation and applicable 
on arbitrary grids. The approximation is flexible enough so that neighbor sets 
can be adjusted to accommodate singular behavior near blade edges, and both 
differential equation and boundary condition can be simultaneously approximated 
at boundary points. In general, the unsteady equations are first solved on a 
nonorthogonal, body-fitted, and periodic cascade mesh (Fig. 3), and then on dense 
local meshes in regions of large velocity gradient (e.g., near a blunt leading 
edge, Fig. 4). On either cascade or local mesh, the unsteady boundary value problem 
is approximated by a block-tridiagonal system of linear algebraic equations which 
is solved by direct matrix inversion. 

In previous studies unsteady solutions were determined on a cascade mesh for 
cascades of sharp-edged blades with mean camber lines aligned with the steady 
flow (Refs. 7, 11). Predictions for flat plate cascades have been shown to be in 
good agreement with Smith's (Ref. 2) analytical results for both subresonant and 
superresonant blade motions. Further, predictions for double-circular-arc blades 
revealed that blade thickness produces a strong coupling between steady and 
unsteady flows, particularly at high Mach number or low vibration frequency. 

Under the present effort the solution procedure has been extended and applied 
to cascades of blunt leading-edged airfoils at incidence relative to the inlet 
flow. Results have been presented here for cascades of NACA 0012 airfoils to 
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demonstrate solution capability and to further illustrate the influence of blade 
geometry (including leading edge curvature), Mach number, and incidence on unsteady 
response. Cascade and local mesh solutions indicate that leading edge curvature 
effects must be taken into account to accurately predict the unsteady force and 
moment components in-phase with blade displacement. Detailed local solutions for 
the NACA 0012 profiles provide unsteady pressure difference distributions which 
are zero at the leading edge and reach maximum or minimum values at distances 
from the leading edge on the order of the leading edge radius. Results for staggered 
and unstaggered cascades of flat plate and NACA 0012 airfoils reveal that unsteady 
aerodynamic response is strongly dependent on blade thickness distribution and 
inlet Mach number. In particular, the stability margin for torsional motions of 
staggered ( 0 = 45 deg.)cascades is substantially less for the NACA 0012 than 
for the flat plate cases. The stability of out-of-phase bending or torsional 
vibrations is enhanced with increasing Mach number for both NACA 0012 and flat plate 
cascades, but particularly for the former. Finally, for subsonic attached flow 
past NACA 0012 cascades, mean incidence appears to have only a slight effect on 
unsteady force or moment. However, inlet flow angle variations do cause substantial 
changes in unsteady pressure distribution near blade leading edges. 

Future Studies 

Further developments in the unsteady aerodynamic analysis will be required 
before a comprehensive flutter prediction scheme can be realized. For the sub- 
sonic Mach number range in which blade vibrations are of practical concern, it 
will be necessary to extend the present analysis to include transonic flows with 
weak shocks. For transonic applications, shock motion conditions (Ref. 24) must 
be incorporated into the aerodynamic model and appropriate differencing procedures 
for supersonic regions must be determined for the unsteady numerical model. In 
addition, for vibrating thin fan or compressor blades at incidence - the positive 
incidence flutter problem (Ref. 25) - it appears that the aerodynamic model 
will have to be modified to incorporate the effects of viscous-induced, leading- 
edge, separation bubbles. Progress in this direction is heavily dependent on 
advances in the calculation of steady cascade flows. Finally, the aerodynamic 
analysis developed to predict cascade flutter or free vibration phenomena should 
be combined with solutions of the vorticity and entropy transport equations 
(cf. Refs. 26, 27) to provide an analysis for the prediction of forced excitation 
phenomena in turbomachinery blade rows. 
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APPENDIX 

INCOMPRESSIBLE MODEL PROBLEM 

Certain restrictions are inherent to a perturbation approximation. If these 
are not satisfied throughout the solution domain, the perturbation expansion is said 
to be singular, i.e., the asymptotic series does not provide a uniformly valid 
approximation to the true solution (Ref. 17). In classical linear theory this sit- 
uation is manifested by analytical singularities (i.e., ( v$ 1 p' O(rE n/2) where rE is 
the distance from the edge) in the first order solution at airfoil leading (n=-l/2) 
and trailing (n = l/2) edges (Ref. 19). To clarify both the convergence properties 
of the asymptotic series associated with the present aerodynamic model (Eq. (5)) 
and the behavior of the first-order solution, especially in the vicinity of blunt 
leading edges, a quasi-steady (w+O), incompressible (M-,+0) flow has been studied. 
The results of this study provide important considerations for a successful numerical 
resolution of the first-order unsteady flow field. 

Consider incompressible flow past an elliptic airfoil, 8, which has undergone 
a rigid displacement from an original or mean position, S (Fig. 20). The latter 
is situated at angle of attack A relative to the uniform stream, Ta. Body-fixed a, 

- and x,y-coordinate axes coincide with the major and minor axes of the ellipses 
sand S, respectively. Hence, f = (z-h)eWia where 9 =a+ iy , z = x + iy, h = h, + 
ihy defines the amplitude and direction of the translational displacement, and Q 
defines the amplitude and direction of the rotational displacement about?= 0. The 
complex potential, 6, for the flow about the displaced ellipse, g , is given by 
(Refs. 28, 29) 

(I-b&$ = H(,,i) 

=F(p)ms$-i C(f)sini+i (I-b)fh. 
[ 9+q (Al) 

where 

F(t) =t -b,,‘,v , G(f) = bp -d,- 

642) 

? = -(I+b)sin A/2 

i= A + CI, b is the thickness of the airfoil, 
2 l/2 ,. 

a=(l-b) 14, and I is the circu- 
lation. The circulation has been specified by requiring that the rear stagnation 
point occursat the trailing edge (9 = l/2). For b = 0, Eq. (Al) defines the complex 
potential for the flow past a flat plate at angle of attack, A , relative to the 
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uniform stream Fa. In this case the prescribed circulation, Eq. (A2), guarantees 
that the flow does not stagnate near the trailing .edge of the airfoil. 

Perturbation Solution 

The complex potential can be formally expressed as a power series in the param- 
eter E; i.e., 

0 

‘(9) = Z ci wj(Z) = W(Z) + w(2) + o(E2) 
j :o 

(A31 

where E depends on the displacement of the airfoil Sfrom its original or mean posi- 
tion. The first two terms of this series are determined explicitly by expanding 
the second term on the right-hand-side of the expression 

(p2-4a2) = (z2-402) I+ 
(9 2- a2 [ 1 z2- 4a2 

in a binomial Series; i.e., 

(f2- z 2, [ I 
l/2 

I+ 
t2- z2 

z2-4a2 = ’ + 2(Z2- 4a2) 
+ . 

(A41 

(A51 

substituting this result along with the series expansions for cosa and sina into 
Eq. (Al), and neglecting second and higher order terms in h,, hy, and a. After 
some algebra it follows that 

(I-b) w(Z) = Hk, A) 646) 

and (I-b)w(Z) = u 3 - sg 

= - a F (z)sin A - i Q 

[ 

G(Z) + !$ & ‘+F cas ,A 

(A71 

+ S [G(Z)COS A - i(F(z) - (I- b2)/2) sin A] /Jzv 

where s = h + iaz. Thus, W(z) is the complex potential of the flow past the ellipse 
S and w(z) is the linear (in a, h, and hy) approximation to the change in this solu- 

tion due to a rigid-body displacement. 
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The power series, Eq. (A3) evaluated at the point z, converges to the exact 
solution, W, evaluated at q = (z-h)e -ic for flow past the displaced ellipse,g , if 

It’-Z’I = ((z-h)%2iQ-z2~~(z2-4a2(=~2+20(~2-20( w3) 

at each point z on or exterior to S. The foregoing inequality can be expressed in 
the form 

I I 

s < lz+2allz-2al _ o+.12, 

214 
W) 

Thus, the power series, Eq. (A3), converges if the distance from z to 9 is small 
compared to the ratio of the product of the distances from z to the foci (at z = * 
2a) of the ellipse S to twice the distance from z to the origin (z = 0). In par- 
ticular, at the edges of the airfoil (z = f l/2), the foregoing inequality reduces 
to 

(h 2 ia/ < b2/4 - b(ls12) (AlO) 

where b2/4 is the edge radius. Thus, for sufficiently small displacements, the power 
series, Eq. (A3), will converge throughout the flow field, and the first two terms 
of this series will provide a valid first-order approximation to the flow past the 
displaced ellipse. If condition (AlO) is not satisfied (e.g., for a flat plate air- 
foil), the perturbation approximation is singular near the edges of the airfoil. 

The zeroth-and first-order complex velocities are given by 

(I-b),,% = g =-(z2-4a2)“2 [G(Z) cos A - i [F(z)-(I-b2)/2] sin A] 

and 
(I-b)%= Q & - 3% = iaei'4(z-4a2j"2 [G(Z)+ F(Z)- (I-b'),Z] 

-s(z2-4a2)-’ [F(z)COs.A-iG(Z)sin.4 1 
-sz(z2-40 ) 2 3’2 [G(Z) COS .4 - i [F(Z) - (I - b’)/2] sin .A] 

(All) 

(A121 
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For flow past a displaced ellipse the zeroth-and first-order complex velocities 
are analytic. They behave like multiples of zG -112 and zGD312, respectively, near the 
blunt leading and trailing edges of the airfoil, where zG is a complex coordinate 
measured from the center of the edge circle. For a flat plate airfoil (b=O, a=l/f+) 
the zeroth order complex velocity has a square-root singulari ls;s (dW/dzQ O(z+1/2)-1’2) 
at the leading edge and behaves like a multiple of (z - l/2) at the trailing 
edge. In addition, the first-order velocity is singular like a multi le of 
(z + l/2)--3’2 at the leading edge and like a multiple of (Z - l/2) -l/T at the 
trailing edge. For a flat plate at zero mean angle of attack (the classical linear 
problem) dW/dz = 1, and the order of the singularities in the first-order complex 
velocity is reduced by one (i.e., dw/dz 2, (z + l/2) -112 at the leading edge and 
dw/dz s (z - 1/2)112 at the trailing edge). 

Governing Boundary Value Problems 

Since the zeroth order term, W(z) of the series expansion, Eq. (3), is the com- 
plex potential for the flow past the ellipse S (Fig. l), @ = Re (W(z)] is a solution 
of Laplace's equation which satisfies the following boundary conditions 

VQ.5 =o, on s (A13) 

and 

lim V @ = cos .4 G + sin A q (A141 
PI- * 

where z is a unit outward normal vector and zx and z are unit vectors in the 
coordinate directions. The first-order velocity potzntial, $I = Re {w(z)}, is also a 
solution of Laplace's equation, and it can be verified that @(x,y) meets the following 
conditions 

v+ .iF = [z x V@ - (7. VI vq .Y, on S (A151 

and 

lim v+ = 0 

Id- * 
(A161 
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where ;' = (hx + ay) zx + (h - ax) zy. Thus exact solutions to the steady and the 
linear unsteady boundary va ue problems described in this report (c.f. Eqs. (l), P 
(3), (8), (9) and (11)) have been determined for the flow past an isolated elliptic 
airfoil in the limiting case M-, + 0 and w + 0. Note that the unsteady boundary 
conditions of continuous normal velocity and pressure across the wake (Eq. (12)) 
are automatically satisfied since V$ is continuous throughout the flow. Further, 
the unsteady far-field conditions (Eqs. (14) and (16)) are replaced by the condi- 
tion that the first-order velocity vanishes far from the airfoil. The zeroth-and 
first-order pressures acting on the displaced airfoil, s, follow from Eqs. (2), 
(18) and (19) for M-, -+ 0 and w + 0 and are given by 

pS = 9, + I - (WI,2 

and 

PI = [ -2V@m#a+F .vP]s= [-2V@ .v#rfm0~2]s 

W7) 

Wf3) 

The zeroth-and first-order solutions, Eqs. (A6) and (A7),have been programmed 
and sample results for the first-order potential and normal velocity on the mean 
surface, S, and the first-order pressure difference are shown for rotational dis- 
placements with a = 2 in Figs. 21 through 25. Surface velocity potential distribu- 
tions for flat plate (b = 0) and elliptic airfoils (b = 0.1 and b = 0.2) at zero mean 
angle of attack, A, are depicted in Fig. 21. In each case the potential varies 
gradually over most of the airfoil, but abrupt changes in potential occur near the 
leading and trailing edges of the elliptic airfoils. The magnitude of these rapid 
changes increase with decreasing thickness (for b # 0) and with increasing magni- 
tude of angle of attack. In contrast, abrupt changes in surface potential do not 
occur for a flat plate airfoil. 

Surface normal velocity distributions, as determined from the first-order flow 
tangency condition, are shown in Figs. 22 and 23 for flat plate and elliptic air- 
foils at 0 deg.and -10 deg.mean angles of attack. Details in the vicinity of the 
leading edge are shown in the latter figure. Results for the flat plate atA = 0 
(i.e., V$ * aIs = f 2) correspond to the classical-linear-theory boundary condition. 
The effects of thickness or non-zero mean angle of attack is to cause large and 
rapid variations in first-order normal velocity in the vicinity of airfoil edges.. 
These variations increase with decreasing thickness for b # 0 or increasing magni- 
tude of angle of attack. For the flat plate at A = -10 deg. the surface normal 
velocity distribution is singular at the leading edge and varies monotonically with 
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distance from the leading edge along the upper and lower surfaces of the airfoil. 
However, for the elliptic airfoil the variations in first-order normal velocity 
along the upper and lower surfaces change sign near the edges of the airfoil (Fig. 
22). This behavior has an important impact on the numerical resolution of the first- 
order flow and will be discussed in more detail below. 

First-order pressure-difference distributions, Ap(x), due to rotational dis- 
placements with a = 2, for symmetric mean flows (A= 0) past flat plate airfoil 
and elliptic airfoils with b = 0.1 and b = 0.2, and for flow past an ellipse with 
b = 0.1 at -10 deg.mean angle of attack are.shown in Fig. 24. Leading edge details 
are provided in Fig. 25. The results depicted in Fig. 24 suggest that the first- 
order loading (i.e., Ap or cL) is more dependent on airfoil thickness than on mean 
angle of attack. Significant variations in the first-order pressure difference 
occur near the edges of the airfoil, particularly near the leading edge. For the 
blunt-edged airfoils the pressure difference distributions reach minimum values at 
a distance of b2/4 from'the leading edge; i.e., at a distance equal to the leading 
edge radius (Fig. 25). 

Inner and Outer Expansions 

The results depicted in Figs. (21) through (25) indicate that flow parameters 
vary sharply in the vicinity of airfoil edges and gradually over the remainder of 
the chord. This behavior suggests that the flow past an elliptic airfoil depends 
on two length scales -the edge radius, b2/4, and the square root of the product of 
the distances from a given point, z, 
(22 - l/4)1/2. 

to the 'leading and trailing edges; i.e., 
Approximations to the zeroth-and first-order complex velocities, 

based on this concept, can be determined. An "inner" solution valid in a neighbor- 
hood of the leading edge, lzCl 2, o(b2) where zC = z + 2a, is obtained by substi- 
tuting the expansion 

(z2 -42)" - (-Jizp-)" ZC" [l-"Zc/&T + 0 (Izc12q 

into Eqs. (A2), (All) and (A12). It follows after some algebra that for 
A s o(b)<<1 

(I-b) s - I- (A+ ib/2) z;“~ + d(b’) 
I 

and 

(I-b) g 
I 

N -s(t+ib/2)Zcm3”/2 - Q Zi”2 + d (1st) 

I 

(A19) 

(A201 

(A211 
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Thus, as noted previously, 
q1/2 and a zC-3'2 

the zeroth-and first-order complex velocities exhibit a 
behavior, respectively, in the vicinity of a blunt leading edge. 

Similarly, an "outer" approximation, valid in the region lz2 - l/41 % d(l), 
is determined by substituting the expansion 

(z2- 4a2)” - (Z2- 1/4)n I+ nb2 (Z2- 1/4?/4] + @ (p) (A221 

into the exact expressions for the zeroth-and first-order complex velocities. It 
follows for A s o(b)<<1 that 

(l-b) g 
I 

-1/2 - 1+(z2-l/4) [iA(z- 1/2) - bz] + b (b2) 
0 

(A231 

and 

(l-b)+io N -++i(l+b)][l-(Z- l/2)v2 (z+1/2j”2] 

(A241 

+ s 1 (b+i.4)(t2- 1/4) ‘I”+ Z[i(z-l/2)A-bz](Z2-l/4) -3’2) + f? (lSlb2) 

Equation (A23) is the classical first-order approximation for the flow past an 
ellipse of thickness b situated at angle of attack A relative to a uniform stream. 
It can be shown that the outer first-order solution satisfies the first-order flow 
tangency condition, Eq. (A15), when the steady velocity is obtained from the outer 
approximation to the zeroth order solution, Eq. (A23). It follows from Eqs. (A18), 
‘323) and (A24) that the outer approximation to the pressure difference across the 
airfoil is 

Abet= -4a[(l,2-x)+b(,-3x$,4-x2jV2 +b (lStb2) (A251 

Therefore, tolowestorder Ap(x,l for the displaced airfoil depends on airfoil 
thickness, b, but not on mean anglg of attack,A . 

Near the leading edge of the airfoil (zLE Q o(b2)) the outer solution assumes 
the form 
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(I-b) 3 
I 

- I - (A+ i b/2) zL-f2 + 

0 

and 

(I-b) + - -S(.4+i b/2)z,;3’2 /2 - Q2,iv2+ . 
0 

W6) 

where zLE = z + l/2 = ZC + b2/4. Thus, to lowest order the inner and outer solutions 
have the same functional form near the leading edge of the airfoil. The inner solu- 
tions depend on the variable ZC which is measured from the center of the leading 
edge circle, while the outer solutions depend on zLE which is measured from the 
leading edge of the airfoil. 

Closure 

The foregoing model-problem study reveals several important features of pertur- 
bation solutions to airfoil type flows. In particular, the solution for the flow 
past a displaced airfoil can be represented as an asymptotic series in which the 
zeroth order solution describes the flow past the airfoil at its original location 
and the remaining terms account for the effects of the displacement. This series 
will converge to the exact solution for the flow past the displaced airfoil if the 
displacement is small compared to the edge radii of the airfoil. If this criterion 
is not met, but the displacement is still sufficiently small, the asymptotic series 
will converge everywhere except near the edges of the airfoil. In this case the 
perturbation approximation is singular. In either event the first-order term of 
the asymptotic series is a solution of a linear boundary value problem in which 
the airfoil surface boundary condition (i.e., the flow tangency condition) is satis- 
fied on the original airfoil surface. The zeroth-and first-order solutions are 
analytic for blunt-edged airfoils, but these potentials, or their derivatives to 
some order, are singular at sharp leading and trailing edges. Finally, near blade 
edges, the zeroth-and first-order solutions are essentially functions of a position 
vector emanating from the center of the edge circle. 
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Numerical Implications 

One purpose in conducting the model-problem study is to provide guidance for 
the numerical resolution of unsteady cascade flows. First-order results depicted 
in Figs. 21 through 25 indicate that with the exception of small neighborhoods 
surrounding the blade edges, the first-order unsteady flow could be captured on 
a relatively coarse rectilinear type mesh which covers the extended blade passage 
region; e.g., the mesh shown in Fig. 3. Although this mesh is generally well suited 
for approximating conditions on the boundaries of the extended blade passage region, 
and for capturing the unsteady flow throughout most of the solution domain, it is not 
suitable for resolving the flow in the vicinity of blunt blade edges. As a result 
solutions to the unsteady-cascade boqndary value problem were initially reported 
for sharp-edged profiles (Refs. 7 and 11). For a blunt-edged airfoil, a solution 
on the cascade mesh must be supplemented by local solutions on very fine meshes 
(e.g., Fig. 4) in regions where velocity gradients are large. The coarse mesh solu- 
tion is then used to provide conditions on the outer boundary of the local mesh. A 
prerequisite for this approach is the ability to determine a reasonably accurate 
unsteady solution on the coarse mesh. 

The present authors' early attempts to resolve the unsteady boundary value 
problem for blunt leading-edged, compressor-type, airfoils on the cascade mesh 
(Fig. 3) resulted in spurious unsteady pressure predictions over the entire airfoil 
including violent pressure oscillations near the leading edge. Results of the model 
problem study reveal the source of difficulty to be the partial inclusion of local 
phenomena in the coarse mesh calculation. Since this mesh should only be used to 
calculate an "outer" approximation to the unsteady flow field, local steady flow 
behavior should be excluded from the governing differential equation, Eqs. (9, lo), 
and surface boundary condition, Eq. (ll), for the coarse mesh calculation. This is 
accomplished by not placing mesh lines too close to a blunt leading edge, and by 
replacing the local steady flow solution by an approximate outer solution in the 
vicinity of blade leading edges. That is, the functional dependence of steady 
potential derivatives on a position vector emanating from the center of the leading 
edge circle, 2c, is replaced by a functional dependence on a position vector emanat- 

+ ing from the leading edge, rLE, to produce singular, but monotonic (near $1~ = 0) 
behavior in steady potential derivatives along radial lines emanating from the lead- 
ing edge. Such behavior poses no difficulty to the calculation of coarse mesh solu- 
tions. The unsteady numerical solution on the coarse mesh is then akin to an outer 
unsteady solution, and as such, it provides reasonably accurate boundary condition 
information for determining an inner solution on a dense local mesh surrounding a 
blunt leading edge. Similar considerations should be applied to calculate the 
unsteady flow past a cascade of airfoils with blunt trailing edges. 
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Fig. 2 Extended Blade-Passage Region 
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Fig. 4 Local Mesh 
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