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TRANSFORMATION FORMULAS RELATING GEODETIC
COORDINATES TO A TANGENT TO EARTH, PLANE COORDINATE SYSTEM

BY

LEONARD CREDEUR

SUMMARY

In order to simulate an air traffic terminal area with dynamic

deterministic traffi 4 the aircraft's body centered axes must be related

to the geodetic site of navigation aides, runways, and other fixes

for on-board navigation. In addition, the aircraft locations are

shown as perceived by an airport radar. The approach used is to

map geodetic positions to an earth tangent plane with an airport

centered rectangular coordinate system. This report develops both

the transformation equations and their approximations. The TCV

program uses a different set of approximations to relate MLS derived

aircraft positions to geodetic values for navigation. A short error

analysis in appendix B shows the TCV approximations to be sufficiently

close to the exact analytical expression for precision MLS navigation

use.
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INTRODUCTION

A Terminal Area Air Traffic Model (TAATM) was developed in conjunction

with NASAls Terminal Configured Vehicle (rCV) Program. The principal

objective of the TCV program is to increase the productivity of the

aircraft/airport/air traffic control (ATC) system with primary emphasis

on the airborne elements of the system. The TAATM provides a represent­

ative real-tim~multiple aircraft environment for both the TCV simulator

cockpit and the TCV 8-737 aircraft to interact with in the conduct

of a wide range of experiments. In addition a fast time version of

TAATM exists for computer batch processing.

When simulating aircraft traffic within the confines of a typical

terminal area airspace, the requirement of a simple coordinate system

quickly manifests itself. One must relate the geodetic location of

runways, navigation sites, fixes, etc. to the aircraft body-centered

axis for navigation purposes and in addition show aircraft positions

as would be perceived by an airport radar. This problem is simplified

by chosing an airport centered rectangular coordinate system with an

assumed flat earth surface. Though reducing the complexity of the navi-

gation problem, this approach still requires the mappinq of qeodetic posi­

tions to an earth tanqent plane. The algorithms necessary for the mapp;'ng

are the subject of the following discussion.
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SYMBOLS AND ABBREVIATIONS

semimajor or equatorial radius of the earth's ellipsoid

aircraft

semiminor or polar radius of the earth's ellipsoid

eccentricity of the earth's ellipsoid

flattening of the earth's spheroid

height above mean sea level

height above mean sea level of the rectangular coordinate origin
at the airport

local or Gaussian radius of curvature

radius of the circle defining north-south curvature of the
earth's ellipsoid at a specified latitude

radius of the circle use to define east-west curvature of the
earth's ellipsoid at a specified latitude

R' + hp 0

Microwave Landing System

mean sea level
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TAATM Terminal Area Air Traffic Model

TCV Terminal Configured Vehicle

~ geodetic or geographic latitude



</>' geocentric latitude

</>0 reference latitude of TAATM coordinate orgin

!1ep change in latitude about the reference latitude

1.. 0 reference longitude of TAATM coordinate origin

61.. change in latitude from the reference longitude

4
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DEVELOPMENT OF TRANSFORMATIONS

Description of Earth's Ellipsoid Surface

For navigation purposes the earth's sea level surface can be

approximated by an ellipsoid of revolution around its spin or minor axis

which is the diameter joining the north and south pole. The geometry of

the ellipsoid is defined by an ellipse whose semimajor axis is the

equatorial radius a and whose semiminor axis is the polar radius b, as

shown in figure 1. The eccentricity of the elliptic section is defined by

(1)

and the oblateness or flattening of the spheroid as

f= a - b
a (2)

The relation between e and f is

(3)

Polar axis
of earth

¢ = goedetic latitude
¢/= geocentric latitude

OA = a = semimajor axis
OB = b = sem1m1nor axis
pip = h = altitude above MSL

P

A

Reference
I'ellipsoid

o

Bt---_~

~-------"'7.---lo_--~_----IL..-­
Equator/

Center of
ellipsoid
and mass

.. center of
earth

Figure 1. - Geocentric and geodetic latitude.
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There have been several reference or standard ellipsoids used.

Table I list some of these:

Description a (meters) f

Adopted by TCV for MLS I~ork 6,378,169.79 3.3901 x 10- 3

FAA Route Development - US 6,378,206.40 3.3901 x 10- 3

Army Engineers

IAU - 1952 6,378,388 1
297

NASA Values for Trajectory 6,378, 166~25 1

Calculations (NASA SP-7) 298.3

IASU - 1965 6,378,160 1
298.25

TABLE 1. Reference Ellipsoid Approximations of Geoid

From Figure 1 we see the geodetic (also called geographic or map)

latitude ¢ of a point P is the angle between the normal to the ellipsoid

and the equatorial plane. For navigation purposes the radii of curvature

of the ellipsoid are of primary importance. The meridian radius RMis

the radius of the circle. of best north-south curvature fit to the meridian

section of the ellipsoid at geodetic latitude ¢. Its utility comes from

the fact that a given relatively small north-south distance subtends approximately

the same increment of latitude on a circle of radius RMas that north-south

distance does on the geodetic ellipsoid at the reference latitude ¢.

The value RMand its approximation at some latitude ¢ is determined in

appendix A to be

(4)

and
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(5)

The prime radius Rp' used to define the east-west curvature, is the

radius of a circle model of the meridian section such that at latitude ~

its transverse circle of revolution around the polar axis is equal to that

of the geodetic ellipsoid at latitude~. From Appendix A we can write

(6)
a

Rp = --.2. .2. ~
(l-e sin ~)

and

(7)

The local or Gaussian radius of curvature RL, is the radius of the

best fitting sphere to the ellipsoid at a local point. From Appendix A

we get

(8)

and

(9)

Transformation from an Earth Tangent Plane, Actual Aircraft Projection to
Geodetic Coordinates

Let the TAATM origin at the airport be at reference latitude ~o,

longitude Ao and MSL altitude ho• The TAATM axis system is X-North,

V-East and Z down from the XV plane. From Figure 2, the point

(Xl, yl , z' = 0) on the flat plane through which a line passes from the

x, y, z position to the local earth vertical is determined as follows:
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Figure 2. - Relation of TAATM tangent plane to earth coordinates.



Define RM~ RM+ ho

then

9

Z

RI

M

= x - Xl
I

X

or

and

Xl = x[ 1 I]
l+z/R~1

Xl ~ x[1 - z/RM] for z/RMsmall

(10)

(11 )

likewise for R~ ~ Rp + hu

1y I ::: y [----.--:---;;;:-r--
1 + z/R~

(l2)

and
yl ~y[1 - Z/R~] for z/R I p small ( 13)

With Xl and yl known exactly from (10) and (12) respectively and

approximated in (11) and (13), the expression for ~~ and ~A can be

developed. Since the TAATM axes are X-North and V-East then from figure 2

~~ = arctan (~RN) =~
m Rm

and

for

~A = arctan (-~E ) =
R~ cos ~

_yl
I

Rp cos ~

o

(16)

(17)

+ ~~ ~ radians north of TAATM origin
+ ~~ ~ radians west of TAATM origin

The corresponding geodetic coordinates in latitude and longitude are

~ = ~ + ~~

and



Let us now consider the relation of altitude above sea level and the

tangent plane height z at some arbitrary location (x, y). For this we

use the local or Gaussian radius of curvature. Figure 3 illustrates

the relation of the quantities used. If ho is the height of the tangent

plane's origin above MSL then the altitude h is

10

h = ho + hI + h2

to determine hI and h2 we define

so that

, r RL
r = Z+RL

We can then say

I 1

h2 = -' R' + R' [1 + (~I }2]'2L L L
2 1

h2 - - R' + R'[1+( r )]'2
L L Z + RL

Determine hI from

R'_z_= _L _

hI R' + h2L

hI ::;: z( 1 + ~~ )
L

hi = Z [1 + (r }2]~
Z + R'L

thus the MSL altitude h is

(18 )

(19 )

(20)

(21)

r 1 1

h = ho + z[1 + ( z + R1 )2]'2 - R' + R'[l +(r )2]'2
L L L z + R'

L (22)



x

o~:::-----..J

Figure 3. - Relation of tangent plane l to MSL altitude.
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this can be approximated by
2

h ~ ho + z +~
2R 'L

(23)
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Transformation from TAATM Projection to Geodetic Coordinates

We started with a generalized tangent plane actual aircraft projection.

The exact transformation to geodetic coordinates are given by equations 16,

17, and 22. It should be noted, as a result of either the exact equations

for x I and y I (eqs. 10 and 12) or their approximations (eqs. 11 and 13),

an aircraft with flat plane coordinates x, y, z r 0 will have a different

latitude and longitude from that of the flat plane coordinates x, y, z = o.
That is, an aircraft over a TAATM plane, ground navigation fix would have a

different latitude and longitude from that of the fix. To avoid this

problem for the TAATM simulation we will say x = Xl and y = yl. As a result,

an aircraft at some altitude over a TAATM ground fix will have, after trans­

formation, the same geodetic latitude and longitude as the transformed fix

location. This is a reasonable simplification because of the distances

considered (x, y < 50 n. mi), and for operational terminal area altitudes the

ratios Z/R~ and z/P~ are small.

When we set x = Xl and y = yl for ground fix and aircraft latitude and

longitude compatability the problem reduces to what is called gnomonic

projection. Gnomonic projection is obtained by placing a plane tangent to

the earth and projecting geoid points geometrically from the center of the

earth. Figure 4 a illustrates this process.

Since TAATM axis ar X-North and V-East the distances are

LlN = x

LlE = y

For the gnomonic projection the relation between the TAATM distances

LlN and LlE and that of latitude and longitude are

(24)

Llcj> = arctan LlN
R'
M

(25)



~A = arctan (~~Ecos ¢)
p 0

Azimuthal Equidistant Projection

13

(26)

(27)

(28)

•

Besides gnomonic projection, another approach employed for converting

the curved earth to a flat plane is azimuthal equidistant projection. This

is obtained by converting north-south and east-west radial or great circle

distances to plane x, y. Figure 4b illustrates this projection. In this

system the relation between the flat plane x, y distances and that of

latitude and longitude (in radians) is defined by

~=L
R'
M

~A=~y----­
Rpcos ¢o

Looking back to Equations 25 and 26 we see that for small angles of ~¢

and ~A the gnomonic and azimuthal equidistant projection are approximately

equal.

TCVls Transformation Approximations

Other approximations that those developed in this report have been used

for mapping tangent earth plane positions to geodetic location. An example

is the Terminal Configured Vehicle Program's approximation equations used to

relate MLS derived position to geodetic latitude and longitude for on-board

navigation. Appendix B contains a listing of their approximation equations

and compares the results using these approximations with the output from the

exact analytical expression derived earlier in this report.



a. Gnomonic projection

. b. Azimuthal equidistant projection

Figure 4. - Geoid to flat plane mapping.
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CONCLUDING REMARKS

The tranformations developed for mapping geodetic positions to an

earth tangent rectangular plane via gnomonic projection is a relatively straight

forward process which simplifies the coordinate system requirements

for simulating a terminal area air traffic environment. These

requirements are to relate the geodetic positions of runways navigation

sites, fixes etc. to the aircraft body centered axis to enable simulated

aircraft to navigate, and also to display aircraft positions as would be

detected by an airborne radar. Inverse transformation can be explicitly

determined from the approximatio~ equations developed.

This report's development proceeded from a generalized tangent

plane actual aircraft projection to that of a flat earth gnomonic

projection. The general~zed position projection represents the ideal

position as perceived by a high frequency, line of sight system such as

radar or the Microwave Landing System (MLS). Standard formulas may be

used to transfer the spherical values of elevation, azimuth and range

to the rectangular X, Y, Z. The generalized relation between geodetic

position in latitude, longitude, and mean sea level altitude and the

corresponding location in a rectangular flat plane X, Y, Z as developed in this

report, provide a procedure to convert MLS values to geodetic position. The Terminal
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Configured Vehicle Program used approximation equations to relate MLS

position to geodetic values used by their on-board computer. Appendix B

contains an error analysis comparison of the values obtained by the

TCV approximation and the values obtained using our derived analytic

expressions. Values of distance and altitude used in the error analysis and

a representative range of values an aircraft would experience when landing at

some air traffic terminal area. The results indicate the TCV approximations

are adequate for precision MLS navigation use.

•



APPENDIX A

DERIVATION OF ELLIPSOID RADII OF CURVATURE

If a meridian section of the earth's ellipsoid of resolution is

taken, the result is the ellipse shown in Figure A-l. For a conventional

X, Y coordinate system, the ellipse is

17

where a is the semimajor (earth equatorial) radius and b is the semi­

minor (polor) radius. When the eccentricity e is defined by

then we can rewrite Equation A-l as

(A-l)

(A-2)

(A-3)

Solving for y in Equation A-3 and differentiating with respect to x

yi~lds the slope y' at the point (x, y) on the ellipse.

y' = (l - e2
) (- ~)y

Since the geodetic latitude ¢ at a point (x, y) is the angle between

the normal to the ellipsoid and the equatorial plane

y' tan ¢ = -1

(A-4)

(A-5)



b

y

18

o = geodetic latitude
¢'= geocentric latitude

x

•

Figure A-l. - Meridian section of geodetic ellipsoid.



Substituting Equation A-4 into A-5 yields the relation

y = x(1-e 2 )tan cp

Using A-6 in Equation A-3 results in
x = a cos ep

.!,:
(1 - e2 sin 2 cp) 2

Taking Equations A-6 and A-7 together yields
a(1-e 2 )sincpy = -

(l - e2sin2cp)~

19

(A-6)

(A-7)

(A-8)

For the meridian radius RM, what is desired is a circle of radius RM
such that its north-south curvature or rate of change (second derivative

of y with respect to x) at its latitude cp is the same as that of the

geodetic ellipsoid at latitude cp.

The rate of change y" of the ellipse at point (x, y) is determined

by differentiating Equation A-4 with respect to x and using Equation A-5

to obtain

Substituting from Equation A-8 yields:

I I = -(1-e2sin2w) %
y a(1-e 2 )sin cp

A circle with its center at the origin of coordinates (Xc Yc) with

radius RMhas the equation

X 2 +y2=R 2
c c M

(A-g)

(A-10)

(A-ll )
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For this circle the following relations hold

tan

tan <P =-1c
Yc

<Pc = ­
Xc

(A-12)

Using the relations of Equation A-12, the rate of change of the circle

y II is determined to be
c

R 2
M _ - 1Y II = =-~~--

C - y~ - =RMsin3<Pc

If the circle is placed such that the point (x, y) of the ellipse in

Figure A-1 and (xc' Yc) of the circle are the same for <Pc = <p, then we

can rewrite Equation A-13 as

(A-13)

Equating the rates of change in Equations A-10 and A-14 gives

(A-14)

(A-15)

which is the radius of the best fitting circle for north-south curvature to

the meridian section of the ellipsoid at latitude <p. Its utility comes

from the fact that a given relatively small north-south distance subtends

the same increment of latitude on a circle of radius RMas that south-north

distance does on the geodetic ellipsoid at the reference latitude <p.

If Equation A-15 is expanded in the form

..

(A-16)

and dropping higher order terms of e we qet the following approximation

(A-l7)
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A similiar radius can be determined which relates the east-west

curvature of a circle to that of the earth's ellipsoid. This radius,

called the prime radius Rp' is defined as ~he radius of a circle model

of the meridian section such that at latitude ¢, its transverse circle

of revolution around the polar axis is equal to that of the geodetic

ellipsoid at latitude ¢.

From Figure A-2 we see this radius of east-west curvature is equal to

the earth's ellipsoid value x at latitude ¢. For an circle model of

the meridian section the radius of rotation about the solar axis at

latitude ¢ must be equal to the value x.

Rp cos ¢ = x

When Equation A-7 is substituted into Equ&tion A-18, the value Rp is

determined in terms of the geodetic latitude ¢.

If Equation A-19 is expanded as it was in Equation A-16, the

followinq approximation for Rp results

(A-18)

(A-19)

(A-20)

The local or Gaussian radius of curvature RL, is the radius of the

best fitting sphere to the ellipsoid at a local point

(A-2l)



Top View

~ -+ x

Meridian Section
Side View

~L-.j...:JL- --::~L.-__ X

Figure A-2. - Relation of east-west curvature to a
meridian section of geodetic ellipsoid.
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If Equation A-15and Equation A-19 are substituted one gets

!-;:
R = a(1_e 2 )2

L (l-e 2 sin 2¢)

If Equation A-22 is binomially expanded and higher order terms of e are

dropped then we get for an approximation

(A-23)



APPENDIX B

COMPARISON OF ANALYTICAL EXPRESSIONS
TO TCV' s APPROXIMATION EQUATIONS

The Terminal Configured Vehicle (TCV) Program has used a number of

approximation equations relating the earth's ellipsoid to a rectangular

coordinate system in its Microwave Landing System (MLS) work (ref. 3).

Following is a list of these equation:

PARAMETERS OF TCV ELLIPSOID

a = 6,378,169.79 meters

f = 3.3901 X 10- 3

APPROXIMATION EQUATIONS USED BY TeV

24

R = a[ 1 ]
M 1 + f (2-3 sin 2 ~o)

R ' = R + hop p

1
RL = a [1+f(1-2 sin2~o)]

RL' = RL + ho

x' = x{l- ~,-)RL
I Z

Y =y(l- F)
L

(B-1)

(B-2)

(B-3)

(B-4)

(B-5)

(B-6)

(B-7)

(B-8)
"

(B-9)
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h ho + z + r 2
(B-10)= 2irL

6cjJ
X·

(B- 11 )= R'
M
I

6\ -'L (B-12)- R
p

I·COS cjJo

Table B-1 gives a comparison of results using TCV approximations

and that obtained by using the exact expressions. For a chosen latitude

of +40 0
, we used the IASU - 1965 reference e." i psoi d and the exact

analytical expressions of a generalized tangent plane actual aircraft

projection derived in the report to obtain the following three values:

1. the delta latitude from reference point

2. the delta longitude from reference point

3. height above mean sea level

These were obtained for a rectangular tangent plane specific (x, y, z)

point. A set of the above three values was obtained using the IASU - 1965

reference ellipsoid together with the TCV approximation equations. Finally

for the specific (x, y, z) point, another set of the previously mentioned

three values was obtained using both TCV's ellipsoid and TCV's approximation

equations. A comparison of the values obtained was made using the report's

analytical expressions and the IASU - 1965 reference ellipsoid as the standard.

The N/S and E/W errors in distance using the IASU - 1965 reference ellipsoid

for calculated errors in 6cjJ and 6\ was then determined usinQ

ERROR = Analytical Expression Value - Approximation Value

This whole procedure was repeated for a range of x, y, z values. The resulting

numbers in Table B-1 indicate that the TCV approximations are sufficiently

close to the exact analytical expressions for precision MLS navigation use.



TABLE B-1. COMPARISON OF TCV APPROXIMATION EQUATIONS AND ELLIPSOID

VALUES TO EXACT EXPRESSIONS WITH IASU - 1965 ELLIPSOID

MODEL FOR A LATITUDE OF 40°

Analytical TCV
Expression Approximation TCV
IAStI - 1965 IASU - 1965 Approximation
Ell i psoi d Ellipsoid TCV Ell i psoi d

Radius of Curvature Values (meters)

RM 6,361,838.371 6,361,938.450 6,361,768.661

Rp 6,386,999.409 6,387,008.141 6,387,116.270

RL 6,374,406.476 6,374,448.643 6,374,417.266

Comparison for A/C at (x, y) = (5,5) n.mi.; z = 1,600 ft; ho = 0

h (ft) 1644.130 1644.133 1644.133

11¢ (rad.) 0.001455441 0.001455420 0.001455459

11'A (rad.) 0.001892459 0.001892458 0.001892426

h error (ft) -0.003 -0.003

N/S error (ft) 0.452 -0.359

E/W error (ft) 0.010 0.524

26
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TABLE B-1 Continued

Comparison for A/e at (x, y) = (10,10) n.m;.; z = 3,200 ft; ho = 0

h (ft) 3376.506 3376.532 3376.533

6¢ (rad. ) 0.002910654 0.002910617 0.002910695

61.. (rad. ) 0.003784615 0.003784627 0.003784563

• h error (ft) -0.027 -0.027

N/S error (ft) 0.767 -0.854

E/W error (ft) -0.187 0.841

Comparison for A/C at (x, y) = (15,15)n.mi.; z = 4,800 ft; ho = 0

h (ft) 5197.106 51797.198 5197.200

6<1> (rad.) 0.004365630 0.004365591 0.004365708

61.. (rad.) 0.005676456 0.005676506 0.005676410

h error (ft) -0.092 -0.094

N/S error (ft) 0.818 -1. 614

E/W error (ft) -0.808 0.734

Comparison for A/C at (x, y) = (20,20) n.mi . ; z = 6,350 ft; ho = 0

h (ft) 7055.908 7056.129 7056.133

6¢ (rad.) 0.005820380 0.005820357 0.005820512

6t.. (rad.) 0.007567985 0.007568114 0.007567985

h error (ft) -0.222 -0.225

N/S error (ft) 0.477 -2.765

E/W error (ft) -2.070 -0.013



TABLE B-1 Continued

Comparison for A/C at (x t Y) - (30.30)n.mi.; z = 9 t 500 ft; ho = 0

h (ft) 11138.016 11138.791 11138.799

6¢ (rad.) 0.008729109 0.008729199 0.008729432

6A (rad.) 0.011349974 0.011350433 0.011350241

h error (ft) -0.775 -0.783

N/S error (ft) -1. 888 -6.751

E/W error (ft) -7.373 -4.288

Comparison for A/C at (x t Y) - (40 t 40)n.mi.; z = 12 t 750 ft; ho = 0

h (ft) 15572.625 15574.518 15574.532

!:I¢ (rad.) 0.011636798 0.011637150 0.011637461

6A (rad.) 0.015130483 0.015131594 0.015131338

h error (ft) -1.893 -1. 904

N/S error (ft) -7.346 -13.828

E/W error (ft) -17.823 -13.710

Comparison for A/C at (x t Y) - (50 t 50)n.mi.; z = 16 t OOO ft; ho = 0

28

h (ft)

A¢ (rad.)

6A (rad.)

h error (ft)

N/S error (ft)

E/W error (ft)

20409.500

0.014543366

0.018909362

20413.309

0.014544176

0.018911551

-3.809

-16.910

-35.134

20413.331

0.014544564

0.018911231

-3.831

-25.011

-29.994
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system. The transformations were developed for use in a Terminal Area Air
Traffic Model (TAATM) with deterministic aircraft traffic. The exact formulas
were used in an appendix to perform an error analysis of the Terminal Configured
Vehicle's (TCV) approximation equations used in their precision Microwave Land­
ing System (MLS) navigation experiments .
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