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TRANSFORMATION FORMULAS RELATING GEODETIC
COORDINATES TO A TANGENT TO EARTH, PLANE COORDINATE SYSTEM

BY
LEONARD CREDEUR

SUMMARY

In order to simulate an air traffic terminal area with dynamic
deterministic traffic, the aircraft's body centered axes must be related
to the geodetic site of navigation aides, runways, and other fixes
for on-board navigation. In addition, the aircraft locations are
shown as perceived by an airport radar. The approach used is to
map geodetic positions‘to an earth tangent plane with an airport
centered rectangular coordinate system. This report develops both
the transformation equations and their approximations. The TCV
program uses a different set of approximations to relate MLS derived
aircraft positions to geodetic values for navigation. A short error
analysis in appendix B shows the TCV approximations to be sufficiently
close to the exact analytical ekpression for precision MLS navigation

use.
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INTRODUCTION

A Terminal Area Air Traffic Model (TAATM) was developed in conjunction
with NASA's Terminal Configured Vehicle (TCV) Program. The principal
objective of the TCV program is to increase the productivity of the
aircraft/airport/air traffic control (ATC) system with primary emphasis
on the airborne elements of the system. The TAATM provides a represent-
ative real-time, multiple aircraft environment for both the TCV simulator
cockpit and the TCV B-737 aircraft to interact with in the conduct
of a wide range of experiments. In addition a fast time version of
TAATM exists for computer batch processing.

When simulating aircraft traffic within the confines of a typical
terminal area airspace, the requirement of a simple coordinate system
quickly manifests itself. One must relate the geodetic location of
runways, navigation sites, fixes, etc. to the aircraft body-centered
axis for navigation purposes and in addition show aircraft positions
as would be perceived by an airport radar. This problem is simplified
by chosing an airport centered rectangular coordinate system with an
assumed flat earth surface. Though reducing the complexity of the navi-
gation problem, this approach still requires the mapping of geodetic posi-
tions to an earth tangent plane. The algorithms necessary for the mapping

are the subject of the following discussion.



SYMBOLS AND ABBREVIATIONS

semimajor or equatorial radius of the earth's ellipsoid
aircraft

semiminor or polar radius of the earth's ellipsoid
eccentricity of the earth's ellipsoid

flattening of the earth's spheroid

height above mean sea level

height above mean sea level of the rectangular coordinate origin
at the airport

lTocal or Gaussian radius of curvature

RL+h0

radius of the circle defining north-south curvature of the
earth's ellipsoid at a specified latitude

RM + hy

radius of the circle use to define east-west curvature of the
earth's ellipsoid at a specified latitude

Ré + ho

Microwave Landing System

mean sea level

Terminal Area Air Traffic Model
Terminal Configured Vehicle

geodetic or geographic latitude



do
Ad
Ao

AX

geocentric latitude

reference latitude of TAATM cogrdinate orgin
change in latitude about the reference latitude
reference longitude of TAATM coordinate origin

change in latitude from the reference longitude
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DEVELOPMENT OF TRANSFORMATIONS

Description of Earth's Ellipsoid Surface

For navigation purposes the earth's sea level surface can be

approximated by an ellipsoid of revolution around its spin or minor axis

which is the diameter joining the north and.south pole. The geometry of

the ellipsoid is defined by an ellipse whose semimajor axis is the

equatorial radius a and whose semiminor axis is the polar radius b, as

shown in figure 1.

and the oblateness or flattening of the spheroid as

2_ az— b2
e——"a—z'—’-

a-»>b

f= 2=

The relation between e and f is

Center of
ellipsoid
and mass
center of
earth

e?= f(2 - f)
Polar axis
" of earth
Reference
Bj ¥ ellipsoid
Pl
A @' ¢
O P"
Equator’/’

The eccentricity of the elliptic section is defined by

(1)

(2)

(3)

¢ = goedetic latitude

¢'= geocentric latitude
OA = a = semimajor axis
§§ = b = semiminor axis
PP = h = altitude above MSL

Figure 1. - Geocentric and geodetic latitude.



There have been several reference or standard ellipsoids used.

Table I 1ist some of these:

Description a (meters) f
Adopted by TCV for MLS Work 6,378,169.79 3.3901 x 1073
FAA Route Development - US 6,378,206.40 3.3901 x 1073
Army Engineers
IAU - 1952 6,378,388 547
NASA Values for Trajectory 6,378,166+25 8.5
Calculations (NASA SP-7)
1
IASU - 1965 6,378,160 598 75

TABLE 1. Reference Ellipsoid Approximations of Geoid

From Figure 1 we see the geodetic (also called geographic or map)
latitude ¢ of a point P is the angle between the normal to the ellipsoid
and the equatorial plane. For navigation purposes the radii of curvature
of the ellipsoid are of primary importance. The meridian radius RM is
the radius of the circle of best north-south curvature fit to the meridian
section of the ellipsoid at geodetic latitude ¢. Its utility comes from
the fact that a given relatively small north-south distance subtends approximately
the same increment of latitude on a circle of radius RM as that north-south
distance does on the geodetic ellipsoid at the reference latitude ¢.
The value RM and its approximation at some latitude ¢ is determined in

appendix A to be

Ry = )a& (4)

and



Ry * all + €2 (/5 sin% - 1)] | (5)
The prime rédius Rp, used to define the east-west curvature, is the
radius of a circle model of the meridian section such that at latitude ¢
its transverse circle of revolution around the polar axis is equal to that

of the geodetic ellipsoid at latitude ¢. From Appendix A we can write

R = a
= T
P (1-e'sin o)’ (6)
and
R~ a[l+ g-Zsinzc;bjl (7)
p 2

The local or Gaussian radius of curvature RL’ is the radius of the

best fitting sphere to the ellipsoid at a local point. From Appendix A

we get
oy 3
1 - e2sin?¢
and
R~ all - %F cos 2¢] (9)

Transformation from an Earth Tangent Plane, Actual Aircraft Projection to
Geodetic Coordinates

Let the TAATM origin at the airport be at reference latitude ¢,
longitude Ao and MSL altitude h,. The TAATM axis system is X-North,
Y-East and Z down from the XY plane. From Figure 2, the point
(x" .,y , z =0) on the flat plane through which a line passes from the

X, ¥, z position to the local earth vertical is determined as follows:



Figure 2. - Relation of TAATM tangent plane to earth coordinates.



: )
Define Ry 4 Ry + ho

then
z  _ X=X
RM ‘ X
or
' 1
x = xR (10)
x' = x[l-z/RM + (2/Ry)® - (2/Ry)® +...]
and
x' ~ x[1 - z/Rh] for z/RM small (11)
ikewi R' AR_+h
likewise for D A D 0
. 1
AR (12)
P
and . : '
y =yl - Z/Rp] for z/R b small (13)

With x' and y' known exactly from (10) and (12) respectively and
approximated in (11) and (13), the expression for A¢ and A\ can be

developed. Since the TAATM axes are X-North and Y-East then from figure 2

i ANy | X"
Ap = arctan (E;) Ré
and
-AE -y'
Ax = arctan (= ) = =
Rp cos ¢ Rp cos ¢6
for
+ A é radians north of TAATM origin
+ A¢ A radians west of TAATM origin

The corresponding geodetic coordinates in latitude and longitude are

b =¢ + A (16)
and
A=Ay A (17)
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Let us now éonsider the relation of altitude above sea level and the

tangent plane height z at some arbitrary location (x, y).

use the local or Gaussian radius of curvature.

For this we

Figure 3 illustrates

the relation of the quantities used. If hy is the height of the tangent

plane's origin above MSL then the altitude h is
h = ho + h1 + h2

to determine h,; and h, we define

P2 o= x2 + y2
so that
r RL
Y":.——.—_r——
z + RL

We can then say

(R) + h2)® = (R))® + (r')?

= - n! ! r' 2.%
h, RL + RL [1+ (EE—) ]
he = - R+ RUIL+ ()1
2 LR R
Determine h; from
z _ _ R
h, RL'+h2

hy, = z(1 +%E—)

1
]

hy

z {1+ <-g—,;TL.->2]

thus the MSL altitude h is

L
h=ho + z[1+ (F55)21% - R
L

'+
L

R LT +(

r

z+R

L

(18)

(19)

(20)

(21)

|)z]%

(22)
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Figure 3. - Relation of tangent plane Z to MSL altitude.
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this can be appfoximated by
2
~ r

2RL

Transformation from TAATM Projection to Geodetic Coordinates

We started with a generalized tangent plane actual aircraft projection.
The exact transformaticon to geodetic coordinates are given by equations 16,
17, and 22. It should be noted, as a result of either the exact equations
for x' and y' (eqs. 10 and 12) or their approximations (eqs. 11 and 13),
an aircraft with flat plane coordinates x, y, z # 0 will have a different
latitude and longitude from that of the flat plane coordinates x, y, z = 0.
That is, an aircraft over a TAATM plane, ground navigation fix would have a
different latitude and longitude from that of the fix. To avoid this

problem for the TAATM simulation we will say x = x" andy = y'. As a result,
an aircraft at some altitude over a TAATM ground fix will have, after trans-
formation, the same geodetic latitude and longitude as the transformed fix
location. This is a reasonable simpliification because of the distances

considered (x, y < 50 n. mi), and for operational terminal area altitudes the

ratios z/RM and z/Pé are small.

When we set x = x' and y = y' for ground fix and aircraft Tatitude and
longitude compatability the problem reduces to what is called gnomonic
projection. Gnomonic projection is obtained by placing a plane tangent to
the earth and projecting geoid points geometrically from the center of the
earth. Figure 4 a illustrates this process.

Since TAATM axis ar X-North and Y-East the distances are

AN

X
AE =y (24)
For the gnomonic projection the relation between the TAATM distances

AN and AE and that of latitude and longitude are

. AN
A¢ = arctan — | (25)

M
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-AE
AX = arctan (z——) (26)
Rp cos ¢0

Azimuthal Equidistant Projection

Besides gnomonic projection, another épproach employed for converting
the curved earth to a flat plane is azimuthal equidistant projection. This
is obtained by converting north-south and east-west radial or great circle
distances to plane x, y. Figure 4b illustrates this projection. In this
system the relation between the flat plane x, y distances and that of

latitude and longitude (in radians) is defined by

Ay = ’|;~ (27)
M

YN I A— (28)
Rh cos ¢0

Looking back to Equations 25 and 26 we see that for small angles of A¢
and AA the gnomonic and azimuthal equidistant projection are approximately

equal.

TCV's Transformation Approximations

Other approximations that those developed in this report have been used
for mapping tangent earth plane positions to geodetic location. An example
is the Terminal Configured Vehicle Program's approximation equations used to
relate MLS derived position to geodetic latitude and longitude for on-board
navigation. Appendix B contains a listing of their approximation equations
and compares the results using these approximations with the oufput from the

exact analytical expression derived earlier in this report.



a. Gnomonic projection

b. Azimuthal equidistant projection

Figure 4. - Geoid to flat plane mapping.
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CONCLUDING REMARKS

The tranformations developed for mapping geodetic positions to an

15

earth tangent rectangular plane via gnomonic projection is a relatively straight

forward process which simplifies the coordinate system requirements

for simulating a terminal area air traffic environment. These

requirements are to relate the geodetic positions of runways navigation
sites, fixes etc. to the aircraft body centered axis to enable simulated
aircraft to navigate, and also to display aircraft positions as would be

detected by an airborne radar. Inverse transformation can be explicitly

determined from the approximation equations developed.

This report's development proceeded from a generalized tangent
plane actual aircraft projection to that of a flat earth gnomonic
projection. The generalized position projection represents the ideal
position as perceived by a high frequency, line of sight system such as
radar or the Microwave Landing System (MLS). Standard formulas may be
used to transfer the spherical values of elevation, azimuth and range
to the rectangular X, Y, Z. The generalized relation between geodetic

position in latitude, longitude, and mean sea level altitude and the

corresponding location in a rectangular flat plane X, Y, Z as developed in this

report,(provide a procedure to convert MLS values to geodetic position.

The Terminal
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Configuréd Vehicle Program used approximation equations to relate MLS
position to geodetic values used by their qn—board computer. Appendix B
contains an error analysis comparison of the values obtained by the

TCV approximation and the values obtained using our derived analytic
expressions. Values of distance and altitude used in the error analysis and
a representative range of values an aircraft would experience when landing at
some air traffic terminal area. The results indicate the TCV approximations

are adequate for precision MLS navigation use.



APPENDIX A
DERIVATION OF ELLIPSOID RADII OF CURVATURE

If a meridian section of the earth's ellipsoid of resolution is
taken, the result is the ellipse shown in Figure A-1. For a conventional

X, Y coordinate system, the ellipse is

2yt =1 (A-1)
where a is the semimajor (earth equatorial) radius and b is the semi-

minor (polor) radius. When the eccentricity e is defined by

2 2 .
2 =& ;b (A-2)

then we can rewrite Equation A-1 as

x2 "2
a7 v oaery Tl (A-3)

Solving for y in Equation A-3 and differentiating with respect to x
yields the slope y' at the point (x, y) on the ellipse.

y'= (1 - e?)(- §) (A-4)

Since the geodetic latitude ¢ at a point (x, y) is the angle between
the normal to the ellipsoid and the equatorial plane

y' tan ¢ = -1 (A-5)

17
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(x,y)

¢l
¢

= geodetic latitude
= geocentric latitude

Figure A-1. - Meridjan section of geodetic ellipsoid.
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Substituting Equation A-4 into A-5 yields the relation
y = x(1-e?)tan ¢ (A-6)

Using A-6 in Equation A-3 results in
a cos ¢

(1-e%sin%¢)

X = 5 (A-7)

Taking Equations A-6 and A-7 together yields
a{1-e2)sing

(1-e%sin?y)

L (A-8)

For the meridian radius RM’ what is desired is a circle of radius RM
such that its north-south curvature or rate of change (second derivative
of y with respect to x) at its latitude ¢ is the same as that of the
geodetic ellipsoid at latitude ¢.

The rate of change y'' of the ellipse at point (x, y) is determined
by differentiating Equation A-4 with respect to x and using Equation A-5

to obtain

y''e - L Lesinty (A-9)

y ' sin‘¢
Substituting from Equation A-8 yields:

o —(]-ezsinzq))sl2

Yo T 3(1=eD)sine (A-10)
A circle with its center at the origin of coordinates (Xc YC) with
radius RM has the equation
2 2 _ 2
R A (A-11)
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For this circle the following relations hold

Ye tan ¢ = -1

'yC
tan ¢c = "’)zg
Yo = Ry sin o, (A-12)

Using the relations of Equation A-12, the rate of change of the circle

c

y is determined to be

R2

1 = M = -1 -
Ye _'WC_ =RMs1'n3q>C (A-13)

If the circle is placed such that the point (x, y) of the ellipse in
Figure A-1 and (xc, yc) of the circle are the same for ¢. = ¢, then we

can rewrite Equation A-13 as

_ =] _
Yo =R S (A-14)

Equating the rates of change in Equations A-10 and A-14 gives

gy = el — (A-15)
M (1-e2sin%g) /2

which is the radius of the best fitting circle for north-south curvature to
the meridian section of the ellipsoid at latitude ¢. Its utility comes

from the fact that a given relatively small north-south distance subtends
the same increment of latitude on a circle of radius RM as that south-north
distance does on the geodetic ellipsoid at the reference latitude ¢.

If Equation A-15 is expanded in the form

R, = a(l-e?) [1 + (ezs1'n2q>)]"3/2 (A-16)

M

and dropping higher order terms of e we get the following approximation

Ry =~ all + e2(%sin?¢y -1)] (A-17)
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A similiar radius can be determined which relates the east-west
curvature of a circle to that of the earth's ellipsoid. This radius,
called the prime radius Rp, is defined as the radius of a circle model
of the meridian section such that at latitude ¢, its transverse circle
of revolution around the polar axis is equal to that of the geodetic
ellipsoid at latitude ¢.

From Figure A-2 we see this radius of east-west curvature is equal to
the earth's ellipsoid value x at latitude ¢.' For an circle model of
the meridian section the radius of rotation about the solar axis at
latitude ¢ must be equal to the value x.

Rp CosS ¢ = X (A-18)

When Equation A-7 is substituted into Equation A-18, the value Rp is

determined in terms of the geodetic latitude ¢.

R = d (A-]g)
P (1-e2sin%p)?
If Equation A-19 is expanded as it was in Equation A-16, the
following approximation for Rp results
ez s 2
Rp ~ afl t 5= sin®¢] (A-20)

The local or Gaussian radius of curvature RL’ is the radius of the

best fitting sphere to the ellipsoid at a local point
R, = /R, R (A-21)
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cpéb Top View

(x,y)

Meridian Section
Side View

Figure A-2. - Relation of east-west curvature to a
meridian section of geodetic ellipsoid.
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If Equation A-15 and Equation A-19 are substituted one gets

a(1—e2)1/2

(A-22)
(1-e%sin?p)

If Equation A-22 is binomially expanded and higher order terms of e are
dropped then we get for an approximation

eZ

R a[l- 5= COs 201 (A-23)

&

L



APPENDIX B

COMPARISON OF ANALYTICAL EXPRESSIONS
TOTCV's APPROXIMATION EQUATIONS

The Terminal Configured Vehicle (TCV) Program has used a number of
approximation equations relating the earth's ellipsoid to a rectangular
coordinate system in its Microwave Landing System (MLS) work (ref. 3).
Following is a list of these equation:

PARAMETERS OF TCV ELLIPSOID

6,378,169.79 meters

3

a

f = 3.3901 x 107

APPROXIMATION EQUATIONS USED BY TCV

Ry = al 1 ] (B-1)
1+ f (2-3 5in? ¢p)
Ry = Ry + ho | (8-2)
] 1
Rp = a[m]' (B-3)
Rp' = Rp + ho (B-4)
_ 1 (B-5)
RL = @ Frrez stnegy)!
R'= R+ ho (B-6)
x' = x(1- %r—) ' (B-7)
L
y =y(1- 2 (B-8)
L

L%
Ly

24
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2

h=hg +2z+ ———l-—;R (B-]O)
L
£ = Rt (B-11)
M -
Sy i
AX Rp‘cos 5 (B-12)

Table B-1 gives a comparison of results using TCV approximations
and that obtained by using the exact expressions. For a chosen latitude
of +40°, we used the IASU - 1965 reference ellipsoid and the exact
analytical expressions of a generalized tangent plane actual aircraft
projection derived in the report to obtain the following three values:

1. the delta latitude from reference point

2. the delta longitude from reference point

3. height above mean sea level
These were obtained for a rectangular tangent plane specific (x, y, z)
point. A set of the above three values was obtained using the IASU - 1965
reference ellipsoid together with the TCV approximation equations. Finally
for the specific (x, y, z) point, another set of the previously mentioned
three values was obtained using both TCV's ellipsoid and TCV's approximation
equations. A comparison of the values obtained was made using the report's
analytical expressions and the IASU - 1965 reference ellipsoid as the standard.
The N/S and E/W errors in distance using the IASU - 1965 reference ellipsoid
for calculated errors in A¢p and AX was then determined using

ERROR = Analytical Expression Value - Approximation Value
This whole procedure was repeated for a range of x, y, z values. The resulting
numbers in Table B-1 indicate that the TCV approximations are sufficiently

close to the exact analytical expressions for precision MLS navigation use.
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TABLE B-1. COMPARISON OF TCV APPROXIMATION EQUATIONS AND ELLIPSOID

VALUES TO EXACT EXPRESSIONS WITH IASU - 1965 ELLIPSOID

MODEL FOR A LATITUDE OF 40°

Analytical
Expression
IASU - 1965

E1lipsoid

Radius of Curvature Values (meters)

RM 6,361,838.371
Rp 6,386,999.409
RL 6,374,406.476

Comparison for A/C at (x, y) = (5,5) n.mi.; z =

h (ft) . 1644.130
A¢ (rad.) 0.001455441
Ax (rad.) 0.001892459

h error (ft) —
N/S error (ft) -

E/W error (ft) -

TCV
Approximation
IASU - 1965
E1lipsoid

6,361,938.450
6,387,008.141
6,374,448.643

1644.133

0.0017455420

0.001892458
~-0.003

0.452
0.010

TCV .
Approximation

TCV Ellipsoid

6,361,768.661
6,387,116.270
6,374,417.266

1,600 ft; ho = 0

1644.133

0.001455459

0.001892426
-0.003

-0.359
0.524



TABLE B-1 Continued

Comparison for A/C at (x, y) = (10,10) n.mi.; z = 3,200 ft; h =0

h (ft) 3376.506
Ad (rad.) 0.002910654
Ax (rad.) 0.003784615

h error (ft) _—
N/S error (ft) -
E/W error (ft) -

Comparison for A/C at (x, y) = (15,15)n.
h (ft) 5197.106
Ap (rad.) 0.004365630
AXx (rad.) 0.005676456

h error (ft) -—-
N/S error (ft) -
E/W error (ft) —-

Comparison for A/C at (x, y) = (20,20)n.

h (ft) ' 7055.908
Ad (rad.) 0.005820380
Ax (rad.) 0.007567985

h error (ft) ---
N/S error (ft) -
E/W error (ft) ——

3376.532
0.002910617
0.003784627

-0.027
0.767
-0.187

mi.; z =
51797.198
0.004365591
0.005676506
-0.092
0.818
-0.808

3376.533
0.002910695
0.003784563

-0.027

-0.854
0.841

4,800 ft; hy = 0

5197.200
0.004365708
0.005676410

-0.094
-1.614
0.734

mi.; z= 6,350 ft; ho = 0

7056.129
0.005820357
0.0075€8%14

-0.222
0.477
-2.070

7056.133
0.005820512

0.007567985
-0.225

-2.765
-0.013

27



TABLE B-1 Continued

Comparison for A/C at (x, y) - (30,30)n.mi.; z =

h (ft) 11138.016
A (rad.) 0.008729109
Ax (rad.) 0.011349974

h error (ft) -—-
N/S error (ft) ——
E/W error (ft) -

Comparison for A/C at (x, y) - (40,40)n

h (ft) 15572.625
Ap (rad.) 0.011636798
A (rad.) 0.015130483

h error (ft) —
N/S error (ft) —_—
E/W error (ft) -—

Comparison for A/C at (x, y) - (50,50)n.mi.; z =

h (ft) '20409.500
Aé (rad.) 0.014543366
M (rad.) © 0.018909362

h error (ft) -
N/S error (ft) -
E/W error (ft) —

11138.791
0.008729199
0.011350433

~0.775
-1.888
-7.373

m.; z =
15574.518
0.011637150
0.015131594
-1.893
-7.346
~-17.823

20413.309
0.014544176
0.018911551

~3.809
-16.910
-35.134

12,750 ft;

0.
0.

0.
0.

9,500 ft; hy = 0

11138.799

.008729432
.011350241

-0.783
-6.751
-4.288

ho = 0
15574.532
011637461
015131338
-1.904
-13.828
~-13.710

16,000 ft; h, = 0

20413.331
014544564
018911231
-3.831
-25.011
-29.994

28
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