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polymer films exposed to a uniform mono-energetic electron beam. The

study is motivated by observed anomalous behaviour of geosynchronous

satellites which has been attributed to electrical discharges associated

with the differential charging of satellite surfaces by magnetospheric

electrons.

Electric fields both internal and external to the irradiated specimen

are calculated at steady state in order to identify regions of high electri-

cal stress. Particular emphasis is placed on evaluating the charging ,

	

	j
i

characteristics near the material's edge,
3

The model has been used to identify and quantify the effects of some

of the experimental parameters notably: beam energy; beam angle of in-	 I

cidenre; beam current density; material thickness; and material width.
1

Simulations of the following situations have also been conducted: positive
ii

or negative precharging over part of the surface;_a central gap in the
i

material; and a discontinuity in the material's thickness.

i
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1. INTRODUCTION

Geosynchronous satellites in the early seventies exhibited anomalous

'	 behaviour which at that time defied explanation. Telemetry indicated

non-existent status changss, antenna gains changed in the absence of

commands, tracking and spin stabilization were momentarily lost and

occasional loss of communications led to total mission failure (Rosen, 1975.

Of more than 150 communications and remote sensing satellites now in geo-

synchronous orbit about 30 have had unexplained and seemingly random

anomalies. Correlational studies indicated that these failures occurred

mainly in the midnight-to-dawn Local time period and that electron spectro-

meters in orbit simultaneously registered unusually high fluxes of ener-

getic electrons. in other words, t he problem was linked to an .environmental

effect rather than random component failures ( Sharps at al, 19701. Analysis

of the ATS-5 satellite plasma detector data by De Forest 119721 suggested

the possibility that such satellites could be charged by ionospheric electrons 	 ;#

to potentials greater than 10 W. Actual confirmation that the charging

r	 and violent discharging process does occur in geosynchronous orbit was	 ..

established in recent reports from the ATS-5, ATS-6 and SCATHA satellites

(Stevens, 1980; Koons, 19801,i

Synchronous satellite orbits are circular, with a radius of 6.6 earth

radii. In the midnight-to-dawn sector of such orbits, the satellite en-

t
	 vironment can become filled with a hot plasma during magnetic substorms.

Electron energies encountered range from 3-200 keV (Hirshberg and Colburn,

19691 during such intervals and the accumulated satellite charge can there-

fore result in high spacecraft potentials. The 'electron current density__

is approximately 0.`1 to 10 nA/em 2 (McPherson and Schober, 19761. The pro-

ton current density during the substorm is estimated to be only 3% of the

t

v^•@WU.Y^tYtw.a.am ^...u_. _z ._ ... _^.0 _ ma,.Y..,.o._ rn. _..._ _ _r_^	 ...__..». ._._ro..0 .i[_s_..n _r Yn ...r. .._	 ^ 	 .^.	 ..	 _
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electron current density (In_o ys, 19761.

The abrupt loss of charge (discharge) generates electromagnetic inter-

forence which can couple into control systems and temporarily degrade their

performance. Repetitive discharging has caused some surface damage to such

materials as optical surfaces, solar cell arrays and thermal control: sur-

faces thus possibly reducing their useful lifetime. The potential gradient

that develops about the satellite can also perturb normal magnetosphere

conditions sufficiently to render useless some scientific measurements of

the environment.

An understanding of the behaviour of materials under charged particle

bombardment is essential to the prediction and prevention of the adverse

effects associated with spacecraft charging. Such an understanding has

been sought through ground based tests on the charging and discharging_

characteristics of dielectrics when exposed to uniform monoenergetic elec-

tron beams (Bal.main and Dubois, 1979; Aron and Staskus, 1979; Stevens et al,

1977; Robinson, 1977; Purvis at al, .19791. Typical experimental layouts x,x,
employ small (< 100 cm2) planar samples mounted on a conducting substrate.

r
Measurements indicate that a large fraction (25 50%) of the trapped charge

a

can leave the surface in the form of blowo£f electrons during the discharge
n:

event, a phenomenon referred to as "charge cleanoff". Spanning three

orders of magnitude of exposed-area variation a consistent set of empirical

3

scaling laws describes the substrate return current during the discharge;

k
the total charge released is proportional to the sample area and the peak

current is proportional to the sample radius (Balmain and Dubois-, 1979;

E
Flanagan et al, 19791. The appearance of the discharge arcs suggests that

Lt

discharges start at the dulectric edges or seams and propagate across

surface (Stevens, 19801. A second class- of discharge, termed

N.	 _
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"punchthrough", releases a smaller fraction of charge and is characterised

by the appearance of a pinhole-sized puncture in the material. Subsequent

discharges appear to originate in rapid succession from this site,

Past modelliaig of the laboratory simulations has concentrated on a

one-dimensional description of the charging proca g a [Beers at al, 1980;

Purvis at al, 19771 which represents the charging process near the centre

of the specimen. However, the tendency of the discharge to be associated

with a well defined edge suggests that such a model cannot adequately describe

the conditions of discharge i:titiation. In addition, data from the SCATHA

i

	

	 satellite suggests that discharges can occur at differential voltages of

only 3 kV [Stevens,, 19801. The resulting bulk field in the material cal-

culated by a one-dimensional theory is not thought to be sufficient to

cause the dielectric br,a4,w'cdown associated with such discharges. Investi-

gators attempting to understand the discharge process have therefore been

forced to examine the details of the internal charge distribution and to
i

determine multi-dimensional effects which could influence the material's

stability [Beers et al, 1981; Stevens, 19811.

This work represents an attempt to quantify the higher-dimensional

effects present in the charging of planar dielectric films exposed to a

mono-energetic electron beam. Regions of high charge concentration and

`

	

	 intense electric fields are identified under a variety of charging con-

ditions in order to isolate factors related to the discharge process.

The following two chapters (Chapter 2 and 'Chapter 3) are a review of

the present state of the art in electron beam charging effects. New

material is introduced in Chapter 4 and the following chapter3.

F



2. ELECTRON BEVI CHARGING EFFECTS
IN DIELECTRICS

2.1 ,Introd uctii;

Electron beam effects begin with the interaction between an energetic
e

x
incident electron (1 - 100 keV) and a target atom resulting in a transfer

of energy. This energy can appear in a number of forms including excite

Lion of the target atom, vibrational and rotational motion of the atom mani-

fested as heat, and ionization of the atom. Some ionizing events transfer

t>
sufficient energy to create recoil electrons in the material, These can

i
initiate further ionizing interactions resulting in an abunk: ,Ince of free

electrons which can be moved under an applied field through the usual thermal

activation process.

If the primary electron mean free path between collisions is too small

w

	

	 then its range will not be sufficient to penetrate the material. These

trapped electrons result in an accumulation of net charge and the development

of large fields within the dielectric. The remainder of this section is

devoted to listing some of the material responses which can influence the
F

charge accumulation io the exposed material_.
i

2.2 Secondary Emission and Backscatter

Any material exposed to an electron beam is found to emit electrons 1

with a broad spectrum of energies, as illustrated in Fig. 2.1 [Hsrrrower,

k	 1957]	 The distribution is distinctly bimodal for primary energies great
i

er than 500 eV. Those electrons emitted with lower energy are referred to

as the secondary emission component while those with higher energy are

referred to as the backscatter component of the total emission, The rela-

tive magnitude and characteristic energies dependon the material and the

energy of the primary electrons.

The high energy of the backscattered electrons is the result of near-

^s
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elastic collisions with the material. The backscatter spectrum has the

primary snarly as its maximum. This high snarly nature implies that the

scattering process could occur over an appreciable fraction of the pri-

maries' range. The backscattor coefficient BS defined as thie fraction

of incident electrons emitted in the high energy tail of the emission

spectrum, is usually found to decrease ,slowly with increasing energy.

For most polymer dielectrics the following empirical relationship holds

(Wall et al, 1977

v	 BS	 0.1 (KE)-0.	 (2.1)

l	
where BS a 

abs
N . backscotter coefficient

KE - kinetic energy of primary elec-
trons (keV)

The `backscatter coefficient for primaries incident at. an angle 6 with

respect to the surface normal of most metals has been described as

[Darlington, 1975

^ 
BS(e)	 B(BS(o)/B)

cose	(2.2)

where B = dimensionless material constant

9 - angle of incidence with respect to the
su;-f ace normal

if we take B to be unity then this expression also fits the data for most

polymers [Wall at al, 19771.

The secondary electrons are a direct manifestation of the ionization

r

	

	 process in the material. The shape of the secondary emission energy spec -

trum is largely independent of the primaries' energy. The probability of

a secondary electron escaping from a given volume: of irradiated material is

assumed to decrease exponentially with increasing distance from the material
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surface. The decay constant for most polymers varies between 0.002 and

0.005 um ($udd,, 19811.

The secondary emission coefficient SE, defined as the number of sec-

ondaries emitted per incident primary, is a strong function of the primaries'

energy as indicated in Fig. 2.2. The energies where the coefficient is

equal to unity, KE and KE2 , are known as the first and second crossover

points. The mechanisms responsible for the maximum are a minimum ionization

energy requirement and the increasing penetration of the primaries at high-

er energies. Burke [1980] has demonstrated that a universal curve can be

generated relating the secondary emission coefficient and the primaries'

energy for most inorganic insulators. At high energies the secondary

emission coefficient is given by a simple power law relationship

SE	 K(KE)'-0.725'

where KE - primaries' energy (keV)

I

The constant K is found to decrease as the complexity of the repeating

unit in the polymer increases. Quantitatively this can be expressed in
r

terms of the gram molecular weight M and the number of valence electrons

in the repeating unit N(1,.4,5,6 for 11,C,N,O respectively). Polymers con-

i	 taining just these elements are governed by the following relationships

(Burke, 19801;

emission coefficient 	 K	 10.64(N/M) - 3.15	 (2.3)'

energy at maximum yield	
KEm	

(x/12.09)0.58
	

(2.4)

maximum yield	 SEm	 9.5 KEm	(2.5)

F	 secondary emission 	 (1 - exp( -Z 	 ))1.526
SE	 $Em(	

1 . 725

0.725
(2.6)

Z

where Z	 1.284,KE/KEm
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POLYMER	 FORMULA	 K	 KEm

Teflon	 CF,,	 1.546	 0.303

Polyethylene	 CH2	 1.370	 0,283

Polyvinyalcohol	 C2H40	 1.242	 0.267

Nylon	
C6H11ON	 1.148	 0.255

Luci te 	 C5H80	 1.115	 0.251

i	
Polystyrene	

C8H8	 0.907	 0.223
it

Mylar	 C H 0	 0.847	 0,214	 }10 8 4

Kapton	
C22H1005N2	

0.682	 0.189

Table 2.1 Emission coefficient K ( from Burke [19801)
k	 f

t

r	 UNIVERSAL CURVE FOR POLYMERS

c	 L0	 e•-,^	 o 'Polyethylene	 o Polyornld
N	 • Polymethocrylate 	 Polystyrene
,N	 + Teflon	 G Polyvinylaleahol 	 F'

	

(Motekevieh)	
s

t

w wa
o yr

r	 y N
	 v

	

^	
C

•

v

'	 1+ d

F	
^- 0.	 i

0.	 2.0	 40	 44	 t0

Normalized incident kinetic energy KE/KEG

Fig. 2.3	 Experimental results and eq. 2.6 (from Burke [1980])
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For KE greater than 1.3 KEm the following approximation represents an over-

estimate of less than 5%

SE a K KE-0.725
	

(2.7)

Values of K for a large number of polymers are presented in Table 2.1.

In Fig. 2.3 the universal emission curve, represented by eq. 2.6, is pre-

sented.

Robinson and Budd (1980] have fitted measurements of total emission

from Teflon for large primary energies to a single power law term

BS + SE 0 (KE 2 /KE) 0.58 	(2<.8)

where KE 2 is the second unity crossover energy
(KE2 a 2.1 keV for Teflon)

This figure is slightly larger than that suggested by Burke (eqs. 2.1 and

2.7) though both predict the same second crossover energy. Budd (1981]

has also reported measurements of the total emission dependence on the beam

angle of incidence. For 8 Tess than 5500 it was found to vary as 1/cos9 as

would be consistent with the number of secondaries being proportional to

the deposition of energy in a fixed-thickness surface layer. Wall et al

[1977] suggest an alternative semi-empirical relationship which can be com-

pared to Robinson's formulation;
x

Wall et al	 SE(8)	 SE(0) > exp(2(l - cos8))	 (2.9)

Robinson	 SEW	 SE(0) /cos8	 (2.10)	 ti

For angles in the interval 00 780 the functional form suggested by Robinson

produces a smaller emission yield.

Surface contamination and surface roughness can also influence secondary

i

7
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emission (B_, 1981; Davies, 19791. The possibility of a surface electric

field dependence also exists due to the relatively low energies of the

freed secondaries. Robinson and Budd (19801 have made measurements indi-

cating that the second unity crossover point is a weak function of the nor

mal surface field when accelerating the secondaries away from the surface

(see Fig. 2.4). Robinson and Nguyln [1979] have also speculated that sur-

face tangential fields may enhance secondary emission. Balmain (1978] and
^s

Feder ('19761 have used the enhancement of secondary emission due to charge
r

f+	
storage in a material to image the charge deposited in a dielectric with a

scanning electron microscope. No quantitative data concerning these effects

have been found in the literature.

2.3 Electron Range

An Electron,_ due to its low mass, is prone to large changes in its

momentum in any interaction. The statistical nature of these deflections

results in a very broad deposition profile known as range straggling. The

number of electrons penetrating to a particular depth in a material does

r
not drop sharply at the mean range as is the case of heavier particles. In

a
stead the loss is gradual as shown in Fig. 2.5.

Various measures of electron penetration have been used including i

mean or average range, extrapolated or practical range and linear range.

The mean range refers to the distance at which 50% of the incident electrons

have been absorbed. The extrapolated range is obtained by proj ecting the

slope of the fraction penetrating versus distance curve to a zero 	 i

crossing, as indicated in Fig. 2.5.
f

The linear range is a calculated quantity based on a 'formulation of the

energy loss per unit distance of penetration. The most common approach used

^	 9
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in this calculation is to assume a continuously slowing down approximation

(CSDA range) where the energy loss per unit distance is a constant equal
r

to the mean rate of energy loss. 	 The linear range is a measure of the

length of a possible electron path which tan be deflected far from the pro-

jected incident trajectory and is therefore usually 25 - 50% larger than

the extrapolated range. 	 For Teflon the average range is found to be about

t 60% of the extrapolated range [Cross et al, 19741.

At primary energies less than 50 keV a reasonable representation of the

extrapolated range is given by the Gledhill relation [Gross, 19801:

log rex	 ^	 -5.1 + 1.358 log KE + 0.215 (log KE) 2
(2.11)

0. 043(log KE)3

where r	 extrapolated range -x material density (gm/cm2)
ex

KE	 primary energy (keV)

From eq. 2.11 for energies less than 10 keV

r	 a	 0	 reXavg	 6	
( 2.12)

t

a	 4.8 x 10-6 (KE ) 1.358
	 (gm/cm)

i The electron deposition profile has been calculated using Monte Carlo

simulations	 [Beers et al, 1979; Frederickson, 1979; Berkley,	 19791 although

' the necessary penetration-energy loss mechanisms for very low energy elec-

trons are not well established [Beer's et al, 19801. 	 Typical deposition pro-

files for various primary energies are given in Fig. 2. 7 as Calculated by

these codes.	 I

f

2.4	 Dose Rate

The dose is defined as the mean energy imparted by ionizing radiation

to the material in a volume element	 divided by the mass in that volume.
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.,,........ CSDA range' Bea rkley (1979]	 ;*•

average range Berkley [1979)

-- • -- average range, eq . 2. 9
10 Gross (1980]

8

6
^•

X

4 •`

2

'
1 ,•,.

e 0.8

0. 4 !

0.2 i'•

W 0.1
i

• i
3

•

•

t

I
l

2	 4	 6	 8 10	 20	 40 '60	 80

Incident Kinetic energy, KE (keV)

t

Fig.	 26 Range — energy relationships for electrons in Teflon.
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We shall adopt as a measure of dose the "rad" (1 rad 10-2 Joules/kg). The

average absorbed dose rate for non-penetrating, normally incident electron

beam is (Cr_, 19801.

dose rate	 $	 IiKE x 108/(a r 6) (rids/sec)	 (2.13)

where D n dose (rads)

Ii a incident current measured to the material
surface a (A)

KE • primary electron energy (keV)

a . surface area (cm2)

r x average range. (cm)

d s material density (gm/cm3)

r

	

	 Assuming a constant current to the surface eq. 2.13 can be modified for non-

normal incidence by dividing by the new irradiated volume arcose, instead

of az:

	

60)	 6(0)/cos9	 (2.14)	
I

r

If the range-energy (eq. 2.12) and the dose-energy (eq. 2.3) relations are

combined we find that the mean dose rate decreases as the energy of the

primaries increases.

Details of the actual deposition profile can again only be calculated
i

using Monte Carlo techniques (Beers et al, 1979; Frederickson, 1979). Typi-

	

cal curves show a broad maximum near the mean range due to beam straggling,	 i

_	 2.5 Conductivity

F

	

	

The conductivity g of most polymers under low electric fields, in the

darle. and at room temperature is very small making it often difficult to

establish accurately. For Teflon PEP the estimates vary considerably:



^ r

i
a

< 10
-22 

Ocm)
- 1

3.3 x 
10-18 

(ncm)-1

10-20 (11cm)-1

10-
20 _ 10-17 (ncm)-1

Sessler, 19741

[Beers at al, 19791

(Kinney, 1957]

(Frederickson, 19791

For Kapton H there has been less work published although a figure between

10
-18 

and 10-17 (Stcm) r1 hat been established from a series of measurements

made by Adamo and Nanevicz [ 19771. In general it has been observed that

Teflon is a better insulator than Kapton by *bout two orders of magnitude.

2; 5.1 Conductivity: Temperature Dependence

The conductivity of most insulators displays a temperature

dependence that can be described by the following empirical. expression [wall

at al, 19771:

go	
A exp(-W/kT)	 (2.15)

where T a absolute temperature > 3000K
1

A,W - material constants

In the limit of zero applied fields Hanscombe and Calderwood [ 1.973] found
'

	

	
W to be 1.55 eV for Kapton. Amborski [ 19631 found W to be about 1.0 eV for

Kapton under a field strength of 5 x 10 4 V/cm Using data from Adamo, and

a	 Nanevfcz [ 19771 we find W - 0.77 eV for Teflon FEP under fields of 105 V/cm.

Under normal spacecraft operating conditions temperature ranges can be

Ffexpected from O°C to 1200C [Ro_sato, 1968; Streed and Arvensen, 19671. Using

W equal to 1.0 eV we find that over this temperature range_ the magnitude of
Y

the dark, conductivity could increase by a factor of 5 x 105.

2.5.2 Conductivity: Photoconductivity

The effect of light on the conductivity of a variety of materials

i

Q



18

has been reported briefly by Adamo and Nanevicz [1977]. The most sensitive

material listed is Kapton which when illuminated by a Xenon lamp at an in

tensity of one sun displayed an increase of up to 4 orders of magnitude in

conductivity. There was no attempt to isolate temperature effects or spec-

tral response. No further work has been found in the literature.

2.5.3 Conductivity; Field Dependence

The conductivity of most polymers is a non-linear function of

applied electric field. In particular there exists a range of high fields

where it increases as exp
(E

1/2). A functional form describing this be -

(. T sinh (br /T))	 (2.16)
bE

J

(OK)

ld

term in eq. 2.16 is near unity,

4.68 x 1.0-3 (cm /V ) 1/2 and

respectively as indicated in Figs.

2.9 and 2.10.

2.5.4 Conductivity: Radiation-Induced Conductivity

The charge carriers generated by the ionizing radiation give

rise to an enhanced conductivity. A power law relationship between the

equilibrium radiation-induced conductivity and the dose rate has the follow-

ing form

gric	
G6)	 (2.17)

where A,G material constants
0.5 <. d <_

D dose rate

haviour is (Adamee and calderwood, 19751

g/Bo	 (2^aE1 J2 T))3

where a,b material constants

T - absolute temperature

E applied electric fie

For fields less than 10 6 V/cm the second

The value of a/T at 22 0C was found to be

4.03 x 10-3 (cm/V) for Kapton and Teflon
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1
The value of 4 is determined by the energy distribution of traps in the

materiali a uniform distribution gives d equal to 1.0 0 while a single trap

level gives 0 equal to 0.5 [G_, 1980). It is often assumed that the
radiation induced conductivity is proporational to the dose rate ( d 1)

Beers, 1979; wall at al, 19771. Table 2.2 lists the range of values

found in the literature for G based on this assumption.

Gross at al [1974) report that measurements made at low dome rates

tend to yield lower values of A than those made at high rates, Data in

Fig, 2 . 11 'produce a power law fit for Teflon FEP at or. average dose rate

of 2 x 104 rad /sec; A	 0.7, G	 1.7 x 10-
16
 (ncm)

-1 . i
n Pig. 2.12 this

is plotted together with the upper and lower limit`s suggested by Table 2.2.	 1

The choice of 4 . 0.7 seems to fit the bounds quite well over the dose

rate interval of interest. Fitting a similar- curve for 'Kapton we find

A n 0 7, G	 1.7 x 10'
17

 (Gcm)-1,

A delayed component of radiation induced conductivity persists after

the radiation has been removed for a period of seconds due to the finite

lifetime of the free charge carriers. A functional form suggested by ^Oross

(19803 is

Brie	
9'/(1 + bt)	 (2.18)

where g'	 1/3 of the radiation induced'
conductivity at the end of irradiation

t a time after and of irradiation (sec)
F1

b constant approximately unity (sec)
[Beers at all 19801

I

^ 	 The nele conductivity of the sample is calculated as the sum of the

radiation induced and dark conductivities,

i Wif.':.tiyfyyJyyrws%:lF-er--r•_ 	 w e^t 	
.^3   	 _
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1 Fig. 2.10	 c +±id-u0niq .1s a fundl ion of Jok. rate, JetetmincJ.
F	 k0n% 111119 COM131111.4► f	 currents, from' Gross [1980])

Teflon 	 2.4x10
-16 D 0.7

j	 11	 g	 ,
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.13
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b
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s

.N'

10	 ''' 	 Kapton g s 1.7x10-17 D 0.7

104	 105	 10	 10^

Dose rate (rad/sec)
.^ assumed functional form

limits for Teflon, from Table 2.2
.....-».. limits for Kapton, from Table 2.2

Fig. 2 . 11 Functional form of radiation induced conductivity.

Matlerial Galax sec/(SEcm rad) Amin sec/(Stem rad)

Kapton 6.0 x 10-18 1.2 x 10-19

Teflon 1.0 x 10-16 2.8 x 10-18

Mylar 2.1 x 10- 19 1.8 x 10-19

Polyethylene 4.5 x 10 ,18 3.0 x 10-19

Polystyrene 1.0 x 10-16 2.0 - x 10-18

Table 2.2 Upper and lower limits of G. Assumed functional
form g = GD (from Wall et al [1977])	

}	 ¢(T
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2.6 Optical Effects of Irradiation 

Irradiation by an electron beam of sufficient energy can cause any of

the following optical effects [van Lint et al, 1980];

luminescence
Cerenkov radiation
introduction and/or bleaching of optical bands
changes in optical scattering
changes in t'iie index of refraction,

Luminescence for the energy range of interest is easily detected for most

of the materials under study here. The other effects are small except at

very large doses or high energies.

2.7 Radiation Chemistry

The subject of radiation chemistry is too broad to be treated in detail

at this level. For a more detailed discussion the reader is referred to the

literature [Au_sloos, 19661. In polymers ionizing radiation produces free'

radicals that can effect chemical changes falling under two classifications;

cross-linking and scission. Cross-linking refers to the formation of bonds 	 1
r	 1

between adjacent polymer chains. Scission refers to the breaking of a chain.
a
1

Frederickson (1979] claims that Teflon starts to degrade when the

accumulated dose exceeds 10 6 rads, while other dielectrics require more than

108 rads. Wall et al [1977] suggest that variations in the reported values

for the radiation induced conductivity constant G may be caused by radi-

ation damage. Gross et al [19-74a] report that large doses of the order of

50 x 10 6 rads can cause a reduction in G'by at least an order of magnitude.

f

A 106 rad`dose can be delivered to a 0.1 um deep layer by a 2 keV electron

beam when the current density time product is 65 nC/cm2 . A 10 nA/cm2 beam

can therefore deliver such a dose in 6.5 sec.
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2.8	 Electrical Breakdown and Sur face Discharge

Electron irradiation of insulators can produce an accumulation of charge

z sufficient to cause dielectric breakdown which is accompanied by the removal

of a large fraction of the stored charge. 	 The first published description

by Gross ( 1.9571 indicated that the discharge was localized at a depth

roughly equal to the mean ;range of the primary electrons.	 Further experi-

mental work has evolved to help quantify the discharge process. 	 Balmain and

Hirt,	 1980; Balmain and Dubois, 	 1979; Balmain, 	 1978; Purvis et al l	1977;

Roche and Purvis, 1979; Yadlowsky et al, 1980; Aron and Staskus, 1979;

Stevens, 1980; Bosma and Levadou, 1979.	 The actual discharge mechanism,

however, remains largely unexplained. _ There is evidence that defects in the

material may play a large role in the breakdown process [Davies, 19771.

The breakdown threshold of most dielectrics has been found in the range	
t^

1 x 10 6 - 5 x 106 V/cm (Beers et al, 1979; Davies,	 1977; Frederickson, 	 19191.

Reports also suggest a close association of the discharge with the edge of

the exposed material [Beers et al, 1980; Stevens et al, 1978; Balmain, 1978;

r Robinson, 1977].	 Stevens (1980] concludes that the data collected from the 	 s

' SCATHA satellite indicate breakdowns in orbit are occurring despite the com-

paratively low (2 - 4 keV) differential voltages that have been observed,

implying that the surface potential may not be the deciding factor in the

initiation of the discharge event, in turn prompting questions about the in-

ternal charge distribution and multi -dimensional effects.

i

t



3. ONE-DIMENSIONAL MODELLING

A one-dimensional study of the charge build up on planar dielectrics

exposed to a uniform monoenergetic electron beam has the advantage of sim-

plicity over a multi-dimensional treatment. Such models can be used to

check parameter sensitivity, to determine main factors governing the

charging process, and to serve as a standard to 'which the results of more

complex analyses can be compared.

The analysis can be separated into an external and an internal charging

model. The external model is concerned with the net accumulation of charge

in the material and deals with the measurable quantities of surface po-

tential and total charge. The internal model is concerned with the distri

bution of charge within the material and the resultant internal electric

fields. The work in this chapter follows that outlined by Seers at al [19791.

3.1 External Model Development

The net accumulation of charge on a planar dielectric exposed to a uni-

form mono-energetic electron beam closely resembles the charging of a simple

resistor-capacitor network. The resistive elements represents the mechanisms

of charge loss from the surface and the,capacitve element corresponds to

the physical geometry shown in Fig. 3.1. To determine the capacitance per	 i
4

unit-area we assume that the structures are infinite in a x-z plane thus

obtaining a one-dimensional differential equation derived from Gauss' Law;

describing the relationship between the electric field and the volume charge

density

m	 8Ey/By	 q(y)/c	 ,(3.1)

where Ey is the electric field normal to the
surface

q is the electron volume charge density
(C/m3j positive for electrons)

i
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note; since the electron is the principal
charge carrier the currents and charge den-
sities will be referenced to the movement
or accumulation of negative charge, to conform
with the major part of the relevant literature.

We shall assume that the space charge density due to the beam current is

2	 negligible. Thus in the interval ( -L O O-) the electric field is constant.

``	 The grounding of the plates at y -L and y d imposes the following con-
1.

straints on the electric field.

d
t_ E (Y) dy 	0
t	 L
f

fo

d
or 	 E (y) dy	 -EoL	 (32)

^

where Eo magnitude of the electric field for

_L<	 Q

From eq. 3.1 we find

s	
^^E(s)	 E(0+) _	 fo (Y)/eoerdy 	s > 0+

 i

r

f 

d	

fo

d	 s
E(s)ds - E(0+)d	 - 	 ds	 q(Y)/coerdY	 (3.3)

  fo
r

1

fo

d	 s
-E L E(0+)d	 -  ds	 q(y)/ea dy0	 0 r

 0

k	 Using the condition of continuity for the normal component of the displace-

went density we find E(0+)	 Eo/er. Integrating the right hand side.of eq.

3.3 by parts we find

(1 + d/` (Ler )) ever	
(3.4)P	 -V (d -

4



^r

2

a
where V'•

f

d
 E(y)dy	 the potential at the dielectric

o	 surface

P -	 f
d

 effective charge per unit areao q(y)dy

d
yq (y) dy/p	 the charge centroidf

L

For thick samples where d >> y the external variables (voltage and

charge density) are largely independent of the internal charge distribution.

The range-energy relationship illustrated in Fig.,, 2.6 suggests that unless

considerable low energy excess charge transport occurs after deposition
l

the approximation that d >> y will be valid for samples thicker than 25 um

and beam energies less than 20 keV 	 If we also assume that the surface

capacitance to the ground at y 	 -L is negligible compared to the capaci-

tance to the ground at y - d then eq. 3.4 reduces to

P	 - -V C	 (3.5)

where C - eoer/d	 the capacitance per
WLit area

Restricting the possible charge; transfer mechanisms to 	 the incident

beam, conduction current, secondary emission and backscatter we find:

P	 Jnetdt
	 (3.6)

J

where

Jnet	
Ji	 J

bs	
JSe	

j 
	 (37)

J i . incident beam current density

Jbs- backscatter current density

i sew secondary emission current density

Jc = conduction current density

i

r



KE + I eV f - BE (3.9)

28

Combining egs. 3.6 and 3.5

V

V'
dV/Jnet(V)	 _(t	 to)/C	 (3.8)

0

Equation 3.8 corresponds to that previously used by both Purvis at al [1977]

and Beers at al [19791 to describe the net charge accumulation in the

dielectric.

It is implied in eq. 3.8 that the net current density is a function of

the surface voltage. This voltage dependence is due in part to the secondary

emission and backscatter currents which tend to increase with decreasing

primary kinetic energy. The decrease in the impact energy is directly related

to the potential barrier, i.e. surface potential, that trust be overcome to

reach the surface. By performing an energy balance we find;

I
where KE electron kinetic energy at impact.

V * surface potential

e - charge on an electron

r	 BE - the total beam energy (a constant)

In general the net current density is a non-linear function of the surface

potential and numerical integration must be used to solve eq. 3.8.

The model does not incorporate the following effects;

surface conductivity

k	
- radiation hardening of the secondary emission coefficient

..

	

	 field dependence of the secondary emission coefficient
temperature effects

- photoconductivity
- photoemission
_ material degradation

Any of the above could be incorporated once.a reasonable data base had been

established. The development of eq. 3.8 involved several assumptions which

are inherent in this discussion. These include:

14 _1111111'OrW_

i
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no multidimensional effects
no spacecharge effects due to current densities
quasi-static potential (potential does not appraciably
change during electron transit time)
thick-film, short range approximation

Two materials, Teflon and hapton, will be studied in detail. Teflon has

a relative permitivity of approximately 2.25 and a density of 2.2 gm/cm3

permittivity whereas kapton has a relative permitvity of approximately 3.6

and a density permittivity of 1.42 gm/=3 [Beers et al, 1980]. The expressions

for the backscatter and secondary emission coefficients will be chosen to agree

with those proposed by Burke [1980] and Wall et al [1977] (i.e. eqs. 2.1,

2,.2. 2.'7 and 2.9)

3.2 External Model Results
1

3.2.1 Steady State Surface Potential

A steady state is achieved by reducing the net current to the

surface to zero suggesting from eq. 3.7 that

9

Ji = Jbs + Jse + Jc

or equivalently

Ji(1 - BS	 SE) * Jc	 (3.10)

For a normally incident beam, eqs. 241 and 2 . 7 can be substituted for BS and

SE using eq. 3.9 to express the kinetic energy at the surface in terms of the 	 N

`	 surfaceotential and the beam energy.gy . Assuming the steady state kinetic

energy is greater than 1.5 KEm (a necessary condition for eq. 2.7 to be
F

valid) we obtain

r	 Ji(1 - 0.1(BE - ^eV^ )
-0 ' 2

 - K(BE - IeV1)-0.725)
f	

(3.11)
d

s JVJ/d	 g(V/d)!

where g material-dependent conductivity
K * material constant

0.68 keV for Kapton
1.55 keV for Teflon

V surface potential (kV)
rt
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The bulk conductivity of Teflon is assumed to be a constant go in order to

simplify the following analysis. We shall relax this constraint allowing a

field-dependent conductivity for the analysis of Kapton.

The solution of eq. 3.11 for Teflon is presented in Fig. 3.2. Two

distinct regions exist depending on the ratio of conduction current to beam

current. If the beam current dominates then the steady state surface poten-

tial will be proportional to the difference between the beam energy and the

second unity crossover energy for total emission (BS + SE). If the currents

are comparable, as is the case for low beam currents, the surface potential

is proportional to the beam current. The asymptotic behaviour is given; by:

if J i/Jc • 1 0 IV,	 J id/go (1	 SE - BS) evaluated for KE BE	 (3.12)

if Ji/Jc >> 1, I Vl ' (BE - KE2) / j ej	 (3.13)

where KE 2 second unity crossover energy for
total emission
0.69 keV for Kapton
2.10 keV for Teflon

The critical value of Jid/go separating the conduction-limited and emission-

limited regions is obtained by equating eqs. 3.12 and 3.13. For Teflon we

find:

r

	

	
(BE - 2.1)/jai	

(3.14)(Jid/go ) criticalt	

(1	 1.55BE-0.725 _ 011BE-0.2)

where BE beam energy (keV)

t

Using the total emission coefficient of eq. 2.8 suggested by Robinson and Budd

[19801 results in a slight downward shift in the conductivity vlimited region

of the curves.

The introuduction of a field dependent conductivity as suggested by eq.
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2.16 for Kapton does not affect the asymptotic analysis previously discussed.

The transition between these regions however, is much expanded as indicated

in Fig. 3.2 for Kapton. The effect is most significant for high beam

energies and thin samples.

Interpreting Fig. 3.2, we find that for typical spacecraft charging

parameters (material thickness 25 pm, bulk conductivity 10" 18 (Stem) -1) the

critical current density for Teflon is 0.013 nA /cm2. For densities greater

than this the equilibrium surface voltage and charge will be practically in-

dependent of the beam current. Balmain and Hirt [19801 have found that the

total charge released from Teflon during a discharge event displays this

same independence for typical charging conditions (current density 0.4 100

nA/cm2 , beam energy 20 keV, material thickness 30 pm) as would be expected

if the specimen is emission- limited. Balmain and Dubois [19791 have also

round that the total charge released is proportional to the area irradiated

(see Fig. 3.3). Figure 3.3 indicates that approximately 25% of the net

available charge at equilibrium in Teflon is released per discharge, For

Kapton with a beam current density of 80 nA/cm2 , the charge released is

reduced to 10%.

in Fig. 3.4 the equilibrium surface potential for Kapton has been graphed

in the transition region (assuming go - 5 x 10 18 as suggested in Fig. 2.9

and-a beam energy 20 keV). The span of current densities, 0.1 - 100.0 nA/cm2,

covers the typical range employed in laboratory simulations. A discharge

dependence on the incident current density is therefore expected and indeed

Balmain and 'dirt [19801 have reported a total released charge dependence of
l

Ji 0.23 as indicated in Fig. 3.5. The total available charge d under similar

charging conditions as indicated in Fig. 3.4 has a current density dependence

of Ji 0.22 .

3.2.2 Charging Dynamics

The development of the stored charge is governed by the current
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balance to the surface (sq. 3.6) which is dependent upon the surface voltage

through the effective capacitance (eq. 3.5) 0 these two relations giving

dnet(v) a -C dV/dt.
	

(3.15)

F_

For Teflon the incident current is assumed to be sufficiently large so that

the charging process is emission-limited. Equation 3.15 can then be written

as follows:
Y	

dV
tJid /coe r , fo (1	 BS - SE)	

(3.16)

-

Numerical integration of eq. 3.16 for the energy-emission relationships

suggested by Burke (1980) (eq. 2.1 and 2.7) and Robinson and Budd [19801

(eq. 2.8) produces the curves in Fig. 36. Both relationships yield reason

ab!V consistent results: The experimental results of Purvis et al [19771

are in general much faster, but show the same qualitative behaviour. A more

detailed comparison will be made in Chapters 4 and 6. Good agreement is

obtained with the model developed by Beers et a1 [,19801.

The voltage and charging dynamics as suggested in Fig 3 6 can be matched

to an arbitrary beam current density or material thickness by a simple scaling

of the time axis.

i

3.3 Internal Model Development

The development of intense internal fields was first proposed by

f	 Meulenburg (1976]. It was suggested that two oppositely charged layers could

s	 develop in the irradiated material. As discussed in Chapter 2 secondary
r

t	 emission it a process that is essentially a surface phenomenon whereas the

electron beam can pass through the surface with little attenuation resulting

in a depletion of negative charge at the surface as illustrated in Fig. 3.7.

A second negative charge layer was proposed at the mean electron range. If

s	 ^:

_	 w .	 r.	 _.,,
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a"

i,

F

C'
the conductivity between these two layers, being dominated by the radiation

induced component, is too small then breakdown fields could develop. Such

a charge differential could continue to grow long after an external equilib-

rium has been established. These ideas have been refined in later work to

i	 include the details of electron deposition and beam induced conductivity

r	 profiles (Frederickson, 1979; Beers et al, 1979, Berkleykley 19791.

The internal charging . problem can be formulated. from Gauss' law and the

equation of continuity:

i	 aE/ay	 -q/e	 (3.17)

r 3q/at a Ut/ay	 (3.18)

where q electron volume charge density
(C/m3)

it= total electron current density in
the material in the neg. y direction

Following Beers et al ,[1979] we can isolate the electric field by combining

eqs. 3.17 and 3.18.

a2E/aya	 - 1/e M /ay
integrating with i
respect to Y

	

	 aE/£fit -	 1/e(Jt(y,t)	 J o (t))	 (3.19)

where it a Jp(y, t) + g (Y, t) E(y,t)

Jp M primary beam current as determined by
the electron deposition profile including backscatter

g'- conductivity as determined by the local
dose rate

Jo (t)- net external current density
- Ji(1-BS-SE)

Both the primary beam current profile and the conductivity profile are

influenced by the kinetic energy of the incident electrons which in turn is

fixed by the 'surface potential and the beam energy (eq. 3.9). Equation 3.19

is therefore coupled to the surface potential described by eq. 3.16

The effect of covering the front. surf ace with a thin (relative to the

MOM 	 -_
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range of the electrons in the covering) grounded metallized layer has been

studied extensively (Grass et al, 1980; Oliveira and Gross, 1975; Gross et al,

1974). A similar analysis is applicable to spacecraft charging conditions

when photoemission from the illuminated specimen prevents the material from

charging (Beers, 1979). The steady state field under such conditions can be

easily determined by requiring 3q/at 0. Using eq. 3.18 we find the-equiva-

lent condition aJ t/ay 0 suggesting that

	

i t - S(Y)E(y) + Jp( y)	 J	 (3.20)

where J is some constant to be determined
i
r

The condition.that both faces of the dielectric are at ground potential is

used to find J 'which then is used to determine the internal bulk field where

JP 
f E dy - 0f

0

f

d

OJp/g 
dy

J
d	 (3.21)	

1

J 1/g ayr	 0

.i
3.4 Internal Model Results

3.4.1 Controlled Beam
a

By adjusting the beam energy, the kinetic energy at the surface

	

can be fixed making J 
p 
and Jo in eq. 3.19 constants in time. The resulting	

g
equation is easily solved:

i

E(Y.t)	 (Jp(y) - J0)/g(y)
i	

(3.22)

	+ (E(Y,O) +'(JP	 Jo)/g (y)) exp(-g(y)t/e)

The final solution is independent of the initial field in the material at the

1__3
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start of controlled irradiation,

Most spacecraft charging experiments are not performed with beam control=

however eq. 3.22 can be applied to a steady state analysis for which Jo is

constant and approximately equal to zero. For Teflon this occurs at an

incident kinetic energy of 2.1 keV which, using egs. 2.13, 2.11 and 2.17,

implies an average radiation induced conductivity of 1.5 X 10 13 Olcm)- 1 in

the front irradiated volume for a beam density of 1 M/cm 2 . The resulting

time constant is approximately 1.4 sec suggesting that these fields quickly

assume a steady state value independent of the earlier charging history:

E(y)	 Jp(y)/g(y)	 y <_r	 (3.23)

where r average electron range

In the non-irradiated bulk region the dark conductivity is approximately

10 
18 

01cm) -1 giving a time constant of 2.2 x 10 5 sec (= 51 hrs). The bulk

field is essentially frozen atits initial. value	 !

E ( y)	 E(O,y)	 y » r

Under mission .limited charging conditions we have foundr
C	 {
x	 E(y) a (BE - KE2)/(d - y)	 Y » r	 (3.24)

For a non-charging beam (Jo = D) Beers et al have calculated the steady state

t
	 field profile based on eq. 3423 and illustrated in Fig. 3.8.

3.4.2 General Front 'Face Field

A unique front face held, first suggested by Beers et al (1979]

for any beam energy, current density and material thickness, is a consequence

of the assumptions inherent in the model. The magnitude of the internal

field at the front face can be calculated at equilibrium as follows;

`	 .
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	 SATURATION ELECTRIC FIELD IN TEFLON
FOR NON-CHARGING NORMALLY INCIDENT BEAM

f	 '1
(from Beerset al, [ 19791)

r {

MATERIAL	 EQUILIBRIUM FRONT FACE FIELD
(V/cm)

Teflon	 0.11	 5.5x104

Mylar	 52 . 0	 61.x104'

Kapton	 1.8 - 92.x104

Table 3.1 Range in equilibrium front face fields for the
values of radiation induced conductivity coefficientsF	
in Table 2.2 (from Beers et al ,[19791)
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from eq. 3.19	 2E/3t - - 1 /t (JP + BE - Jo)

at the surface Jp •	 J i (1 - BS)

and in general Jo a	 J i (1 - BS - SE)

thus	 a 3Eff/3t + gEff	 JSE

at equilibrium	 Eff 0 J i SE/g

where Eff w front face field

Using eqs. 2.7, 2.12, 2.13, 2.17 and 3.26 we find

-

1-4 K KE (0.3584-0.725)

E	
i

ff^
G(2.08 x 1013)4'

where for Teflon KE2	 2.1'keV

	

G	 1.7 x 117-16 (Qcm)- 1

	

A 	 0 7

K - 1.58

(3.25)

(3.26)

(3.27)

If the assumption is made that d * 1 it is found that Eff is fixed only

by material constants. Table 3.1 lists the computed bounds for the front

face field using detailed dose profile calculations and the range of radi-

ation-induced conductivity coefficients in Table 2.2 (assuming?A	 1) (Beers
^	 ii

et al, 19791. Using an average uniform dose based on the equations presented

in Chapter 2 the magnitude is bounded between 5.7 x 10 2 	2.8 x 104 V/cm for

Teflon. Using eq. 3.27 with A 0.7 and a current density of 1 nA /cm2 the

equilibrium field is 61 x 10 3 V/cm with a current density dependence of

0 1/11 nA /cm2) 0.3

It should be noted that all of these estimates are less than the expected

breakdown threshold, the largest occurring in Kapton. The discrepancy in the

results derived here and those obtained by Beers et al [1979] appear to be

due to the assumed range-energy relationship (eq. 2.11) at the low energy end.

x 6
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3.4.3 Grounded Front Face Results

The steady state field can be determined from eq. 3.20 once the

primary electron current has been established. For thick samples we find

from eq. 3.21 that

Jp(Y) » J for y < r

thus	 E(y) a -J P(Y)/g(y)	 (3.2.8)

where g(y) is dominated by the radiation
induced conductivity

e
f

The front face field can be calculated as in section 3.5.2. Using eq 2.1

for the'backscatter coefficient we find at the front surface:

Jp 0 Ji(1 - BS) a 0.9 Ji

therefore at steady state 	 J E f f j	 0.9 Ji/g

14 4 0.358Q ( 1-6)(4,8 x 10^ ) KE	 Ji	 0.9/G	 (3.29)

l
Whereas in eq. 3.27 the value of KE was fixed at the second unity emission

r	 energy, the value of KE in eq. 3.29 is equal to the beam energy since the

t	 front surface is held at ground potential.

i
For Ji 1 nA/cm 2 , KE - 20 keV and G 0.7 the front face field is

equal to 1.1 x 104 V/cm (roughly twice that found for a'floating front face).

Note there is a weak dependence on both the beam current density (Ji/1_nA/cm2)0•3

and the beam energy (BE/20 keV)0.25^
	 µ

in the non-irradiated bulk of the material the average field strength

will be reduced by a factor r/d from that found in the irradiated volume.

For a 50 pm thick sample under the above conditions the bulk field should be

approximately 1,7 x .103 V/cm with a beam energy dependence of (BE/20 keV)1.61
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	 To summarize the grounded front surface results, the front face field

is increased by roughly a factor of 2 while the bulk field is decreased by

a factor of 2x 10 3 when compared, to the sample calculations made for a

floating front surface. Seers et al (1979] have calculated an upper limit

for the front face fields for a 1 as seen in Fig. 3.9. The results are

independent of
, current density and use a detailed dose profile calculation.

Note for both Mylar and Kapton the upper estimates are comparable to the

material breakdown threshold at beam energies greater than 5 W.

j
	 3.4.4 Experimental and Numerical Results

Experiments performed by Gross et ,al [19771 have addressed the

question of internal charge deposition and migration. The charge centroid

was found to be equal to the average electron range at the start of irradi-

ation and it subsequently approached the extrapolated range if time was

allowed for internal charge migration. As the net stored charge increased

a corresponding increase in the final charge centroid depth was noted, re-

fleeting the higher internal field. This dependence is weak being approxi-

mately proportional to the logarithm of the bulk field.

The charge centroid was found to be sensitive to beam current densities

greater than 5 nA/cm 2 decreasing with increasing current density while the
i

net injected charge was held constant. Such behaviour supports the use of

a non-linear radiation induced conductivity as outlined in section 2.5.4..

Beer s et al (19801 have developed the necessary computer codes to solve

numerically the complete internal charging history for a one dimensional

model'(eq. 3.19) and have presented steady state results for both Kapton and

Teflon (Figs. 3.10 and .3.11 respectively) . The extremes in the internal

electric field appear at the front face of the material or in its bulk. The

behaviour of both of these quantities have been discussed in the preceding

sections.

a
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Fig, 3.10 Equilibrium electric field profile in Kapton.
(from Beers at al, [1980]
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Fig. 3.11 Equilibrium electric field profile in Teflon,

9
(from Beers et al, [1979])'
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4. TWO-DIMENSIONAL. "SUPJIATION DE SCRIPTION

A fully three-dimensional description such as the NASA charging ana-

E

	

	
lyser program.NASCAP (Katz at al, 19791 can describe the charging of an

arbitrary body exposed to a general electron/ion environment. Unfortunate-

ly a penalty must be paid for such flexibility in terms of cost and com-

plexity.

In this study our attention has focused on structures that can be com-

posed of long, uniform parallel dielectric strips above an infinite con-

ducting ground plane. Under such conditions the accumulation of charge can

be described in only two dimensions thus achieving considerable savings in

both cost and effort while isolating the effect of the metal-dielectric edge

in the charging process. The two-dimensional model described in this section

is a direct extension of the one-dimensional work described in Chapter 3 to

include those effects associated with the deflection of the incident beam by

the developing charge distribution.

The basic geometry, symbol definition and coordinate system are given

in Fig. 4.1. The results obtained, although idealized, should still be

applicable to the central portion of any long uniform strip. Many labor&-

i
tort' simulations of spacecraft charging (Balma4. and Hirt, 19$0 Purvis et al,

1979; Ya,_dlowsky et al, 19801 have been performed that can be adequately re-

presented in this manner.-

4.1 External Charsing Model

The external charging model specifying the accumulation of net charge

i in the dielectric as a function of time is described by the equation of

charge continuity

^gj2t	 -p net (4.1)

}	 where q volume charge dansity
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W ,

As was indicated in Section 3.1 the voltage and external, electric fields

are relatively insensitive to the internal charge distribution for thick

samples. For the purposes of the external model we shall consider the

charge to be deposited at a constant height d, equal to the material thick-

ness, above the ground plane. Using eq. 3.7 for the net current density, we

can write eq. 4.1 in the following difference form:

p(z, T+t)	 (Ji - J b s	 J Se	 J c)t	 (4.2)

where, all currents refer to the component in the
negative y direction (the question of tan-
gential conduction current effects is
addressed in Section 4.3)
P net surface charge density

I

in general all of the currents are functions of time a,nd position z because

they are determined by the growing charge distribution. The problem is

therefore to relate the net current at the surface to the net charge residing
a

on the surface.

A solution outline is g.+,,-An in Fig. 42 in the form of a flowchart.

Details on each stage of the chart are given in subsequent subsections.

4.,1.1 Derivation of the Electric Field from an Arbitrary Surface Charge
Distribution

The charge layer responsible for the unknown field is assumed to	 1

be located in the dielectric at a constant height above an infinite ground

plane. In general, the effect of the dielectric is to reduce the effective

charge layer due to the polarization of the material. From Jordan and Balmain

(1968] if the material is homogeneous the potential at a given observation

i point r -(see Fig. 4.3) due to this polarization is given by

r
1p (r) + P p/4ne oR da	 (4.3)

fs
i
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Fig. 4.2	 Flow Charts External Charging Model

- set initial charge distribution to zero
input beam characteristics

- input material characteristics

given the charge distribution calculate
the electric field (sec. 4.1.1)i

5

given the electric field calculate how
the defined beam is deflected (sec. 4.1.2)

given the beam deflection at the charge
layer, calculate the local impact para-
meters;

kinetic energy
beam angle

beam density (sec. 4.1.2) i

- given the impact parameters and electricy	
field calculate the net deposition profile 	 a
across the material (sec. 4.1931

r F	
,

assuming the given net deposition profile
is static for the clock period increment,
calculate the charge distribution profile
as described by eq. 4.2

check if deposition; profile is negligible
relative to accumulated charge

if no	 if yes, output final charge.
distribution

f

z	 _
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where pp^'P n

P polarization

Equation 43 suggests that the dielectric can be replaced by a surface charge
6

equal to pp . In addition we can replace the ground plane by the appropriate

image charges to obtain a simple volume charge distribution in free space.

The final potential is calculated using the resulting charge distribution in

free space and the familiar Green ' s function:

total

	

	 p/41rcoR dV	 (4.4)
JV

where p equivalent charge in free space

This sequence of steps is illustrated in Fig. 4.4. Comparing Figs.

4.4(a) and 4.4(d) we find

e o (E1 - E2 )	 -(pp + Ps)	 +,
(4.5)

eo ( E1	 erED ._ _ps	
I

therefore

	

( 1	 E 1
 /E

	

(Pp + Ps) /Ps - (eE /E	
(4.6)

	

r
	

1 2

where pp + ps - equivalent charge 1 ,n free space

p a = actual net free charge in the dielectric

Unfortunately * E 1 and ;E2 cannot be determined until the equivalent

charge in free space has been determined. In the simulation the ratio E1/E2

from the previous iteration is used to calculate the effective charge density.

F,

	

	 The procedure is initiated by assuming jE 1 /E 2 1 << 1 which yields the con-

ventional result: the effective free space charge is 1 /er the actual charge
in the dielectric.
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The charge distribution in Fig. 4.4(d) suggests that eq. 4.4 can be

simplified to two surface integrals on planes located at y - id,.

4	
L f-,I

W
^ (z(4ne

L 	 )	 (x - x) 2 + (y - d) + (z	 z')2

i>dxldz,	 1

(x'
-x') +(y+d) +(z- z)

x^,

 p(z') kn_ ((x	 x') + . (x	 x) + (Y + d) 2 + (z	 z ! )2  ) 
dz'f-'W	

z

	

Oreo 
	 (x - x') + (x	 x) .. + (y - d) + (z - z

x' m-1,
F

where W,L are the half width and half length of the material

if (x ± L)2 » (y + d)2 + (z	 z') 2 -we find

One	
P(z) Rn ( (Y + d ) 2

+ ( z 	 z')2dz'
o f-WW	 (y )2	 ^^'

assuming P(z') - A + Bz' where A,B are constants

4ns 0 
C (A + Bz) (s Rn (s + (y + d)2 +

2(y - d) atan(y s d
) - 

2(y + d) atan( y + d ) ) -

(4.7

(((Y - d) 2 + s 2 ) (In ( s2 + (y -'d) 2 )	 1)

_s= z-w

((y + d) 2 + s2)4n (s 2 + (y + d) z) - 1)))

Is-z+w

The electric fields are related to the scalar potential by

P::,
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which yields

Ey 4. 	 ( 2(A + Bz) (atan( s atan(^))
(4.8)

sU z-w

B ((y + d) kn((y + d) 2 + 9 2 ) - (y d) £n((y - d) a. + 82)))
IsWz+V

Ez 4- rE ((A + Bz) in( (̂ ŷ  + d 2 
.1. 

s2)

s
(4•'9)

n z-w 

+ 2B ((y + d) atan(`) (y - d) &tan(=)))

Is-z+W

The actual charge distribution p cannot in general be represented in

the form A + 8z. The fields can, however, be found by the superposition of

solutions for each segment of a piecewise linear approximation to the actual

change distribution. The piecewise linear model is chosen to be continuous

and to have a mean square error less than a set fraction of the average

charge density. Figure 4.5 shows an example of the segmented approximation

chosen to satisfy a mean square error constraint and the original charge

distribution it represents. The position of the segments are chosen in such 	 a

a fashion as to shift the end points between successive iterations thus

minimizing the accumulative effect of discontinuities in the -slope on the

charging model,

!	 To summarize, the actual charge distribution is transformed using eq.,

4.6 to give an equivalent charge in free space which is then approximated by

a continuous piecewise linear function. The total electric field is then

found by summing the contributions of each segment calculated using eqs. 4.8

and 4.9.
is

..F
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4.1.2 Incident Current Profile

As the surface potential reaches a level comparable to the beam

accelerating voltage the electric field above the material strongly in-

f luences the incident beam profile. An understanding of the beam dynamics

can be obtained by tracing individual electron 0'	 S.

The necessary equations of motion are:

rt

d2z/dt 2 	-Je/mJ Ez(Z,y)
(4.1o)

d 2y/dt 2	-Je/mJ Ey (Z y)

it is assumed that E is constant in time for the duration of the trajectory.

This coupled system of equations was numerically solved using a-third order

Runge-Kutta method with adaptive time increment. The formulation is suited

for second order differential equations for which.a first derivative is not

i	 l d	 Th	 1" d d	 ^"7 bnvo ve	 _e re a[e ifference equations for the z component are [ eer

19671:

z(T + t)	 z(T) + t(z(T) + 1/4 (kz0 + kZ1))_
i

r

	

	 z(T + t) - z(T) + 1/4 kZ0 + 3/4 kZl

where z - dz/dt

t a time increment

kz '! 1e/mlt E z (z(T), y(T))

kz l- -+e/mJt Ez(z*, y*)

z*- z(T) + 2/3 z(T) + 2/9` kZ t 	 G

(a similar set of equations is used for the y-component).

s	 The neglected terms are of the order t 4 . A measure of the local error

`	 can be obtained.: . by introducing... k22
F

kz2	 Je/mJt E z WT + t), y(T + t))

i

I

-,

M



The error in. z and z are given by

Error(x) -	 t(-1/4 kzo + 1,/4 kzl)

Error(;) '	 1/2 kzo - 3/2 kz1 + `kz2

The method $ incorporating an adaptive time increment procedure to maximize

t subject to local error estimate constraints on zz,y,y, requires only

two function evaluations per coordinate per iteration. A further check on

the global accuracy of the trajectory subroutines was performed at charging

equilibrium wherein the conservation of energy condition (eq. 3.9) was veri-

fied across the surface.

The trajectories are terminated on a plane defined by the upper surface

of the material using an iterative selection of the final time increment.

By sampling the material's surface with test electrons we are able to

deduce the incident beam profile. The impact parameters, namely the angle

of incidence and the kinetic energy of the incident electrons as functions

of position are obtained directly from the trajectory calculations. The

r incident current density is obtained by comparing the relative deflection

of neighbouring trajectories :a-s indicated in Fig. 4.6. If we assume neigh-

bouring electrons with the same initial velocity and _a slight lateral dis-

placement do not cross, then the net current through the upper and lower

surface will be equal. Because there is no charge accumulation in the volume

V, it follows that
t

i

Jy1/JY2 . s 2/a 1	(4.11)

t

Equation 4.11 is used to relate the incident current density J, to be used

in eq. 4.2, to the beam current density via the calculated trajectories.

4.1.3 Net Charge Accumulation

The net current density, as indicated in eq. 4.2, represents the

s
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difference between incoming and outgoing currents. 	 The outgoing currents

" include the backscatter current, the secondary emission current and the bulk

" conduction currant,	 Although each has been described in Chapter 2 the funs-
E

tional forms used in the simulation will be summarized here.

k

Jbs	 00	 KE-C ' ZJi	for	 Teflon and Kapton

ise	 `	 1.55 KE-0.725Ji exp(20 - cose))	 for Teflon
^ 0.68 KE -

0.725 
ii exp(20 - cose))	 for Kapton

-1'8 2 + cosh(4.68x10-3E^)5	 10	 (1.	 ) E	 for Kapton,1 0	 x

0	 for Teflon

where E . y, component of electric field (V/cm)

KE- incident kinetic energy (keV)
a

E

f^

In keeping with the discuT:)ion in Chapter 3, all of the results for Teflon

are assumed to be secondary emission limited.

4.2	 Internal Charging Model

The results presented in Chapter 3 indicate that the maximum internal

fields at equilibrium occur at the front face and in the non-irradiated bulk

of the material.'	 The bulk fields can be obtained directly from the external

charging model as they are outside the free charge distribution. 	 The front`

" face field can be estimated assuming a uniform dose rate throughout a volume

defined by the mean electron range.	 The proposed charge distribution is
t

:

illustrated in Fig. 4.7.	 The net charge as used by the external model is

-(p 1 + p 2) where p 1 is a surface-depletion charge due to secondary emission

F and p2 is a charge layer due to the primary electrons.	 The external surface

electric field' E1 can be calculated from the external model.	 The internal	 a

fields E2 and E3 are functions of p 1 and p 2 as follows:

r.
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(4.12)
crE2	 E1	 Al/co

E3 - E2	 p2/cper
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Balancing the currents out of the first charge layer pi, we find

dp
1/dt - JBe - j  ` Jse - gE2

dp 1 /dt	 "	
0 	 - 

8E1/Ed - (9/ coer )P 1	(4.13)s

over the period of a time increment in the external charging model El

will be approximately constant and eq. 4.13 reduces to an ordinary differen-

tial equation with constant coefficients which can be easily solved,
i

P (t)	 s	 (J se - gE l /cr)EU C r
/g 

+
(4.14)

(ol(0) - eocr/8(Jse - gE1 /Er))exp(-g s/toss)

where T < s < T + t

P1(0)	 charge at the beginning of the iteration

The

_

steady state solution is

r

P1	 0 	 gEl/er)eoer/g	
(4.15)

s

E2	 =	 J se/g	 -	 (Eff l,
	 (4.16)

-	 Note the field between the two charge layers E2 is 
independent of the external'

field and is equal to the expression obtained for the front face field in

the one-dimensional analysis (eq. 3.27).

.

4.3 Transverse Conduction Currentf}
f, The possibility of strong tangential fields near the sample edge suggests

the inclusion of transverse currents and subsequent free charge transfer in

the model.	 A three-dimensional analysis can be developed based :)n Fig. 4.8

INV
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and eq. 4.1. If q in the charge contained in the volume xpy ozo in Fig. 4.8

then

I

-dq/dt	 Ox - ix, )yoz o + (Jy	=^)x o zo

+ O z Jz! )y0x0

For an infinite strip Jx 
Jx'	 0. The change in the: free charge per unit

surface area is

dp/dt ` (Jy - Jy')	 +	 Oz Jz t ) yo/z0	 (4.17)

where p q/xezo

Assuming that the non-irradiated volume is blocking the transverse currents

must be confined to a shallow surface layer with a thickness approximately

equal to the electron range. Equation 4.17 can therefore be written

Wat . Jy '	 Jy + gr (EZ	 Ez^)/zo 	(4.18)

where ( Ez - Ez 1 ) /zo * H /az

r average electron range	 }

assuming DE z /az > E z /g • ag/az

Tangential currents were not included in the general model as consider-

able uncertainty persists concerning the transfer of charge from the material

edge. It was felt that the edge could be characterized by two extremes: in-

finite edge resistance and zero edge resistance. ` Infinite edge resistance

is used to describe the boundary condition that J z a 0 at the edge. Zero edge

resistance 'is used to describe the boundary condition that ai /az = 0 (i.e.

no charge accumulation occurs at the edge due to surface tangential currents).
F;

Results have been obtained for both extremes. No attempt was made to model

an inherent surface conductivity.

i

:°
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5. SIMPLIFIED ANALYSIS

The charging behaviour of the central portion of the dielectric strip

when exposed to a normally incident uniform electron beam can be predicted

using approximate field expressions. The approximations are ,valid when

trajectory displacements from the centre are small compared to -the half

width of the material and are based on an assumed uniform charge distribution.

The results are sufficiently accurate to be useful in practice and also

provide data for later comparison with the fully numerical approach in

Chapter 6

5.1 Central Fields of a Uniform Charge Distribution

The following expressions are obtained from eqs. 4.7, 4.8 and 4.9

assuming y >> d and a uniform charge distribution (i.e. A po, B 0)

M - pod (atan(z	 w)	 atan(
z + w))	 (5.1)

	

tre o 	 y	 y

	

pod	 (z2	 y2 _ w2 )	 I
Ey a	 nEo 2w (y2 + (z	 w) 2) (y2 + (z + w) 2)	 (5.2)

y

a pod	 yz
Ez	 nto 

4w (y2 + ( z	 w) 2)(y 2 + (z + w)2)	
(S.3)

It is apparent from these equations that if the equilibrium condition is

governed by the external-fields, as is the case for emission-limited charging,

an equilibrium state can be defined for an arbitrary material tbjo_,!mess by
r^	 9

the steady state dipole moment per unit area p(z)d which produces a unique

set of external equilibrium fields. The steady state charge density is thus

found to be inversely proportional to the material thickness as implied in

eq. 3.5 for a given equilibrium surface potential.

k

w
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4

Equations 5.1 0 5.2 and 5.3 can be further simplified if we restrict our
2attention to the region where z/w << 1, Ignoring terms of the order (z/w)

P	
we find

2 Pod/iTeo atan w/y	 (5.4)

E & pod2wbre d 1/(Y 2 + W 2	 (5.5)
y

Ez b p od4w/ite o yz/(y 2 + W 2 2 (5.6)

The equation of motion in the y direction, using eq. 5.5, is found to
2be independent of the z coordinate. If we assume that (y) >>	 (i.e. a

paraxial approximation) we find

^2BM	 211^(y)e/ml	 (5.7)

Equation 5.7 can be integrated numerically to find the vertical component of

the trajectory as a function of time. The equation of motion in the z

direction is more complicated but can again be treated numerically once y(t)

is known, In general it takes the form

r
z - f(t) z	 (5.8)

where f(t) is a function of time defined
by eqs. 5.6 and 5.7
Z(0) - z o 0 ;(0) - 0

By simple substitution it is evident that if a solution to eq. 5.8 exists

g l (t) then a scalar multiple g2 ag l (t) will also satisfy it with the new

initial conditions. 9 2 (0)	 ag l (0), 8*20) - 0. Because the y component is

independent of z, two neighbouring trajectories represented by g, and 92 are

simply related by scaling the z coordinate of the path as indicated in Fig.

5.1. The incident current density is therefore constant in the central

region and can be determined by a single trajectory calculation as indicated
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J /J	
WOO _ 1)	 gi(0)

	

i b g (t ) (a 1	 g^ 7

for any scalar a

(5.9)

in eq. 5.9.

68

7--7
i

In addition.stnce y is fixed at the surface and x is found to be proportionali

to z, the angle of impact for small angles will also be proportional to z.

Under symmetrical charging conditions the electrons incident at the

centre of the sample will be directed normal to the surface. If the charging

is emission-limited the central surface charge density can be calculated using

eqs. 5 . 5 and 3.13.

Po	 ireo (BE - KE2)/(2dJeJ atan (w/d))	 (5.10)	
J

where KE2 unity emission energy for normal incidence

1

For w » d eq. 5 . 10 reduces to the expressions obtained in Chapter 3 (egsg.

3.5 and 3.13) describing a one-dimensional charging model.

The trajectories for different beam energies are closely related. For

a surface potential (and hence a charge density) equal to specific ,fraction

of the beam accelerating voltage the resulting trajectories will be invariant.

If y l , z 1 describe a trajectory from a beam of energy BE1 onto a material with
i

	

a surface potential equal to (ko BE 	 then a corresponding trajectory y2 , z2

exists for a beam energy BE '2 and a surface potential (koBE2 /e) such that

(from eq. 5.5)

given (yl2 + w2)yl - kl

(y2 + w )y2Z	 2	 - k 1 2BE /BE 1	(5.11)s 

where ki - a constant

yZ (0) __ y l (0)

	y 2(0)	 E2 /BEl'y1(0)

TF
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If we let y2 	 yl((BE2 BE 1 t) eq. 5.11 is satisfied along with the appro-

priate initial conditions. From eq. 5.6 and using y 2 as above, z2 must be

found such that:

given z l/z l - fl(t)

z2/z2 n BE2 /BE
1
 f l (_ E	 t)	 (5.12)

where z 2 (0) . z
1
( 0), z 2 (0)	 ; 1 (0)	 0

Substituting z 2 . z 1 ( BE^ t) satisfies eq 5.12. The resulting path y2,

z2 is unaltered as both coordinates are affected by an identical time scaling.

Using this result and calculating the incident current density as indicated

in eq. 5.9 we are able to generate a universal set of curves describing the

incident current density as a function of the surface potential, as can be

seen in Fig. 5.2. The accuracy of the analysis becomes uncertain when the

surface potential approaches the accelerating beam voltage as the paraxial

approximation used is no longer applicable.
t

The angle of incidence at equilibrium as a function of beam energy is

given in Table 5.1 for Teflon. The equilibrium trajectories are more strongly

deflected-for higher beam energies as the equilibrium surface potential 	 l

represents a larger fraction of the accelerating beam ` vo'ltage	
a

Table 5.2 presents the angle of incidence as a function of normalized

coordinate z/w. The consistency of this value suggests a`degree of width

scaling is inherent in the equations of motion governed by'egs 5.4, 5.5 and

5.6. If the trajectory y l , z l onto a sample of half width equal to unity

is known, then it can be shown by direct substitution that y2, 
z2 

satisfy eqs.

5.5 and 5.6 for an arbitrary halfwidth w when

z2 M wzl(t/w)	
(5.13)

Y2 - wyl(t/w)
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'i
k

SEAM ENERGY	 (eVs/ BEAM ENERGY)	 dei/dz

(keV)	 (degrees/mm)

30	 0.933	 8.5

20	 0190	 6.5

15	 0.87	 5.7

10	 0.80	 4.2

5	 0.60	 2.3

Table 5.1 Rate of change of the angle of incidence at steady
state for Teflon (w - 0.75 cm).



If the material is very thin, we approximate the material's surface by the

plane y 0 which implies

z2/w
^.	 y20

z1
y1-0

(5.14)

k	 ^

pywsi

Y	 ri

F

i
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t

with the following initial conditions:
z2,(0) - wz1(0)	 y2(0)	 Y1(0) .^

z 2 (0) - z 1 (0)	 y2(0) - y1(0)
,a

Z2 
y2-0

	
^ z1 

Y1'0

1

Y2,	
-0	 Y'1 Iwo

Y2	 Y1

At	 trialsurface t	 ct and hence he surface p otentialA the material	 he energy of impact 	 nc t s	 p

as well as the angle of impact can therefore be represented as universal
i

functions of z/w.

The results in Fig. 5,2 were used to modify eq. 3.16 to account for the

r	 effect of beam spreading on the charging rates in Teflon.

tJbd	 dV	 (5.15)
ever - f J  Jb(1	 BS - SE)

i

where Ji/Jb is given in Fig. 5.2

`

	

	 The charging dynamics for beam energies from 5 - 25 keV based on eq. (5.15)

and experimental data produced at 'Lewis Research Centre [Purv is et al, 19791

for Teflon are compared in Pig. 5.3. NASCAP predictions and Lewis Research

Centre data a`o compared in Fig. 5.3 [Roche and Purvis, 19791. Both numerical

simulations, as well as those reported by Beers, [19801 tend to be slower

than the Lewis Research Centre data, Purvis et al [1977]' have also reported

excessive  leakage currents in Teflon implying an effective conductivity of

__	 w	 _ as..	 -	 -	 s ...	 ^_	 __, _ . . y..y_	 .....<_...__..._sf.,.....^.........._...+............,.	 ..wry..	 .,.	 ........	 . _	 ..
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Wcm) -1. The authors list surface or edge leakage as possible parallel

conducting paths to account for this observation.

Charging results incorporating beam spreading are presented in Fig, 54

for Kapton under conditions that support either mission or conduction-limited

equilibrium. No dramatic departure is observed in the general qualitative

behaviour of either curve from those already discussed,

	

#	 Discharge studies (Balmain and Hirt, 19801 on 50 um thick Teflon irradiated

by 20 keV electrons over a range of current densities 0.5 - 50.0 nA/cm2 have

indicated typical waiting times between dischargen range from 60.0 - 2.5

min, respectively. The corresponding range in the current density-time-

thickness product is 9.0 - 31.5 nC/cm. Comparison with Fig. 5.3 suggests

that discharges occur after the net charge accumulation process has reached

a steady state.

5.2 Surface Fields

The electric fields above the surface of a charged dielectric are cal -

culated to determine whether such fields could initiate a breakdown, par 	 9

ticularly near the material edge, and to characterize the immediate environ-

ment in order to determine its effect on theemission processes. The

tangential field is continuous in the vertical direction whereas the normal

electric field is discontinuous at the surface as noted in eq. 4.120 Both

fields reach a maximum in the neighbourhood of the edge,'

For a uniform charge distribution the fields near the positive edge

(z 9 w) and near the surface (y a d) can be calculated with the following

definitions

az M z	 w	
N

2w i z + w
	 ^'rt

f
	 Ay	 y - d

2d a y + d	 i

l
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where 6z << w

Ay << d 0 Ay Z. 0

d < w

The normal surface field outside the charge distribution can be calculated

from eq. 4.8 and is;-plotted in Fig. 5.6 versus the horizontal displacement

from,the -edge 4z with the height above the surface.6y as a pav:ameter. The

position and magnitude of the maxima can be determined to be

a 	 t 12—d
	

(5.17)

	Ey M po/2neo(fr/2 i d/w -2_Ay d )
	

(5.18)

The field strength is well behaved in that no singularity is encounter-

ed as the surface is approached. The actual charge distribution is not pla-

nar having a finite depth and an appropriate choice of Ay must be made to

account for this. Fortunately, for sufficiently thick samples the maximum

field is insensitive to Ay. 	 11
If we consider the charge distribution in Fig. 5.7 the edge normal field

using eq. 4.8 is
f

Ey a ((A + Bw)(d/w atan Az /4y + atan Az/d)
(5.19)

- Bd Rn((d;2 + Az 2)/w2)) 1/27co

a	 where A - (pmax + pmin) /2 _ pavg

B ' (pmin Amax /2w
1

The normal electric field at the edge is reduced to zero when	 1
Al

	

Amin ' pavg(1 - '1/(1 + 21n(w/d)))	 (5.20)

For pmin less than this value the zero crossing moves in from the edge towards

the centre of the strip and the normal fields at the edge are reversed tending

AL

f

L;
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to attract emission electrons back to the surface. For typical dimensions

(w n 0.375 cm, d a 0.01 cm) the zero crossing coincides with the material.

edge when p max /pmin - 
1.28. If we increase the ratio to Pmax/pmin . ;3.0

the surface normal field will be zero at A Z - -0.165 A y ( i.e. inside the

edge). Since A y represents the actual depth of the volume charge distri-

bution (of the order of microns) the section of material under field re-

versal is found to be very narrow for even large charge differentials.

This coupled with strong edge tangential fields, to be described later in

this section, suggest that the return of emission electrons to an isolated

sample should be an insignificant effect.

For non-uniform specimens (where severe differential charging due to

geometry or material composition could occur) the external fields can

effectively elimin to the secondary emission and/or photo-emission process

(Mandel et a1, 1978]. This is particularly evident in the irradiation of 	 J

strips of material possessing opposite charging characteristics (charging or

non-charging) when placed alternately side by side. Figure 5.7 illustrates
,

a subection of such an array where the non-charging strips form gaps that

are assumed to be at zero potential. The equipotential lines sketched above	 ;a

the surface suggest the development of a saddle point potential barrier

representing a minimum energy requirement for an electron emitted from the 	

}
gap to leave the surface. Since secondary emission and photo emission

electrons tend to be low energy (` 10 ev) these processes can be surpressed
	 !I

by a relatively low saddle point potential.

The potential above the centre of a grounded gap of width 2w between two

uniformly charged samples earh of width 2Ucan be calculated using eq. 5.1:

@(y)_ p,d/er (atan(w/y) - atan(w + 2W)/y)/(n/2) 	 (5.21)
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where P-od/eo - surface potential at the centre of the charged
elements

The saddle point is located by finding the root of the derivative of

eq. 5.21

yb - W 2w/^2/WT 	 (5.22)

where yb * the " '$ht above the ground plane
at which the saddle point is located

r

y 	 f

I` Substituting eq. 5.22 into eq. 5.21 the saddle point potential barrier can

be calculated.

tb	 V(atan s - atan 1/s)/(n`/2) 	 (5.23)

where	 potential barrier

S • Y71
4	 V = maximum surface potential
1

Equations 5.22 and 5.23 are plotted in Fig. 5.8. As the fraction of the to-

tal surface covered by the charging material is decreased the potential

barrier is reduced in magnitude and moves away from the surface. Excellent

agreement has been obtained between the above analysis and the NASCAP program

results (Stannard -et al. 1981)..

The 'tangential field near the edge of a uniformly charged strip can he

calculated using eq. 4.9 and has the following form:

E 
a Po (Zn ( 2-- 2 + 2 - kn(1 + (d/w) 2))	 (5.24)z

47re o	 oy + oZ

Note as both Az and Ay approach zero the tangential surface fieldhas a-
-	

is

M	 logarithmic singularity. The maximum field is located directly above the edge

(Az wj 0) and is given by

2Ez	 po/27co (Rn(Zd/Ay) - 1/2 kn(1 + (d/w.))) 	 (5.25)

ei

.r4

c. a
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E

If we assume that instead of a planar charge layer there exists a uniform

volume. _charge distribution of depth r, then the maximum tangential field can

be obtained by integrating eq. 5.25 with respect to Ay. The resultant

edge field at the centre of the charge distribution is

'a	 EZ . po /2ttcp ( In 4d/r + 1 - 1 /2 kn(1 + (d /W) 2)) 	 (5.26)

For sufficiently thick samples eqs. 5.26 and 5.25 are the same if we choose

Ay r/5 , 5 Since the details of'thd internal charge distribution are not

known we have adopted the convention that all "surface" fields will be evalu-

ated at °y u 0 . 01 d. Rescaling of our results for an alternative charge

distribution can be accomplished using eq. 5 25.

I^

r

i

F.

f
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6. TWO-DIMENSIONAL NUMERICAL RESULTS AND DISCUSSION

The numerical results have been chosen to illustrate the charging

i
	 response to a variety of geometries and beam characteristics. The Teflon

simulations were assumed to ge emission-limited and therefore independent

of beam current density. A standard current density of 50 nA/cm 2 was

selected for these runs. Data was accumulated at 160 points across the

surface. Trajectory calculatims were made with a nearest-neighbour

spacing ranging between 0.25% and 5.0% of the total sample width, typically

requiring 50 trajectories per iteration, with a maximum resolution being

obtained in the neighbourhood of the material edges. Standard runs

required 8 min. of CPU time on the University of Toronto Computing Services'

IBM 3033. The piecewise linear charge ,approximation was chosen to have a

root mean square error less than 1.5% of the average charge density.

Under symmetrical charging conditions the expected solution symmetry

was not incorporated into the charging model. Instead the full surface

was represented so that asymmetric discrepancies can be used as a measure

of the model's reliability.

The net charge density refers to the net negative charge in the sample.

The surface charge- density refers to the accumulation of an assumed

positive 'charge layer on the material surface due to secondary emission.

The surface fields _refer to fields calculated a distance- 0.01 d above an

assumed planar (zero-thickness) distribution of net charge.

i
6.1 'Beam Energy Dependence for Teflon

The equilibrium net charge profiles for Teflon irradiated with beam

energies ranging from 5 to 25 keV in 5 keV steps are given in Fig. 6.1 	
i

(material half width 0:75 cm, material thickness 100 um). In Fig. 6,2

the equivalent charge in free ,space as described by en. 4.6 is presented.

In general, the internal normal bulk field is much larger than the
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external normal surface field and the equivalent charge is therefore

approximately equal to 1/c of the actual charge, The scales in Figs. 6.1

and 6.2 differ by a factor of 1/c r in order to facilatate this comparison. 	 3

The crosses in Fig. 6.2 represent the end points of the linear segments

used to approximate the effective charge density for the purpose of

making field calculations.

The charging dynamics are illustrated by comparing intermediate stages

in the evolution of the net charge in Figs. 6.3, 6.4 and 6.5 for beam

energies of 20, 10 and 5 keV respectively. The vertical scales in these

figures were chosen to be nearly inversely proportional to the beam energy.
I	 j

To a first approximation the curves for beam energies greater than 10 keV

have the same shape indicating that a rather simple beam energy scaling of 	 1

the equilibrium charge distribution is applicable to the entire surface.

A more quantitative analysis in Fig. 6.6 suggests that the equilibrium

charge density across the sample is proportional to (BE-k) where k is a

function of position on the surface. At the centre k is equal to the

second total emission crossover energy at normal incidence (2.1 keV for

Teflon) as suggested by eq. 3.13. The value of k is approximately
a

constant over central portion of the surface and reaches a minimum of

1.05 keV near the edges.

The charging dynamics at the edges differ considerably from 'those at

the centre where the netcharge density monotonically approaches a steady

state in a manner consistent with eq. 5.15. At the edges the charge

density overshoots its equilibrium value. This is illustrated in Fig. 6.7

where the temporal behaviour of the charge density at the centre and edges

is explicitly presented fora 20 keV charging beam. Comparison with the

predicted centre response from Fig. 5.3 indicates excellent agreement.

The overshoot at the edges tends to increase with increasing beam energy.,
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A possible explanation for this 'behaviour is presented in a discussion

of the necessary equilibrium conditions later in this section.

The steady state surface potential distribution for each beam energy

is presented in Fig. 6.8. At higher beam energies the equilibrium surface

potential becomes less uniform as the surface charges to a larger fraction

of the beam accelerating voltage and the beam is more strongly deflected.

Surface potentials measured by Robinson [1077) and Stevens et al (1978)

are also presented in pig 6.8. Considering the uncertainty in the experi-

mental points as well as the differences between the physical and model

geometry the agreement is quite good.

The angle of impact in Fig. 5.9, as suggested in Chapter S, displays

a near linear central region, particularly for the lower beam energies,

which increases in slope for increasing beam energies. In general the

slope is larger than that found in Table 5.1; the reason may be that the

non-uniform charge distribution tends to increase the tangential fields

and enhance the degree of beam spreading.

The angle of impact is closely associated with the surface potential

through the current balance in eq. 3.10 and the conservation of energy'

expressed in eq. 3.9

KE + J eV) - BE

for emission-limited equilibrium

J1 (1 - BS	 SE) - Jc y 0

therefore

BS (KE,e) + sE (KE,o) - 1	 (6.1) I
where-rKE, 0 ant V are unknown

An explicit relationship between the equilibrium kinetic energy

and the angle of impact is given in rig. 6.10 fora
1

t
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total emission coefficient as described by Wall et al [1977] (eqs. 2.1.

2.2, 2.7 and 2 . 9) and as described by Robinson aiad Budd [1980] (eqs. 2.8

and 2 . 10). Had the angular dependence suggested by Robinson (eq. 2.10)

been used in the computer simulation the central region of the sample would

have been more uniform. Figs. 6.8 and 6.9 compare favourably with the

predicted relationship in Fig,. 6,10.

The charging dynamics can be explained in ;terms of the relationship

between the surface potential and the angle of impact. As the sample begins

to charge the beam is largely undeflected and a uniform charge distribution

is developed. However, as the surface potential approaches 'the accelerating

beam voltage the angle of impact at the edges reaches a level (approximately

50 0 ) where the associated local equilibrium potential begins to drop

signifigantly,forcing a loss of charge primarily through an increase in the
	 i

secondary emission coefficient from the edge. This loss of charge enhances

the tangential fields thereby maintaining a large angle of incidence. As

a result the charge density at the edge collapses as the potential at the

centre nears the beam voltage. Since a 5 keV beam charges Teflon to a
r

maximum surface potential of approximately 3 kV (representing only 60% of

the accelerating voltage) an overshoot does not develop and the resulting

charge and surface potential distributions are more uniform.

The external normal surface field, external tangential surface field

and the internal normal. bulk field distributions are given in Figs. 6.11,

r
6,12 and 6.13 respectively. The maxima obtained by the external normal

aF surface fields are in general less ` than that required for dielectric'
w

'	 breakdown. The edge surface tangential field and the central internal

Y

normal field are comparable both exceeding 106 V/cm for the 20 keV and

,r	 25 keV beams. For a strip width of 1.5 cm the tangential field maxima

a	 are 60% smaller than the peak` internal bulk field.
'^i
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The strong peak in the tangential field has a half-maximum width of

the order of the sample 's thickness, As indicated by eq. 5.25 the peak

tangential field is influenced by the assumed internal volume charge

distribution and is therefore subject to some uncertainty. In many

experimental setups the sample is also covered by a grounded metal aperture

'	 plate which could enhance the peak surface tangential component at the edge.

The tangential field calculated at y - d/2 (halfway through the material)

is approximately 1/5 the magnitude of the surface tangential component. The

^a
undulations. in the surface fields are due to the discontinuities in the

slope of the piecewise linear charge representation. The actual quantities
i

`	 plotted in Figs. 6-.11 0 6. 12 and 6 , 13 are the magnitude of the various field

components. The direction of the tangential field should be understood to

be towards the centre of the strip and passes through a zero at that point.

The paths traced by low energy secondaries emitted from the surface

charged to equilibrium by a 20 keV beam are approximated in Fig. 6.'14,-	 ,f

The electrons are assumed to'be emitted norma l 'to the surface with an

energy of 1.0 eV. A small fraction (approximately 7%) are found to be

turned back to the ground plane. Experiments performed by Cuch 	 [1978]r

in which an electron microscope was used to image the secondary emission

occuring from a charged dielectric, indicated a band near the grounded

metal edge from which no secondaries reached the detector,. The band

measured approximately 9% of the sample radius in good agreement With the

F
predicted behaviour. The b-lowoff electrons during the discharge event

cannot be inferred from Fig. 6.14 due to severe space charge Limiting that

has been ignored in this treatment [Stettner, 1980;'Katz, 198Q]. Measure-

ments made by Balmain and Hirt [1980) indicate that the fraction of the

released charge returning to the _;ground plane is increased to approximately

50% during the discharge event.

4^
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Figures 6.15, 6.16 and 6.17 indicate the incident current density

profile, the dose rate profile and incident trajectories taken at steady

state for the sample Charged by a 20 keV beam. The normalized current

density has a broad minimum of 0.53 at the centre of the strip and maxima

at the edges of 0.7. The central current density is in good agreement

with the simplified analysis presented in Fig. 5.7. The dose rate is

remarkably flat concsidsxr ng the variation in its constitutive parameters

angle of incidence, surface potential and current density; as given by the

formula

D a J lcos0 KE-0.355

which is derived from eqs. '2.12 9 2.13 and 2.14.

The internal front face field is presented in Fig. 6.18. The equili-

brium field is governed by the relationship (eq. 3.26)

Eff ^Jse/g

it was demonstrated (eq. 3.27) that this quantity is a rather weak function	 I
l

of incident current density and impact energy so the uniformity of the two

i

i	 dimensional results should not be too surprising. The magnitude of the
I	 {

field agrees quite well with that predicted in Chapter 3 when the degree of
r

beam spreading is taken into account.

JEffI	 (i )
0.3 6 . 1 x 103 V/cm

2

Ji Jb 0.53 where J 	 50 rtA/cam
j

therefore the one-dimensional prediction is

Pff	
1.64 x 104 v/cm

The surface charge layer required by Gauss' Law to match the internal front

face field and the external normal surface field in Fig. 6.18 and Fig. 6.11
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respectively is presented in Fig. 6.19. In general a small positive

surface charge is required becoming negative at the edge due to the obsery d

maxima in the external normal surface fWd,

The a+ierage charge density at steady state is plotted against the

equilibrium surface potential at the centre of the strip in Fig. 6.20.

The upper curve is obtained from the one-dimensional model which produced

a capacitance per unit area of cocr/d. The lower curve is based on the

two-dimensional charging model. results. The temporal evolution of the

average charge density is plotted against the central surface potential in

Fig. 6.21x.	 The zharpi-voltage relationship is found to follow the one-

dimensional curve until near steady state when charge is lost from the

edges. Comparable experimental data (Stevens et: al, 1977] is reproduced

in Fig. 6.21b	 14' the low voltage portion of Stevens' data is extrapolated

1	
to the steady state voltage we find (for an area of 300 cm2, d - 127 um and

C r a 2.25) good agreement with the one-dimensional curve in Fig. 6.20.

The experimental 'results however, indicate an equilibrium average charge

r
density that is lower than the computer simulation results by a factor of

1/1.5. Such a discrepancy could be attributed to a change in the dielectric

permittivity due to the high internal fields. Interestingly if we take data
i

for the charging dynamics of Teflon (Purvis _et al, 1977] in Fig. 54 and scale

the time axis by a factor of 1.5 as would be appropriate for the proposed

change in er , we again obtain a much improved agreement with the numerical
r

results as indicated in Fig. 6.22. Note that at a lower beam energy

(hence a lower internal field strength) reasonable agreement already exists in

E	 the charging dynamics (Fig. 5.4)

6.2 Material Width Dependence for Teflon

The equilibrium net charge density profiles in F,ig. 6.23 were obtained

for Teflon with half widths W equal to 1.5, 1.512, 1.5/4 and 1.5/8 {
9
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(material thickness 100 um, beam energy 20 keV). In the centre the charge

distribution is nearly independent of the sample half width when plotted

against the normalized co-ordinate z/W. At the edges the narrower strips

LL iNA	 collect signifigantly greater charge density.

The surface potential distribution when normalized to the width of

the sample is also found to be insensitive to the sample width as Indi -

cated in Fig. 6.240 . The close agreement between experimental results

and the simulation results in Fig. 6.8 where the range in half width was
t

L 0.75 to 5. ,0 cam tends to support this form of width scaling. Further

experimental evidence presented in Fig. 6.24b corif isms the

scaling on strips of Teflon thermal control tape [Aron, ,and-Staskus,1979].The

behaviour of the surface charge distribution is also consistent with

measurements indicating that the total charge released during a discharge	 A

event is proportional to the 'exposed area Aalmain and Dubois, 1979.

Equation 6.2 is an approximate empirical expression fitting the

behaviour of the surface potential distribution for arbitrary beam energy

and arbitrary sample width.-

V VO (1 - exp(- 404 (1.185	 Iz/WI ) 4 - k(W)))

(6.2)

where

Iz/W1 S 1.0
ri

k(W) a correction factor to match the edge characteristic

^

	

	 V0 equilibrium surface potential from eq. 3.13

from Fig. 6.24 we find

k(W) = 0.5120, 0.4945 0 0.4464 0 0.350

for	 W = 1.5 0 1,5 /2 0 1.5/4, 1.5/8 cm respectively.
e
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For I z/wl < 0,9 eq. 6.2 can be simplified to a function of a single

normalized parameter z/W

V 2 V0 (1 - exp(-4.6(1.185 - Iz/wl)))	 (6.3)

where

Iz/wI <09	 x

Similar width scaling is found in comparing the angle of incidence as

a function of the normalized coordinate for each sample width. This result

could have been deduced directly from the equilibrium_ surface potential

curves since the angle of incidence at equilibrium is fixed once the

surface potential and beam energy are specified (using Fig. 6.10), The

angle of incidence for each strip is therefore practically the same as that

presented in Fig. 6.9 for a 20 keV beam. Slight shifts between the curves

at the edges were found in accordance with the noted divergence in the

surface, potentials in Fig. 6.24. 	
i

The bulk field, being approximately equal to the surface potential

divided by the material thickness, is also found to obey the same width

scaling. A representative curve can be found in Fig. 6.13 for the

20 keV beam.

The external surface fields are presented in Figs. 6.25 and 6.26.

Near the centre of the samples they are found_ to be ;inversely proportional

to the strip width. The front face fields are the same as those shown in

Fig. 6.18.

6.3 Beam Angle DeRendence for Teflon

The equilibrium net charge profiles in Fig. 6.27 were obtained for

Teflon by charging with electron beams incident at 0°, 15- 0 , 30° or 450

relative to the surface normal (material half width 0.75 cm, material
}	

thickness 100 um, beam energy 20 keV). The beam originates from the left
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of the specimen tending to deposit a larger charge density at the edge

nearest to its source. The central maximum tends to shift towards the

t	 near edge and the maximum charge density tends to increase with increasing

beam angle.

The charging dynamics for a 15eam angle of 45 0 are illustrated in

Fig. 6.28. The explicit time dependence for the centre and edges is given

in Fig. 6.29. Note the beam current density of 50 nA/cm 2 refers to the

current component in the y direction (i.e. normal to the exposed surface

not perpendicular to the beams direction).	 At the near edge the charge

density had not reached an equilibrium value when the simulation was

terminated as the rate of charge accumulation indicated by the final slope

in Fig. 6.29 was still 4% of the beam current.

The surface potential distribution is presented in Fig. 6.30. The

maximum is found to move to the near edge as the beam angle is increased.

The magnitude of the maximum remains constant and indicates the position
_

on the sample where the incident electrons impact the surface at 0 0 . The

angle of incidence is presented in Fig. 6.31 for each case At the near
r

ed8e a0 /3z increases with increasing beam angle. For a beam angle of 450

a0 /8z reaches 117 0 /mm compared to an average of 80 /mm for a beam angle of

0°.

The maximum internal 'bulk field as suggested by the surface potential

does not change in magnitude though it moves towards the near edge for
F

increasing beam angles. Over a large fraction of the sample the bulk

field is reduced.

The external surface electric fields (Figs. 6.32 and 6.33) are found

to be enhanced at the near edge and reduced at the far edge. The maximum`

tangential component was increased by a factor of 3 between the 0° and

45 0 charging beams to 3.0 x 10 6 V/cm. A similar increase in the maximum
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Fig. 6.29 Explicit time response at centre and edges of sample,
Beam angle W. Beam density 50 nA/cm .
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normal component resulted in a field strength of 6 x 10 5 V/m for a 450

charging beam.

The front face field is found to be remarkably flat with no discerni-

ble difference between the 45° and 0° beams,

The incident current density and dose rate profiles at equilibrium

for a beam angle of 45 0 are presented in Figs. 6.34 and 6.35 respectively.

`	 6.4 Material Thickness Dependence for Teflon

The equilibrium net charge profiles in Fig. 6.36 were obtained for

Teflon with material thicknesses of 100, 50 and 25 um (material half width

0.75 cm, beam energy 15 keV). The dipole moment per unit area p(z)d, as

suggested in section 5.1, is independent of the thickness. The surface

potential and angle of incidence are also invariant.

a

	

	 The tangential surface field (Fig. 6.33) is increased at the edge for

a decrease in the material thickness. The external normal surface field

(Fig. 6.38) shows no appreciable change. The internal bulk field (Fig.

6.37) is inversely proportional to the material thickness as would be

expected for a constant surface potential.

The front face field displayed no appreciable change from that presented

in Fig. 6.18.

6.5 Non-conventional Charging Geometries for Teflon

6.5.1 Grounded Central Slot

The effect of a grounded gap between two adjacent strips of

Teflon has been investigated for gap widths of 0,283 mm and 0.660 mm.

The geometry modelled is presented in Fig. 6.40.- (material half width

0.75 cm, material thickness 100 cm, beam energy 20 keV). Except for the

peaks in the charge density at the inner edges the equilibrium charge

distributions in Fig. 6.41 are similar to those found for a uniform

material.

a
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The surface potential distribution is presented in Fig. 6.42.

The angle of impact (Fig. 6 . 43) suggests considerable beam steering in

the. neighbourhood of the slot. Figure 6.44 traces sample incident electron

trajectories at steady state forthe 0 . 66 mm slot width. The equili-

brium current density is given in Fig. 6.45 indicating considerable

beam focusing into the slot area. The dose rate profile at equilibrium

is vety similar to that obtained for a uniform strip.

The external normal and tangential surface fields are presented

in Figs. 6.46 and 6.47. Both display additional peaks at the inner edges.

The narrower slot tends to produce a slightly larger maxima for both field

components.

The internal bulk field can be determined from the surface

potential. Its maximum value is little changed from that obtained fora

uniform strip . The internal front face field is also similar to that 	 i

found for a uniform strip.

Calculation of the equi,potential lines at steady state reveals

a saddle point 0.9 mm above the centre of the 0.283 can gap. The corres-

ponding barrier potential was 15.2 kV. These results compare favourably

with the value obtained from the approximate analysis of Chapter 5 	 rf

(eqs. 5.22 and 5.23 yield _a saddle point potential 14.9 kV, 1.04 mm above

the gap centre)._

Measurements made by Robinson [1977] suggest a large increase

i in the rate of breakdown occurs when a slot is cut 1n the material. A

'	 300 foldincrease was observed for a 21 keV beam at 40 nA/cm 2 when a slot

'.^

	

	 was cut in the sample. The simulat ion results indicate that the increased

tendency to discharge is consistent with increases in the surface fields

and exposed edge length rather than the internal fields.
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6.5.2	 Precharging Effects

The effect of a non -zero initial charge distribution on Teflon

f has been investigated for a uniformly charged central sub -strip (material

half width 0.75 cm, material thickness 100 um i, beam energy 20 keV).	 A

negative charge region of 250 nC/cm2 was used at two different widths,

0.94 mm and 0.235 mm.	 A positively charged region was investigated for

the same charge density magnitude at a width of 0.47 man. 	 The charging

.' dynamics are presented in Figs, 6.48, 6 . 49 and 6 . 50 for each case described

above.

The charge density distributions tend to converge to a universal

i steady state typified by those simulations with zero initial conditions.

However, near the boundaries of the precharged region the charge distri-

bution continues to reflect the discontinuous nature of the assumed

I^ initial state.

The surface fields display the greatest sensitivity to the
i

irregularities in the charge distribution at the end of the simulation

(the term equilibrium is avoided as the net rate of charge transfer to

the boundary region at the end of the simulation was at least an order of

magnitude greater than that found 	 over the remainder of the surface).

i The surface fields for the 0.94 yam negatively precharged stripe (Figs.
r

6.51 and 6.52) are typical of the other cases described. 	 The magnitude of

the field pertubation is of the order of 10 5 V/cm in both the normal and

t tangential component,
j

A non-zero initial charge distribution can be physically

attributed to a partial discharge of the material ' s surface or static

charging; of the surface due to brushing or rubbing in the material's

preparation.	 The charging dynamics in Figs. 6.48, 6,49 and 6.50 suggest

that although the final charge distribution will approach that previously

i

w `-

J
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E^

observed for zero initial conditions., the charging rates across the sample..

are characteristic of each region ' s level of development. Near the

precharge boundary the net charging rate approximates an average of the

neighbouring rates causing highly localized perturbations that persist

after the remainder of the surface has obtained equilibrium.

Laboratory experiments in which dielectric films have been

brushed before irradiation indicate that the direction of brushing can

influence the behaviour of the visible discharge arcs [K.G. Balmain,

J.V. Staskus, personal communications]. Multiple arcs that parallel the

direction of brushing were produced with either a camel hair brush or a 	 {

paper tissue along either straight or circular paths.

A possible mechanism for such behaviour can be developed

based upon the characteristics described in this section: If the sample.

were charged along lines parallel to the direction of brushing then

irregularities in the developing charge profile could enhance local

external surface fields, thus increasing the probability of discharge

along these lines. If the discharge event is confined, to these high

r	 field regions subsequent charging would again develop such conditions
t

along the edge of the discharge region thus perpetuating the area's

discharge activity,

6.5.3 Non-uniform Material Thickness

The equilibrium net charge density profiles for a composite

material consisting of two ad jacent uniform -sections with sample thick-

nesses of 50 um and 100 um are indicated in Fig. 6.53 	 (sections full

width 0.75 cm, beam energy 15 keV) The general distribution is in
r

agreement with those conclusions reached in determining the thickness

dependence of the charging characteristics (section 6.3).

R
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The resulting surface potential (Fig. 6,54) however resembles

that obtained when a gap was present in the material,, The external

k
	 surface fields ("Figs, 6.55 and 6.56) also reflect the discontinuity of the

material. Both components have maxims ocurring at the centre and edges.
c 

The internal bulk field is presented in Fig, 6.57.

6.6 Beam! Current Dependence for Kapton

The equilibrium surface potential for Kapton was found to be sensitive

to typical beam current densities (0,1 - 100.0 nA/cm2) for material

thicknesses of the order of 50 um and beam energies near 20 keV. As

indicated in Figs 3.2 there exist two distinct regions of equilibriums

emission-limited and conduction-limited. The emission-limited surface

potential is independent of the beam current density and the material

thickness as is the case for Teflon. Conversely, the conduction- limited

process is strongly influenced by both the current density and material

thickness. These charging parameters have been chosen in this study to

characterize the two-dimensional nature of each limiting mechanism.

Simulations were conducted for thicknesses of 1.00 um and 50 um, and

at current densities of 100 nA/cm2 and 1 nA/= (material half width 0.75 cm,

beam energy 20'keV).

The net charge density profiles at equilibrium are presented in

Figs. 6.58 and 6.59. The high current thick sample simulation typifies,

the emission-limited state obtained with the Teflon model. The low current
t

thin sample simulation is conduction-limited and displays a comparatively

flat, uniform charge distribution.
F

The equilibrium surface potential is presented in Figs. 6,60 and 6.61.

.F

	 The conduction-limited potential is constant while at the edges the

emission-limited value decreases to less than 50% of its peak central

l
	 magnitude. As suggested in Chapter 3, Kapton if emission-limited tends to

...	 F
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charge to within 1 kV of the beam accelerating voltage compared to 2 k for

Teflon. The deflection of the beam at steady state is therefore greater for

Kapton. The angle of incidence graphs- (Figs. 6.62 and 6.63) indicate

maxima at the edBe of almost 80° compared to 65 0 for comparable Teflon

simulations.

The uniformity of the results for conduction-limited charging can be

understood in terms of the simplified analysis presented Chapter 5. The

incident current density onto a uniform charge distribution was 'found to be

constant over the central portion of the strip as would be the bulk internal

fields. The conduction current density, the main charge balancing mechanism.

would therefore also be uniform and -a consistent equilibrium could be reached

under the assumed charge profile.

The external surface normal fields (Figs, 6.64 and 6.65) are comparable

to those obtained in the Teflon simulations. The tangential surface fields

(Figs. 6.66 and 6.67) suggest that the flat conduction- limited charge

distribution produces slightly larger maxima at the edges than does the

emission-limited charge distribution,

r

	

	 The internal bulk fields (Figs. 6.68 and 6.69) have broad maxima at

the centre of the strip. The internal front face fields (Figs. 6.70 and

i

	

	6.71) are generally constant across the surface. The incident current

density dependence suggested by eq. 3.27, Ji 0.3 , is clearly evident. The

required surface charge layers are presented in Figs. 6.72 and 6..73.

6.7 Tangential Current Results for Kapton

A tangential transfer of charge through an irradiated front surface
a

layer (as outlined in section 4.3) has been implemented for Kapton in the

o-	

following charging simulations. Two separate edge boundary, conditions

were investigated; 	 aJz/ax 0 and J  - 0. The term zero edge resistance

is used to describe the first case where there can be no charging at the



1.33
a

100 nA/cm

l=	 '	 Beam, current densit

W	
i

,nn,.,l nA c

,R

W	 i	 €	 }

k,	 Los
^	 ^^	 ^H	 .n -	 , e,^,., .,,	 .._	 .,	 t. „un,.n an E. 	 ^ .	 no,, ,.., , .	 n. ., •, i,rr..	 , ow rr. , .r

O

'-1,oq	 .0.67	 0.33 
	

-0.00	 0+33 	 0.67	 1100

NORMALIZED POSITION (XIW)

Fig. 6,62 Angle of incidence at equilibrium for Khpton'
Material thickness 1.00 um.

1

^.	 ..uu,,.t„ „ •--•.Ya.u.. ,....,,.w.,......a......... ,. n ,.,t„u, xN	 u,:wU+,. , 	 uY,it	 uxnttiu,l U,' u,n.,.N^,
3

e

Beam+ current density	 _	 t

r	 ► 	 100,nA/cm2j

8	
, w

...	 n,	 rr	 x	 ;,.... rrrr	 ...	 ,„n

Uj
r	

i

e C3	 s

C	
...nnni•, ...»^..	 .,,,,.-.,	 ne..rr Yr	 ....,	 „^ nAjcm ;	 y

•	 V	 fi	 *	 i	 ;

S

	

3	
x	 }

^^	
d	

z	 s

CDg

h>	 +, nr,un yY,nen,«mu w » Nr..«	 re	 ..•.;„•w....»».,»«n•.,, ,r ••,,, n,++a<»	„ twn nn. a n• , »».»i

—0.67	 -0.33	 —0.00	 0.33	 0.67	 1,00

NORMALIZED POSITION IX1N1

Fig. 6 . 63 Angle of incidence at equilibrium for Kapton
Material thickness 50 ism,

j



b	 b

134

I
pi

s
ca }

Beam current density	 !

Q'^:a.,	 100 nA/cm 2
r

a	 1 nA /cm	
b

'	 __i
r

X1.00	 -0.6T	 -0.37	 -0.00	 0,33	 0.67	 1,00
NORMALIZED POSITION (X/ii)

Figs 6.64 Normal surface field at equilibrium for Ka ►pton.
Material thickness 100 jim.

s	 ;
r u

a

J #
W

Beam current density

W	 2
100 nA/cm	

tf,

U.

r

0	 1 nA/cmZ

4.00	 0.67	 -0.33	 -0.00	 0.33	 0.61	 1.00	 -
NORMALIZED POSITION (X/W1

Fig. 6.65 Normal surface field at equilibrium for Kapton.
Material thickness SO um.



M±twKY4lm*m v., x. :::en+nt+eldY^ ..	 ^s,-a^ . _...	
..

^.	 b	

b

Beans current density	
-_	 135

s	 s

100 nAlcm2

2
i 1 `b	

l nA/cm	 .b
V

V	
4.

^.	 Y

b	
^^	 ,b

W
t

H	
t	

'	 ^^	
rb	 ?

lb
i

	

-1.00	 -0.67	 -0.33	 -0.00	 0.33	 0.67	 1.00

NORMALIZED POSITION (X/N1

Fig. 6,66 External tangential surface field at equilibrium for
Kapton. Material thickness 100um,

i
1

b	 'b

Beam current density

V	
100 nA1cm2

c I
Wes,	 1 nA/cm2,

r

	

	 U.
Uj

u.- oc

N
4

J ;^r996 I

W
G9
Z

	

-1.00	 0.57	 -0.33	 -0.00	 0.33	 0,67	 1.00

NORMALIZED POSITION tX/Nl

Fig.: 6.67 External tangential surface field at equilibrium for
Kapton. Material thickness 50 um.

_ ...... ....



a
Z

136
N

FE N 100 nA/cm2
E `

'b r 1 nA/cm2 b
o
W to Beam current density

J^
^ N
ID

¢'b b
t os

y

.
N

w

b' b

-1.00	 -0.67	 -0.33 	 -0.00	 0.33 0.67	 1..00

NORMALIZED POSITION	 (X/k)

Fig.	 6.68 Internal normal bulk field at equilibrium for Kapton.
Material thickness 100 um,

f ',

•

w
y 100 nA/cm2

^

r
RE

b 1 nA/cm2 b
C o_.

•
Lim^

seam current density

J ^ ^

ib
b	 it

F
N N

'ice b	 ,;

-	 -0.00	 0,33 0.67	 1.00

NORMALIZED POSITION (XIW)

Fig. 6 . 69 Internal normal bulk field at equilibrium for Kapton.
Material thickness 50 um- f



b	 b
i

Beam current density
	

137

EC

100 nA/cm2

•

V

Wb ^'	 ^	
A

CC

'	 N 1 M/cm^m
nb b

i

^	 ms.

g

f	 b b

-1.00 -0.67	 -0.33	 *0.00	 0.33 0167	 1.00 
NORMALIZED POSITION	 (X/441

Fig. 6 . 70	 internal front face field at equilibrium for Kapton
Material thickness 100 µm.

I

'b ,b

Beam current density

i

wt
a_

100 nAJcm2
o,b
W
U.
W
VQ zr-
LL d

En
m 1 nA/cm2
nb b

•
s

Q

t

b
r

'b

-1.00 -0.67 	 -0.33	 n0.00	 0.33 0.67	 1.00
NORMALIZED POSITION	 (X/N1

Fig. 6.71	 Internal front face field at equilibrium for Kapton
Material thickness 50 um.

A



A

. 	 138	 d

'1	 nJlJ^cai k

•
N..

_li !, ,..,,,, ..	 „	 .	 , . X1.0.0:
ndffi 

2
LAJ

^49AM cyrrfnt, On.silty,

'I f
4	 4,

1)
1

'•l.OD	 -0.67	 -0.37	 -0.00	 0.3'3-	 0,67	 L.QD

NORMALIZED POSITION	 (X/W)

Fig.	 6.72 Front face charge density distributions at equilibrium
for Kapton. Material thickness ,100 µm.

^ .. ,........	 «	 .	 ,	 .......	 ..	 ....	 ,.	 .................w.,...,..,.,

r ,

8
f'R+Me nrw, . . .r r r	 wl	 w.}.	 fdu.	 , e f suulrn	 n s .. ..x.e	 .i.m

t

V
i

•

3

^  ,, .u..

^ 100 nA/cm2

r7

1

ags
Lj Beam current density

WS

,

J
-0.57	 4.33 	 -0.00	 0.33	 0.67	 1 QO

NORMALIZED ,POSITION	 (X/W1

i
Fig. 6.73 Front face charge density distributions at equilibrium

for Kapton. Material` thickness 50 ,gym.



k

139

i'i
, edge due to transverse currents, 	 The term infinite edge resistance is used
t

to refer to the latter condition,	 The field gradient at the edge to be

used in the calculation (eq. 4.18) is made between the edge and the

t
adjacent material data point.

The material half width and the beam energy were kept constant at.
h

0.75 and 20 keV respectively as was the case in section 6.5.	 Each boundary
r

i

condition was tested on two models corresponding to emission-limited and

conduction-limited conditions (material thicknesses 100 um and 50 um, beam

current density 100 nA /cm2 and l nA/cm2 respectively).

The charging dynamics are presented at equal time intervals in Figs.

6.74, 6.75 1 6.76 0 6,77, 6.78 and 6.79,	 The results for an infinite ed$e

resistance show no noticeable deviation from the curves generated for no

transverse currents.	 With the exception of a slight depression at the

t edge the results for zero edge resistance also indicate no deviation.

i

i

r

L
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7. CONCLUSIONS

A two-dimensional model has been presented to describe the accumula-

tion of charge on long, planar dielectric strips by a uniform monoenergetic

r
	

electron beam used to simulate spacecraft charging conditions, Numerical

results detail the net surface charge density, surface potential and

material field profiles for both Teflon and Kapton.	 Teflon has been

treated as being completely emission-limited whereas Kapton is governed by

both emission and conduction currents. The response of both materials under
r

a variety of charging conditions has been investigated.

The equilibrium state can be categorized as being either edge-like or

centre-like. The edge, under normal charging conditions, is characterized

by maxima in both the normal and tangential components of the external

surface electric field and by minima in the surface charge density and

surface potential. In general, the total external surface field at the

edge is dominated by the tangential component. The centre is characterized

by a maximum in both the internal bulk electric field and the net surface

charge density, and by a minimum in both components of the external

surface fields.

The one-dimensional analysis of Chapter 3 adequately describes the

behaviour of the centre region whereas a complete two dimensional model is

necessary at the edge. In the course of this study a positive correlation

has been established between the edge-like • aions-and the apparent sites

of discharge initiation and blow off whereas punchthrough discharges can

be associated with the high internal bulk fields at the centre.

For emission limited charging and normal beam incidence it was found

that the maximum surface and bulk fields were approximately proportional
s

to the beam energy. The internal normal bulk field was found to be

inversely proportional to the material thickness d and independent of the
G



144

material halfwidth W. The maximum edge tangential field was found to vary

as (d)-0'61 and 
(10-0.33. 

The location of the maximum field in the material

therefore depends on the ratio W/d'. If W/d S 20 the maximum material field

is the surface tangential component at the edge; otherwise the maximum in

I	 the internal normal bulk component located at the centre of the strip,

k

The.maximum bulk field was found to be independent of the beam angle

j	 whereas the peak tangential field at the edge nearest the beam source

varied as 100 `010 where 0 is in degrees. The location of the maximum
i

bulk field corresponds to the point where the electrons impact the surface

at 0° and was found to shift toward the near edge for increasing beats

angles. The charge distribution for non-normal incidence was also found

to shift toward the edge nearest the electron source, For angles greater

than 15 Q the maximum charge density was found at the near edge=

The surface potential and field profiles were found to be functions of

the normalized coordinate z/W over most of the sample surface, These

quantities therefore can be described by a single scale length over a broad

range of charging conditions.

The external field quantities except at the edge were found to be

largely independent of the sample thickness d. The internal bulk normal

field was found to be inversely proportional to d.

The simulation describing the charging of a specimen split by a central

slot resembled that found for a uniform specimen over most of its surface.

t	 A region of charge accumulation near the slot edges is strongly influenced

by the relative slot width. For large slots the profiles should evolve

toward those descriOa ng two decoupled regions. External surface fields in
f

the neighbourhood of the slot were found to be largely independent of the

slot size and resembled the corresponding edge fields.

The precharging simulations suggest that highly localized perturba-

M
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tions in the charge distribution could persist after most of the

i	 surface has attained a steady state.

The nonuniform material simulations suggest large surface fields can

develop in the neighbourhood of the thickness transition.

The Kapton model, under emission -limited or conduction-limited

charging conditions, produced two very different cross -sectional profiles.

t
The conduction -limited cases produced a flat, uniform charge distribution

whereas the emission-limited cases produced a broad central maximum.

`	 Maximum external surface fields were comparable although the tangential
I

component associated with conduction -limited charging was very strongly

"	 localized at the edge,

The inclusion of tangential currents for Kapton had very little effect

on the equilibrium state, No attempt was made to model a separate inherent

surface conductivity.

The internal front face field was found to be nearly constant for

most simulations. Its magnitude was si nifi antl smaller than the peak-8	 8	 g	 Y	 p	 ^
a

surface or bul gy: fields for both Teflon and Kapton under typical charging

conditions.

t.
i
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