} .
'&i (Rasa-Cr-161294)

(STAR). voLONE B 23

STANDAPD TRANSISTOR ARBAY e
riaal loport P -

_TEST PATTERN GENERATION

— - ‘Mburn Oniv.) 51 p Unclas
NASA CONTRACTOR
REPORTY

i

¥

tASA CR-161294

_{ | STANDARD TRANSISTOR ARRAY (STAR) - Volume 2:

% TEST PATTERN GENERATION

By B. D, Carroll ‘
: Electrical Engineering Department

v Auburn University

b Auburn, Alabama 36%30 .
; 2337
- FINAL REPORT TS
by
* September 14, 1979 «pd Las
7

)

Prepared for

{ NASA ~ George C. Marshall Space Flight Center

; Marshall Space Flight Center, Alabama 35812 .

ke RENEE o v m

o

TABLE OF CONTENTS

LISTOF FIGURES. . . . & ¢ & 4 v v v e e e o o e o e as P 1
LISTOF TABLES v . v v v v v v o v e e e e e e v
1o INTRODUCTION. . . . v ¢ v v vt e vt e e e e oo o a s o o 1

Problem Statement
Solution Approach
Previous Work

2, LOGIC SIMULATION. . © .« & v v it e i e e e v e e e a oo o 6
Logic Model
Timing Model
Logic Element Descriptions
Race Analysis
Oscillation Analysis
Simulatiog Procedure
3. STARTING STATE SPECIFICATION. . . . & & ¢ ¢ v ¢ ¢ o o o o o 30

Cross-Coupled Gate Variables
Other Possible Assignments

4. FAULT SIMULATION. « & v v v v o v e e e e e e e e e e e e 34

Fault Model
Fauit Insertion

5. TEST PATTERN GENERATION e e e e e e e e e 40

Tests for Input Faults
Tests for Specific Faults

6. CONCLUSION. .+ v v v v v e e o e e e e e e e e e e e e 43
7. REFERENCES

jii

PRECEDING PAGE EL AN I OT FrED

Figure 1.

Figure
Figure
Figure
Figure
Figure

Figure 7.
Figure 8.

Figure 9.

rigure 10.
Figure 1i1.
Figure 12.

(=) w L= w (2N
. L[] - - L)

LIST OF FIGURES

Test Pattern Generation System Flowchart. 4
Two-Input NAND Gate« . . . e e e e e . 7
Cross-Coupled NAND Gate Pair. P
Three-Input NAND Gate + « ¢ ¢ o « & ... 14
Tnree-Input NOR Gate. ¢ ¢ ¢ ¢ v ¢ v ¢ o o & 14
Unit-Delay Device & v ¢ ¢ ¢ ¢ 4 ¢ o o ¢ o o « o 16
Negative Edge-Triggered D Flip-Flop 16
JK Master-Slave Flip-Flop « . ¢« « . ¢« o . . 19
Analysis of Cross-Coupled NAND Gate

OQutputs. e e e e e e e e e e e e e e 22
Cross-Coupled NOR Gate Pair e e 4 e e e 26
Simulation Procedure Flowchart. 26
Self-Initializing Circuit ¢« ¢ ¢« ¢« ¢ ¢ ¢ o & k)|

iv

Table 1.
Table 2.
Table 3.

Table 4.

Table 5.

Table 6.

Table 7.
Table 8.
Table 9.
Table 10.
Table 11.

LIST OF TABLES

Variable Pair Combination of Values. 8
NAND Gate Truth Table. e v e e e w e . . 8
Equation Development for Cross-Coupled NAND

Gate Pair . . . ¢« ¢ ¢ ¢ o 4 0 . C e e e e e .o N
Race Prevention Rules for Cross-Coupled

NAND Gates. . . . & ¢ ¢« ¢ v ¢ ¢ ¢ o o o 0 o o 4 |
Equation Development with Race Analysis for

Cross-Coupled NAND Gates. « ¢ ¢ ¢ ¢ o o & 23
Race Prevention Rules for Cross-Coupled NOR

GatesS e e e e e e e e e s e e e e e e s 25
Fault Insertion in Two-input NAND Gates 35
Fault Irsertion in Two-Input NOR Gates 37
Fault Insertion in Unit-Delay Element 38
Fault Insertion in D Flip-Flop 38
Equation Development with Inserted Fault 40

t

1. INTRODUCTION

Logic circuit testing as viewed in this report is the process of
exercising a logic circuit to determine whether cr not the circuit
correctly performs the desired logic function. It will be assumed that
a correct logic design has been accomplished and that normal functions
are produced by failures called faults introduced during the manufactur-
ing process or that occur at random later in the life of the circuit.
Logic testing is often performed as one of the final stages in the manu-
facture of a logic circuit. Also, logic testing is frequently used as
an acceptance tesi by a purchaser of logic circuits. Logic testing is
also required during the checkout and maintenance of logic circuit as-
semblies and logic systems. This report will be oriented toward the
automated testing of integrated circuits as they emerge from an assembly
line.

The logic testing process is accomplished by applying a sequence
of input patterns to a powered circuit and observing the corresponding
sequence of responses.Jr A circuit is assumed to be fault-free if all
the observed responses are correct. Incorrect responses, on the other
hand, signal a circuit containing some fault condition. Observation
of the complete response sequence produced by a circuit containirg a
fault may contain enough informution to identify precisely the fault

condition present. However, the identification of the particular fault

1t is assumed that circuits are allcwed to reach a stable state
before a new input pattern is applied.

1

present in a faulty logic circuit is usually not important for integrated
circuit testing since repair is usually not possible.

Fault detection testing is a term often used to identify the pro-

cess of testing a circuit to determine whether or not the circuit con-

tains a fault. Fault location testing describes the process of identi-

fying the fault present. Detection and location of faults is the ob-

Jective of fault diagnosis testing.

The input patterns that are applied during the testing process are

referred to as test patterns. Selection of the test pattern sequence

is one of the most difficult aspects of the testing problem. The re-
mainder of this report is devoted to the test pattern selection problem-

often called test pattern generation (TPG).

PROBLEM STATEMENT

An automated method is desired for generating fault detection test
sequences for logic circuits given a gate-level description o the cir-
cuit. Complexity of the circuits may approach five hundred or more ele-
ments including NAND gates, NOR gates, and flip-flops. Test sequences
that excite race conditions in the circuit under test should not be
generated. The test sequences should cover all detectable single stuck-
type faults in the circuit. It is desired for the method to be user-
oriented and to be implementable on small to medium scale computer sys-

tems.

SOLUTION APPROACH
A logic simulator based approach is used to solve the problem
stated above. The approach is diagrammed in Figure 1. Each step of

the procedure is discussed in more detail below.

Primary Test Pattern Generation

This step in TPG produces a test sequence that will detect a large
percentage of the faults represented by the stuck-at fault model. This
process does not require that faults be separately identified during
generation of tests and is fast in terms of computer time per fault
detected. The SIMLOG/TESTGN system can be used in this mode of opera-
tion. Random methods for generating test sequences may also prove

useful for this purpose but will not be covered herein.

Test Sequence Evaluation

The second step of the process is the evaluation of the test se-
quence produced above. Fault simulation is the most cost effective
means for providing this evaluation. The effectiveness and validity
of this step is determined by the accuracy of the simulator used for
the analysis. However, as simulation accuracy is improved, the cost
of simulation is increased. A time-based eveni-driven simulator pro-
vides the best accuracy, but a unit delay simulator may be useful for
some circuits. Parallel or deductive fault simulators are needed for

fault simulation of practical sized circuits.

e s LA

Primary
Test
Generation

> Test
| Analysis

| |

Fault
Dictionary

Adequate
Deteq}ion

Undetected
Fault
List

Secondary
Test
Generation

Figure 1. TEST PATTERN GENERATION SYSTEM FLOWCHART

e Al

Secondary Test Pattern Generation

The function of this step of the TPG process is to determine test
sequences for those faults that are not detectable by the sequence pro-
duced during primary test pattern generation. Faults for which tests
are desired are specified to the generator indivi&ua]ly. The SIMLOG/

YESTGN system can also be used here.

PREVIOUS WORK

Many papers and reports have been published that treat various
aspects of test pattern generation for sequential logic circuits.
However, much work remains to be done in the development of practical
automatic test pattern generation procedures. Bouricius, et. al [1]
have described an extension of the d-Aigorithm that can be applied to
asynchronous circuits. The use of the Boolean difference for sequen-
tial circuit test pattern generation has been considered by Hsiao and
Chia [2]. A random technique for test pattern generation was described
by Breuer [3]. Use of random techniques in a specific test application
is presented in a paper by Agrawal and Agrawal [4]. Testing for inter-
mittent fault detection has been treated by Breuer [5]. Chappell [6]
has described a test pattern generation procedure for sequential cir-

cuits that was developed at Bell Laboratories.

L2 CNS-TR -

r,;’

2. LOGIC SIMULATION

This section is devoted to a description of the simulation model
used in the SIMLOG logic simulator. The model has been adapted from
the approach presented by Chappell [6]. However, major changes have
been made in the race detection and prevention procedure; and additional
logic elements have been provided in the library.

Topics covered in this section include the logic model, timing
model, race analysis procedure, and oscillation detection. Fault simu-
lation will be covered in section 3. Details on SIMLOG can be found in

[7] and [8].

LOGIC MODEL

A three-valued logic model is used in the simulation procedure and
will now be described. Consider the NAND gate shown in Figure 2. Each
input and cutput of the gate is represented by an ordered pair of binary
Boolean variables. The meaning of each pos¢.ble combination of a
variable pair is given in Table 1. A NAND gate truth table in terms of
variable pairs is presented in Table 2. From the truth table, the
following pair of Boolean equatiors can be obtained to represent a NAND

gate.

C+ A- + B-
C-=AB

Ae(AA-) e

B=(B,B-) __}—- c=(C,C-)

Figure 2. TWO-INPUT NAND GATE)
AS(A)A')

c=(C,C-)

B:(B’B_) _— D=(D,D-)

Figure 3. CROSS-COUPLED NAND GATE PAIR

TABLE 1

Variable Pair Combination of Values

VARIABLE PAIR INTERPRETATION

(0,0) Unknown Logical Value

(0,1) Logical 0

(1,0) Logical 1

(1,1) Undefined - not allowed

TABLE 2
NAND Gate Truth Table

(A,A-) (B,8-) (C,C-)
(0,1) (0,1) (1,0)
(0,1) (1,0) (1,0)
(1,0) (0,1) (1,0)
(1,0 (1,0) (0,1)

B N AL

An important characteristic of the three-valued model is the
ability to describe an unknown logical value as well as the usual
logical 1 and logical 0 values. However, the individual variables are
related by the standard Boolean relationships OR and AND and therefore
can be easily manipulated. The Boolean cumplement is not utilized.

Sequential logic circuits are represented in a similar manner to
that described above for a NAND . te. The set of equations below

represent the cross-coupled NAND gates shown in Figure 3.

C=A+0-
C-=AD
D = B- + C-
D- =B C

Further description of logic elements and circuits will be ceferred

until after the following discussion of the timing model.

TIMING MODEL

A unit-delay timing model is used in conjunction with the above
logic model. Two time parameters are used in the timing model. One
parameter called input-time and denoted by t describes the times at
which circuit input signals are chanved. The other time parameter is
called ripple-time and is designated by the symbcl r. Ripple-time
represents the propagation in time of signals through a circuit due to
gate delays and is incremented in unit steps consistent with the unit
delay assumption. Input-time is incremented only after a circuit has

reached a stable condition. Hence circuit inputs are functions of

10

input-times only, but gate outputs are functions of both input-time
and ripple-time. The following time dependent Boolean equations result

for the cross-coupled NAND gates of Figure 3.

C(t,r) = A-(t) + D-(t, r-1)
C-{t,r) = A(t) D(t, r-1)
D(t,r) = B-(t) + C-(t, r-1)
D-(t,r) = B(t] C(t, r-1)

The above equations can be used to develop a second set of equa-
tions that describe the circuit outputs in terms of circuit inputs only
for values of t ranging from 1 to r. The value of t is referred to as

the ipput-time limit.

Table 3 shows the development of such an equation set for the
cross-couplcd NAND gates of rigure 3. In this example, T = 2 was
chosen. Also, the initial states of C and D are assumed unknown, i.e.,
(0,0).

Note in Table 3 that the value of r is incremented only for each
new set of a2quations that result. On the otuer hand, t is incremented
only after a stable set of equations has been reached. These proce-
dures follow from the unit-delay assumptiorn and from an assumption that
input changes occur only while the circuit is in a stable state. 1he
latter assumption will be followed throughout the remainder of this
work.

The above assumptions imply that the increment of ripple-time for

a given input-time t represents the time required for the circuit to

n

(va(z)s(L)-v + (e)a(e)-v (1)-9(2)v + (2)-8 | (L)-8(Lv(e)v + (2)-8(2)v (2)a(1)-v + (2)-v | 9
(2)a(1)-v + (2)a(2)-v | (1)-8(L)v(2)v + (2)-9 (1)-8(2)v + (2)-8(2)v | (L)g(2)a(L)-v + (2)-v | &
(V)8(2)a(L)-v + (2)8le)-V (1)-8(2)v + (2)-8 [(1)-8(L)¥(2)v + (2)-8(2)V (2)a(L)-v + (2)-v | ¥
(2)8(1)-v (1)-8(L)y + (2)-9 (1)-8(2)v (8(L)-v + (2)-v | ¢
(1)s8(1)-v (1)-9 (1)-a(1)v (1)-v ¢
{va(1)-v (1)-9 v)-a()yv (L)-v 2

0 (1)-9 0 (1)-v L

0 0 0 0 0

(4°3)-a (43)a (443)-9 (43)2 4

JdLed 93en ONYN PaLdnoj-ssou) 404 uddojarag uojjenb3

t 378Vl

T

P

v R Faae - s

R mg— >
"

12

reach stability following an input change at time t. Furthermore, it
represents the minimum amount of time that must occur between t and
t+1.

Interpretation of the equations in Table 2 i< in order. Consider
the equations at t = 1, r = 2. These equations represent all ways of
controlling the outputs of the circuit in ne input-time step assuming
an unknown starting state fo: the circuit output-. More specifically,
€(,2) = A-(1) implies that output C can be forced to a logical 1 state
by applying a logical 0 to input A. Similarly, C-(1,2) = A(1) B-(1)
states that C can be forced to 0 by applying 1 to input A and 0 to input
B. Discussion of the equations for t = 2 will be deferred until later.

The value of r and the parenthesis will be suppressed when writing

stable equations as illustrated below.

C1 = A-1
C-1 = Al B-1
DV = B-1
D-1 = A-1 Bl

Special sieps may be necessary in order that stability be reached
in sequential circuits, As can be seen in Table 3 the equaticn set
starts repeating at r = 6. This oscillation is caused by the feedback
present in the circuit and by the fact that the equation development

process permitted unrestricted input chang:s. It is well known that a

00 to 11 input change excites a race condition in cross-coupled NAND gates.

Race conditions are manifested in the circuit model by oscillating equa-
tion sets. However, race conditions can be avoided as discussed in a

later subsection.

13

LOGIC ELEMENT DESCRIPTIONS

The SIMLOG logic simulator provides NAND gates, NOR gates, unit-
delay devices, and edge-triggered D flip-flops as standard logic ele-
ments. A description of each of these elements in terms of the above

models is given below.

NAND Gates
NAND gates may have two or more inputs. Inventers are realized by
applying a common input to both inputs of a two-input NAND (or NOR).
The equation pair below represents the unstable or transient behavior
of the three-input NAND shown in Tigure 4. Generalization to an n-input

NAND is straightforward.
D(t,r) = A-(t,r-1) + B-(t,r-1) + C-(t,r-1)
D-(t,r) = A(t,r-1) B(t,r-1) C(t,r-1)
The stable or steady-state description of the device is the follow-
ing.
ot = A-t + B-t + C-t

C-t = AtBt(t

NOR Gate
NOR gates may have two or more inputs. The equation pair below
represent; the unstable or transient behavior of the three-input NOR

shown in Figure 5. Again generalization to the n-input case is obvious.

D(t,r) = A-(t,r-1) B-(t,r-1) C-(t,r-1)
D-(t,r) = A(t,r-1) + B(t,r-1) + C(t,r-1)

+ 4 KRE -

14

Figure 4. THREE-INPUT NAND GATE

Figure 5. THRFE-INPUT NOR GATE

15

The stable or steady-state behavior is as follows.
Dt = Azt + B-t + C-t

D-t = AtBtCt

Unit-Delay Device

A unit-delay device is a one-input, one-output device as illustrated
in Figure 6. The following equation pair describes its behavior in the

unstable or transient case.

B(t,r) = A(t,r-1)
B-(t,r) = A-(t,r-1)

The stable or steady-state model becomes
Bt = At

B-t = A-t

Edge-Triggeread (Negative) D Flip-Flop

The negative edge-triggered D flip-flop is a two-input, two-output
device as shown in Figure 7. Data to be latched or stored is applied to
input D. A clock or other triggering signal is applied to input C.
Triggering occurs on a logic one to logic zero (negative) transition.
Output Q provides the uncomplemented version of the latched value of D,
whereas output QBAR provides the complement of D.

Transient behavior of the flip-flop is given by the equation pair

below for outpu* Q. The right hand sides are reversed for QBAR.

)

M

e

16

A s s

Figure 6. UNIT-DELAY DEVICE

Figure 7. NEGATIVE EDGE-TRIGGERED D FLIP-FLOP

L. 8]
i

17

Q(t,r) = D(t-1,r-1)C-(t)C(t-1)
+ Q(t-1)[C-(t)C-(t-1) + Cc(t)C-(t-1) + C(t)C(t-1)]

Q-(t,r)= D-(t-1,r-1)C-(t)C(t-1)
+ Q-(t-1)[C-(t)C-(t-1) + C(t)C-(t-1) + C(t)C(t-1)]

The stable or steady-state equations are the same as above with

r and r-1 suppressed.

18

RACE ANALYSIS

Race conditions exist in circuits that contain cross-coupled NAND
gates or cross-coupled NOR gates. Input sequences that excite these
races can be easily detected, and a procedure for accomplishing such de-
tection is discussed below. Race conditions may also exist in other
circuit configurations but detection of this type race is much more
difficult and will not be explicitly considered here. However, this
type race may often produce an oscillation which is the topic of a later
discussion.

It is shown in [6] that a race condition is first indicated when
both the equations for C- and D or D- and C change from the previous
ripple-time for the circuit in Figure 3. When one of these conditions
is detected, C- and D- can be systematically modified so that input
changes are restricted to prevent a race condition from being excited.
Race analysis consists of the detection and the prevention of race
conditions.

For the circuit in Figure 3, Chappell [6] has shown that if the
equation for C- does not change from the previous ripple-time then no
race will occur and it is not necessary to check for changes in other
equations. However, the author has found that race conditions can be
overlooked if this rule alone is applied to t..e circuit in Figure 8.
Hence, the race detection procedure adopted here is to check C- and
D plus D- anc C for changes in all cross-coupled NAND gates in a cir-
cuit under analysis. An analogous approach is used for cross-coupled

NOR gates.

19

-do|4-d} |4 2AR|S-42ISEY NP '8 3unblj

L_Z

T

L

—(_ [+
O

]
U

1

Y
(BN
v

20

When a race condition is detected in a pair of cross-coupled NAND
gates, equations C- or D and D- or C are modified in such a manner to
eliminate input sequences that would cuase the race to be excited. The
equation modification rules adopted here are given in Table 4. Rules
I.A and II.A are the same as those given in [6]. An explanation of the
rules will now be given.

Consider the possible combinations of outputs of the cross-coupled
NAND gates of Figure 3. The output combinations that do not indicate
a race condition are shown in Figure 9a. Possible race conditions are
indicated by those combinations given in Figure 9b,

As can be seen, the following functional relationships hold when

no race condition is indicated.

C DD- (1a)
DDC- (1b)

On the other hand, the functional relaticnships below are true for

the conditions that indicate a possible race.

C c D- (2a)
DccC- (2b)

Hence, it can be concluded from (1) and (2) that no race can occur
if the equations that represent the outputs of cross-coupled NAND gates
are forced to satisfy the relationships of (1) whon at least one equa-
tion of each pair is non-zero. The rules given in Table 4 modify the
equations so the desired relationships are satisfied. Table 5 shows the
application of these rules to the analysis of the cross-coupled NAND

gate circuit.

G b s

21

TABLE 4

Race Prevention Rules for Cross-Coupled NAND Gates

* I. Medification of C- or D.

A. If C-(t,r) # 0 and D(t,r) # 0
Then C-(t,r) = C-{t,r) - D(t,r).

B. If C-(t,r) # 0 and D(t,r) =0,
Then D(t,r) = C-(t,r).

C. If C-(t,r) = 0, then no change.

Il. Modification of D- and C.
A. If D-(t,r) # 0 and C(t,r) # 0,
Then D-(t,r) = D-(t,r) - C(t,r).
B. If D-(t,r) # 0 and C(t,r) = 0, then C(t,r) = D-(t,r).
C. If D-(t,r) = 0, then no change.

Logical Value Variable-Pair Representation
(X D c ¢C- D D-
X X 0o 0 0 o0
X 1 0 0 1 0
0 1 0 1 1 0
1 X 1 0 0 0
1 0 1 0 0 1
] 1 1 0 1T 0

(a) Race-Free Conditions

Logical Value Variable-Pair Representation
C D cC ¢C- D D-
X 0 0 0 0 1
0 X 0 1 0o o0
¢ 0 0 1 0 1

(b) Possible Race Conditions

Figure 9. Analysis of Cross-Ccunled NAND Gate Outputs.

[N

23

(18(2)a(1)-v+(2)9(2)-v | (1)-s(v(2)v+(2)-8 | (1)-8(L)v+(2)-8(2)¥ | (1)8(2)-a(1)-v+(2)-v | ¢
(1)a(2)a(1)-v+(2)a(2)-v (1)-a(t)v-(2)-a(2v 17
(18(2)8{)-v+(2)a(2)-v | (1)-8(Vv(2)v+(2)-8 | (1)-a(L)v+(2)-a(2)v | (L)8(2)a(L)-d+(2)-v | ¥
(L)-8(L)v(2)v

(La(2)a(L)-v+(2)a(1)-v(2)-v +(1)-8(2)-8(2)v de
(2)a(1)-v (1)-9(1)v+(2)-8 (L)-8(2)y (L8(L)-v+(2)-v | ¢
(a(L)-v (1)-8 (L)-a(L)v (1)-v ¢
(L)a(t)-v (1)-8 (1)-a(L)v (1)-v 4

0 (1)-9 0 (1)-v L

0 0 0 0 0

(4¢3)-0 (1°3)a (443)-2 (4°3)2 4

$3309 (NYN p21dno)-ssoua) 404 SLsA|kuy 3deY YiiM juawdo|3Aag uotjendb]

S 378yl

PRI "N

24

Now coisider the interpretation of the equations in Table 5 for
t=2, r=4, These equations represent all race-free ways of controlling
the circuit outputs in two input-time steps. In particular, the equa-
tion

€(2,6) = A-(2) + A-(1)B(2)8(1}

indicates two ways of placing output C in the logical 1 state after two
input-time steps. First, inpui A can be set to 0 at t=2. Second, in-
put # can be set to 0 and input B set to 1 at t=1 with B held at 1 for
t=2. A is a don't care condition for t=2, in the second case. Similar
meanings follow for the remaining equations.

Race analysis for cross-coupled NOR gates proceeds in a similar
manner. Table 6 shows the race prevention rules for cross-coupled NOR

gates as shown in Figure 10.

OSCILLATION ANALY3IS

Equation oscillaticn may occur during the circuit simulation proce-
dure even if race conditions are prevented in cross-coupled NAND or NOR
gates. This type oscillation is caused by global feedback paths that
lead to the possibility of closed conduction paths that contain an odd
number of logic signal inversions and an odd number of unit delays.

No immediate means of predicting such oscillation conditions has
been developed. However, such csrillations can be handled by setting
an upper limit on the number of ripple-time increments allowed fcr each
input-time step. An oscillation is assumed to exist if the equation sets
do not stabilize before the rir-"e-time increment ~xceeds the established

limit.

25

TABLE 6

Race Prevention Rules for Cross-Coupled NOR Gate

I. Modification of C or D-.
A. If C(t,r) # 0 and D-(t,r) # O,
then C(t,r) = C(t,r) D-(t,r).
B. If C(t,r) # 0 and D-(t,r) = O,
then D-(t,r) = C(%,r).

C. I1f C{(t,r) = 0, then no change.

IT. Modification of D or C-.
A. If D(t,r) # 0 and C-(t,r) # O,
then D(t,r) = D(t,r) C-(t,r).
B. If D(t,r) # 0 and C-(t,r) =0,
then C-(t,r) = D(t,r).

C. If D(t,r) = 0, then no change.

26

Figure 10.

CROSS-COUPLED NOR GATE PAIR

#

27

SIMULATION PROCEDURE

Given the models and analysis procedures descril.»d above, a logic
circuit simuiation procedure can be described. An overview of the pro
cedure used in SIMLOG will now be presented. The overview will be
restricted to NAND gate logic element for simplicity cf presentation.

Let I], cens In correspond to the primary inputs of a logic cir-
cuit, and let Jn+1’ cees Jm correspond to the logic gate outpuis of the
circuit. Let (I], If) and (Jj, Jg
input line 1 and gate output line j, respectively. TVhen for each j,

) represent the logic value of circuit

n+1<J<m, the following pair of Boolean equations follow.

J;(t,r) = > Ilt) + 2 Jplt. r-1) (3a)
keK. Lel .
J J
Hery = T - T gt e (3b)
keK. Lel .
J J
where Kj = {Primary inputs that are inputs of gate j}
and Lj = {Gate outputs that are inputs of gate j}

The circuit analysis procedure illustrated previously is flow-
charted in Figure 11 in terms of the notation used in (3). Also,
cross-coupled NAND gate outputs are denoted F and G in the race analysis

procedure flowchart.

Prepare
Circuit
Equations

Set
Initial
Conditinns

Oscillation
Analysie

Propogate
Initial r=r+l

Conditions

!

t:—.r:]

y
Lot B

Calculate ’
J1 and Jz

i=np+l to M

l

Race
Analysis

Stable
Conditio

(a) Main Procedure

Figure 11. Simulation Procedure Flowchart

No K (t-r No
. - Gk(§1r'])

Yes Yes -
No l,(t,r‘ . No X
=F, (E,r—]) 0
Yes Yes

PR

(b) Race Analysis Procedure
Figure 11. (Cont'd)

-2

3. STARTING STATE SPECIFICATION

A major advantage of the logic model introduced in Section 2 is
that a representation exists for describing a logic signal in an un-
known state. This allows simuliation of sequential circuits from an
unknown starting state., However, sequential circuit examples have
been found that cause difficulties when applying the simulation pro-
cedure of Section 2 if the starting states are unknown. This Section
will be cdevoted to a presentation of some of these difficulties and to

a discussion of how the problems are handied in SIMLOG.

PROBLEM CIRCUITS

The circuit shown in Figure 12 is from [6] and has only one
stable starting state. Establishment of this state must be accomplished
manually before the simulation procedure of Section 2 can be applied.
Hence, the unknown starting state will not yield meaningful results.

A more important example of the inadequacies of the unknown
starting state approach fur sequential circuits is illustrated by the
JK flip-flop circuit in Figure 8. Simulation of the JK flip-flop does
not produce meaningful resuits when an unknown starting state is assumed
due to the alobal feedback in the circuii. When a specific starting
state is assumed for the JK flip-flop, the anatysis procedure yields

the proper results.

30

(8

3

Figuie 12,

>—{—

Self-initializing Circuit [6].

i

LIPS

32

The simulation of large sequential circuits cannot be accomplished
effectively unless the simulation procedure can sta~t with the circuit
in an unspecified state. Several starting state options are available
in SIMLOG to handle this pr-blem. These options are described below

with the exception of the unknown case which is self explanatory.

CROSS-COUPLED Gate Variables

It has been found that by assigning symbols other than 0 or 1 to
represent the starting state of selected nets meaningful simulation re-
sults can be obtained. These symbols can be replaced after simulation
is complete by the desired starting state representation. Nets selected
for the assignment of such symbols are those corresponding to the output
lines of cross-coupled gates. Other nets are assigned as unknown.

Two assignment modes of this type are available. One mode assigns
unique symbols to each net in a pair whereas the other mode assigns the
same symbol to both nets. For example, consider the cross-coupled NAND
gates of Figure 3. In the DOUBLE CROSS-COUPLED VARIABLES mode, the
starting state of net C is specified as ' »,C-p) and the starting state
of net D as (DP,D-P). 1In the SINGLE CROSS-COUPLED VARIABLE mode, the
assignments would be (CP,C-p) and (C-P,CP) for C and D, respectively.

An extension of this concept is also available which assigns
symbols as the starting state of each net (inputs excluded) in a circuit.

For this ca:e, net X is assigned (X@,X-p) as its ctarting state.

3

OTHER POSSIBLE ASSIGNMENTS

A mode is also provided which allows the SIMLOG user to specific
constants (0 or 1) as the starting state of user sele-ted nets in-
cluding circuit input nets. Nets not explicitly assigned constant
values are implicitly assigned as unknown.

Another mode permits the user to assign Boolean equations in sum
of products form as the starting state of user selected nets. This

mode provides a generalized starting state assignment capability.

Lt AN,)

4. FAULT SIMULATION

The logic simulation procedure described in the previous section
can be modified to simulate stuck~type faults. This section contains
descriptions of the model for stuck-at faults and of the corresponding

fault insertion procedures used in the SIMLOG program.

FAULT MODEL

Stuck-type faults car be modeled in the simulation procedure de-
scribed previously by an ordered pair of Boolean variables. Consider
for example the two-input NAND gate of Figure 2. A stuck-at-0 fault
on input A is represented by the ordered pair (A*,A-*) where (A*,A-*)=
(1,0) means the fault is present and (A*,A-*)=(0,1) means the fault is
nct present. The (0,0) and (1,1) combinations are not assigned mean-
ings in this context.

A stuck-at-1 fault on input B of the NAND gate is represented by
the ordered pair (B!.B-!). The (1,0), (0,1}, (0,0) and (1,1) are

assigned similar meanings to those given above for stuck-at-0 faults.

FAULT INSERTION

Faults are inserted in a logic circuit by modifying the appropriate

equations ccrresponding to the element to be faulted. Again, counsider
the two-input NAND gate of Figure 2. Table 7 shows the fault-free

equation pair, the equation pairs for stuck-at-0 and stuck-at-1 faults

34

35

$S3309 (NYN 3ndul-OM] UL uOl3Jasu] 3|ne4

{ 378VYL

i-2(gy) =-2 x) + (8y) =-2 ga(iv¥ + vy) =-2 g(x-¥Y) =-J gy =)
id+ (-8 +-y) =2 »=J(-9 + -¥) =) -9 + (i-V -¥) =2 g + (x¥ + -¥) =2 g+ -¥ =79
(-3e-@on3S) 0-3e-%2n35) [-3e-%2n35 y 0-3e-3on3S v 2944 3|neq

!

TRy W e W

36

on fnput A, and the equation pairs for stuck-at-0 and stuck-at-1 faults
on the output C.

An exarinatior of the equations in Table 7 reveals that fault
insertions can be accomplished by ANDing or ORing the appropriate
fault-free variable or expression. For e ample, a stuck-at-0 fault
on input A is inserted by first ORing fault variable A* with fault free
variable or expression A- to produce (A- + A*). Next, the fault
variable A-* is ANDed with fault free variable or expression A to
produce (AA-*). Finally, the gate output equations are cmputed in
the usual way except that (A- + A*) is used in place of A- and
(AA-*) is used in place of A.

The equations corresponding to faulted outputs are similarly
computed. For example, a stuck-at-0 fault on the output C is in-
serted by first computing the fault-free output expressions (A- + B-)
and (AB). Fault insertion is completed by computing (A- + B-)C-* and
(AB) + C*,

Fault insertion for NOR gates is accomnlished similarly and is
detailed 'n Table 8. Fault insertion for unit-delay elements and
0 flip-flops is shown in Tables § and 10, respectively.

Further illustrations of fault simulation is given by considering
the cross-coupled NAND gates shown in Figure 3. The following set of

equations describe the circuit with a stuck-at-1 fault on input B.

37

i-2 (8 + v(=-2 ¥) + (8 + V) =-) g+ (iv+y) =-2 g + (¥-W¥) =-3 g +Vv u-uL
iy+ (-9 -¥) =93 »2 (-9 -¥) =2 -9 (i-¥ -¥) = -g(s¥ + -¥) =D -g -y =
{-3e-31on3S) 0-2e-%2nS 3 [-28-30N3S Y 0-4e-30N3S y 39.lJ 3Lne4

$3385 ¥ON 3NGUI-OM] Ul UOLIUBSU] 3iney

8 378vl

38
TABLE 9

Fault Insertion in Unit-Delay Element

Fauit Insertion In D Flip-Flop

Fault Condition

Equation Pair'

Q(t,r) = D(t-1,r-1)X + Q(t-1)Y

Fault Free
Q-(t,r} = D-(t-1,r-1)X + Q-(t-1)Y
D Q(t,r) = D(t-1,r-1)X D-* + Q(t-1)Y
Stuck-at-0
Q-(t,r) = D-(t-1,r-1)X + D* + Q(t-1)Y
D Q(t,r) = D(t-1,r-1)X + D! + Q(t-1)Y
Stuck-at-1
Q-(t,r) = D-(t-1,r-1)X D-! + Q-(t-1)Y
C Q(t,r) = D(t-1,r-1)X C-* + Q(t-1)[Y+C*]
Stuck-at-L
Q-(t,r) = D-(t-1,r-1)X C-* +Q-(t-1)[Y+C*]
C Q(t.r) = D(t-1,r-1)X C-! + Q(t-1)[Y+C!]
Stuck-at-1
Q-(t,r) = D-(t-1,r-1)X C~t + Q-(t-1)[Y+C!]
Q Q(t,r) = D(t-1,r-1)X Q-* + Q(t-1)Y
Stuc“-at-n
Q-(t,r) = D-{t-1,r-1)X + Q* + Q-(t-1)Y
Q Q(t,r) = D(t-T,r-1)X + Q! + Q(t-1)Y
Stuck-at-1
Q-(t,r) = D-(t=1,r-1)X Q-! + Q-(t-1)Y
x o= c-(t)o(t-1)
Y = ((t)C(t-1) + C(t)C-(t-1) + C-{t)C-(t-1)

Fault-Free A Stuck-at-0 A Stuck-at-1 B Stuck-at-0 B Stuck-at-!

B=A B = AA-* B=A+Al! B = AB-* B=A+ B;_—

B-= A- B-= A- + A* B-= A- A-! B-= A- + B* B-= A- g-!
TABLE 10

e o oy an s

-k

39

C (t,r) = A-(t) + D-(t, r-1)

C-(t,r) = A (t)D (t,r -1)

D (t,r) = B-! B-(t) + C-(t, r-1)
D-(t,r) = BIC(t, r-1) + B {t)C(t,r -1)

Propagation of the above equations is shown in Table 11 for two
input time steps. It should be emphasized that race and oscillation
analysis must be performed for the fault case in the same manner as

for the fault-free case.

40

(1)-v{l)8(z)a +
(2)g9(2)-v+(L)-v+(2)-(v)i8

i-8(2)-9

+ i-a(L)-a(1)v(2)v

A_v a(L)v(2)v

+ la(2)-9(z

(1)-v(2)a(l)s
+ (L)-vig+(2)-v¢

{1-v(2)a(1)sg
+ (L1)-vig+(2)a(2)-v+(2)-via

2V
v
AL]
)Y

(
)
(1)-9i-9(1)v(
+ (2)-9i-9(2

v

(i)-v(z)a(1)s
+ (2)9(2)-v+(1)-vig+(2)-vig

(1)-g9i-8(1)v(2)v
(2)-9i-8(2)V

{+)-Vig
+ {1)-v(L)a(2)a+(2)-v

17

(L)-v(r)a(z)a +
(L)-v(2)a(2)-v+(1)-

(1)-gi-9()v(2)v

+ (2)-9(1)-9i-8(2)v

dt

(1)-v(2)a+(1L)- (L)-gi-a(i)v+(2)-9i-8 (1)-8 i-9(2)v (U)-v(L)a+(1)-vig+(2)-v ¢
(1)-v(L)g+(1)-vig (1)-9 i-9 ()58 i-9(L)v (1)-v

(1)-v(t)a+(1)-vig (L)-9 i-9 (L)-9 i-9(1L)v (1)-v 2

0 (1)-9 i-9 0 (1)-v L

0 0 0 0 0

(493)50 AL.“V_Q (4%3)50 a&.»v,u d

[* v R Sy

3{Ne4 pai4asul yiim juawdo|d3Aag uorijenb3

DI —_—

PLRERELY ¢ Y TN A e

5. TEST PATTERN GENERATION

Test sequences for a circuit can be generated from the results of
a simulation procedure such as that described in the previous sections.
Two methods of generation are possible. One method produces sequences
for input faults and does not require the use of fault simulation. The
other method produces sequences for specified faults on any single net
but requires that fault simulation be used. Each of these methods will

now be described. Both methods are available in TESTGN.

TESTS FOR INPUT FAULTS

An efficient method for generation test sequences is to produce
test sequences for stuck-at-0 and stuck-at-1 faults on each circuit
input for each circuit output. Chappell [6] states that this strategy
yields tests for 80-90% of the single faults in the circuit under con-
sideration. The remaining faults can be handled using the approach
to be described later.

Generation of test sequerices for faults cn input Ii to be observed
at output Oj is performed as follows. Let the following equation pair

represent output 0j in terms of input Ii and other unspecified terms.

= + BI. + *

0J A+B j CI1
== + .+ Fl<
0J D EIJ I1

where A, B, C, D, E, F are Boolean expressions.

a1

The desired test function is given below.

o; = (BF + CE) (I, + I3) (5)
3 i i
It should be emphasized that fault-free circuit equations are used in
obtaining Equation (5).

The following test functions result for the cross-coupled NAND

circuit for faults on input A with observation at output C.

t=1
8, = B-(1) [A(1) + A-(1)]
= A(1)B-(1) + A-(1)B-(1)
t=2:
65 = [8-(2) + A(B-(NI[A(2) + A-(2)]

A(2)B-(2) + A-(2)B-(2) + A(2) A(1)B-(1)
+ A-(2)A(1)B-(1)
Selection of tests from (5) should be such that the input is
exercised with both a logical 1 and a logical 0 if possible. Hence,
two tests for each input-output pair are attempted. 7The shortest test

in terms of time should be chosen when more than one possibility exists.

TESTS FOR SPECIFIC FAULTS
Let F represent an output of a logic circuit that has had fault ¢
inserted. The equation pair describing F in time t can be written as

follows.

43

F

U+ Vo + Wp-
F-

X+ Y + Z¢-

where U, V, W, X, Y and Z are Boolean expressions. All fault detection

test sequences of length t for ¢ are given by the following test function.
t
F¢ = VZ + WY (6)

For an example, consider fault B stuck-at-1 in the cross-coupled
NAND gates of Figure 3. The results will b2 shown for only output C

even though similar results can be obtained for output D.

At t=1:

c(1) = B-(1)B-!

C-(1)= A-(1)B(1) + A-(1)B!

¢! = A-(18-(1)

B!

At t = 2:

C(2) = B(2)B-! + A(2)A(1)B(1)B-!

C-(2)= B(2)A(2) + B(2)B(1)A(1) + A(2)B! + A(1)B!
Therefore:

€2, = A-(2)B-(2) + A-(1)B-(2)

6. CONCLUSIONS AND RECOMMENDATIONS

Approaches to logic simulation and test pattern generation have been

described that can be used with both combinational and sequential logic
circuits. Simulation of fault-free circuits and of circuits with stuck-
type faults can be accomplished. Two strategies can be used to obtain
test patterns for single stuck-at faults. One strategy is used to find
test patterns for a specific fault that has been inserted in the circuit.
The other strategy is used to obtain a set of tests for unspecified
faults in an attempt to reduce the computation time per fault. Conbined,
the two strategies provide an effective approach to test pattern gener-
ation for large logic circuits.

The procedures presented in this report have been adopted from the
concepts outlined by Chappell [6]. A major modification has been made
in the race analysis procedure, however.

Future work is recommended on generalization of the timing model
and functional representation of circuit segments. The former would
produce a more accurate simulation while the latter is one approach
that could possibly reduce computation time and memory requirements
of the procedure.

Further work on the starting state p-oblem and on oscillation
analysis is also in order. A means for precisely setting an upper limit

on the number of ripple-time steps per input time step is needed. The

a4

45

problem of immediate detection of an oscillation condition is also worth
of attention. Development uf a rule for halting oscillation is needed.
It is also recommended that the fault model be generalized. This

would impact both the simulation procedure and the tast generation pro-

cedure.

REFERENCES

W. 6. Bouricius, et.al.; "Algorithms for Detection of Faults in
Logic Circuits," IEEE-TC, Vol. C-20, Mo. 11, November 1971,
pp. 1258-1264.

M. Y. Heiao and D. K. Chia, "Boolean Difference for Fault Detection
in Asynchronous Sequential Machines," IEEE-TC, Vol. C-20, No. 11,
November 1971, pp. 1356-1361.

M. A. Breuer, "A Random and an Algorithmic Technique for Fault
Detection Test Generation for Sequential Circui.s," IEEE-TC, Vol.
C-20, No. 11, November 1971, pp. 1364-1370.

V. D. Agrawal and P. Agrawal, "An Automatic Test Generation System
for I1liac IV Logic Board," IEEE-TC, Vol. C-21, No. 9, September
1972, pp. 1015-1017.

M. A. Breuer, "Testing for Intermittent "aults in Digital Circuits,"
IEEE-TC, Vol. C-22, No. 3, March 1073, pp. 241-246.

S. G. Chappell, "Automatic Test Generation for Asynchronous Digital
Circuits," Bell System Technical Journal, Vol. 53, No. 8, October
1974, pp. 1477-1503.

B. D. Carroll, "SIMLOG/TESTGN User's Guide," Final Report-Vol. 2-
Addendum 1, Contract NAS8-31572, Electrical Engineering Department,
Auburn University, Auburn, Alabama, September 14, 1979.

B. D. Carroll, "SIMLOG/TESTGN Programmer's Guide," Final Report-Vol. 2-

Addendum 2, Contract NAS8-31572, Electrical Engineering Department,
Auburn University, Auburn, Alabama, September 1+, 1979.

46

	0001A02.TIF
	0001A03.TIF
	0001A04.TIF
	0001A05.TIF
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A13.TIF
	0001A14.TIF
	0001B01.TIF
	0001B02.TIF
	0001B03.TIF
	0001B04.TIF
	0001B05.TIF
	0001B06.TIF
	0001B07.TIF
	0001B08.TIF
	0001B09.TIF
	0001B10.TIF
	0001B11.TIF
	0001B12.TIF
	0001B13.TIF
	0001B14.TIF
	0001C01.TIF
	0001C02.TIF
	0001C03.TIF
	0001C04.TIF
	0001C05.TIF
	0001C06.TIF
	0001C07.TIF
	0001C08.TIF
	0001C09.TIF
	0001C10.TIF
	0001C11.TIF
	0001C12.TIF
	0001C13.TIF
	0001C14.TIF
	0001D01.TIF
	0001D02.TIF
	0001D03.TIF
	0001D04.TIF
	0001D05.TIF
	0001D06.TIF
	0001D07.TIF
	0001D08.TIF
	0001D09.TIF

