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FOREWORD

This is a technical summary of the research work conducted during

October 1, 1978 to September 30, 1979 by The University of Alabama in

Huntsville towards the fulfillment of the Contract NAS8-33096 from the

George C. Marshall Space Flight Center, Alabama. The NASA technical

officer for this contract is Nr. Robert E. Jones.

The author greatfully acknowledges the numerous discussions with

and helpful comments of Mr. John M. Gould during this research work,

and thanks Professor Donald Dietmeyer of the University of Wisconsin-

Madison for providing the DDL Software.
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DIGITAL SYSTEMS DESIGN LANGUAGE

Sajjan G. `.hiva

a

ABSTRACT

Digital Systems Design Language (DDL) has ,)een

implemented on the SEL-32 Computer Systems of the Electronics

and Controls Laboratory. This document provides the details

of the language; the translator and the simulator programs.

Several example descriptions and a tutorial on hardware de-

scription languages are provided, to guide the user.
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1. INTRODUCTION

Hardware Description Languages (HDL) provide a convenient medium of

inputting the design details into a design automation system. This re-

port gives the details of one such language, Digital Systems Design

v	
Language (DDL), selected for integration into the Computer Aided Design

and Test System (CARAT) of the Electronics and Controls Laboratory.
t

Chapter 2 provides the language details, Chapter 3 discusses the

translator program and Chapter 4 discusses the Simulator Program. Some
1

example descriptions are provided in Chapter 5. A tutorial on Hardware

Description Languages is provided in the Appendix. An exhaustive bibli-

ography for some of the literature in this area is also provided in the

Appendix. Readers not fariliar with any HDL are referred to the Appendix

before reading the rest of the report.

The Simulator and Translator Programs are currently being tested on

SEL-32 Computer System and hence, the complete deck set up details for

the use of these programs is not included in this manual.
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2. THE LANGUAGE [31]*

DDL was introduced in 1961 by Duley and Dietmeyer [33]. A trans-

lator and a simulator are written far a subset of this language in IFTRAN,

an extended version of FORTRAN [35,36]. These programs are implemented

in FORTRAN on SEL 32 Computer System. The translator (DDLTRN) translates

111;	 [	

a DDL description into a set of Boolean equations and register-transfer

statements. The simulator (DDLSIM) enables the system designer to verify

his design. The output of the translator is an input to the simulator.

Simulation parameters are to be input by the designer. In DDL the struc-

tural elements are explicitly declared. At the lower level of description,

functional and structural elements correspond directly to the actual

elements of the system. DDL is highly suitable for describing the system

at the gate, register transfer and major combinational block level.

The logical statements can be formed using the available primitive

operators. The functional specification of the system consists of these

logical statements, in blocks. The statements describe the state tran-

sitions of a finite state m.rhine controlling the processes of the in-

tended algorithm. The block then appears as an automaton.

Parallel operations are permitted. Synchronous behavior is described

by either ider:tifying the pulses or by including delay elements described

in terms of multiples of clock pulses. Asynchronous behavior is modelled

by using conditional statements. Data paths can be explicitly declared

by using terminal declarations.

*The numbers in brackets point to the references listed in the Appendix.

t=
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DDL is a "block-oriented" language; the blocks of a DDL description

usually correspond to natural divisions (blocks) of the hardware being

described. Thus a computer may have a major block called an "ALU,"

which contains a block called "adder," which consists of interconnected

logic blocks called "full-adders." This nested view of the hardware can

be directly reflected in the DDL description of the computer.

Both facility declarations and operations can appear within the body

of the more complex declarations that have a heading part. Identifiers

declared within such complex declarations are said to be local facilities

of that declaration, and are global facilities of complex declarations

that appear in the body of the encompassing declaration. Other complex

declarations that parallel the encompassing declaration cannot control

or sense such facilities. Operations can reference only facilities that

are local or global to the block in which they appear. Thus the same

identifier may be declared in more than one parallel block without

ambiguity.

Figure 2-1 illustrates some of the possibilities. Facilities A, B,

and C are declared facilities of the overall block named SYSTEM. These

facilities are global to all blocks within SYSTEM; any or all of these

blocks may control or sense the states of facilities A, B, and C. Hence

A, B, and C are said to be public facilities. Facilities D and E are

local to SUBSYSTEM 1, global to PART 1 and PART 2. SUBSYSTEM 2 and its

inner blocks are tot aware that facilities D and E exist; no reference

to D and E may appear in the description of SUBSYSTEM 2.

Facilities H and I are local to PART 1; no other block of Fig. 2-1

may control or sense these facilities. PART 2 has its own facility I

which may be of a very different hardware nature than facility I of
i
i



SYSTEM
Facilities A, B,

SUBSYSTEM I
Facilities D, E

PART I	 PART 2

F
WFocilifies

, I 1, J

r

1
SUBSYSTEM 2

Facilities F,G

ASSEMBLY
Facilities
J, K

CARD

I Eacillhes

, l

i

Fit. 2 . 1. 1 ikal and Fluhal (acihtic%.

PART 1. PART 1 and PART 2 each control and sense their own facility I.

Similarly, PART 2 controls and senses its local facility J as does

ASSEMBLY for its local facility J, which is global to CARD and hence can

be controlled and sensed by CARD. References to K within CARD pertain to

the most locally declared facility K, e.g., the one declared within CARD.

Permitting the same identifier to be used in parallel blocks allows

designers working in parallel on the blocks to select without restriction

names that appeal to them. If parallel blocks must communicate, facilities

global to them must be established and assigned unique names. The de-

signers of the parallel blocks must know and use these global names. Thus

in Fig. 2-1 SUBSYSTEM 1 and SUBSYSTEM 2 may communicate via A, B, or C.

PART : and PART 2 may communicate via D or E, or via A, B, or C.
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2.1 SYNTAX RULES

VARIABLES:

Variable name may contain - to S characters, the first of which must

be alphabetic. The remaining characters must be letters car digits.

Examples: MULT

SYS1

COMPLMNT

CONSTANTS:

Constants take the general form nRk. n is the number in base R (R-D for

decimal, 0 for octal). k is the number of bits required for the repre-

sentation,k -< 32. k is decimal.

Examples:

Representation	 Binary eguivalant

	1D2	 01

	

SD4	 0101

	

20D5	 101GO

	

203	 010

	

2006	 010000

	

0	 0

	

1	 1

2.: DECLARATION STATEMENTS

The general format of a declaration statement is <DT> body.

The declaration type (device) is enclosed in angle brackets and the period

terminates the declaration. Body consists of a list of items separated by

commas. Following devices are allowed:
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TErminal	 Sets of wires

REgisters	 Sets of synchronized flip-flops

;Emory	 Sets of synchronized flip-flops

LAtches	 Sets of asynchronous latches

t	 Tlms	 Clock

Delay	 Delay elements

BOolemn	 Combinational logic

ELemant	 Off-the-shelf components

The device type cRr. be abbreviated to the first two characters.

Examples:

<TE> X, Y(4), Z(0:2), W(3,4:1), A(12) - B 0 C(0:10) identifies

a single wire ::, four wires Yl , Y2 , Y3 , Y4 with Y1 on the left, 3

wires Z 0 , Z1 , Z2 and 12 wires corresponding to W, placed in 3 rows, ith

row of wires numbered 
WW Wi3' Wit' Wil' The si

, bsc.rip.:s always have a

left to right interpretation. A single subscript n indicates the range

1 to n while a rang .t:m indicates n to m left to .right. In the above

declaration, Al is also named d, ?(2::.2) are named C(0:10). £ is the

concatenation operator. The concatenation of B and C is a 12 bit

terminal A with the ,iost significant t it same as that of B and the

least significant 11 bit, same as those of C.

REgister and LAtch DECLARATIONS

<RE> IR(16) - OP(0:3) G IX(1:3) ( ADRS(9), X(12). declares

a 16 bit register IR and a 12 bit register X.

IR is identified with 3 subregisters OP, IX and ADRS.

<LA= BUM.

declares a set of 4 latches BUF.
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<RE> A(8).

declares an 8 bit register, bits numbered from 1 to 8, left to right.

MEmory DECLARATION

<ME> M(X:Y) .

declares X words (numbered from 0 to X-1) of Y bits each (numbered 1

through Y).

<ME> MP(256:8) .

declares a 256 word memory, 8 bits/word.

3

References to the memory must be of the form M(MAR) where MAR is

the same register in all references to M. MAR is declared in a RE

declaration. Only full words may be accessed from memories.

TIme DECLARATION

<TI> AUE-6), Q(20E-9) $2$.

declares a single phase clock A with a 1 microsecond period and a two-

phase clock Q with 20 nanosecond period..

<TI> P.

declares a single phase clock with an arbitrary time period (unit).

DElay DECLARATION

<DZ > P(10E-9), Q(5E-7).

declares two delays P with 10 nanoseconds and Q with .5 microsecond.

The context in which the DElay element is referenced determines whether

its input or output terminal is used.

BOolean DECLARATION

<BO> Identifier - Boolean expression.

Examp? -s:

<TE> A, B(5), C(0:4), D(6, 5:1).

<BO> D(4) - B+C, D(5) - A*B.

e^
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declares that the fourth row of D is formed by ORing terminals B and C

i.e. (D45 - B 1	 G
+ C etc.) bit by bit; the fifth row of D is a bit by bit

AND of A and B. Since A is 1 wire and B is a set of 5 wires, A is fanned

out to combine with each bit of B.

ELement DECLARATION

Enables the description of an element in the system whose logical

specification* are unknown or impertinent.

For example,

<EL> JKFF (Ql,NQ1: C, J1, K1), COUNT (K(5:1), ZERO:

UPDWN, CLK).

declares an element JKFF with 3 inf .lts C,J1,K1 and two output Ql and

NQ1; and an element COUNT with two inputs and 6 outputs. The only

information available on these black boxes is the input/output terminals.

2.3 OPERATIONS

Table 2.1(a) shows the operations allowed and their hierarchy;

Table 2.10) shows three special operators. "-" is used to show the

connections while <- indicates a data transfer from one facility to the

other	 -> is equivalent to a "GOTO', used to show a state transition.

The extension operator "$" creates k copies of the terminal or

terminal set offered as its left operand.

The selection operator ', selectively complements, or not comple-

ments the bits of the facility (left hand operand) depending on the

value of the corresponding bit in kDn is a 0 or 1.
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For example	 A' 1OD5	 is equivalent to

1

2

A	 3	 A'01010

4

5	 •

i

The operator preceding the reduction operator (/) determines the

nature of the reduction on the right Band operand of /. Six types of

reductions are possible. For example, given a signal A,

*/A implies

A

If A is a 3 bit signal,

*/A' 'D3 implies

Selection

A

1

Reduction



+/A'3D5 implies

Boolean expressions (Be) can be formed by using the operators and

variables in the usual manner. Paranthesis could be used where there is

an ambiguity. The expressions are evaluated from left to right follow-

ing the operator hierarchy.

Conditional operations have th_ format

!BE! OP 
1.	

or

!BE! OP 1 ;OP,^.

The first form implies: If the value of BE is 1, perform OP 1 ; the

second form implies: If BE is 1, perform OP  else perform OP 2
- it

then" operations can be nested:

A	 B ! OP 1 .;	 C ! OP,^..

2.4 IF - VALUE CLAUSE

is used for "IF" and "#va" is used for the value in an IF-value

clause. For example;

B . ' C #0 DO #1 DI #2 D2.

implies that DO is connected to B if the value of C is 0, D1 is connected

to B if the value of C is 1, etc.

As another example,

IX #OD2 A<-B #1D A<-C #2D2 A< - AB #3D2 A<-%C.

describes a 4 wa y conditional transfer operation into A depending on the
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I
value of X.

2.5 IDENTIFIER

k
IDentifi,r declaration enables the naming of a group of operations

so that they do not have to be written repeatedly (equivalent to MACROs).

^. The general format of IDentifier declaration is,

<ID> list.

t

where list takes the form

id - compound facility

id - (CSOP)

For example, < ID> X - C ( 2:10) 01. names the compound facility C(2:10)01

to be X.	 Then, any reference to X is expanded into C ( 2:10)0.

For example, S - R ® X. is equivalent to 	 S - R • C (2:10) 01.

(A compatible set of operations ( CSOP) is a set of operations

separated by commRS. 	 It must be possible for the hardware to perform

all these operations simultaneously.)

The order in which the operations are listed is of no consequence.

For example,

<ID> A -	 (Y	 <-	 X,	 Z	 <-	 Z(2:5)	 0,%Z(1)),

B -	 (Y	 <- X,	 Z<- Y).

names two CSOPS.	 Note that the operations Y <- X and Z <- Y in B are

simultaneous and are compatible.

2.6 OPERATOR DECLARATION

Blocks of combinational circuitr y can be defined with the OPerator

declaration.	 The body of the OFerator declaration consists of a Boolean

declaration and perhaps a TErminal declaration. 	 9oolean equations in

I
the body of the Boolean declaration include Boolean expressions which

(
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may involve conditions and be relatively complex. References in these

Boolean equations may be made to (1) facilities global to the OPerator

declaration. (2) local terminals declared within the OPerator declara-

tion by a TErminal delcaration, and (3) terminals delcared and dimension-

ed in the head of the OPerator declaration. The TErminal declaration

may be used to define local terminals of the operator, and must be used

to dimension "dummy" identifiers listed in the heading, if any.

The head of the Operator declaration consists of one or a list

(separated by commas) of identifiers with or without an argument list

enclosed in $s, with or without parenthetic subscript ranges. Permitted

syntactic forms for heads are:

id l , id 2 (i 2 ), id  $ X 1
, X2 .... X

k$, id  (i4)$
X 1 , X2 ... Xk$

where subscript ranges can also be placed within the parenthesis. The

identifiers name the combinational logic blocks and their output termi-

nals. Parenthetic integers dimension the output terminal sets with the

same syntax and semantics as in TErminal declarations. The arguments

are local dummy identifiers of input terminals of the combinational

blocks. Such dummy identifiers must be dimensioned via a local terminal

declaration within the OPerator body.

As an example of a time-shared operator block, ALU is declared

below. This combinational block is able to add two 16-bit binary

sequences presented to it on lines X and Y or form their bit-by-bit

EXCLUSIVE-OR. Input signal F determines which task is performed. The

carry into rightmost full-adder must also be presented to the unit.

<OP> ALU(16) $ X,Y, CIN, F$

<TE> X(16), Y(16), CIN, F, C(16) - CXQCC(15).

a.
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<BO> C-X*Y + CCO CIN* (X+Y),

ALU - (:F: X@Y@ CC2CIN; X@Y•)..(end of BO, end of OP)

Note the inline comment capability of DDL (end of BO, end of OP).

Suppose the following declaration is global to ALU,

<RE> ACC(16), MBR(16), COUNT (12).

we can define several operations using ALU as following:

!LDA! ACC <- ALU$O,MBR,0,0$

!ADD! ACC <- ALU$ACC,MBR,0,1$

!SUB! ACC <- ALU$ACC,AMBR,1,1$

!KNT! COUNT<-ALU(5:16) $OD4(COV%1T,0,1,1$

!XOR! ACC <-ALU$ACC,MBR,0,0$

2. 71 STATE DECLARATION

DDL views the operation sequencing (control) circuitry as a finite

state machine. Each state (step) of the control circuitry is described

by a STate declaration:

<ST>State List.

State list consists of a list of state statements (without separa-

ting commas). Each state statement has one of the following forms:

Sid (n): csop.

Sid (n): Be: csop.

Sid is a simple unsubscripted identifier. n is the decimal state

assignment.csops include the state change operations using the state

transition operator - .

In the first form, csop is performeu whenever the automaton is in

the state Sid.

In the second form, csop is oerf.-rmed when the automaton is in Sid

and also Be is satisfied. The automaton waits in the state till Be is
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satisfied.

A 15 bit multiplier control can be described as following:

<ST>	 SO(0):MPY:ACC<-0, CNT<-15D4,->S1.

3

S10):->S2, DECR$ CNT$ !Q(15) ! ACC<-ACC+R..

S2(2):SHR$ACCCQ$, S+/ CNT; ->S1;SO ...

(end of conditional, end of S2, end of ST)

SHR is shift right (zero fill) operator and DECR is a decrement

operator assumed to be defined using <OP> declaration.

2.8. AUTOMATON and SYSTEM DECLARATIONS

Relatively independent disjoint portions of a digital system are

identified as automata in DDL with syntax.

<AU> head body.

The AUtomaton declaration is the most complex type of declaration

0 1 DDL. Its head may take any of four forms, for example;

auid:

auid:csop

auid:Be:

auid:Be:csop

First, an automaton identifier, auid, may be subscripted, but may

not include parenthetical arguments; it names the block only. A compat-

ible set of operations may be included in the head of : in automaton.

These operations are to be performed whenever the Be of the heading, if

any, is satisfied. Conditional as well as unconditional operations may

be included in this heading csop, so whether a specific operation is

performed or not may depend on conditions throughout the automaton or

system.

Be in the heading of the AUtomaton declaration is a condition on

r
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all operations declared throughout the body of the declaration except

connection operations. Usually Be is the clock signal that synchronizes

the automaton. It is generally unnecessary and undesirable to include

such global conditions as clock signals in combinational circuits; in

fact, signal propagation in combinational networks usually precedes

clock pulses. If a clock with n phases is used to synchronize an autom-

aton, then a dimensional Be or a concatenation of n Bes appears in place

of the single Be in the AUtomaton declaration head.

The body of an AUtomaton declaration consists of other declarations.

Each of these declarations is terminated with its own period; punctuation

is not placed between them. The following declaration t ypes may appear:

<ME>, <RE>,<LA>, <TE>

<TI>, <DE>, <OP>,<EL>,<ID>,<BO>,<ST>

ME, RE, LA, TE, TI, DE, AND EL declarations are used to declare the

existence of local facilities of the automaton. The OPerator and Boolean

declarations specify combinational blocks and interconnections of facil-

ities. The IDentifier declaration ma y be used to simplify or clarify the

overall Automaton declaration. The Slate declaration is usually used to

specify the operations of the automaton. If the STate declaration is not

used, then all operations appear in the csop of the Automaton declaration

head.

The SYstem declaration has s yntax identical to the AUtomaton decla-

ration. The s ystem is identified in the head. Global conditions and

csop may be specified also. The body of a SYstem declaration may contain

AUtomaton declarations as well as all ether types of declarations, but

Slate declarations must appear within AUtomaton declarations. Public

facilities are declared with "1E, RE, TE, etc., declarations outside of all



-16-

F

Automaton or OPerator declarations.

Example:

A multiplier controller is described below to illustrate

the SYstem and Automaton facilities. The counter is

treated as a separate automaton. Perhaps other unspec-

ified automaton of SYSTEM 1 can use the counter when

automaton MC is not.

<SY> SYSTEM l:

<RE> ACC(15), Q(15), R(15).

<TE> SET, DEC, DONE, MPY.

<TI> P G E-7).

<AU> CPU: P:

<ST> .

Q17: DONE: Q <- Multiplier,

R <- Multiplicand, MPY - 1.

.. (end CPU)
<AU> MC: P:

<ST> SO: MPY: ACC <- 0, SET - 1,-> S1.

S1: -> S2, DEC - 1,:Q (15). ACC <- ACC+R..

S2: ACCCQ <- SHR$ACCCQ$ !DONE! -> S1 ...

<AU> F: P:

<ST> [1-1:15]	 T(i): DEC: ->T(i-1)..

T(0): DONE - 1, !SET! -> T(15); -> T(0) ...

(end SY)

Li
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Automaton CPU is shown only as placing the multiplier and multipli-

cand in public registers and issuing command MPY to multiplier control

MC. Tf the counter automaton K is idle, it will be issuing DONE - 1.

CPU waits in its state Q17 until this condition is satisfied (perhaps K

is still doing a job for some other automaton). MC clears ACC, but the

counter is initialized by SET - 1. Specifically SET - 1 will cause K to

go from i':s state T(0) to T(15) where it will remain until it is told to

decrement via public terminal DEC. MC tests the multiplier, adds or not

and shifts repeatedly until it is informed by K via public terminal DONE

that all multiplier bits have been examined. In the example above inter-

acting automata MC and K operate in parallel.

NOTE: The "For clause" shown in the Automaton K for the decrement

operation Li-1;151 T(i):DEC: -> T(i-1) is not allowed in the present

version of the DDL software. This statement has to be broken up into;

T(1): DEC: ->T(0)

T(2) : DEC: —TG)

T(15):DEC:->T(14)

SHR is a single argument operator (assumed to be declared earlier)

that shifts the argument one bit right, and fills zero on the left.



AND * A*B

NAND A* AA*B

NOR 1+ AA+B

XNOR 1@ A:.,, B

XOR a A@B

OR + A+B

p/AReduction
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TABLE 2.1(a) : OPERATORS

OPERATOR
	

SYMBOL
	

TYPICAL SYNTAX
	

COMMENTS

Extension
	

S
	

A$k
	

k copies of A

Concatenation
	

AtB
	

Bit by bit

Complementation
	

A
	

AA
	

Bit by bit complement

Selection
	 I	 A'kDn
	

Selective comple-

mentation

AlpA2p ... pAn , where p

is one of these! *, A*,

A+,A@,@,+.

Bit by bit

Operations

TABLE 2.1(b) : SPECIAL OPERATORS

CONNECTION

TRANSFER	 <-

GO TO	 ->

NOTE:	 Refer to Chapter 3 (The Translator)for variations of these

Operators.



3. THE TRANSLATOR (DDLTRN) [36]

DDLTRN is a program that translates a DDL descriptio n► of a digital

*.;stem to 1) a DDL description that consists of Boolean equations and

register transfer statements in the heading of a system declaration only,

and 2)a tablation of facilities and subfaciliti.es declared in the DDL

description and/or defined in the translation process. Some modifica-

tions of DDL recognized by DDLTRN are listed below. The translation

process is briefly discussed and illustrated in Section 3.1.

1) The following operators are changed to accomodate the SEL-32 periph-

erals:

DDL Operator	 Key Punch
	

CRT Terminal	 Printer

Concatenation	 C
	

I	 I

Complement	 A	 r,
	

A	 t

IF - THEN	 ]	 ]

IF - VALUE	 i

The other operators of DDL are compatible with the peripherals of SEL-32

and remain the same.

2) COmment declarations end with a left angle bracket<.

3) Values in "If-value" clauses are limited to a single integer values.

Ranges, lists and else (;) values are not permitted.

4) Concatenation operands must be simple facilities with or without sub-

scripts, or binary strings.

5) State assignments are specified in decimal following the state iden-

tifier of each state statement, e.g., "S1(2):..."

6) Automata names are used as state sequencing register names and thus

should be dimensioned in the <AU> declaration head, e.g., "<AU> CPU (5):

P:...,.

-14-
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7) DDLTRN accepts FLag declarations with syntax: <FLag> list. List

consists of integers, and/or integers preceded by the complement symbol

(A), separr.ted by commas. Each integer specifies the aetti.ng of & flag.

Each complemented integer specifies that the corresponding flag is to be

reset. Table 3.1 summarizes the significance of set flags and the de-

fault states of the flags.

8) Identifiers defined to IDentifier declarations rust not be 3ubscript-

ed.

TABLE 3.1 FLAG INTEGERS

Flag	 Significance	 Default

1	 Print Source Card Images 	 Set

2	 Print Declared Facilities and Operations 	 to

3	 Print DDL string after Pass 2 	 Reset

4	 n	 r•	 n	 n	 n	 3
	

of

5	 ^^	 ^^	 n	 n	 n	 4
	

of

6	 n	 n	 n	 u	 n 5	 of

7	 " 6	 Set

8	 Print F Table after Last Pass	 Reset

9	 Print Encoded string after Last Pass 	 It

10	 Execute through Pass 2 only	 to

11
	

if	 to	 to	 3	 n	 .

1 ,	 n	 of	 ..	4  

13
	

to	 of	 of	 5	 ^ 

14	 " 6	 Set

3.1. THE TRMSLATION PROCESS

DDLTRN is the result of a research effort to develop efficient

language translation algorithms. As a result it emphasizes translation



efficiency rather than error detection and control. Neither the syntax

of supplied DDL descriptions nor the translation process itself are

j	 checked in detail.

!(	 A DDL description is stored as a single string in a singly linked

list in memory. Operator and punctuation symbols are represented by

codes. As processing proceeds facility names and subscript ranges are

also encoded to shorten the string and hence the time required to pass

over it.

Facts about declared facilities such as name, subscript range, type,

etc. are recorded in a facility table F. Translation consists of passing

over the DDL string a number of times. With each pass the DDL string and

F table are modified according to unique rules. Six main passes may be

identified by the user: The DDL string and F table may be printed after

ar_y of these main passes.

Pass 1 -- Facilitio^ 'dentified

Data cards bearing a DDL description are read and echo printed. All

blank columns are ignored; all card columns 1 - 80 are examined. Declared

facilities are entered in the F table. TIme, REgister, MEmory, LAtch,

TErminal and DElay declarations are removed from the DDL description, as

are all Comment declarations and parenthesized comments. Identical pri-

mary names declared in nested or parallel blocks are made unique by

appending a double quote (to) and integer. Identical names declared in

the same block are reiected, of course.

Pass 2 -- Syntax Reduced

:Names and binary strings in connection and register transfer opera-

tions are encoded. Secondary names (names appearing on the right of an

^,	 equal sign in a TErminal, REgister, etc. declaration) are replaced with
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their subscripted primary name equivalents. Identifiers from IDentifier

declarations are replaced in operations and expressions serving as con-

ditions on operations with the symbol string they represent. The syntax

of OPerator, BOolean and Slate declarations is removed, the connection

operations being transferred to the head of the enclosing ATTtomaton or

SYstem declaration. Slate statement syntax io replaced with "if-then"

conditions on operations. O perator call arguments are transformed to

connection statements. Compound Boolean expressions serving as condi-

tions on operations are replaced with terminals of unit dimension. These

new terminals are connected to the Boolean expressions via connection

operations inserted in the head of the enclosing AUtomaton or SYstem

declaration.

Pass 3 -- Conditions Distributed

"If-then" and "if-value" conditions on sets of operations are com-

bined and distributed over the members of the set so that each operation

appears as the body of a simple "if-then" clause. "Go-to" operations

are converted to conditional transfers of a constant (the state assign-

ment) to the state sequencing register (the enclosing automaton). Autom-

aton syntax is eliminated by recognizing the global condition, if any,

and distributing it as a clocking condition on all register transfer and

memory operations within the Automaton declaration.

Pass 4 -- Concatenation Removed

All concatenation operations except those that form operands for

reduction operators are eliminated by breaking operations into operations

on su'facilities formed by partitioning operand facilities according to

the dimensions of the concatenation operands.
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Pass S -- Operations Gsrhered

All connection and transfer operations with the same data sink (left

operand) are gathered into one compound operation.

Pass 6 -- Subfacilities Disjoined

Facilities with subfacilities serving as d:xa sinks of connection

and transfer operations are broken into disjoint subfacilities and a

right-hand side of a connection or transfer operation is formed for each

new subfacility.

3.2 AN EXAI-TLE

Svstem EM illustrates the use of secondary names and IDentifier

declarations. Registers A and D of automaton Al are each broken into sub-

registers via secondary names in the REgister declaration. Ascending and

descending subscripts are illustrated. Identifiers X, y and Z name a new

concatenation of the subregisters of D, a portion of one of these sub-

registers, and a NOR reduction, respectively. A register A is declared in

automaton AZ also. The operations of A2 all appear in the head portion

of its AUtomaton declaration.

The listing obtained after Pass 1 summarizes the declared facilities

and their relations. Since two A registers are declared in parallel

blocks, the name of one is changed to A"1 so that the two may be distin-

guished. The declared operations are listed with indentation used to

indicate the nested relations of blocks. Block structure errors would be

easil y identified.

Pass 2 replaces secondary names and identifiers with tneir primary

equivalents. A careful examination of the results after Pass 2 indicates

that operation A•-X in state 5 becomes A-FgE when X is replaced. Then

t
t
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secondary names are removed giving A-D(4:1)¢D(8:5). The operations of

state T require that secondary names F, B, C and E be replaced with their

primary equivalents. Then Z within "if-then" punctuation is replaced with

-i+/Y is replaced with "+/F(3:2) is replaced with -++/D(2:1). Note that

state statement syntax is also converted to "if-then" syntax in Pass 1.

A state decoder network on automaton register Al is prescribed by equa-

tions in the head of the SYstem declaration at this point.

Pass 3 distributes conditions over sets of operations and removes

AUtomaton declaration syntax. Th,i results listed indicate that five

internal signals named "double-quote-integer" have been formed in order

to simplify the expression of conditions on operations. Each of the

conditioned operations can be traced back to the source DDL description.

"Go to" operations are converted to conditioned transfers to the automa-

ton register.

Pass 4 eliminates the concatenation operations. As a first example

observe that

!P*S: A<-S*D(4:1)OD(8:5).

is broken to

!P*S: A(1:4)<-S*D(4:1).,

!P*S: A(5:8)<-S*D(8:5).

Pass 5 gathers operations with the same left operand. The operations

!P*S: A(1:4)<-S*D(4:1).,

!P*"5: A(1:4)<-"5*D(4:1).

are gathered to

!P*S+P*"5: A(1:4)<-S*D(4:1) + "5*D(4:1).

No logic minimization or even sim plification is performed as part of the

j _	 gathering process.

f
à
3
h
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In Pass 6 the A and D registers of automaton Al are partitioned and

transfer -tatements are developed for each subfacility. Pass 5 proviaes

the following transfers to the A register or some part of it.

!P*S + P*"5: A(1:4)<-S*D(4:1) + "5*D(4:1).,

!P*S + P*"5: A(5:8)<-S*D(8:5) + "5*D(8:5).,

!P*"3: A<-"3*D.

The last of these operations invoives the entire A register; the others

involve a part of it. Pass 6 partitions the A register to A(1:4) and

A(5:8), and forms the correct transfers to each of these subfacilities.

The F table as it appears after Pass 6 is listed as the final result

of this example. Facility names are followed by left and right subscripts

and facilitv dimensions. The next column indicates the type of the facil-

ity with negative entries (-1 for SYstem, -6 for REgister, -9 for TErminal,

etc.). Positive entries point to the row of the parent facility. The

final columns point to the beginning and ending points of facility opera-

tion statements in the DDL string.

}

i
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4. THE SIMULATOR (DDLSIM) [35]

DDLSIM is a program for simulating digital systems described using

DDL. The simulator has a simple, powerful and completely free-format

command language that provides the user with complete control over the

simulation process without requiring that the DDL system description be

modified. DDLSIM does very extensive error-checking of described

^ 	 systems, simulation control cards, and the simulation process itself.

Self-explanatory messages that pin-point errors are issued.

Digital systems to be simulated are first described in DDL. This

description is translated by DDLTRN into a set of Boolean equations and

Register Transfer expressions. These can be used for implementation or

simulation of the digital system. They, together with other data

structures and tables established by DDLTRN constitute the system de-

1	 scription required by DDLSIM. This description is pre-prccessea by the

I
simulator to establish data structures and tables that permit more

i

efficient and controlled simulation.

The original and translated DDL descriptions of a system neither

f	

contain any information for controlling simulation nor do they supply

i	 any input data for simulation. These items are supplied by a second

source to DDLSIM, a simulation deck. This deck consists of simulator

control declarations described using a simulator command language that

is not unlike DDL. Twelve different declaration types are available for

selectin ;; options and supplying control information, parameters, and
i

f ^.	 data for simulation. Every simulation job consists of:

_	 1. processing the system description,

f •	 2	 processing the simulation deck, and

I	

3. simulation of the system.

-31-
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The following notational conventions are used in subsequent sections

to describe the syntax cf translated DDL and to define control language

s3 - Ix.

Script characters - an item of the language. Item a will be defined

in terms of items B and Y with notation

a . B, Y

which is read "an a is a 3 or a Y."

[	 ]	 - appearance of the enclosed svntatic structure is

optional

the enclosed syntatic structure may be repeated

an arbitrary number of times or not at all.

Blanks have no significance in syntax descriptions just as they have no

significance in DDL or the DDLSIM control language.

4.1 SIMULATION MODELS

As mentioned earlier, Boolean equations (BE) and Register Transfer

Expressions (RTE) generated by DDLTRN constitute the system description

required by DDLSIM. The models of combinational networks and regis*_zrs

used by DDLSIM is t`.e subject of this section.

4.1.1 Terminals, Element Inputs, and State Terminals

The terminals, element inputs, and state terminals declared in a

system are described using BEs. In addition, DDLTRN generates BEs for

a number of intermediate signals. All such BEs constitute the

combinational portion of a system. They are first sorted into an

ordered list according to the level of their operands, i.e., if a terminal

A is used in the BE for another terminal B, A will appear before B in

the sorted list. However, if the system contains loop(s) in it's

combinational portion, it is not possible to sort the equations in this
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a constituting the loop(s) (or loop

equations) are separated from other BEs. The remainder of the BEs

are then sorted into an ordered list as described	 Loop equations are

then added to the sorted list at an appropriate point.

Firing simulation the combination&: portion of a system is

simulated at the BE level. BEs can vary from a simple sum-of-products

form to the most complex and compound of forms. The BEs are evaluated

in the order established by sorting with the loop equations being

simulated repeatfdly until their output values stabilize. Failure of

a loop to stabilize after a fixed number (determined by the character-

istics of the loop equations) simulations, indicates instability in the

loop. In such a case a warning is issued to the user and the simulation

is continued with the last computed values for the loop equations taken

as their final values. Thus DDLSIM also permits the simulation of

systeL.s having loops in their combinational portion.

4.1.2 Delays

The delays declared in a system using <DE> declarations of DDL or

DDLSIM) are also described using BEs. These delays are assigned their

delal time periods (Ds) using <DElay> declaration of DDLSIM (see Sec.

4.2.4). All the delay facilities are assumed to be inertial delays,

i.e., an output signal(s) will assume a new value(s) 0 time units after

it's input prescribes that change, if and only if the input signal

prescribes that value for at least A consecutive time units. Unlike the

BEs discussed above, the BEs for delays are not sorted in any particular

order.

During simulation each delay is simulated at the BE level with

specified inertial delay assigned to it's output. The new computed
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t value(s)	 for eAch delay is compared with its pr.,sent output value(s).

p If they are different, a future event at A time units from present

simulation time T is scheduled to carry out the change(s) in the output

value(s).	 However, if the BE does not continue to prescribe the change

for at least the next A time units, the scheduled event is cancelled and

L:.0 output(s) of the delay remains unchanged.

It is possible to assign the same delay time Ltd 
/2j	 (see Sec. 4.2.2,

4.2.5)	 to all the BEs for the combinational aortion (see Sec. 4.2.1) 	 of the

I
system by settLng flag number 13 (see Sec. 	 4.2.14)	 In such a case all

these facilities become equivalent to delays.	 It	 is important to note

that the delay time assigned to these BEs is the same for all of them,

irrespective of their cumplexity.

4.1.3	 Registers

The registers declared in a system are described using RTEs.

RTF consists of a Condition Expression (CE)	 followed by a Transfer

Expression (TE).	 RTEs generated by DDLTRN have the following general

syntax:

RTE	 CE	 I	 TE.

CE	 C	 [+.0 ]"

Condition term	 C : C
C
	 * C4 , CZ

Clock condition	 Cc	 glohal condition in the heading )f an <AU>

I declaration of DDL, a clock 4:clared in a

I <TT> declaration of DDL.

Load condition	 C^	 6 with jW 	 1.	 (see Sec.	 4.2.1)

TE	 S -	 E

I Load expression	 E	 e [+C]
n

r
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Expression term e :	 C^ * 
V 

Load value	 V e : an expression

`	 Example: I P*LDX + P*ORXY + P*LDY 
I 
ACC - LDX*X + ORXY* (X+Y) + LDY*Y.

11	 In the example P is a clock; ACC, X, and Y are all registers having

`	 dimensions of 24; LDX, ORXY, and LDY are term'_nals declared u- ing

{	 appropriate declarations. The CE in this example has three condition

terms specifying the conditions fur performing different register

transfers on ACC. All the register transfers in this case are carried
r

out under the control of the same clock P. In the RTE for registers

}	 declared as global facilities and used in different automata, each

I	 having a separate click or global condition, the CEs may have different

clock conditions C C . For each condition term C in the CE, there is a

corresponding expression term 2 in the TE. When a load condition CQ

becomes true (logic 1) and the corresponding clock condition C performs

a 0-to-1 transition, the next-output value for the register is computed

using the load value V  from corresponding expression term e. On the

next 0-to-1 transition of the C., this next-output value becomes the

present-output value.

During simulation CEs for all the registers are evaluated only at

certain event-times (see Sec. 4.3). On a 0-to-1 transition in the value

for a CE, the corresponding E is evaluated and the computed value is

stored as ttie next-output value for the register. On a 1-to-0 transition

t

of the same CE at some future evaluation, the next-output value for the

register becomes it's present-output value. In order to make simulation

fast and efficient, CEs are evaluated oniti at event-times at which 0-to-1

or 1-to-0 transitions of clot': conditions take place. It is not possible

to have a 1-to-0 and 0-to-1 transitions far the same CE at the same

r
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I

(	 simulation time T. It is possible to simulate asynchronous sequential

systems using DDLSIM.

The simulation model used for a register is very similar to a GL

(gate and latch) flip-flop. A logical OR of load conditions 
C  

from

'	 CE constitutes the Boolean equation for the GATE of the flip-flop, E

M	 from RE constitutes the LATCH equation for the flip-flop, and a logical

OR of the clack conditions C C from CE constitute the CLOCK of the flip-

flop. (See the figure below)

4.1.4 Memories
s

j	 The memories declared in a system are also described using RTES.

!	 A RTE for a memory is similar to that for a register with an address

1	

specified for the facility 5, i.e.,

1	 memory	 6(a)

address expression a	 an expression

The simulation model used for memories is also similar to that used

for registers. For memory-write operations the address expression z is

evaluated on a 0-to-1 transition of the associated CE and the computed

value is stored as the address of the memory location. On the next

1-to-O transition of the condition expression CE, the contents of the

addressed location are changed to the supplied value. Memory-read

operations are instantaneous, i.e., contents of the referenced memory

`	 location are fetched immediately.

`J
Galen Latcn

1	 ~-^^~; -^	 - ^
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4,2 SIMULATOR COMMAND LANGUAGE AND DECLARATIONS

The DDLSIM command language consists of twelve different types of

declarations for suppl y ing parameters, input data, options and other

control information necessary for simulation. The language is largely

free of format restrictions. Card images are scanned in turn from left

to right. Any declaration w-:y start at any point and end at sny later

point in the card deck. A declaration can be continued on as many cards

as necessary; more than one declaration can be supplied on the same

card. The start of a declaration automatically ends the previous

declaration. The last declaration L. a simulation deck is ended by an

End-Of-File (normally a card having '$' in the first column). In general,

the order in which the declarations are specified is not important. It

is possible to have more than one declaration of the same type. Every-

thing following the vertical line character (;) on a card is treated as

a comment, and is not processed as a part of a declaration. Scanning

continues on the next card. This provides the capability of having in-

line comments in a simulation deck.

Each card from a simulation deck is processed sequentially by the

simulator. First it is printed together with it's sequence number. It

is possible to suppress echo printing of the simulation deck by turning

the list option off, i.e., resetting Flag 1.

Each simulator declaration has the general syntax

<Declaration-id` Body

?	 Each declaration begins with a left angle (<) followed by a Declaration-

id that identifies the type of the declaration. Only the first two char-

acters of the Declaration-id are examined b y the simulator. Tne Declaration-

id is terminated by a right angle ('). All declarations except the

A



-38-

f	 ;

<SImulate> declaration have a Body io;].owing the heading.

4.2.1 Facilities

Facilities are defined here a- in DDL to be any piece of hardware

declared in a digital system including terminals, registers, memories,

and assemblage of hardware, clocLs, delays, etc. If a facility name fin

excteds 8 characters, only the last 3 characters are retained. If a

facility has d -'-ension greater '-ha. one, individual elements are identi-

fied by appending a non-neg.:titie it.teger subscript S l enclosed in

parentheses to 6 n . A range o: eLerents of a facility is identified by

using a DDL subscript range. i.e., 6 n (S 1 : S` ). A script letter	 will

be used to represent a ftc:-ity or a part of it.

I6rt(Sl	 S. ), 6,1 (^ I), 6 11	 where

6n (S I ^	 6 n ( SI : SI)

6	 - t' it
	 : S,1)

St - subscript for Leftmost element of
it

subscript for rightmost element of I
n *n

Facility width 6W of a facility 6 is defined as the total number of

elements in it, i.e.,

h  - max(S l , S2 ) - min( S l , S 2 ) + 1

During simulation one machine word is used to store the values of

facility	 6.	 The SEL 32 machine has 32 bits per word. Hence it is

that the facility width 6W for any facility 6W in the system
i

necessary

not exceed 32,	 i.e., jW	 32.	 However, S^ and S t may have larger values; 

r
i only their difference is restricted.

i	
1

A facilit y	list t, is defined as a list of	 facilities	 6 separated by

commas,	 i.e.,

T i
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Whether a specific facility can be used in a facility list for a specific

ltype of declaration is determined by both the type 6, of the facility and

I

the type of the declaration. The following facility types exist for

DDLSIM.

ti t : System clock, Register, Memory, Terminal, System delay,

r
Element input, Element output, State terminals, Trigger,

r	 Simulation dela y , Simulation clock, List name.

Every facility 6 used in a DDLSIM declaration must satisfy exactly one

of the following conditions:

1. is declared in the DDL description of the system.
i

2. 6 is declared during the present simulation run using a

<CLock>, -•DElay>, <TRigger>, or <LIst> declaration. The

type of declaration in which 6 appears determines its type

6, which cannot be changed for the remainder of the simulation

job.

3. 6 is declared during any previous simulation run as discussed

in 2 above.

4.2.2 Numbers and Data Lists

T ,	- a decimal integer having the value (2 31 - 1).

IFMAX - a decimal integer having the value (2 16 -1).

a decimal integer n in the range	 i n	 where t and

1.	 are each non-negative decimal integers. Whenever j is not

specified j - TVWX is assumed; whenever t is not specified

i w 0 is assumed.

a 	 ►t	 enclosed in parentheses
C .1	 C.1

r

r	

-,ABA
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1	
+	

►
14-11	 `n^-r^^

i 1	 R - Repeat factor, a positive decimal integer

R . n 

A repeat factor R can be used before a data value or parameter

value, i.e.,

R*va lue ,

to indicate that the same value is to be repeated R times

in the list.

T - Simulation time

T	 .	 n

td - Default time period

td : 11  , PIVAX

Data is described with the following syntatic structures.

d8 - a binary digit

dB : 0,1

d 0 - an octal digit

d0 .	 0,1,2,3,4,5,6,7

d0 - a decimal digit

"
D .
	 0,1,2,3,4,5,6,7,8,9

d  - a hexadecimal digit

d 	 .	 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

dv - a general digit excluding the hexadecimal digits B and D.

d 
	 .	 0,1,2,3,4,5,6,7,8,9,A,C,E,F

B - a binar y number

B [+,-]Bd B [ d81", i[ +, -]BdB [BdB [d8]Y1)

r

I^

f	 _
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1
D - an octal number

0 : [+,-]0do [do]", ([+,-10do [do f)
f I	 D - a decimal number

D : [+,-]DdD[dD]`t, ([+,-JDdD CdD]")

H - a hexadecimal number

H : [+,-]HdH[dH]", (L+,- ]HdH [d H]")

N - a binary, octal, decimal or hexadecimal number.

!	 N : [-,-Ids C dHJ". ([+,-] dG LdH]")

Optional leading minus signs (-) before any of above five types of

numbers specifies the 2's complement of the number. 1's complement

encoded negative numbers are obtained by setting Flag 10 (see Sec. 4.2.13)

I
N2 - Data value

N2 .	 B, 0, D, H, N,

N 1 - Data spec

	

I	 NI .	

LF*] N'

ed - a data list consisting of data specs separated by commas.

e  : N  [,NIid

Whenever a data value is specified as a number V without leading radix

specification, the default radix is used for computing the value of

number. The default radix of 8 (octal) can be changed to 2 (binary),

8 (octal), 10 (decimal), or 16 (hexadecimal) by setting flag numbers

2 thru 5 (see Sec. 4.2.14 respectively. Resetting these flags returns

the radix to the default value of 8 (octal).

4.2.3 <CLock> Declarations

This declaration provides a means for specifying or changing the

	

r

	
time period, pulse width and phase of clock facilitiF.s. It also permits

	

i

	 users to declare new clocks to be used to control simulation input and

I- t
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l

output activities. Syntax for this declaration is as follows:

<CLock> Body

Body	 [^l,]n e[l]

List	 tC/i it

Clock list	 ^c	 Z6 where

Facility t ypee	 s stem clock simulation clock

	

6 t 	y

Time list	
tt :
	 t[,.t]n	 i

Time spec	 Z :	 [R*] P [W[0]]

Time period	 P	 n	 I
2,^

Pulse width	 W	 iti P-1' 

Phase	 B	 nP P_W

Example:	 <CL> CLOCKI(1:5), CLOCK2/2*100(30) (50)/,

CLOCKI(6:10), CLOCK3/100,100(30)/ 	 I

Time period P - the P field specifies the time period of a clock. In the

above example each clock has a time period of 100 in some arbitrary units.

Pulse width W - This is an optional field specifying the time W for which

a clock remains at 'Logic 1 during any clock period P. For the remaining

time (P-W) the clock remains at logic 0. When the pulse width is not

specified along with the time period, the following default value W is

used.

W - LP/2j

lIn the example a pulse width of 30 units is supplied for both

_	 CLOCK(1:5) and CLOCK2. CLOCK3 is assigned a pulse width of 30 units.

INo pulse width is explicitly specified for CLOCKI(6:10), hence a default

value of 1100123 - 50 units is used as the pulse width.

Phase d - At the start of a simulation :-un, i.e., T - 0 a clock with a

r
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period P and the pulse width W is set to start at logic 0. It remains

at logic 0 for the next ( P-W) time units; then a 0-to-1 transition takes

place. For the next W time units, it stays at logic 1; then a 1-to-0

transition takes place and the cycle is repeated. The occurrence of the

first and every subsequent 0-to-1 transition can be advanced relative

to the starting of simulation by specifying the phase d.

1. For phase B < P - W a clock starts at logic 0 and has it's first

0-to-1 transition at (P-W-d)time units after the start of

simulation.

2. For phase d - P - W, a 0-to-1 transition takes place at T 	 0.

The default value for 9 is zero. In the example a phase of 50 units

is specified for CLOCKI(1:5) and CLOCK2. Since no phase specification is

given for CLOCKI(6:10) and CLOCK3, 8 - 0 is assumed for them. Waveforms

for these clocks are shown below. Note that it is necessary to specify

pulse width W, if it is desired to specify phase E .

During a simulation run, none of the parameters, P, W, and A can be

respecified for a clock facility. These parameters remain effective in

all subsequent runs until :especified.

r

^[icur'i

It	 i

r.

CLOCKI (1:5)
CLOCK

IP - 100, W - 30, E) = 50

CLOCKI (6:10)	 P - 100, W - 50, B - 0

CLOCK	 P - 100, W - 30, d -_0

0	 20	 50	 70 100
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As mentioned earlier this declaration allows new facilities to be

declared as simulation clocks. Since these clocks cannot affect the

activity within the system itself, thty are a source of periodic signals

which can b_ used to control input, reinitialization, output, etc.,

during simulation. They can be used in realizing signals with complex

waveforms that are needed to control various activities during simulation.

Simulation clocks may also be used as sources of input signals to the

networks being simulated.

Each facility b from clock list a is assigned parameters Z from

associated time list Z 	 Insufficient or excess data in time list Z,t

will result in a non-fatal error (see Sec. 4.4 for errors). In the case

of insufficient data, default parameters are assigned to facilities

remaining in ZC.

4.2.4 <DElay> Declarations

This declaration provides a means for specifying delay time A for

delay facilities. Syntax for this declaration is very similar to that of

the <CLock> declaration.

<Delay>	 Body

Body	 [Z/,]n Z [/I

'	 list Z Zd/Zz

list Zd t, where
I

Delay

Facility type 3 system delay, simulation delay

Time list ZZ
t[t]n

i
spec

I

Time t [R*]L

Delay time b
n 

Example: <DElay> DELAYl(1 2), 	 DELAY2,	 DELAYI(3:5)/2*100,5u,*
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DELAYI(1:2) and DELAY2 are each assigned a delay time of 100 units.

DELAYI(3:5) is assigned a delay time of 50 units.

All the delay facilities are assumed to be inertial delays, i.e.,

an output signal(s) will assume a new value(s) d time units after its

input signal prescribes that change, if and only if the input signal

prescribes that new value for at least A consecutive time units. As an

example of inertial delay assume that waveform A below serves as the

input signal to both DELAYI(1) and DELAYI(3). Waveforms B and C

represent the actual output of DELAYI(1) and DELAY(3) respectively.

A

A - 100
B

1	 50

time

0	 100	 200	 300

Dela y time period A can not be respecified within a simulation run.

Once specified, A remains effective in all subsequent simulation runs

until respec if ied.

Like the -CLock > declaration, this declaration also allows a user

to declare new delay facilities that may also be used for controlling

carious activity,., during simulation.
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:y from ed is assigned, in turn, delay times from

the associated time list P t. Insufficient or excess data in t  will

result in a non -fatal error. In the case of insufficient data, the de-

fault delay time (4.2.5) is used for remaining facilities in £d.

4.2.5 Default Values for Clock Parameters and Delay Times

Before any simulation can be performed, it is necessary to assign

clock parameters to every clock facility and delay time to every delay

facility. Values specified through <CLock > and <DElay > declarations are

used for specified facilities. For the remaining clock and delay

facilities, default values are used. A default time period td is used

in determining the default values.

1. Default clock parameters

Default time period 	 P - td

T:efault pulse width	 W - Ltd 
/2j

Default Phase	 B - 0

2. Default delay time period = 
Ltd/2j

At the start of a simulation job td is set to a value of 2. If

any <CLock > or <)Elay > declaration is encountered in the simulation

deck, the value td is changed r.o

td - min ( P, 2A) where

P is any clock period specified, if none P - 2, and d is any delay

time specified, if none A - 1.

4.2.6 <INitialtze > Declaration

This declaration provides a means for initializing the output

values) of delays, registers, memories, element outputs, primary

signals, terminals and triggers with delays. Syntax for this dec

is as follows:
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< INitialize>	 Body

Body	 [ e/,]n e[ /]

List	 e	 le /ed

Initialize List et	e6 where

Facility type	 6 #	 system delays, simulation delays, registers,

memories, element outputs, primary inputs,

terminals, and triggers with delays.

Z	 Data list (see Sec. 4.2.2.)

Every facility 6 from Z  is initialized to a specified value
obtained from the associated ed. Insufficient or excess data in Ld

will result in a non-fatal error. If data in ed is insufficient,

remaining facilities from ei are initialized to default values.

EXAMPLE: <IN> INPUT, MM(0:1023)/B1011,1024*0/

INPUT (declared as register having width 4) is initialized to the binary

value 1011 and the first 1024 locations of KEM, are all initialized to 0.

Before any simulation can be performed during a run, it is necessary

to define output values or initialize all the facilities. Fer all the

facilities initialized through an <INitialize> declaration(s), specified

values are used. For remaining facilities initial values are determined

as follows:

1. Delays, Registers, Element outputs, Primary inputs, Terminals, or

Triggers with delays are all initialized to zero.

2. Memory locations are not initialized at all. They will have the

same contents as at the ^ermination of previous simulation run.

For the first simulation run their contents are unpredictable.

3. Init4.al values for Terminal, Triggers, and Element inputs without

.relays are determined by using intitial values for other facilities

r
r
r

4

i
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and simulating the system at T - 0.

4.2.1 <REad> Declarations

This declaration provides a means for establishing input data values

for various facilities. S yntax for this declaration is as follows.

<REad> Body

Body : ft/,] n ZI/]

List	 P : m/Zh/Qd

Mode	 m : X, V, Z

Triggered or Mode, 	 X : 6 where 6W	 1

Periodic or `lode,	 y : P[9]

Period P : ►,i 
PMX

Phase 9 : n O' P

Specific Time or Mode Z : n

Read List	 .°.h: Q6 where

Facility type	 6t• registers, system delays, simulation delays,

memory locations, element oz-1 tputs, terminal

or triggers or element inputs with delays

Data List	 Qd: same as in <INitialize>

Example: <TR>	 TR/EXINP+F-XBIN1/ (see Sec. 4.2.15)

<CL>	 P/100(30)/

^ E>	 TR/INPUT/1,2,3,4,-5/

As shown in the syntax, the READ operation may be carried out in

three different modes:

1.	 Mode X -- Triggered Mode

In this mode a 0-to-1 transition of the triggering signal establishes

a new set if input values, obtained sequentially from the associated data
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list ';d , for the facilities specified in the associated read list en.

At any simulation time input values are eetablished before any other

simulation activity except for updating of clocks and delay outputs.

Hence, if the triggering signal itself is not a clock or delay facility,

input values will be established at a time later than the actual 0-to-1

transition time of the triggering signal. In fact they are established

at the next event time.

2. Mode V -- Periodic Mode

This mode provides an easy meanb for establishing input values

periodically. P specifies the time period for performing the READ

operation. The first READ operation is performed at T = P, the next

at T = 2P, and so on. However, the first and all subsequent READ

operations may be advanced relative to the beginning of simulation

i.e., T = 0, by optionally specifying the phase 9. Thus, in the case

of P - 100, and 0- 30, the first READ operation will be performed at

T = 70 (advanced by 30), the the next at T - 170, and so on. When 0 = P,

the first READ operation is performed at T = 0. This is equivalent to

initializing the associated facilities using an <INitialize> declaration.

In ail cases except for P = 1, an identical periodic READ operation

can be obtained using a clock with period P, any valid pulse-width W

and appropriate phase 9 as a triggering signal in mode X.

3. Mode Z -- Specific Time Mode:

In this mode the READ operation is performed only once at the

spec if ied time.

In Mode X and Mode Y READ operations, data values are supplied to

sets. The first set of values are used for the first READ operation,
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and the next set is used for the second READ operation. These sets are

not separated by any special delimiter. Instead they are grouped in the

form of a single data list ed . In !Node Z only one set of data values

are necessary.

4.2.8 <LOad> Declarations

This declaration provides a means for establishing the same input

values repeatedly on specified facilities. Syntax for this declaration

is as follows:

<LOad> Bodu

Body : same as in the <REad> except that the Load list °_^ is used in

place of the Read list en.

Three modes of LOAD operation function in the same way as the three

modes of READ operation. The only difference between LOAD and READ

operations is the input data values used during successive operations.

In the case of READ operations, a new set of data values is used for

each successive operation. The LOAD operation uses the same data set

repeatedly, requiring only one set of data values. This peculiar

property of the L00LD operation provides an ease means for establishing

identical conditions in the system at desired times. If the READ opera-

tion were used to achieve the same results, the same data set would have

to be repeated for every occurrence of READ operation. The ?lode Z or

specific time LOAD operation is identical in all respects to the Mode Z

READ operation.

The three modes available for READ and LOAD operations give a high

degree of freedom ir setting up data sets in an efficient manner. Each

of these modes may be used more than once. More than one mode may be

used in a simulation. All the data lists t  specified in <REad> and

-#'j
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i

IC

l- i.

<LOad> declarations are transferred to an incore buffer (if necessary

to a disk data file) and retrieved from there whenever needed. This

facility of having mu?tiple input streams for simulation is very helpful

to the user.

More than one READ and/or LOAD operation may take place at the same

simulation time. Simultaneous operations may attempt to establish input

values on the sane facilities. As long as they do not attempt to es-

tablish conflicting values, simulation will proceed, otherwise a fatal

error condition results in an immediate termination of the current simu-

lation run. A similar situation may arise with <Ihitialize>

declarations. In this case remaining declarations for the simulation

run ara processed before terminating that simulation run. This fatal

error condition may be avoided by setting Flag 12 (see Sec. 4.2.14).

The following order is used in performing various input operations

during simulation:

1. Periodic REad

2. Specific Time READ

3. Periodic LOAD

4. Specific Time LOAD

5. Triggered READ

6. Triggered LOAD

If more than one operations of the same type and same mode take place at

the same time, they are performed according to their order in the simu-

lation deck. This is one case in which the order of declarations may be

important.

Insufficient data to complete a READ or LOAD operation during

simulation will result in an immediate termination of the run. This
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I

provides a means to terminate a simulate run without using the <S
I

1

(see Sec. 4.2.11) declaration.

4.2.9 <Output> Declarations

This declaration provides a means for printing the values of

facilities at various instants during simulation. Syntax for thi

j	 claration is as follows:

<OUtput>	 Body

Body :	 [U,] ► t ^[/]

List	 t :	 m/Z0

Mode	 m :	 X, V,	 Z

Triggered or *lode X 	 6	 where bw = 1

' Periodic or `lode y	 P[B]

Period	 P 	 ►tl, P
MAX

Phase	 9	 .	 ►
t7 P

^pecif is Time or Mode Z	 .	 it

Output List£o :	 Z, where ^ti g memory

Like <RRad> and <LOad=	 declarations, this declaration has three

modes of operation. 	 Values are printed when a specific output operation

Irakes place.	 It is important to note that in the case of triggered or

Mode X output, 0-to-1 transition of the triggering ;signal causes the

output values to be printed at the same time rather than the next event

time as in case of RE-0 or LOAD operations. 	 This is due to the fact that

output operations are performred af-er all other operations in a simulation

T

step.	 More than one <CUtput> declarations maN be specified.	 Any

combination of the three <Output > -ides may be used.

Values are normally printed in an octal format. 	 They may be printed

r

rEr
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in binary, octal, decimal or hexadecimal by setting the appropriate flag

number from 5 to 9 (see Sec. 4.2.14). All values are printed in the flame

Iformat.

Output formatting is done by the simulator with the objective of

Imaximizing the total no. of facilities than can be printed. If one or

more output operations occur at a simulation time only a single line of

loutput is printed. The first entry in each line printed is the simula-

tion tLme in decimal. Values for each facility specified in any output

lists Z are printed in fixed columns. Facilities are allocated columns

1	
from left to right in the following way:

1. Triggered or Mode X OUTPUT lists

2. Periodic or Mode y OUTPUT lists

3. Specific time or Mode Z OUTPUT lists

If more than one lists of a mode are specified, they are allocated

I

columns in the order of their specification in the simulation deck. If

output values for all specified facilities cannot be printed due to lack

of room, excess facilities are ignored and a message listing them is

printed. Output values for two neighboring facilities are always printed.

Output values for two neighboring facilities are always separated by at

least one blank column. A heading of the names of the facilities along

with the subscript(s), if necessary, whose values appear below is printed

`	 on alternate pages of the simulation report. If a complete facility is

i	 included Li top no subscripts are printed in the heading. When the value

of a partial facility is to be printed, a subscript range is included in

the heading. The name of a facility is normally printed in a horizontal

format in the heading. A vertical format (in a column) is used if doing
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so saves room on output line. A subscript range is indicated by two suc-

scripts separated by a colon (:).

Whenever an output operation occurs, only the output values for

facilities from the associated output list D are printed. Other columns

in the line are left blank. This tends to increase the readability of

results. This feature of multiple output lists with each list having it's

own output control may be used to make simulation reports look more in-

formative. If the output values for one group of facilities change less

frequently than those of another group, both groups can be printed with

different periods. Such an output will ciearly illustrrte the actual

activity within the system.

4.2.10 <DUmp> Declarations

This declaration provides a means for dumping the contents of

specified memory locations at various instants during simulation. Syntax

for this declaration is given below:

<DUmp> Body

Body : same as for <OUtput> except it : memory

A DUKP operation functions in a manner identical to the OUTPUT
R

i	
operation. The print format is different, however. First, values for

each specified memory facility are printed separately. For each facility,

F

	 T	 the first line printed indicates the facility name, locations dumped and

simulation time. Following this line a heading that separates addresses

and contents of locations is printed. One or more lir..:s of DUMP output

1	 follows. In each line the first entry represents the octal address of

the first location in the line. The rest of the line contains the octal

I	 contents of the next eight locations. Various DUMP operations are carried

t	 out in the following order:
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1. Triggered or Mode X DUMPS

2. Periodic or Mode V DUMPS

3. Specific time or Mode Z DUMPS

DUMP operations are performed before any OUTPUT operations within a

i

t

simulation step.

4.2.11 <STop> Declarations

This declaration provides a means for stopping or terminating a

simulation run at a specified simulation time or on a 0-to-1 transition

of a triggering signal. Syntax for this declaration is as follows:

<STop> &,dy

&ody : m(,m]n

Mode	 m X, Z

Triggered or Mode X 	 6 where hw .1

Spec if is Time or Mode Z 	 n

It is clear from the syntax that more than one triggering signal

or specific time may be specified to stop the simulation. More than one

<STop> declarations may be specified. In any case the occurrence of a

first stop event will cause the cimulat: • -. for that run to be terminated.

At a given simulation time stop events are simulated after all other

events have been simulated. If no <STop> declaration is supplied for

the current simulation run stop events, if any, from a previous simulation

run are used for the current run.

Insufficient data to complete a READ or LOAD operation will result

in an immediate termination of the simulation run. This condition is

described as "F-ND-OF-FILE ON I`PUT." If one is sure of EOF terminations,

<STop> declarations ma y be omitted altoge!her. Whenever simulation is
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stopped or terminated a message describing the reason for termination

(a stop event or EOF on input) is printed and the simulator moves to the

next simulation run. At the end of all simulation run, an "END OF

SIMULATION" message is printed.

4.2.12 <LIst> Declarations

When a list of same facilities Z, is used in a number of different

declarations, it is convenient to identify the entire list with a single

name. This name can then rerlace the list of facilities in all of the

declarations. This is achieved by using a <LIst> declaration. This

declaration provides a means for assigning a unique name to a list of

facilities. Syntax for this declaration is as follows:

<LIst>	 Body

Body	 [Z/,]n e[/]

List	 L/Q,
0

List Name	 L	 6 where 6w = 1

A list-name can be included in the facility list e 6 for a declaration

only if the list of facilities identified by it can be directly used

there. It is also possible to use list-names in defining new list-names.

Vesting of list-names can be done up to any desired level. List recursion,

i.e., using a list-name in defining itself, is not permitted. Once de-

clared for a simulation run, list-name cannot be redefined in the same

run.

For large systems, use of list-names will result in reduction of data

structure storage space. List-names are most commonly used in <REad> and

<LOad> declarations since it is necessary to respecify these declarations

for each simulation run, if a <REad> or <LOad> declaration requires a

11
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long facility list, it is very worthwhile to assign a list-name to these

facilities and use the list-name in their place.

1	
4.2.13 <Slmulate> Declarations

(	 As discussed earlier this declaration is used to separate different

simulation runs in a simulation job. Syntax for this declaration is

very simple:

+1	 <Slmulate>

IOn encountering a <Slmulate> declaration, simulation is performed

for current run. If this simulation is terminated normally i.e., through

f•	 a <STop> command or EOF on input condition, processing for the next run

is initiated. If the termination is abnormal, tle entire simulation jobl
is terminated. Declaratio^- and parameters effective during one run are

i	
carried over to the next run as described below. Modifications and

L	 additions are easily made with appropriate declarations.

^.	 1.	 Parameters for clock and delay facilities remain effective from one

simulation run to the next; any parameter may be changed by using

the appropriate declaration. New clocks and delays may also be

j'	 declared.

2. Trigger expressions remain unchanged from run tc run unless they

jare respecified. New trigger facilities may be declared for a

simulation run.

3. <REad> or <LOad> declarations do not carry from one run to the next.

<REad> and <LOad> declarations must be respe^.ified for each run or

replaced with new declarations.

4. <OUTPUT>, <DUmp>, and <STop> declarations are carried from run to

run. However, supplying one of these declaration with a speci:ied

ode (Y, V. or :) will nullify all declarations from previous run

c
► 	 _+

e a► -	 -	 --dms., . -- s-- -- --- -- ---
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of that type dnd mode.

5. All flags are carried from run to run. Flags can be changed in any

way by including a new <FLag> declaration.

6. Lists are carried from run to run. If it is necessary to redefine

a list the new definition must be declared before the list is used

directly or indirectly in any declaration for the current run.

4.2.14 <FLag> Declarations

This declaration provides a means for selecting various options for

simulation runs by setting or resetting associated flags. A flag number

!.s associated with each option. Syntax for this declaration is as follows:

<FLag> Body

Bodo	 Vo [,VJ]n

Option Value VJ ; [ r ] F

Flag Number F	 n1,14

If the flag number F is not preceded by a complement sign (r), the

associated option is set, otherwise it is reset. An option may be set

or reset as many times as desired. The Flag table provides a description

of the option controlled by each flag number and the default value for the

option. As shown in the table flag numbers 2 thru 5 are used to select

the radix for input data. This option applies only to data values not

having any explicit radix specification (see Sec. 4 .2.2). Data values

having explicit radix specifications are interpreted accordingly. If

more than one of these options is set, only the last set option is used,

i.e., <FL> 2, 4 is equi..alen_ to <FL> 4. Moreover, resetting any of these

options brings the default radix specification to it's default value of 8

(octal). Similar action is taken for output format selection flags 6

thru 9.
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l
FLAG TABLE

Flag	 Significance	 Default

1	 Print source card images 	 Set

Ei 2 Binary data input Reset

3 Octal data input Set

{ 4 Decimal data input Reset

}	 i
l

5 Hexadecimal data input Reset

6 Binary output format Reset

1 Octal outpl;t format Set

I
8 Decimal output format Reset

9 Hexadecimal output format Reset

i . 10 Use 1's complement notation Reset

11 Write processed system to file Reset

12 Do not abort on "conflicting inputs" error Reset

13 Simulate comb.	 portion of the systimz with delay Reset

I. 14 Not used

i
+.2.15 <TRigger> Declarations

As discussed earlier,	 a triggering signal	 is used to control

triggered or mode X	 READ,	 LOAD, OT;TPUT, DUIT , and STOP operations. Any

Ielement of a declared facility, except a list-name, may be used as the

S

triggering signal for these operations.	 Appropriate triggering signals

to control the simulation may not be available in the DDL description of

a system.	 The <TRigger> declaration provides a ^leans for dec.aring new	 I
r

facilities that can be used as triggering signal.; to control simulation

^- i
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J
without requiring that the DDL system descrip:lon be modified. The

syntax for this declaration is as follows:

`	 <TRigger>

Body

Trigger expression t 

C	

Trigger facility	 t,
0

Expression	 E

Body

[tE/,]n t  1/1

t6/E

6 where 6W . 1

a,, expression

I
	 Example:	 <rR> TR/EXINP+EXBI:41

The expression E in the above syntax is a logical expression which

'	 can vary from simple sum-of-products form to the most complex and com-

pound of forms.	 It defines the associated trigger facility .t 6 .	 A

trigger facility may be used in defining other trigger facilities.

'	 Looping or trigger _`ac:lities, i.e., using a trigger facility directly or

indirectly to define itself,	 is not permitted, however.	 In the example

trigger TR is defined as the logical OR of EYINP and EXBINI.	 Both EXINP

and EXBI`'1 have been declared to bE states of an automaton.	 The auto-

maton	 waits in each of	 these states for data from an input device.	 The

'	 input device can be simulated using a triggered <REad % operation with TR

as the triggering sibnal as shown in the example in Sec. 4.2.7.

CA trigger facility cannot be redefined during a simulation run.

The definition of a trigger facility remains effective in all subsequent

runs until respecified. A trigger facility may be assig-ed a delay time

S

A using a -DElay> declaration. Similarly a ielay declared Tiring simu-

lation may also be defined using a <TRigger> declaration. For such

I	 facilities, both the delay time A and the expression E remain effective

in subsequent runs until respecified.

^j
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4.3 SIMULATION ALGORITHM

DDLSIM is a table-driven, event-oriented simulator. Time is treated

as a discrete quantity and advanced from event time to event time where

t l-,e following actions are considered by the simulator to be events:

1.	 Zero-to-one transitions of clocks. During these events data input

signals to registers and memories are sampled, and next values of

register and memory contents are computed and saved.

1.	 One-to-zero transitions of clocks. During these events register and

memory contents are updated to new values.

3. Delay lines taking new values.

4. Simulator input, output and control. events.

The simulator maintains a list of events to be "ecuted in the

future. Simulation is performed onl y 1 event-times. The simulation

clock is always stepped from crte event-time to the next event-time, no

simulation being performed for the intermediate time interval. The

absence of any event during these intermediate time intervals implies

that no chr.nge is taking place in the system. For each event-time tests

are performed to establish the need for simulation. Simulation is per-

formed at event-time only if needed. A periodic event causes a future

event to be scheduled.

Event time simulation makes the units used f or time specification

unimportant. Any arbitrary !nits can be used. The number of events

simulated and not the number of time units elapsed determine the computer

time consumed by a simulation run. Since the largest integer handled by

the SEL 32 machine is	 (2 ` -1), it is necessary to keep the simu-

lation termination time within this limit. It is suggested that smaller

I
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time periods be used for long simulation runs to avoid overflow of the

simulation clock.

At a given event-time various events, if present, are processed in

the following order:

1. Zero-to-one transitions of clocks

2. One-to-zero transitions of clocks

3	 Change of output values for delays

4.. Periodic or `ode Y READ operations

5. Specific time or *code Z READ operations

6. Pe-iodic or Mode Y LOAD operations

7. Specific time or Mode Z LOAD operations

8. Periodic or Mode Y DUMP operations

9. Specific time or Mode Z DUMP operations

10. Periodic or Mode Y OUTPUT operations

11. Specific time or MODE Z OUTPUT operations

12. Specific time STOP operation

After processing these events different simulations steps, if necessary,

are performed in the following order:

1. Triggered or `lode A <REad> operations are completed

2. Triggered or Mode A <LOad> operations are completed

3. If there were any new one-to-zero transitions of clocks declared in

the DDL description or combinational clocks, i.e., signals generated

using	 logic and used as clocks for registers, output

values for affected Registers or memory locations are changed to

their new values.
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4.	 If necessary, the combinational portion of the system is simulated.

If any new one-to-zero transitions of combinational clocks are

detected, Step 3 and 4 are repeated until no more one-to-zero

transitions occur.

S.	 If any one-co-zero transitions of system cloc!,s o, combinational

clocks were registered, new output values are computed and saved

for affected registers and memory locations.

6. If necessary, delays are simulated to compute new future output

values.

7. Triggered or Mode X DUMP operations are completed

8. Triggered or Mode X OUTPUT operations are zompleted

9. Triggered or Mode X STOP operations are completed

This procedure is repeated until the simulation is terminated.

r

w

C
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4.4 ERRORS

DDLSIM performs very extensive error checking. On detection of an

error, an error message is printed. Whenever possible an attempt is

made to pin-point the error. Error messages are printed in one of the

two formats discussed below.

1. Error messages which can be associated with a card in the simulation

deck resulting from syntax errors are printed in the following

format. The card containing the error is printed (if not already

printed) with a vertical bar (;) placed under the column •:ontaining

the error or the column next to the item containing error. A dotted

!!.tie starting from the column next to vertical bar (;) and termina-

ting with the error message on right end of the page is printed.

Example: <CL> CLOCKI(185) CLOCK (6:10)/2*100/

.INVALID DELIMITER

Processing of the remainder of the declaration and the simulation

deck is continued b y skipping to an appropriate position in the

declaration.

2. Errors which cannot be easil y associated with a particular card in

the simulation deck are printed in this format. The error message

preceded by three asterisks, i.e., '***' is printed on the left end

of the line. Error messages printed in this format normally contain

an error description with associated parameters, i.e., facility

name with appropriate subscripts, simulation time, etc., to help in

locating the error. Some of the error messages require more tnan

one line.

Example: ***RESPECIFICATION OF DATA FOR INPUT(1:5)

***AT TIME - 200
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Errors are generally classified as fatal or non-fatal depending

j upon the nature, position and stage of simulation during which they

occur.	 Fatal errors normally result in an immediate termination or

abort of the simulation job.	 However, up to 10 _atal errors are allowed

{
during the processing of the simulation deck for a simulation run. 	 If

1

i

any fatal errors were detected during the processing of the simulation

1. deck, the entire simulation job is aborted. 	 Whenever a simulation job

is terminated due to fatal error(s) a message identifvir3 the action is

printed,	 i.e.,

***TO MANY FATAL ERRORS - SIMULATION TERMINATED.

Non-fatal errors do not cause the termination of the simulation job.	 In

this regard they are warnings rather than errors.

DDLSIM performs com p lete syntax checking on the 8Es and RTEs

describing a digital system.	 Any errors detected during the processing

of system description are treated as fatal errors. 	 However, the simu-

lation job is not terminated immediately.	 Since the errors detected

. during this stage cannot be easily associated with the DDL deck, they

are printed using the second format described above. 	 During the simula-

tion stage complete error-checking is performed on the simulation

? process itself looking for errors such as:

1 1.	 invalid mrmery addressing,

2.	 instability in networks containing loops, and

1
3.	 attempts to input conflicting data on a facility.

IF
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5. EXAM?LES

i
This chapter provides some example DDL descriptions. 	 The examples

` ! range from small synchronous circuits to a simple, but complete computer.

1.

These examples do not illustrate all the capabilities of DDL, but provide

a good introduction to the user unfamiliar with DDL.

Example 1:	 A Serial Twos Complementer

The serial twos complementer uses the familiar copy/complement

algorithm:	 starting from the least significant end of the number, copy

the bits as they are till and including the first non-zero bit; complement

j
the remaining bits till the most significant end. 	 As an example,

0 0 1 0 1 0:1 0 0	 Number

1 1 0 1 0 1:1 0 0	 Twos complement

complement	 copy

This algorithm is implemented using a shift register and right

circulating its contents while copying or complementing as required. 	 The

number of shifts is equivalent to the number of bits in the register.	 A

1 flip-flop can be used to	 store the coPy or complement state.

Figure 5-1(a) shows the description of the serial twos complementer

in DDL.	 The content of the six bit register	 R	 is to be replaced by its

twos complement.	 Register	 C	 (3 bits) counts the number of shifts. 	 S

is a state flip-flop to indicate the copy or complement state. 	 T	 is a

control flip-flop to indicate RUN/STOP state for the complementer.	 The

complementer waits for SW to be	 ON, to start complementing.	 There is

taclock	 P.	 An OPerator ADD is described in lines 5-8. 	 This is a 3 bit

adder to increment the contents of the argument register by 	 I.	 The

AUtomaton COMP has two states:	 a waiting state	 1, and a processing

fr
-66-_	
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state S1. Setting of SW is required for the transition to Sl state. In

S1, the register R is circulated right 1 bit with the least signi-

ficant bit copied or complemented, depending on the state of S being

0 or 1. If register C has reached a value of 5, the complementation

is stopped by setting T to 0 and returning to state I. If C f 5,

COMP stays in S1 state and increments C. The FLag statement (line 13)

sets the flags of the translator to provide the out puts at each of its

six phases. Figure 5.1(b) shows these outputs. A detailed description

of Figure 5.1(a) follows:

Line 1: The name of the system is COMPLEMENTER. Only the last 8

characters of this name are retained by DDLTRN. There is no period at

the end of this line, since the system description is not complete yet.

Line 2: REgister R has 6 bits numbered 1 through 6, left to right;

C has 3 bits numbered 2 through 0; S and T are single bit registers.

C counts the shifts; S is the copy (0)/COMPLEMENT (1) state flip-flop.

T is a flip-flop indicating that the complementing process is underway.

It is not really required, but included to illustrate some DDL features.

Period terminates the REgister description.

Line 3: A LAtch by name SW

Line 4: A single phase :,Lack (Time) P.

Line 5: A special OPerator by name ADD. The output of the operator is

a 3 bit number. The input is through the argument X (X is a formal

parameter). No period to terminate, since the operator description is

not complete yet.

Line 6:	 Declares the TErminal X to be of 3 bits and a new 3 b-L

register C. DDLTRN changes this name to Cl.
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Line 7: Declares a new IDentifier for the concatenation of the last two

bits of C and a 1.

Line 8: Declares the CARRY and SUM bits of an adder consisting of 3

half adders. C has the carry bits from each half adder, CC consists of

carry bits from previous stages along with a 1 for the least significant

bit. ADD consists of the SUM bits output. Note that ADD is the name of

the operator, which is simply an ADD 1 circuit. The circuit implied

(modelled) by lines 5-8 is:

X(1)	 X(2)	 (3)

C	 1

HA	 HA	 HA

Carry Sum
C(1)	

ADD (1)
ADD (2)	 ADD (3)

Note the periods at the end of line 8. The first terminates <BO> and

the second terminates <OP>.

Line 9: Automaton COMP is controlled by the clock P. Since COMP is not

subscripted (by parenthesis) it is assumed to be having only two states

(1 bit). (If there are more than 2 states, then the number of bits ra-

quired for state identification must be shown)

Line 10: STate (Step) I with identification 0. AUtomaton COMP waits in I

till SW is 1. When SW is 1, T is set to 1, C and S are set to 0, and a

transition is made to state S 1 (all in parallel). The period terminates

I.
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i

i

I

Line 11:	 State S1 with the designation 1. waits for T to be 1. 	 If S is

4
` 1, R is circulated right one bit with the bit R(6) complemented; other-

wise R is simply circulated. S receives R(6) if S - 0. 	 Also in this

state,	 the value of C is chec;,-d	 be equivalent to 5(101 2 ).	 If C-5,

l
T is set to 0 and a transition	 _ is made; if not, C is incremented and

S 1 state continues. 	 7	 e•iods at the end of line 12 terminate the

'
4

If	 . .	 THEN on C,	 S 1,	 S'.	 .iU and SY declarations respectively.

1
Line 13:	 Sets the FLags of DDLTRN to output results of each of the six

' passes.

i

Figure 5.1(c) shows the input commands for DDLSIM. 	 FLags for DDLSIM

are set for decimal data input (4) and binary output	 (6)	 in Line 1.	 SW

is initialized to 1 in line 2.	 Two values are read into R one each time

state I is reached (line 3).	 An output trigger OUTTR is declared to be

ON at the falling edge of clock P (line 4). 	 The values of COMP, R, S, C,

? T are to be Output when OUTTR is ON and that of R when in I state (line 5).

j The simulation is started with <SI> in line 6. 	 Figure 5.1(d)	 shows the

j
simulation output.	 The TIME starts with the raising edge of clock. 	 Each

edge is a time event.	 At time 0, all registers are zeroed and the circuit

j is in state I.	 At	 L	 SW	 is set to 1.	 At 2,	 R receives 5.	 12 more time

slots(6 clock pulses) are required for R to have its twos complement

1 (time 14).	 At time 16,	 the new value for R (20)	 is received and its twos

f
complement is ready at time 28.	 Since all the inputs are exhausted,	 the

simulator stops at time 29.

'r
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Example 2: The Serial Twos Complementer (variation 1)

a^
Figure 5.2(a) illustrates another version of the twos complementer.

i	 Two operators are used. The six bit COM operator circulates register X.

9	 The bit fed into X(1) during circulation is either X(6) or X(6) depending
v

on the value of Y is 0 or 1. respectively. The Wr" operator is the

sane as the ADD operator in example 1. This version just illustrates

ii	 the use of operators. Figures 5.2(b) shows the DDLTRN output, 5.2(C)

shows DDLS LM input and 5.2(d) snows the DDLSIM output.

r.
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Example 3: Twos Complementer (variation 2)

Figure 5.3(a) shows a version of twos complementer description with

the use of several AUtomata. Automaton CNT adds 1 to C, checks if it is

5 and sets DONE to 1 if C - 5. It is activated by COUNT. AUtomaton

CMP is activated by CPT; performs the one bit circulation of R; sets

COUNT to 1 to activate CNT. COMP is the controlling AUtomaton, activated

by SW and in turn activates CMP in state S1 and waits for CCT to be 1

(for CNT completed) in 52. If DONE is 1, goes into wait state.

Figure 5.3(h) shows the DDLTRN output. Figure 5.3(c) and (d) show

the DDLSIM input and output respectively. Note the effect of this version

of description (AUtc- ata interaction) on simulation time.
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DDLSIM Input

Figure 5.3(d)
DDLSIM Output
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Example 4: MULTIPLIER [35]

A MULTIPLIER unit that calcula •:es the product of two 8-bit numbers

is described in Figure 5.4(a). A listing of the deck used for simulating

the MULTIPLIER system along with the simulation report is given in Figure

5.40). The <FLag> declaration in the simulation deck specifies that all

data-values specified without radix specification be interpreted in

decimal (Flag 4), and that output values be printed in binary (Flag 6).

The control unit MPY of the system waits idly in state S1 until it receives

a START command. A <INitialize> declaration is used to initialise the

START signal to 1 and start the MULTIPLIER unit. On receiving the START

command in state S1, the control unit proceeds to load the R register

with the multiplicand obtained from the BUS and proceeds to state S2. In

state S2 the B register is loaded with the multiplier obtained from the

BUS. A triggered READ operation with state terminal S1 as the triggering

signal is used to supply the BUS with the multiplicand. During simulation,

whenever the control unit reaches state S1, the BUS is supplied with a

new value of the multiplicand. The multiplier is supplied to the BUS in

a similar manner with another triggered READ operation using state

terminal S2 as the triggering signal. After loading the multiplicand and

the multiplier, the control unit proceeds to state S3. In state S3 the

multiplicand is added to the partial product, if the multiplier bit is a

logic 1. The control proceeds to state S4 in any case. The A and B

registers are shifted right together and the multiplication cycle counter

'	 MCOUNT is incremented. If the count has been completed, status line

DONE is set to logic 1 and the control unit returns to its idle state Sl.

'	 If not all bits of the multiplier have been tested, the control unit

I

returns to state S3.
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(i	 A triggering signal OUTTA defined using a <TRiggar> declaration

is used in a triggered OUTPUT operation to control the printing of the

values for HPT, HCOUNT, A, and S. These values are arinted in binary

on every trailing edge of the clock P signal. Another triggered OUTPUT

operation using state terminal S1 as the triggering signal controls the

printing of the values for the multiplicand, multiplier and the final

	

j	 product. Note that these values are printed only once, i.e., when the

	

(j	 final product is available, during a given multiplication operation. The

	(+	 two output lists printed with different frequency make the simula'ion

report more informative and readable. Since no <CLock> declaration is

included in the simulation deck, default values are used for P, W, and

	

`-	 6. Note that for a single simulation run a <SImulate> declaration is not

C

required. Since an EOF condition is expected no explicit <STop> decla-

ration is included in the simulation deck to terminate the simulation.

t
r
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tby>w ULIiWLitN:< 11>r .<nt>.l`13i)ICl''^ I-^l0).^I.l'U^II!)•

4Lrqt>1tNu.014L.

	

4.:	 <Tt>JTAwI ► t)LS(c°).o.!mt.

	

li 	 tlt>SUN(,^P Lou Ik6)viaur(S).CCL01LSI.

	

o:	 tIU>1.I^•ZLUUTl2:r) LZkhL`.
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1
	I 1 :	 <^ 1 >j 1 L U	 ST) :	 .^ 1 : tr <-ruZ r lU U'• I	 C^^'<- ^ ► ^. ` fi t <- 1 . •>^,.

	

1 ^:	 Sill) : n<- 14L; S. A <- v. - >,)

	

1S:	 55121;1 etc) I A< • LL IJIl1) lJU"..->>^.

	

1^:	 bu (3):all:c)Lt!c-Alr(I:7).ALC)<-^.

	

1S:	 wCuuNI<-LbL-'^.)*/'•CUW,IJOL',!=l.•>^l.->a^.....

	

IA;	 <FL>Si 'A.7o0.^.

Figure 5.4(a) : DDLTRW Input
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Figure 5.4(b)	 JDLSI .M Output
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Exaaple 5: HINICOHPUTER [52]

A description of a simple minicomputer is given in Figure 5.5. The

details of the minicomputer are given in the Appendix.	 :fines

2-4 in Figure 5.5 describe the registers. Lines 5 declares a asmory Mu.

Line 6 declares a START latch. Line 7 declares a four phase clock. Lines

8-11 declare a Incr -intent (by 1) circuit. Lines 12-16 declare a 12 bit

adder. Lines 18 -19 are CPU initialization. Lines 20-23 show the FETCH

cycle. Lines 24-25 show the DEFER state for Indirect Address calculation.

Lines 26-27 show the OPCODE decoding. Lines 28 -43 show the microperations

for each instruction.
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1	 s cbY>M(,^ I:
1: c,•t>+ 4^(u:7)/^r^(^^ill)/I-Cl 1:7).ACC	 UII ► )^ x(0:11)•

SS cht	 I4lr(r)I RI, ^.

w: crc	 (c5es11).

5; cT^aryvuS(11).

of <Lw>SI^RT.

fa; 4LP>CNTI,N	 A -t

1G: cI^'jLCW(c:r) I1^'1).

4C-Il, >C= AA1:(.ILi•Il-r»n(,1...
'	 Fisure 5.5(a):

1c: G(	 tx0 1?
Minicomputer

' 13: 2).
Description

I "=IULI lc:t[) I.OrI.

17: <^U>CUL-I=A*Y+i•CIr+Y *CI'^.

cAV >C W t.(46	 P(1)+ ► l1	 0-	 3)+P(4):

1 ► : 40 111 1 .. (0):STAR:.UCc • ,, F646. < • l^u. •F R< • u, "c.i	 1

^r Lui ^['( 1): ^1..^:lrll)1na^e.N^./1r12)IrCe-^I^":^^e.

21: •n1.1 :w1• YR ), •. n•,<^•[`•_i .^•I! I 	 (3 ► 11'^ <•• 	 a•I1 )<)^lc) • :^1^11	 ":c•u.• >1cc: lup)ll	 •U •i

c a : (Jtf(2):1V(1))•AM<^,1^•I)h'(C)1 ''"JJZN 	 4'Ir "•1M<•	 P'.^•,

' e5: 11(311 i-L P c-*r p-	 11	 ->t A..

et: r•(])::LV16Vl S- 30 +-L 8 1J^-> M•• t +2'.. • >IJC -3L S•>'.l^

t [7: ► Y(.l.a^Jh+1L=•>J•rar,1•>'tl..=

[ r : ,•L^Y) :) ►'111 1 A< - 0 1. C •II ^(C) I P6.•^<-r^•h• I 	°l S) 1 '. ^VJC• l	 .R)
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3,:	 l ►^l^))Jlr(Slla^f^,e•iv-)•	 A ; a 1-	 1: tot 13	 t..

Sli	 I^[l5)i1Pl1J)^wr<•e^^.•
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Figure 5.5(s) : (Continued)

ft AL PAP 1



-102-

r_

P.

L

6. IMCUiSIONS

DDLTRN and DDLSTM programs are currently being tasted on SIL-32

f	 Computer System. The output of the DDLTRN is suitable for logic genera-

tion. The -9! :put at PASS 6 aad the Facility table are now being analysed

to derive the algorithms for logic synthesis. With the logic synthesis

I

programs completa, CARAT will be a true automatic design system.
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I APPENDIX

This is a preprint of the article to be published in the

Daceeber 1979 issue of the "Proceedings of IEEE."
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Computer Hardware Description
Languages--A Tutorial

SAJJAN G. SHIVA. AIDOW L 1ERE

r^

AUMn -hen a into We detentes er a* lead Irpgn IRLL)
an rpm aw atpsessbra r levers ed I OPW Munn L dipW aaaa-
wor dsesgar err baeawaw daaaap$IOm Ins r (I^{l r aesa^e
re tprar tbay aw aayaliD^ /tdraagb IOL s war enlwan/ r a
redrr of pow. yet .lore dmudpbmm of 400 biadwaw, city
beat $@and a quay of "/unarm Dar r pmago" leer ramrth
saaebssy lye tllra. oesiw r a now radkm fr r owoww de-
siga prbr. ell T1r Darrel p+w rrmd^ MIC L's r moil Dams
lee haaawam deep ad "Mmemrb. The epebfrM lad I;•ir-
liems of MM's an dInwlL sang oft Ow godd Dar as MOM as
fIID(L The 6^ to Iwww Mel ad am aamalse I @x1pby
M ptieidaL

I. ltc-MODucTtoN
Ny digital ay Ram ca be I 'bad as the hoviq ens

.levels of conplestry 111-14):

I) alpettlemic level which *Kdm only the ayorithm and
by the hardware for the et c IN tsmlatlmo:

2) hoamm memory, awttch lent) level which describes
the syram an terms of proclewitsg lair. Mel"" com-
ponents. peripbs raiL and swuchisg networks:

31 rmcrrctioma! level (paa{tawatimp lowtl) where she
trans

Daetrae-
 and char interpretation sales we Weafsed:

41 »ester transfer le-el where rise tlgrleri am "am eir-
waats and the data transfer betwmen tier registers we
spatabed accocdnt; :o some rule:

5 1 switching circuit Imi when the system structure con-
asu of an interconnection of pea and flip-hops and the
hthasnor is Rven by a set of "can equatmag.

61 circuit Iesel where the plea and nap-flops are repiscti
by the circuit elements such r trimmon, diodes, re-

upon. atc.

Logic diagrams and Boolean equatioorn hie been used as media
of hardware darnptson. Tne complexity of these media u-
ata m Mildly as the Worse complexity increases and they am
not con.eatent to suppress the details and ui0 pro ►:de ac-
CW2tt 4011cnptsoeu u we MM unto the htaba fever from the
switching ciecutt keel Hardware description faneuapn
(HDL'si avof.ud r a solution. Although the use of computer
oriented languages to describe digital system desipl can be
traced bade to Shannon 's work an switching circuits in 1939,
Ante's work on switching theory in the 1940':. the logic
da wams at M.I.T, and WDS m the fate 1940's and the ntp-no,,
equauoDa m the 1950's 151. Iverson'$ work 161 on a formal
HDL probably mit»ted the contemporary interest in the area
of research. An HDL o similar to any o:ber hrgb-kvel pro
fpsimmmg language (HLL) and provider a mean, of

M-aacnar tecaw.I Nat 21.191 0 mm.4 ♦Marl -t 1919 n a
per. ..M,PW a 1,. the Nelb.a• Mwrtln -j Space A4rrw.
tMol,en craw$ N3G•4091 sad NA3d-330% T'lw mbaamelm of
Ib. Pa/ar .ova a.tegwM .nee rwwi of M.I.-te RAi`^rl -

Tb..verbs a .06 the DOaerte.rt .1 Carbaww fcwera. t:.,-MY
of Areas. r Howtv-dM. Nlrltwrm0. AL 3aes4Y

I y
A

ptv9^'t`

1 1 pacer yet rOmtnme dncription of the "stem.
2) consonant doeaaamlesson ' o gemarate urn m nuaa.

wince m sivaIs, arc.:
3) Input of the system descriptwa into a computer for

usta tl su in and doadr. verification at earmus lesms of
dated:

4) sitftwen iPaoreUnit at the plops totype level. than hri*
rag the bafdwai %software development time gap:

3) ucaeporatiom of deep ch+ndw and caetapom4uy
chagat u dxummmatioa. of seratly:

61 dun -8 /Mf (taclaw"emt) cowrwrcatwn rt"faa
at the dow Heel of complexity.

HDL's are capable of I , snmg the perbiklirr. nonrecurane
oaten, ad tiling teams in the hardware move naturally. W
thus differ flaw the pow segemntial Datum of a general HLL.
(Soma ez*wg HLL's provide contumacy, or a ulawd can-
curnaey constructs in than lamWW mI ts. for example.
rFOR on ME 171.1 An HDL can be cleaufted r a p.o-
cedlenf or a aorrmoreluni larsguage 141 Each statareernt in
n nogwwdutal HDL description would contain a Label which
describes the condition wider which the activities described by
the Statement am to be performed. 71ims the sequential order-
mg of title suatareats dams not ::.apose the orderiag of that

 In a peovedrnl KLL description. the wimitnw us
performed foliowtmIl a.e wgoantW ordlenng of the uatcasmts.

HDL's am i1 ay d to describe both the structural and be-
hx.ioeal Charatwrstics of a digital system. The fundamental
properties of hardware s)rrems alee the an of hardware desip
procem li`att the erenual features of an HDL. For an HDL
to be a useful toot, it bin to powaa the fc4oww4 propertiest

1) It ben to hat" a natural way of describ" the panYNrm.
oonre:a rove Datum. and ttmm iars in d•ptal bandwae.

i The structure and comtroi parts of the barowue should
he tally described and preferabl y the description of the two
parts be erparated ( if suds a dssrson enhances the description)
so that a in" interested IP the bsbavtor of the system need not
concern htmerif with the structure of the system. The dtnsnon.
provides the flexibility to use bard as . software. of firmware
for the cmtrol part. wischar"t is eeeaamtciii.

3) The language should sere r a madnum a All level of
swam description.

41 The deep changes should satisfy be incorporated into the
Onc .ptson and correspond Dag transbuon should be done
preferably without a complete retremWwn. That future will
be useful for the interaeuve emucament. (A transistor trans-
lain the HDL dacnption into an intermediate code from
wbtch the tunufator and other programs can be dnvsn (set
Fig. 1). T e mtermedaate code could be a set of booisan and
regent	 es equations 13:1 or a computer executable code
Wee	 striagi ,:31 i

51 The languags should be eay to learn and remember, to
accommodate the software4by hardware dower. although
the hardware enpaeer cannot Dr*ct the software aspects any-
am". due to the impact of mwroprocmm The deep rys-
itm sbould be poruba. ' bus necessitating the tranalaton and
onulaton of HDl Se written in higher level lrt<wges.

6) Two approschn to system deep are often proposed:
the bottom-up approach where the ekmenlary coaptrnemu
we combined to form more complex Doss and the top-down
approach, where the ryaem is decomposed into a collactnotl of
mbrysteas until the elementary components are mwbed. In
practice. the desrper may choose a combination of the two
approschn. The structural detail at any dnagn level •ones
from deeper to deeper. The HDL should Wow. !be d s4m,
to control the amount of dend during each design phase.

') The description of the imp and mtdwm scale integrated
circuit (LSI and MSI) modules as sritem components should
be aruNtforward. m should be the inclusion of newer mod-
Wei If the system is partitioned by the deupner to accommo-
date standard module. this pa tiu muig abouid oc retained by
the HDL translators and amulattm.

Plot
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u Several HOL's have ban reported 1 1 1 -4141 ilia to nos's
P in of a HDL Trus"an to movers the dgeetpttml
ato an tmtermedlar executable code ad simulators to one-
Me, itats Coda heve ban write" for Mot of them laMaPa.
No stsylt HDL have met W the aboq dueaeaertln. The
tendency has base to uvest a Mw HDL to suet a parttodar
demo feetreemesit. basicall y do to the dtffb@Wry to the daadmert said simulation on to the saw Campo-
a11 amsms ad eat taa I them to acoomoodato the volstre-
iaeai of the we deapt nvuroament. Taw 1 III Units the
utsphoaatatMn details of wfwW HDL't rspotsl. This hg is
by me man rah _H .

Seetloe II dismism this *Wiry of HDL'' in WOOS desiph. A
brat di cumisn of ore popuim HDL, the Computer dttsipl
laspgr. Is /ewe u Seeuoa 111 akin/ wrth two example
doaWA rte. Two cane studtm an pnseated: err to sNe , a
HDI rot a settunted Cut: t ~ eeetronarst (Sectios IV)
mad the adw to show the uuPty of HDLG ro cosciarmtt
hardwsee-sofloun deeefopismat (Seetbas V I Future work rt-
duired ad Cmrmit rnearch tapao w discussed in Socuoa VI

HDL's ills S y stcw DFAGN

Fig 1 show the utility of a NDL is a dothi sysrm Studio
mvmoemnit The Smoot amt the HDL to dmacrtbe An de-
aot. TW docn►tsoa w uwAlsted trio a comperer txwwtabk
data base, whack aervee se the Musa for various other oper-
suam. le deep can be mused by mm listuy at the dmCnp-
tios Wow % Loop 1), before procaedsy to a taxi d •toWd sam16-
loom (Loop 2) at the lope keel. Tit date bass .test serves a
a mum for lope dbw m pwKSas. asooeode and tea at
pnerataom. The ph)eseM coemructsoe of the tystme follow
it* mulatioe fad rorawmest at the lopc keel

Tradauos ad amulatsos of HDL' fs pave ben well defined
191 -1 7 61• Physical eosstructioe aspects have also been auto
stated said we wbdesy used in influsm 1 7 '1  Tat ptietgiort
!7111 fad hardware comptlaS6 1121. 1301 tined further a-
vesttptaom. The warty of deep methadolopw. tle artrtbc
nature of the demo /roar. arw the ambiguity pond by the
verse" of Composan readable meta the hardware Compels,
both a tedroma tins.

III. CorniTta Dmram LA mGvkGa

A hardware protemoutp Los~ (AHPL), computer de-
apt La(Iwp (CDL), dipial rymsma Soup layuye iDDL)
and the asauam sit procom OSP) hen been the mom
popww la ago"L Perth due to liar any unrodactios a
prmW purpose HDLO& Than ImarAnges were developed in
umtversity esv(roamesn and an card in ts6CWS SOW lapc
dept Now lea -- an bnM added to those lasptapn to
mate them more vetseWe stall-tested translators and asmu-
Won an ovmlable for them Is yes iiee 'able I for refM
tncoeh Although sevenl for u a-
ikutnW un 1391. 1011. the design vroes baud proprietary
u nature, the terse of HDL1 u not whdeiv reported !701.

That section pow a brief introduction to CDL Eaunple
dseenpom a CDL are pwided CDL was chtawn over the
otaera data to Its staple structure and the author's famdlanty
with the W pap.

CDL win I opond ortraeyy by Chu 1201-(22 1 A era►
Igor and naelator wan wnitea for a mare' of that lassup
I:)I Several modification wan made to tha tra.Wtoe ed
sunMator 1201-1291 .

CDL describes the vtrwtwW aid functioaat pan& f a dotal
ryutem. The structural components tike ntemorv, rspmen.
docks, switdto, etc, an declared explantly at the beg"Ifts
of the dwcrtptbos The fuMtw" bolkerbor of the alemest u
Saw bad by the commonl y used opersion and %ter defined
openton. VUW data paths we declared nnpunth whenever
than is a data tender both ta"Wel and aapuentw operations
are Wowed Synchronous operations require a codattoaal
test for an appropriate upal The 4riguaye is eta% • to under•
stand and is hWl y testable

All the tarubks in a CDL description an µo11164 The eystttn
demo tsea Gas be only at ts.r N.M. tad then u he nbr"sing
tw6ty to CDL. '11168 matitu 111 unetattable for dttatbaS nard-
wore In a modular twhsom It n trot possible to uthada spatial
heedwere aimpoasata uke ataRetad artusts i IC'n a s desdsp.
rasa. New~, its mptwty of unaeton ad as pe takbty
rawkap (rose the FORTRAN implsstemutbee, have slide
CDL a pepltlar lampige The deacrtptaoa of CDL aysw aid
mmanua as ahcespse4 by tat prwnt ow of trim"Of and
simulator 1:91 is even below. Table 11 shows the standard
otaanton a CDL. Foubtan we declana a the bopnsitd of
the ream daeertpelsa with dtrtferanee statoestau ef the
format

DEVICE, Ise'

--beer DEVICE an tie a REGISTER, SVIREGISTER. MEM-
ORY. DECODER. SWITCH. TERMINAL. 111.3. 11LOCl. and
CLOCI. Soot exam pk dedantion an shown below

REGISTERa110-:), R, F'1d-I1

SL7REGISTER. F , OPi-F(3- 1), f (0R )-Ftb-1i

MEMOR). tf XWfiO %.4. 101	 Memoir) wtth'11. II Mt
words. Address register
R.

DECODER. L(Q-15 i 6(2-S)	 1 bits of G an dowded
into La.	 .. Lis

CLOCK. Pt 2)	 A dock with 3 phases
110). 1(11, N:)•

SWITCH. STRT %OFF. ON) A switch with : pow-
bais A mat16viutn of
10 positions Wowed.

TERMINAL. #-A ' . Cti41•11.
DI-.ore/

11LS. Z40- 1 )	 A 1 rue BUS:

BLOCK. SERCOM (A-Ai D * - A(! - :)) SERCOM as an M-
mnsere name tot the
operalko ts within the
persnlhettm

A DO: SERCOM statement is used to u yoke the set of stare-
mrmts doclarM M (LOCK. SERCOM

M rft( 1011d1tpwa1 PRICOMai t^fat ►se the form

&ruble - Expremiom

Example I-I, Ill.) SNt^D • f(:,0 2)

A condiiicnii mcw tatrwenr has the forms

IF ,exprawon i THEN, niceootalernnteh
IF hexpremioel THEN inucrostatesmenu)

ELSE imicrottaternentsi

Examples IF (A UC 81 THEN iR-0)
IF iC Xd Dt THEN (N-0. I-1) ELSE iR-I h

Cosdilioeal statements stay be visaed to a) aumber
A MNMd curewear has this format

lobeFsacrautensmta

when

label - expreesoeeeloak

Example : K i O tel'A e11w 1

Saida apenron can be rumblothed b) the user thsoiaah a
separate nbprogren The formal is

'OPERATOR Parameters Name
microetarentents. RETURN

END

r^
1
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A care4t OpeMroe is dalmed tiou-

•OPERATOR. X(1-41•000TT
PIF (X(4) • EO'OTHEN(A'n l 3f i i

ELSE f IF f.i'l3rEf?0 THEN (Xi 1-:1-1-0s
ELSE (IFi.T(:1-F")THEN t 1's I r I-0-0)

ELSE (XI 1)'-0-0-OW.RETURN
END

Several commonly wed openuoaa (Table 11) an included in
the current CDL softsom:

Enawpra: A-A<ITUP . . C0A-ADD•0

The CDL T3tANSLATtOP perform a ryaax check of the
ddsttripodre sad traadata it into a Of of tabus Sad • pohM
stresis pis.

The CDL S/MULATOP executes the output of the ttsne-
lator and can it simulation pwwmtm through the fol-
lowing comma ed set'

LOAD	 Used to out--" — rtgieten and memory
OUTPUT Providers a hexadecimal printout of the specs-

food ftleattr and memory Matteis and switch
Positions at the desind dock or label.

SWITCH	 Enables using switch partitions
RESET	 Resets the swim settme of the simulation

panawem

SIMULATE hordes the start and stop ;ooditrow for
simulation

CDL cast be tied to describe simple to very complex digital
srstomt. Two example descriptions an pmsded below to
sOustrata this femurs.

Example l: A Seem Two t Comsoemextr.
4 cheeutt to replace the contents of a 6-bit register R by his

two's coopMmat will be dear: bed. The complefineatatan r
done by W s.a:l-keoa t Iylcompismat afgonthm lesson"

Mfrom the at apificarit It of A. copy the bits m they in
tkU the fist mosiaeso bit. comritment W bits after the Cost
nontorm bit, till the man ta/mftaat and of rise register).
Fig : shore the circuit and its CDL detorpilom. A 3-bit
mpster C to used to count the number of alufts. Fbp-flop S
uadteates the COPY (3-0) ad COMPLEMENT (Su I) states. A
switch SW it sided to start the compiameatarion praoaa Staw
meats L3, east ! deacnbe these f"tris. The control cacuurY
unclad" a Moak pas clock P and a I-bit state rdSir r T
Statements 6 ad !1. Fig. 3 shows the mate diagram for the

control cacustry. The controller waits in T-0 note a long a
the SW a off When SW is on. the C and S are cleared. and a
sate drupe occurs (Statemsat 1) As long a C < S the Mdt
opal a on. Statement o descs bits the process of copymd or
complemenrtal aecot4m/ to S-0 or 1 \Ott that the etrculs-
tion of the nigher R a described wing the concatenation
operator Men the count reaches ! the controller goes to
NO state, thus completing the complementation.

CDL. bang a nooprocedurai language, evaluates labels mad
performs the scb.ttws cormspomdmg to the active Label. Each
such evelYatials a s keel cycle During umulation. the values of
R. C. S. and T are taeqtsesttd to be OUTPUT at -sch label cycle
tstm aent 11). The switch of turned as a cycle 1 (Statement

R a loaded with (54 tsubeorpts udaeaee the 
L7" 

of the
number. the number u decimal if soh subeorpled) uuthalhy
(Statem own 13,14) ad simulation is requested for :0 label
cyci" with 6 label cycle evaluation repetittone to seek a ac-
me label before terminating Fig 4 Mows the simulation n-
sWu The contents of R (-3 q at the and of the label cycle 6
an the taro's com ►Mmaat of the oepmai coatents 101 N. thus
tsdicatmIl rise vdidsty of the design

The clock sad label cycles a" RESET and R was loaded
with (21 4. Fig 44b I Mows the corresponding umwatwm
results

The CDL desorption in F:g : servo as a compact and pm-
,w decoct from of the mctu" and behavior ..1 ibe hardware

l.Adn.ele : A !hntcomtwtf-

Fig ! Mows the nructarw deta0s. Instruction rot. and the
CDL deetnption of a minicomputer ;!:I The minicomputer
half a :56 ward 12-bit mmon . with an 8-bit memory ad& m
nptr. ( MART and a II-b(t memory buffer fepseter (MBR1.
Tidso is a belt program coast (PC) and to accumulator
IACC) of 1: bin. The muhmen .'WW asst IALC1 receives
the opal — frora MIN am a 1:-bet A' meant, and press the
tweslts on to the 1:-14t BUS. The instructions consist of a
3-bst operation code, an uldlreCt Wilson Reg bit, and g addren
bit. The mostersm dada p 1, a pro•t6M by the Statemtals
1-3 of Fig. S( ► ). The BUS A not sapiently described to totaln
the high Mal desaiphed nature. Fig. S(c) shows the det llb
of the imartKtaoa set. Stuerie nt 4 in Ft& Stb) describes a
START ewhc`. S RUIN switch to indicate the RUN.STOP
star*, snd a tk t state switch for iadwatmg Instruction fetch
I F). udi'ect w -an computation (Defer. D I and Execution
(E) phraa. Statements S and 6 pro% * the Imtructxr decod-
ing details. There is a 4-pbmm clock P (Statement 'I which
activates the synchronous controi unit Each moor cycle con-
sists of 4 mom cycles. The comments In the CDL description
Identify the Fetch cycle, Defer cycle. and she Execution cycle
for each tastruetson. Fig. 54d1 shows a program to add the
fort numbers is memory locations 0-3 mad place the sum In
locafson '. The program will be located m memory locations
10-16. Locatim 4 a imtialsse! to -3 sad incremented by I
each time through the bop, mad tooted for zeta to terminate
the summing oparattan. The data vah m are accused by as in-
direct reference (TAD- 6) to location 6 which r mcremanted
from 0 by I each itme through the loop Fig. Std I shows the
program is eaaambly. binary, and decimal form. Fig 51cI
shows the memory map tun before the a , uoe of the pro-
gram Thu memory map is formulated by the LOAD command
for the CDL simulator tStatements 43-45) in Fig S(bi The
program counter a at to 10 (Sutemeat 461. the switch is
turned ON (Stateem 4:1 and the simulator is requested for
:00 label cyues ( Srnemefill a'), outputting several register.
conteats ( Statement 411 at each label cycle. The simulator r--
"is an similar to the two's coaplememter example and an
not Mown for the sake of br-viiy. h Is escheat that the CDL
desorption of the muKomputtr is concise sad more precis
than any catural la law ducriptim coUd be.

IN' Siuvno% OF HDL
Due to the large number of HDL's proposed. the selection of

an HDL for a particular dasgri crinronment N,;omen a soa-
tnsal task Although the stricture of the language. the oper-
non available. the capabilities of the :anguapr to describe the
threw In a logical moaner an important cons derations. the
Implementation team seem to override than One such eelec-
tyon process is described here along with the synerm description

Fig, o Mows the details of the computer aide, design and
ten (CADAT; system of the %'kSk Marshall S pace Flight
Center 1101 The designer Inputs the detub of the IC to
CADAT at a set of standard alb and their interconnections
The nadud call selection is done sum") from s standard
all library. Thu description is at the logic diagram to"! De-
tailed logic simulation and refinements a" carried out on the
damp The fuss Step is input to this aatommoc ten-vector
gentration and placement and routing program. The IC mask
pattern generation Is done uteractind) and a mask analysis
and performance simulation are done beta" fabrlattfy the
mask. The lost two steps in the IC fsbrestloe are the wafer
processing and the find testing

At presort, the generation of logic diagrams and choosing
the standard calls from the aU bbra t for the deep are done
manually Integration of a htghaevel dooigrs Lan~ would
help the dissipater to simulate bus desW and "fine it it a high
Wool before entering his design into the current system This
requires an HDL with a umulatw sod lopc synthesizer ward-
wan compiler) that penerstes the logic net Input mquind o
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tM CADAT System. The breadboard tatpwa estation ana
teaaag of a cainplex large scale integrated circuit (LSIC) de-
ep a not fatabic Ana it eaanat be properly headboard"
with saythtng but the LSIC itwtf. with as HDL. this bread-
hoarding peace east be substituted with a computer amtuls-
use of the LSIC da spa, thus mastsattry the desya chatim
ad, base, the eosi of mak faMtauon and wafer p  I — .

IL.1f	 The followtRg flee enter&& were saed in selecting a suitable
lag 	[III

1) activity
level of description

'	 3) software svallabdir^ and ponabWryfi 	3) software avaYabdir^' and pontabWry,
g.	 d) aver of lope generalities

1) sodalaruy.

I I Acnnrr: Its sssmtid to choose a laguage which u be-
iRg wed dAewhaee to ice ve the beaafits of the eateamoes to
the Lam~. Ma gi of the HDL's proposed do sot have a
translator and a dseWatar tb tt a u"oelate and fatty versatile,
thoaph the lagra/s shad( u yvsstile. The protean of iapeov-
rtg the HDL software and avbilitw wooW be aided by the
Aetna states of the COW poupb • n the lanM"

Lae" of Description This selected HDL should accom-
mods ts a dearelptloo at the reggir• transfer level sadeor below
to faeilitets the lagrc Itineration. A higher than register trans-
fer leval description troy not be needed for the IC design en-
rvaRsetat of CADAT.

1, Sofrwrr Aeniebilirt and Porrobilin The development
of a HDL s tRcompiete without a sonulmor and a translator
.ratan frT it. ataee this sof:wan development process refines
the laagu ds mueturs. The softies should be portable to
occannodate the postal portability of the CADAT software.

ei Ease of Lope CenerenoR Any HDL translator oriented
towards providuy mfor astion for a simulator collects and re-
arrsnpet the combinational lope and register transfer. Thus
mtermodute translated output should be sa sizable to logic
parralsoa.

Moduirnrn The HUjacrytwo should be modularenough
to reflect the suidularIFY of the hardware. to "table emu
aadereiaading end modular dosage verification.

A compsraor of the four prommsnt HDL's with respect to
the above criteria is shown in Table III. ISP. although virrw-
tile. does not lead itself to the logic geoeratiaa level very well
CDC r sutabls for microprogram ganerstioa. The aonmodular
4 m il on feature of CDL and the difficulty in acing the
poksh string output of the translator to genarat• logic diapatn
level description mast it unswtnWe for the CADAT eystem
envaoneent. AHPL and DDL want the strong eoatendern.
both have a fairly portable software package and are Rutable
for the level of description needed for CADAT The modu-
lanty a brought *bout by the subroutining feature in AHPL.
whereas the block structure of DDL is closer to the harfw*n
modularity. From a traditional hardware dengrer's peat of
view. ptoQamnuag in either language is equall y difficult. Al-
though a hardware compiler is available for AHPL 11:;. its
SNO90L unpieseeaaon rues newr imrlementattoa amtes
foe CADAT. whueh u predomuantly in FORTRAN Tie DDL
translator provides a set of booleas equations and ntglmar
transfer expressions which can be used for hardware cos-
pdation (391. 1791 though not very wily The Work struc•
sire read the software of DDL made it a better choice own
AN!L'^r the CADAT rystam.

U1

u
El

r

L
L'

%ate that the stlertuon of the HDL a oriented more towards
the tmplese station rites. rMhet than a rigorous analysis of
the capabilities and the cl arac"natia of the HDL. ouch as the
structure of the langas&V. operators available, can of uder-
randisg. ate. Sua a rfpartim arlyrr. althayh valuable. wW
trot std m the sNcttm of tit • ►atagRapa ainn the uapWmnty
tson tsua override the other characteristics Also. the telec-
hon cneteria owed the possibility of developed a new
lanpaage to nwtly fit the CADAT MvirORaMRt. The achrov
rnteru also distfand sverai other HDLY like LCD (!91 and
SDL 1721 from caasidersucts.

V. CDMCURRgNT HARDWARE AND SOFTWARE
Drvnorkim

The use of HDL'a M hardware development a oh.totta. The
recast advmtoas ill IC technology b M Vemaadotalr irtctouad
the speed of Dew tystefv antuuuueenaats. but the software
deveiopmeat for the new system bm Rot caught this Pam.
With the ability of the HDL to dese be rod malare the hard.
wan wcuratel%, it is possible to develop the software for rSe
digital system concurrently to millet the wftwan-hatrdwan
development gar . This sections :ycrihes an experiment to
measure the performance of CL'!. to software develop.
ment(:6i

At multtpraeetctrtg system. cooanows of a Didbal Equipment
Corporation PDP4 Mducomputer aM an INTEL 4090 Micro-
processor was used. The two proceson .rise simulated in.
dividually . followed by the amulalm of the soared memory
and the input devioe for the system. The input device u an
on-lu a msaectoon aataOn which interrupts the WW after each
Pan is etamred to enter the meaarami nts of the part into a
ba-woed ghat XWIKWy. Intel SSW handles the bookkeeping
of thus mos ammaats for use by PDF4. Several propraau
rent written both for UM and PDP4. The prtgrams on
rDP4 accept the meaourowat from 4090. astersue if they
are within epsafications. and trstassit the cwaditioe. of the
pan to W40. The $090

of
 hehem"th s interrupt and

keep a record of the number part usepected and their cow-
dition. The peoptaset were written in assembly laaguep of the
particralu processor and wen stand in the sherd meaaory in
the mador language tom. The details of the auaulat»ts can
be found in (:'1

Ae tsponant to developing programs u the
aeemb:y time required by the boa processor rusns" the CDL
simulation of PDP4 and latel-4040. Table IV Wows the CPV
*mw required for typed program on an DM 370:133.
closely. the Cast of such ssnulatsons it Prohibitive. However.
amumu a that the cram assemblers are * yelabia on the host
machine. developing as appis"Uat programs using CDL emula-
tion would not be pry tapeativs. mom that program will
us call , be shone, than an Rumbler or a compact A related
issue wou:d be the performance compw-- of suit. sunulr
twat umng hyli level laDweges for the ascription of the hard-
want. rather than in HDL Much of '.eve overhead o` the HDL
tnndateriumulator software could be reduced by using an
HLL for describuag and amulatutg the peeticr4r hardware i,
comparison of web HILL versus HDL dam uons and their
run times is needed.

VI. FUTUrtt WORK

Although the adtabUlty of an HDL for hardware ryaem
Oas I Pool a well recoputed. this HDO are not used tx-
timatvety, partly' • ise to the varaty of structures and notations
used in these HDVs, makug them harder to usdenand Many
structures found to HDLrt are simple for a software pro-
tsesional to understand std use But a hardware designer not
familiar nth programming finds them hard to use. This prob-
em will be partially solved by the popularity of the micro-
proason as destpu elements. requiring the hardware dempoer
to understand software.

Tle differences in notations and structures used by HDI/s
nuke it difficult to borrow a language developed elsewhere.
Thu dtfftculn is augmented by the nonstandard design meth-
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odolatgea and nimpatabie HDL aoftwan. rho problem of
aenmuturm somisome we Sumcturoa wW be redaieed Ivy the
imttmdueme of a eomenmla language (CONLANI 131• Ilia
The follewg gtWMws an used In aenelRi g at CON LAN.

1) CONLAN mW Support dea0 . d•wQtptloal and •tmtta-
tlom of At Wart the (*Bowing "M of eyf••M . ht• netwerl:.
logaims footwear la. M'ex+men . mosmomm. pronMr syssesea

Amy we= M) be d1*layed eaa atthr
a) a network sarwmire d/ecrlptloe or
b) a Mmtlm seemptioe.

3) CONLAN r to t9r1Kt
a) eompater ate:Yteen and Ingle ditlpen (or purpose of

trash .W1 eagllonsel om and optlmmetaom, dump wen kesson, and
s nigh bemmaaub"

III) " I t auao• . and Appi"uem preoramman
c) okcttsmim prodWeaacm Safflowers.
d) manteneso tv4mwmn.

41 CONLAN Syntax and mmaetxs must Support
a) WoYrmtwd daaafPnoRa
b) mmehlno p•rtu1• Iaterlireuu0s. sled wotedatroo with

•tea desectwo
C) compmam"Wo of complex ryaem structure and

hourtue
d) dntraa of deep efforts
e) coetr'd over the legal of abstraction at wh,cb sub

a,am a ere lambed
I moolmaon control

Sl CONLAN a to be PRhuted in terms of beeeLlkwiLs 904
m etamdard teem on d•cianucau. time operator d00Wab0 .
IC dmnptwm (sedmdmo mwf"rocwon), and 6es111 6Mcnp-
theme I tededUo a wltyroconw ryum ).

The buK aim of CONLAN as to pro We a IN the ueifofm
bmr LmpLW with the up4blHtltes of augmeetui the Dart
ryatax with the spomfic coeatrucn wth tear own enmaane
mterpfelabem. m "quoted Ay the c"WaOalment.

The efficiency of the pL software depends on in dfkuent
mer of the btu computer one white it wall developed. Hems.
the software taedS to be maClllme dcpeedtat, mmtmg it fauty
nonpauw. Although the affxmmM Mffdri 12SI If the 00(1-
were is so& portable. a weU/ocumemtW software packap
(along well a pod dueuweon of the algonthmS used) as a
not• , Seweml other ataes of Imet4WIMM ccldd be
Neauftd

ptoc carom to s ullyfe the HDL desrnptJame of dotal ryr
l Ids •n to be developed m old" to avod susulanoe or
at Wert maaamlee simulation can. Is We an to be dmlpdd
Inspected to ecoowmodate saw description of LSI euemtts
Saw wmmorooman 11131. 1841 Smlability of HDLA& on
Wg•efFS for mmcioptoceseor softwe" drwiopeaeat 1131 aid
erchateclun comparison Ilfe . L*V"U3muoa.

Compuaon Studies of HLL and HDL with respect to taco of
profammte& ter of undent eadmr, description length. umu-
iatsom can and offwnwv are required

Logic ryatiam from the IIDL desorption a not well St-
voloped 11 1 1. 1391. 1 1 91. I gdl Decomposition of the doles
System to woomleodtce the LSI and MSI components a" n-
amao the boomposilloe ell the raw Stage in the dump see
Of won met loolocu race The sba ity of the procedures to
amaech throve a bhary of avaWNe ICs and the capabilities
to loeommoUss norw rr ModWles a owes 7

The neYabiblY of aMRpease" procseYon has W3crered the
poptYmmy of distributed processing rynems. The HDVs have
tfadltlenmagy ban damped for a eltlgle r-000IM neanmleemt
aid l•ck the twittw to describe the imtetproctseor c omsswo-
atwm. Such •been will mace the HDL mom attractive I1'1

now aroptabdaty of all HDL rot a particular 0 v--ammnat
depends om its eapeashum to WomaoUU the ova too" to
UM nvtroemaat Sean the malonn' of HDL^s &it dteglled

for a partcul• onvii m•m:. them tariff to be line mutable for
other anaoem•ap For example a HDL developed with a
pill of •fficrat doMtwl d••cniltion and amulatlon wwld
hardly out a logic syethews f avi onth"t 4 cWrfIGt10f1 of
nWabte HDLA according to thou underl y ing model fcr bo-
b•vaot M ameded.

VII CUNCLVSIOq

The -aptaeWttes of HWA were duce Md A brief introduc-
troR to one nvch langliagr eCDL1 along with example deknp•
thorn wart green. Can stmdles for mlectrom of an HDL and the
tar of HDL in Wilwan, sciftwern daetlopmeat wt v grooR.
The emu for further lneenllpllnM were ldenufted.
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Operation

Code Mnemonic Comments
7

0 AND (ACC) a (Hem) - ACC AND Memory

1 TAD (ACC) + (Mem) -► ACC ADD

2 ISZ 1 ►,crement memory and skip next instruction, if
zf ro.

3 DCA Deposit and clear ACC.

4 JSR Jump to Subroutine,	 (PC) - MP(0)

5 JMP Jump

6 RET Return

7 HLT Halt
f
k I	

NOTE: ( ) indicates "Contents of"

I

1
C	 Figure 5(c) : Instruction Set
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C

C^

l'

I1

f
t.

IC

r
r.

^r

e'

PROGRAM

Memory
Location

Asseably Binary Decimal

10 AND	 5 000 0 00000101 5

11 L1	 TAD* 6 000 1 00000110 774

12 ISZ	 6 010 0 00000110 1030

13 ISZ	 4 010 0 0000100 1028

14 JMP	 L1 101 0 00001011 2571

15 DCA	 7 011 0 00000111 1543

16 HLT 111 0 00000000 3584

Figure 5(d) : Program to Add Four Integers

r



Memory

^•	 jAddress	 Contents•

e	 5

1	 6`
DATA

j	 2	
7

3	 8

I
4	 -3 COUNT ( -4092 in ones
5	 0 complement 12 bits)

I6	 0 `

i	 7	 - RESULT

8	
- !NOT USED

9	 -

10	 5 j

11	 774

12	 1030

13	 1028

14	 2571 (PROGRAM

15	 1543

• ',	 I	 16	 3584

Figure 5(e) : Memory Map
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