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GENERALIZED DUFORT-FRANKEL SPECTRAL METHODS 

BY 

Liviu Lustman+ 

ABSTRACT 

This report presents an explicit time-advancing scheme for -the 
spectral solution of parabolic equations. 
examples are considered, including convection-diffusion and nonlinear 
problems, under various boundary conditions. Numerical evidence demon- 
strates ttie efficiency and accuracy of the spectral approach. 

Several two-dimensional 

This work was performed in collaboration with David Gottlieb, Tel Aviv 
University/Institute for Computer Applications in Science and Engineering. 

GENERALIZED DUFORT-FRANKEL SCHEMES 

Introduction 

Cottlieb and Gustafsson (ref. 1) presented an explicit, unconditionally 
stable formula for time-advancing parabolic equations, while preserving 
high accuracy in space. 
the Tschebyscheff collocation spectral method as the spatial derivative 
approximation. Large AT may be employed, much above the limit O(N+) 
needed for straightforward explicit methods which use To, T1 . . . TN. 
Thus the computation becomes efficient, while spectral accuracy is still 
maintained. Let us review the generalized Dufort-Frankel method for the 
simplest diffusion equation: 

The present work treats, as a special case, 

u - a u  t xx 

The original Dufort-Frankel scheme is 

Research Qssistant Professor, Department of Mathematical Sciences, 
Old Dominion Univcrccity, Norfolk, VX 23508 



n n u. + u. - zu. a n+l + Un-l n - 2u.) 
j 3 (u j - -  +1 J-1 

2At Ax2 (Ax) 

As usual, un f u(jAx, nAt). 
simplest approximation to uxx(jAx, nbtj. 
approximations, e.g. higher order finite difference, finite eleitent, or 
spectral. The second term on the right-hand side is also modified by a 
multiplier y > 0. Large enough values of y ensure unconditional stability 
(as proved for various cases in ref. 1). 

The first term on the right-hand side is the 
j 

It may be replaced by other 

- 
Finally, the method we shall employ is 

Here un = u(xj, nAt), where x. ( 0 < j < N) is the Tschebyscheff J - -  
collocation mode; Ax may be taken to be 1 - cos - (minimal distance 
between nodes) or ,  for better accuracy: 

'A j 
N 0 

Obviously (u 
explicitly €or u . 

)n is computed spectrally, and equation (3) is solved 
xx Jn+1 

j 
It is important to mention that equation (3) is consistent, within 

O(At2), with a wave equation: 

where the speed c is given by 

However, equations (1) and (S) share the same steady states as t -c a; 

also, if At = O(Ax2), equation (3) becomes consistent with equation (1) 

within O(At3). 
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The generalization to two dimensions: 

u - U l U  + 02u + 03u 
xx XY w * t  

is straightforward: 

n+l n-1 
ujk 

2At 

It is also possible to replace AX and Ayk by their minimal values. 

Note the simplicity in the treatment of the mixed term u 
j 

XY 
It is convenient to define **fluxes** for equation (5) since these 

are the quantities 

a 
t ax u = - f +  

actually treated by the numerical scheme: 

a 
a y g  

with fluxes f, g: 

1 f = u p x  + 7 u p y  

g = u3uy + ?U2Ux 
1 

Note that there is nonuniqueness in the definition of f and g: 

for example, one might take 

f = u p x  

g = u2ux + U3U Y 

and still end up with equation (7). 

The solution is implemented as follows: 

Algorithm 

(1) The first two levels ujk,  u1 are stored (uo is, of course, 
the initial data, but u1 

jk 
must be obtained by some different method), 

(9) 
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Set t = At, n - 1. 
(2) The flues are computed using uyk. 

(3) The fluxes are updated on those parts of the boundary where an is 

(4) The fluxes are differentiated to obtain the t*parabolic" term 

au 

specified. 

(5) Ujk '+' is computed from equation (6). 
( 6 )  'jk '+' is updated on those parts of the boundary where u is 

(7) t *. t + At, n + n + 1, go to step (2). 
specified. 

Note that only first-order (numerical) derivatives are required in 
steps (2) and (4). Thus there is one derivation routine, which is 
the usual straightforward TA formula. 
high mode interactions cause instabilities, and the high coefficients 
generated by differentiation must be smootkd. 

In certain cases, however, 

The smoothing: 

N k < -  ak * ak 3 

N k 2 -  3 

is then included in the derivative routine. 
step (3) varies from problem to problem. The best results have been 
obtained by overspecifying data, i.e. prescribing f when - au is-given. 
It is also possible to compute f, 8 from the correct data an, while 
the tangential derivative needed is extrapolated along characteristics. 
Of course, the characteristics pertain to the wave equation [eq. ( S ) ] .  

The updating of values in 

The analysis of reference 1 could be applied directly to equation (3) 
to prove stability, except for the very complicated structure of the 
"parabolic tern" operator, which also depends on boundary conditions. 
For certain cases, Orszag (ref. 2) has numerically computed the 
eigenvalues of this operator, which turned out to be all real - a 
sufficient condition for stability, according to Gottlieb and Gustafsson 
(ref. 1). 
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Actual computation, as presented in the following sections, amply 
justifies the assumption that generalized Dufort-Frankel Tschebyscheff 
schemes are stable for appropriate multipliers y. 

DIFFUSION EQUATIONS WITH CONSTANT COEFFICIENTS 

This section summarizes results obtained for the equation 

u = u  + u  + Z E U  
t = Y Y  XY 

For parabolicity, I C [  < 1. 
t > 0, with u specified initially and either u or - specified 
at 1x1 = 1, IyI = 1. 

The domain considered is 1x1 5 1, lyl 2 1, 
au 
an - 

An analytic solution has always been used to check accuracy, and also 
to supply initial and boundary values, as well as first level values u(x,y,t = 

At). 

or. boundaries. The first check was to test whether our numerical method 
[eq. (lo)] actually admits larger At than the obvious explicit 
method : 

No smoothing of coefficients was done, and fluxes were overspecified 

n+l n 
U i3= + u + 2eu )" 

At (uxx yy XY j 

A comparison, done for c: = 0 and Divichlet conditions everywhere, 
showed chat 
the stability limit of equation (12). 
converges for At - 0.001, N - 32, while the explicit method diverges 
at N = 32, At = 0,00005 and converges only at N = 32, At = 0.00002. 

At may be easily taken to be up to 50 times larger than 
Thus, equation (10) with y = 5 

Next the various values for the multiplier y were considered. 
In most of these computations, y = 4 is the stability limit. 
instance, N = 32, At = 0.001 will diverge at y - 3, but will converge 
at y = 5; N = 16, At = 0.001 will converge at y = 3.375 but diverge 
at y = 3.25. Of course, the smaller y, the better the approximation; 
however, the error increases only slightly with Y .  

For 

Another test is the sensitivity of the method to the definition of 

A K ~ ,  4yk. 
the results are less accurate and the multiplier 

If all these quantities are taken as equal [as opposed to eq. ( 4 ) ] ,  

y must be larger to 
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produce stability. 
has no influence - even if fluxes must be updated on the boundary. 

On the other hand, the ambiguity in flu definition 

The boundary f l u  treatment is evidently the most complex of the 
questions connected with the present scheme. 
satisfactory results. The characteristic extrapolation, i.e., 

Overspecification produces 

(13) 
1 u + E U  -k-u at x = & 1  

X Y c t  

seems to be less accurate. 
useful. 

Here an analytic result would be extremely 

CONNECTION-DIFFUSION PROBLEMS 

In this section the following two cases are considered: 
(1) Constant coefficient problem: 

1 
4t + uo, + by = Pe (oxx + ow) 

' 4 given on y = O,n 

= 0 on x = 0 , ~  4, 
4 given at t = 0 

!3) Temperature distribution in a B6nard cell: 

0 < x,y - < r, t 2 0  - 
4 = 0 on y = 0, 4 = 1 on y = T 

= 0 on x = 0,n 
4 X  

$(x,y,t = 0) given 

The speeds U(x,y), V(x,y) representing a vortical flow are prescribed: 

U(x,y) = -cos y sin x 

V(x,y) = sin y cos x 
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The quant i ty  Pe is the  P k e t  number of t h e  problem: Pa = 

speed langth. In both cases5. the  fluxes have been conductivity 
spec i f ied  as 

whiih is appropriate  even for  var iab le  coe f f i c i en t s ,  s ince  (U,V) i s  
divergence free. 
carrying Neumann conditions.  
a r b i t r a r i l y  f o r  both equations (14) and (15). and the  convergence t o  a 
steady so lu t ion  was tes ted .  

- 
The f lux  fBd E - U+ was prescribed on t h e  boundary 

I n i t i a l  conditions have been generated 

For t he  constant-coeff ic ients  case, an analy t ic  so lu t ion  is e a s i l y  
obtained which is  used as before t o  supply boundary conditions and v e r i f y  
accuracy. For instance,  one may take 

(18) 
UPe 4 = (cos x - - sin x) s inh  2 

as a steady sDlution of equation (14). Formula (18) c l e a r l y  shows t h e  rapid 
var ia t ion  of 4 with y as Pe increases .  Indeed, a t  U = V = l ,  Pe = 5 ,  

t he  computational results became q u i t e  poor, s ince  the  few modes used 
(To, T: . . . T8 OX eventual ly  To, T1 . . . T16) could not properly 
resolve 4 = e3.’Y. For smaller Pe (larger conduct ivi ty) ,  very accurate  
r e s u l t s  were r ead i ly  produced. 

For equation (15) col locat ion was used t o  dea l  with t h e  var iab le  
coef f ic ien ts .  
the  solut ion.  
none in s ide  the  domain) a t  the  nodal points .  The smoothing formula [eq. ( l o ) ]  

provides a simple remedy t o  t h i s  unwanted phenomenon. For Pe = 10, N = 16 

successful computations have been performed, with r e s u l t s  i n  complete 
agreement w i t h  numerical da t a  obtained otherwise. (There a r e  no ana ly t i c  
so lu t ions  fo r  t h i s  case).  Note t h a t  the  Pe‘clet number seems nigher,  but ,  
i n  f a c t ,  because U, V vary in s ide  the  domain, t he  boundary layers  of 
equation (15) are  l e s s  abrupt than those of equation (14) and reso lu t ion  

is eas i e r .  Using polynomials of  higher degree (say 64), one could t r e a t  
even higher P k l e t  numbers. (See a l s o  f igures  1 and 2) .  

I t  appears t h a t  enough high modes were generated t o  dis tor t  

Some p l o t s  even show minima and maxima ( there  should be 
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The convergence tc the steady state is quite rapid, as seen in figures 
3 and 4. 
decay at least as fast as 

Analytic solutions of equation (14), say, with homogenous conditions, 

Thus, one may use time-dependent equations - or even artificially time dependent 
equations - to solve steady-state convection-diffusion problems efficiently. 

BIJRGERS EQUATION 

This is an experiment in treating nonlinear equations. The problem 
to be solved is 

a% u + u u s  = v- 
as t 

where s is defined by 

a, 8 constants. ax + By 
q m  ; 

s *  

Of course, equation (19) is rewritten an -:quation in ( ,y , t) domain, 
with boundary and initial conditions. 
such a way as to agree with equation (19). 

However, these are specified in 
Specifically, we solve 

The fluxes are defined as 

a f = v(a2ux + a8uy) - u2 

This problem has been selected because of its explicit solutions, 
which enable comparison with the numerical results. 
is again easily obtained. 
interesting point is that equation (21), although nonlinear, shows better 

Satisfactory convergence 
An example is presented in figure 5. An 
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results when no smoothing is applied to the high coefficients (cf. ref 4). 
This is probably due to the fact that there is enough viscosity in the 
squat ion it so 1 f . 

As an example, consider 

-0.144t 

-0.144t 
0.24 silt (1.2s)e 

0.1 + cos(l.2s)e 
u(x,yDt) 

+ 

which is a solution of equation (19) with a - 0.7, @ - 0.8, v - 0.1. 
At time t = 0, the maximum value of u is = 3 while the average value of u 
over -1 
resolved. If the smoothing [eq. (lo)] is applied, the result is much too 
damped; without smoothing, for N = 16, Y - 15, an error of about 5 lo-'+ 
is maintained for 0 < t < O.S,  corresponding to 500 steps (At = 0.001). 

x,y 5 1 is = 0.2. Thus there are steep boundary layers to be 

DISCUSS ION 

The purpose of this research program was to obtain becter time 
increments than those allowed by the naive scheme [eq. (12)], while 
retaining the desirable spectral accuracy. Here other possible solutions 
to this problem will be briefly described. One is presented in reference 5, 
where the explicit time-stepping operator is modified in such a way as to 
make it bounded for all 
but not for Tschebyscheff expansions. 
found that the modified operator, while stable, differs too much from the 
exact one, and the approximations are inconsistent. 

At. This method is efficient for Fourier expansions, 
After some experimentation it was 

Another method is to employ approximate inverses (ref. 2). These 
are operators, simple in structure, which approach the spectral ones. 
Implicit time stepping is used, with arbitrary At, and the inversions 
needed are performed on the simpler operators. To make the procedure 
efficient in multidimensions, some type of splitting must be used, introducing 
problematic boundary treatment. Mixed terms also pose problems (ref. 6) 
compared with the simplicity of equation (8). 
to generalize Saulev's scheme (ref. 7) to spectral methods in the same 
way equation (2) is generalized to equation (3). This seems a very promising 
perspective, and a probable direction for future work. 

Yet another possibility is 



CONCLUSIONS 

A shple and efficient time-advancing scheme has been presented 
for spectrally solving parabolic equations with general boundary conditions. 
Various equations have been used, obtaining satisfactory results, especially 
for convergence to steady states and Divichlet boundary condit’ions. 

While the main theoretical question - stability - is still open, 
these preliminary results provide a firm foundation for further research. 
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Figure 1 .  Divergence of  B6nard problem at  Pe = 50 showing l ines  of constant 
t = 4 ,  computed using nine modes (To to Te), y = 5 ,  A t  = 0.01. 

4 at  
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Figure 2. Divergence of Binard problem: 
multigrid program. 
t o  figure 1 . )  

exact steady solution obtained from a 
(The x and y axes are interchanged w i t h  respect 

e 
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Figure 3 .  Convergence t o  steady state:  solution of equation (14) showing arbitrary 
i n i t i a l  data; nine modes used (To t o  Tg), y = 3 ,  A t  = 0.01, U = V = 1, 
Pe = 1. 
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Figure 4. Convergence to steady state: 
initial data showing the function at t = 2; nine modes used (To to Te), 
y = 3, At = 0.01, U = V = :, Pe = 1, maximum error < 1 x 

solution of equation (14) with arbitrary 

- 
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Figure 5. Solution to Burgers equation at t = 0.5 with error - .e S x 1 7  modes 
used (TO to T~G), y = 5 ,  At = 0.001, a = 1 ,  6 = 2 ,  v = 0.001. 
Note that although equation (21; is ,nitten in terms of x and y, the 
solution u = constant on lines s = constant (straight lines of slope 
- 1:2). 
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