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1.0 SUMMARY
 

Beech Aircraft Corporation under Contract NAS2-10571 undertook the study of
 

advanced technologies applications to a derivative of a current small short­

haul transport airPraft. A derivative is defined as the baseline aircraft
 

with an unchanged or slightly modified fuselage with possible changes to
 

engines, systems, wing and empennage.
 

The results of this study complement the previous NASA STAT studies in
 

which the baseline aircraft was designed to a defined set of configuration and
 

mission specifications.
 

Mission requirements of the derivative design were the same as the
 

baseline aircraft, to readily identify the advanced technology benefits
 

achieved.
 

Advanced technologies selected for application to the baseline aircraft are
 

o Advanced turboprop engines
 

* Advanced propellers
 

o Surface Coating
 
o Composite Structures
 

* Advanced Turbulent -low Airfoils
 

The key improvements in the Advanced Technology Derivative Aircraft (ATDA)
 

compared to the current technology baseline are­

o 14% reduction in takeoff gross weight
 

* 14% reduction in wing area
 

o 14% reduction in total cruise drag
 

o 17% reduction in engine power
 

Since the ATDA was constrained to the range and cruise speed of the
 

baseline aircraft, the performance differences are minimum. The most
 

important differences are in the 34% reduction in block fuel used and
 

corresponding DOC reduction of 21% for the 100 n. mi. stage length and
 

$1.75/gal fuel cost.
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1.0 SUMMARY (Cont'd.) 

Evaluation of the ATDA shows that the 21-7-25% DOC reduction potential comes
 

at a 17% higher acquisition cost due to the development costs of the
 

baseline aircraft being fully amortized. The additional acquisition cost
 

is justified by the operating cost savings which allows a payback period of
 

just under a year. A potential market capture rate of 40% is indicated for
 

the 1990's.
 

Recommended research areas to evolve advanced technology for application to
 

small transport derivative aircraft are as follows.
 

1) Improved aerodynamics including advanced airfoils,
 

propeller-nacelle-wing integration and surface coatings.
 

2) Advanced propulsion systems including low SFC turboprop
 

engines and advanced propeller concepts.
 

3) Graphite/epoxy structures in lightly loaded areas with emphasis on
 

fabrication methods for low cost.
 

4) Control system technology for active controls for relaxed static
 

stability and ride improvement.
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2.0 INTRODUCTION
 

Since the advent of deregulation, the commuter or short stage length air
 

carrier has grown in numbers and service areas. The operational environ­

ment that these aircraft are subject to has created a demand for an aircraft
 

specifically designed for this market segment.
 

Design of a new aircraft is a lengthy and costly process. To reduce costs
 

manufacturers will enhance or modify an existing aircraft design to meet a
 

particular need. These derivative aircraft utilize the basic airframe,
 

systems, avionics, etc., of the current aircraft thus reducing tooling
 

and development costs.
 

Utilization of advanced technology from NASA-sponsored and independent
 

research may further reduce both manufacturing and operating costs.
 

Once the technology is available, application to a derivative aircraft
 

will aid its introduction to the market.
 

As a complement to the recently completed NASA Small Transport Aircraft
 

Technology studies, this study wll investigate the application of advanced
 

technology to a baseline aircraft similar to a current 19-passenger design.
 

The study is divided into four tasks:
 

Task I - Baseline Aircraft and Mission Definition
 

The baseline aircraft is similar to a current technology aircraft with a
 

19-passenger seating capacity. The mission requirements will follow those
 

defined by this design.
 

Task II - Application of Advanced Technology
 

The NASA developed computer analysis program, General Aviation Synthesis
 

Program (GASP), is used to evaluate the influence of advanced technologies,
 

both individually and in combination, on the baseline aircraft. Baseline
 

payload/range and cruise speed were held constant. Those advanced technology
 

items identified as most promising were then applied to the baseline aircraft
 

to design an advanced technology derivative aircraft which would accomplish
 

the baseline mission more efficiently.
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2.0 INTRODUCTION (Cont'd.)
 

Task III - Evaluation
 

Comparisons of the ATDA with the baseline aircraft were made in the
 

areas of configuration,.performance and economics. Market potential of
 

the ATDA versus present and future market requirements and available
 

aircraft was also accomplished.
 

Task IV - Recommendation for Future Research
 

Recommendations for continued and new research of the advanced technologies
 

evaluated in Task III.
 

Definitions of the baseline aircraft and computer program methods are
 

presented in Sections 4.1 - 4.3. Identification and selection of the
 

potential advanced technologies are discussed in Section 4.4. Application
 

of the selected technologies is discussed in Section 4.5. Evaluation of
 

the ATDA and comparison with the baseline are contained in Section 4.6.
 

Section 5 0 lists recommendations for future research.
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3.0 ABREVIATIONS AND SYMBOLS
 

ACEE Aircraft Energy Efficiency Program
 

AR Aspect Ratio
 

ASNM Available seats-nautical miles
 

ATDA Advanced Technology Derivative Aircraft
 

BLK Block
 

c Local chord
 

Section drag coefficient
Cd 

CD Total drag coefficient
 

Ck Section lift coefficient
 

Cp~max Section maximum lift coefficient
 

CL Total lift coefficient
 

CLmax Total maximum lift coefficient
 

DEG Degree
 

DOC Direct Operating Cost
 

FPM Feet per Minute
 

ft Feet
 

gal Gallon
 

GASP General Aviation Synthesis Program
 

hr Hour
 

kts Knots
 

L Lift or length
 

lbs Pounds
 

L/D Lift to Drag Ratio
 

H Mach number
 

NLF Natural Laminar Flow
 

NM Nautical mile
 

n. ml. Nautical mile
 

no. Number
 

psi Pounds per square inch
 

R/C Rate ,of climb
 

RN Reynolds number
 

ROI Return on investment
 

RPM Revolutions per minute
 



X 

3.0 ABBREVIATIONS AND SYMBOLS (Cont'd.)
 

SFC Specific fuel consumption
 

SHP Shaft horsepower
 

S.L. Sea level
 

SQ. FT. Square Feet
 

STAT Small Transport Aircraft Technology
 

Distance along the X axis
 

Z Distance along the Z axis
 

2-D Two dimensional
 

a Angle of attack
 

A Taper Ratio
 

A Incremental Value
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4.0 DISCUSSION AND RESULTS 

Summary. Major data analysis for this study was done using the
 

General Aviation Synthesis Program (GASP) developed by NASA. A
 

current technology small transport aircraft was selected as the
 

basepoint configuration Close match of the performance estimated
 

by normal preliminary design methods was accomplished by GASP
 

methods. Various advanced technologies are identified and evaluated
 

for application to the baseline with the goal of achieving fuel effi­

ciency and lower operating costs. A cost analysis method was developed
 

to assess the cost of the new technologies in a derivative aircraft
 

versus the benefits obtained.
 

The most promising technologies are incorporated into the baseline
 

aircraft to obtain a final derivative aircraft design.
 

4.1 General Aviation Synthesis Program (GASP)
 

NASA's Ames Research Center has developed the General Aviation Synthesis
 

Program (GASP). This computer program performs tasks generally asso­

ciated with aircraft preliminary design and allows an analyst the capa­

bility of performing parametric studies in a rapid manner.
 

The program is comprised of modules representing the various technical
 

disciplines integrated into a computational flow. This ensured that the
 

interacting effects of design variables are continuously accounted for
 

in the aircraft sizing procedure. By utilizing the computer model the
 

impact of various aircraft requirements and design factors may be
 

studied in a systematic manner with benefits measured in terms of overall
 

aircraft performance and economics.
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.1 General Aviation Synthesis Program (GASP) (Cont'd.)
 

The synthesis program consists of a control module and several technology
 

submodules which perform the various independent studies required in
 

the design of general aviation or small transport aircraft. Each of the
 

six technology modules (Figure 1) is composed of one or more computer
 

subroutines and the input to each module may be either the output of
 

another module or it may be input directly to the module.
 

This integrated approach ensures that results contain the effects of
 

design interactions among the various modules. For example, a change
 

in wing loading affects wing area, tail size, lift, drag, propulsion
 

system size, cruise altitude, structural weight, range and other
 

parameters A typical flow chart is shown in Figure 2.
 

A complete description of the total program and detailed discussion of
 

each technology module may be found in Reference 1.
 

Upgrading and modification of the various modules has been occurring
 

since the publication of Reference 1 in coordination with NASA Ames
 

Research Center personnel Beech has modified the propulsion module to
 

accept power tables as used at Beech and made the complete program
 

compatible with IBM equipment and systems.
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4 2 Baseline Definition
 

The aircraft selected for the baseline of this study is representative
 

of a current technology aircraft that will soon be entering commuter
 

operations. It is a twin turboprop, low-wing, T-tail design with two
 

crew and 19 passengers.
 

The basic mission is defined as a one leg mission with a max rate of
 

climb to 10,000 foot altitude, cruise at normal power and descent with
 

reserve fuel at full payload. Figure 3 depicts the complete mission
 

profile.
 

This aircraft is defined in more detail in the following sections.
 

4.2.1 General Arrangement - Three-View
 

A three-view drawing of the baseline aircraft is shown in Figure 4.
 

4.2.2 Inboard Profile
 

A drawing showing the general arrangement of the interior of the
 

baseline aircraft is shown in Figure 5
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BASELINE SEATING ARRANGEMENT 
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4.0 DISCUSSION AND RESULTS (Cont'd.) 

4.2 Baseline Definition (Cont'd.) 
4 2.3 Characteristics 

Maximum Ramp Weight 15,355 lbs. 

Fuel for Start, Taxi, Run up 110 lbs. 

Maximum Takeoff and Landing Weight 15,245 lbs. 

Standard Empty Weight 8,400 lbs. 

Useful Load 6,955 lbs. 

Useable Fuel 426 Gal. 2,855 lbs 

Payload 4,100 lbs. 

19 Passengers @ 170 lbs. 3,230 lbs. 

Baggage 530 lbs. 

Pilot & Copilot 

Baggage Stowage Volumes & Arrangement 

Forward Nose Baggage (Max 150 lbs.) 

Cabin Compartment Baggage (Max 540 lbs.) 

Aft Compartment Baggage (Max 630 lbs.) 

Nose Equipment Compartment (Radios, etc.) 

340 lbs. 

100 lbs. 

315 lbs. 

115 lbs. 

118 ft. 3 

14 ft. 3 

48 ft.3 

56 ft. 3 

14 ft. 3 

Aisle or Cabin Height 57 in. 

Aisle Width (below 25" above floor) 18.3 in 

(above 25" above floor) 19 in. 

Seat Width 16 in. 

Seat Pitch 30 in. 
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.2 Baseline Definition (Cont'd)
 

4 2.4 Performance
 

Cruise Speed @ 10,000 ft. 263 kts.
 

Range at Max. CR Speed with Full Payload 555 NM
 

Engine Out Service Ceiling (50 FPM) 16,600 ft.
 

Terminal Area Speed Capability (Gear Down) 182 kts.
 

Stall Speed Landing S. = 350 85 kts.
 

R/C 2 Engine FPM 2,280/S.L.
 

R/C 1 Engine RPM 490/S.L.
 

Service Ceiling 100 FPM 2 Engine 30,000 ft.
 

Landing Distance (15,245 lbs. max landing weight
 

sea level, standard day over 50 ft.) 3,250 ft.
 

Takeoff Distance (15,245 lbs. sea level, standard
 

day over 50 ft.) 3,088 ft.
 

Cockpit and Passenger Cabin Details*
 

170 lb passenger weight, 198 lb. passenger + baggage
 

2-man crew, no cockpit observer jump seat
 

No flight attendant (19 passengers)
 

57-inch (4.75 ft.) interior aisle height
 

30-inchbseat pitch, 16-inch seat width (no armrests)
 

18 5 - 19 inch aisle width
 

10-inch garment stowage area @ .53 inches width/passenger
 

Underseat stowage for carry-on baggage of 13" x 18.5" x 6" per passenger
 

Easy loading of preloaded baggage @ 5.47 ft. 3/pass. interior, to
 

6.21 ft 3/pass. interior + exterior
 

No beverage service provision (optional)
 

No lavatory
 

Cabin pressurization - 4.8 psi
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.3 Baseline Match With GASP
 

Matching of baseline parameters to GASP is done in a four-step procedure
 

outlined below.
 

4.3.1 Geometry
 

Geometric parameters are input as length/diameter ratios for the
 

fuselage and thickness/chord ratio for the wing and empennage. These
 

parameters are varied until the values match the baseline geometry.
 

Figure 6 presents the GASP output for the baseline geometry with the
 

actual values written in for comparison.
 

4.3.2 Aerodynamics and Propulsion
 

Aerodynamic matching is accomplished by matching of the airplane drag
 

polar at the takeoff, climb and cruise conditions. Profile drag is
 

matched by inputting form factors for the various components of the
 

aircraft such as wing, fuselage, nacelle, horizontal tail and
 

vertical tail. Profile drag of the wing as a function of lift coeffi­

cient is also input. Figure 7 presents the GASP output for the baseline
 

aerodynamics with actual values written in for comparison.
 

High lift device lift and drag are calculated as incremental values to the
 

basic drag polar. These calculations are based on the methodology of
 

Reference 2. The various types of high lift devices are referenced to
 

a reference wing and the lift and drag increments are modified by
 

correction factors dependent on the wing geometry being analyzed.
 

Figure 8 presents the flap performance summary of the GASP output.
 

Engine input is in the form of tables of corrected engine data for
 

various flight conditions Propeller data are input in the form of
 

number of blades, activity factor, integrated lift coefficient
 

rotational speed and diameter. GASP uses Hamilton Standard methods
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ALPHA CL LD L/D CL CD L/D CL Cu L/D 
-2.00000 0.01111 0.03617 0.5073u 0.47222 0.U6003 7.86635 0.7V129 0.101.7 7.79840 
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.3 Baseline Match With GASP (Cont'd.)
 

4.3.2 Aerodynamics and Propulsion (Cont'd.)
 

as described in NASA CR-2066 to calculate propeller efficiency through
 

generalized propeller performance tables. Corrections are applied to
 

account for differences between the reference geometry and the input
 

geometry. Engine power, SFC and propeller efficiency were matched within
 

1%.
 

4.3 3 Weights
 

Weights of the aircraft are divided into several groups, propulsion
 

group, structures group and flight controls group. Fixed equipment,
 

fixed useful load, payload and fuel complete the components of the
 

total gross weight. Weight coefficients in the weight trend equations
 

are adjusted to define weights closely matched to the baseline.
 

Figure 9 presents the GASP output of the group weight statement.
 

4.3.4 Performance
 

Matching of the performance was mainly concerned with cruise speed and
 

range matching. Takeoff and landing distances are paced by the matched
 

low speed drag polars. Accelerate-stop distance is within 5% and
 

landing distance is within 1%. A slightly higher takeoff and landing max
 

gross weight due to differences in GASP calculations was used for these
 

values (Figures 10and 11). In GASP ramp weight is used for the max
 

landing weight. Also two landing distances are calculated in GASP, one
 

without idle thrust in the ground run and one with idle thrust in the
 

ground run. Since the preliminary design method used in the baseline
 

calculation does not provide for idle thrust, in GASP it is matched to
 

the first landing distance calculation. Due to the ground maneuvering
 

time constraint applied to the DOC calculations (See Section 4.3.5), the
 

taxi and takeoff fuel allowance is slightly iess than the original baseline
 

allowance.
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l.ST) 

383.U. 
42Z1. 

d 
w 

L-

H 
z 
tri 

FLIGHT COjTROLJ GkUUP 
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.3.4 Performance (Cont'd.)
 

Time, fuel and distance in climb are matched, but rate of climb is lower
 

in GASP (Figurell). This is apparently due to drag polar calculation
 

differences in climb and in the calculation of propeller efficiency
 

resulting in lower thrust and drag. Total range is matched within 2.3%
 

including descent credit not taken in the baseline range calculated
 

with Beech preliminary design methods (Figure 12).
 

4.3.5 Initial and Direct Operating Costs
 

Initial and direct operating costs are calculated in GASP using a 

computer routine provided by NASA Ames. The methods are based on 

SAWE papers 1071 and 1098 with modifications (References 3 and 4 ). 

A summary of the equations used is presented in Table 1 . Direct
 

Operating Cost (DOC) assumptions for this study are listed in Table 2
 

In the calculation of initial cost, airframe cost is computed within
 

the GASP whereas engine and propeller costs are input as dollars/SHP
 

and dollars/ib, respectively
 

GASP computed results are shown in Figure 13. The $/block hour DOC's are
 

matched within 1%.
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36.,) 5301.2 92.4 152b2. 33.0010.6i1(j.2 U.167 0.00 1.198 0.152o t.06 0.79 146.3 1.00 ZIi. o02. 6.81DISTANCE TO 35 FT.= 5452.4 TAS= 110.6 LAS= 110.6 V35/VS= 1.1987 
39.0 548b.3 92.6 11262. .5.5 1IO.b 110.8 U.1o7 0.Os 1.1895 0.1540 5.96 0.73 14-.4 0.99 611. b.o96..4.40.0 5675. 9?.6 1522. 37.8 110.o 110.8 .107 0.00 1.1982 0.1531 6.06 0.72 14i.I 1.00 IJ1. 6-Z. 5.78
41.0 58o2.b 93.0 152o1. .0.2 110.u 110.6 0.167 o.U2 1.1691 0.1525 5.V6 0.71 139.5 0.99 zh~u. b4/. S.od
4'.0 6049.8 93.2 1i2o1. '2.5 110.a 11u.t O.1o7 0.02 1.1890 0.152o 5.9o 0.70 
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zj 
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,A CCELERATE - STOP DISTANCE = 452t.o I-ELI. 4333 Ff 

FH ENSIN OUT DISTANCE TO 35 I-I.= 5452., FEET 
ALL ENGINE DISTANCE T0 35 FT. (LI = 3383.1 FrEl 
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AT FND OF TAKEOFF PHASE , 0 
=
= 
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>n- ACCELERATE rO MACH NO. =0.-.'9 

FULL FULLTIME RANGE USED WEIGHT ALT. TAS LAS MACH MACH THRUST FLOW 
N (HRS) (NM) (LBS) (bS) IFT) (eTS) (&TS) NU. DIV (LOS? (LB/HR) 

0.132 0.0 97.- 15257. 5uG. 131. 13u. 0.19Y 0.605 jd7. 1273. 
0.182 0.09 98.1 15256. 500. i8. 137. 0.209 U.614 3778. 1212.
 

ENO OF ACCELERATION SFGMENI = =O TIM!:= 'J.1b2 HRS. FULL USED= 9b.1 L S WEIGHT 0 256. Lb,% RANGL 0. NM
 

CLI1d fU 10000. FT. Ar MAXIMUM RATE OF CLIMb 
Hj FUEL IaUS
TI- RANG U5eD, WEIGHT ALI. TAS MACH MACH CL Lu ALPHA GAMMA ANbL K/C TIHRUT FLOF3 (RS)1 (14) (LBS) iLb) (r I) (S) (,k) NO.ITGR I ESI"N CL ADJ6 V OT (J DIV 0,4gZ (OLGI (DEG) (DLG) (FPM) (LBS) (Lb/Hk) T)POPGKLYV'uR C IN'TI 

INTEGRATEO [EIGNCAA PRUPERLY i-oR DEF-INITION .11 
JN Dc ..
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HUEL 

rJLS1GN CASL 
CRUISE PEiFURMANCE SUMMARY 

FOR
44#* DESIGN PAYLUAD *4: 

SMAXIMU PAYLUAD **44' 
AVAILABLE= 22,5. 

Pi 

Co 

r 
H 

TIME HRS. 
RANGE -N.M1 
FUEL USED LUS. 
WCIGHT LOS. 
ALT]ru0t FT. 
TAS <TS.EAS (TS.MACH NO. 

. ACHAh, ATTACK DEG. 
FUSE. ANGLE D0G. 
CL 
L/D
FUEL FLOW LB/HR
gREG. FACTOR N.MI . 
SPEC. RANGF NM/LB 

AT AT 
SPECIrICO SPEEu NUKMAL PUWER 
START END START ENU
CRUI E CRUIaL CRUISE C*IUISE 

---------- -------------------------- ----- - ----­0.0 0.u 0.304 2.328 
. U. zo. 552.

O. 0. 2uQ. i,.
0. 0. 1s124. 13G40. 
0. 0. 16000. 10006. 

o.0 0.0 262.9 262.90.1, 0.0 226.U 226.00.0 0.0 0.4115 0.,115 
0.0 0.0 0.67-z 0.o778O. a0.0 0.879 U.*o3 
0.0 0.0 -0.121 -u.537

0.0 U.0 0.2893 0.2492
0.0 0.0G.3v8 6.5430.0 r.v 1042.7 1020.7 

0. 0. 1o. 3361.
0.0 b.(, 0.25217 0.25760 

AT 
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STA T END 
CKUIS& CRUIsE 

0.201 3.Alo 
15. 638. 

z03. 2303. 
15151. 13051. 
10000. 10000. 
194.9 194.9167.5 1o7.50.3051 0.3051 

0.6456 0.5-.1
3.541 2.756 
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0.5272 0.4542
1U.bvO 9.b83
671.! 6-f4. d 
401. .94a. 

0.29029 0.30233 

DESCENT FROM CRUISE AT NORMAL POWER CUNDITION 

H 
o 

i 

HCo 
o 

FULL
TIME RANGE USED WEIGHT 
(NRS) INL) (Las) ILBS 

2.334 5 4. 2316. 13037. 
2. '1 5t6. 2321. 13033.
2.348 557. 2324. 1,030. 
2:355 559. 23zd. 130e6.
z..62 561. 2332. 1OZ.
2.36v 562. 2335. ls019. 
2.37o 564. 2339. 13015.2.3133 565. ?3,8. 13011. 
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8000. 
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1500. 

235u. 

FUS. 
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24L. 213. 0.386 .675 0.2772 0.0398 0.78 -5.78 -o.00 
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A 
A 
A 
A 
A 
A 
A
A 
A 
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0
TEMP.= t18. OE68 TD.t o.
LANDINS ELFVAIIUN= 0. ff.
 
LANDING lTN, IO')IN= 5u.,L, PSF-.
 



4 0 DISCUSSION AND RESULTS (Cont'd.)
 

TABLE 1 

DOG MODULE EQUATIONS 

Aircraft Initial Cost 

Total Aircraft Cost = 400.4 (weight of airframe)*8 9 3 6 x inflation factor + 

cost of engines + cost of propellers 

Flying Operations 

Flight Crew = (2.5 x no of seats) x block time 

Fuel, Oil and Taxes = fuel used x fuel cost ($/gal) x 1.045 x block time 

Insurance = aircraft cost x percentage rate x block time/ 
utilization hours per year 

Direct Maintenance 

Airframe Labor = labor rate x .0115 x airframe weight "5 7 5 x block time 

Airframe Material = .115 x airframe weight "5 7 5 x block time 

Engine Labor = labor rate x .00246 x SHP "6 6 x block timenx no. of 
engines 

Engine Material = .0984 x SHP "66 x block time x no. of engines 

Total Airframe = airframe labor + airframe material 

Total Engine = engine labor + engine material 

Maintenance burden = percent burden rate x (airframe labor rate + engine 
labor) 

Depreciation = aircraft cost x spares factor x (1 - residual )x 

block time/depreciation years/utilization hours 

Total DOG = flight crew + fuel, oil and taxes + insurance + total 
airframe maintenance + total engine maintenance + 
maintenance burden + depreciation 

DOG in cents per available seat per statute mile (Q/assm)
 

DOC = total DOG/no. of seats/stage length x 1.15
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

TABLE 2
 

DIRECT OPERATING COST GROUND RULES
 

1. 1981 dollars
 

2. Utilization - 2800 hrs. 

3. Crew Cost - 2.5 x 19 = $47.50/blk. hr.
 

4. Fuel Cost - $1.75/gal. 1981
 

- $3.50/gal. 1990
 

5 Maintenance Labor and Burden -


Based on study of comparable aircraft
 

Labor Rate = $13/hr.
 

Burden Rate = 80% Labor Cost
 

6 Insurance - 1.5%/year of total aircraft price
 

7. Spares factor - 6% of total aircraft price 

8. Depreciation - straight line over 12 years to 15% residual value 

9 Nonproductive maneuvering time - 10 minutes
 

10. Block time = flight time + 10 minutes
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies
 

Through independent studies, literature searches and consultations with
 

NASA, promising advanced technologies have been identified. These
 

technologies include laminar flow and low speed improved turbulent
 

airfoils, composite structures, advanced turboprop engines, advanced
 

propellers and active control systems.
 

4.4 1 Advanced Airfoils
 

4.4.1.1 Laminar Flow
 

Laminar flow on aircraft wings to achieve a low profile drag has been
 

studied and applied for many years. A summary of past experiences ia
 

presented in Reference 30. Extensive laminar flow is dependent on
 

accurate, wave-free surfaces free of roughness and other disturbances
 

such as propeller slipstreams, insects, dirt and wing sweep Of course,
 

rain, frost and ice are also detrimental to laminar flow achievement.
 

These problems are covered more extensively in Reference 30.
 

A two-dimensional analysis of several airfoils was conducted as an
 

independent study by Beech utilizing the Eppler Analysis Program
 

(References 5 and 6). This computer program calculates the lift and
 

drag characteristics of a given airfoil while checking upper and lower
 

pressure gradients to determine separation points.
 

Airfoils considered were the NACA 23015 as a baseline, the NACA 65A415,
 

the NASA Ames/STAT NLF and a fourth airfoil generated by Beech utilizing
 

the COPES computer program (Reference 7).
 

This airfoil, shown in Figure 14, designated the Beech Advanced Laminar
 

Airfoil, is designed with reduced aft loading and hinge moment constraints
 

to provide minimum drag for each Ck and to delay separation as long as
 

possible. This airfoil has a lower drag over a wider CZ range but has
 

a reduced Ckmax compared to the NASA Ames/STAT NLF airfoil shown in Figure 15.
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.1 Advanced Airfoils (Cont'd.)
 

4.4.1.1 Laminar Flow (Cont'd.)
 

Analysis of these airfoils was conducted at a Reynolds Number of 7.45 x
 

106 and transition was allowed to be determined by the computer program.
 

Figure 16 presents a comparison of the 2-D drag polars without a cruise flap.
 

The Beech Advanced Turbulent airfoil is discussed in Section 4.4.1.2.
 

The NACA 23015 is the baseline airfoil with little laminar flow. Therefore,
 

the minimum drag is relatively high, which increases the cruise drag. However,
 

for a typical climb Cz of .8 the drag is relatively low. The NACA 65A415
 

airfoil shows low minimum drag but the points of low drag are in a narrow
 

range of C 's. The analysis program failed for the airfoil in the C = .8 to
 

1.1 range indicating fully separated flow on the upper surface. The NASA Ames/
 

STAT airfoil has a low minimum drag over a wider C range than-the NACA 23015 

although at C£ = .8 the drag is higher than the NACA 23015. 

Figure 17 presents a comparison of the 2-D drag polars with the addition of a
 

30% chord ratio cruise flap which improved the drag for all airfoils while
 

increasing C max. Flap deflection was variable with CZ according to a
 

schedule set for each airfoil. The NASA Ames/STAT NLF airfoil has a definite
 

advantage over the other airfoils and the results indicate a lower drag at
 

climb Cz's than at cruise Ci's although low drag is maintained through the Ck
 

range up to a C of 1.4 with flap deflections of -50 to +340. The Beech
 

Advanced Laminar Flow airfoil gained little in reduced drag at the low Ci's
 

but did have substantial gains in Cd and C9max for the higher C's. If transi­

tion does occur early, the resultant drag is not as high nor does the Cmax
 

decrease as much as the Ames/STAT NLF airfoil. This loss of laminar flow
 

in the high Cz region may be caused by the insect and dust problems discussed
 

earlier and is a cause for concern in the use of natural laminar flow.
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BEECH ADVANCED LAMINAR FLOW 
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4.0 DISCUSSION AND RESULTS (Cont'd.) 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.1 Advanced Airfoils (Cont'd.)
 

4.4.1.2 Improved Turbulent Airfoils
 

Previous studies (References 31 and 32) have shown that improved turbulent
 

airfoils may be designed with lower cruise drag and improved climb L/D
 

than the earlier NACA five-digit series airfoils.
 

An independent study by Beech of an improved turbulent airfoil which would
 

have a lower drag over the C2 range of interest resulted in the shape
 

presented in Figure 18. This airfoil should result in improved performance
 

without the attendant problems associated with maintaining laminar flow at
 

all conditions. In fact, as seen in Figure 16, the drag variation is better
 

than the NASA/Ames NLF airfoil without cruise flap.
 

Figure 16 presents the variation of C. versus Cd for the Beech Advanced
 

Turbulent Airfoil against the airfoils previously described in Section
 

4.4.1.1. The Beech Advanced Turbulent Airfoil has a lower drag over the
 

C91 range of 0 to .8 than the NACA 23015 and is equal to the Beech Advanced
 

Laminar Airfoil over the .8 to .11 Ck range.
 

Figure 19 presents the section CY versus Cd and Cm variation for a
 
6
 

Reynolds Number of 6 x 10 . Figure 20 presents the C versus a variation
 
both two-dimensionally and three-dimensionally based on the baseline wing
 

planform
 

4.4.1.3 Surface Coatings
 

Surface coatings on the wing and tail surfaces have been the object of
 

study since 1977 (Reference 8). The objective of these studies is to
 

reduce the drag of transport aircraft by maintaining smooth lifting surfaces
 

and as an added benefit reducing maintenance by providing surface protection
 

(Reference 9). This study narrowed the three types of coatings (liquid,
 

film, adhesive) to three liquid spray-on elastomeric polyurethanes.
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.1 Advanced Airfoils (Cont'd.)
 

4.4.1.3 Surface Coatings (Cont'd.)
 

In a follow-on study this selection was further verified (Reference 10).
 

Although drag reduction benefits are not verified as yet by testing,
 

estimates of the potential drag reduction were made. For a medium
 

sized transport aircraft a drag reduction in the cruise condition of 2%
 

was estimated (Reference 8). A cost/benefit analysis showed that for a
 

surface coating applied from leading edge to rear spar of the wing and
 

empennage a drag reduction greater than .3% would be a potential benefit
 

to the operator.
 

4.4.2 Wing Geometry Variation (AR, X)
 

Parametric studies of the effects of aspect ratio (AR) and taper ratio (X)
 

on Direct Operating Cost (DOC) were conducted utilizing GASP.
 

Range and cruise speed are held constant and wing area is varied for a
 

constant taper ratio and aspect ratio. This process was done for three
 

taper ratios and three aspect ratios for nine combinations.
 

Carpet plots of empty weight versus wing area with constant values of
 

DOC and aspect ratio and 4000 ft. accelerate-stop distance line were
 

generated. Cross plotting to obtain a variation of DOC versus taper
 

ratio for constant aspect ratio results in the curves presented in Figure 21.
 

These curves show that for a constant taper ratio the differential in DOC
 

for aspect ratios 10 and 12 is less than .5%. For a constant aspect
 

ratio over the range of taper ratios .27 to .44 the differential in DOC
 

is .6% for 564 n. mi. stage length and 1.3% for 100 n. mi. stage length.
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EFFECT OF ASPECT RATIO AND TAPER RATIO ON DOC
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.2 Wing Geometry Variations (AR, X) (Cont'd.)
 

The difference in design range from the baseline given in Section 4.3.4
 

is because these studies were done before modification to the GASP for
 

engine out drag inclusion and DOC guideline changes. These changes do
 

not affect the study results since they are complete in themselves and
 

the trends and differentials are between similarly calculated quantities.
 

4.4.3 Improved High Lift Devices
 

Improvement in high lift devices has reached a high level when applied to
 

large transport aircraft. These double-slotted and triple-slotted flaps
 

are not readily scaled down to small transports with the associated
 

complexity and increased weight they add. Previous studies (References 11
 

and 12) indicated that the small transports need area increasing flap
 

systems to achieve the lift required for takeoff distance and climb gradient
 

requirements set in those studies.
 

In an independent study, Beech analyzed a single-slotted Fowler flap
 

with 87% chord lip location and 25% chord ratio (Figure 22) This flap
 

has a 22% chord extension before translating down at about 100 deflection.
 

The flap is designed to conform to the aft portion of the advanced turbulent
 

airfoils with their increased aft camber. A similar type flap was tested on
 

a NASA LS(l)-0413 airfoil and reported on in Reference 33. This flap has a
 

33% increase in two-dimensional Ctmax over a single-slotted flap arrangement.
 

When applied to an aircraft similar to the baseline, the CZmax increase is 5%
 

for a Fowler flap of the same semi-span and 28% for a single-slotted Fowler
 

flap at 89% semi-span both at 20 degree flap deflection (See Figure 23). In
 

terms of ACL and ACD due to flap deflection Figure 24 shows a comparison of
 

the single-slotted flap and the single-slotted Fowler flap with about a 74%
 

increase in ACL and 66% increase in ACD for the 200 takeoff flap setting.
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.4 Composite Structures
 

Advanced structures have the potential of weight savings benefits that
 

have been clearly demonstrated in large aircraft secondary structures
 

(References 13, 14, 15, 16, 17, 18). These component weight savings have
 

been in the 20 to 30 percent range, largely due to the use of graphite/
 

epoxy materials. One comparison from Reference 14 is shown in Figure 25
 

Here a composite fin for a large transport aircraft has a weight savings
 

of 28% and a reduction in parts and fasteners of 73% and 84%, respectively.
 

Other primary and secondary structures and their associated weight savings
 

now under development in the ACEE program are summarized in Figure 26.
 

These large transport wings and empennage are highly loaded and hence tend
 

toward heavy structure. Due to light loadings, the empennage and control
 

surfaces of the general aviation or small transport type aircraft tend to
 

be minimum thickness necessary to maintain stiffness. This aspect of
 

applying composite structures has not been researched completely. Quantifi­

cation of minimum ply requirements for stiffness, weight reduction, manufac­

turing costs and methods still needs to be accomplished.
 

One author (Reference 19) has stated that the greatest payoff in new
 

materials will be derived from use in new design with associated resizing
 

With a wing-only substitution on a
of the aircraft as shown in Figure 27. 


derivative aircraft, the resulting fuel savings of 3% is said to not justify
 

development costs. In Section 4.4.9 sensitivity studies and cost analysis of
 

a baseline derivative aircraft will quantify this conclusion.
 

What price these new materials will bring is still being resolved. Converting
 

from aluminum would require new facilities and lowering of the cost of graphite
 

"The issue of cost remains one of much less certainty and
construction. 


predictability. Tooling costs for composites are high, and many composite
 

parts currently are labor-intensive. However, improved manufacturing technol­

ogy now under development is expected to reduce fabrication costs." (Reference
 

20). The Development of the technology, personnel training and equipment costs
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METAL BOX COMPOSITE BOX
 

WEIGHT (LB) 838 622
 

% COMPOSITE MATERIAL - 77
 

WEIGHT SAVED (LB) - 236 (28 4%)
 

NO OF RIBS 17 11
 

NO OF PARTS 716 191
 

NO OF FASTENERS 40,371 6311
 

FIGURE 25COMPARISON OF COMPOSITE FIN
 
TO ALUMINUM FIN
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COMPONENT 

SIZE rn 
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FUEL WEIGHT 
SAVING SAVING 

WING SUBSTITUTION ONLY 

WING 25% 

AIRFRAME (INCLUDES 8% 
WING) 

TAKEOFF WEIGHT 3% 3% 

ALL NEW RESIZED DESIGN 

AIRFRAME (INCLUDES 33%
 
WING)
 

TAKEOFF WEIGHT 18% 18%
 

FIGURE 27 WEIGHT AND FUEL SAVINGS DUE TO 
COMPOSITE STRUCTURE 
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.4 Composite Structures (Cont'd.)
 

have not been taken into account in the studies done previously (References
 

11 and 12). These costs amortized over an aircraft production run may
 

increase the total cost of manufacturing.
 

Another application of graphite/epoxy has been investigated as part of
 

this study. Fatigue damage is generally not a design problem if the
 

composite part has satisfied the static strength requirements. In fact,
 

tests have repeatedly shown a higher static residual strength after fatigue
 

testing than in unfatigued specimens (Reference 21). Hence the use of
 

graphite/epoxy material in the replacement of fatigue critical aluminum
 

structure is a possibility.
 

Analyzing the spar caps only of the baseline aircraft wing; substitution of
 

strength critical requirements for fatigue requirements resulted in a 79%
 

weight savings (Figure 28). This is about 2% in gross weight savings which
 

again may not be enough to justify the development costs.
 

One result apparent in the NASA sponsored studies is that much of the
 

required technology and experience gained in designing and working with
 

graphite/epoxy structure is not readily transferable from one company to
 

another. Therefore, each manufacturer will require a similar but smaller
 

development effort (Reference 13).
 

4.4.5 Propulsion Improvements
 

4.4.5.1 Engine Technolog y
 

Recent STAT propulsion studies (References 22 and 23) have indicated a
 

10 to 20 percent improvement in specific fuel consumption (SFC) and an
 

18 to 23 percent reduction in engine weight. Engine initial cost has not
 

been as well quantified in these studies. For this study it is assumed
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Aluminum Graphite-Epoxy 

T'g (psi) 5700 15000
 

I (lb'in3 ) 0 100 0055
 

Cap Wt (Ib) 437 91
 

Wt Savings (Ib) 346
 

% Wt Savings on Item -- 79% 

% Wt Savings on Gross -- 2 0% 

Possible fuel savings -- 2 0% 

FIGURE'28BASELINE SPAR CAP WEIGHT
 
SAVINGS DUE TO GRAPHITE/EPOXY MATERIAL
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.5 Propulsion Improvements (Cont'd.)
 

4.4.5.1 Engine Technology (Cont'd.)
 

that a large increase in engine initial price is justified in order to
 

obtain the SFC improvement indicated. Sensitivity studies in Section
 

4.4.7.3 will verify this assumption and show the effect of engine price
 

on DOC.
 

Some of the advanced technologies mentioned in References 22 and 23 to
 

achieve the reduction in weight and SFC are summarized in Table 3.
 

4.4.5.2 Propeller Technology
 

Advances in propeller technology have been made recently with the use of
 

fiberglass or Kevlar composite propellers on current commuter aircraft
 

and the projected use on some mid-'80's new commuter aircraft (References
 

24 and 25).
 

More advanced technology is being studied in other NASA sponsored studies
 

(Reference 26). This study indicated a reduction in blade weight for
 

Kevlar/foam blades of 50% from aluminum but with a 30% increase in cost.
 

An 80% increase in cost is indicated for a graphite/epoxy composite blade.
 

These weight savings are for a direct blade replacement only. Hence, no
 

estimate of the weight reduction in the hut area has been documented.
 

Advances in this area may offset weight increases due to diameter increases,
 

number of blades or sweep.
 

Performance of advanced propellers is projected to increase efficiency in
 

cruise 3%. This includes 1% for propeller/nacelle integration and 2% for
 

advanced airfoils, decrease thickness ratio and improved surfaces finish
 

(due to composite structure). (Reference 26 and verbal communication with
 

NASA.)
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TABLE 3
 

ENGINE ADVANCED TECHNOLOGY IMPROVEMENTS
 

COMPRESSORS
 

Highly Loaded Axial Stages
 
Multi-Blade Impeller
 
Advanced Diffuser
 
12-1 Single-Stage Centrifugal
 
20.1 Two-Stage Centrifugal
 

COMBUSTOR
 

Air Blast Nozzles
 
Machined Ring Fabrication
 
Photo-Etched Fabrication
 
Improved Pattern Factor
 
Nonstrategic Materials
 
Thermal Barrier Coating
 

HIGH PRESSURE TURBINE
 

Improved Cooled Blades
 
Active Clearance Control
 
Single-Stage
 
Advanced Materials
 

LOW PRESSURE TURBINE
 

Three-Stage Inserted Blades
 
Tip Treatment
 
Advanced Materials
 
Integrally Cast Blade
 
High Modules Shaft
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.5 Propulsion Improvements (Cont'd.)
 

4.4.5.2 Propeller Technology (Cont'd.)
 

4.4.5.2.1 Interior Noise Study
 

The effect of nacelle/propeller location on interior noise was studied to
 

ascertain the degree of acoustic treatment needed to meet reasonable
 

requirements of interior noise levels. Figure 29 presents the predicted
 

noise level as a function of fuselage station location and prop-tip to
 

fuselage clearance location. In the propeller plane at the baseline
 

17-inch prop tip to fuselage clearance location the interior noise level
 

is estimated to be 110 dB(A) using standard Hamilton Standard predication
 

methods (Reference 27). Movement of the nacelles outboard 30 inches
 

results in a 6 dB(A) drop. The first row of seats is 20 inches aft of
 

the propeller plane where the noise level is 108 dB(A) for the 17-inch
 

prop-tip to fuselage clearance location and 103 dB(A) for the 47-inch
 

prop-tip to fuselage clearance.
 

Moving the nacelles outboard on the wings results in structural changes and
 

corresponding changes in airframe weight. Maintenance of the baseline VMc
 

speed would require changes in the vertical tail area. For a 30-inch
 

outboard movement the vertical tail area increases 17 square feet. Table 4
 

outlines the additional structural weight increase due to outboard nacelle
 

movement.
 

A proposed acoustic treatment method, shown in Figure 30, should reduce the
 

interior noise level 10 dB(A) per 2.6 lb/ft 2 for the prop plane area and
 

10 dB(A) per 1.0 lb/ft2 for the remainder of the fuselage cabin area. For an
 
85 dB(A) noise level at the first seat location (lower noise levels at the
 

other seat locations), the total aircraft acoustic treatment weight is 1030
 

pounds for the 17-inch prop-tip to fuselage clearance. Moving the nacelles
 

outboard 30 inches from the baseline location requires an acoustic treatment
 

weight of 788 pounds and structural weight increase of 102 pounds for a total
 

weight of 944 pounds.
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.5 Propulsion Improvements (Cont'd.)
 

4.4.5.2 Propeller Technology (Cont'd.)
 

4.4.5.2.1 Interior Noise Study (Cont'd.)
 

The interior noise study gives an indication of the weight penalty involved
 

if the baseline aircraft were to conform to the desired levels set in
 

previous STAT studies. Within the ground rules of this study, the fuselage
 

of the baseline was held constant; therefore, the effects of interior noise
 

reduction will not be considered any further in this study.
 

TABLE 4 

PRELIMINARY WEIGHT VARIATION 
DUE TO PROP FUSELAGE CLEARANCE VARIATION 

Y 
D = PROPELLER DIAMETER 

= PROPELLER TIP FUSELAGE 
= 110 in 
CLEARANCE 

Y/D 
Y-IN 

.155 
17 

.250 
27 

.350 
37 

.450 
47 

VERTICAL TAIL AREA (FT_2 ) 4875 556 608 66 

VERTICAL TAIL WEIGHT @30 LB/FT 2 (LB) 146 167 182 198 

A WEIGHT VERTICAL TAIL (LB) 0 21 36 52 

A WEIGHT FUSELAGE (LB) 0 2 35 5 

A WEIGHT WING (LB) 
INCREASED REAR 

SPAR LOADS 
LONGER GEAR 

0 18 31 45 

STRONGER WING JOINTS 

TOTAL WEIGHT INCREASE DUE 
TO OUTBOARD NACELLE MOVEMENT (LB) 0 41 71 102 
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.6 Aircraft Systems
 

Incorporation of advanced systems such as improved cockpit displays,
 

electrical systems and advanced avionics are considered beyond the scope
 

of this study. Active control technology has been considered previously
 

in References 11. 12, and 29 for gust load alleviation, ride controls and
 

relaxed static stability. Because of the wide range of loading requirements
 

for a small transport aircraft in a commuter environment advanced technology
 

for relaxed static stability is of interest in this study.
 

4.4 6.1 Active Controls - Relaxed Static Reliability
 

A promising benefit from active controls is drag reduction due to relaxed
 

static stability. The active control system would augment the passive
 

stability of the aircraft. Therefore, an aft C.G. location that would
 

normally result in negative static margin would be compensated for by the
 

active control system.
 

One study (Reference 28) has predicted a 4.5 percent improvement in cruise
 

L/D due to reduced tall size (hence reduced parasite drag and induced drag)
 

and minimum trim drag. This study also indicates that the maximum benefit
 

from augmented relaxed static stability is available when it is incorporated
 

into a new aircraft with an advanced airfoil wing. This is due to the more
 

aft loading of the advanced airfoils (as described in section 4.4.1) which
 

shifts the center of pressure aft necessitating an aft C.G. shift to
 

minimize trim drag. Fuel savings of 5 to 10% have been predicted for the
 

large transport aircraft analyzed in Reference 28. Benefits to the small
 

transport aircraft have not been quantified in previous studies. In Section
 

4.4.7 it is shown that a 4.5% drag reduction gives approximately a 1% DOC
 

savings.
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.7 	 Sensitivity Studies - Influence of Advanced Technologies on the
 
Baseline
 

In order to determine the effect of the various advanced technologies on 

direct operating cost, sensitivity studies were conducted with GASP 

utilizing the baseline aircraft. A summary of the advanced technology 

candidates and their benefits is shown in Figure 31 . The baseline 

configuration and mission profile were held constant and resizing due to 

the changed parameter was not allowed. This method isolates the change in 

DOC to the influence of the changed parameter only. Baseline aircraft
 

resizing due to the application of the advanced technology will be
 

presented in Section 4.5.
 

4.4.7 1 Effect of Drag Reduction
 

The advanced technologies that affect drag are advanced airfoils and
 

surface coatings. The effect of the drag reduction was calculated in GASP
 

by incrementing the total profile drag and calculating the resultant DOC
 

for 100 and 568 n. mi stage lengths. Although only profile drag is changed
 

for the whole mission, the change in drag is referenced to the total cruise
 

drag. As a percent of cruise drag reduction for 10,000 ft. altitude and
 

M = 41 the range of values is 1.5% for turbulent airfoils to 9% for a
 

combination of laminar airfoils and surface coatings.
 

Since takeoff gross weight was held constant, aircraft empty weight changes
 

as GASP adjusts structure weight for the change in fuel weight. DOC
 

calculations affected by airframe cost (which is a function of airframe weight)
 

were adjusted so that a constant empty weight was maintained. This ensures
 

that only the change in drag affects DOC.
 

The variation of DOC with change in total cruise drag is shown in Figure 32.
 

A 1% DOC change for a 4.5% drag change is indicated.
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ADVANCED TECHNOLOGY CANDIDATES
 

Technology Benefit
 

* Airfoils 

-Natural laminar flow 7% Cruise drag reduction 

-Improved turbulent flow 1.5% Cruise drag reduction 

* Long span Fowler flaps 18.5% CL increase
 
max
 

* Surface coatings 2% Cruise drag reduction
 

* Composite structures 25% Component weight savings
 

* Advanced turboprop engines 20% SFC reduction
 

* Advanced propeller concepts 3% Cruise prop efficiency increase
 

* Active controls 4.5% Cruise drag reduction
 

Figure 31 Advanced Technology Candidates
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.7 Sensitivity Studies (Cont'd.)
 

4.4.7.1 Effect of Weight Reduction
 

Weight reduction due to advanced material use in airframe construction was
 

calculated by incrementing the total structures group weight of the baseline
 

aircraft. As noted in Section 4.4.4 , up to a 25% decrease in component
 

structural weight may be effected through the use of composites. Since the
 

variation is in empty weight, no adjustment to the DOC calculations is
 

needed. The variation of percent change in empty weight and DOC with the
 

percent change in structural weight is shown in Figure 33. A 1% DOC
 

change for a 7% structural weight change is indicated.
 

4.4.7.3 Effect of Propulsion Improvements
 

Advanced engine effects were limited to a reduction in specific fuel consump­

tion (SFC) with no attempt to resize the engine for decreased engine and
 

aircraft weight. Engine tables were generated with 10, 15 and 20% SFC
 

reduction from the baseline engine table with shaft horsepower and exhaust
 

thrust held to baseline values. DOC calculations were adjusted to maintain
 

a constant empty weight since the GASP adjusts the structure weight due to
 

fuel weight change. The change in DOC and fuel used variation for a change
 

in engine SFC is shown in Figure 34. A 1% DOC change for a 2% SFC change
 

is indicated.
 

A point check of the effect of engine weight reduction was made to establish
 

a reference. Applying a 20% SFC reduction the engine weight was decreased
 

20% with all other parameters held constant for a 1% change in DOC a 28.5%
 

change in engine weight would be required.
 

The effect of propeller efficiency improvement on DOC was calculated holding
 

propeller geometry constant. Figure 35 presents the effect on DOC of a percent
 

change in propeller efficiency. A 1% change in DOC requires a 2.9% change in
 

propeller efficiency or a 2.6 percentage point improvement.
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.7 Sensitivity Studies (Cont'd.)
 

4.4.7.4 Effect of High Lift Devices
 

A single-slotted Fowler flap of 89% semi-span with an 18.5% increase in takeoff
 

CLmax was substituted for the 60% semi-span single slotted flaps. There
 

was a 6.0% increase in wing structural weight, as calculated by GASP,
 

with a 94% increase in flap weight. Although there was a DOC increase of
 

.25%,the balanced field length and landing distances decreased 20% and 24%,
 

respectively. It should be noted that the use of full span flaps will probably
 

necessitate spoiler roll control and trim ailerons which may increase wing
 

structural weight. The effect of these controls are not accounted for in the
 

GASP calculation.
 

4.4.8 Acquisition Cost Analysis Methodology
 

In order to ascertain'the economic benefit of the advanced technologies as
 

applied to a derivative design of the baseline aircraft a detailed recurring
 

cost analysis is conducted. From this analysis an aircraft initial cost
 

may be derived that is more detailed than is calculated in the DOC module
 

of GASP.
 

A cost analysis method was developed for this study using manufacturer's
 

experience and historical data and coded for desk top computer calculation.
 

The method is divided into three basic parts: development cost, labor cost
 

and material cost. These are combined and a reasonable markup for manufac­

turer's return on investment applied to obtain an aircraft selling price.
 

The method and assumptions used are described more fully in the following
 

sections.
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.8 Acquisition Cost Analysis Methodology (Cont'd.)
 

4.4.8.1 Assumptions
 

* 1981 Dollars
 

* Costs based on airframe weight
 

* Equipment costs unchanged from baseline costs
 

* Avionics cost constant (no variation with weight or engines)
 

* original aircraft development costs fully recovered
 

* Derivative aircraft amortization over 250 units
 

* Certification costs based on Part 25 requirements
 

o 1981 production methods
 

4.4 8.2 Development Cost
 

Development cost of applying advanced technology to the baseline aircraft
 

is estimated with an equation of the form:
 

D = c1 + KlC2WN&C 

where:
 

C1 = minimum certification cost to FAR Part 25 - S/lb.
 

C2 = cost of new and changed weight - standard program $/lb.
 

K = complexity factor for a new type program
 

= 1 Standard Program
 

> 1 Higher than normal costs
 

< 1 Lower than normal costs 

WN& = weight of new or changed components affected by the advanced 

technology application. 
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.8 Acquisition Cost Analysis Methodology (Cont'd.)
 

4.4.8.2 Development Cost (Cont'd.)
 

The certification cost is based on a minimum cost without any airframe
 

changes. The estimate is increased 50% if a fatigue test is required as
 

Cost of adding or changing
in a gross weight increase or a wing change. 


components is based on 1981 methods of production. Application of advanced
 

long-span Fowler flaps or composite structures) may
technologies (such as 


require different production methods and tooling The complexity factor
 

modifies the cost for these advanced technologies.
 

4.4.8.3 Material Cost
 

Material cost is composed of four basic elements, airframe materials,
 

equipment, avionics and propulsion. Historical manufacturer's data is
 

indexed to 1981 costs using a 15% annual inflation rate.
 

Airframe materials cost is a combination of baseline cost and new and
 

For a baseline type aircraft, basic structure materials make
changed cost. 


Product supply
up approximately 42% of the total airframe material cost. 


(small nuts, bolts, rivets, etc.) make up the next largest part of the total
 

at approximately 24%. These percentages are noted here because they would
 

be directly affected byany structural advanced technology such as composites.
 

Total airframe material cost is calculated oy an equation of the form:
 

MAF C3 (WO + K2WN&C) 

where:
 

= airframe material cost baseline - $/lb.
C
3
 

K2 = nonstandard material factor for materials 
other than aluminum
 

W = unchange baseline airframe weight
o 

WN&C = weight of new or changed components affected 
by advanced
 

technology application.
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4 4 8 Acquisition Cost Analysis Methodology (Cont'd)
 

4.4.8.3 Material Cost (Cont'd.)
 

As noted previously, equipment and avionics costs are assumed constant.
 

Propulsion costs, which includes engines, propellers and associated equip­

ment, are obtained from the GASP cost module output for each case analyzed.
 

The total materials cost is then calculated by an equation of the
 

form:
 

M =MAF + E + A+ P
 

where:
 

MAF = C3 (Wo + K2WN&C)
 

E = equipment cost
 

A = avionics cost
 

P = propulsion cost
 

4.4 8.4 Labor Cost
 

Labor costs are divided into two parts: unchanged weight with the same
 

manhours cost per pound as the baseline and new and changed weight with a
 

new amortization and learning curve.
 

The manhours per lb. of unchanged weight is based on a stabilized production
 

rate assuming 500 units of the baseline aircraft have been produced. It is
 

assumed that labor hours are stabilized and no further reductions are consmd­

ered. Rates based on manufacturing experience were adjusted to reflect the
 

slower rate for small transport aircraft and for the installation of options.
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont)
 

4.4.8 Acquisition Cost Analysis Methodology (Cont'd.)
 

4.4.8.4 Labor Cost (Cont'd.)
 

Labor hours on new and changed weight are amortized over 250 units in
 

accordance with the ground rules of this study. The labor hours to
 

produce an aircraft are based on a learning curve where the time to produce
 

unit two is a percentage of the tame to produce unit one. 80% is assumed
 

for this study. The general equation is:
 

y = Cx-N 

where:
 

y = labor hours at unit X
 

X = units 

C = labor hours at unit 1
 

2.0 - LoglO(P)
 
=
N " Log.0 (2 0)
 

P = percentage 

The cumulative average hours to produce an aircraft is calculated by an 

equation of the form: 

C (X + .5)(1-N)X 55(l-N) 
y =-N 

here*
 

C = labor hours at unit 1
 

X = total units
 

2.0 - Log1 o(P)
 

Log1 0 (2.0)
 

P = learning percentage 
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.8 Acquisition Cost Analysis Methodology (Cont'd.)
 

4.4.8.4 Labor Cost (Cont'd.)
 

The baseline acquisition costs are based on actual unit labor cost after
 

the 500th unit. At this point development and startup costs are assumed
 

to be fully amortized. The rules of this study set a production run of
 

250 units to fully amortize the development costs. Assuming that the
 

derivative aircraft is priced based on cumulative average labor costs over
 

250 units, labor costs for the new and changed weight portion of the new
 

aircraft are 82% higher than baseline labor costs (80% learning curve).
 

Yunit 250
 
= 1 82
 

Yunit 500
 

In addition, advanced technology may require more or less labor per pound of
 

new and changed weight, therefore another complexity factor is introduced.
 

The total labor cost is therefore given by an equation of the-form:
 

L = C4 (W + 1.82 K3WN&)
 

where:
 

C4 = baseline labor rate - $/lb. 

W = unchanged airframe weight
 

unit 1 hours for new type construction
K 3= complexity factor = 
K unit 1 hours for baseline
3 


WN& C = new and changed weight due to advanced technology application
 

4.4.8.5 List Price
 

The list price or selling price of the derivative aircraft is the sum of
 

the development cost, material cost and labor cost marked up by an appropriate
 

factor. This factor takes into account selling expenses, marketing costs
 

and a reasonable profit to the manufacturer.
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4.0 DISCUSSTON AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.8 Acquisition Cost Analysis Methodology (Cont'd.)
 

4.4.8.5 List Price (Cont'd.)
 

Additional acquisition cost to the operator of the aircraft would be the
 

difference between the list price of the advanced technology derivative
 

aircraft and the baseline aircraft.
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd)
 

4.4 9 Acquisition Cost Analysis
 

Using the previously described methodology, the additional operator acquisition
 

cost for a derivative aircraft is compared to the DOC savings each advanced
 

technology contributes to the derivative aircraft. Thus the number of
 

years the operator will need to recover the additional cqst due to advanced
 

technology may be determined. This payback period will give a rough indication
 

of the advance technologies worthy of further investigation.
 

Because this analysis is for a derivative aircraft with aircraft cost
 

based on a fully amortized baseline aircraft, the initial cost for an
 

aircraft using baseline technology is lower than the original baseline cost
 

as given by GASP cost module calculation. In order to use comparable values
 

the baseline DOC parameters in GASP affected by initial cost (Depreciation and
 

Insurance) are adjusted to obtain DOC and initial cost on the same basis.
 

The sensitivity study curves of section 4.4.7 are used to obtain the DOC
 

reduction due to each advanced technology. These reductions are referenced
 

to the adjusted yearly DOC of the baseline for the 100 n. mi. stage length.
 

4.4.9.1 Drag Reduction
 

The NASA Ames/Stat NLF airfoil with cruise flap has a 7% reduction in total
 

cruise drag which, from Figure 32,, results in a 1.6% decrease in DOC. The
 

acquisition analysis shows a 13% increase in initial cost assuming a standard
 

program of production. This is a rather extensive modification of an
 

existing design. The close tolerances and smoothness necessary to achieve
 

laminar flow may require new tooling, materials and increased labor. There­

fore, a more realistic acquisition cost would include these increases. An
 

increase in initial cost of 16% is obtained with complexity factors increasing
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of potential technologies (Cont'd.)
 

4.4.9 Acquisition Cost Analysis (Cont'd.)
 

4.4.9.1 Drag Reduction (Cont'd.)
 

For the 100 n. ml. stage length the payback
labor and development costs 20%. 


period for laminar flow airfoils is in excess of ten years for $1.75/gal.
 

and in excess of 5 years for $3.50/gal. fuel cost.
 

Application of the Beech Advanced Turbulent Airfoil has similar 
results.
 

A 1.4% reduction in cruise drag has a DOC benefit of .3% as seen from
 

Figure 32. For an initial cost increase of 13% the Pavback periods for $1.75/
 

gal. and $3.50/gal. fuel cost are each in excess of ten years.
 

Surface coatings on wing and empennage are evaluated slightly differently,
 

Using coating costs from Reference 8 adjusted to 1981 dollars, the cost
 

Manufacturer's
difference between coating and painting was calculated 


data for painting similar size aircraft is used for paint material 
and labor
 

cost. As noted in Reference 10 coating is applied from leading edge to rear
 

spar and finished on the top surfaces with a polyurethane enamel 
topcoat for
 

CAAPCO B274 was selected as the coating with the
hydraulic fluid protection. 


best potential. Assuming a new production run of 250 units of the baseline
 

aircraft with only coatings applied, the initial cost increase 
will be the
 

sum of the (coating-paint) cost and the initial cost increase 
of the new
 

production run. For an initial cost increase of .8% the pavback periods are 2.0
 

The
 years for $1.75/gal fuel cost and 1.0 year for $3.50/gal fuel cost. 


See Table 5.
weight differential between coating and painting is negligible. 


Due to manpower and time restraints, a detailed analysis of the 
application
 

the baseline aircraft was not accomplished. Applying

of active controls to 


the results of Reference 28 (a 4.5% improvement in cruise drag from a 3%
 

improvement for reduced tail size and 1.5% improvement for trim 
drag reduc­

tion due to relaxed stability) to Figure 32, the DOC improvement 
is 1%.
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TABLE 5
 

SURFACE COATING - PAINT COMPARISON
 

Coating
 

Primer 


CAAPCO B274 


Polyurethane
 
enamel 


TOTAL 


Paint
 

Primer 


Polyurethane
 
enamel 


TOTAL 


(Coating-Paint) 


Material Cost 

Cs) 

69.00 


960.00 


33.00 


1062.00 


69.00 


259.00 


328.00 


734.00 


Labor Cost Weight
 
($) (ibs)
 

-- 15
 

-- 3
 

-- 2
 

3490.00 20
 

-- 3
 

-- 10
 

1663.00 13
 

1827.00 7
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.9 Acquisition Cost Analysis (Cont'd.)
 

4.4.9.1 Drag Reduction (Cont'd.)
 

In this case the increased avionics necessary for augmentation and active
 

control monitoring are not accounted for. Complexity factors of 10% for
 

increased materials and 20% for increased development are used. The payback
 

period is calculated as 9 years for $1 75/gal. fuel cost and 6 years for
 

$3.50/gal. fuel cost. It is expected that the increased system cost and
 

maintenance cost would increase the payback period significantly.
 

4.4 9.2 Propulsion Improvements.
 

References 22, 23 and 24 indicate that an average SFC reduction of 20%
 

is attainable in advanced technology engines.
 

From Figure 34, an 11% reduction in DOC is indicated when engine size and
 

horsepower are held constant at the baseline values.
 

It is assumed in this study that an SFC decrease of this magnitude will be
 

at an increased engine price. Figure 36 shows that a 1% decrease in the
 

savings results from a 40% increase in engine initial price. To ascertain
 

the effect of engine price on payback period in conjunction with a 20% SFC
 

reduction a sensitivity study was conducted.
 

As mentioned previously, an engine change is assumed to have no effect on
 

the airframe weight. The new and changed weight is assumed to be zero
 

From Figure 36 a 10% DOC savings for 20% SFC and 40% engine initial cost
 

For no engine initial cost
increase shows a payback period of 1.6 years. 


increase the payback period is nil.
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.4 Identification of Potential Technologies (Cont'd.)
 

4.4.9 Acquisition Cost Analysis (Cont'd.)
 

4.4.9.2 Propulsion Improvements (Cont'd.)
 

Figure 37 presents the percent cash flow versus years. The point of zero
 

investment is the payback period in years. It is seen that even with a
 

high engine initial cost increase the payback period is less than 5 years.
 

Propeller improvements are assumed to change propeller efficiency 3.5%.
 

From Figure 35 the DOC savings is 1.2%. Payback period is 1.5 years for
 

$1.75/gal. fuel cost and 1.0 years for $3.50/gal. fuel cost, with propeller
 

weight held constant arid cost increased 80%.
 

4.4.9.3 Structural Weight Reduction
 

Use of composite structures for weight reduction will result in different
 

methods of construction, higher development costs for tooling and engineering
 

plus labor and material costs may increase. These can all be accounted for
 

in the use of the complexity factors
 

Before application of any complexity factors, an analysis of applying composites
 

to wing structure only was done without factors. A payback period in
 

excess of ten years was obtained for an assumed 25% wing weight reduction.
 

This is a 7% reduction in structural weight which, from Figure 33, is a 1%
 

DOC reduction. To obtain a more realistic cost estimate, complexity factors
 

were applied to the analysis for the use of advanced graphite/epoxy composite
 

structure. Complexity factors include increases of 40% in development costs
 

for tooling, etc., 600% for material costs and a 10% decrease in labor costs
 

for reduced parts count. Material costs are based on a 20 $/lb. graphite/
 

epoxy material cost in 1985. Application of these factors increases the
 

payback period to in excess of 15 years.
 

80
 



-n 

C 

m 

100-100 

250 UNITS 
DOC BASED ON 100 N 
STAGE LENGTH 
FUEL COST - $175/GAL 

MI 

00 

m-n 

cfm 

zH 
00 
_mzm 

3 

< O' 

-20% 

o% 

-20% 

DECREASE IN SFC 

INCREASE IN ENGINE COST 

DECREASE IN SFC 

<_-

M Lu 

2p% INCREASE IN ENGINE COST' 

m -Z :j1> 
u__a -50. 20% DECREASE IN SFC

NO CHANGE IN ENGINE COST 

0 
--I 
0 

Z 
- 100. 

1 2 34 5 

YEARS 



4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.5 Advanced Technology Derivative Aircraft
 

4.5.1 Selection of Technologies
 

Selection of the advanced technologies applicable to the baseline aircraft
 

takes into account the results presented in section 4.4. Those studies
 

were conducted with engine and airframe size held constant for a fixed
 

payload/range.
 

In the final selection process, sizing studies were conducted with the
 

GASP engine sizing option. Engine and airframe are resized to optimize
 

the benefits obtained from advanced technologies for a fixed payload
 

range and cruise speed. The engines are sized to the required cruise
 

speed and then the airframe is sized by the fuel weight needed for the
 

range requirement.
 

Advanced technologies are applied individually and in combination to the
 

baseline aircraft design and the resulting DOC's compared to the baseline
 

value. A summary of the results is shown in Table 6.
 

The most promising technology is in the propulsion area where a 20% SFC
 

reduction over the operating range of the engine was selected as representa­

tive of expected potential advances in engine technology. Resizing of the
 

aircraft design resulted in an additional 3% DOC improvement for the $1.75/
 

gal. fuel cost and no change in engine initial cost With a 20% increase in
 

engine $/SHP this savings is reduced .4%. Due to resizing, the shaft
 

horsepower required was reduced to the point where the actual engine
 

initial cost decreased 1%.
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.5 Advanced Technology Derivative Aircraft (Cont'd.)
 

4.5.1 Selection of Technologies (Cont'd.)
 

Propeller advances are assumed to have a 3% efficiency increase utilizing
 

advanced airfoils and prop-nacelle integration. A 50% weight reduction is
 

assumed for the use of carbon/epoxy composite blades and lightweight hub
 

with an 80% increase in propeller cost to use this technology. The effect
 

of resizing is a 2.6% DOC savings which is an additional 1.4% DOC savings
 

over the unresized aircraft for $1.75/gal. fuel cost.
 

Application of surface coatings to the wing and empennage surfaces from
 

leading edge to rear spar in combination with an advanced turbulent airfoil
 

shape results in a 2.4% DOC savings; an additional 1.6% DOC savings over
 

unresized aircraft.
 

Graphite/epoxy material in wing and empennage structure resulted in a 2.6%
 

DOC savings over the unresized aircraft.
 

A combination of the above advanced technologies results in a resized aircraft
 

with an additional 6.8% DOC savings over a similar unresized aircraft. Table 7
 

presents the fuel savings due to the advanced technologies.
 

4.5.2 Advanced Technology Derivative Aircraft (ATDA).
 

The final derivative design utilizes the baseline aircraft fuselage and applies
 

advanced technologies to the wing, empennage, engines and propellers. Engine
 

size is determined from cruise condition and indexed back to a sea level static
 

shaft horsepower. Wing, empennage and landing gear are resized to account for
 

the change in fuel weight and corresponding structural weight. Direct
 

operating costs are calculated for 50, 100, 200, 400 and 568 n. ml. stage
 

lengths. Acquisition cost and payback period analyses are also conducted.
 

The ATDA design features a smooth surfaced wing with integrated propeller­

nacelle-wing arrangement at approximately mid-wing. Figure 38 presents the
 

general arrangement three-view drawing.
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TABLE 6 

DOC SAVINGS - ADVANCED TECHNOLOGIES 

RESIZED AIRCRAFT UNRESIZED AIRCRAFT
 

ADVANCED $1.75/Gal. $3.50/Gal. $1.75/Gal.
 
ADOC% ADOC% ADOC%
TECHNOLOGY ADOC% ADOC% ADOC% 


Combined Combined 
 Combined
 

0 0 0 0 0 0
Baseline 


20% SFC -13.66 -13.66 -17.16 -17.16 -11.1 -11.1
 

Reduction
 

Propeller - 2.60 -16.26 - 3.02 -20.18 - 1.18 -12.28
 

Surface Coating - 2 35 -18.61 - 2.71 -22.89 - .75 -13.03
 

+Advanced
 
Airfoil
 

Wing & Empennage- 2.56 -21.17 - 2.52 -25.41 - 1.34 -14.37
 

Composite
 
Structure
 

All Combined -21.17 -25.41 -14.37
 

All Combined -20.75 -25.14 -14.08
 

20% $/SHP Engine
 
Cost Increase
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TABLE 7
 

FUEL SAVINGS - ADVANCED TECHNOLOGIES
 

Block Fuel - 100 N. Mi. Stage Length
 

RESIZED UNRESIZED
 
AIRCRAFT AIRCRAFT
 

ADVANCED
 

TECHNOLOGY A Fuel % A Fuel % A Fuel % A Fuel %
 
Combined Combined
 

Baseline 0 0 0 0
 

20% SFC -23.79% -23.79% -20 65% -20.65%
 
Reduction
 

Propeller - 3.87% -27.66% - 1.54% -22.19% 

Surface Coating + - 3.29% 

Advanced Airfoil 
-30.95% - .58% -22.77% 

Wing + Empennage 
Composite Structure 

- 2.51% -33.46% - .58% -23 35% 
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.5 Advanced Technology Derivative Aircraft (Cont'd.)
 

4.5.2.1 Inboard Profile
 

Interior arragement of the ATDA is similar to the baseline configuration
 

as the fuselage structure is unchanged. Figure 39 presents an inboard
 

profile of the ATDA.
 

4.6 Evaluation of Derivative Aircraft
 

Evaluation of the ATDA in comparison to the baseline aircraft results in
 

the following percent changes: A 14% total cruise drag reduction, a 14%
 

reduction in gross weight, a 34% block fuel reduction, a 14% wing area
 

reduction, a 21% DOC reduction for $1.75/gal. fuel cost and 25% DOC reduc­

tion for $3.50/gal. fuel cost. Operator acquisition cost is increased 17%
 

which, based on the operating costs for the 100 n. mi. stage length, may be
 

recovered in .9 years. Detailed comparisons are shown in the following
 

sections.
 

4.6.1 Comparison with Baseline - Configuration, Weights, Performance
 

A geometric comparison of the ATDA and baseline is presented in Table 8.
 

In accordance with the study guidelines, the fuselage is unchanged. Wing
 

area is reduced 14% and the span slightly shortened. Empennage areas and
 

span are correspondingly reduced. Engine nacelles are reduced slightly
 

for the reduced horsepower engines. Total wetted area is reduced 8.5%.
 

Combined with surface coating and advanced airfoils the total drag reduction
 

in cruise is 14%.
 

Weight comparisons are presented in Table 9. The propulsion group weight
 

is reduced by the assumed weight reductions of engines and propeller due to
 

advanced technology which are 24% for engines and 50% for propellers. The
 

structures and flight controls group weights are calculated in GASP and
 

reflect the total fuel required weight reduction of 28%. Empty weight is
 

reduced 16% and takeoff weight reduced 14% to meet the same design mission
 

as the baseline.
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TABLE 8
 

GEOMETRY COMPARISON
 

Baseline 


Fuselage
 

length - feet 51.82 


width - feet 5.55 


wetted area - square feet 773. 


Wing
 

aspect ratio 9.8 


area - square feet 303. 


span - feet 54 5 


taper ratio .416 


wetted area - square feet 521. 


Horizontal Tail
 

aspect ratio 5.0 


area - square feet 68.0 


span - feet 18.44 


moment arm - feet 30.9 


volume coefficient 1.181 


wetted area - square feet 136. 


Vertical Tail
 

aspect ratio 1 18 


area - square feet 48.7 


moment arm - feet 26.5 


volume coefficient .078 


wetted area - square feet 98. 


Engine Nacelles 

length - feet 12.2 

mean diameter ­ feet 3.1 

wetted area ­ square feet 283. 
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Advanced Technology
 

51.82
 

5.55
 

773.
 

9.8
 

260.5
 

50.5
 

.416
 

443.
 

5.0
 

58.4
 

17.09
 

28.7
 

1.181
 

117.
 

1.18
 

41.9
 

24.6
 

.078
 

84.
 

11.23
 

2.8
 

200.
 



TABLE 9
 

WEIGHT COMPARISON
 

Design Weights (pounds) 


Max Ramp 


Max Takeoff 


Max Landing 


Zero Fuel 


Basic Operating Weight Empty 


Fuel 


Payload 


Group Weight Comparison (pounds)
 

Propulsion Group
 

Engines 


Engine Instl 


Fuel System 


Prop Weight 


Total 


Structures Group
 

Wing 


Horizontal Tall 


Vertical Tail 


Fuselage 


Landing Gear 


Engine Section 


Total 


Flight Controls Group
 

Cockpit Controls 


Fixed Wing Controls 


Total 


Fixed Equipment 
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Baseline ATDA 

15355. 13200. 

15273. 13146. 

15273. 13146. 

12500. 11134. 

8740. 7375. 

2855. 2066. 

3760. 3760. 

971. 738. 

166. 126. 

315. 228. 

330. 161. 

1782. 1253. 

1200. 696. 

164. 104. 

140. 87. 

1704. 1663. 

631. 543. 

383. 322. 

4221. 3415. 

34. 32. 

201. 173. 

235. 204. 

2162. 2162. 



TABLE 9 

WEIGHT COMPARISON 

(Continued) 

Group Weight Comparison (pounds) Baseline ATDA 

(Continued) 

Weight empty 8400. 7035. 

Basic Operating Items 340. 340. 

Operating Weight Empty 8740. 7375. 
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4.0 DISCUSSION AND RESULTS (Cont'd.1
 

4.6 Evaluation of Derivative Aircraft (Cont'di
 

4.6.1 Comparison with Baseline - Configurations, Weights and Performance
 

(Cont'd.)
 

Performance comparison of the baseline aircraft and the ATDA is presented
 

in Table 10. Fuel savings of 34% allow a reduction in gross weight of 14%
 

Field lengths
with a subsequent 17% reduction in engine power required. 


are reduced as a result of the reduction in gross weight.
 

4.6.2 Economic Comparisons
 

The advanced technology
Economic comparisons are presented in Table 11. 


increase in acquisition price due to higher
application will be at a 17% 


development and material costs and amortization of this cost over 250 units
 

Direct operating cost comparisons for five stage
instead of 500 units. 


lengths show a consistent savings from the baseline of 20-21% for $1.75/gal.
 

An example of the individual
fuel cost and 24-25% for $3.50/gal. fuel cost. 


component contribution to the direct operating cost reduction for the 100 m. ml.
 

stage length is also shown in Table 11.
 

Illustrations of the breakdown of DOC are shown in Figures 40 and 41 for
 

100 n. mi. stage length at the two fuel costs considered. The large contri­

bution of fuel, oil and their associated taxes is evident in these charts.
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TABLE 10 

PERFORMANCE COMPARISON
 

Baseline ATDA Benefit
 

Takeoff Gross Weight (Lbs) 15273 13146 -14%
 

Engine Power (SHP) Flat Rating 1000 826 -17%
 

Range at Full Design Payload Held Constant
 
+ Reserves (n. mi.) 568 568 H at o
 

Baseline Values
 

Cruise Speed @ 10,000 Ft (KTAS) 263 263
 

Runway Length (Ft)
 

Sea Level ISA 4980 4360 -13%
 

Sea Level 900F 5686 4950 -17%
 

Offload for Off-design Field Lengths (Lbs)
 

1000 foot less than
 
Sea Level 90°F Baseline Runway 1003 198 -80%
 

7000 foot runway
 
at 6000 Ft. 90°F 2033 1033 -49%
 

Block Fuel (Lbs)
 

100 n mi. stage length 518 341 -34%
 

568 n. ml. stage length 2350 1561 -34%
 

Approach Speed (KTAS) il 108 - 3%
 

Landing Stall Speed (KTAS) 86 83 - 4%
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TABLE 11
 

ECONOMIC COMPARISON
 

ATDA 


Unit Price 


(250 units 1981 $)
 

Engine price 


Propeller Price 


Direct Operating Cost 


at Stage Length - n. mi. 


50 


100 


200 


400 


568 


Direct Operating Cost 


Component Breakdown
 

for 100 n. ml. stage length 


Crew 


Fuel and Oil 


Insurance 


Maintenance
 

Airframe 


Engine 


Maintenance Burden 


Depreciation 


A% from Baseline
 

+17%
 

- 1%
 

+80%
 

A% from Baseline
 

Fuel Cost
 

$1.75/gal. $3.50/gal. 

-20% -24% 

-21% -25% 

-21% -25% 

-21% -25% 

-21% -25% 

A% from Baseline
 

$1.75/gal. or $3.50/gal.
 

2%
 

-34.0%
 

17.0%
 

- 8.0%
 

-12.0%
 

- 9.0%
 

17.0%
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.6 Evaluation of Derivative Aircraft (Cont'd.)
 

4.6.3 Market Potential
 

As an indication of the market potential of the ATDA, a worldwide
 

projected demand for this type of aircraft was accomplished using standard
 

market research methods. In the coming decade a demand of 1280 aircraft
 

in the 15-19 passenger seating capacity is projected to be needed. Table 12
 

presents the aircraft demand for each year with the higher seating
 

capacities shown for comparison.
 

These aircraft will supplement established operators as they open new routes
 

and start new fleets for operators opening new markets. Domestically, new
 

market development will be the prime area of growth in the commuter industry
 

as route abandonment by major carriers continue and industry diversification
 

accelerates. The demand for large equipment will be limited to commuter
 

carriers serving large metropolitan hubs. The major growth in these major
 

hub markets will be complete by 1987-88, and will be severely constrained
 

by lack of gate access and A.T.C. limitations. New route growth outside the
 

major hubs will be the strong growth areas for the later half of the decade
 

and the first half of the 90's.
 

Internationally, demand for small transport aircraft will be at least as
 

strong as in the U.S. However, the full potential for this market may not
 

be realized as developing countries defer the development of an air trans­

portation infrastructure. This deferral will be the result of continually
 

escalating negative foreign balances. The willingness of international
 

financing institutions to continue extending large loans to the third world
 

is, in light of these negative balances, deeply in doubt and could present
 

real difficulties in selling to the third world. The developed nations of
 

Western Europe represent at best a weak market as a commuter type route
 

structure is not viable and intercity transportation is more than adequately
 

served by the more energy efficient rail transport mode.
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4.0 DISCUSSION AND RESULTS (Cont'd.)
 

4.6 Evaluation of Derivative Aircraft (Cont'd.)
 

4.6.3 Market Potential (Cont'd.)
 

The small short haul aircraft needed in all capacities totals over 2000
 

aircraft. Based on the projected demand, a 40% capture rate was established
 

for the ATDA. The resulting requirement of 50-60 aircraft per year is con­

sistent with the five aircraft per month production rate used in the acquisi­

tion cost analysis and development cost recapture point of 250 units.
 

TABLE 12
 

PROJECTED ANNUAL AIRCRAFT DEMAND
 

WORLDWIDE
 

1981-1990
 

YEAR 15-19 20-25 26-35 36-40
 

1981 70 14 20 15
 

1982 85 16 20 15
 

1983 100 18 25 20
 

1984 125 18 30 20
 

1985 130 24 30 25
 

1986 140 25 30 25
 

1987 150 25 35 25
 

1988 160 25 35 30
 

1989 160 25 40 30
 

1990 160 30 40 30
 

TOTALS 1280 220 305 235
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5.0 CONCLUSIONS AND RECOMMENDATIONS
 

5.1 Conclusions
 

* For payback periods of less than five years, advanced engines with low
 

SFC's have the greatest potential for operating cost reductions.
 

Although turboprop engines were examined in this study, other advanced
 

engine concepts giving the same benefits may also have potential.
 

" Advanced high lift systems have the potential of reducing field lengths
 

but will increase DOC's if the wing is not being resized Simpler
 

mechanism and lightweight structures are required so as not to penalize
 

climb and cruise performance.
 

* Graphite/epoxy composite structures do not in themselves have short
 

payback periods in derivative aircraft due to the high development
 

and production costs involved.
 

* Acquisition costs may be lower and the payback periods shorter for some
 

combinations of advanced technologies. For example a wing resizing due
 

to fuel efficiency may also incorporate new airfoils and materials since
 

tooling, drawings, etc., may be changed concurrently.
 

" Advanced technologies have the potential of lowering operating costs
 

significantly when applied to a derivative aircraft. Although the
 

initial price is higher than the original aircraft, development costs
 

are less than an all-new design.
 

5.2 Recommendations for New or Continued Research
 

5.2.1 Propulsion
 

& Highest priority should be given to research and development as projected
 

in the recent STAT studies. Other advanced engine concepts such as
 

rotary engines, diesel, stratified charge, etc., need further study.
 

Emphasis on fuel efficiency and low maintenance requirements should be
 

maintained in this development.
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5.0 CONCLUSIONS AND RECOMMENDATIONS (Cont'd.)
 

5.2 Recommendations for New or Continued Research (Cont'd.)
 

5.2.1 Propulsion
 

o Propeller development should be continued with full-scale testing
 

of concepts developed in earlier general aviation propeller studies.
 

Application of advanced materials research to propeller/hub combinations
 

should be developed concurrently.
 

* Research in slipstream effects and propeller-nacelle-wing integration
 

should be continued and large-scale powered wind tunnel tests conducted
 

to quantify analytic results.
 

5.2 2 Aerodynamics
 

* Verification of drag benefits due to surface coatings and
 

development of their application and maintenance methods should be continued
 

" Quantification of natural laminar flow and turbulent flow airfoil concepts
 

should be conducted in three-dimensional full-scale tests.
 

5 2.3 Structures
 

* Based on the current and completed ACEE programs continued development
 

of carbon filament/epoxy material application should be conducted with
 

emphasis on lightly loaded structure application Development of
 

fabrication methods with emphasis on low cost tooling and reduced labor
 

costs should be accomplished.
 

* Compilation of previous and on-going research and test efforts in composites
 

into a composite design guide for manufacturers of small transport aircraft
 

should be accomplished.
 

5.2.4 Systems
 

a Conduct research on control system technology for active controls for
 

relaxed stability and ride improvement. Emphasis should be on light­

weight, small and reliable systems tailored to the small transport aircraft
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