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1. INTRODUCTION AND SUMMARY
 

Th data on many aspects of the spacecraft charging phenomena
 

generated on the ground by the Spacecraft Charging at High Altitudes
 

(SCATHA) program and in-flight aboard the P78-2 spacecraft (launched
 

January 30, 1979) offers an opportunity for verification of manyof the
 

notions about the hazards of spacecraft charging that have been promulgated
 

in recent years. For example, in our TRW study, "Effects of Arcing Due to
 

Spacecraft Charging on Spacecraft Survival," for NASA/LeRC, we reviewed the
 

state-of-the-art (final report dated November 4, 1978) and concluded that
 

much of the data available was of questionable applicability to spacecraft
 

design, and that additional data was required to make a quantitative
 

determination of the hazardous effects of spacecraft charging on typical
 

space systems.
 

In particular, the prevalent technique for the grounding of test
 

samples in laboratory measurements with a small resistance (typically 1 to
 

50 ohms) to measure arc discharge currents was criticized in that an
 

unlimited source of replacement currents, the system ground, was not avail­
able in the in-flight configuration. The resulting increased (more posi­

tive) spacecraft potential would limit the amount of electron charge that
 
could be ejected during an arc discharge. The ratio of blowoff currents to
 

flashover current, G', was demonstrated to have a crucial role in determin­

ing the magnitude of electromagnetic interference (EMI) coupled into space­

craft electrical subsystems. The possible range of values for G' could
 
range from about 10-5 to unity, but data on realistic values was not avail­

able and analytical estimation techniques were not developed.
 

In this study, the SCATHA program data was used as a baseline to
 

investigate the "Implications of Arcing Due to Spacecraft Charging on
 

Spacecraft EMI Margins of Immunity." Because the computerized Specifica­

tion and Electromagnetic Compatibility Analysis Program (SEMCAP) was not
 
available for the P78-2 spacecraft, a SEMCAP model of the Defense Support
 

System (DSP) spacecraft was used for the purposes of this study. The
 

SEMCAP model was modified to incorporate two selected elements, one of the
 

short booms and the large flat dielectric area on the aft end of P78-2.
 

The resulting data was not applicable directly to either DSP or P78-2.
 

However, since both preflight ground test data as well as in-flight data
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were 	available for P78-2, this information provided a valuable insight into
 

how a typical spacecraft system, as exemplified by DSP, would react to the
 

geosynchronous orbit energetic plasma environment. Furthermore, various
 

aspects of this study provided an insight into the behavior of the P78-2
 

spacecraft in response to its environment. The flow diagram of tasks
 

performed in this study is shown in Figure 1-1. The tasks are listed in
 

Table 1-1.
 

1.1 	 SUMMARY OF THE MAJOR CONCLUSIONS OF THIS STUDY
 

The major conclusions reached in this study are as follows:
 

* 	 The'in-flight P78-2 spacecraft performance is generally consis­
tent with the results of the analyses and experimental studies
 
performed in this study.
 

* 	 An initial formulation of a propagating arc discharge model has
 

been made. Many improvements are necessary:
 

- Include more physical processes
 

- Improve the mathematical analysis methods
 

- Define the arc breakdown processes.
 

* 	 A concurrent experimental program is essential to guide the
 
analytical work as well as to verify the analytical predic­
tions. Many features of the brushfire arc discharge model were
 
verified experimentally during this study.
 

* 	 It is essential that the effects of the in-flight spacecraft
 
configuration on the arc discharge blowout currents be taken
 
into account.
 

* 	 Large area dielectric surface arcs directly to cables must be
 
prevented by routing. If this is not possible, appropriate EMC
 
measures must be implemented.
 

* 	 High voltage breakdown effects on nominal (low voltage) compo­
nent parameters must be included as a part of the EMC analysis
 
process.
 

* 	 SEMCAP coupling analyses are useful procedures for evaluating
 
the design of a spacecraft for immunity to arc discharges.

More work needs to be performed to validate the accuracy of the
 
discharge source models developed in this study.
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Figure 1-1. Approach inDetermining Factors Impacting EMI Margins
 
of Immunity of Arcing Due to Spacecraft Charging
 



Table 1-1. Tasks Performed in "Implication of Arcing Due to Spacecraft
 

Charging on Spacecraft EMI Margins of Immunity"
 

Task 1: Analytical Study of EMI Immunity Factors
 

Task 1.1 Analysis of the P78-2 Spacecraft Configurations -

Meeting at SAMSO to select specific elements for 
further study 

Task 1.2 Coupling Model Analysis of ARC Discharges 

Task 2: Experimental Study of EMI Immunity Factors
 

Task 2.1 Development of an Experimental Study Plan Submit to
 
NASA/LeRC for Approval and Modifications
 

Task 2.2 Development of Diagnostics and Instrumentation
 

Task 2.3 Effects of Chamber Walls and Nearby Metals
 

TAsk 3 Comparative Study of Analytical and Experimental Results 

Task 3.1 Comparison of Analytical and Experimental Study Results 

- Present Results at SAMSO Meeting 

Task 3.2 Modify Arc Coupling Models as Indicated by 
Comparative Study 

Task 4: SEMCAP Study and P78-2 Results Comparison
 

Task 4.1i Run SEMCAP on DSP Model with Arc Sources
 

Task 4.2 Evaluate Hazard to DSP with these Sources
 

Task 4.3 Compare these Results with P78-2 Flight and Ground Test
 
Results
 

1.1.1 	 Summary of Analytical Study Results, Task 1
 

The analytical study of the implications of arcing due to spacecraft
 

charging on spacecraft EMI margins of immunity first focused on the con­

figuration of the P78-2 spacecraft. Differences between that spacecraft
 

and typical communications spacecraft were noted such as the presence of a
 

large number of booms and the relatively small surface area covered with
 

thermal blankets. The design was such as to minimize the effects of arcing
 

with a good Faraday cage design and good shielding practices. For the
 

purposes of the remaining analytical study as well as the experimental
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study and EMI coupling study, two elements of the P78-2 spacecraft were
 

selected for further study from a list of potentially hazardous con­

figurations identified on the P78-2 spacecraft.
 

In the second portion of the analytical study a brushfire arc
 

discharge propagation model was developed to account for the large area
 

wipeoff of charge from a thin dielectric surface layer over a conducting
 

substrate. The effects of the in-flight configuration as opposed to the
 

laboratory test configuration were studied in terms of a blowout current
 

and a flashover current component. Summary of the brushfire model results
 

is found in Appendix 4. Highlights of the brushfire analysis and the P78-2
 

configuration results are summarized in Table 1-2.
 

Table 1-2. Highlights of the Analytical Study Results
 

* 	The P78-2 spacecraft was designed to minimize the effects of
 
arcing.
 

* 	The P78-2 spacecraft differs significantly from typical
 
communications satellites:
 

More booms 
- No large area dielectric surfaces likely to arc. 

* 	Two elements of the P78-2 spacecraft were selected for further
 
study from a list of possibly hazardous arcing sources:
 

- One of the booms
 
- The aft closure dielectric area.
 

* 	A brushfire arc discharge model was developed with the following
 
features:
 

-	 Propagation velocity = 2.45 * 107 cm/sec
 
-	 Flashover surface current density = 3.18 amp/cm
 
-	 Blowout surface current density = 1.86 amp/cm
 
-	 G', the blowout to flashover current ratio ='58.5 percent 
-	 Blowout current is directed towards the arc initiation point 
-	 Blowout current is limited, cut off, by the rising spacecraft 

potential
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1.1.2 Summary of Experimental Study Results, Task 2
 

The Experimental Study, Task 2, provided a number of unique results
 

which were used to evaluate the implications of arcing due to spacecraft
 

charging on spacecraft EMI margins of immunity. Table 1-3 lists the high­

lights of the experimental study results. The direct determination of the
 

brushfire propagation velocity, 2.3 * 107 cm/sec, was made possible with 

the development of the arc discharge trigger. Without the trigger it would 

have been nearly impossible because the location, direction and timing of 

the discharges would have been undetermined. The determination of the 

spatial distribution of blowout currents was made possible by the 

2-dimensional array of collectors, and the results also verify the pre­

dictions of the analytical brushfire model. The importance of the high 

voltage feedthrough for the sample grounding resistor, outside the vacuum 

system, was revealed by the inconsistent results obtained initially. 

The high sample substrate voltage, j20 kV, observed with grounding
 

resistances greater than 1000 ohms, verified the rapid cutoff of the blow­

out electron current. The subsequent positive ion current arriving at the
 

collectors, although not anticipated initially, was consistent with the
 

high positive sample voltage. Looking at any single collector, one might
 

expect that the sample voltage should drop back to near zero as quickly as
 

it rose to .20 kV. The fact that the sample voltage remained high for the
 

duration of the brushfire discharge process indicated that the net ejected
 

current must be neutral after the initial chargeup period of less than
 

100 ns. At the end of the brushfire process, electron ejection ceased, and
 

the positive ion current predominated until the sample voltage was brought
 

back to zero.
 

In addition to verifying the qualitative features of the analytical
 

brushfire arc discharge model, the arc discharge parameters were quantified
 

for both low and high sample substrate grounding impedances as summarized
 

in Table 1-4 below.
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Table 1-3. Highlights of the Experimental Study Results
 

1. Development of Diagnostics and Instrumentation
 

* 	Arc discharge trigger
 

* Blowout particle spatial distribution
 

e Brushfire propagation velocity sensors
 

* 	Importance of high voltage feedthrough
 

2. Measurements 

@ Brushfire propagation velocity = 2.3 ° 107 cm/sec 

* 	Electrons are blown off the surface, but in the direction of
 
the discharge initiation point (r45 degrees). The maximum-to­
minimum ratio for different collectors is 40:1.
 

* 	Flashover currents are P20 percent of blowout currents for low
 
sample grounding impedance
 

* 	Blowout electron currents are cut off early in the discharge
 
with high sample grounding impedance
 

* 	Brushfire propagation persists independent of grounding
 
impedance
 

* 	Sample voltage 220 kV when sample grounding impedance
 
>1000 ohms
 

a 	Ions are detected on collectors at later times during the
 
discharge
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Table 1-4. Experimentally Determined Arc Discharge Parameters
 

1. Brushfire propagation velocity: 2.3 * 107 cm/s 

2. Low sample grounding impedance (-,I ohm)
 

Peak current 2 0.65 - area (cm2) amperes
 

- Current pulse waveform nearly triangular:
 
tr Z tp 2 40 * side (cm) ns
 

- Flashover current (to sideplate) Z 20 percent of replacement 

current
 

3. High sample grounding impedance (>1000 ohms)
 

- Peak sample voltage 2 20 kV 

- Sample voltage resistive 100 ns
 

- Sample voltage decay time Z 300 ns
 

- Electron current to collector pad cut off in P200 ns
 

Many of the quantitative features of the arc discharge parameters were
 

reevaluated in light of the analytical predictions and other available data
 

in the comparative study, Task 3. For example, although the three data
 

points on peak discharge amplitude variation with sample area seemed to
 

indicate a linear dependence with area, both the analysis and other experi­

mental data over a much wider range of areas indicated that the dependence
 

should be as the square-root of the area. It turns out that there was no
 

inconsistency inthe amplitude results if they were interpreted as data
 

applicable over a restricted range of areas.
 

1.1.3 Summary of Comparative Study Results
 

The comparative study of the analytical study, Task 1, and the experi­

mental study, Task 2, resulted in a quantitative best estimate characteri­

zation of arc discharges which differed from previous concepts inmany
 

ways. Early predictions of arc discharge effects on spacecraft electrical
 

systems were based on laboratory measurements with low test sample ground­

ing impedances. The analytical study predicted and the experimental study
 

confirmed that the large blowout electron currents observed with low sample
 

grounding impedances did not apply when the impedance was greater than
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1000 ohms. For a spacecraft in orbit, its ability to gather in replacement
 

electrons was limited and its potential rose to collect more electrons.
 

Also, in the process, a displacement current flowed to charge up its capa­

citance to space. This positive spacecraft potential cuts off the blowout
 

current. Highlights of the comparative study are shown in Table 1-5.
 

Table 1-5. Highlights of the Comparative Study Results
 

* 	The best estimate low grounding impedance currents are
 

Ipeak (blowout) = 7.30 s(cm) amperes
 

Ipeak (flashover) = 12.5 s(cm) amperes
 

Where s is the side of a square arcing source or the square root
 
of the area of any large area source
 

* 	The best estimate G' value is 58.5 percent for a low grounding
 
impedance
 

* 	The best estimate low impedance flashover current waveform is
 
nearly triangular and is defined by
 

tr s/(2v ),tp = 2 tr = 4.08 10 s(cm) seconds
 

a G' does not apply in the in-flight situation
 

* 	The blowout current is independent of the size of the arcing
 
source
 
- For DSP Ipeak (blowout) = 12.6 amperes
 

-	 For DSP t (cutoff) = 92 nanoseconds 

* 	The low impedance flashover current waveform for a long narrow
 
source such as a boom is nearly rectangular and is defined by
 

tr	= (circumference)/(2 vb); tp = L/vb.
 

* 	The low impedance flashover peak boom current is given by. 

Ipeak = (diameter) - 2 Js/2. 
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The best estimate arc discharge characteristics applicable to the
 

in-flight situation was based on both low and high impedance analysis and
 

test results. For a low grounding impedance the peak blowout current for a
 

roughly square area was
 

Ipeak (blowout) = 7.30 s(cm) amperes.
 

This peak current corresponded to a blowout surface current density, J'S
 
of 7.96 A/cm instead of the 1.86 A/cm value derived analytically. Assuming
 

that the analytically derived flashover surface current density, Js' of
 
3.18 A/cm was correct, the peak flashover current was
 

Ipeak (flashover) = 4.99 s(cm) amperes.
 

The best-estimate ratio of blowout to flashover currents, G', was
 

G' = 1.46 or 1.46 percent.
 

This was 2.50 times greater than the analytically derived value of
 
58.5 percent. The fact that G' was greater than 100 percent was not
 

disturbing because the analysis showed that a far larger number of free
 
electrons were generated in the discharge process than were originally
 

stored inthe chargeup process.
 

For the high sample grounding impedance situation the best estimate
 
blowout current was independent of the size of the arcing source provided 
its side, s, was greater than 4.35 centimeters. The cutoff time, r, varied 
as the square root of the spacecraft diameter and was 92 nanoseconds for 
the 3-meter diameter of the DSP spacecraft. The peak blowout current also 
varied as the square root of the spacecraft diameter and was 12.6 amperes 

for the DSP spacecraft.
 

Finally, the analytical prediction and the experimental verification
 
of the waveforms of the low impedance current pulse, triangular for the
 
square sample and rectangular for the long narrow sample, was a very
 

satisfying and unique result.
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1.1.4 Summary of the SEMCAP Study and P78-2 In-Flight Results, Task 4 

The conclusions of the SEMCAP study and P78-2 in-flight results com­

parison are highlighted in Table 1-6. The fact that SEMCAP predicted no
 

problems and the fact that no serious in-flight anomalies were
 

Table 1-6. 	 Highlights of the SEMCAP Study and the
 
P78-2 Results Comparison
 

* SEMCAP predicted that no anomalous events would be
 
detected on the (fictitious) DSP/P78-2 spacecraft
 
model.
 

a This was consistent with the in-flight performance
 
of P78-2 except for the failure of the two SC2
 
plasma voltage probes.
 

s 	A simple explanation for the SC2 probe failures
 
was that the series 10 kn resistor broke down
 
under arc discharge conditions.
 

observed on P78-2 were consistent. The failure of the two SC2 plasma
 

voltage probes during electron gun operations on March 30, 1979 were simply
 

explained by assuming a high-voltage breakdown across a 1/4-watt 10-k
 

resistor. It was unfortunate that the design of the P78-2 was not such as
 

to permit large area arc discharges to occur, which was of concern in the
 

design of operational spacecraft. The engineering experiments were unable
 

to localize the arc discharges that did occur, thus making it impossible to
 

make any quantitative evaluations.
 

The SEMCAP study result highlights are summarized in Table 1-7. Five
 

different types of arc discharge sources were modeled:
 

* Localized inductive and capacitive sources
 

a Arc-to-cable shield
 

* Conductive replacement current (blowout)
 

* Capacitive replacement current
 

* Blowout 	current H-fields.
 

These sources were modeled for a large area at the aft end of the space­

craft and for a boom. A subset of transient sources (tp = 10 ns) was
 

included for each type.
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Table 1-7. Summary of the SEMCAP Study Results
 

e 	Satellite circuits had safety margins ranging from
 
+5 dB to +139 dB.
 

@ 	Housekeeping telemetry lines had margins from
 
-44 dB to +58 dB but no problems were expected.
 

@ 	Arc-to-cable shields were the most likely source
 
of problems. Cables should be routed to avoid
 
dielectric surfaces likely to arc or be protected.
 

* 	Replacement currents due to blowout electrons were
 
not a problem. Capacitive replacement currents
 
was 40 dB smaller.
 

* Transients less than 10 ns were not a problem.
 

The response of the DSP receptor circuits had immunity margins of
 

+5 dB to +139 dB, and the most probable values were 9 dB greater. House­

keeping telemetry lines had margins ranging from -44 dB to +58 dB, but no
 

problems were expected because of the low-duty cycle at which these lines
 

were telemetered. No burnout problems were expected for the type of
 

interface circuits used.
 

1.2 RECOMMENDATIONS FOR FURTHER WORK
 

The work performed in the present study, "Implications of Arcing Due
 

to Spacecraft Charging on Spacecraft EMI Margins of Immunity," provided an
 

improved analytical and experimental basis for the formulation of arc 

discharge models for the SEMCAP electromagnetic analysis code. It was our
 

premise that once the discharges were properly modeled, SEMCAP was the most
 

efficient method of evaluating the design of a spacecraft system for
 

immunity to arc discharges. Working backwards from the SEMCAP analysis,
 

then, the recommendations for further work in improving the capability and
 

confidence in minimizing arc discharge hazards to spacecraft systems are
 

given in Table 1-8.
 

1.2.1 Validation of SEMCAP Arc Discharge Source Models
 

The source models generated in the present study incorporated best
 

estimate arc discharge parameters, but lacked any validation of their
 

accuracy. In the Voyager program, the SEMCAP models were updated as a
 

result of several system level tests with diagnostics as well as stimulus
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Table 1-8. ,Recommendations for Further Work in Improving Arc
 

Discharge EMI Immunity
 

(1) Validation of SEMCAP arc discharge source models:
 

- Perform on-line SEMCAP analyses of simplified typical
 
configurations
 

- Validate analyses experimentally with test configurations similar 
to those analyzed 

-	 Document results for application to the design and verification
 
of typical spacecraft systems
 

(2) Perform more extensive arc characterization tests
 

- Different materials (Mylar, Teflon, Kevlar)
 

- Different thicknesses
 

- Different configurations (area, shapes)
 

(3) Improve analytical model of arc discharges:
 

- Include more physical processes
 

- Improve mathematical analysis techniques
 

- Investigate arc discharge breakdown thresholds.
 

sources. What is recommended here is that simple models be constructed
 

(conceptualized) and analyzed on an on-line version of SEMCAP. With such a
 

technique source parameters such as geometry as well as pulse shape can be
 

varied over a wide range of values. The effects of receptor characteris­

tics such as input filter paprameters and threshold sensitivities may also
 

be investigated in a systematic manner.
 

The experimental validation and the documentation of these results
 

would provide a useful tool to be used in the early design phases of a new
 

spacecraft system. Subsequently, as the design and fabrication progresses,
 
the usefulness and confidence in the applications of SEMCAP will be
 

reinforced with the backup data provided by this task.
 

1.2.2 Perform More Extensive Arc Characterization Tests
 

The experimental work performed in the present study gave confidence
 

in the analytical work and also provided data which could not be obtained
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easily by analysis. Because of the limitations of time and funding many
 

aspects of the experimental work had to be curtailed. The effects of
 

different dielectric materials, thicknesses, areas, and shapes should be
 

investigated.
 

1.2.3 Improve Analytical Model of Arc Discharges
 

The analytical brushfire arc discharge model as developed in the
 

present study provided an insight into many aspects of an arc discharge
 

with first-cut quantitative values for flashover and blowout surface
 

current densities. Many features of the present model need to be improved
 

to provide a more cohesive and comprehensive model. Physical processes
 

such as ablation and ionization need to be examined more carefully. The
 

1-dimensional mathematical analysis was simplified to provide crude
 

answers, and should be approached in a more self-consistent manner using a
 

computer. 

Finally, the problem of the initiation threshold for arc breakdown has
 

been passed over too lightly. Because of the many ways in which dielectric
 

surfaces are installed in real spacecraft, the definition of a breakdown
 

threshold is a difficult problem. We assume here that breakdown will be
 

initiated at edges or stitching where the local electric fields are greatly
 

enhanced. A realistic and believable breakdown initiation model must be
 

developed and verified experimentally. One of the paradoxes that has
 

developed in the spacecraft charging arena is that charging analyses tend
 

to predict maximum differential potentials in the order of 3 to 4 kV on
 

many different spacecraft configurations. In the laboratory, breakdown
 

thresholds typically have been found to be 8 to 20 kV for many different
 

kinds of sample materials. The reason for this difference by a factor of
 

greater than 2 has not been resolved and needs to be investigated.
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2. TASK 1: ANALYTICAL STUDY OF EMI IMMUNITY FACTORS
 

Inthis task, the P78-2 geometry and circuit'layout were analyzed to
 

identify hazardous arc discharge configurations. The results of this
 

analysis was presented at a meeting at SAMSO at which the two potentially
 

most hazardous configurations were selected for further analysis., The two
 

P78-2 elements selected were one of the short booms and the large flat
 

dielectic surface at the aft end of the spacecraft. Analytical models of
 

the arc discharge sources were developed for incorporation into the DSP
 

SEMCAP model. The flow of subtasks for Task 1 is shown in Figure 2-1.
 

2.1 TASK 1.1 ANALYSIS OF THE P78-2 SPACECRAFT CONFIGURATIONS
 

The purpose of this subtask was to provide familiarization with the
 

P78-2 spacecraft and to provide a "shopping list" of potentially hazardous
 

configurations from which the two most dangerous could be selected for
 

further study inthe remainder of this contract. Table 2-1 lists the docu­

ments which were studied. Figures from these documents have been extracted
 

for various parts of this task and are referenced according to the number­

ing of Table 2-1.
 

2.1.1 P78-2 Spacecraft Exterior Surface Analysis
 

The most complete documentation of the P78-2 spacecraft configuration
 

is given in References 1 and 2. Figure 2-2 from these references identi­

fies the location of the various experiments, and Figure 2-3 from the same
 

references identifies the materials on the exterior surfaces. A crude
 

analysis of the constituents of the external surfaces of P78-2 has been
 

made from the data shown in Figure 2-2. Table 2-2 lists the metallic and
 

dielectric surface areas and their relative amounts in sunlight and in the
 

dark.
 

The 18.8 percent exposed metal is rather high compared with the
 

DSCS-II spacecraft, also a spin-stabilized spacecraft, where the proportion
 

was less than 9 percent. The difference here is that P78-2 is a scientific
 

spacecraft with requirements for large metallic areas to accommodate the 

on-board experiments, whereas DSCS-II is an operational communications
 

satellite in which thermal control requirements, in a large measure,
 

dictated the external surface materials. The percentage of metallic
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Table 2-1. SCATHA-Related Documents Studied
 

(1) SAMSO TR-78-24 "Description of the Space Test Program P78-2
 
Spacecraft and Payloads," 31 October, 1978
 

(2) SAMSO/Martin-Marietta MCR-78-1207 "Preliminary Report of the
 
Implementation of IEMCAP (IDIPR and TART) to the P78-2 Space Vehicle
 
Program," 15 December, 1978
 

(3) Report No. TOR-0079 (4505-02)-i by P.F. Mizera, Aerospace Corp.,
 
"Preliminary Natural Charging Results from the P78-2 Satellite
 
Surface Potential Monitors During the April 24, 1979 Event
 

(4) Science Applications, Inc., LAC-171-80-128 "Minutes of the
 
Spacecraft Charging Coupling Validation Meeting (SAMSO - 9 July,
 
1979)," 10 July, 1979
 

(5) JPL ESD Workshop (October 2-4, 1979), "Viewgraphs as Made Available
 
by Various Speakers"
 

(6) IRT/J. Wilkenfeld "Internal Response of a Complex Satellite Model
 
to Two Electron-Induced Discharge Simulation Techniques" IRT
 
Document 4321-004 September, 1979, also presented at IEEE Conference
 
on Nuclear and Space Radiation Effects, July 17-20, 1979
 

surface area inthe dark, 82 percent of the total metallic area, implies
 
that structure potential will tend to go negative during substorms. Our
 

experience on tests of the TDRSS solar array, however, indicates that
 

structure potentials cannot go much further negative in sunlight than 500
 

to 1000 volts before other effects such as secondary and high field
 

emission of electrons limit potential excursions of this polarity.
 

The percentage of exterior dielectric surface area always in the dark,
 
8 percent of the total exterior surface area, is quite small. This
 
excludes the solar array and miscellaneous bellyband dielectrics which go
 
in and out of sunlight with each spacecraft rotation. Of this 8 percent,
 

the major portion is the 0.87 m2 of nonconducting white paint on the aft
 
surface. This is one of the two elements selected for further study on the
 

project. NASCAP identifies this paint as "whiten," of 2-mils thickness,
 
and lists its dielectric constant to be 3.5 and its resistivity as
 

1.7-105 a/cm (5.9.10-14 mho/m).
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Table 2-2. 	 Gross Surface Configuration of P78-2 Spacecraft (Excludes
 
Booms)
 

Percent
 
Sunlit Area Dark Area Total Area of Total
 

2 2 2

Solar Array 	 3.99 m 4.00 m 7.99 m 66.4
 

2 2 	 2
Bellyband Teflon SSM 0.41 m 0.41 m 0.82 m 6.8
 

2 2 	 2

Bellyband Metallic 0.41 m 0.41 m 0.82 m 6.8
 

Forward Metallic - 1.11 m2 1.11 m2 9.2 

2 2
Forward Dielectric - 0.10 m 0.10 m 0.8 

2 2
Aft Metallic 	 - 0.34 m 0.34 m 2.8 

Aft Dielectric 	 - 0.87 m2 0.87 m2 7.2 

2 2 	 2
4.81 m 7.24 m 12.05 m 100
 

Total dark metallic area = 1.86 m2 15.4 percent of total surface area 
Total sunlit metallic area = 0.41 m

-

2 = 3.4 percent of total surface area 

Total sunlit dielectrlc area = 4.40m2 = 36.5 percent of total surface
 

area
 

2
Total dark dielectric area = 5.38 m = 44.7 percent of total surface area
 

All sunlit exterior surfaces are in the dark for half of each spin
 

period (4l minute) because of the orientation of the spin axis in the orbit
 

plane normal to the sun line. No seasonal changes in sunlit/dark ratios
 

occur because of spin axis orientation. This situation is different from
 

that for the DSCS-II spacecraft in which the spin axis is parallel to that
 

of earth's. Inthat case the forward and aft ends are alternately sunlit
 

and dark as the equinox crossings are passed.
 

2.1.2 In-Orbit Experiment Suggestion for the P78-2 Spacecraft
 

An experiment that can easily be performed on the P78-2 spacecraft, if
 

sufficient attitude control gas is available, isto offset the spin axis
 

from the sun-line normal by about 30 degrees for several days during a
 

geomagnetically active period. Tilting the axis to let the sun shine on
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the forward surface would change the sunlit metallic surface area from
 

3.4 percent to 12.8 percent of the total exterior surface area, and from
 

18 percent to 68 percent of the total metallic surface area. Tilting the
 

spin axis in the other direction so that the aft end is sunlit, the
 

dielectric area always in the dark is reduced from 8 percent of the total
 

exterior surface area to 0.8 percent. Thus, the charging characteristics
 
of the P78-2 spacecraft should be drastically changed, and these changes
 

would provide additional data on material parameters as well as further
 

validation of the charging analysis programs such as the NASA Charging
 

Analyzer Program (NASCAP) and TRW's Spacecraft Charging Analysis Technique
 
(TSCAT). The seasonal effect on the DSCS-II configuration, which this axis
 

tilting on the P78-2 would simulate, has resulted in a very noticeable
 

seasonal dependence on the frequency of occurrence of anomalies that may be
 

attributed to spacecraft charging. This feature is shown in Figure 2-4.
 

Also shown in Figure 2-4 is a plot of the magnetic activity index, A, for
 

Fredericksburg, Virginia, over the same 5 year period. The correlation of
 

anomalies with geomagnetic activity is not clear; however, the clustering
 

of anomalies during the winter months is very evident. This effect has
 

been demonstrated to be consistent with the DSCS-II configuration and
 

sun-orientation by means of a charging analysis using the TSCAT analysis
 

program.
 

2.1.3 General Comments on P78-2 Spacecraft Configuration
 

The general comments on the P78-2 spacecraft configuration in regards
 

to spacecraft charging effects are summarized in Tables 2-3 and 2-4. Basi­

cally, the Faraday cage design and the double shielding of all exterior
 

cabling should provide high immunity to arc discharges. The in-orbit data
 

to date indicating only minimal arc discharging and even fewer spacecraft
 

anomalies tends to validate this conclusion. The only real anomaly, the
 

failure on March 30, 1979 of the SC2-1 and SC2-2 plasma potential sensors
 
at the ends of two of the short booms, is clearly attributable to the
 

operation of the electron gun. Data on the sequence of events on this day
 

is shown inTable 2-5 which is taken from Reference 4 of Table 2-1. One of
 

the short booms is the other element of the P78-2 spacecraft which was
 

selected for further analysis in this present study.
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Table 2-3. General Comments on the P78-2 Spacecraft Configuration
 

* 	 The Faraday cage design and the double shielding of all 
exterior cabling should provide high immunity to arc discharges 

* 	The P78-2 configuration has many features that do not reflect 
an operational communications spacecraft: 

- Many booms 

- Electron and ion beam system 

- More metallic surface areas 

- Sensitive electric and magnetic field and particle sensors 

* 	Thermal blankets are not used except for experiments
 

- SC-1 thermal blanket configuration is not conventional
 

* 	 Second surface mirror and thermal blanket areas are not 
comparable to those in operational spacecraft 

- Large area effects may not be reflected in the data
 

- Need to put diagnostics on operational spacecraft
 

Table 2-4. Further Comments on the P78-2 Spacecraft Configuration
 

* 	82 percent of metallic area is in the dark: structure 
potential will charge negatively 

0 Dark dielectrics may charge to more negative potentials than 
structure 

- Spacecraft spin affects cylindrical area dielectric 

potentials 

- Forward and aft dielectrics are always in the dark 

* 	 Sunlit dielectric potentials will be spin-modulated
 

* 	 Platinum rings on the short booms are isolated metals 

- May charge more quickly due to small capacitance 

- Smaller charge storage because of small capacitance 

* 	 SC-1 thermal blanket samples probably will not arc because of 
framing -- except for those with a 1/4 inch hole in the middle 
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Table 2-5. P78-2 Electron Gun Operations - March 30, 1979
 

UT Remarks
 

54728 Operation of SC4-1 at -1.5 kV and 6 mA, no observed
 
deleterious effects
 

54728 SC4-1 commanded to -3 kV.
 
TPM records 8.4 V negative pulse on Lo-Z sensor
 

54729 TPM records 7.0 V negative pulse on Lo-Z sensor
 

54730 SC2-1 plasma potential sensor fails
 

54736 P78-2 data system begins scrambled operation
 

54749 P78-2 data system corrects itself (at main frame 0)
 

54760 SC2-2 plasma potential sensor falls
 

54728-809 TPM records numerous pulses in the 6 V to 15 V range.
 
Pulse characteristics measured by SC1-8B
 

54809 SC4-1 commanded to -1.5 k. Pulses drop to 1 V to
 
3 V range
 

55056 SC4-1 current lowered to 0.01 mA, pulses cease
 

55122 SC4-1 commanded to -3 kV
 

55548 SC4-1 current raised to 0.1 mA
 

55570 TPM records 4.6 V negative pulse
 

55658 Beam voltage lowered to 0.3 kV; pulses cease
 

There are many features of the P78-2 configuration that do not reflect 

an operational communications spacecraft, mainly because of the scientific 

nature of its mission requires many environmental sensors. As a result, 

there are many booms and the percentage of metallic exterior surface area 

is much higher. The lack of thermal blankets and second surface mirrors 

for thermal control is immediately noticeable. The thermal control 

materials that exist are relatively small patches in the experimental 

sensors, and these are carefully configured to minimize the probability of 

arcing. Thus, as has been the in-flight experience, data on arc discharges 

has not been extensive. In particular, effects of large area discharges 

cannot be obtained. 

2-10
 

M2-163-80
 



The platinum rings on the short fiberglass booms could be sources of
 

metal-dielectric-metal arcs because of their electrical isolation and low
 

effective capacitance to the cabling running along the length of the boom.
 

Arc discharges from these metallic rings should be frequent because of
 

their low capacitance, but also of small magnitude because of the small
 

stored charge. Their proximity to the boom cabling, however, is a source
 

of some concern.
 

2.1.4 	Potentially Hazardous Arcing Configurations on P78-2
 

The potentially hazardous arcing configurations on the P78-2 space­
craft are summarized in Table 2-6. These have been grouped according to
 

whether the spacecraft potential is highly negative or near zero potential.
 

As indicated previously, the situation inwhich the spacecraft potential is
 

negative by many kilovolts is highly unlikely because of the high field
 
emission and secondary emission of electrons which occurs before a 'I kilo­

volt negative potential is reached. Nevertheless, such low voltage arc
 

discharges are a possibility.
 

Table 2-6. Potentially Hazardous Arcing Configurations on P78-2 Spacecraft
 

Spacecraft Potential Highly Negative
 

s Solar array
 

* 	Sunlit second surface mirrors teflon on bellyband,
 
SC-1 samples
 

* 	Platinum rings on fiberglass epoxy base, five short booms
 

* 	Reference band at aft end
 

* 	Other dielectrics in sunlight, e.g., insulating
 
standoffs and collars
 

* Shielded cables near above items
 

Spacecraft Potential Near Zero
 

* 	Second surface mirrors on forward end
 

* 	Nonconducting white paint on aft end
 

* 	Other dielectrics in dark; e.g., insulating standoffs
 
and collars
 

* 	Shielded cables near above items
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The second category of hazards isthat in which the spacecraft poten­

tial ismore positive than the arcing dielectric surface. This polarity of
 

differential stress corresponds to that which isobtained inmost of the
 

laboratory tests-where dielectic surfaces are irradiated with an electron
 
beam and the underlying substrate isgrounded. On P78-2 the dielectric
 

surfaces on the front and aft ends, always being inthe dark, fall into
 

this group. Because of the relatively slow spin rate of A rpm, dielectric
 

surfaces on the cylindrical surface have about 30 seconds to charge up
 

before photoemission takes over. This would appear to be a marginal time
 

span for full chargeup.
 

In regards to miscellaneous small insulators such as standoffs and
 

collars, the possibility of generating appreciable positive differential
 

potentials relative to large surrounding areas is small because of the
 
retarding potential barrier for low-energy electron emission generated off­
surface. For the opposite polarity situation of small surfaces charging
 

negative with respect to the surrounding areas, it appears that the usual
 
Langmuir-Mott-Smith equations would tend to overestimate the actual differ­

ential potentials that could be attained. This is because of the increased
 
density of equipotential and electric field lines near the edges of the
 
dielectric as compared to the density which would be obtained for a sphere
 
inspace. The problem isone that could be solved by NASCAP just as easily
 

as the former one of positive polarity was solved by NASCAP.
 

Table 2-7 lists some additional considerations that must be taken into
 

account inevaluating the potential hazards to a spacecraft system from
 
electrostatic discharges (ESD). SEMCAP, for example, has tabulated within
 

its model of the spacecraft a threshold voltage at which anomolous voltage
 
spikes could be detected for each wire modeled. There are, however, higher
 
thresholds for upsetting an associated logic circuit, and even higher
 
thresholds at which component damage or burnout could occur. The' effects
 

of possible consequences of arc discharges must, then, be evaluated inthe
 
context of the criticality of the function that an anomolous pulse might
 

cause. Table 2-7 also lists examples of critical and noncritical space­
craft functions that could be affected.
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Table 2-7. ESD Susceptibility Considerations
 

* 	Thresholds for detection
 

* 	Thresholds for upsets
 

* 	Thresholds for damage or burnout
 

* 	Partial or temporary malfunctions (some are correctable
 
by command)
 

* 	Criticality to mission
 

Critical Noncritical
 

Transmitter Temperatures
 

Receiver Voltage monitors
 

Experiments Current monitors
 

Power system Boom deployment indicators
 

Comnand system Mode/status indicators
 

2.1.5 Preflight and In-Flight Test Locations for P78-2
 

Figure 2-5 taken from Reference 6 of Table 2-1 shows the test points
 

at which arc discharge stimuli were injected during preflight tests.
 

Figure 2-6 taken from Reference 2 of Table 2-1 shows the test configura­

tions used. SCATHA refers to the P78-2 spacecraft and SCATSAT refers to a
 

2/3 scale model of P78-2 on which some additional tests are being performed
 

by 	IRT Corporation (J.Wilkenfeld). Figure 2-7 and Table 2-8 taken from
 

the same references indicate diagnostic test points for the preflight test.
 

Figure 2-7 also shows some of the in-flight diagnostics. The purpose of
 

showing these figures and Table 2-8 is that they indicate those points
 

which were considered by others to be the most susceptible to arc
 

discharging and to coupled EMI signals.
 

2.1.6 	 P78-2 Elements Selected for Further Study
 

After our presentation at SAMSO on December 4, 1979, NASA/LeRC selec­

ted two elements of the P78-2 spacecraft for further analysis. As indica­
ted previously, these were the large flat nonconducting painted surface on
 

the aft end and one of the short booms. These two configurations exist on
 

many spacecraft, and each represents a potential hazard. The large
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Table 2-8. Test Points Monitored During SCATHA Arc Discharge Test
 

Critical Test Point 	 Circuit Monitor Trip Level
 
Name 	 (+ Peak) (mV)
 

1. 	 CEA mode control "clock" 800
 

2. 	 CEA mode control "enable" 400
 

3. 	Decoder input "0" 133
 

4. 	 Decoder input "1" 133
 

5. 	Decoder input "S" 133
 

6. 	Decoder input "activate" 133
 

7. 	TCDU relay select "clock" 250.
 

8. 	TCDU relay select "enable" 250
 

9. 	OFU power "enable" 5500
 

10. OFU power "disable" 	 5500
 

11. 	 5C1-7 battery power +85
 

12. 	 SCI-8A battery power +85
 

dielectric surface is a good choice in that it is located inthe dark where
 

large negative differential potentials may be generated. Its large area is
 

appropiate to the study of large area discharges which have been the sub­

ject 	of much concern. The boom configuration is appropriate in that a long
 

coupling path exists between the arcing element and the cable whilch is
 
routed along its entire length. Furthermore, arc discharges at the end of
 

the boom have a "good view" of space to which blowoff currents must flow if
 

they 	do flow in that manner.
 

2.2 	TASK 1.2. COUPLING MODEL ANALYSIS OF ARC DISCHARGES
 

In order to perform an electromagnetic coupling analysis of arc
 

discharges into potential victim electronic subsystems using a computerized
 

electromagnetic compatibility (EMC) code such as SEMCAP, it is necessary to
 

incorporate ESD sources as voltage or current generators or as E or B
 

fields in defined locations. It isour view that once the proper modeling
 

of the arc discharge sources is accomplished, the EMC analysis using SEMCAP
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is the most cost effective approach to evaluating the response of the
 

spacecraft electrical subsystems and the resulting hazard to those subsys­

tems. The rationale for this approach is that the SEMCAP code for a parti­

cular spacecraft system already contains all of the information relative to
 
the nature and routing of all of the cabling as well as the response char­

acteristics of every harness wire terminal at each box. For EMC purposes
 
the EMI noise from each terminal is considered as a source and the signal
 

coupled to every other terminal is computed. Magnetic, electrostatic,
 
electromagnetic and common resistance coupling modes are taken into
 

account. For arc discharges, then, the crux of the problem is the proper
 
modeling of ESDs as sources for SEMCAP. The shortcomings of prior deter­

minations of arc discharge characteristics have been discussed in our
 

"Effects of Arcing" study. In this subtask another attempt ismade to
 
improve the characterization from an analytical point of view. A parallel
 
experimental study is reported on in the following task, Task 2.
 

2.2.1 Arc Discharge Model Overview
 

The characterization of arc discharges resulting from differential
 

charge buildup on spacecraft in an energetic plasma is essential in asses­

sing the implications of arcing on the EMI margins of immunity of onboard
 
equipment. During the past several years, a large effort has been expended
 
in determining experimentally the waveform and amplitude of arc discharges
 

of potential arcing elements on various spacecraft configurations. Many of
 
the features of arc discharges observed were unexpected because of the
 

absence of a valid theoretical model. The large area discharge of charged
 
dielectric surfaces, and the partial (,15 to 60 percent) discharge of the
 

stored charge are examples of surprises that were found after the experi­

ments were performed. The implications of other features of arc discharges
 
such as the blowout of surface charged particles versus flashover were not
 
considered adequately, and appropriate test configurations and test diag­

nostics were not included in the tests.
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A useful arc discharge model would be one which is consistent with the 

existing experimental data, but which also correctly predicts the arc 
characteristics of configurations which cannot be tested in the laboratory 

because of size or other cost limitations. Since in-flight data, aside
 
from SCATHA and a few other space experiments are not available, the valid­

ity of an arc discharge model must be checked by performing laboratory
 

experiments designed specifically to test various feaures of the model.
 

The following is a scenario for the evolutionary processes involved in
 

an arc discharge
 

a) Differential chargeup by environmental plasma
 

b) Edge breakdown
 

c) Surface breakdown
 

d) Plasma film generation
 

e) Propagation of surface breakdown "brushfire"
 

f) Blowout and flashover, G'
 

g) Limitations on propagation of brushfire wavefront
 

h) Definition of arc parameters for the analysis of electro­
magnetic coupling to spacecraft subsystems.
 

2.2.2 Differential Chargeup Effects on Arc Discharges
 

The question of how external dielectric surfaces charge up differen­

tially with respect to the underlying vacuum deposited aluminum (VDA),
 
grounded, or structural metal is a complex problem which is not addressed
 

here. Generally, the most hazardous situation exists when a dielectric
 
surface is charged negatively with respect to the underlying metals by an
 

excess of impinging electrons over positive ions. This is because the
 
reverse polarity, when metals are negative and the dielectric surface is
 

more positive because of photoemission or secondary emission, a field
 

emission/secondary electron avalanche process tends to limit the magnitude
 

of the differential potential to 500 to 1000 volts. This effect was
 
demonstrated in a solar array sample test inwhich UV was irradiated on the
 

solar cell side while the backside was irradiated with an electron beam.(')
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For the purpose at hand of developing an arc discharge model, the 

chargeup process is important in that negative chargeup potentials of 5 to 

25 kV have been measured experimentally. The other important feature of 

chargeu for our present purpose is that theory and experimental evi­

dence(2) indicate that significant densities of electrons may be buried at
 

depths of the order of one micron below the surface at the time of the
 

discharge. This feature of buried electronic charge should also exist on
 

dielectric surfaces which have no net surface charge because of photo­

emission or excess secondaries. In fact, the buried charge should be
 

somewhat deeper and more dense since retarding potentials are not present.
 
The effects of differential chargeup on arc discharge characteristics are
 

summarized in Figure 2-8.
 

2.2.3 Edge Breakdown
 

Dielectric breakdown due to high differential voltage stresses gen­

erally occurs for electric fields in range of 105 to 106 V/cm at the edges
 
of thin (,50 microns or 0.005 cm) insulating sheets. Punchthrough far from
 

edges occurs with fields on the order of 107 V/cm. In laboratory experi­
ments at TRW, we have found that 2 mil Kapton will not break down with a
 

20 kV electron beam if the edges are folded over so that the edges are not
 
(3 )


exposed.


In practice, even punchthroughs probably occur at weak points when
 

slight imperfections or irregularities exist in the material. Edges con­
sist of exaggerated irregularities because they are created by slicing with
 

a knife edge or by punching with stitching needles, and thus are subject to
 

high field emission and avalanche breakdown in a manner similar to that
 

which will be discussed for surface breakdown. The similarity to surface
 
breakdowns probably goes even further in that this type of breakdown is
 

associated with surface and off surface processes rather than those within
 

the bulk of the material.
 

The net effect of an edge breakdown isthat the potential of the
 

surface near the edge goes to nearly zero volt, assuming that the thin
 
dielectric isover a conducting plate which is at zero volts. Taking a
 

singly ionized particle of atomic weight 16 (oxygen) as being typical, the
 
velocity associated with a 10 kV voltage drop is 3.5.105 m/s. Starting at
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Figure 2-8. Differential Chargeup Effects on Arc Discharge Characteristics
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zero velocity, the time for such an ion to traverse the 2 mils or 50 micron
 

thickness of the dielectric is 0.3 ns. This order of magnitude time span,
 

a fraction of an ns, is much shorter than the 10 to 1000 ns duration of
 

vacuum dielectric surface arcs.
 

Assuming that a 2-mu1-thick sheet of Kapton, £r=3, breaks down at
 

10 kV over a semicircular area with a radius equal to its thickness, the
 
-3 pf, and the charge stored is 2.10

-11

capacitance is 52 pf/cm 2 or 210


Coulomb. Assuming that all of this charge is dissipated in 0.3 ns, the
 

corresponding current would be 0.068 A. Thus the current, charge, time
 

span, and energy (.iO-7 J) involved in the initial edge breakdown are quite
 

small and negligible compared to those in the events that follow. Its main
 

effect is to create a plasma cloud and a surface electric field which
 

initiates the surface discharge. The features of edge breakdown are
 

summarized in Figure 2-9.
 

2.2.4 Surface Breakdown
 

Dielectric surface breakdown has been reported (4 ) to occur more 

readily, at 10 - 105 V/cm surface electric fields, than in the bulk of 
dielectric materials. At TRW we have found that arcs can develop over a
 

5 mm span of Kapton with bordering metal irradiated with a 10 kV electron
 

beam.(5 ) This stress, less than 20 kV/cm, is in the lower portion of the
 

above range of surface breakdown electric fields. The surface breakdown
 

fields are expected to be highly dependent on surface conditions such as
 

cleanliness, smoothness and adsorbed gases.
 

The reduction in the frequency of arcing with the number of arcs that
 

have already occurred is a commonly reported observation on arc discharge
 

experiments.
 

The dielectic surface breakdown process is most clearly discussed in
 

terms of a configuration in which breakdown occurs between two metallic
 
electrodes held at a fixed potential difference, V, by means of a power
 

supply. Itturns out that such a configuration is fairly well approximated
 
by the solid teflon propellant fuel pulsed plasma thruster (PPT) in which a
 

high voltage (,i to 2 kV) discharge is initiated by means of a spark plug.
 

With each discharge pulse, some of the teflon surface is ablated and
 

ejected from the thruster at high velocity by the V x B and gas dynamic
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Figure 2-9. Edge Breakdown Features
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forces which accompany the discharge. The PPT has a development and 
in-orbit performance history of more than 10 years, and some of the results 
of the associated research effort is applicable to the spacecraft charging
 
problem. Pertinent information from the PPT technology is summarized
 
in Appendix 1 and is referred to in the appropriate sections of this
 
report.
 

The two main differences between the PPT configuration and that of the
 
spacecraft charging problem are that:
 

* 	 No metallic electrodes exist in our problem. This leads to the

discharge propagation problem which is discussed in the

following sections.
 

* 	The level of energy dissipation per unit dielectric surface
 
area is much greater for the PPT. This leads to the question

of appropriateness of extrapolation to lower levels (by 
 3

orders of magnitude).
 

Of course, the emphasis of effort in the PPT is 
on the efficiency in gen­
erating mechanical thrust, which is 
not of major interest here. On the
 
other hand, the results of the type of work performed in this study may be
 
applicable to the PPT effort in the sense that the PPT may have a 
major
 
impact on the EMI margins of immunity of the spacecraft into which it is
 

incorporated.
 

Qualitatively, dielectric surface breakdown between metallic elec­
trodes held at a fixed potential difference consists of the following
 
sequence of events:
 

a) Acceleration of the spark plug plasma cloud positive ions
 
towards negatively charged surface regions away from the 7break­down region. The velocity of these ions would be 3.5.10 
cm/s

if they accelerate-without collisions to regions where the
 
potential is o1O kV.
 

b) 	Collisions will 
knock free neutral surface atoms and adsorbed
 
gas molecules as well 
as create more free ions and secondary

electrons. Inside the material, bound electrons may be excited
 
into conduction energy level bands.
 

c) Simultaneously with the movement of positive ions towards
 
regions of buried or surface electrons, high field emission of
electrons must be freeing electrons from "pointed" areas on the
 
surface. Many surface irregularities with sharp points must
 
exist on a sufficiently small microscopic scale.
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d) 	These electrons, as well as secondary electrons due to positive
 
ion bombardment, are accelerated by the surface field towards
 
the initial edge breakdown location. These electrons, if they
 
fall through the 10 volt§ potential without a collision, would
 
have a velocity of 5.9-10 cm/s.
 

e) 	Collisions between these electrons and the surface material 
will create more secondary electrons as well as exciting bound 
electrons within the material up to conduction energy level 
bands. It should be noted, however, that surface electric 
fields tend to slant away from the surface so that this type of 
collision may be relatively scarce unless the microscopic
irregularities are a prominent feature of the surface.
 

f) 	Collisions between the free and accelerating electrons and
 
off-surface neutrals and ions can occur, resulting inmore ions
 
and more free electrons.
 

g) 	The net effect of these collisions of ions and electrons is the
 
creation of a plasma film off of the surface with is initially 
vejy "hot" but vgry tenuous. The temperature corresponding to 
10 eV is 1.2.10 *. As the plasma builds up and becomes more 
dense, the collision frequency increases, and the temperature 
cools down. This happens in the first g0-100 n&, during which 
time the temperature cools down from 10 0 to 10 0K, a few eV. 

h) 	The initially hot plasma of 10 keV electrons and ions causes
 
ablation of neutrals, ions and electrons off of the surface,
 
creating a denser plasma. In the process, however, the fre­
quency of collisions icreases and the plasma temperature cools
 
down to the 1 eV or 10 °K range.
 

i) 	The plasma resistance, R , is initially zero (infinite
 
conductance) if the released electrons are able to accelerate
 
without any collisions. An efgyession for R (actually
 
resistivity) given by Spitzer :
 

R = me V 

-_7
n e
e 

Although not directly applicable to the situation being

described here, it shows the proportionality of R with the
 
collisional frequency, v. Inthe initial phase, 2ollisions are
 
primarily between the released electrons and ablated molecules
 
rather than between the ablated and ionized electron-ion pairs.
 
The inverse proportionality of R with n , the plasma electron
 
density, also corresponds to ourPexpecta ion that the plasma
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conductivity is proportional to me. As the plasma becomes
 
fully ionized, n and v change together proportionally and R
 
depends only on he Maxwellian temperature, T, in what is
 
termed an ideal Lorentz gas(6):
 

R = KT 312 (ohm-cm) where K = 0.03 ohm-cm-eV
3/2
 

This equation also predicts that R increases as the plasma
 
cools down. Temperature, as described by the kinetic energy or
 
velocity of the electrons, is lowered by collisions.
 

j) In the succeeding phase, the temperature rises as power is
 
pumped into the plasma, and the plasma resistance decreases
 
with time.
 

V2 T3 /2
cMdT =12 R =V2 


dt R p Rp K 

T=(2V 2 t2 

M is the mass of the plasma and c is the specific heat of the
 
plasma. The plasma current, I, was assumed to be given by
 
Ohm's law where the power source was a fixed voltage, V. Also,
 
the energy loss processes in heating and ablating the dielec­
tric surface material have been neglected in the above
 
equations. These factors are considered further in the next
 
section in which the propagation of the discharge over the
 
dielectric surface is discussed. The surface breakdown process
 
is summarized in Figure 2-10.
 

2.2.5 Brushfire Arc Discharge Model
 

The brushfire arc discharge model was presented at the third Space­

craft Charging Technology Conference at the Air Force Academy, Colorado
 

Springs, Colorado on November 12, 1980. It is included in this final
 

report as Appendix 4. The preceeding three appendices contain supple­

mentary information for the brushfire arc discharge model.
 

* Appendix 1, Pulsed Plasma Thruster data
 

* Appendix 2, Dielectric Heating by a Surface Plasma
 

* Appendix 3, Effects of Magnetic Forces on G'
 

Appendix 1 presents a brief overview of the technical work that has
 

been performed on solid propellant pulsed plasma thrusters. The result
 

that 8.32 grams of surface material is ablated per joule of energy
 

dissipated in the plasma at the surface of the propellant (teflon) is used.
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Figure 2-10. Surface Breakdown Features
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This experimental result allows us to bypass a set of calculations
 

involving the intricate physical processes of heating, ablation and ioniza­
tion. Appendix 2 presents an analysis of the heat loss into a dielectric
 

surface from a plasma at its surface. The maln result of the analysis is
 
that for the plasma temperature necessary for the brushfire propagation, a
 
very large percentage of the energy dissipated in the propagation process
 

is diverted into the dielectric. The third appendix is an analysis which
 
shows that the magnetic deflection forces are negligible compared to the
 

electric field forces.
 

- The major subsection titles of the Brushfire Arc Discharge Model 

presented in Appendix 4 are listed below to indicate the scope of the 

paper. 

Introduction 

Arc Discharge Overview 

Brushfire Propagation Model 

Simplified Analysis 

Blowout and FlasHover Currents: G' 

Effect of Spacecraft Potential on G' 

Limiting Mechanisms on Brushfire Propagation 

Summary and Conclusions from the Brushfire Arc Discharge Model 
Analysis. 

Many of the results of the model analysis have guided the selection of 

tests to be performed in the experimental study, Task 2. The results of
 
the experimental study are compared with the predictions of the brushfire
 

model analysis in the Task 3 writeup.
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3. TASK 2: EXPERIMENTAL STUDY OF EMI IMMUNITY FACTORS
 

An experimental study of arcing configurations on the P78-2 spacecraft
 

was performed in this task, Task 2, to study the factors which affect the
 
EMI immunity of spacecraft to arc discharges. The principal objective of
 

this experimental study was to determine the arc discharge parameters which
 

can be used as source models to be incorporated into a SEMCAP model of the
 
DSP spacecraft. In particular, the determination of the ratio of blowoff
 

to flashover currents, G', was a prime objective because it has a large
 
effect on the magnitude of coupled electromagnetic interference signal
 

levels. Other characteristics of arc discharges such as the waveform,
 

duration, magnitude and spatial extent are critical parameters that were
 

studied. The angular distribution of blowout particles and their depen­
dence on sample grounding resistance was determined. The brushfire propa­

gation velocity and its dependence on sample configuration was determined
 

since these parameters also affect the G' ratio.
 

As a result of the Task 1 study of the P78-2 configuration, two
 

specific elements, one of the short booms and the bottom or aft closure
 
dielectric surface, were selected as subjects for this experimental study
 

as well as for the remaining analytical studies.
 

The rationale for using aluminized Kapton instead of the platinum
 
rings/fiberglass of the booms and the white paint on the aft closure was
 

that Kapton is a much more widely used material. Figure 3-1 shows the flow
 

of subtasks for the experimental study.
 

3.1 TASK 2.1 DEVELOPMENT OF AN EXPERIMENTAL STUDY PLAN
 

A large number of arc discharge measurements have been made in the
 

past by many different groups. The body of knowledge gained from these
 
tests is impressive, and many features of arc discharges as related to
 

spacecraft charging phenomena have been revealed which were not predicted
 
on the basis of prior experience. On the other hand, many of the measur­

ements that have been made have not reflected flight configurations and
 

in-flight environments adequately. Thus many of the results were not
 

directly applicable to spacecraft systems design and have to be "massaged"
 

or "taken with a grain of salt." The performance of further laboratory
 

tests is justified if the information gained is useful in providing further
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Figure 3-1. TASK 2 Experimental Study of EMI Immunity Factors
 



insight into the arc discharge process even though time and cost
 
considerations limit the degree of "reality" incorporated into the tests.
 
It is important, however, to have a knowledge of the limitations imposed by
 

the actual test conditions on the applicability of the results to
 
spacecraft design.
 

This experimental study focused on a number of features that had not
 

been examilned previously:
 

* 	Development of a reliable arc discharge trigger
 

- permits propagation velocity measurements to be made easily
 

- permits study of surface potential effects to be made
 
easily
 

- permits angular dependence of blowout particles to be made
 
easily
 

* 	 Velocity of arc discharge brushfire propagation
 

- materials effects
 

- configuration effects
 

* 	Angular distribution of blowout particles.
 

3.2 	 TASK 2.2: DEVELOPMENT OF DIAGNOSTICS AND INSTRUMENTATION
 

A principal factor affecting the EMI immunity is the ratio of arc
 
discharge blowout currents to flashover currents, denoted as G'. In
 

addition, however, are the many features of arc discharges such as the
 
location, configuration, material, rise time, magnitude, duration and
 

spatial extent which also affect the EMI-coupled-into-victim hardware. All
 
of the foregoing arc discharge features have been considered in Task 1 as a
 
part of the analytical modelling. A major feature of the model is that the
 
arc discharge initiates at a weak point such as at an edge of a dielectric
 

surface, and then propagates in a "brushfire" mode over a large fraction of
 
the total surface area. An important part of this experimental study was
 

the development of a reliable triggering technique so that arc discharges
 
initiate at a predefined location and at a known instant of time. The
 

analysis of Task 1 indicates that there should be an angular dependence of
 
blowout electron currents favoring those angles which point closest to the
 
initiation point of arc discharge. This angular dependence and the energy
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and species dependence was determined as additional information relating to
 

G'. Figure 3-2 shows an overall view of the 2 by 4 feet long diameter
 

vacuum system used in this task.
 

3.2.1 Arc Discharge Trigger
 

Historically, experiments on spacecraft arc discharges have been per­

formed by charging dielectric surfaces until breakdown occurred, and then
 

measuring the currents and voltages that resulted. Because the breakdown
 

voltage as well as the breakdown instant and location were unpredictable,
 

such measurements were difficult to make and also gave a wide range of
 

results. Other measurements, such as the propagation velocity of an arc
 

discharge wavefront and the velocity of a brushfire over the dielectric
 

surface, were nearly impossible to perform since the location and the
 

"burning" directions were unpredictable.
 

In addition, the characteristics of the arc discharge itself, as
 

distinguished from the breakdown initiation process, were not separately
 

measurable. A reliable, predictable and reproducible arc discharge trigger
 

also permits many measurements of arc discharge parameters to be made more
 

easily in that discharge-to-discharge variations would be minimized.
 

Propagation velocity measurements, for example, may be made with a single
 

trace oscilloscope viewing a number of sensors on separate discharges.
 

Figure 3-3 shows the arc triggering circuit developed for this study.
 

A 3f capacitor is charged up from a 300 volt supply and is discharged by a
 

SCR diode which is triggered manually from a pulse generator. The
 

capacitor feeds the primary of a high voltage step-up transformer whose
 

secondary is isolated from ground by a 100 kilohm resistor. The ignition
 

electrodes are mounted below the sample and just peek out over the
 

interface between the sample and the metallic side plate.
 

Nearly all of the data taken in the experimental study was obtained
 

using the arc trigger system. In the sense that a lot of good data was
 

obtained, the development of the triggering technique has been very suc­

cessful. One of the unexplained aspects of the trigger was its inability
 

to initiate arc discharges over a large range of chargeup differential
 

potentials. One possible explanation of this effect is t6at the butt joint
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configuration of the folded-over Kapton against the metallic plate did not
 

lead to an adequately high surface electric field to start a propagating
 

wavefront.
 

3.2.2 Propagation Velocity Sensors
 

Two types of sensors were developed to determine the arc discharge
 
propagation velocity. Both sensors were designed to detect the differen­
tial time-of-arrival of a signature at spatially separated locations on the
 

test sample. The first consists of 1/2-inch diameter copper pads glued to
 
the surface of the Kapton with wire leads brought out of the vacuum system.
 

The voltage developed across a 1 ohm resistor was fed to the oscilloscope
 
which was triggered from the manually operated pulse generator which also
 

triggered the arc ignition system. Figure 3-4 shows the approximately
 

0.5 ps time delay between the close-in sensor and the distant sensor wave­
forms. For the 5-inch separation of the sensor, this leads to a velocity 
of 2.5.107 cm/s. The polarity of the signature (negative), is consistent 

with the collection of electrons as the wavefront passes by. The size of
 
the signatures, 10 to 15 amperes at the close-in sensor and 2 to 5 amperes
 

at the distant sensor, was unexpectedly large.
 

The second type of sensor used is shown in Figure 3-5. A 3/4-inch
 
ring of the vacuum deposited aluminum on the backside of the Kapton was
 
etched out leaving a 1/2-inch diameter disc to which a wire lead was
 

epoxied. Outside the vacuum system, a 1 ohm termination resistor was used
 

as before. The waveforms obtained are shown in Figure 3-6. The signature
 

polarities (positive) are consistent with electrons leaving the Kapton.
 

surface. Again, the signal levels, >30 amperes close in to 15 amperes far
 

out (7 inches) were unexpectedly large. On the average, these measurements
 

lead to a propagation velocity of 2.1e107 cm/s and therefore an overall
 
average of 2.3o1O7 cm/s for all of the measurements on 2 mul Kapton. By
 
comparison, the value of 2.45,0107 cm/s has been used throughout the
 

analytical study of Task 1. That value was obtained as the velocity of an
 
ion of gram molecular weight 16 accelerated from zero to a 5 keV energy.
 

The coincidence is startling.
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(10- by 10-inch, 2 mil Kapton Sample) 

3-10 

M2-163-80 



One final comment on the velocity sensor outputs is the obvious
 

decrease in signature level with distance from the ignition point by
 

factors of about 5. Figure 3-7 shows typical surface potential scans
 

before and after a discharge. There are no large gradi'ents as might be
 
expected from the velocity sensor outputs. No particular effort was made
 

to scan the surface along the path joining the sensors, but rather, the
 
scan was more or less along the sample diagonal. The results, particularly
 

with the capacitive pads, seem to show an output related more to the charge
 
flowing by rather than just the charge leaving that was originally on that
 

pad.
 

3.2.3 Angular Distribution of Blowout Particles
 

The possible angular distribution of blowout currents was discussed as
 

a result of the Task 1 analytical study. Seven 4- by 4-inch collector pads
 

were located around the test sample as shown in Figure 3-2. Figure 3-8
 

shows voltage waveforms across a 1 ohm resister obtained from these pads.
 

As expected, Pad No. 3 shows the largest current which is more than 10
 

times larger than that collected on Pad No. 7 which is in the opposite
 

direction facing arc ignition location.
 

3.2.4 Other Diagnostics and Instrumentation
 

Figure 3-2 also shows the 10-inch cylindrical collector ring which is
 

located under the pads discussed above. Having a much larger collecting
 

area, it provides a much larger signal than the pads.
 

The connection to the side plate adjacent to the test sample was also
 
brought out separately. It is most clearly shown in Figure 3-5. Because
 

the sample itself is carefully folded over and covered, the side plate
 
represents the only electrode to which "flashover" currents can flow. The
 

waveforms of currents to the side plate show that the flashover current is
 

small compared to the total replacement current.
 

Also under this category of diagnostic instrumentation is the
 

"discovery" of the need to provide a high voltage feedthrough for the test
 
sample grounding lead. Initial attempts to measure sample return currents
 

and potentials with a high (>100 ohms) resistance led to incompatible
 

results such as an apparent sample potential much greater than the 20 kV
 

beam accelerating voltage. The breakdown of the feedthrough connector was
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the obvious conclusion, and replacement with a high voltage feedtrough
 

solved the problem. Figure 3-9 shows the replacement currents and­

resulting sample potential-s as a function of the grounding resistance.
 

The other instrumentation technique that should be noted here is that 

care inwiring to minimize cross-coupling of undesired signals is 

essential. It should also be recognized that the length of conductors and 
their inductance and capacitance to ground may affect the data obtained. 

3.3 TASK 2.3: EFFECTS OF CHAMBER WALLS AND NEARBY METALS
 

The fact that the experimental study of arc discharges was performed
 

in a vacuum chamber of limited dimensions as opposed to the real space
 

environment undoubtedly affected the results in many ways. This environ­

mental discrepancy is in addition to the fact that the real particle flux
 

is multispecied, is usually omnidirectional, and has a distributio'of
 

energies. The rationale for not simulating the r l environment more
 

closely is the economic cost and that, hopefully, the characteristics of
 

arc discharges are not significantly affected by the chargeup process.
 

In regards tothe effects of the restricted volume of the test cham­

ber, the obvious shortcoming is the zero potential boundary conditions
 

imposed which tends to increase the magnitude of electric fields-somewhat.
 

The close-in fields near the surfaces of the test sample, however, should
 

not be greatly influenced. The second obvious effect of the restricted
 

volume is that the trajectories of blowoff particles are terminated at the
 
chamber walls and thus the subsequent flow paths of the discharge particles
 

are not properly simulated. The major effect of the blowoff particles is
 

the generation of replacement currents flowing back to the arc source. The
 

effect of the chamber walls is to provide a low impedance return path for
 
the blowoff currents. The effective "impedance- of the complete "circuit,"
 

however, is determined to a major degree by the electric fields and the arc
 
discharge processes in the vicinity of the discharging element. This is
 

one of the conclusions of the arc discharge analysis of-Task 1..-The fact
 

that experimental results on arc discharge characterization performed in
 

vacuum systems varying in volume by several orders of magnitude give
 

roughly the same results, is an indication that the analysis is correct in
 

this respect. The relatively small fraction of the blowoff current going
 

to the side plate, indicates that nearby grounded metals do not collect as
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much 	current as might be expected from predischarge electric fields. The
 

analysis in Task 1 shows why this is the case. Figures 3-10 and 3-11 show
 
the replacement currents and the side plate currents for a 10- by 10-inch
 

sample and a 6- by 6-inch sample. The oscilloscope traces to the left show
 
the replacement currents to the samples, and the traces on the right are
 

the side plate currents. The side plate currents are less than 20 percent
 

of the-replacement currents.
 

3.4 	TASK 2.4- EXPERIMENTAL CHARACTERIZATION OF ARC DISCHARGES AND
 
COUPLING SOURCE MODELS
 

The objective of this task was to characterize arc discharges and
 
electromagnetic interference coupling source models from the data obtained
 
in the experimental study. A comparison of these results with those of the
 
analytical study is presented in the writeup of the next task.
 

3.4.1 Arc Discharge Characterization with Low,Impedance Grounding
 

The experimental data on arc discharges was presented in Figures 3-4
 
through 3-11. The propagation of a discharge wavefront in the "brushfire"
 

mode is very real. The propagation velocity of about 2.3.107 cm/s is
 

consistent with all of the data obtained. As a result of the finite propa­
gation velocity, the rise time and width of the discharge currents are
 
functions of the size of the arcing source. Figure 3-12 shows the peak
 

replacement current as a function of the sample area for the three sample
 
sizes tested. The peak replacement current, for the 1-ohm sample grounding
 

resistance, varies nearly linearly with area.
 

Ipeak 0.65 • Area (cm2) amperes.
 

Figure 3-13 shows the current pulsewidth plotted as a function of the 
length of the side of the square sample. The width, Tp varies nearly 

linearly with this dimension. 

T 40 • . (cm) ns. 
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This fit to the data has been made to force T to equal zero for k equal toP 

zero, since it is consistent with our analytical expectations and because
 

the'quality and quanti-ty of data is not inconsistent with this assumption.
 

Since the current wavform is nearly triangular, the rise time of the
 

pulse, tr may be taken to equal to the pulsewidth
, 


t= T = 40 * £ (cm) ns. 

3.4.2 Arc Discharge Characterization with High Impedance Grounding
 

Arc discharges as they exist on spacecraft in flight are more cor­

rectly characterized by the results of the tests performed with a high
 

sample grounding resistance. The tests performed with a small (1-ohm)
 

grounding resistance were important in that many facets of the brushfire
 

analytical model were verified, and because many aspects of the high
 

impedance tests are made more understandable in light of the low impedance
 

test results. Furthermore many of the arc discharge processes such as the
 

propagation have been observed to proceed independent of the value of the
 

grounding resistance.
 

Figure 3-14 shows the peak sample replacement current and correspond­

ing sample (spacecraft) potential as functions of the sample grounding
 

resistance. These data are for the 8- by 8-inch sample with a 2 mil Kap­

ton. It is seen that the "spacecraft" potential rises to about the 20 kV
 

beam voltage (less the secondary emission crossover) for resistances as low
 

as 1000 ohms. At 10 kilohms, the replacement current is down to 1 percent
 

(2.5 amperes) of the 250 amperes obtained with a 1-ohm resistance.
 

In Figure 3-9 it is interesting to note that the waveforms of the col­

lector ring currents on the right hand side are the positive ion currents
 

obtained at late times when the sample potential is as high as u20 kV. The
 

ions are "pushed" outward by the high potential and the arrival times are
 

not inconsistent with the velocity computed for heavy ions. The negative
 

triangular electron arrival current, observed with a 1-ohm sample grounding
 

resistance, corresponds very closely to the sample replacement current
 

waveform. As the sample potential rises with increasing grounding resis­

tance, the electron blowout current is quickly cut off as is predicted by
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the analysis of Task 1. The similarity of the predicted variation of
 

blowoff current and sample potential with grounding resistance of Fig­

ure 3-15 and the experimental data of Figure 3-14 is striking.
 

3.4.3 Characterization of High Frequency Transients
 

The characterization of arc discharges would be incomplete without
 

acknowledging the existence of the "fine" details, the high frequency (>50
 

mHz, <10 ns) transients which appear to a greater or lesser degree in all
 

of the waveforms recorded in the experimental study. Because the majority
 

of the on-board circuits are not susceptible to these high frequency tran­

sients, because they may easily be shielded or filtered out, and finally,
 

because they were not reproducible from discharge to discharge and from
 

sample to sample, emphasis was not placed on them and no definite
 

conclusions could be made in regards to them. It is clear that the
 

appearance of these high frequency transients was highly dependent on the
 

particular configuration of the test setup, the routing and shielding of
 

diagnostic wiring, and the circuit inductance and capacitance associated
 

with the diagnostics.
 

3.4.4 Additional Angular Blowout Current Distribution Data
 

Data on the angular distribution of blowout particles were discussed
 

in Section 3.2.3 and presented in Figure 3-8. These data were obtained
 

with collection pads located around the test sample in the plane of the
 

sample, and showed that the largest concentration of blowout electrons was
 

in the direction of the arc ignition source from the remainder of the
 

sample.
 

Figure 3-15 shows the angular distribution of blowoff currents in a
 

plane perpendicular to that of the test sample. The sample grounding
 

resistance was 1 ohm as it was for Figure 3-8. The location of the six
 

additional collection pads are shown at the bottom of Figure 3-15. The
 

collector pad current waveforms are shown in approximately their correct
 

relative positions. As might have been expected, Pads No. 2 and No. 3 show
 

the largest peak currents with Pads No. 4, No. 5 and No. 6 showing the
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lowest currents. The rationale for this expectation isthat the brushfire
 

wavefront propagation from the left side to the right results inthe blow­

out of electrons from the right s-de towards the left side-of the test
 

setup as shown at the bottom of Figure 3-15. The sample replacement cur­
rent is shown at the lower center and the cylindrical ring collector cur­

rent at the upper center of Figure 3-15. A better waveform for the sample
 
replacement current fo-r the 1 ohm grounding resistance is shown at the
 

bottom of Figure 3-9. Itmay be noted there that even with the 1 ohm
 

grounding resistance, the peak sample voltage is+250 volts. This probably
 

'contributes to the fact that positive ion currents a e collected on Pad No.
 
2. Itmay also be noted inFigure 3-15 that although Pads No. 4 and No. 5
 
show much smaller peak currents, the peaks also occur later intime than
 
for Pads No. 2 and No. 3. This again isconsistent with the brushfire
 

propagation model.
 

Figure 3-16 shows the set of waveforms corresponding to Figure 3-15
 
but with a 10 kilohm sample grounding resistance. The blowout currents are
 
much smaller than might have been expected. Inaccordance with the series
 

of waveforms shown in Figure 3-9 inwhich the grounding resistance was v­
aried from 1 ohm to 130 kilohm, positive ions are collected for the major
 

fraction of thepulse duration. This is because the initial electron
 
current isquickly cut off by the positive 20 kV potential of the sample
 

and the ions are pushed out. Again, for some unknown reason, Pad No. 1
 
behaves anomalously and initially registers an ion current which then
 

becomes an electron current.
 

The assistance of Dwight Anthony in this experimental study is
 

gratefully acknowledged. He kept the laboratory work going with minimal
 
supervision and was invaluable inassisting inthe data taking process.
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4. TASK 3. COMPARATIVE STUDY OF ANALYTICAL AND EXPERIMENTAL RESULTS
 

The objective of this task is to take the results of the analytical
 

study, Task 1, and the experimental study, Task 2, of the characteristics
 

of arc discharges and to come up with the best estimate arc discharge
 

source models to be incorporated into a SEMCAP model. The actual running
 

of the SEMCAP code and the analysis of its outputs constitutes the final
 

task, Task 4. Figure 4-1 shows the logical flow diagram for Task 3.
 

The analytical and experimental approach each have their strong points
 

and their weak points, or advantages and disadvantages. For example, the
 

analytical approach is difficult to implement for complex configurations
 

with multidimensional effects, but parametric effects such as area or
 

sample size effects may be easily extrapolated if they are included inthe
 

analysis. The experimental approach permits "real" configurations to be
 

tested, but the reality of the simulation of actual in-flight conditions
 

must be evaluated carefully. In the past, many shortcomings of an analyt­

ical approach have been revealed by the experimental approach. An example
 

is the large area wipeoff of charge built up over a dielectric surface. On
 

the other hand, the many early tests on the measurement of discharge pulse
 

amplitudes using small sample grounding resistances have tended to over­

estimate the threat. Some of the results obtained in the present work have
 

not been available previously, but it is also recognized that a large body
 

of knowledge about the phenomena associated with spacecraft charging has
 

been built up in the past few years by the community of workers concerned
 

with its effects. This data will also be used wherever it is appropriate.
 

4.1 TASK 3.1 COMPARISON OF ANALYTICAL AND EXPERIMENTAL STUDY RESULTS
 

A number of problems exist in "comparing" the results of the analyt­
ical and experimental studies performed in Task 1 and Task 2 of the present
 

work. These are that the analytical characterization of arc discharges was
 

basically a 1-dimensional analysis, whereas the experimental study was
 

limited in the size of the test sample. A more appropriate view of this
 

task is that the analytical and experimental approaches complement each
 

other, and that each set of results must be interpreted in the light of the
 

other.
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The primary parameters of interest in evaluating the implications of
 

arc discharges on spacecraft EMI margins of immunity are the pulse ampli­

tude and waveform (rise time and width). The location and configuration of
 

the arcing source relative to the remainder of the spacecraft, e.g., the
 

presence of nearby cabling and the presence of bulkheads for electromag­

netic shielding, are important factors in determining the coupled EMI.
 
These, however, are taken care of in the SEMCAP model and analysis. The
 

physical parameters such as the size, shape, and thickness of the arcing
 
source, must be incorporated into the amplitude and waveform characteriza­

tion. Some physical parameters such as the size and shape enter into both
 

the arc characterization and the coupling analysis.
 

4.1.1 Arc Discharge Amplitude and Waveform: Low Grounding Resistance
 

Only a limited range of sample areas was tested. Figures 3-12 and
 
3-13 surnnarize the data on the dependence of the amplitude and width of the
 
sample replacement current pulse with sample size for a 1 ohm grounding
 

resistance. Figure 3-12 shows a nearly linear increase of peak current
 
with area. The consensus of the community, however, is that it should vary
 

as the square root of the area. Figure 4-2 is taken from our earlier study
 
of the "Effects of Arcing." The data from Task 2 of the present study are
 
shown on Figure 4-2. On the log-log scales of that figure, the new data is
 
not inconsistent with the prior data. Two additional data-points obtained
 

by JAYCOR workers are also shown on Figure 4-2.
 

The brushfire arc discharge propagation velocity of 2.45-107 cm/s will
 

be used for the following analysis. Referring back to Figures 3-9, 3-10,
 
and 3-11, it is seen that the replacement current waveform is approximately
 

triangular in shape for a low (Iohm) grounding resistance. This waveform
 

is consistent with the brushfire propagation model as developed in Task 1
 

in that the periphery of the high gradient region expands nearly linearly
 
with time. Figure 4-3 shows three additional replacement current wave­

forms. Also shown at the upper right is a representation of a square
 

sample with circular arcs centered at the ignition point. At the lower
 
right is shown the replacement current waveform (low grounding resistance)
 
deduced by assuming that the amplitude varies directly as the length of the
 

circular arcs. The nicks and changes in slope of the oscilloscope wave­

forms seem to correspond to those in the simplified analytical model.
 

4-3
 
M2-163-80
 



--

1000 4", T" "A 

KAPTON 
® TRW ('78b) EDGES FOLDED OVER K 0 10 

TRW ('78b) EDGES OVER AND LOW INDUCTANCE OUTPUT 
0 BALMAIN ('75- 77') BEST -. , .00­

100 0 BALMAIN ('78) ESTIMATE .-

L BOGUS ('781 SOLAR CELL SUBSTRATE TASK3'% tag.


E *0"JAYCOR ('79) EDGE CLAMPS 1000
CU25kY =8 nA2m 2V -r8n 

- 0 DATA POINT FROM TASK 2 4- 0 0ASK..& 10 - -0 0.-

LU---BEST FIT, 1-99A 0 43eamp
2 1 -0­

it WORST CASE I- 0O002A #0a NANALYTICAL PREDICTION,
FOR LARGE 
SAREAS .0. 0 - , A( 

10-5 l - 4 l- 3 10 2 1 -111S1010 
Fgr L-42. 1s a- P I L 

ARA,-(c2 

Figue4-2 icag ekCretvru 
 rafrKpo
 



\ARC IGNITION POINT 
SQUARE SAMPLE SHOWING EXPANDING 
BRUSHFI RE WAVEFRONT 

1.0 

8 

.6 

"-- 4 

.2 

0
0 05 1.0 15 20 25 

t/tr,
 

EXPERIMENTAL REPLACEMENT ARC DISCHARGE WAVEFORM DEDUCED 
CURRENTWAVEFORMS FROM WAVEFRONT DIMENSION 

Figure 4-3. 	 Comparison of Experimental and Analytically Deduced
 
Replacement Current Waveforms for a Square Sample
 

4-5
 

M2-163-80
 



For the purposes of the arc characterization, a triangular waveformwith,
 

the fall time 50 percent greater than the risetime, tr' will be assumed. A
 

dashed line in the "deduced" waveform of Figure 4-3 shows the assumed
 

current falloff.
 

The amplitude of the triangular current pulse may be determined as
 

follows. The stored charge, Qs, is given by
 

2
QS = C Vb A = C Vb s = 2.6 *10-7s2 coulomb
 

where C is the capacitance per unit area, or 52 pf/cm 2 for 2 mil thick
 

Kapton. Vb, the breakdown voltage, is estimated by assuming a breakdown
 

electric field of 106 V/cm. With the 2-mll thickness, Vb is 5000 volts. A
 

is the area in square centimeters. Assuming only half of Q is used up in
 

an arc discharge, the charge in the arc, Qa' is
 

Qa = 1.310-7s2 coulomb.
 

From the assumed waveshape shown in Figure 4-3, the charge is given by
 

=
Qa Ipeak " (tr'-2.5)/2
 

Equating these two expressions for Qa will give a value for Ipeak First,
 

however, the risetime, tr, must be obtained in terms of the propagation
 

velocity, vb, and the side of the square, s, as:
 

tr = s = 2.04.10-8 .s(cm) seconds. 
2vb 

Now, equating the two Qa's gives.
 

Ipeak = 4.992.s(cm) amperes.
 

This linear relation is plotted on Figure 4-2 with all of the data on
 

current amplitudes versus area. The fit is not bad considering the variety
 

of organizations contributing data points to the figure.
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A second method of obtaining a comparison of analytical and
 

experimental data is by using the 3.18 A/cm surface current density, J's,
 
obtained in the analysis of'Task 1. The dimension required to convert Js
 

to Ipeak is the largest circular arc or -s/2. With this
 

Ipeak : is " 7rs/ 2 = 4.99-s(cm) amperes.
 

It is not surprising that the two analytical results are identical since
 

the same basic assumptions were made of the charge in the arc, Qa' and the
 

brushfire propagation velocity, vb.
 

For a long narrow arcing source such a boom, the waveform should not
 

be triangular but more nearly rectangular. Figure 4-4 shows sample
 

replacement currents and collector ring current waveforms for a 2- by
 

10-inch, 2 mul Kapton sample with a 1 ohm grounding resistance. Compared
 

to those for the 10- by 10-inch square sample of Figure 4-3, the waveforms
 

are more nearly rectangular. Assuming that the boom diameter, d, is 5 cm
 

and its length, L, is 2 meters, the pulse rise time, tr, and the pulse
 

duration, tp, would be
 

tr = d.r = 374 ns, tp = L = 9.52 ps
b b 

The peak amplitude would be
 

Ipeak 72 dJs/2 = 78.5 amperes.
-

The experimental measurements of peak current amplitude are two to
 

three times larger than the analytical predictions. Taking the average,
 

2.5 times, the best estimate peak pulse current for the square sample is
 

Ipeak = 12.5 s(cm) amperes.
 

We assume that this expression applies to circular or any other shape in
 

which the dimensions of the arcing source are approximately equal in two
 

orthogonal directions. The analytical and best estimate predictions of
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peak amplitude currents are shown on Figures 3-12 and 4-2. The fit of
 

either prediction to the data points in Figure 4-2 is not bad considering
 

the variety of organizations contributing information to that figure. The
 

best estimate sems to be a reasonable worst-case prediction.
 

For the best estimate pulsewidth, tp, we have assumed it to be 80 per­

cent of the width at the base. This is equal to twice the rise time since
 

the fall time was assumed to be 50 percent greater than the rise time:
 

tp = 2tr = 4.08"108s(cm) seconds. 

This prediction, which is both the analytical and best estimate prediction,
 

is shown on Figure 3-13 and also on 4-5. Figure 4-5 is taken from our
 

"Effects of Arcing" report and shows data from other workers as well as
 

prior TRW data.
 

KAPTONO BALMAIN ('75) 
.0

A BALMAIN ('78) 

0 BOGUS ('77)
 

A BOGUS ('78)
 
o TRW ('78b) 

o BU(7
LU U TRW ('78b) LOW INDUCTANCE OUTPUT 

o * DATA POINTS, TASK 2 
Z 

Z 102BEST ESTIMATE AND 
ANALYTICAL PREDICTION,

X_ TASK 1 AND TASK 3 

10 - BEST FIT, T = 203A 0 292 NS 

1 WORST CASE 6-00,- FOR LARGE AREAS? = 44A 0 NS 

- 5 10 - 3  2 10 - 1  10 2 
10 10- 4 10- 1 10 10 3 

AREA (CM 2) 

Figure 4-5. Area Dependence of Discharge Pulsewidth
 

The low sample grounding impedance arc discharge parameters obtained
 

here pertain to the replacement current observed in the grounding resistor,
 

i.e., its voltage divided by its resistance. The replacement current is
 

what we have been referring to as the blowout current. The flashover
 

current is not manifested in the grounding resistor voltage since itdoes
 

not flow through the resistor. The only exceptions to this situation are
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those such as inour test configuration inwhich the side plate return was
 

monitored separately, and inwhich the sample substrate was completely
 

covered with insulation so that return currents to it only flowed via the
 

sample grounding ware. The distinction between flashover and blowout
 

currents ismore clearly evident inthe discussion of the next section on
 

the high sample grounding impedance arc discharge parameters.
 

One further point should be made in regards to arc characterization
 

for the in-flight configuration. This has to do with the importance of
 

particle trajectories as they are released or blown off by the arcing
 

source. Our point of view is that the concentration of structural replace­

ment currents isgreatest at the arcing source and its grounding strap.
 

Therefore this isthe location of the greatest hazard to the spacecraft.
 

The determination of blowoff electron and ion trajectories is interesting
 

but the magnitude of currents collected at remote surfaces isgenerally
 

insufficient to be of concern. What is of crucial importance isthe
 

ability or inability of the total spacecraft surface to collect sufficient
 

charge to replace the charge blown off at the arcing source. This deter­

mines, as was shown inthe analysis of Task 1, the potential to which the
 

entire spacecraft rises during the discharge which inturn determines the
 

amount of charge that isblown off. Because of this consideration, the
 

waveforms and data presented on the left half of Figure 3-9 for the sample
 

replacement current are more important than those on the right side of the
 

figure which shows the collector ring currents.
 

4.1.2 Arc Discharge Ampltude and Waveform: High Grounding Impedance
 

The evaluation of the implication of arc discharges on spacecraft EMI
 

margins of immunity requires that the discharge parameters be applicable to
 

the in-flight situation. Specifically, the arc discharge characterization
 

obtained with a low sample grounding impedance as discussed inthe previous
 

section are not directly applicable. This is because of the change in
 

spacecraft potential and the resulting cutoff of the blowout currents that
 

would have existed ifthe potential had not changed. This cutoff process
 

was discussed analytically inTask 1 (Appendix 4) and verified experi­

mentally inTask 2 (Section 3.4.2).
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With the quantification of the arc discharge parameters for the low
 

impedance case into best estimate values in the preceeding section, we are
 

now in a position to extend these to the in-flight or high impedance
 

situation using both the analytical and experimental results. Since the
 

discussion in the last section relied on experimental data to correct the
 

anlaytically derived parameters, the conclusions apply to the blowout
 

currents rather than the flashover currents. The-correction factor,
 

applying to the analytically derived low-impedance blowout surface current
 

density, Jsz, of 1.86 A/cm is
 

Correction factor = 2.5
 

The corrected value of J is, therefore, 4.65 A/cm, and this gives the
sz
 
best estimate peak blowout current as
 

Ipeak sz (7rs/2) = 7.30 s(cm) amperes.
 

Assuming that the experimentally obtained brushfire propagation 

velocity of 2.3 107 cm/s is correct and, for worst case purposes, that 

three/fourths of the stored charge is dissipated rather than one-half, the 

largest flashover surface current density, Js , possible is 

3s = CVbvb = 4.49 A/cm. 

We have assumed the capacitance per unit area, C, to be 52 pf/cm2 corre­

sponding to a dielectric constant of 3 and a thickness of 2 mils. The
 

breakdown voltage, Vb. of 5000 volts corresponds to an electric field of
 

10 V/cm. With these values for Jsz and Js, the corresponding G' factor is
 

G' = Jsz/s = 1.04.
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This is 1.77 times larger thdn our analytically obtained value for G'
 

of 58.5 percent, and in fact violates our initial notions which gave rise
 

to the G' concept. Originally, the view was that the stored charge was
 

dissipated in two ways, a flashover current and a blowout current. Thus
 

there was no way in which either integrated component could be greater than
 

the stored charge, and therefore, G' could not be greater than 100 percent.
 

The brushfire analysis, however, showed that because of the ablation and
 

ionization processes, there was a reservoir of free electrons (and ions)
 

generated which could greatly exceed the originally stored charge which led
 

to the breakdown voltage. The only reason that G' happened to be 58.5
 

percent was that only that amount of electrons could be ejected before
 

Debye shielding of the external electric field stopped the blowout process.
 

Therefore a G' value of 1.25 is not impossible, because the initial con­

ceptions about G' have changed as a result of this study. Anequally valid
 

computation for G' is to assume that the 3.18 A/cm value of J obtained
 

analytically is correct giving
 

G' = 4.65/3.18 = 1.46.
 

With the assumed linear rise of blowout current with time, the time
 

dependent current, I(t), may be written as
 

l(t) = Ipeak (t/t ) = Jsz (s/2) • (2vbt/s) 

= (IrvbJs) • t = 3.58 ° 108t (sec) amperes. 

In terms of Js and G', I(t) is given by
 

l(t) = (v bG'JS) . t, 

in-which G' is 1.46 and Js is 3.18 A/cm. The current, for the rising
 

amplitude portion, is independent of the size, s, of the arcing source.
 

The cutoff of current by the rising spacecraft potential, V0 , may be
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derived by assuming that the replacement current is entirely comprised of
 

displacement current which charges the spacecraft capacitance to space, Co:
 

Co 47 oR = 150 pf for R = 1.5 meters.
 

The equations to be solved, the solutions and the curves for l(t)/I and
 

V0(t)/V r are shown in Figure 4-6.
 

The value for the remaining voltage, Vr' to be used in the equations
 
shown on Figure 4-6 is the full bulk breakdown voltage, 5 kilovolts, and
 
not the 2.5 kilovolts remaining after the discharge. This is because, as
 

was shown in the blowout analysis, the blown out charges are emitted only
 
at the head of the brushfire wavefront where the potential has not yet
 

dropped appreciably. The square root dependence of the blowout current,
 
I(t), on the surface potential, Vs, stems from the velocity which is
 
derived from the energy equation­

1/2 mv2 = eVs.
 

The time constant, T, for the 1.5-meter radiu§ spacecraft (DSP) is
 
91.5 nanoseconds. This isthe time in which the spacecraft reaches its
 
maximum potential of 5 kilovolts , and also the time in which the electron
 

charging current goes back to zero, i.e., is cut off. 10 is a current,
 
32.8 amperes, defined by Co, Vr, and the rate of increase, 3.80 - 108 A/sec,
 

of the current with the spacecraft potential remaining at zero. The maxi­
mum replacement current is
 

max ==(t) = 12.61 amperes. 
33
 

This maximum current, with the waveform shown, is independent of the size
 
of the arcing source as long as its dimension is greater than that defined
 
by the 51.1-nanoseconds time constant, t: 

I(t) = (7vbJ sz) - t = 3.85 • 108t 
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Again, the current during the linear rise is independent of the boom
 
diameter. Inthe case of a 5 cm diameter boom, its circumference,
 

7.85 centimeters, is greater than the 4.35-centimeter threshold at which
 

cutoff occurs. Thus the current is cut off at t equal to or 91.5 nano­
seconds, and the spacecraft potential at this time has reached 5 kilovolts.
 

The replacement current pulse is identical to that for the square or
 

circular arcing source.
 

4.2 TASK 3.2 BEST ESTIMATE ARC DISCHARGE PARAMETERS
 

As discussed in the previous section on the arc discharge parameters
 
obtained with a high sample grounding impedance, it is these that apply to
 

the in-flight situation rather than the parameters obtained with a low
 
impedance. Both low and high impedance arc discharge parameters are sum­

marized in Table 4-1. Table 4-1 includes transient flashover and blowout
 
current pulses which are assumed to last for 10 nanoseconds.
 

The actual models of the arc discharge sources used in the SEMCAP
 
study of the EMI coupled to the electrical subsystems of a typical space­

craft are included as a part of the discussion for the final task, Task 4.
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Table 4-1. Best Estimate Arc Discharge Parameters
 

00 

C Parameter 

Brushfire Propagation Velocity 


Vb = (2eVb/ml)0.5 


Flashover Surface Current
 

Density dsx = CvbVbF 


Blowout Surface Current 

Density J = Nev2 

Flashover Current Pulse* 

Ipeak = 2.5 (irs/2) Jsx 

tp = 2tr = s/vb 

Blowout Current Pulse 


Ipeak = (2k/31'5) tp 

5
t 2tr = (4CoVb/k)0. 

Value 


2.45 cm/sec 


3.18 A/cm 


1.86 A/cm 


12.5(s) A 


40.8(s) ns 


12.61 A 

91.5 ns 


Dependence 


Eb0 5d0.5 


Ebl' 5d0.5F 


gE=2 5d1 5F2 


Eb1 5d0.5F 


Eb-0.5d-0.5 


5
(Rg) 0.5Eb2(dF)1.
 
5
RO 5 (gEb2dF)- 0.
 

Definitions and Assumptions
 

Eb = breakdown electric field
 

Vb = breakdown voltage
 

Eb = 106 V/cm, Vb = 5000 V
 

d = dielectric thickness
 

= 2 mils = 0.005 cm
 

C = capacitance/area
 
= 52 pf/cm 2 

for d = 2 mils, er = 3 

F = fraction of stored charge 

dissipated in discharge = 0.5
 

Applies to approximately square or circular sources. See text for long narrow sources.
 

(Continued on Page 4-17)
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Table 4-1. Best Estimate Arc Discharge Parameters (Continued) 

Parameter Value Dependence Definitions and Assumptions 

4 

Transient Flashover Pulse 

Ipeak = 2.5 7vb tp Jsx 
' 

tp = 2tr 

Transient Blowout Pulse 

Ipeak = 2.5 ffvb Tp dsz 

tp = 2tr 

6.12 A 

10 ns 

1.43 A 

10 ns 

Eb2dF 

gEb3d2F 

-

g = ablation factor 

= 8.32 ° 10-6 g/J
108 

k = 3.58 10 A/cm 

s = square root of area (cm) 

R = spacecraft radius = 1.5 m 

tp = pulse width = 2tr 

r = pulse risetime 



5. TASK 4: SEMCAP STUDY AND P78-2 RESULTS COMPARISON
 

The overall objective of the present study was to investigate the
 

implications of arcing due to spacecraft charging or spacecraft EMI margins
 

of immunity. To achieve this objective, the analytical and experimental
 

portions, Task 1 and Task 2, were performed and a best estimate character­

ization of arc discharges was obtained in Task 3 by comparing the results
 

of Task 1 and Task 2.
 

This task, Task 4, takes the results of Task 3 and examines the EMI
 

immunity response of a specific spacecraft configuration, the DSP, to two
 
elements of the P78-2 spacecraft. The rationale for this procedure was
 

that an excessive cost would have been involved in modeling the entire
 
P78-2 spacecraft into the SEMCAP code. The results, then, apply neither to
 

DSP or P78-2. Instead, the results should be interpreted as the response
 

of a typical spacecraft.
 

5.1 	 SEMCAP OVERVIEW
 

An overview of SEMCAP is shown in Figure 5-1. Basically, SEMCAP
 

resorts to a computerized analysis because of the huge number of terminal­

to-terminal cable connections involved in any spacecraft system. After all
 

of the system descriptions, such as the source and receptor characteristics
 

and the wiring layout, are put into the computer, the coupling is computed
 
via four types of coupling matrices. Fortunately, since many of the wires
 

run in common bundles or cable harnesses, the size of the matrices is not 

comparable to the number of terminals. The output of SEMCAP includes: 

* Voltages at each receptor terminal 

* Margins of immunity in dB 

* Alphabetical indicators of negative immunity margins. 

The modifications to SEMCAP to incorporate arc discharges are minimal
 

in comparison with the effort required to implement it originally. What is
 

required is to characterize each arc discharge location with a voltage and
 
current, or as an E- or B-field source. This is indicated in Figure 5-1 in
 

dotted lines.
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Figure 5-1. SEMCAP Overview
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5.2 	 BEST ESTIMATE ARC DISCHARGE SOURCE MODELS
 

Best estimate arc discharge parameters have been developed in the
 

previous section on arc discharge amplitudes and waveforms for the high 

grounding impedance situation. The remaining task here is to define the
 

source models as they are incorporated into the EMI coupling analysis which
 

was performed using the SEMCAP code.
 

The two elements of the P78-2 spacecraft selected to be modeled were
 

the large flat doughnut-shaped dielectric area at the aft end, and one of
 

the short booms. We assumed that the aft dielectric was 0.87 m2 of 2-mul
 

Kapton and that the boom was to 5 cm in diameter and 2 meters long, also
 

covered with 2-mil Kapton. Both dielectrics are assumed to be coated with
 

vacuum deposited aluminum (VDA) which is electrically grounded to struc­
ture. The breakdown voltage was assumed to be 5000 volts corresponding to
 

an electric field of 106 V/cm (as was assumed in the analysis).
 

5.2.1 	 Summary of Arc Discharge Source Models
 

The large dielectric surface area was modeled as six separate sources
 

1) Equivalent fat wire for localized inductive and capacitive
 
coupling
 

2) Arc to cable shield
 

3) 	Conductive (blowout) replacement current
 

4) 	Capacitive replacement current
 

5) H-Fields due to blowout current
 

6) Transient (<1O ns) currents and voltages. 

The sixth source, the transients, comprise a subset of sources for
 

each of the preceding five sources. The parameters are listed in Table 5-1
 

for both the large area arcing source and the boom. Since the boom is
 

already in a wire-like configuration an equivalent fat wire description was
 

not necessary for modeling localized coupling effects. The equivalent fat
 

wire and boom configuration are shown in Figure 5-2 and Figure 5-3. Each
 

of the source models are discussed in the following sections.
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Table 5-1. Arc Discharge Source Models for SEMCAP
 

Peak Peak Pulse Pulse 
Voltage Current Risetime Width 

Large Area Di-sGharge Models (volts) (amperes) (6s) (ns) 

Equivalent Fat Wire 2500 466 2220 4440 

Transients 2500 4.20 5 10 

Arc-to-Cable Shield 37.2 20.9 2220 4440 

Transients 168 0.80 5 10 

Conductive Replacement Current - 11.3 20 40 

Transients - 10.5 5 10 

Capacitive Replacement Current - 0.33 2220 4440 

Transients - 0.058 5 10 

Blowout Current H-Fields* 1.80 amp/m at 1 meter 20 40 

Transients* 1.67 amp/m at 1 meter 5 10 

Boom Discharge Models 

Localized Coupling 2500 78.5 374 9520 

Transients 2500 4.20 5 10 

Arc-to-Cable Shield 0.48 3.39 374 9520 

Transients 168 0.80 5 10 

Conductive Replacement Current - 11.3 20 40 

Transients - 10.5 5 10 

Capacitive Replacement Current - 0.12 374 9520 

Transients - 0.058 5 10 

Blowout Current H-Fields* 1.80 amp/m at 1 meter 20 40 

Transients* 1.67 amp/m at 1 meter 5 10 

H-Field drops off as 1/r 
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FAT WIRE ra RW = (AREA)Y/2= 0.466 

9,= (AREA))t = 0.933 m (LENGTH) 
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Figure 5-2. Equivalent Fat Wire Geometry for Localized Effects 
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Figure 5-3. Boom Geometry
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5.2.2 Equivalent Fat Wire Model
 

For nearby or localized capacitive and inductive effects the large
 
area source was modeled as an equivalent fat wire as shown in Figure 5-2.
 

The radius of the wire, r is taken as:
 

= 
r = RW1 (Area)1/2/2 = 0.466 meter,
 

and its length, L, as:
 

2 = (Area)1/2 = 0.933 meter.
 

The height, h, of this fat wire above the ground plane is twice its radius­

h S AW = 0.933 meter
 

A victim wire isassumed running parallel to the fat wire at a height, AW2,
 
of 1 inch or 0.025 meter at a distance, DW, equal to r or 0.466 meter.
 

For localized capacitive coupling purposes, the voltage-time history
 
must be specified:
 

peak voltage = 2500 volts = Vp
 

rise time = s/(2 Vb) = 2.22 -10-6 second = tr
 

-
pulsewidth = 2 tr = 4.44 • 10 6 second.
 

Since one-half of the initial stored charge remains after the
 
discharge, Vp was taken to be one-half of the 5000 volts breakdown voltage.
 
The risetime, tr, and pulsewidth, tp, are computed from the brushfire
 

propagation velocity, vb, of 2.1 • 107 cm/s. Side, s, istaken to be the
 
square root of the area or 93.3 cm. For localized inductive coupling
 
purposes, the peak current, Ip,must be specified.
 

3 =
Ip= ( /2) s is 466 amperes. 

Ip isthe flashover surface current density, Js of 3.18 amp/cm multiplied
 
by the equivalent arcuate length, (7r/2) - s.
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5.2.3 Arc-to-Shield Model
 

The second arc discharge model, the arc-to-shield, isthe most likely
 
source of hazardous EMI levels. We assume that the entire flashover dis­
charge current flows to the shield of a cable. Inorder to characterize
 

this type of discharge, itis first necessary to determine where on the
 
cable the greatest coupling would occur. An arc striking at the middle,
 
because of the even split of currents going both ways to the shield grounds
 
at either end, causes no net induced voltage. For a finite shield termi­
nating impedance, Figure 5-4 shows that the unwanted induced voltage
 
increases linearly from zero at the center to a maximum at either end. For
 
our analysis we have assumed the shield terminating impedance, Zo, to have
 
a resistance of 2.5 milliohms and an inductance of 0.1 microhenry.
 

To model the discharge to the cable shield, for SEMCAP, it isfirst
 
necessary to compute the shield current and voltage. Inorder to do this,
 
an equivalent arc resistance, Ra, and inductance, Las must be characterized
 
from the available data which applies only to the flashover arc current.
 
After Ra and La are defined, then the shield current, Is,must be computed
 
for the actual configuration. The arc-to-shield configuration and the two
 

circuits that must be solved are shown inFigure 5-5.
 

The analysis is simplified by assuming that the arc discharge current
 
isthe sum of two exponentials:
 

- t / t p - t / t r)l(t) = I o (e - e 

where t and tr are the current pulse width and resistance respectively.
 
The maximum or peak current for the waveform defined by this equation is:
 

Ipeak = 10 • (-y) oyY/(l-y) where y =tr/tp. 

For tr equal to one-half tp, y is 0.5 and Ipeak is one-fourth of I . Theo
 

equivalent arc resistance, Ra, and inductance, La, obtained by solving the
 

circuit of Figure 5-5B are
 

Ra - tp = 14.72 ohms, La = =- 21.8 1h 
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S ~ £4 

=
I= I + 12, 12/Il (Z1 + ZO)/(Z 2 + zo) 

Z =Z + Z2, Z2/Zl = (k - s)/s.
 

U(s) = UNWANTED SIGNAL = 12(z - s) - I1 s 

= '(2I:+Z) 	(z - 2s); 

" U(s) ismaximum for s = 0 and s Z., 

and U(s) = 0 for s = Z/2. Also, I is 

maximum at s = 0 or s = Z. 

Figure 5-4. 	 Demonstration that Unwanted Induced Signals are Maximum
 
for an Arc Striking at the Ends of a Cable Shield
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Figure 5-5. Configuration Circuits to be Solved to Determine
 
Arc-to-Shield Currents and Voltages
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The numerical values for Ra and La were obtained using the large area
 

arcing source parameters. The point here is that the arc impedance is much
 

greater than the cable shield termination impedance shown in-Figure 55C.
 

The solution of the complete circuit of Figure 5-5C is a considerably
 

more time consuming task involving a third degree equation. By assuming
 

that the voltage across the shield terminating impedance is due to the
 

entire discharge current flowing through it, and then applying Thevenin's
 

theorem, the current through the cable shield, Is,may be computed in a
 

fairly straightforward manner. Table 5-2 compares the results of the
 

approximate calculation and the complete solution and shows that the former
 

is within 10 percent of the latter.
 

Table 5-2. Comparison of Complete Solution Versus Approximate
 

Solution for Arc-to-Cable SEMCAP Parameters
 

Common Parameters 

V = 2200 volts
 

C = 1.6 * 10-8 farads, 

t = 270 ns,P 

tr = 27 ns 

La = 0.446 ph, 

Ra = 18.56 ohms,
 

Iarc = 100.94 amperes
 

Complete Solution Approximate Solution Difference 

Peak Shield 4.323 amperes 4.694 amperes +8.6% 
Current, Is 
Peak Shield 390.3 volts 396.0 volts +1.5% 

Voltage, Vs 

Pulse Width 266.2 ns 263.3 ns -1.1% 

Pulse Risetime 30.86 ns 33.77 ns -9.4%
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5.2.4 Conductive Replacement Current Model
 

,This source models the repJacement currents which flow as a result of 

the electron blowout process. As derived in the analysis of the high 

grounding impedance configuration, the electron current is limited to
 

11.3 amperes and is cutoff in 51.1 ns by the rise in spacecraft potential.
 

These values are determined by the size of the spacecraft, the DSP. The
 
values of the pulse width and risetime, 40 ns and 20 ns, were taken as
 

80 percent and 40 percent, respectively, of the cutoff time. Since blowout
 

occurs only at the beginning of the discharge, the parameters are the same
 

for the large area and boom discharge models.
 

5.2.5 Capacitive Replacement Current Model
 

This model accounts for the replacement currents due to the displace­
ment or Cs(dV/dt) currents that flow due to the change of surface potential
 

of the arcing source. The original concepts of the G' factor arose from
 

this model, and the fact that it did not account for the electron blowout
 

currents seemed to be a deficiency in the model. As may be noted in Table
 

5-1, the conductive replacement current sources, while larger than the
 
displacement current sources, are not in the range of hundreds of amperes,
 

as was initially feared. Instead, they are in the order of 10 amperes,
 

independent of the size of the source, and are over in less than 100 ns.
 

The di'splacement currents are calculated on the basis of the capaci­
tance to space, Cs, of the source and the rise time, t , of the voltage r 
change. C is estimated by calculating the radius, R, of an equivalent
s 
sphere having the same area as the source, and then assuming that C isS 
that of the sphere
 

5
R = [A/41] 0 . , C = 4 oR. 

Although we now know that the entire surface does not change its poential
 

in unison, but rather in a brushfire mode, tr was used as the time in which
 

the voltage change occurred in order to give a reasonable average time.
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5.2.6 H-Field Model of Blowout Current
 

This model accounts for the H-fields generated by the blowout electron 

curreht. The Biot-Savart relation, 

H = I/(27r), 

was used, implying that the current flows in an infinitely long wire.
 

This field drops off inversely as the distance from the source. As noted
 
for the conductive replacement current model, the blowout current is
 
11.3 amperes independent of the size of the source. Its waveform, defined
 
by tr and tp, is also independent of the size of the source.
 

5.2.7 Transient Model
 

The transient arc discharge models account for the short duration
 
(<10 ns) spikes that were observed in many of the experimental study tests.
 
These have been included as an additional source to each of the five types
 
of sources discussed above. The pulse width was assumed to be 10 ns and
 
the rise time, 5 ns. The voltage was assumed to be that of the maximum
 

change, 2500 volts. The current was calculated on the basis of the 10 ns
 
duration and the brushfire propagation velocity, 2.3 * 107 cm/sec, which 

gives the radius of discharged circular area of 0.23 cm. The circumference
 
of this circle times the surface current density, Js' of 3.18 amp/cm gives
 

a flashover current, I, of
 

=
I = 2rr * Js 4.2 amperes. 

The transient arc-to-shield models were computed using the same double 
exponential approximation as before. Because of the short duration, the 
currents are small but the inductive voltages are larger than for the 
longer pulses. Thetransient blowout current, since it is not limited by 
spacecraft potential, was calculated by multiplying the flashover current 
by the experimentally determined G' factor of 2.5 to give-

Iblowout = G' * Is = 10.5 amperes. 

This current also applies to the transient H-field model.
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5.2.8 Boom Arc Discharge Source Models
 

The boom arc discharge source models were computed in a manner similar
 

to that for the large area sources. As stated previously, the equivalent
 

fat wire model for computing localized capacitive and inductive coupling
 

effects was not necessary because its configuration was already that of a
 

fat wire. As shown in Figure 5-3, the victim cable was taken to be 1 cm
 

off of its surface or 3.5 cm between centers. The boom was assumed to be
 

5 cm in diameter, d, and 2 meters, in length, L.
 

The principal difference from the large area source was in the
 

rise time and pulsewzdth:
 

tr = rd/(2vb) = 374 ns, tp = L/vb = 9.52 Ps.
 

Their ratio, y, of 0.0393 is considerably smaller than the value of 0.5 for
 

the large area source.
 

5.3 SEMCAP RESULTS
 

Table 5-3 summarizes the results of the SEMCAP analysis. The dB
 

margins of immunity are given in two columns, one for the circuits and a
 
separate column for the housekeeping telemetry lines. The results show
 

that the DSP satellite circuits have safety margins ranging from +5 dB to
 
+139 dB. The housekeeping telemetry lines, which show margins of -44 dB to
 

+58 dB, have a number of receptors which have negative margins of immunity.
 

The housekeeping telemetry lines tend to show smaller margins of immunity
 

on DSP because they are generally unshielded in order to save weight. On
 

the other hand, the probability that voltage spikes would be detected on
 

these lines is extremely low because of the low-duty cycle at which they
 

are telemetered. Housekeeping telemetry lines have either 5-volt analog or
 

bilevel signals. Even if they were detected, a single anomalous reading
 

would be ignored.
 

The main concern would be that a sufficiently large spike could damage
 

an interface circuit. The telemetry line with the highest negative margin
 

of immunity, -44 dB happens to be a temperature line with a threshold of
 

0.1 volt. The -44 dB implies a voltage of 15.7 for (10 ns) which would not
 

damage the telemetry interface. In general, SEMCAP has a +9 dB
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Table 5-3. The Lowest Safety Margin (dB) of the Satellite versus
 
Different Types of Arc Sources and Transients (at
 
Large Area) 

Source Circuits Telemetry Lines 

Localized Field Coupling 20 0 
Transient 23 -31 

Arc to Cable Shields 5 -2 
Transient 21 -21 

Conductive Replacement Current 41 -18 
Transient 42 -22 

Capacitive Replacement Current 72 43 
Transient 87 23 

Blowout Current H-Fields 44 12 
Transient 62 11 

The 	Lowest Safety Margin (dB) of the Satellite Versus Different
 

Types of Arc Sources and Transients (at Boom)
 

Source 	 Circuits Telemetry Lines
 

Localized Field Cdupling 19 -13
 
Transient 
 22 	 -25
 

Arc 	to Cable Shields 14 -13
 
Transient 19 
 -44
 

Conductive Replacement Current 40 -18
 
Transient 43 
 -22
 

Capacitive Replacement Current 80 38
 
Transient 87 23
 

Blowout Current H-Fields 51 8
 
Transient 59 
 9
 

statistically predicted error, and tests have shown that SEMCAP usually
 
underpredicts the safety margin, i.e., a predicted safety margin of +40 dB
 

ismore likely to be 49 dB.
 

The lowest margins of immunity, aside from the housekeeping telemetry
 
lines, were due to the arc-to-cable shield and the localized field coupling
 
sources. The localized field coupling sources were assumed to fall off in
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-
intensity as r 2 for worst-case purposes. For near-field purposes, an
 

inverse cube falloff would have been more appropriate. A 10 dB bulkhead
 

attenuation was assumed for the shielding of the victim circuits by the
 

structural aluminum sheets. This was probably too pessimistic, and 20 dB
 

would be a better estimate. The low margins of immunity to the arc-to­

shield sources is not surprising because of the large currents delivered
 

directly to the shield. The lesson to be learned here is that cabling
 

should be routed away from dielectric surfaces which are likely to arc. If
 

this is unavoidable, then the lines should be filtered heavily to withstand
 

the pulses that are likely to occur.
 

The margins of immunity to the replacement current sources for blow­

out, about 40 dB, are certainly inthe nonhazardous regions. As noted
 

earlier, this is due to the early cut off of the blowout process by the
 

positive spacecraft potential, which limited the amplitude as well as the
 

duration. As expected, the capacitive replacement current sources had a
 

smaller effect - by a factor of about 40 dB. The transient sources in 

general had an average of 7 dB greater immunity, mainly because of their
 

shorter duration.
 

5.4 COMPARISON OF SEMCAP STUDY AND P78-2 IN-FLIGHT RESULTS
 

As noted prevuusiy the resulL ur the SEMCAP study performed here are
 

not directly applicable to the P78-2 spacecraft and its performance in
 

orbit. For the purpose of this task the following in-flight operational
 

data are pertinent:
 

The failure of the SC2-1 and SC2-2 plasma potential sensors
 
occurred during electron gun operations on March 30, 1979.
 

Only a handful of transient arc discharge waveforms have been
 
identified and recorded. There is no apparent consistency
 
between the few waveforms available.
 

* A large number of transient pulse monitor (TPM) pulses have
 
been recorded.
 

* 	 No indication of the location of the arc discharges is
 

available.
 

The failure of the SC2 plasma voltage probes has been ascribed to arc
 

discharges occurring on the booms on which they were mounted. The initial
 

analysis presented became hung up in an inconsistency which required that
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any 	arc discharge pulse have a time constant longer than 10 ps,i.e., the
 

presence of a 10 ka, 0.001 pf RC filter. The 9.52 us pulse duration esti­

mated for the boom discharge propagation time approaches the required
 

duration. However, a much simpler explanation is that the 10 kn resistor,
 

a 1/4-watt unit, probably broke down with the several kV associated with
 

the discharge. This allowed instant access for the discharge into the
 

probe circuitry.
 

The small number of arc discharge transients recorded on the P78-2
 

spacecraft is consistent with the observations made in the Task 1 analysis:
 

* 	 The Faraday cage design should shield the interior portions of
 
the spacecraft from the effects of arc discharges.
 

* 	 No large area arcing should occur because of the extensive use
 
of conducting surfaces. The large area painted surface should
 
not arc because of its low resistivity.
 

* 	 The small areas of dielectric samples should not arc easily
 
because of the careful design to minimize rough edges.
 

In spite of the few transient waveforms recorded, the TPM did record a
 

large number of pulses, which, according to the experimenter, were related
 

to environmentally induced arc discharges. The problem seems to be to
 

implement an automated data analysis system which eliminates pulses from
 

known onboard sources such as mode changes and equipment turn-on and turn­

offs. The TPM sensitivity is such that these internal events are easily
 

detected. The inability to identify the location of the discharges makes a
 

quantitative evaluation of the data impossible. The comparison with the
 

present SEMCAP study results is also difficult except to state that both
 

the predictions and the in-flight results agree in that no serious opera­

tional problems have arisen except for the failure of the two SC2 probes.
 

The implementation of the SEMCAP analysis reported here was performed
 

by David Ying. His understanding of and familiarity with the SEMCAP code
 

permitted the work to be done efficiently with a minimal number of false
 

starts.
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APPENDIX 1 - PULSED PLASMA THRUSTER DATA
 

The solid propellant pulsed plasma thruster (PPT), which uses teflon
 

as the fuel, has a history of development and orbital experience of more
 

than 10 years.* During this period an extensive body of information
 

regarding the operating features of this type of device has been generated,
 

some of which is applicable to the modeling of dielectric arc discharges
 

due to spacecraft charging.
 

Basically, the solid teflon PPT consist of a high voltage supply
 

(1.3 to 3 kV) and energy, storage capacitor (2 to 200 p1f) and a spark plug
 

ignition system. Figure A-1 is a schematic drawing of the PPT taken from
 

the reference by Vondra, Thomasson and Solbes. The spark ignition
 

initiates a discharge across the surface of the solid teflon which burns
 

off approximazely 400 A of the dielectric material. A combination of v x
 

forces, 9 being due to the discharge current, and gas dynamic forces
 

accelerate the ablated ionized and neutral particles out of the thruster
 

nozzle at high speed (3000 to 40,000 m/s) providing the desired impulse or
 

thrust (4mocropounds to I millipound). PPT parameters are shown in
 

Table A-I.
 

As compared to the dielectric surface discharge, there are a number of
 

features which are different on the PPT­

* 	The energy, stored in a physical capacitor, does not require a
 
propagation mechanism as does a dielectric surface discharge of
 
the kind that is of concern for spacecraft charging effects.
 

* 	The enegy expended per unit area is much3great r, 0.10 to
 
23 J/cm as compared to approximately 10 J/cm for spacecraft
 
charging types of discharges.
 

(1)R.J. Vondra, K. Thomasson and A. Solbes, "Analysis of Solid Teflon
 
Pulsed Plasma Thruster," J. Spacecraft and Rockets Vol. 7 No. 12 December,
 
1970.
 

(2)D.J. Palumbo, W.J. Guman and M. Begun, "Pulsed Plasma Propulsion
 
Technology," AFRPL-TR-74-SO, July, 1974.
 

(3)R.J. Vondra, "US Air Force Programs in Electric Propulsion" Paper No.
 
79-212 Princeton AIAA/DGLR 14th International Electric Propulsion
 
Conference, October 30 to November 1, 1979.
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Teflon Solid Propellant 

• Igniter Plug 

t'! Pla'sma 

• ' Exhaust 

Fuel-Retaining Shoulder 

Capacitor 

Figure A-1. Solid Fuel Microthruster (Schematic)
 

Table A-I. Comparison of 4 Micropound and 1 Millipound PPT EMI Parameters
 

1 Millipound PPT 4 Micropound PPT
 

Imax, (A) 120,000 5,800
 

Capacitor Voltage (V) 2,740 1,360
 

Capacitance (Of) 200 2.0
 

Energy (J) 750 1.85
 

Current Pulsewidth (Ps) 12 1.0
 

Current Risetime (us) 2.0 
 0.17
 

Length, P, of Current Loop (m) 0.04 
 0.006
 

Height, h, of Current Loop (m) 0.083 0.03
 

*Microwave Power Density at 1 m (mW/m2/GHz) 325 25
 

Computed from S = 6.859.10 -14 V3 .687 mW/m2/MHz at 1 m (from Reference 2)
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* 	The amount of surface material ablated per discharge is
 

correspondingly greater.
 

Taking the 4 micropound PPT for example, the data available are shown in
 

Table A-2.
 

Table A-2. Micropound PPT Data
 

Voltage on capacitor 1,360 V
 

Capacitance 2.0 pF
 

Stored energy, Ws 1.85 J
 

Electrical circuit losses 0.592 a (32 percent of WS)
 
Energy into plasma 1.26 J (68 percent of WS)
 

Kinetic energy 0.555 1 (3percent of WS)
 

Electrode loss, ionization,
 
plasma heating and
 
electromagnetic radiation 1.20 J (65 percent of WS)
 

Solid teflon surface area 0.6 x 3 cm = 1.8 cm2
 

Energy density in plasma 0.668 J/cm2
 

Mass ablated/pulse 10-5 gram/pulse
 

Mass ablated/J 8.32 .10-6 gram/J. 10-51(0.65.1.85)
 

Assuming a density of 1.3 grams/cc for the dielectric material, the
 

thickness of material, d, ablated per J is
 

d = 8.32.10-6/1.3 - 6.4-10-6 cm/(J/cm2) = 640 A/(J/cm2 )
 

extrapolating this value to our spacecraft charging problem, the stored
 

energy is
 

Ws = 1 CV2 = I .52.10-2. 25.106 = 6.5.10 - 4 J/cmz . 
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Assuming that 'half of the stored charge, 25 percent of Ws, remains after
 

the discharge, the energy input into the plasma is
 

Wp = 0.75 Ws = 4.88-10
-4 J/cm2
 

pI
 

Thus, the thickness, d, of dielectric ablated per discharge is 

d = 6.410-6.4.88.10 -4 = 3.1010-9 cm = 0.31 A. 

This thickness ablated is smaller than the 427A ablated on the PPT. 
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APPENDIX 2 - DIELECTRIC HEATING BY A SURFACE PLASMA
 

This appendix considers the heating of the dielectric by the hot
 

plasma at its surface. The effects of heating are:
 

* 	 Power loss from the cooling of the plasma 

* 	 Heat input energy loss to the dielectric and the rise of 
dielectric temperature 

a Ablation of dielectric surface material and absorbed gas 

molecules. 

The problem considered is that of a semi-infinite dielectric slab 

whose surface is exposed to a step-function increase of temperature. 
Typical dielectric parameters assumed are shown in Table B-I. 

Table B-I. Typical Dielectric Thermal Properties*
 

Typical Dielectric Copper
 

Density 	 2 grams/cc 8.9 grams/cc
 

Specific heat 	 0.2 Cal/gram 0.092 Cal/gram
 

1
 
Thermal conductivity, -f 0.32 Cal/cm-s-3°K 0.96 Cal/cm-s-0 K
 

Thermal capacitance, C 0.4 Cal/cc 	 0.82 Cal/cc
 
Diffusion coefficient, D =-1 0.005 cm2/s 1.17 cm2/s
 

1 calorie = 4.187 J = 4.187 W/s
 

Table B-1 includes the thermal parameters for copper for comparison
 

with the typical dielectric. In contrast with electrical conductivity, the
 

ratio of thermal conductivity of a good conductor to a poor conductor, 480,
 

is not nearly as large. The thermal capacitance, comparable to the dielec­

tric constant in the electrical analogy, is similar to electrical capaci­

tance in that itdoes not vary greatly from material to meterial. 
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The applicable equations leading to the 1-dimensional diffusion equa­

tion are:
 

-aV aI aV-3=RI, -= C -,Ltgiving 

aV I a2V D 2V
 
T RC aX2 aX2
 

The above equations are written using equivalent electrical terms:
 

V (Voltage) Temperature (0K or 'C)
 

I (Current) Heat flux (Cal/cm2/s)
 

Q (Charge/cm) Heat/cm Cidt)
 

R (Resistance/cm) Thermal resistance/cm (V/I)
 

C (Capacitance/cm) Thermal capacitance/cm (Q/V)
 

The solution to the diffusion equation for a step-function change in
 

the temperature, Vo, at the surface of the dielectric for the boundary
 

condition, V(x,O=O) for X >0 at t=O, V(O,t) = V0 for all t is:
 

V(x,t) = V0 1-erf (.4Lj.5] 

where the error function,
 

erf x - 2 X ey2 dy, 

is a tabulated function. A more commonly tabulated function is the normal
 

probability integral, P(x), which is simply related to the error function:
 

Px) t ey 2 /2dy = erf ( 

erf(x) = P(J2x).
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Figure B-1 shows a plot of temperature versus time for a fixed
 

distance, x, into the surface of the dielectric. Because of the error
 

function dependence on x2/4Dt, the shape of the curve remains the same if
 
2


the time scale were varied in proportion to x . At any x, the temperature
 

eventually approaches the surface temperature, T0 . Figure B-2 shows a plot
 

of the falloff of temperature with distance into the dielectric surface at
 

a fixed instant of time. The temperature drops off to 50 percent of its
 

surface value at x/x0 equal to about 0.5:
 

0.5 for T(x) = 0.50T0 ; x = 0.5x o = 0.5 4Dt.
 
xo
 

-
For t = 100 ns or 10 7 second, using the value of D of 0.005 cm2/s, the
 

distance, x, at which the temperature is 50 percent of To , is 2.2.10 -5 cm
 

or 0.22 micron. By comparison, if the material were a good conductor such
 

as copper (D = 1.17 cm2 /s), the corresponding distance, xo, is 3.4 microns
 

for a change in temperature equal to 50 percent of To at 100 ns. The
 

distance at which the temperature is 90 percent of the surface temperaure
 

(t= 100 ns) is about an order of magnitude less, or 0.054 microns for the
 

dielectric as compared to 0.82 micron for copper. The point to note here
 

is that the depth of the dielectric which gets heated to the vaporization
 

regime of temperatures is somewhat less than the approximately 1 micron
 

penetration depth of 20 keV electrons.
 

The rate of heat input to the dielectric surface is the "current," I,
 

at x equal to zero. The general expression for I is obtained by partial
 

differentiation of the expression for V (x,t)­

= -L-R) X ) Vo tO.5eX 2/(4Dt),Rx t(
(xt) t) - 1 (0.5 
V ­10.52 

I (0,t) 105 Vo t- (cal/cm2/s)
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1.0
 

V0 = l-erf(T) 

.8 
C 

0 

O 6 

4 

2 

.05 1.0 	 1 5 2.0 2.5
 

O= t/T= 4D t
 

Figure B-i. 	 Diffusion Equation Solution- Temperature versus Time*
 
for a Fixed Distance**
 

exI means 	 "multiply abscissa by 10" 

exi means: "use abscissa directly"
 
** 

apply if the "time" scale varies as x 
2
2
The same curves 
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Figure B-2. Temperature versus Distance into Dielectric at 
of Time 

a Fixed Instant 
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The rate of heat input decreases as the inverse square root of time.
 

The total heat or energy input, W at any time, t, is
 

5 

= 8.38 (1 )0 5 "'-- 2W= Idt 

where the J equivalent of the calories has been incorporated. The total
 

energy input continually increases with time, as it must, to heat up the
 

semi-infinite dielectric slab. In 100 ns, using a V of 3000'K, the energy
 

input is 

8.38 (1 0.5*-0123/m 

= 8.38-0.5 ) 3000 - 0.002-10 -7/2 = 0.127 J/cm
2 

r"0.005 

Putting in the thermal parameters for copper for comparison, the energy
 

input for 100 ns is 3.98 J/cm2 which is 31.4 times larger than for the
 

dielectric material. This is because of the much larger thermal conduc­

tivity of copper as well as its somewhat larger thermal capacitance. The
 
energy input into the dielectric heats up a thinner surface layer, a frac­

tion of a micron, in 100 ns.
 

The energy, W., stored in the dielectric surface per unit area is
 

Ws = -CV
2
 

2
 

where C is the capacitance per unit area:
 

C = C0r /d.
 

For a 2 mil thickness, d, and a dielectric constant, er of 3, C is 52
 
2 6pf/cm . Taking a breakdown field strength of 10 V/cm, the breakdown
 

voltage would be 5 kV, giving a stored energy of
 

1L .

2 L .5210-120.25.106 6.510-4 J/cm22
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Considering the experimentally observed fact that about half of the
 

stored charge remains on the dielectric surface after a discharge, the
 

energy dissipated in the area, Wa, is about 3/4 of Ws
 

.
Wa = 4.9.10 -4 J/cm 2


Comparing this energy with the 0.13 J/cm2 value calculated for the energy
 

absorbed in 10-7 second, it is smaller by a factor of 260. This means that
 

the postulated temperature rise of 30000K was too large by this factor, and
 

therefore should have been 11.5 0K. Even this temperature increment is too
 
large if some of the available energy is to be dissipated in ionizing the
 

ablated surface material.
 

Since the results of the foregoing analysis are so much of what was
 

expected, we now consider a different set of boundary conditions:
 

V (x,O) = 0 for x>O
 

V (Ot)= V0 for O<t<t0
 

V (O,t) = 0 for t>t o
 

The forcing function is now a rectangular impulse of amplitude Vo (or To)
 

and duration, to, rather than a step function. The solution to the
 

1-dimensional diffusion equation is
 

V (x,t) = Vo ( erf 4x/[4D(t-to)] 0 " 5 } -erf [x/(4Dt)0.5]) 

The above solution applies for t>t o, only, and simplifies to the solution
 

for the step-function case considered previously, for t<t o in which the
 

first term is unity. The temperature profiles as functions of time at two
0 0
 

fixed depths, x, of 50A and 1OA are shown in Figure B-3 for a to of 0.3 ns
 

and 0.5 ns. At these depths, the peak temperature gets to 60 to 80 percent
 

of the surface temperature. At very small depths of a few angstroms, the
 

temperature profile follows the forcing function nearly exactly. Figure
 

B-4 shows the maximum temperature as a function of depth for the 0.3 ns
 

pulse.
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Figure B-3. Temperature-Time Profiles for a Rectangular Forcing Function
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Figure B-4. Maximum Temperature Versus Depth for a 0.3 ns 
Wide Rectangular Temperature Pulse 
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The rate of heat flow is obtained as before by partial differentiation
 

of V(x,t) with respect to x at the surface,
 

5I (,t)I (O~)vD R t - for o<t<to, 

-1 V0 [(t-to) -
0 

5 - tO'5]for t>to. 

For t>t o heat flows back to the source and thus has a negative sign. The
 

integral heat flux W is
 

V
 
W t0 5 for t<to;
 

2 Vo [tos (tt0).5] for t>t o. 

For t>t o the above equations reduce to
 

W­ 1Vo Ito/(t0.5 ] 

The input heat energy is a maximum at t equal to to, and gets smaller as t
 

increases beyond to . This is because some of the energy is fed back to the
 

source after to• For t equal to 0.3 ns, the example of Figure B-3, the
 

energy input is
 

w =W 2-4.19 3000-0.002. (3.10-10)0.5 = 6.95*10 -3 J/cm
2 

vPO.O05 
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At t equal to 100 ns, however,
 

-
W = 2-6.95-10 . = 4.17.10 J/cm2 
100 

Compared to the available stored energy of 6.5/10 -4 J/cm or the arc energy
 
of 4 .9.10 -4 J/cm2 , the heat input energy is in the right "ballpark."
 

Figure B-5 summarizes the results of the computations using the
 

1-dimensional diffusion equation, and Figure B-6 summarizes the conclusions
 

for the analysis. An extensive body of work on the solid propellant
 
(Teflon) pulsed plasma thruster was found in the literature. An empirical
 

relation is presented between mass ablated per unit energy in the plasma
 

discharge:
 

Mass ablated = 8.32-10 -6 grams/J,
 

This relation is used in the arc discharge analysis of Task 1.
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* Stored energy - 6.5.10 -4 J/cm2 (52 pf/cm 2, 5 kV breakdown)
 

9 Arc energy - 4.910- J/cm2 "(half of the stored charge remains)
 

* 	 Step Function 3000'K Surface Temperature Rise 

- 0.13 J/cm2 absorbed in 100 ns 

- 0.22 micron depth is heated to 15000K in 100 ns 

* 	 Rectangular Forcing Function 0.3 ns wide, 30000K
 

- 6.95.10 -3 J/cm2 absorbed at 0.3 ns
 

- 4.2-10 -4 d/cm2 net absorbed at 100 ns
 

- Maximum temperature at 100'A depth is 1700'K
 

- Maximum temperature at 60'A depth is 23000K.
 

Figure B-5. Summary of Heat Flow Energy Calculation
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* 	The available stored energy is insufficient, on an uniform per
 
unit area basis, to account for the heat absorbed by the
 
dielectric.
 

* 	Depths into the dielectric surface of the order of a fraction of a
 
micron are heayed to temperatures comparable to that at the
 
surface in 10 second.
 

* 	A more comprehensive analysis is required involving the latent
 
heat of vaporization of the dielectric material and the transport
 
of heat from the plasma to the surface of the dielectric.
 
Empirical data on ablation is available from pulsed plasma
 
thruster (PPT) studies
 

Mass Ablated = 8.32.10
-6 (grams/cm2)/(J/cm2)
 

Ablated material is approximately 10 percent ionized
 

* 	 The ablation process provides the materials for the off-surface
 
plasma, and at the same time, modifies the conduction heat loss
 
processes by cooling the dielectric surface so that it does not
 
"soak up" excessive amounts of the available energy. The PPT
 
technology data indicates that only a small fraction of the arc
 
energy goes into ablation. The major portion goes into heating,
 
ionzing and propelling of the plasma.
 

Figure B-6. Conclusions from the Heat Flow Analysis
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APPENDIX 3. EFFECTS OF MAGNETIC FORCES ON G'
 

The trajectory of the arc discharge surface current density, Js, is
 

calculated here assuming that the only force of consequence isthe magnetic
 

force, v x B. The magnetic field, B, is that due to the return current,
 

also Js, flowing in the substrate, and may be obtained by applying Ampere's
 

Law
 

0.4 iTJ 

H'dz = 0.4 t I,B = H - 0.2 v J s2 

where Js is in A/cm. It should be noted that B is independent of the
 

height of the arc discharge current sheet above the return current sheet.
 

For the maximum Js' 3.18 A, B is 2.0 gauss at x equal to Z. This is
 

because we are considering the 1-dimensional case in which the current is
 

flowing in the x-direction in an infinitely wide sheet (inthe
 

y-direction).
 

The force per cm of width, w, on a segment of length, dx, in MKS units
 

is
 

dF = BJ s dx
 

The force, F, is in the z direction, away from the surface, as shown in
 

Figure C-1.
 

Equating this to the mass times acceleration gives:
 

dF = BJsdx = M ;z dx (MKS) 

where M is the mass per unit area. Converting to cgs units gives
 

2 

B (gauss) •10-4 .Js (A/cm)•10 = M (grams/cm2 * 10 * vz (cm/s

2 ).102 

BJs2 
 2
 
vOM 0.02fJ /M (cm/s
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Figure C-1. Magnetic Force Js and the Coordinate System
 

Since we are evaluating the displacement of the arc discharge current sheet
 
for the region inwhich the brushfire wavefront is propagating with velo­

city, vb, the time derivative is replaced with the space derivative:
 

dvi dvz
 
-- v ­
dt bdx
 

The mass and current densities, from our simplified analysis, are
 

assumed to be given by­

10 M = gCEb 2 x2/2 + M0 , is = CvbEbx.
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The factor of 10 in the expression for M is to account for the fact
 

that only 10 percent of the ablated mass is ionized according to pulsed
 

plasma thruster technology data. The differential equation and its solu­

tion for v become
z 

2
dvz O.4xCvb x


dx g x2 + 2Mo/CEb2
 

2 

! b xi a •tan- I where a = o 

vz 

b2
 S 1agCE 


Using the space-time equivalence again.
 

dz dz 0.4C v x a tan(1
dt 
 dx
 

-0.4rCax tan + a in 1 +4) 
_____ ­q 2 

a 
12L in 

Figure C-2(a) shows v and z for x = 0 to x = t = 0.25 cm, and
z 
= 
and z for x = 0 to x 20 cm. For Figure 6b abla-
Figure C-2(b) shows vz 


tion was assumed to have ceased and therefore J and M remain constant at
 

their values at x = 9, 3.18 amp/cm, and 1.3510 9 grams/cm2 respectively.
 

At x = Z, the end of the voltage gradient region, the distance off of
 

cm. Even at x = 20 cm, v is only
the surface, z, is only 2.45#10 -7 


-3
3,850 cm/s, and z is only 1.5710 cm, which is only 63 percent of the
 

assumed plasma thickness, d, of 2.5-10 -3 cm.
 

Because of these small z and v values, it is unlikely that v x B
z 

forces contribute appreciably to G', the ratio of blowoff to flashover arc
 

discharge currents.
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APPENDIX 4
 

BRUSHFIRE ARC DISCHARGE MODEL*
 

G. T. Inouye
 
TRW Defense and Space Systems Group, Redondo Beach, California
 

t 

ABSTRACT
 

A 1-dimensional arc discharge model incorporating a brushfire-type
 

propagation of a discharge wavefront has been investigated. A set of equations,
 

somewhat similar to those leading to the diffusion equation, has been developed
 

which includes electrical, thermal, and plasma parameters. The solutions of
 

these equations are shown, under simplifying assumptions, to be consistent with
 

a propagating brushfire wavefront. Voltage, current, plasma density, tempera­

ture, and resistivity profiles are obtained.
 

Mechanical, magnetic, and electrostatic forces are considered in evaluating
 

the flashover to blowout current ratio, G', for arc discharges with the brush­

fire parameters developed in the model. This ratio is an important factor in
 

determining the electromagnetic interference (EMI) impact of arc discharges on
 

spacecraft electrical subsystems. The conclusion of the analysis is that elec­

trostatic forces are much more important than magnetic forces. The magnitude of
 

the G' factor obtained, 58.5 percent, is within the range of those obtained by
 

,experimental means. Improvements in the analytical model as well as in the
 

experimental approach are recommended.
 

This work was supported under National Aeronautics and Space
 
Administration Contract NAS 3-21961.
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INTRODUCTION
 

The problem of characterizing dielectric surface arc discharges due to
 

spacecraft charging has been approached mainly by experimental means in the past
 

because of the lack of an analytical model. A number of recent papers have
 

presented analytical approaches to the problem. (1,2) The work presented here
 

is a continued development of the concept of a brushfire propagation model
 

developed by J. M. Sellen Jr. and the author.
(3'4)
 

From the viewpoint of the implications of arc dischrges on the immunity of
 

spacecraft to the EMI generated, the question of where the arc discharge cur­

rents flow is a critical factor. This problem has been formulated by defining a
 

factor, G', which is defined as the ratio of the blowout to flashover currents.
 

The flashover component is viewed as that which flows essentially from the
 

dielectric surface through a breakdown region, perhaps an edge with high elec­

tric fielos, directly back to the metallized backing of the dielectric surface.
 

Flashover currents, because their geometrical extent is limited, are not
 

expected to be a major source of spacecraft EMI. Blowout currents, on the other
 

hand, may have a large impact on electrical subsystems because they result in
 

replacement currents flowing through the spacecraft structure which must be of a
 

magnitude equal to the blown off electron current. The density of replacement
 

current flowing in the spacecraft structure is highly dependent on the location
 

of the arcing source and on the particular configuration of the spacecraft. An
 

arc on a boom mounted object, for example, may result in boom currents which
 

couple very well into cabling along the boom. A spacecraft body-mounted source,
 

on the other hand, may be so well grounded and shielded that only currents very
 

close to the source are of sufficient magnitude to be of concern. Thus, the
 

determination of a representative value of G', and its dependence on the size of
 

the arcing source and any other parameters is of prime concern for spacecraft
 

design. Any analytical arc discharge model should provide results that are con­

sistent with experimental data. In addition, however, the work presented here
 

predicts facets of the experimental approach, such as the spatial distribution
 

of blowout currents and the dependence of G' on the sample grounding impedance,
 

which were not adequately considered previously.
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ARC 	DISCHARGE OVERVIEW
 

The brushfire propagation model addresses only the latter portion of the
 

evolutionary processes involved in an arc discharge. The scenario would be as
 

follows­

1. 	Differential chargeup by the environmental plasma and solar 
ultraviolet radiation 

2. Edge breakdown at a weak point
 

3., Surface breakdown
 

* 	 High field emission 

* 	 Avalanching processes 

4. 	Brushfire propagation
 

a Blowout and flashover currents; G'
 

* 	Dependence on spacecraft potential
 

* Limiting mechanisms on propagation.
 

The question of how external dielectric surfaces charge up differentially
 

with respect to the grounded underlying vacuum deposited aluminum (VDA) or to
 

structural metal is a complex problem which is not addressed here. Generally,
 

the most hazardous situation exists when a dielectric surface is charged nega­

tively with respect to the underlying metals by an excess of impinging electrons
 

over postive ions. This is because with a reverse polarity, i.e., when the
 

metals are negative and the dielectric surface is more positive because of
 

photoemission or secondary emission, a field emission/secondary electron ava­

lanche process tends to limit the magnitude of the differential potential to
 

below 1000 V.
 

For the purposes at hand of developing an arc discharge model, the chargeup
 

process is important inthat negative chargeup potentials of 5 kV to 20 kV have
 

been measured experimentally. The other important feature of chargeup for our
 

present purpose is that theory and experimental evidence (5) indicate that signi­

ficant densities of electrons may be buried at depths of the order of 1 micron
 

below the surface at the time of the discharge. This feature of buried elec­

tronic charge should also exist on dielectric surfaces which have no net surface
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charge because of photoemission or secondary emission. In fact, the buried
 

charge should be somewhat deeper and more dense since retarding potentials are
 
not present.
 

Dielectric breakdown due to high differential voltage stresses generally
 
occurs for electric fields inthe range of 105 to 106 V/cm at the edges of thin
 

(-50 microns or 0.005 cm) insulating sheets. Punch-through far from the edges
 
occurs with fields of the order of 107 V/cm. Inpractice, even punch-throughs
 
probably occur at weak points where slight imperfections or irregularities exist
 
inthe material. Edges consist of exaggerated irregularities because they are
 
created by slicing with a knife edge or by punching with stitching needles, and
 
thus, are subject to high field emission and avalanche breakdown ina manner
 
similar to that which will be discussed for surface breakdown. The similarity
 

to surface breakdowns probably goes even further in that this type of breakdown
 
is associated with surface and off-surface processes rather than those within
 

the bulk of the material.
 

The net effect of an edge breakdown isthat the potential of the surface
 

near the edge goes to nearly 0 V, assuming that the thin dielectric is over a
 
conducting plate which is at voltage reference, 0 V. Taking a singly-ionized
 

particle of atomic weight 16 (oxygen) as being typical, the velocity associated
 
with a 10 kV voltage drop is3.5-105 m/s. Starting at zero velocity, the time
 
for such an ion to traverse the 2 mils or 50 micron thickness of the dielectric
 
is 0.3 ns. This order of magnitude time span, a fraction of a ns, is much
 

shorter than the tens to hundreds of ns duration of vacuum dielectric surface
 
arcs.
 

Assuming that a 2-mil thick sheet of Kapton, tr = 3, breaks down at 10 kV
 
over a semicircular area with a radius equal to its thickness, the capacitance
 
is 52 pf/cm 2 or 2.10-3 pf, and the charge stored is2.10 -11 Coulomb. Assuming
 
that all of this charge is dissipated in0.3 ns, the corresponding current would
 

be 0.068 A. Thus, the current, charge, time span, and energy ('10 "7 joule)
 
involved in the initial edge breakdown are quite small and negligible compared
 

to those inthe events that follow. The main effect of the initial edge
 
breakdown is to create a plasma cloud and a surface electric field which
 

initiates a subsequent surface discharge.
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Dielectric surface breakdown has been reported to occur more readily, at
 

104 to 105 V/cm surface electric fields, than breakdown in the bulk of dielec­

tric materials. The sdrface breakdown fields are expected to be highly depen­

dent on surface conditions such as cleanliness, smoothness and absorbed gases.
 

BRUSHFIRE PROPAGATION MODEL
 

The experimentally observed "wipeoff" of charge over many hundreds of cm2,
 

and possibly greater areas of dielectric surface, requires either some mechanism
 

for propagation of an initial surface breakdown in a brushfire mode, or that
 

somehow all of the participating charge release occurs simultaneously over a
 
large area. The propagation mode seems more plausible and is discussed further
 

here. The source of discharging energy, the stored charge per unit area, is
 

,epleted, and the discharge must be fed by a forward propagation of the brush­

fire periphery into the still-charged regions of the dielectric. To discuss the
 
brushfire propagation process, some of the basic equations are presented first.
 

Then, a simplistic piecemeal solution of various aspects of the problem is
 

presented to provide an insight into the quantitative aspects of the problem.
 

Even the basic relations such as those for ablation and ionization are not
 

developed from first principles, but rather, are taken from existing experi­

mental,, data,,and theoretical. workf,,ound,,n,the 1nterature..,,Figure l,.prnvdesn ,ut 
nvrviewof,,the brushfire propagation analysis. 

The b1siq,, qpajtjpps, to, bpi s~iti stiePO ifpr tbhe hrigsjhirp propg,.4tji pr9b,1.pr9,, 
are: 

BV _ J , 12 
--- - ax and Js PS ax ,2) 

Whreethe potential,,' V, and surface currentdensity3,Js, are functions-of her. 

zontal distance, ,x, and time, t. The two otherparameters ot this 1-dimensional 

formulation ore the capacitance per unit area, C4 which is 52 pf/cm for a 2 mil
 
thick dielecLric with a delectric constanL of 3, and the surfdce resistivity,
 

Ps (phms-per-sqyare), 9f,the plasrnR, heet ,Tbt condugts the arp dischargcur­
rent,,-J,. ,The geemetryofthe problem isshwn.i. Figure,,,. The nt a. 

voltage, ,-5kV was selected to give a WI6 Vftm electric field bulk breakdown tor 
the ?,,mii dielectrnicthirkness.,,, A finalvoitage of, -2 5 kVwas assied onithe 

basis that about 50 percent of the initial voltage has been observed
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ARC INITIATION I 
PUNCH-THROUGH or 
EDGE BREAKDOWN
 

1HIGH SURFACE ELECTRIC FIELD 
HIGH ELECTRIC FIELD EMISSION 

INITIALLY HOT PLASMA 
(2500 ev) 

ABLATION,IONIZATION and HEATING,j
 
CREATION of a PLASMA SHEET 


4| 
CONDITIONS for aPROPAGATING 1

I BRUSHFI RE WAVEFRONT 

CONDUCTING PLASMA FILM in the
 

LOW VOLTAGE GRADIENT REGION
 

EMISSION of ELECTRONS and IONS,SBLOWOUT-to-FLASHOVER
RATIO, G'j 

Figure 1. Overview of the Brushfire Propagation Analysis
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(BURUSH FIRE VELOCITY) 
VIIIAL
 

(-5 KV) IV I A 

I (-2 5 KV) 

V (METALLIC SUBSTRATE POTENTIAL) I
 
X=0 
 X=£

I1 to25 m) 
UNDISCHARGED j VOLTAGE GRADIENT REGION CONDUCTING PLASMA REGION 

DIELECTRIC REGION (COORDINATE SYSTEM MOVING I 
TO THE LEFT WITH VELOCITY Vb) 

BULK E-FIELD = 106 v/mn __. HORIZONTAL E-FIELD = 104 /cm_ BULK E-FIELD = 104 v/cm 

Figure 2. Voltage Profile of a Propagating Brushfire Wave Front
 

experimentally to remain after the discharge. As an initial guess, the voltage
 

is assumed to decrease linearly with distance providing an electric field 
of 104
 

V/cm. The voltage gradient region is therefore 0.25 cm long. Combining equa­

tions (1)and (2)to eliminate J gives
 

3V 1 a2V 
 (3)

PS ax
 

This would be the diffusion equation with the diffusion coefficient, D:
 

aV a2V 1 
-=D 22 


BX2 where Dit- =
 -P­s
 

except that p is not a constant in our problem. This is fortunate because
 

the diffusion equation does not lead to a propagating mode with a constant
 

velocity.
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The plasma resistivity, p, and surface resistivity, ps, are functions
 
(6)
of the temperature, T: 


p K ohm - cm, where K = 0.03 ohm-cm-eV3/2 (4a) 
p = 

Ps = p/d =-K T-3/2 ohms, (4b)
 

where d is the thickness of the plasma sheet. It is of interest to note that p
 

is independent of the density of the plasma particles.
 

T is governed by a set of equations similar to those for V:
 

aT 1 H, H - 1 3T
 

(5,6)
jt cM ax ax 

where H is the heat flux, c is the specific heat, M is the mass density, and
 

is the thermal resistivity. For our problem here we neglect thermal conduc­

tivity, because of the short time spans involved, and assume that is infinite.
 

The rate of heat energy deposition in an incremental iistance, dx, in equation
 

(5)is the power density, Ps:
 

-W= -s
aH Ps = -aVa-x watts/cm2 7 

The specific heat, c, is obtained using the gas constant, R, by assuming
 

that the plasma consists of neutrals, ions and electrons, each with 3 degrees of
 

freedom:
 

cm = . 9R = 4.5R = 4.5 - 8.314 = 37.41 joule/(deg-mole). (8a) 

Assuming the dielectric material has a molecular weight, Gm, of 16, c is given
 

by:
 

c = cm/Gm = 2.34 joule/(deg-gram) = 2.71"104 joule/(ev-gram) (8b)
 

Where cm isdefined as the specific heat per mole
 

and Gm is defined as the mass density per mole.
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The mass density, M, to be used in equation (5) is composed of two com­

ponents, Ma, due to ablation because of the power dissipation, Ps, and Mo which
 

is due to the initial field emission electrons:
 

M = Ma + M0 grams/cm2 (9) 

The ablated mass density, Mal is assumed to be proportional to the time­
integrated powwer density, Ps: 

Ma = fg Ps dt grams/cm2 (10) 

The proportionality constant, g, is taken from the pulsed plasma thruster 

technology data.
(7) 

g = 8.32.10-6 grams/joule 

We view ablation as being due to "pounding" of the surface by ions which are 

accelerated by the electric field due to the electrons which have been stored 

(buried) by the basic spacecraft charging process. 

Mo is not due to heating inthe thermal sense but rather is due to col­

lisions between the initial electrons, that are emitted or "pulled-out" by high 
field emission at localized regions of high electric field, and the dielectric 

surface atoms. The high field emission current density, J, is described in 
terms of the electric field, E, by:( 8) 

J = 6.5.10-7E2e-6-109/E
 

According to this equation, J has a nearly step-function increase at
 

E = 6.5.109 volt/meter = 6.5-107 V/cm
 
4
 

The experimentally observed threshold electric field intensity of 10

V/cm, nearly four orders of magnitude less, must be due to the fact that loca­

lized regions of high electric fields exist on a sufficiently small microscopic 

scale. 

MO may be evaluated by equating the energy gained by these field-emitted 

electrons to an inital temperature, Ti: 

k ATi = eAV = eEb AX 

Where k is the Boltzmann constant and e is the electronic charge.
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We take the characteristic distance, X,to be the Debye shielding distance:
 

=6.9 Fn--

Where Ti is the temperature in 0K, and n is the plasma density in number/cc. Eb
 

is the surface breakdown electric field of 104 V/cm. These equations may be
 

integrated to give:
 

2 A2 (6"9eb2 17
 
Ti = A' 0K, where A Vi / =1.602-10
n+no
 

Ti 1.381 1o13 eV where n and no are in particles/cm 3 (11) 
-~~T no 

The constant of integration, no, has been introduced approximately in the form
 

of additional number density where Ti varies inversely as the total density, by
 
taking T1 as 2500 eV when n is zero. Recall that n is the number density due to
 

ablation.
 

TKis density, n, is evaluated from the ablated mass density, Ma by
, 


n = 6.02.1023 molecules (1 mole M grams 1 
mole 	 16 grams) a cm2 dcm
 

M
 

3.761022 	da molecules3
 

The parameter, d, is the thickness of the plasma film or sheet and is
 

assumed to be 1 percent of the voltage gradient region or 0.0025 cm. The number
 
density, no, is
 

n = 1.38.1013 = 5.523 • 109 particles/cm3 (12a) 

The corresponding mass density, Mo is:
 

M° = nod 16 3 3.671 16 grams/cm2 (12b)
 

~~~ 6.02.1023gasc 
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SIMPLIFIED ANALYSIS
 

The simultaneous solution of all of the equations presented up to now is
 

rather complex and requires a computer solution.
 

Here, some quantitative feeling for the results is obtained by a piecemeal
 

approach with simplifying assumptions.
 

The first assumption is that there is a solution inwhich a constant brush­

fire propagation velocity, Vb, is appropriate. With this assumption, time
 

variables may be replaced with space variables:
 

if b A (13)
 
x = vbt; E =bax 

Equations (1)and (2)may then be integrated to give:
 

is = CVb (Vm-V), and (14) 

V = Vm (l--f(x)), where f(x) = Cvb f Ps dx (15) 

Where Vm is the maximum voltage change (2500 volts), and V is the voltage
 

at any point x in the voltage gradient region. For this part of the
 

analysis the zero reference voltage is taken to be the potential at the
 

bottom of the voltage falloff region; i.e., V = 0 at x = t.
 

A further simplification of the problem is obtained by assuming that the
 

voltage profile is known, a linear dropoff to Vfinal = 0 as shown in Figure 2.
 

Temperatures, resistivities, particle densities, current densities as well as a
 

new voltage profile can then be calculated. Consistency of the new voltage
 

profile with the assumed profile will put constraints on the possible values of 

the parameters involved.
 

The assumed voltage profile is given by
 

EbXV= Vm P m - bx
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4

The breakdown value of the surface electric field, Eb, is assumed to be 10

V/cm. 

The pl-asma parameters for the voltage gradient region may be calculated and
 

are shown in the table below.
 

Table 1. Plasma Parameter Resulting from a Linear Voltage Gradient
 

= CVbVm/y.= CvbEbx s= TT /2 1 

=
Ps V.= JsE = CVbE 2xh -- Psdt = - (1+ x2 /A)
 

2
 
Ma = fgPsdt = gCEb2x2/2 where A = 2Mo/(gCEb2) = 1.7010-

8cm


n = 3.76.1 22gCEb 2x2/(2d) and Th isthe temperature due to heating.
 

The parameter, h, is included inthe equation for Th to account for the fact
 
that not all of Ps goes into heating the plasma and raising the temperature. A
 

heat absorption calculation shows that the heat loss into the dielectric surface
 
constitutes a major sink for the energy in the plasma. The plasma thickness, d,
 

was assumed to be 0.0025 cm, or 1 percent of the length of the voltage gradient
 
region, Z. Ma and Th do not depend on d, but n and Ps do. Itshould also be
 

noted that all four of these parameters are independent of the brushfire velo­
city, vb. This isbecause they all depend on the time-integrated power density,
 
Ps, i.e., the energy, which is independent of velocity. The temperature, T, in
 
the equation for surface resistivity, p', is a composite of the initial field
 
emission/low collisional plasma temperature, T,, and the temperature due to
 
heating, Th. These two temperature profiles have been combined inthe root-sum­

square sense:
 

T = (Ti2 + Th2)0.
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Since only the Th component of T depends on h and the T1 component does not, h
 

was selected to give the most reasonable voltage profile, V(x) (see Figure 3a),
 

when computed using equation (15). The value selected was
 

-4
h = 8.71.10 , h = 1.964.10 -4 , where c = 2.71-104 joules/(ev-gram), and
 
c-6
 

g = 8.32-10 6 grams/joule
 

As noted previously, h is a very small fractional number. 'The term in the
 

expression for f(x) defined inequation (15) and in Table 1:
 

3/2 Cvb
12Cfg
 

must be a constant.
 

This means that the individual parameters may change as long as the value
 

of the above combination remains constant. For example, if the per unit area
 

capacitance C is doubled, the propagation velocity, vb, is halved. There is no
 

reason to expect c, g, or h to change when C is doubled by halving its thick­

ness. It is possible, however, that c, g, or h may have values different from
 

those assumed here, but the combination, cg/h, must remain at the same value.
 

For all of the computations and parametric curves which will be presented
 

next, the brushfire propagation velocity, vb, was selected to correspond to that
 

of an ion of mass 16 (oxygen) accelerated through the breakdown voltage, Vb of
, 


a 2 ml sheet of Kapton. The bulk breakdown electric field'is assumed to be
 

106 V/cm:
 

vb 2eb/m = 2.45 • 10 cm/sec for Vb = 5000 V 

Figure 3a shows the assumed voltage profile, V(x), which is moving to the
 

left at a velocity, vb, equal to 2.45-107 cm/sec. V drops linearly from 2500 V
 

at x = 0 to zero at x = k where Z was chosen to be 0.25 cm in order to give the
 

surface breakdown electric field of 104 V/cm. Figure 3a also shows the current
 

density, Js, which increases linearly from zero at x = 0 to 3.18 A/cm at x = 1.
 

Figure 3b shows the power density, PSI which increases linearly from zero at x = 

0 to 3.18.104 W/cm2 at x = t. The plasma ion and electron density, n,, is also
 

shown in Figure 3b. It varies parabolically from zero at x = 0 to 2.03-1015
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particles/cm3 at x = i. The ionization is assumed to be 10 percent of the total
 

and therefore the neutral particle density is 1.83-1016 particles/cc at x = z.
 

Figure 4a shows the temperature, T, and surface resistivity, Ps, as a 

function of x/. 

Figure 4b shows the originally assumed linearly falling voltage profile and
 
the voltage profile computed by using the ps integral inequation (15). Itcan
 
be noted that V(o) is only 90 percent of Vm at x = 0. However, the voltage
 
gradient isgreater than the surface breakdown electric field of 10 V/cm when
 
x/2 is greater than about 0.5. The temperature inFigure 4a is extremely "hot"
 
for small x/L values but cools down quickly as the plasma density increases. A
 
minimum isreached at x/9 equal to about 0.4 where the heating effect takes
 
over, and the temperature rises slowly as x/t increases beyond this point. The
 
surface resistivity profile inFigure 4a varies as the inverse three-halves
 

power of T.
 

Inorder for the computed voltage to be identical to the assumed
 
voltage profile, the surface resistivity would have to be an inverse
 
function of x:
 

1 C~X~Cvb psdxPS =vbX' Cbx = zn 1, where e ­ f(x) = x 

The physics of the problem requires initially a very hot plasma and there­
fore a very small resistivity, rather than the initially very large surface 
resistivity required by the assumed linear voltage profile. What this says is 
that the linear voltage profile was not a good assumption. The computed profile 
of Figure 4b is presumably a better approximation to the "real" propagating 
brushfire voltage profile. In principle, iteration of the computations 
performed here with the computed voltage should provide a better solution. This
 

is not done here, and a more thorough analysis using a computer is recommended.
 

BLOWOUT AND FLASHOVER CURRENTS; G'
 

The ratio of blowout to flashover currents, G', is a very important param­
eter indefining the EMI margin of immunity of a spacecraft to arc discharges. 
The current density, Js, of 3.18 amp/cm calculated in the previous section is 
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that which flows to the point of arc discharge initiation in a plasma sheet and
 

thence directly to the conductive substrate below. This is what has been termed
 
the flashover current. Because of the localized nature of this component, the
 

electric and magnetic field effects are also expected to be localized. Pre­
viously, the only long range effect considered was that due to the displacement
 

current, CdV/dt where C is effectively the capacitance to space of the arcing
 
element, and dV/dt is the time rate of change of the-surface voltage. Because C
 

is very small (~pf/cm 2) the corresponding currents are very small, and the
 
voltages induced into cable harnesses were very small and at nonhazardous
 

levels. Blowout currents are additional to the displacement currents discussed
 
above. If they are of appreciable magnitude, they could be a serious source of
 

hazard to spacecraft electrical subsystems.
 

In this section the results of the previous section on brushfire propa­

gation are used to estimate the blowout current. Both magnetic and electro­
static forces were examined, and the conclusion was reached that only the latter
 

isof consequence. Electric fields normal to the dielectric surface will force
 
electrons to move away in the z direction. The overwhelming majority of elec­

tric field lines emanating from the electrons collected from environmental
 

charging land on positive charges induced on the substrate. A few field lines,
 

however, must go off to space to account for the voltage fall-off (or rise) from
 

the dielectric surface potential to the space plasma potential (zero). Thus, it
 

is already clear that the dielectric surface potential, through its associated
 
electric field, plays an important role in determining the blowout to flashover
 

arc discharge current ratio, G'. The magnitude of the electric field for a
 
conducting sphere is
 

Eradal Q (MKS units)radil 4 Tr eoa2 ­

where a is the radius of the sphere, Vs isthe surface potential, and Q is
 
the charge. For an arcing dielectric surface on a real spacecraft, a is not
 

an easily defined parameter and requires a time-dependent, NASCAP-type,
 
3-dimensional LaPlace's equation solution in an arc whose discharge charge
 

time ismeasured in nanoseconds.
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We know that a is not as large as the spacecraft dimension and not as small
 
as the dielectric thickness. For our purposes here, we assume that it is com­
parable to the size of a typical spacecraft box (or 20 cm), but keeping inmind
 
that Eradial varies inversely as a.
 

The fact that edge or punch-through breakdown occurs at -5 kV, but -2.5 kV
 
remains after the discharge, has been ignored up to now except to take the
 
2.5 kV differential 
as the voltage which "drives" the brushfire.
 

Thus:
 

Vs =V +Vr +V m (1-I), 

where Vo isthe spacecraft ground potential, Vr isthe remaining voltage after
 
the discharge (2500 V) and Vm isthe maximum brushfire driving potential (2500
 
V). The proper signs have to be used to account for the fact that we are con­
sidering forces which drive electrons off of the surface. Ions are pulled 
harder against the surface. For the time being V0 will be assumed to be zero. 

The velocity and displacement inthe off-surface z-direction for an elec­
tron released at z = o and t = o are given by 

dv
z 

Fz =eE =e Vs/a=m Z 

Incorporating, as before, the space-time equivalence via the brushfire propa­
gation velocity vb:
 

x 2eVm x 2eVx 

f S- (1- dx = mavx (1-jz avf bf- _7 

2eV x^-x2 eVm
z(x)
Z(2

: m J(A-() dx = x2 (1- -)(i
PJ269mavb2 0 mavb
 

The above equations apply inthe MKS system of units. 
 If a,vb. and,x are in
 
cgs units, vz and z 
may be obtained in cgs units by multiplying both of the
 
above equations by 10
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Figure 5 shows vz and z plotted as functions of x/t. At x = Y, vz is 
3.37,109 cm/sec and z is 19.1 cm. These values for electrostatic deflection are 

about eight orders of magnitude greater than the comparable values caused by 

magnetic forces on the plasma current.
 

To calculate the off-surface surface current density, Jsz an integration
 

over x has to be performed:
 

xl 

s Cx1) = f e n(x) vz (xl-x) dx 
0 
2eVm 
 xI 10  4
where vz (xI - x) =mvb (x2 x) (1- cm/sec1 -


Ax2
n(x) = electrons/cm3 (x in cm)
 
2
 

A = 0.1 •3.76.1021 gCEb2/2d = 3.25.1016 cm


Jsz (XI) is plotted in Figure 8 for O<x<O.05Z.
 
4 x1 4 2x,
 

Jsz (X) = 3.04"104 (1)4 (1 - 2-- amp/cm 

3 ­

20
 

1.0
 

Figure 5. vz and z for Electron at x o (No Plasma Shielding)
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At x1 = k = 0.25 cm, Jsz would be 18,240 amp/cm, which ismuch too large in
 

view of the 3.18 amp/cm value for Js (inthe x-direction) inthe plasma sheet at
 
x = L. There is,however, a mechanism whereby Jsz is cut off at a much smaller
 

value. The situation isthat at the same time as the off-surface charge is
 
being elevated by electrostatic forces, the charge finds itself above a plasma
 

whose Debye length is shorter than its height above the surface of the dielec­
tric. At some height, z, and Debye length, X,the electric field due to the
 

charges below becomes completely blocked off, and the effective electric field
 
becomes zero. We assume that this height, z, is equal to 4.6.; i.e., when the
 

electric field is shielded by 99 percent.
 

The effective height z (x) is calculated by averaging the z - distance
 

travelled by all of the particles released from x = o to x = x1.
 

x1
 

T (xl) fXIR() dx i n(x) z (x -x) dx
 

00 

where z (x1 - x) =-
2eVm xI 

7. (xl-x)2 (1 -) 
x 

0 cm 
mayb 

(xl) eVmP2 x1 xI x 

WXmav 7 (1- 10 2.29 (1-T z) cm 
mavbl2 =22 l lz 

The Debye length is given by
 

I = 6.9 (T/n)0.5 cm
 

where T is the temperature in Ok and n is in electrons/cm3.
 

Figure 6 shows z and x plotted for 0 <x <z (where z = 0.25 cm). It can be seen
 

that z is much greater than X for most of the range of x/z except near x = 0.
 
At x = t, z isabout 2 cm, which isabout 10 percent of the value for z,the
 

height of a single electron released at x = o. Since the temperature for small
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values of x is nearly completely dominated by the initial high-field-emitted 
electrons which are cooling off: 

T TI 1 1.60"10171.381"1013 e
n +n o ev n K, 

and x= 6.9.4.00"108 - 2.76"109 - 8.49.10-8 - 1.36.10-6 cmn 3.25.1016X2 x (X/L)l 

~22 

IN 

0 	 .2 .4 .8 .8 1.0 
x/1 - i* 

Figure 6. Debye Length (x), Jsz and z (No Plasma Shielding)
 

Equating z to 4.6x:
 

-6
(X1/)4 = 2.73-10 , X/ = 0.0407, x, = 0.0102 cm 

Putting this value for xI into the equation for Jsz (x ): 

Jsz (Xl) = 3.04.104 - 2.73"10-6 = 0.083 A/cm 

The blowout to flashover current ratio G', taken to be the ratio of Jsz (X1 to 
the maximum value of the plasma sheet current, Js, (at x = 0)is then G' = Jsz 
(xl)/Js(t) = 0.083/3.18 = 0.026 or 2.6 percent. Figure 7 shows z and 4.6x
 
plotted versus x/z and their intersection at x/z = 0.041.
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Figure 7. 4.6x and z versus x/z
 

A more nearly correct calculation for Jsz involves inserting the Debye
 

shielding effect into the expression for v . We consider the shielding to apply
 

to the external electric field by multiplying the potential by the exponential
 

factor so that the corrected off-surface velocity, v * is given by:
 
z 

x
x1 2 e V (1--) ) 

v * (Xl) = j mee -z/A dx. 
z 
 mavb
 

Since the x values of consequence are very small (x/<0.05), the above expres­

sion may be simplified to
 

2eV x -


VZ * =mavm 1e Z/X dx.
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From the previous analysis,
 

T/X = 2.29 (x/L)2/(1.36-10-6x2/2) = 1.68106 x/)4 

Figure 8 shows vz* computed numerically and plotted as a function of x/t. It
 

starts at about 10 cm/sec at x=O and drops to nearly zero by the time that x/i
 

= 0.04. The expression for Js now is
 sz
 

ox 2e2VmA x x6
 
1
Jsz (x1)= 1 en (x)v* (x)dx- mavb_ flx2dx 11 e- .68 .10 (x/p) dx 

1 5
 

T 

E 3 

CCT 

.1.0 

~~2
 

LU 

E 
'0.5 0
C
 

>N Vz x/d-----z
 

0 
o .01 .02 .03 .04 .05 

X
 

Figure 8. vZ , di szand J1 Versus x/Lt (Shielding by Plasma) 

independent of the upper limit of the integral, x1, for values of x/z,greater
 

than about 0.04. This value is
 

J2 = 0.0126 amp/cm, 
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and the ratio of blowout to flashover currents, G', is
 

G' = Jsz/Nz = 0.0126/3.18 = 0.40% 

Comparing Figures 7 and 8, it is clear that cutting off Jsz at z = 4.6x gives 

too large a value of x/z and hence too large a value for Jsz and G'. From 

Figure 8, the "correct" values of the parameters for Figure 7 should have been: 

x1t = 0.0254, x = 2.11.10 -3 an, z = 1.47.10 -3 cm, 

-
z/x = 1.43, and eZ/) = 0.24.
 

The Debye shielding effect has reduced Jsz from an excessively large value,
 

18,240 A/an, to a value of 0.0216 A/an. This latter value leads to a G' of 0.40
 

percent, which ismuch smaller than those that have been previously reported by
 

us as well as by others. Another "correction" that should be applied is the
 

fact that Debye shielding does cut off the electrons that are leaving the plasma
 

sheet due to electric fields. However, the potential of the plasma remains 

unchanged, and thus the electric fields beyond the plasma remain unchanged. 

Therefore the "escaped" electrons continue to be accelerated by the surface
 

potential even through their number is fixed. Since cutoff occursat a very
 

small x value (x/t = 0.0254, z = 0.25 an), the accelerating potential is very 

nearly: 

Vm + Vr = 2500 + 2500 = 5000 volts
 

Where Vm is the maximum voltage change, and Vr is the remaining voltage after 

the discharge.
 

The surface current density,, Jsz, by the time the escaped electrons
 

have traversed the whole arcing source, then isgiven by:
 

J NeV where vz = [ m + 4.19 109 cm/sec 
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an2 , N is the number of released electrons per and is obtained from n(x) by 
integration from x =0 to x = x1 or x/1 = 0.0254: 

n(x) = 3.25 1016x2 electrons/an 3 

2
N = j n(x)dx = 2.774-10' electrons/cm

0 

Therefore:
 

J =szNevz = 1.86 amp/an, and G' = Jsz/Jx = 1.86/3.18 = 58.5% 

Since the electrons, in increasing their kinetic energy by 5 keV, have been
 

accelerated in the x-direction as well as the z-direction, the use of the full 5 
keV in calculating Jsz is not valid. A particle pushing trajectory calculation 

for the electrons in the presence of existing electric fields is required. 
Figure 9 is the author's conception of how the equipotential and electric field 

lines should appear. The escaping electrons do accelerate through the full 5 
kev but the current, properly, should not be termed J sz From the "guessed" 

field configuration it appears that the blowout currents should be travelling at 
about a 45 degree angle to the surface in the direction of the ignition point. 

EFFECT OF SPACECRAFT POTENTIAL ON G'
 

The importance of external electric fields in determining the blowout to 

flashover current ratio, G' has been discussed in the previous section. In the
 

analysis, the change in the surface electric field due to the arc discharge was
 
taken into account by the space and time dependence of the surface potential,
 

Vs . However, the reference voltage, the spacecraft potential, Vo, was assumed
 

to be constant at zero volts. In orbit, the blowout of the arc discharge elec­

trons must be compensated by the recollection of an equal number of electrons if 
the spacecraft potential is to be unchanged. Any inequality between blowout
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Figure 9. Brushfire Equipotential and E-field Lines
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currents and return currents must be "made up" by displacement currents in the
 

following charge balance equation:
 

tt
 
CsAV s + V0) + f Izdt = CoAVo + Irdt 

In the above equation Cs is the capacitance of the arcing element to the remain­
der of the spacecraft (or to space), and C is the capacitance of the spacecraft
 
to space. Iz is the blowout current from the arcing element, and Ir is the
 

replacement current to the remainder of the spacecraft. Taking the derivative
 

of the equation gives the current balance equation which must be satisfied
 

during the arc discharge:
 

d + z=C d
Cs ff (Vs + V0 )+Iz = Co Vo + Ir 

Iz is the blowout current density, Jsz computed in the preceding section,
 

multiplied by an appropriate width dimension. Ir is the integral of all of the
 
replacement current densities collected over the entire exposed surface of the
 

spacecraft. As Ir is collected, it returns to the arcing element via various
 
structural paths on the spacecraft. Obviously, the structural current density
 

is low at remote portions of the spacecraft, and becomes greater as the current
 

flow paths converge towards the arcing element. For this reason, it is to be
 

expected that the potential victims of EMI closest to the arcing source would be
 

the most susceptible.
 

The point here is that V adjusts itself in a time dependent manner to
 

assure that the current continuity equation is satisfied. Since electrons are
 
leaving, V0 will go more positive. If, as assumed, V is initially near zero,
 

V0 will become absolutely positive and attract electrons from the environment
 

surrounding it, and repel ions. How far positive it becomes is a function of
 
the surface area of the whole spacecraft, and the accessibility of replacement
 

electrons. The problem is similar to that of computing the spacecraft charging
 

potentials, but on a much shorter time scale--tens of ns rather than minutes.
 

The availability of electrons in the ambient plasma may be estimated as
 

follows: Assume that electrons may take as long as 1ps to reach the spacecraft,
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a sphere of radius, R, of one meter at a potential, Vo, of 1 kV. The radius, r,
 

from which electrons can arrive at the surface in ips is given by:
 

dr v2r 10.5 [2e Q 0.5 

vr = L• =[-V(r) j 0.5 

2r1e R)Q 
 t = 2e VoR 0.5 t 

r = {[Le VOR] 0 5t + R1.5 2/3 = 9.47 meters for t = ips. 

For t = 100 ns, r is 2.44 meters. Assuming that the electron density is 1/cm
3
 

a spherical volume, for ips, contains 3.20.1010 electrons or a charge of
 

5.12.10-9 coulombs. By comparison, a 10 an wide arcing source, grounded, would
 

have a current Iz of 19 A, and would emit, in 11is, a charge of 1.910-5
 

coulombs. This ismore than three orders of magnitude more charge than is
 

avail able.
 

Another calculation which indicates that the current available is insuffi­

cient to "clamp" Vol utilizes the Langmuir - Mott Smith equation for the
 

,attraction of electrons at a Maxwellian temperature, T, to a conducting sphere
 

of radius R:
 

Vo
 

I=47RJ (1 + 0-) = 22.5.10-4 A 

2
 
for R =1, Vo = T = 1 kV, and d0 = 1 na/cm

2 = 10-5 A/m


a "resistance," Ro ,may be calculated from Ro = 
T
V = 4.106 ohms. 
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The solution for the blowout current, Iz, in the presence of a variable
 

time dependent V0 may be obtained from the following
 

0 

Iz = dszw;Jds = Nev ;v 2e: Vs = Vr " Vo 

V0 = IrR°' V° =- o fIcdt" 

In the above equations, w is the width of the arcing source, N is the number of 

electrons that have been ejected before the Debye shielding cutoff, VS is the 
surface potential, Vr is the remaining voltage after the discharge (2500 V), Ir 
is the resistive replacement current flowing in Ro, and Ic is the displacement
 
current flowing inthe capacitance of the spacecraft to space, C0 . The
 

electrical circuit is shown below in Figure 10.
 

Iz
 

Vs=Vr-Vo 

Vr (2500 VOLTS) 
Vo (SPACECRAFT

St ,POTENTIAL) 

I7olpf) r'Af }
I R0 ~ SPACE ZERO POTENTIAL 

Figure 10. Electrical Circuit Defining Iz and VOt)
 

The above equations lead to the following result: 

t 1p tn(x-ZK- - Pn(X + Bx- 1 

T p-q x-q 1-pB 

where p and g are roots of x2 + Bx-1 = 0,
 

= R 0 x = I / I = A/V 0.5 = 1.316"w(cm) amperes,0 z zo zo = r 

A = Ne(2e/m)05.100 w = 0.0236 w, B R01zo/V r = wR /1900. 
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Figures 11 and 12 show Iz(t) and Vo(t) for w =,10 cm. and various values of R0
.
 
The time constant, r= RoCo, varies from I ns to his on the assumption that the
 

CO is 100 pf. For R large, V approaches Vr and I decreases because Vs
 
becomes small. For R0 small, as inmany vacuum tank experiments, V0 never gets
 
very large, and Iz remains near Izo. Figure 13 shows the steady state I and V0
 
plotted as a function of Ro.
 

The preceding discussion about R indicates that it isquite large. For
 

the approximation that Ir<Ic, the solutions for Iz and V are:
 
t 2
 

-, Iz = Izo [i-t/(2to)], V0 = Vr[1-( - =--) I. 
0 

IZ decreases linearly to zero in a time 2ro = 2C Vr/Izo = 3.8,10-7/w seconds or
 
38 ns for w = 10 cm. V0 rises parabolically to Vr in the same time period. For
 
a 10 cm square sampl'e, then, the brushfire propagates according to our model in
 

a time, t, of:
 

t 10 cm 408 ns
 

2.45-107 cm/sec
 

IV however, lasts for only 38 ns or about 10 percent of the discharge time with
 
an "average" G' of 29 percent rather than the peak value of,58 percent. Thus,
 
the in-orbit G' is of shorter duration and of lower average magnitude as com­
pared to a laboratory determination with R shorted to ground. A proper labor­
atory experiment should incorporate a high R but should also include an
 
appropriate CO.
 

A4-30
 
M2-142-80
 



1.0 
Ro = 10,000 

"r=10-6 SEC 

RO =300 0 
,r=3 • le-SEC 

> 

.4 

Ro= 100n 

"r=10­'8 SEC 

.2 

0 
0 .5 1.0 

Ro = Ion, r= 

1.5 

-W 9 SEC 

2.0 2.5 

Figure 11. Vo/Vr as a Function of t/T 
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Figure 13. Steady State V and Iz Versus R for W =10 cm 
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LIMITING MECHANISMS ON BRUSHFIRE PROPAGATION
 

The question arises as to whether some processes exist whereby the
 

brushfire propagatiQn might be limited. The paper by Aron and Staskus (9) seems
 
2
to indicate that propagation continues for samples as large as 5058 cm . Their
 

samples (4mil teflon) were laid on an aluminum plate that was 0.313 cm thick.
 

This seems to indicate that the plasma sheet resistance, the part behind the
 

voltage gradient region, is not a problem.
 

In some applications, the dielectric sheet with the vacuum deposited alumi­

num (VDA) is not over a good conducting ground plane. Inthese cases the
 

surface resistivity of the VDA film becomes important. Typical values are in
 

the order of 1 ohm-per-square, but this may be exceeded by more than a factor of
 

10 after handling and during the installation process. A 100 cm long sample,
 

then will develop more than 1 kV with a 1 A/cm arc discharge surface current
 

density, Js. If one considers then that arc discharge surface currents are
 

really not 1-dimensional, but rather flow from the whole surface towards a
 

single breakdown point, the surface current density increases greatly and
 

therefore the voltage drop may become comparable to the voltage across the
 
dielectric before breakdown. Although the brushfire propagation as developed
 

depends only on the electric field at breakdown, Eb, rather than the voltage,
 

Vb, a dependence on the latter may develop in a more critical analysis.
 

Figure 14 shows an example of a set of surface voltage measurements before
 
and after an arc discharge. The discharge clearly did not wipe off the stored
 

charge uniformly. The charge seems to have flowed towards the edge at which
 
breakdown occurred, but was slowed down as the distance from that location
 

increased. This particular sample was mounted on an aluminum substrate.
 
However, the VDA was sandwiched with a Kapton sheet between the VDA and the
 

aluminum substrate. Thus, resistive currents were forced to flow through the
 

VDA rather than through the substrate.
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Figure 14. 	 A Potential Profile of 6 x 6 inch Kapton Laminate 
Sample Before and After a "Relatively" Low Voltage 
Breakdown Near Edge of Sample 
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SUMMIARY AND CONCLUSIONS FROM THE BRUSHFIRE ARC DISCHARGE MODEL ANALYSIS
 

Summarizing the analytical development of the arc discharge brushfire 
propagation model should begin with noting the many deficiencies. The first is 

that the analysis is 1-dimensional while most arcing configurations are 

2-dimensional. Thus, no account is taken of the "sidewards" propagation effect
 
both as it affects the brushfire wavefront steepness requirements, and the­

greater concentration of plasma sheet currents as they converge towards the arc
 
initiation point. There are many assumptions which may or may not be justified
 

such as the ignoring of thermal conductance, and the assumption that the plasma
 

thruster data, 8.32.10-6 grams per joule of material ablated, was applicable.
 
The assumption of a plasma sheet thickness, 1 percent of the length of the
 
voltage gradient region, was not derived from physical principles, but rather,
 

from an idea of what a "sheet" should be. The gram-molecular-weight of the
 

dielectric material, 16, also was a guess, and the specific heat depends on this
 
number. The plasma properties which would clearly identify the time dependent
 
roles of electrons,, ions and neutrals have not been carefully treated. In
 

particular, the inertial/collisional role of ions in determining the brushfire
 

velocity should be included in the basic equations so that the velocity is
 
consistent with the other physical processes involved. The areas of improve­

ments that are needed in the present analysis are summarized below. As stated
 
previously, there are many improvements that can be made in the analytical model
 

as presented here, and it is hoped that this work will provide some insight into
 
how a more nearly correct model should be formulated.
 

* Many assumptions need to be examined
 

- Thermal conductivity, mass ablated, plasma sheet 
thickness, etc 

* More physical processes need to be included
 

- Role of ions in determining brushfire velocity, 
ablation, ionization and radiation processes 

- "Mechanical" processes of particle acceleration and 
collisions 
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* 	 Self-consistent solutions are needed 

-	 Computerized approach 

* 	 Model should be expanded to include the 2-dimensional 
problem. 

The analysis has provided a first-cut solution to voltage, current, plasma
 
density, temperature and resistivity profiles associated with the plasma sheet
 
of a propagating brushfire wavefront. The flashover surface current density
 

associated with the discharge rises linearly with distance away from the head of
 

the wavefront as
 

Jsx = CvbVx/t"
 

At the bottom of the voltage falloff region Js reaches a maximum value:
 

Jsx = CvbVm = 3.18 A/cm, for Vm = 2500 V 

which is proportional to the breakdown voltage Vm. The duration of the arc
 
discharge issimply the sample size (linear dimension) divided by the brushfire
 

propagation velocity, vb. To the extent that the theory is applicable to the 2­
dimensional case, the duration should be proportional to the square-root of the
 

area. The following combination of parameters for a given dielectric material
 

must 	be a constant:
 

(§R.) 32CvbI
 

where c is the specific heat, g is the mass ablated per joule, h is the fraction
 
of the power expended inraising the plasma temperature, C is the dielectric
 

capacitance per unit area and vb isthe brushfire propagation velocity. The
 
above combination of parameters must be a constant for a given dielectric
 

material except that C also depends on the thickness. Thus, increasing the
 

thickness decreases C, and hence vb should decrease correspondingly.
 

Another result of the analysis isthat magnetic V X B forces are much less
 
effective in producing blowout currents than electric field forces. Debye
 

shielding of electric fields limits the blowout electrons to the very tip of the
 
brushfire wavefront. An analogy for the blowout current would be the smoke
 

puffing out of the smokestack of the locomotive of a train as
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itmoves forward -- not the whole train burns. The blowout electrons are
 

accelerated by the chargeup potentials and the ratio of blowout to flashover
 

currents, G', has been calculated to be
 

G' = 58.5%
 

This 	value of G' takes into account the experimentally observed fact that about
 
one-half of the stored charge (1/4 of the stored energy) remains after the
 
discharge. Ifthe fraction of remaining charge were lower, the flashover cur­
rent would be proportionately larger, but the blowout current would be about the
 
same since the number of electrons remains nearly the same and the total accel­
erating potential also remains the same. Thus G' would decrease, but only by a 
factor of about two. From the results of the above analysis, G' is independent
 
of the size of the arcing source. The surface voltage at breakdown affects G' 
as its square-root.
 

The dependence of the blowout current, and therefore G', on the spacecraft
 
potential is rather drastic, and depends on the capability of the spacecraft to
 
collect return currents, either from the surrounding plasma or from the blowout
 
current itself. The spacecraft potential rises inorder to compensate for the
 
blown off charges and to collect the required number of electrons, or to make up 
the deficiency via displacement currents. Because the spacecraft capacitance to
 
space, Co, is small ('100 pf), the accelerating potential for the blowout elec­
trons isquickly cancelled -- in38 ns out of a total of 408 ns for the whole
 
brushfire process to take place -- in our example of a 10 an square arcing 
source. Most laboratory experiments in the past have grounded the arcing source 
to the vacuum system ground through a low resistance of a few ohms. A more
 

proper simulation of in-orbit conditions for arc discharges would be to increase 
the grounding resistance to greater than 10,000 ohms, and add a parallel
 
capacitance of about 100 pf. The conclusions resulting from the brushfire model
 

analysis are summarized below:
 

* 	 The flashover surface current density, Jsx' (3.18 A/cm), is proportional to
 
Vm
 

0 	 (h ) 3/2 . Cvb is a constant (see text for definition of parameters). 

* 	 The discharge duration isproportional to the length of a 1-dimensional 
source. 
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And is proportional to the square-root of the area of a
 
2-dimensional source.
 

* 	 The blowout surface current density, J , (1.86 A/cm), is proportional to 

the square-root of the surface potentif at breakdown. 

a 	 G' (58.5 percent) is independent of the area of the arcing source.
 

- Depends on electric field forces; magnetic forces are negligible.
 

* 	 G' is grossly affected by how the spacecraft potential varies during the
 
discharge.
 

-	 J is cut off by positive spacecraft potentials (smaller net 
p&tentials) during the discharge. 

* 	 Laboratory measurements of G' should take into account conditions on orbit.
 

The author acknowledges the contributions of two colleagues to the present
 

analysis of the arc discharge brushfire propagation model. M. J. Sellen Jr.
 

coined the term, "brushfire," and formulated the initial concepts on the steep­

ness requirements for a propagating wavefront. R. L. Wax critiqued many aspects
 

of the model. In particular, his insight into the plasma physical processes was
 

invaluable.
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