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I. INTRODUCTION

The linear instability of small amplitude disturbances in boundary-
layer flows has received considerable attention in an attempt to develop a
better understanding of this aspect of the transition process. This
instability is sufficiently described by the parallel stability theory,
where the boundary-layer flow is assumed to be parallel. In spite of the
qya]itative success of this assumption, experiments have shown systcmatic
differences from the parallel stability theory.

Apart from predicting a critical Reynolds number that is lower than
that given by the parallel stability theory, evidence from the experirents
show that the growth rate of the disturbance is a function of the coordinate
normal to the wall in a subsonic or supersonic boundary layer. The parallel
stability theory cannot predict that and consequently a detailed comparison
with experiment cannot be made in a meaningful way to the necessary degree
of precision, the parallel theory gives only a qualitative results. Also in
cases where large pressure gradient or large amount of suction exists as in
laminar flow control systems, the parallel theory fails to predict
accurately the stability characteristics.

With the advancement of the numerical techniques and the possibility of
solving the disturbance equations to considerable accuracy, a more critical
comparison with experiments seems now possible. This demands a consistent
theory describing the behavior of the disturbances over large regions of a
real growing boundary layer. The nonparallel stability theory, which takes
into account the dependence of the flow parameters on the chordwise

coordinate (see Figure 1 for the coordinate system), as well as the
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Figure 1. The Coordinate system.




velocity normal to the the wall, this theory gives a more accurate
mathematical model for the development of the disturbance. The full non-
parallel incompressible stability problem for two-dimensional boundary-layer
flows has been solved by Bouthier 1’% Nayfeh et a13, and Gasterh, and
applied to different types of boundary-layer f]owss_afzzThe nonparallel com-
pressible problem has been reported by E]-Hadyg, El-Hady and rhyfehlo

for two-dimznsional fiows, and by E]—Hadyn’12 and Nayfeh13 for threce-
dimensional boundary layer flows. The work of Gaponovlu, which appeared
during writing this report, investigates only the nonparallel effects on
two-dimensional disturbances.

It is the purpose of the present work to describe a formally cerrect
method, based on the nonparallel linear theory, that examines the two- and
three-dimensional stability of compressible boundary-layer flows. The
method is applied to the supersonic flat plate boundary layer at Mach number
4.5, and the theoretical growth rates of disturbances are compared with the
experimental results of Kendall 15 The method is applied also to the
infinite-span swept wing boundary-layer flow with suction at Mach number

0.82 to evaluate the effect of the nonparallel flow on the developnent of

cross-flow instabilities.



IT. NONPARALLEL SPATIAL STABILITY THEORY

This study is concerned with the stability of small amplitude
disturbances in two types of boundary-layer flows, the flat p]ate supersonic
boundary layer, and the infinite-span swept wing transonic boundary layer
with suction. 1In both types, the mean flow is independent of the spanwise Z*-
coordinate. However, the most anplified Tollmien-Schlichting instabilities
can be chordwise (two-dimensional) or obligque (three-dimensional) for the
flat plate supersonic boundary 1ayer16, but certainly oblique for the
infinite-span wing transonic boundary layer. 1In the Tatter, crossflow
instebilities also exist due to the presence of boundary-layer crossflow.

He consider disturbances that is generated by a steady source
oscillating at the frequency «* (monochromatic wave) at the curve x* = 0.
This spatial wavetrain is assumed to be of uniform amplitude in the
spanwise coordinate, but with variable phase. With this in mind, we present
here a formulation for the stability problem of the infinite-span wing
boundary layer. All spanwise variation of the meanflow and disturbance
quantities is zero.

We begin with the equations of motion for compressible flow, and
introduce dimensionless quantities by using as reference, the values at the

edge of the boundary layer, and a reference length L* defined as

L* = (x*/Ug)l/2 (1)

where * is the kinematic viscosity coefficient, x* is the distance
perpendicular to the leading edge, and U* is the velocity in the chordwise

x* - direction. Here, * denotes a dimensional quantity, and e denotes



the cendition at the edae of the boundary layer. Then, the Reynolds number

is defined as
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We consider thé boundary-layer flow to be weakly nonparallel, that is

the meanflow quantities are weakly varying functions of the chorduise
coordinate, and the normal velocity component V is small compared to the
velocity components U (chorduise) and W (spanwise). The meanflow variation

is scaled by introducing the new variable X defined as

X=ex , € =1/R (3)
then we write the mean-flow velocity field as

U(X,y), V(X,y), W(X,y) (4a)

and the mean-flow temperature, density, viscosity, and pressure fields as

olX,y)s o(X,y), u(8), P(X) (4b)

We express the mean-flow quantities in terms of mean and disturbance
motions. The disturbance motions are assumed to vary slowly with the
chordwise coordinate. They are described by an amplitude which is uniform
in the spanwise coordinate and a phase function ¢ (x,z,t) that vary with
both x and z coordinates as well as time t. We use the method of multiple

17 . . .
scales  and expand the disturbance components in power series of e. Then

the mean-flow quantities in dimensionless form can be written as



u = UX,y) + Luo(X,y) + fu (X,y)] exp (i¢) . (5a) .

v = V(X,y) + [vg(X,y) + evi(X,y)] exp (i¢) (5b)
W= WX,y) + [wo(x,y) + ew (X,y)] exp (i) (5¢)
p = P(X) + [PU(X,.Y) + €P1(Xsy)] exp (1¢) X ' ' (Sd)
p = B(X,y) + [, (X,y) +ery (X,y)] exp (i¢) (5e)
0 = 6(X,y) + [Bo(X,y) +e€y(X,y)] exp (i¢) (5f)
wo=u(e)+ -g-g-[eo (X,y) +e6 (X,y)] exp (i¢) (59)
Where the real frequency is
w(X) = - ¢t (6)

and the complex wavenumber components are

a(X) = ¢y (7)

]
-

B(X) = ¢, | (8)

Here the subscripts t, x, and z denote partial differentiation with respect

to these variables. Equations (7) and (8) define a complex wavenumber

vector as
->
K(X) = grad ¢ (9)
and hence
-5
CurT K =20 _ (10)

We substitute Egs. (3)-(8) into the dimensionless equations of
motion, and transform the spatial and temporal derivatives from x, z,
and t to xand ¢ . We eliminate nonlinear terms of the product of the
disturbance quantities since they are assumed to be small, subtract the

average equations of the mean-flow, and equate terms order e° and order ‘e,



The eigenvalue problem that is formed by the zero-order equations can

be written as
{Zoy}- [a] {Zo}= 0 (11)

with the boundary conditions

Zo1 = Zo3 = Zos = Zg7 =0 aty =20 (12)
Zo1s Zo3, Zos, Zo7 * 0 asy =+ <« (13)
where
Zo1= Ugy Ly = uo),,z03= Vs 24 = P,
Z =8 ,172 =8 Z..=w, 1 .=w (14)

08 Oy

and the elements of the matrix a are defined in Appendix I. The boundary
condition (13) assumes that the disturbances are subsonic. It is reminded
here that stability formulation is presented for the infinite-span-wing
boundary layer, where Eqs. (11) consist of eight first order system of
differential equations. The same set of equations governs the three-
dimensional stability of the flat plate boundary layer, except that the
spanwise mean velocity component W will disappear from the elements of the
coefficient matrix a of Egs. (11). However, the two-dimensional stability
of the flat plate boundary layer is governed by a set of six order systems

of differential equations.



11
Equations (11) - (13) are integrated numerically =~ to provide a solution in

the form

{20)= A(X) {z(X,y) } (15)
where r is an eigenmode solution vector that is normalized in some specified
but arbitrary manner, and A is a complex amplitude function which is yet to
be determined.

Using Eq. (15), we write the non-homogensous first-order aquations as

(16)
- )= ,
{ zly} [al{z Y={b}A +b, }AX
;-7 - ) ) ) (17)
- bt L4, =0 aty =0
119213 215 21755 0 a5y » (18)

where the elements of the vectors b; and b, are given in Appendix II. They

are known functions of o, B8, 7, and the meanflow quantitites. By using the

*
adjoint function ¢ (X,y), which is a solution of the adjoint homogeneous

problem;
{c*y 1+ [a] 1"} =0 (19)
= rk = * = * = 0 at = 0
Gz oX = ok O y (20)
* 21
cz,c:,cz, *, > 0 asy -+ = (21)
we write the solvability condition of Egs. {16) - (18) as
T
[iby A+ 304 dy = 0 | (22)



where T indicates the transpose of the vector. We can write Eq. (22) in the

following form for the evolution of A:
A =i o(X)A (23)

where

i T/, T
7= - [ 1n }{C*}dy/f Thp HZ} gy (24)
0

0

The solution of Eq. (24) can be written as
A=A exp [1f T(x)dx] = A jexp [ic fa‘(x)dx] (25)

where Ay is a constant.

The evolution of the wavenumber components o and g are determined as follows.
We replace Z with ¢ in Egs. (11) - (13), differentiate the result with
respect to X and use the symmetry condition (10) to obtain

{cxy} - [a] {zy ¥ =4 {bp} ay ¥ {d} (26)

with homogeneous boundary conditions similar to those given in Egs. (12) and

(13), the vector d is defined in Appendix II1I. Applying the solvability

condition to Eqs. {26) we obtain

— r T T
ay = - f{d } {zg*)} dy/i f{bz}{c*}Td_y (27)
0 0



~ Similary, differentiating Eqs. (11) - (13) with respect to Z and using the

symmetry condition (10) we obtain
By =0 (28)

The evolution of o and B8 is governed by Eqs. (27) and (28). FEquation (28)

indicates that the complex spanwise wavenumber B8 will be constant along the

chordwise coordinate.
Therefore, to the first approximation, Egqs. (5), (17), (25), and (27)
gives

(2o} A, 1dX.y) Texp [if(a+ea)dx+ 82 - iwt] (29)

The effect of the growing boundary layer is reflected in Eq. (29) by

perturbing o to ed@ and by making the eigen solution function of the

chordwise coordinate in addition to being function of the normal

coordinate. In Eq. (29) both gand w are constants.

10



ITI. NUMERICAL PROCEDURE

One can write the real and imaginary parts of o and B as function of a
.
real wave number vector K with direction v, and a real spatial growth rate

vector o with direction ¥, that is

Re(®) =k cos ¥ , Im(@) = -ocos ¥ (30)

Re(B8) = k sin¥ , Im(B) = -osin¥ (31)

For a given R, we specify Re(B) (or the angle ¥) , Im(B),and a dimensionless

frequency defined as
* % *2
F=2 nf" v} JU* (32)

where f* is the dimensional frequency in CPS, and = denotes freestream

conditions. In all numerical results presented in this paper, we chose

Im (B) = 0 at the leading edge, that is y = 9. We note that Eq. (28)
requires that m(g) will remain constant along the chordwise coordinate.
The eigenvalue problem (11) - (13) is integrated numerically fromy =
Ye to the wall using a variable step size algorithm based on the Runge-
Kutta-Fehlburg fifth-order formulas, coupled with an orthonormalization
pr‘ocedure.l8 Following the same procedure, the adjoint problem (19)-(21) is
solved for the adjoint fuction ¢ *, except that it has the same eigenvalues

as the homogeneous problem (11) - (13).

To determine & (X), we need to evaluate x and @y The a s

calculated using Eq. (27), while %, are evaluated by solving the homogeneous

part of Eq. (26) with homogeneous boundary conditions.
11



Using Eq. (29), the spatial growth rate of the disturbance, defined as

Re(Zx/Z), can be written as

o= -Im(a) - ¢ [In(&) - Re (g,/2)] (33)

The first term is the spatial growth rate in a parallel flow, while the second
is a correction due to nonparallel effects. The dependence of the eigen func-
tion ¢ in the chordwise coordinate in the nonparé]]e] theory, made it possible

to determine the growth rate as function of the normal coordinate as well as the

disturbance flow variable.

Because a hot wire anemometer in a supersonic stream responds to both
mass-flow and total temperature disturbances, we use these disturbance flow
variables to demonstrate the theoretical results. The anplitude function of the

mass-flow disturbance is given by
2
ou=[UGM "~ z, -z /0) + ¢ Vo (34)
and the amplitude function of the total temperature disturbance is given by

2
T=2, +(r-1) MU (35)

12



IV.  FLAT PLATE BOUNDARY LAYER AT M _= 4.5

In this section, we compare the theoretical growth rates of a
three-dimensional disturbances with ¥ = 550, and a two-dimensional distur-
bance (¥ = 0°%) in the flat plate supersonic boundary layer with the

experimental findings of Kenda]]ls-
A. Theoretical Results

For a three-dirmensional disturbance with wave éng]e y= 55° and frequency
F =30 x l(T6 (first mode), Fig. 2 shows theoretical results of the varia-
tion of the mass-flow amplitude Ipu|as well as the total temperature
amplitude | T| with normal coordinate y at R = 1550. Both are normalized
with leu | m, the maximum value of |py} The variation of loy| and |T] with y
is typical for the unstable frequency range at R = 1550, except that the
y-location of the peak value varies slightly with frequency. The peak loca-
tion of |pu|, for example, changes fromy = 12.7 at F = 5 x 10-8 to y = 12.0
at F = 75 x 10-%, the peak value is not sharp in general, but extends over a
considerable normal distance as shown in figure 3. While | T |has two peak
values, |pu| has only one peak that is twice as much as the higher peak
value of || and occurs at different y-locations.

The normal structure of the different amplitude functions evolves
differently as the disturbance travels downstream. Hence, at each normal
Tocation, [py| and |T| vary differently in the chordwise direction. Because
of this behaviour, growth rates based on the amplitudes loul and |T Iare
functions of y at fixed x-locations. This is shown in Fig. 2 as olpu1
and o|T | respectively. The discontinuity in oloul curve at y = 6 is due to

a near zero amplitude of |eu| at this y-location.

13
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Figure 2, Variation of the amplitudes and growth
rates of the mass flow and total temperature
disturbances with the normal coordinate at

R = 1550 (first mode).
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At the same chordwise location, R = 1550, we calculated the growth
rates of a two-dimensional disturbance at higher frequencies (second mode).
For the frequency F = 130 x 1078 » fig. 4 shows the variation of the mass-
flow amplitude |puland the total temperature amp]itudel Tl (normalized with
the maxirum value of |oul| ), together with the variation of the growth
rateso|pu| ando| T| with y-coordinate. Again, the variation of |pu| and | T ]
with y is typical for the unstable frequency range at R = 1550, with the
y-location of the peak value varies slightly with frequency. The peak
Tocation of |pul varies from y =12.40 at F = 120 x 10"6 toy = 12.05 at
F =158 x 10_6. Figure 5 shows the variation of the peak location of loul|
with y for this frequency range, and shows that wide peaks exist at some
frequencies. In constrast with the first mode, fig. 4 shows that for the
second mode the peak value of | T | (the higher one) is twice as much as the
peak value of |pu| and occurs at different y-locations.

B. Comparison With Experiment

It is worth noting that, Tike the theory, the experiment also gives
different stability conditions depending on the normal location of the
measurements as well as the disturbance variable measured.

Here we compare the theoretical results with the experimental findings of
Kenda]]ls. This experiment possesses some advantages that made it the most
suitable for comparison with the linear stability theory. The experiment
was performed in the JPL 20-inch wind tunnel where the tunnel wall boundary
Tayer were laminar. A small disturbance of almost pure frequency was
produced by a glow-discharge generator, and introduced at an angle y= 0° and
¥ = 55°, The chordwise growth rate of the disturbances were determined for
boundary-layer flow at Mach number 4.5 by following the maximum amplitude
point. Three-dimensional disturbances, introduced at ¥ = 55°, were found to

grow nearly equal at various spanwise z-locations.

16
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A hot wire in a supersonic flow responds to both mass-flow and total
temperature disturbances with a ratio depending on the sensitivity coeffici-
ents that are determined by mean-flow conditions and the mean temperature of
the hot wire. Unless measurements are conducted following a contour of
constant y-location (y*/L* constant), sensitivity of the hot wire to changes
in the mean-flow conditions cannot be avoided. Also, the hot wire response
when operated at high constant overheat is proportional to the mass-flow
disturbance, its sensitivity to the total temperature disturbance_is
minimized.

In Kendall experiment, the distribution of the measured disturbance
amplitudes across the boundary layer were almost similar at different
x-locations. Hence, the maximum amplitude points followed in the experiment
had a contour of almost constant y-location, and sensitivity of the hot wire
to changes in the mean-flow conditions was minimum. The hot wire was
operated at high constant overheat to minimize its sensitivity to total
temperature disturbance. Hence, energy fluctuations obtained by traversing
the hot wire through the boundary layer at different x-locations for
particular frequency, have been interpreted as being nearly proportional to
the mass-flow disturbance amplitude.

Figure 6 shows theoretical growth rates of a three-dimensional
disturbance with wave angle ¥ = 55° (first mode) as function of the
dimensionless frequency F at R = 1550. Parallel results, that is neither
function of the normal coordinate nor the disturbance flow variable, is
indicated by a dashed line, it coinsides with the results of Mack given in
reference 19. Nonparallel growth rates, indicated by a solid 1line, are
calculated applying Eq (33) at the y-location where the mass-flow
disturbance has a maximum. Kendall measurements of the growth rates

following the maximum of a disturbance amplitude detected by the hot wire

19
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Figure 6. Variation of the growth rates of a
three-dimensional disturbances, ¥ = 55° (first
mode) with frequency, at R = 1550,



are given also in the same figure for comparison. Nonparallel results
enhances the comparison between the theory and experiment by shifting the
theoretically predicted growth rates to higher values compared to parallel
results. However, higher growth rates are given by the experiment in the
frequency range from 10 - 35 x 10_6.

Figure 7 shows the theoretical growth rates of a second mode
disturbance with ¥ = 0°, as function of frequency at R = 1550. Parallel
results indicated by the dashed 1ine compares with that of Mack given in
reference 19. Nonparallel results, indicated by the solid 1ine, are calcu-
lated applying Eq. (33) at the y-location where the mass-flow disturbance
has a maximum. Experimental growth rates by Kendall are given also in the
same figure for comparison. The maximum of the disturbance amplitude
detected by the hot wire is followed in these measurements. Nonparallel
results again enhances the comparison between the theory and experiment by
shifting the theoretically predicted unstable frequency range to higher
values compared to parallel unstable frequency range.

It should be pointed out that the location of the peak detected by the
hot wire at fixed x-location was assumed to be the same for all frequencies
as indicated later by Kenda]]zo, and that slightly different experimental
data could have been attained for other frequencies by searching out the
peak corresponding to a particular frequency as we did in the theory. The
spread of the experimental data shown in Fig. 6 and Fig. 7, and the diffi-
culty in comparing it with the theoretical results is expected. This
experiment, like others, is not designed specifically to verify the non-
parallel stability theory. Hence, the effect of the nonparallel flow, prob-
ably, has contributed to the difficulty in comparison. The dependence of
the hot wire response not only on the mass-flow disturbance but also on the

temperature disturbance, even with a minimum unknown percentage, has

21
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contributed also to this difficulty, figure 2 and figure 4 show that the
variation of the growth rates 0|pu| and © IT I are different with the
y-location.

The wide peaks of |p u I at some frequencies make it difficult
experimentally to measure the actual growth rates, specially if growth rates
change rapidly around the peak location as indicated in Fig. 2 and Fig. 4.
This is demonstrated in Fig. 8 which shows the variation of the growth rate of
the mass flow disturbance with the normal coordinate around its peak amplitude
at the frequencies F = 15 x 10-° (first mode), and F = 125 x 10—6 (second
mode). Experimental growth rate measurements around these frequencies are
shown in Fig. 8 to fall within the wide peak of the amplitude h>u I that is
off 1.5-3 percent from the peak value. Changes in the growth rates of lpul
corresponding to an average of 2 percent deviation from the peak value is
calculated for all unstable frequencies of the first and second modes.
Calculated growth rates form a band that is shown by the hashed area in

Figs. 6 and 7. Most of the experimental data fall within this band.

- 23



24

12

LA DN N S AL AL IR |

lllllllllllll

-5
— F=15x10,
-—— F = |2.5X|5|O
® KENDALL
[ PR B * e
40 8

Figure 8. Variation of the growth rate of the mass
flow disturbance with the normal coordinate
around its peak amplitude for a first and a
second mode frequencies, and the corresponding
experimental growth rate measurements.,




V. BOURDARY LAYER ON A TRANSONIC SWEPT WING

The nonparallel stability theory presented in section 2 is epplied to the
boundary layer with suction on a 239 swept infinite span wing. The airfoil sec-

tion is supercritical with a normal chord € = 1.98 m, and the freestream Mach

number is 0.82. Parallel stability characteristics of the boundary layer on

. . . . 21
this wing have been investigated by E]—Hadylz and Mack . However, scwme incom-

_ 12
plete nenparallel calculetions have been reported by El-Hady for the same wing.

Figure 9 shows the distribution of the pressure coefficient Cp on the upper
surface of the airf{ojl section together with the distribution of the suction coefficient
aiong the chord. The suction coefficient is defined as Cg = -pcVo/pules where the
subscript o denotes wall condition.

On a sweptback wing the boundary layer is three-dimensional due to the
presence of bouncary layer crossflow. Because the crossflow profiles are highly
dynamically unstable, crossflow instabilities generate and dominate both the

leading edge and rear parts of the wing where the mean crossflow components have

large values.

Ve advance a band of initial wavelengths of constant frequency disturbances at
the leading edge. These disturbances develcp downstream according to Eqs. (25),
(27), and (28) . The spanwise component of the wavelength AZ/C (normalized with the
normal chord) remains constant, and ¥ remains zero if its initial value at the
leading edge is zero. We calculate the parallel and nonparellel growth rates as well
as the logarithmic amplitude ratios of these wave components as they develop downstream.

The logarithmic amplitude ratio N is calculated from
R

N=Tn5+ =2 s o &R

Ry (36)

where Ro is the initial Reynolds number at the Tower branch of the neutral

stability curve, and &, is the corresponding disturbance amplitude. The o in

25
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the above forrula is calculated by using Eq. (33) for a constant frequency F.
A1l results presented here are for the stationary crossflow disturbances, that
is F = 0.

Calculations at the leading edge region show that a wave component.with
constant Xz/c =-0.00054 has the largest arplitude ratio, however, a wave con-
ponent with constant Az/c = 0.0036 has the largest arplitude ratio at the rear
part of the wing. For these wave components, figure10 shows the variation of

loul and o]pu] with y at the chordwise Tocations x/c = 0.015 (for *z/c =
0.00054) and x/c = 0.90 (for *z/c = 0.0036). The growth rate olpu] changes
rapidly around the peak of ]pu]. We use the value of g|pu| at the y-Tocation
where |pu] is maximum to represent the nonparallel results as we did in the pre-
vious section.

Figures 11 and 12 show the parallel and nonparallel unstable regions of
three wave components around the most unstable one (that gives the Targest
amplitude ratio) as well as their growth rates as they develop downstream At
the leading edge region, figure l1lindicates that the nonparallel maxirum growth
rates are 30 - 45 percent higher than the parallel. It is worth noting that
this region extends to about 10 percent of the chord. The boundary layer is
accelerated rapidly from the leading edge to x/c = 0.025, and small suction
rates are applied to the boundary layer starting at this location. It is clear
from figurell that in this region, parallel and nonparallel maximum growth rates
are affected only by the rapidly accelerated boundary Tayer rather than suction
rates.

At the rear part of the wing, figure 12 shows that the nonparallel maximum
growth rates are 15 - 30 percent less than the parallel. The boundary layer in
this region is severely decelerated and high suction rates are applied to it
(peak of Cg = 0.0018). The sudden drop in the parallel growth rates around

x/c = .84 is due to the peak suction rate. Here, maxirum growth rates are

affected by both the adverse pressure gradient and the severe suction rates.

27
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Figure 13 shows the variation of the maximum logarithmic amplitude ratio

with the wave components of constant xz/c. At the leading edge,

the boundary layer flow is destablized due to the nonparallel flow

effects. Higher nonparellel Nmax is shown with nearly 64 percent maximum dif-
ference compared to the parallel Ny,,- On the contrary, at the rear part the

boundary layer is stabilized due to nonparallel flow effects with a maximum

reduction in No.. of nearly 43 percent. Figure 11 shows also a slight shift in
the value of the most unstable wave component A;/c due to nonparallel flow

effects. The most unstable wave component at the leading edge reaches its maxi-

mum amplitude at x/c = 0.032 (R = 900) while at the rear part, the maximum

amplitude is reached at the trailing edge.
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VI. COHCLUDING REMARKS

1. A method is presented to investigate the two- and three-dimensional
stability of compressible boundary layer flows. The method is suitable for the
flat plate boundary layer as well as the boundary layer on an infinite swept-
back wing, where the meanflow is independent of the spanwise coordinate.

2. Nonparallel stability results for the flat plate boundary layer at Mach
nunber 4.5 are in better agreement with Kendall experiments than the parallel
stability results.

3. Nenparallel flow effects on crossflow instabilities are calculated for
a specific infinite span transonic swept wing. The destabilizing effect at the
leading edge and the stabilizing effect at the rear part is believed to be
directly affected by the pressure gradients and the suction rates at this

region.
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APPENDIX I.

The nonzero elements of the matrix a in equation (13) are:

p = 1
51 jB% + a4 32

u
3 = ‘]ljl
33 R - oy (m+ 1) g

1o u o
a5y = i_;ng_ (m+ 1) Moo
ags = (m+ 1) af - (ﬁg')'
226 = O
az) = -l
233 = &

- 2
a34 = ']YM@Q
235 ~ 1%
agy = -18
a2 = -ixe
- ) n . 2 2
agr = x(ru'e’ re' _ iRe _ o - g°)
43 5 + o T
Ay = -fxryﬂi (' +0')e + oU'+ gH
v e
apg = -ix (0+r) (aU'+ gW')+ rp's
H 0] 111C]
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Qe = ixre
46 -
347 = -ixs (2u' , ro')
u 0.
34g = ~1xB
g = ]
agy = -2r (v - 1) M2
agy = Rre' _ 2ir (y - 1) Mi (aU' + gW')
uo
y
2 I2 |2 1
ags = iRra + o+ g2 - G- TLM] T (US4 wt) -t
ud H u
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1
ags = (m+ 1) g2 _ (pu')’
© n
agg = MM
M
. 2 2
ag; = iR, o" + 8
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agg = “B_
n
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[« %

p = dp

0
r is Prandtl number, m =2 (e - 1)/3, and r = 2 (e + 2)/3, where e.= 0

corresponds to the Stokes hypothesis, it is taken e = 0.8 in this analysis,

The prime denotes differentiation with respect to y, and u is used here

for the meanflow viscosity.



APPENDIX II.

The nonzero elements of the vectors b, and b, in equation (18) are:

b,, = C, I, + C212

12 = 04
by3 = G314
brg = CgIy + Cgli + Col,
byg = G715

b]8 = CBI] + 0214

bop = CyIg + Coly

b,3 = C31g
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Bog = C2110
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N _ . '
€y = -1 (m+ 1) a0, C, = —E, c3 =0, Cp = rx (E;Q_ + 20), c5 = X0,

Cg = Rx» C; = —%z, Cg = -1 (m+ 1) go

H
and
I, = 1 U, + V' - 2 (Ue, + Vo') Z
1 — X = X 5+ Ugpy + Vo + 1 0,
o2 ) 5X 6 7z X 1
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- © R ©
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APPENDIX III.

The nonzero elements of the vector d in equation (32) are:

= 1 In. (N . N
dy = iRBg gy + By gyt UR (1 U'y-By)+ fo (By¥miBy) g4
uo : u U
- (iR wy + moyM2B%) ¢, +  meB. - 1 (pU")y +1 (3U*) z
—02 WX Moo 4 57 ~ X T Py VR 5
2 o 2
H H
u

_ .2 .

dg = iaZXD7 B, + ia (ZB3 +r 84) T+ ia2xB] Ty - X (551_84 +

ro' By - rBy + 1R B + 30, B;) tg*+ irxyME  xBy Dy - By Dy +

(B3 + Byle - By Gt x Dy BygDyr o+ Dy gy + B
0 B 10

-%2(83“% o) - x By Dg t5+ir5<(85-%;387)c6+isxx

. 2
(283 + rB4 + XDJ B7) g7 + iBx B7 Zg

©

'
dg = -Dgl'x %o - (RLBy + RIO uy + 2105 Byg) 23+ IR Dg (2 1wy - By) ¢4
7 o

LG

|

> ~ [ [] 2 2 -
+ iRT Bg - 2u Dg (U'U'y + W'W'y) - Dg (U'" + W') (&, * By 4
1o ! n’X

+ 283 Lg - 2 D6 W'X Zg

. . . 2
dg = ig (B3 +m B4) + %6' (w'x - ByW ) T3 - (1§§-”x + mpyM_ BZ)X
1]
M8 (B, - 0 0,) - 1 (WYD -1 (WA -1y (aM') g
4 o 2 5 X ” X ” X i X 5

7

Ut By tet IR Byop v By g

42




By = 1’ 1ny - 11
3 ;-2- X ” X
B, =0'6, -160'
4= 5% % 5%
)
B- =B, -9% 6
5 2 X
5 o
u
B, = iryM?B, - R
7 RNt © 2 _2_1JX
gt
BB = 82 - Q B]
Ba = it
9 (5
Byg = oll'y * W'y
Byy = _(u"
and
D, = o2 - g2+ ru'e' + re" - iR
ne ¢} He
D = ,ul + e|
2 e
D3 = o' + gW'
D4 = ¢ 02 + D3
Dg =r+ i
5 5
DB DBDS+ ru'd
ne

43



o
[+

44

~

2u' + ro'
M ©

oy - 1) M



1.

Report No.

NASA CR-3474

2. Government Accession No. 3.

Recipient’s Catalog No.

a.

Title and Subtitle

ON THE EFFECT OF BOUNDARY LAYER GROWTH ON THE

STABILITY OF COMPRESSIBLE FLOWS

5. Rébort bate ]
October 1981
6. Performing Organization Code

N

Author(s)
Nabil M. El-Hady

8. Performing Organization Report No.

10. Work Unit No.

Performing Organization Name and Address

01d Dominion University

Mechanical Engineering and Mechanics

Norfolk, Virginia 23508

11. Contract or Grant No.
NSG-1645
13. Type of Report and Period Covered

12.

Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546

Contractor Report

14. Sponsoring Agency Code

Supplementary Notes

Langley Technical Monitor:

Final Report

William D. Harvey

16. Abstract
The method of multiple scales is used to describe a formally correct method based on
the nonparallel linear stability theory, that examines the two- and three-dimensional
stability of compressible boundary-layer flows. The method is applied to the
supersonic flat plate boundary layer at Mach number 4.5. The theoretical growth
rates are in good agreement with the experimental results of Kendall. The method
is also applied to the infinite-span swept wing transonic boundary layer with
suction to evaluate the effect of the nonparallel flow on the development of cross-
flow disturbances.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Boundary layer stability Unclassified - Unlimited
Nonparallel
Compressible

P Subject Category 34
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22, Price

Unclassified

Unclassified

45 AO3

For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-Langley, 1981



