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I. INTRODUCTION 

The linear instability of small amplitude disturbances in boundary- 

layer flows has received considerable attention in an attempt to develop a 

better understanding of this aspect of the transition process. This 

instability is sufficiently described b-y the parallel stability theory, 

whet-e the boundary-layer flow is assumed to be parallel. In spite of the 

qualitative S~JCCCSS of this assumption, experiments have shown systc;!latic 

differences from the parallel stability theory. 

Apart from pt-edicting a critical F?cynolds number that is lo:,:cr than 

that given by the parallel stability theory, evidence from the cxperirznts 

show that the growth rate of the disturbance is a function of the coordinate 

normal to the wall in a subsonic or supersonic boundary layer. The parallel 

stability theory cannot predict that and consequently a detailed comparison 

with experiment cannot be made in a meaningful way to the necessary degree 

of precision, the parallel theory gives only a qualitative results. Also in 

cases where large pressure gradient or large amount of suction exists as in 

laminar flow control systems, the parallel theory fails to predict 

accurately the stability characteristics. 

With the advancement of the numerical techniques and the possibility of 

solving the disturbance equations to considerable accuracy, a more critical 

comparison with experiments seems now possible. This demands a consistent 

theory describing the behavior of the disturbances over large regions of a 

real growing boundary layer. The nonparallel stability theory, which takes 

into account the dependence of the flow parameters on the chordwise 

coordinate (see Figure 1 for the coordinate system), as well as the 
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Figure 1. The Coordinate system. 
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velocity normal to the the wall, this theory gives a more accurate 

mathematical model for the development of the disturbance. The full non- 

parallel incompressible stability problem for two-dimensional boundary-layer 

flovrs has been solved by Bouthierl '*, Nayfeh et a13, and Gster4, and 

applied to different types of boundary-layer flows 
S-P,22 

. The nonparallel corn-- 

pressible problem has been reported by El-li'ady', El-!-2d.v and thyfeh 
IO 

11,12 13 
for tk:o-dimensional flo!:'s, and by El-Hady and Nayfeh for three- 

14 
dimensional boundary layer flobqs. The work of Gaponov , which zppeat-ed 

during writing this report, investigates only the nonparallel erfects on 

two-dimensional disturbances. 

It is the purpose of the present work to describe a formally correct 

method, based on the nonparallel linear theory, that examines the two- and 

three-dimensional stability of compressible boundary-layer flo\!s. The 

method is applied to the .supersonic flat plate boundary layer at Xach number 

4.5, and the theoretical growth rates of disturbances are compared with the 

experimental results of Kendall l? The method is applied also to the 

infinite-span swept wing boundary-layer flow with suction at Mach number 

il.22 to evaluate the effect of the nonparallel flow on the developnent of 

cross-flow instabilities. 



II. yOp:PRRALLEL SPATIAL STABILITY THEORY 

This study is concerned with the stability of small amplitude 

disturbances in two types of boundary-layer flows, the flat plate supersonic 

boundary layer, and the infinite-span swept wing transonic boundary layer 

with suction. In both types, the flcan flow is independent of the spanwise z*- 

coordinate. Hok:ever, the ;;;ost al;lplified Tollmien-Schlichting instabilities 

can be chordb/ise (two-diI;lcnsional) or oblique (three-dimensional) for the 

16 
flat plate supersonic boundary layer , but certainly oblique for the 

infinite-span wing transonic boundary layer. In the latter, crossflow 

instabilities also exist due to the presence of boundary-layer crossflow. 

I!e consider disturbances that is generated by a steady source 

oscillating at the frequency w* (monochromatic wave) at the curve x* = 0. 

This spatial wavetrain is assumed to be of uniform amplitude in the 

spanwise coordinate, but with variable phase. With this in mind, we present 

here a formulation for the stability problem of the infinite-span wing 

boundary layer. All spanwise variation of the meanflow and disturbance 

quantities is zero. 

We begin with the equations of motion for compressible flow, and 

introduce dimensionless quantities by using as reference, the values at the 

edge of the boundary layer, and a reference length L* defined as 

L* = ( $x*/u?#/2 (1) 

where U* is the kinematic viscosity coefficient, x* is the distance 

perpendicular to the leading edge, and U* is the velocity in the chordrqise 

Xf - direction. Mre, * denotes a dimensional quantity, and e denotes 
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the condition at the edge of the boundary layer. Then, the Reynolds number 

is defined as 

R = U;L*,,,; = (UZx*/"e)1/2 (2) 

We consider the boundary-layer flow to be weakly nonparallel, that is 

the meanflow quantities are weakly varying functions of the chordarise 

coordinate, and the normal velocity component V is small covared to the 

velocity components U (chordwise) and W (spanwise). The rneanflol:r variation 

is scaled by introducing the new variable X defined as 

X=EX , E =1/R 

then we write the mean-flow velocity field as 

(3) 

UGLY 13 WLYL W,Y> (W 

and the mean-flow temperature, density, viscosity, and pressure fields as 

O(X,Y), P(LYL WL P(X) W 

We express the mean-flow quantities in terms of mean and disturbance 

motions. The disturbance motions are assumed to vary slowly with the 

chordwise coordinate. They are described by an amplitude which is uniform 

in the spanwise coordinate and a phase function +(x,z,t) that vary with 

both x and z coordinates as well as time t. We use the method of multiple 

scales 
17 

and expand the disturbance components in power series of E. Then 

the mean-flow quantities in dimensionless form can be written as 

5 



u = UGLY) + h0CW + EQLy)l exp W 

v = WLY) + ho IX d) + EVA U,Y)I exp (id 

W= WLY) ‘+ Cb)(X,Y) + EWE U ,y)l exp (iipj 

P= P(X) + CPJLY) + EPJX,Y)I exp (iad . 

P = WLY) + Co, CLY) + v1 (Ly)l exp (i+ 1 

0 = o(X,y) + PO (LY) + Eel (Ly)l exp WI 

u = iJ (0) + $Po (x,y) t E8 1 V,Y)I w W 1 

Where the real frequency is 

b) 
W4 
(54 

(5d) 

(54 

(5.0 

(59) 

fJl (X) = - Gt (6) 

and the complex wavenumber components are 

a(X) = 4, (7) 

B(X) = 9, (8) 

Here the subscripts t, x, and z denote partial differentiat 

to these variables. Equations (7) and (8) define a complex 

vector as 

ion with respect 

wavenumber 

g(X) = grad 0 (9) 

and hence 

cur-1 ?; = 0 (10) 

We substitute Eqs. (3)-(8) into the dimensionless equations of 

motion, and transform the spatial and temporal derivatives from x, z, 

and t to X and Q, . We eliminate nonlinear te-rms of the product of the 

disturbance quantities since they are assumed to be small, subtract the 

average equations Of the mean-flow, and equate terms order co and order ;E. 

6 
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The eigenvalue problem that is formed by the zero-order equations can 

be written as 

IZoY 
I- [a] {Z,l= 0 

with the boundary conditions 

ZOl = 203 = zos = 207 = 0 aty=O 

ZOl, Z03, zos, 207 + 0 asy + 0 

zo1= uos zo,= uo , 03 = v, z,, Y z = P, 

z,,= eo, Z06 =e OY ’ 
zo7 = w, z,, = w 

OY 

(11) 

(12) 

(13) 

(14) 

and the elements of the matrix a are defined in Appendix I. The boundary 

condition (13) assumes that the disturbances are subsonic. It is reminded 

here that stability forrmlation is presented for the infinite-span-wing 

boundary layer, where Eqs. (11) consist of eight first order system of 

differential equations. The same set of equations governs the three- 

dimensional stability of the flat plate boundary layer, except that the 

spanwise mean velocity component W will disappear from the elements of the 

coefficient matrix a of Eqs. (11). However, the twodimensional stability 

of the flat plate boundary layer is governed by a set of six order systems 

of differential equations. 



Equations (11) - (13) 
11 

are integrated nurxrically to provide a solution in 

the form 

I z. I= A(X) IdLY) 1 (15) 

where 5 is an eigenrnode solution vector that is normalized in some specified 

but arbitrary manner, and A is a complex amplitude function which is yet to 

be determined. 

Using Eq. (15), we b:rite the non-ho;:logensous first-order ,oquations as 

i Zlyl - [a]{ Z, I= Ib,jA +(b, IA 
X 

Z 
11 

= Z13= Z,5 = Z,, = 0 at y = 0 

Z 11' Z.,, Z,,, Z,, + 0 as y -+ m 

where the elements ofthe vectors bJ and b, are given in Appendix II. 

(16) 

(17) 

(18) 

are known functions of a, B, 5, and the meanflow quantitites. By using the 
* 

adjoint function <(X,y), which is a solution of the adjoint homogeneous 

problem; 

1c*y I + Cal is*1 = 0 
c* = c* = 5* = c* =0 aty=O 

2 4 6 8 

0 asy + m 

we write the solvability condition of Eqs. (16) - (18) as 

(22) 



where T indicates the transpose of the vector. We can write Eq. (22) in the 

following form for the evolution of A: 

Ax = i a( 

where 

The solution of Eq. (24) can be written as 

A = Aoexp [i 
s 

z(X)dX] = Aoexp [ic 
s 

G(X)dx] 

(23) 

(24) 

(25) 

where A, is a constant. 

The evolution of the wavenunber components aand B are determined as follows. 

We replace Z with 5 in Eqs. (11) - (13), differentiate the result with 

respect to X and use the symmetry condition (10) to obtain 

i 5xy3 
- bl isx 1 = i Ib21 ux + Id 1 (26) 

with homogeneous boundary conditions similar to those given in Eqs. (12) and 

(13), the vector d is defined in Appendix III. Applying the solvability 

condition to Eqs. (26) we obtain 

a0 

I 

id 1 {<*IT dy 
I 

m 

Ox = - i 
s 

{ b2jk*jTdy 
0 0 

(27) 
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Similary, differentiating Eqs. (11) - (13) with respect to Z and using the 

symmetry condition (10) we obtain 

8X =o (28) 

The evolution of a and B is governed by Eqs. (27) and (28). Equation (28) 

indicates that the complex spanwise wavenumber 8 will be constant along the 

chordwise coordinate. 

ThL?refore, to the first approximation, Eqs. (5), (17), (25), and (27) 

gives 

1 Z o I= A0 IdX,y> 1 exp ci 
s 

(a+~6 ) dx+ i6z - iwt] 

The effect of the growing boundary layer is reflected in Eq. (29) by 

perturbing a to EC and by making the eigen solution function of the 

chordwise coordinate in addition to being function of the normal 

coordinate. In Eq. (29) both 6 and w are constants. 

(29) 

10 



III. NUMERICAL PROCEDURE 

One can write the real and imaginary parts of a and B as function of a 

real wave number vector Lwith direction Y, and a real spatial growth rate 

vector g with direction G; that is 

Re(a) = k cos y , Im(a) = -acOS ‘F (30) 

Re(f3) = k sinY , Im(f3) = -0SinG (31) 

For a given R, we specify Re(B) (or the angle Y) , Im(B),and a dimensionless 

frequency defined as 

(32) 

where f* is the dimensional frequency in CPS, and m denotes freestream 

conditions. In all numerical results presented in this paper, we chose 

Im (B) = 0 at the leading edge, that is w = 0. We note that Eq. (28) 

requires that Im(B) will remain constant along the chordwise coordinate. 

The eigenvalue problem (11) - (13) is integrated numerically from y = 

ye to the wall using a variable step size algorithm based on the Runge- 

Kutta-Fehlburg fifth-order formulas,.coupled with an orthonormalization 

18 
procedure. Following the same procedure, the adjoint problem (19)-(21) is 

solved for the adjoint fuction 5*, except that it has-the same eigenvalues 

as the homogeneous problem (11) - (33). 

To determine z(X), we need to evaluate 5x and ax= The QX is 

calculated using Eq. (27), while 5, are evaluated by solving the homogeneous 

part of Eq. (26) with homogeneous boundary conditions. 

11 



Using Eq. (29), the spatial growth rate of the disturbance, defined as 

Re(Z,/Z), can be written as 

CJ = -Im(a) - E CIm( d ) - Re (s,/r)l 

The first term is the spatial growth rate in a parallel flow, while the second 

is a correction due to nonparallel effects. The dependence of the eigen func- 

tion c in the chordwise coordinate in the nonparallel theory, made it possible 

to determine the growth rate as function of the normal coordinate as well as the 

disturbance flow variable. 

Because a hot wire anemometer in a Supersonic stream responds to both 

mass-flow and total temperature disturbances, we use these disturbance flow 

variables to demonstrate the theoretical results. 

mass-flow disturbance is given by 

PU = cU(vMm2 5, -r,/o) + 5, I/o 

The amplitude function of the 

(34) 

and the amplitude function of the total temperature disturbance is given by 

T = 5, + (Y- 1) Mf U 5, 

12 

(35) 



IV. FLAT PLATE BOUNDARY LAYER AT Mm= 4.5 

In this section, we compare the theoretical growth rates of a 

three-dimensional disturbances with I = 55 o, and a twodimensional distur- 

bance ( Y = 0') in the flat plate supersonic boundary layer with the 

experimental findings of Kendall15= 

A. Theoretical Results 

For a three-dimensional disturbance with wave angle Y= 55" and frequency 

F = 30 x 1V6 (first mode), Fig. 2 shop;s theoretical results of the varia- 

tion of the mass-flow amplitude \Q,/ as well as the total temperature 

amplitude ] T 1 with normal coordinate y at R = 1550. Both are normalized 

with ~4ll, the maximum value of IpuC The variation of IPUI and ITI with y 

is typical for the unstable frequency range at R = 1550, except that the 

y-location of the peak value varies slightly with frequency. The peak loca- 

tion of Ipu I , for example, changes from y = 12.7 at F = 5 x 10S6 to y = 12.0 

at F = 75 x 10m6, the peak value is not sharp in general, but extends over a 

considerable normal distance as shown in figure 3. While 1 T I has two peak 

values, lpul has only one peak that is twice as rmch as the higher peak 

value of 1 TJ and occurs at different y-locations. 

The normal structure of the different amplitude functions evolves 

differently as the disturbance travels downstream. Hence, at each normal 

location, lpul and ITI vary differently in the chordwise direction. Because 

of this behaviour, growth rates based on the amplitudes IPUI and 1 T l are 

functions of y at fixed x-locations. This is shown in Fig. 2 as a]~uj 

and CJIT 1 respectively. The discontinuity in dl~ul curve at y = 6 is due to 

a near zero amplitude of lpul at this y-location. 

13 
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Figure 2. Variation of the amplitudes and growth 
rates of the mass flow and total temperature 
disturbances with the normal coordinate at 

R = 1550 (first mode). 
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Figure 3. Normal location of the peak value of the 
mass-flow amplitude at R = 1550 and different 

frequencies (first mode). 
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At the same chordwise location, R = 1550, we calculated the growth 

rates of a two-dimensional disturbance at higher frequencies (second mode). 

For the frequency F = 130 x 1W6 , fig. 4 shows the variation of the mass- 

flow amplitude lpuland the total temperature amplitudeI. TI (normalized with 

the maxir;um value of l~ul ), together with the variation of the growth 

ratesalpul andal T I with y-coordinate. &ain, the variation of 1~~1 and I T 1 

with y is typical for the unstable frequency range at R = 1550, with the 

y-location of the peak value varies slightly with frequency. The peak 

location of 1~~1 varies from y = 12.40 at F = 120 x 10S6 to y = 12.05 at 

F = 158 x lo? Figure 5 shows the variation of the peak location of l~ul 

with y for this frequency range, and shows that wide peaks exist at some 

frequencies. In constrast with the first mode, fig. 4 shows that for the 

second mode the peak value of IT I (the higher one) is twice as much as the 

peak value of]Pul and occurs at different y-locations. 

B. Comparison With Experiment 

It is worth noting that, like the theory, the experiment also gives 

different stability conditions depending on the normal location of the 

measurements as well as the disturbance variable measured. 

Here we compare the theoretical results with the experimental findings of 

Kendall15. This experiment possesses some advantages that made it the most 

suitable for comparison with the linear stability theory. The experiment 

was performed in the JPL ZO-inch wind tunnel where the tunnel wall boundary 

layer were laminar. A small disturbance of almost pure frequency was 

produced by a glow-discharge generator, and introduced at an angle \Y= 0" and 

y = 55O. The chordwise growth rate of the disturbances were determined for 

boundary-layer flow at Mach number 4.5 by following the maximum amplitude 

point. Three-dimensional disturbances, introduced at'? = 55", were found to 

grow nearly equal at various spanwise z-locations. 

16 
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Figure 4. Variation of the amplitudes and growth 
rates of the mass flow and total temperature 
disturbances with the normal coordinate at 

R = 1550 (second mode). 
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Figure 5. Normal location of the peak value of the 
mass-flow amplitude at R = 1550 and different 

frequencies (second mode). 
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A hot wire in a supersonic flow responds to both mass-flow and total 

temperature disturbances with a ratio depending on the sensitivity coeffici- 

ents that are determined by mean-flow conditions and the mean temperature of 

the hot wire. Unless measurements are conducted following a contour of 

constant y-location (y*/L* constant), sensitivity of the hot wire to changes 

in the mean-flo\ir conditions cannot be avoided. Also, the hot wire response 

when operated at high constant overheat is proportional to the mass-flow 

disturbance, its sensitivity to the total temperature disturbance is 

minimized. 

In Kendall experiment, the distribution of the measured disturbance 

amplitudes across the boundary layer were almost similar at different 

x-locations. Hence, the maximum amplitude points followed in the experiment 

had a contour of almost constant y-location, and sensitivity of the hot wire 

to changes in the mean-flow conditions was minimum. Tne hot wire was 

operated at high constant overheat to minimize its sensitivity to total 

temperature disturbance. Hence, energy fluctuations obtained by traversing 

the hot wire through the boundary layer at different x-locations for 

particular frequency, have been interpreted as being nearly proportional to 

the mass-flow disturbance amplitude. 

Figure 6 shows theoretical growth rates of a three-dimensional 

disturbance with wave angle y= 55" (first mode) as function of the 

dimensionless frequency F at R = 1550. Parallel results, that is neither 

function of the normal coordinate nor the disturbance flow variable, is 

indicated by a dashed line, it coinsides with the results of Mack given in 

reference 19. Nonparallel growth rates, indicated by a solid line, are 

calculated applying Eq (33) at the y-location where the mass-flow 

disturbance has a maximum. Kendall measurements of the growth rates 

following the maximum of a disturbance amplitude detected by the hot wire 

19 
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Figure 6. Variation of the growth rates of a 
three-dimensional disturbances, Y= 55” (first 

mode) with frequency, at R = 1550. 



are given also in the same figure for corrparison. Nonparallel results 

enhances the comparison between the theory and experiment by shifting the , 

theoretically predicted growth rates to higher values compared to parallel 

results. However, higher growth rates are given by the experiment in the 
-6 

frequency range from 10 - 35 X 10 l 

Figure 7 shows the theoretical growth rates of a second node 

disturbance with Y = O", as function of frequency at R = 1550. Parallel 

results indicated by the dashed line compares with that of Mack given in 

reference 19. Nonparallel results, indicated by the solid line, are calcu- 

lated applying Eq. (33) at the y-location where the mass-flow disturbance 

has a maxinum. Experimental growth rates by Kendall are given also in the 

same figure for comparison. The maximum of the disturbance amplitude 

detected by the hot wire is followed in these measurements. Nonparallel 

results again enhances the comparison between the theory and experiment by 

shifting the theoretically predicted unstable frequency range to higher 

values compared to parallel unstable frequency range. 

It should be pointed out that the location of the peak detected by the 

hot wire at fixed x-location was assumed to be the same for all frequencies 

as indicated later by Kendal12', and that slightly different experimental 

data could have been attained for other frequencies by searching out the 

peak corresponding to a particular frequency as we did in the theory. The 

spread of the experimental data shown in Fig. 6 and Fig. 7, and the diffi- 

culty in coTaring it with the theoretical results is expected. This 

experjment, like others, is not designed specifically to verify the non- 

parallel stability theory. Hence, the effect of the nonparallel flow, prob- 

ably, has contributed to the difficulty in comparison. The dependence of 

the hot wire response not only on the mass-flow disturbance but also on the 

temperature disturbance, even with a minimum unknown percentage, has 

21 
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Figure 7. Variation of the growth rates of a 
two-dimensional disturbance, Y= 0" (second 

mode) with frequency, at R = 1550. 
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contributed also to this difficulty, figure 2 and figure 4 show that the 

variation of the growth rates olo1.11 and o IT 1 are different with the 

y-location. 

The wide peaks of Ip u I at some frequencies make it difficult 

experimentally to measure the actual growth rates, specially if growth rates 

change rapidly around the peak location as indicated in Fig. 2 and Fig. 4. 

This is demonstrated in Fig. 8 which shows the variation of the growth rate of 

the mass flow disturbance with the normal coordinate around its peak amplitude 

at the frequencies F = 15 x 10S6 (first rode), and F = 125 x lo- ? second 

mode). Experimental growth rate measurements around these frequencies are 

shown in Fig. 8 to fall within the wide peak of the amplitude Iou I that is 

off 1.5-3 percent from the peak value. Changes in the growthrates of I Pul 
corresponding to an average of 2 percent deviation from the peak value is 

calculated for all unstable frequencies of the first and second nodes. 

Calculated growth rates form a band that is shown by the hashed area in 

Figs. 6 and 7. f?ost of the experimental data fall within this hand. 

23 
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Figure 8. Variation of the growth rate of the mass 
flow disturbance with the normal coordinate 
around its peak amplitude for a first and a 
second mode frequencies, and the corresponding 
experimental growth rate measurements. 
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V. BOUNDARY LAYER ON A TRA!&ONIC SWEPT WING 

The nonparallel stability theory presented in section 2 is applied to the 

boundary layer with suction on a 230 swept infinite span wing. The airfoil sec- 

tion is supercritical with a normal chord C = 1.98 m, and the freestream Mach 

number is 0.82. Parallel stability characteristics of the boundary layer on 

this wing have been investigated by El-Hadj/ 12 
and Market. Hr.xever, scme incom- 

plete ncnparallel calculations 
12 

have been reported by El-Hady for the same wing. 

i-; gul-e 9 S!lOk:S the distribution of the ;:ressure coefficient Cp on the upper 

surface of the airfoil ,-cct-on together \,tith the diStrihUtiOn Of tile Suction c02ffici2nt 

aiollg the chord. The suction coefficient is defined as C, = -pcVc/pJJm, \ihere the 

subscript o denotes wall condition. 

On a sweptback wing the boundary layer is threedinensional due to the 

presence of boundary layer crossflow. Because the crossflow profiles are highly 

dynamically unstable, crossflow instabilities generate and dominate both the 

leading edge and rear parts of the wing where the mean crossflow components have 

large values. 

k!e advance a band ofinitial wavelengths of constant frequency disturbances at 

the leading edge. These disturbances develcp donnstrean according to Eqs. (25), 

(27), and, (28).The spanwise corrqonent of the wavelength 'z/c (normalized with the 

normal chord) remains constant, and T remains zero if its initial value at the 

leading edge is zero. We calculate the parallel and nonparellel growth rates as well 

21s the logarithmic amplitude ratios of these wave components as they develop do\tnstream. 

The logarithmic amplitude ratio N is calculated from 

N=ln h 
a0 

=2 ", o dR 
RO 

(36) 

where R, is the initial Reynolds number at the lower branch of the neutral 

stability curve, and a0 is the correspondjng disturbance amplitude. The uin 

25 
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Figure 9. The distribution of the pressure and 
suction coefficients on the upper surface of the 

supercritical airofoil. 
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the above formula is calculated by using Eq. (33) for a constant frequency F. 

All results presented here are for the stationary crossflow disturbances, that 

is F = 0. 

Calculations at the leading edge region show that a p:ave component with 

constant x z/c = 0.00054 has the largest afiplitude ratio, hoi/ever, a ?:ave com- 

ponent with constant 'z/c = 0.0936 has the largest amplitude ratio at the t-ear 

part of the wing. For these b;ave components, figure10 shows the variation of 

~PLJ~ and ajpuj with y at the chor&ise locations x/c = 0.015 (for AZ/C = 

0.00054) and x/c = 0.90 (for AZ/C = 0.0036). The grcwth rate olpu-1 changes 

rapidly around the peak.of 1~~1. We use the value of olpuj at the y-location 

where \puJ is max-imm to represent the nonparallel results as we did in the pre- 

vious section. 

Figures 11 and 12 show the parallel and nonparallel unstable regions of 

three wave coTonents around the most unstable one (that gives the largest 

amplitude ratio) as well as their growth rates as they develop downstream. At 

the leading edge region, figure 1‘1 indicates that the nonparallel naxirmm growth 

rates are 30 - 45 percent higher than the parallel. It is worth noting that 

this region extends to about 10 percent of the chord. The boundary layer is 

accelerated rapidly from the leading edge to x/c s 0.025, and small suction 

rates are applied to the boundary layer starting at this location. It is clear 

from figurellthat in this region, parallel and nonparallel maxirmm growth rates 

are affected only by the rapidly accelerated boundary layer rather than suction 

rates. 

At the rear part of the wing, figure 12 shows that the nonparallel maximum 

growth rates are 15 - 30 percent less than the parallel. The boundary layer in 

this region is severely decelerated and high suction rates are applied to it 

(peak of C, C 0.0018). The sudden drop in the parallel growth rates around 

x/c = -84 is due to the peak suction rate. Here, maximum growth rates are 

affected by both the adverse pressure gradient and the severe suction rates. 
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Figure 13 shows the variation of the maxinum logarithmic amplitude ratio 

with the wave components of constant >z/c. At the leading edge, 

the boundary layer flow is destablized due to the nonparallel flow 

effects. Higher nonparellel Nmax is shown with nearly 64 percent maximum dif- 

ference compared to the parallel Nmax= On the contrary, at the rear part the 

boundary layer is stabilized due to nonparallel flow effects with a maximum 

reduction in N,,, of nearly 43 percent. Figure 11 shows also a slight shift in 

the value of the most unstable b;ave covonent AZ/c due to nonparallel flow 

its maxi- 

imum 

effects. Tile most unstable wave component 

mum amplitude at x/c s 0.032 (E = 900) \/hi 

amplitude is reached at the trailing edge. 

at the leading edge reaches 

le at the rear part, the max 
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VI. CONCLUDING REIMR~S 

1. A method is presented to investigate the two- and three-dimensional 

stability of compressible boundary layer flows. The method is suitable for the 

flat plate boundary layer as well as the boundary layer on an infinite swept- 

back wing, where the meanflow is independent of the spanwise coordinate. 

2. Ndnparallel stability results for the flat plate boundary layer at Kach 

number 4.5 are in better agr cement with Kendall experiments than the parallel 

stability results. 

3. Ncnparallel flow effects on crossflow instabilities are calculated for 

a specific infinite span transonic swept wing. The destabilizing effect at the 

leading edge and the stabilizing effect at the rear part is believed to be 

directly affected by the pressure gradients and the suction rates at this 

region. 
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APPENDIX I. 

The nonzero elements of the matrix a in equation (13) are: 

a,2 = 1 

a21 - = iRo + a2 + fj= 
IJo 

a22 = -$ 

a25 = Cm + 1) g - (jw)' 
lJ 

a33 
= 0' 

0 

a34 = -iy$o 

a4l = -ixa (x + E' ) 
J.l 0 

a43 - = x(rp'e' 
110 

+ro" iR@ a2 - 82) 
0 --- Pa 

a44 = -?pi$ bL + 0’) Q + au’ + BW' 
lJ 0 

a45 = -ix (2" r) (au' + f3W') + r1.1'9 
IJ s IJo 
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a47 = - -ixB (w + r-1 
P 0 . 

a4* = -ixB 

a56 = 1 

a62 = -2r (y - 1) MELI' 

a63 - - = Rro' 2ir Cy 
?Jo 

- 1) ME (cd t @I'). 

a64 T = iRr (y - 1) ML CD 

= iRr@ t a2 t B2 a65 F 
- (y - 11 M? rp (V2 t W!2). - 2 

G- '1-1 

a66 = % 

a68 = -2r (y - 11 MZW' 

aT8 = 1 

ag3 = -i@ y-+ cm+ 1) 0' + RW' 
0 

..I_ 
P !Jo 

= iRfj a84 .p - cm + 1) BY$P 

a87 
= iR@ + a2t e2 

-jz 

a8g = -5 
where 

Q = au + BW - 0 

X = l/&t ir ~M~cJ) 
v 
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r is Prandtl number, m = 2 (e - 1)/3, and r = 2 (e + 2j/3, where e.= 0 

corresponds to the Stokes hypothesis, it is taken e = 0.8 in this analysis, 

The prime denotes differentiation with respect to y, and p is used here 

for the meanflow viscosity. 
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APPENDIX II. 

The nonzero elements of the vectors bl and b2 in equation (18) are: 

b12 = Cl I1 + C212 

b13 7 c311 

b14 = $I1 + c51i + CC13 

b15 = C715 

b18 = cgr, + C214 

and 

b22 = c&j + c& 

b23 = C316 

b24 = c416 + c51i + c618 

'26 = %o 

b28 = cg16 + c21g 

where 

c, = -i Cm + 1 I aO, C2 = -p_, C3 = 8, c4 = rx (& t 2&, c 
5 = rxo, 

I-J IJ 

C6 = Rx, C7 = 
lJ 

-Es C8 = -i (m + 1) 130 
lJ 

and 

I1 = 1 

o2 
ux + V’ - $ (Lb, + Vo’) 

'5 + U<5x + 

- YM: ux + V' - ; (UO, + VO'). c4 - yMz (U54x 
0 0 
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I2 = F bdx - i Ux rl + (E w - U) CIX + k Cm+ 1) ti 
R 0 

(cjx + iBc7X) + mX C3 + IJ' c3x -$I: (UUx+ VU’) ~4-:~2- C~X 

0 

+ 9 (rUX t mV') + 1 
,2 

(UU, + VU') - %WX 
55 •t. 2 Bl'X =? 

I3= K i (ap)x - V' 
0 

cl3 + (2i pa - U z: 
R 0 3x 

+ k Cm + 1) u 52x 

+ lJxr2 + (m t 1) GUlx + U'iIix t n.W c5 + $J'l;, t (rV' + mUX) X 

(ih5 + p cc) + mv' clx- ' 5'3 
0 

I4 = (i Bvx - A lt$) Cl + R i (m + 1) PB clx + i (wlx t7 

- (uw, + YIP) (yME - c5 - r5 

0 ;* 

in+ Wx + i;f3 (mUX + WI 

+ (2i w-U) 57x-V58 
R 0 0 

I5 = cy - 1) Mf px cl + Z&I (ac., + fR7) Crux + mV I + Wxl - 1 X 
R 0 

@x 61 +2(up ME U' g3x t (mUX + rV') cl3 - (IJO, 

tvo') (rM;c4-c5) + Cv-l)Mm 2 cuc4x + vq + i 
Rr 

Cwx + 2wX)X 

0 7 

c5 ' (3 av - ul 55x - i rg 
Rr 0 

‘6 = -; Cc, + YM$ r4 - ; c5) 

I,7 = (2$ pa - ;) cl + & JJ’ c3 + (m + 1) 1~ (c’, + iar$ -C4 

Is = k 
mp'rdl + Cm t 11 Y 'I1 + hJ' c5 + (21 w - U2 c3 

R 0 



(Y - R- 1) ME (2dJ' c3 + u Q) + (2i pa - VI 
I10 = RI- O '5 



APPENDIX II I. 

The norizero elements of the vector d in equation (32) are: 

d2 = j$ B8 cl * B3 c2 + U'R. (1 __ 
I' iF 

Ulx - B,) + ia (B3'+ rri B4) t3 

- (ia& px + mayMzB2) Q + 

2 

mQBg - - 1 (PU")X + '1 IJ'X cw lx 55 
lJ lJ2 

+ <.x vx - B6 ) c6 
II2 

d3 = -B4 c3 - iyMc, 2 B2 c4 + iB5 c5 

d4 = ia2XD7 B7 + ia (2B3 + r B4) c, + icrpxB7 c2 - x (b-r B4 + 
v 

r@' B3 - rB 
0 9 + iR B8 + xD, BI) c3 + irX$4: 

5 
XB7 D4 - B2 D2 + 

(B3 + B4b - B,O c4 + ix Dg B,(j D3 L @x + D3 ($ + p2 
o2 

-r@ (B3+p' 
0 3 

ox) - x B7 D6 c5 + iri (B5 - X@ B+ c6 + i8x X 
0 

(2B3 + rB4 + xD7 By) c7 + i8x2 B7 c8 

d6 = -DslFx r2 - (Rr B4 + Rr: I.' 
P xx 

+ 2iD8 B,D) c3 + F D8 (.. px - B2) t4 

+ i'Rr B8 - 
PO 

2FD8 (U'U', + W'Wlx) - D8 (U12 + W12) (Cl + Bll <5 
I' VX 

+ 2B3 c6 - 2 D6 NIX c8 

dB = i.8 (B3 + m B4) + R 
s10 

wx - B,W') c3 - (iRg vx + myME B2) X 

lJ2 

54 + s (B2 - ; ox) - 1 (i;W',)' - 1 (WI;,)' - 1 &W')' 
0 

P Y 7 
px 55 
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where 

B, = 

B2 = 

B3 = 

B4 = 

B5 = 

B6 = 

B7 = 

B8 = 

Bg = 

B2 - P ox 
FZ 

L GUO, 
I' 

i.ryMEB2 - R vx 

7 

B2 - Q B, 

g-lx 

B1O = au’ x + 8Wlx 

and 

D, = -a2 _ 82 + rp'0' + r0" - iRo 
PO 0 iiF 

D3 = au’ + flW' 

D4 = @ D2 + D3 

D6 = D3D5 + r;$@ 
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D7=2++r+’ 

D8 = r (y - 1) ME 
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