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ABSTRACT

In this paper the viscoelastic analysis of an adhesively bonded lap
joint is reconsidered. The adherends are approximated by essentially
Reissner plates and the adhesive is assumed to be linearly viscoelastic.
The hereditary integrals are used to model the adhesive. The problem is
reduced to a system of Tinear integral-differential equations for the
shear and the tensile stress in the adhesive. For a constant operating
temperature, the equations are shown to have constant coefficients and
are solved by using Laplace transforms. It is also shown that if the
- temperature variation in time can be approximated by a piecewise con-
stant function, then the method of Laplace transforms could still be
used to solve the problem. A numerical example is given for a single
lap joint under various loading conditions and operating at temperatures
70, 100, 140 and 180°F.

1. Introduction

In most practical applications of adhesively bonded Jjoints and
'epoxy-based composites the operating temperature is such that in the
stress analysis of the structure any viscoelastic behavior which may
be exhibited by the adhesive or the epoxy matrix may be neglected.
On the other hand, depending on the time-temperature behavior of the
particular epoxy, time-history of loading, and the level of accuracy
required of the analysis, even at moderately low temperatures the
viscoelastic effects may have to be taken into account in analyzing
the structure. In particular, if the structure is subjected to a

(*)This work was supported by NASA-Langley under'the Grant NGR 39-007-011
and by NSF under the Grant CME-78-09737.
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loading with a relatively high frequency cyclic component, temperature
rise may occur due to internal heat generation and it may become
necessary to investigate the time-temperature effects in the stress
analysis. The objective of this paper is to study these effects by con-
sidering a relatively simple geometry. The corresponding elastic prob-
lem for the adhesively bonded joints have been studied quite exten-
sively. Some typical models used in these studies may be found in [1-4].

2. Formulation of the Problem

For constant.tenperature the basic formulation of the adhesively
bonded joints was considered in a previous paper [5] where it was assumed
that the adhesive is a Tinear viscoelastic material which can be modeled
by using differential operators. In this paper the hereditary integrals
will be used to model the adhesive and the solution will be given for
various temperatures in order to give some idea about the relative
importance of the temperature changes or of the operating temperatures.
It is assumed that the stress relaxation process in the viscoelastic
“adhesive takes place in a much slower rate than the heat conduction
process in the bonded joint. Therefore, the spatial variation of tem-
perature and its effect on the stress distribution may be neglected
and it may be assumed that the adherends and the adhesive have the same
temperature which is a function of the time only. Thus, the general
formulation given in this section includes thermal stresses coming from
differential thermal expansion only.

The problem under consideration is described in Figure 1. In this
study, the adherends are treated as "plates" in which the transverse
shear effects are taken into account. The adhesive is assumed to be a
viscoelastic solid under in-plane deformations in which the thickness
variation of stresses is neglected. The assumptions regarding the
mechanical modeling of the adherends and the adhesive may be justified
on the basis of the fact that generally the thickness of the adherends
is one order of magnitude and that of the adhesive is approximately two
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orders of magnitude smaller than the characteristic "length" dimension
of the joint. In the analysis it is also assumed that the dimension of
the joint in z-direction is relatively large and the external loads are
independent of z, meaning that the problem may be approximated by one
of plane strain (Figure 1).

Referring to Figure 1, the equilibrium conditions for the plate
elements representing the adherends 1 and 2 may be expressed as

oN 3Q oM hy+h
1x _ 1x _ 1x _ .
L T L T I 2 T (Ta-c)
aN 8Q,: h,+h
_2X . 2X 2x 2 0
XD T xS g C Oy T T (2a-c)
where N1x’ Q1x < (i=1,2) are respectively the membrane, the trans-

verse shear, and the moment resultants for the adherends 1 and 2, and
c and t are the normal and the shear stress in the adhesive. ‘ ‘

Assume that at (the homogeneous) temperature T0 the joint is free
from temperature-induced stresses. If the temperature is raised to .
T at time t;, the stress-displacement relations can be written as

ou
1 _
By _ 3"1
= Dy T By = Gy (3a-c)
au2

= DoMoy s 3x + Box = Qpu/By s _, (4a-c)

where Ujs Vis Biyo (i=1,2) are the x and y-components of the displacement
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vector, and the rotation of the normal at the midplane of the plates,

&g (i=1,2) is the coefficient of thermal expansion, H(t) is the
Heaviside function, and

ii

E1, s> and v, (i=1,2) being the elastic constants of the adherends.

To canp]ete the formulation of the problem, the continuity condi-
tions of the displacements in the region of adhesion have to be con-
sidered. Again, referring to Figure 1 the strains in the adhesive
averaged over the thickness may be expressed as

h h
Yxy = 2yy = ﬁt'(ul y 7%'81x i 7§'82x) ’

au hy 98 u h
1 1 Tx 2 2
"2 ox Tk T 7

28 -
2x) (6a-c)

where the remaining components of the adhesive strains are zero. The
nonzero stress components in the adhesive, again averaged over the
thickness, are Oyr Tyy T Ts qy = g, and o,. Noting that e, = 0, in
the standard fashion the hydrostatic and deviatoric components of the

strain and the stress tensor for the adhesive may be defined as

(1]
i]

(€x + Ey)/3 ’ eij = E.ij - e‘s’i‘]‘ s (1,d = XsY12) (7a,b)

(72}
|

= (ox +0 + °z)/3 s Si5 % 945 " 551j s (1,3 = x,y.2) . (8a,b)
Using now the hereditary integrals and observing that for the practical
range of temperature and stress levels under hydrostatic stress, most
viscoelastic materials behave elastically, the constitutive equations
of the adhesive may be written as fo]]ows [6-8]:
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t
572 6 ) Zae L (1,3 = xya2) (9)

-0

e = 3xrry * (M) (T-TH(e-t;) (10)

where the known functions G(T,t), K(T), and a3(T) are respectively

the relaxation modulus, the bulk modulus, and the coefficient of ther-
mal expansion of the adhesive. Equations (9) and (10) may also be
expressed in the following explicit form:

de

t de
20,~0-0, = 2[ G(T, t-£)(2 a—g‘ - Tgl)de, (11)

t e €y ' o '
2owa-o, = 2 (T, t5)(2 S - Xy, S )

t
o€ e S
20,700 = =2| (T, t-5)(5E + 5z, (13)
t

w=f 6T, t-g) XY & - (18)
O + 0+ 0, = K(T) Loy + e, = Jug(TH(T-TH(t-tp)]. (15)

It may be noted that since IS = 0 and Te;s = 0, equations (11-13)

are not linearly independent; (12), for example, can be obtained by

adding (11) and (13) and can, therefore, be ignored. Eliminating oy
and o,s from (11), (13) and (15) it follows that ' '

= K(T)(ey * €,) = K(Dag(T)(T-TH(t-t;)

o€

t
-gj aTth;;-zaﬁﬁ | | (16)

-0
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Equations (14) and (16) with (6) provide the needed constitutive equa-
tions for the adhesive. Thus, (1-4), (14) and (16) (with (6)) give a
system of fourteen equations to determine the fourteen unknown functions
Oy Ty Ujs Vs Byyo Nix’ M., and Qix’ (i=1,2). Solution of the system
of differential equations (1-4) contains twelve integration "constants"
which are functions of time and are determined by using the boundary
conditions for plates (1) and (2) at x = 7¢ .

3. Solution for the Single Lap Joint

In the general formulation given in the previous section by elim-
inating all unknown functions other than o(x,t) and t(x,t), it is possible
to reduce the problem to a system of equations for ¢ and t only. Even
though relatively straightforward, this process is quite lengthy and
the resulting equations are coupled. On the other hand, if the lap
joint consists of two identical adherends, then the elimination process
is somewhat simpler and the resulting equations for o and t are uncoupled.
For this case, the problem is considerably simplified and at the same
time still yields the main features of the solution. For the identical
adherends, the material constants become

- = = 1=Vv2 _ _n o= 12(1-v2)
Ci=C=C=Tgp»D0y=Dy,=0D= e
By =B, =B=Zuh, o =ay=a | )
172 6" %1% ’

where h = hy = hy, E= By = Eps v = vy = vy, and w = uy =,

For t < t1 let the joint be at a homogeneous temperature T = To
and be stress-free. If the temperature is raised to T at t = t1 <0.
and is held constant for t > t], then the particular adhesive model used
in the analysis described in the previous section would give no temper-
ature induced stresses. Therefore, if the external loads are applied
at t = 0, in the constitutive equations (14) and (16) the lower limit
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of the integrals may be taken as zero. Needless to say, if the adherends
are not identical, for t] < t < 0, the stress state in the joint is
not zero. In this case, one can still use, for example, one-sided
Laplace transform technique to solve the problem by shifting the time
such that ty = 0.

In the problem under consideration, it is assumed that the external
loads are applied at the ends of the composite plate. In particular,
no external transverse shear load is applied to the plate in ~2< x <l
(Figure 1). Thus, from the equilibrium of transverse shear resultants
it follows that

Q(x,t) + Qy(x,t) = Q (t) (18)
where Qo(t) is the transverse shear resultant applied to the ends of

the plate (Figure 1). Using the relations (6), (17) and (18), the
equations (1-4), (14) and (16) may now be reduced to

t.
aC+h(h+h_)D
327 X 0 ot
0-
t dq (g)
0 f : , ,
3% 2 hDy 32¢ 2D
o kMg - I 2o D7
axt Bho 2 aX ho
2 t hD 4 53 4D 3
- G(T, t-g)[(5 + zp—) =% - == ]de = 0. (20)
§'£- 2" Bhy' g5 Ny 3E

First, we observe that if T is constant then the bulk modulus
K(T) is constant and the relaxation modulus G is a function of time.
‘Hence, the equations (19) and (20)have “"constant coefficients" and a
convolution type kerne]. Therefore, the equations may be solved by
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using the standard Laplace transform technique. Let Fy(x,s) and Fy (xs5)
be the Laplace transform of t(x,t) and o(x,t), respectively. Not1ng
that for t < 0 the composite plate is stress- -free, from (19) and (20)

we obtain

Ho,
— -y F:B, 2]
dx2 1 _ ] )
d*F, ) d2F2 .
—=L 2 +y A F =0, . (22)
a2 g2 32

where
le = ?%;'[4C + hD(h + hy)Is Gy(s) (23)
g = - %%i-s 61(s) g4(s) - (24)
v,2 = (ﬁig.- Byk(ry + (A2 + §ﬁ%§)5 8(s) (25)
v5? = ;ﬁ3 5 Gy(s) + —;-K(T) , , (26)

and G](s) and q (s) are the Laplace transforms of G and Q> respect1ve1y.
" The solution of (21) and (22) i

Fi(x,s) = Ay sinh(yx) + A, cosh (y;x) - ;ﬁg-, (27)
. P
Fa(x,5) = A3 sinh(gqx) + Agcosh(s1x) + Assinh (6p%) + Ag cosh(epx),

(28)
where

bk e
0= Iy + try® NI L0y = I - Gt - R

(29)

The functions A1(§),;..5A6(s) are unknown and are determined from the
boundary conditions.



4, Examples

The solution of the lap joint problem shown in Figure 1 is obtained
for three separate loading conditions. The solution given by (27)
and (28) is derived under the assumption that the adherends are identical,
the operating temperature T is constant, and the external loads are applied
at t =0 (T # T° where To is a base temperature corresponding to zero ’
stress and deformation state). ~ '

(a) Membrane Loading.

Let the composite medium be subjected to a constant membrane loading
No for t > 0. Reduced to the end points x = £ the boundary conditions
for the plates 1 and 2 may be expressed as ‘

Np (&) = 0, My (£,t) = 0, Qp,(£,t) = 0,

h _+h
Nyy(-2it) = NoH(E), My, (-at) = Ny —5— H(t), Qq(-£,t) = 0,
o | e (30)
Nzx(’e-:vt) = NOH(t)s sz(zst) = NO _'2_' H(t): QZX(Z’t) = 0,
. Nzx(‘zst) = 0’ sz(‘z,t) = 09 sz("z,t) =0 ) _ . (3])

where H(t) is the Heaviside function. From the symmetry of the problem
it can be shown that the conditions (30) and (31) are equivalent to

e - .
(x,t) = t(-x,t) , J t(x,t)dx = -N_H(t), (32a,b)
. J b
| , |
o(x,t) = o(-x,t) , f o(x,t)dx = 0 , (33a,b)
-L
32 h
— altst) = KDg - Pale,t) + 752 M)
t | h+h
+4[ o vt - g 2 o(te) + % Diga(e)lee.
o (34)
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Note that for the loading under consideration 8=0. Thus, taking the
Laplace transforms and substituting from (27) and (28), from (32-34)
we obtain '

- re = _ - 1N,
A-l(s) = '09 A3(S) = 0, AS(S) = 0, Az(s) = - 55sinh (Y]z)‘ ’
(h+h_IN _y."sinh(¢,2) (h+h_IN vy %sinh(¢,2)
A(s) = - 0’70’3 2 , A(s) = 0’ 0'3 1 . (35)
4 4s¢2Aa(s) 6 4s¢1Aa(s)
where ‘
8,(s) = ¢,cosh(s;£)sinh(4,L) - ¢15inh(¢1£)cosh(¢,2). (36)

The adhesive stresses t(x,t) and o(x,t) are obtained by substituting
from (27), (28) and (35) into the corresponding inversion integrals.

(b) Bending.

In this case of the twelve stress and moment resultants which are
prescribed on the boundaries (see (30) and (31)), the following are
the only nonzero components: '

Mg(-2.t) = MOH(E) 5 My (£,t) = MH(t). | @)

Again, it can be shown that the boundary conditions are equivalent to

T(X,t) = -r(-x,t) , (38)
t
a T(bt) = - g by [ 6T, te)s () (39)
o-
£
Colxt) = wal-x,t), [ olx,thxdx = mp(e) (40a,b)
-L
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2 - 2 hD D
:? c(g,t) = K(Mligh; - Zlo(est) + = MH(t)]
t

+%f (T, t-g)[(bé[l B) a(g,g) + 22 Mo8(g)1de. (41)
! .

Substituting now from (27) and (28) into the Laplace transforms
of (38-41) we find

hDM G, (s)
AZ(S) =0, A4(S) = 0, AG(S) = 0, A'I(S) = - ZhoY]COSh(Y]'a) ]
4 4
A(s) = - Y3 Mocosh(¢2£) A(s) = Y3 Mocosh(¢1£) ' (42)
3 25¢2Ab(s) > 75 25¢1Ab(s) ’
where
Ab(s) = ¢Zsinh(¢1£)cosh(¢2£) - ¢1cosh(¢]£)sinh(¢2£). : (43)

(c) Transverse shear loading.

For this loading condition the following are the on]y nonhomogeneous
boundary conditions:

Q]x('zst) = QOH(t)s M]x('ﬂst) = "QO'KH(t) H]
Qy, (£,t) = QH(t), My, (L,t) = QeH(t). (44)

The equivalent conditions in terms of t and o méy be shown to be

£
f(x,t) = wlxot) 4 [ lxt)ax = o, C (45a,b)
-2
2 ' :
a(x:t) = ol-x,t) , [ o(xithdx = - QH(t) , (462,b)

-L
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Tz o(bt) = KNG - Phoe,t) + L q(e)]
. 0

t | '
+2 [ am, B+ i) gpo(te) + Rlostne (@)
o- .

In this case

B = - % Q.64 (s) 7 (48)

and the functions A1(s),..,A6(s) are obtained as

Ay(s) = Ag(s) = Agls) = 0, Ay(s) = W“%(W ,

_ Qlvs787c0sh(e,2) - v5*e sinh(s,0)]

Ay(s)

Zs¢2Ac(s) >
2 2 42 sinh(s.2
_ QL3 epcosh(sq8) - v5 L sinh(ee8)
Ag(s) = - 25418(5) - (49)
where
Ac(s) = ¢2cosh(¢]£)sinh(¢2£) - ¢]sinh(¢1£)cosh(¢2£) . : (50)

5. The General Problem

As pointed out earlier, the general problem for dissimilar adherends
under arbitrary temperature and loading conditions for.t > 0 may be
reduced to a system of coupled equations of the form (19) and (20). If
the temperature T is constant for t > 0, then the equations have constant
~ coefficients and may easily be solved by using Laplace transforms. On
the other hand, if T is not constant, the equations would have time-
~ dependent coefficients, and the Laplace transforms would not be appli-
cable. In this case, to solve the problem, one may have to use a purely
numerical technique.
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There is one special case for which the solution may be obtained
by following the procedure outlined in the previous section. Let the
external loads be zero for t < 0, and be given arbitrary functions of
t for t > 0. Also, let the temperature be a p1ecew1se constant function
of time, i.e., let

T(t) = Ty ty_y < t <ty t, =0, (i=1,...,0) ,

T(t) =T t>t . . (51)

Then, for T=T1, the solution given in the previous section is valid .
in0<t«< t] After obtaining this solution the functions (X, t ) and
o(x, t]) can be calculated. Using now this information as the "1n1t1a1
conditions" in time shifted to t], assuming T = T2, and repeating the
procedure of the previous section, the solution may be obtained which

is valid for t] <t«< t2 The complete solution is obtained by repeatlng
this process for the intervals t2 <t< t3,.. t < t.

6. Numerical Results.

Once the relaxation modulus G and the bulk modulus K are specified,
the solution may be expressed in temms of Laplace inversion integrals.
These integrals are much too complicated for closed form evaluation.
However, they can easily be expressed in terms of real integrals and
can be evaluated numerically [5]. The relaxation modulus of the adhesive
is obtained from a torsion relaxation test. In practice G(T,t) is
generally measured in an interval t] <t«< ty for different temperature
levels. If the material is thermorheologicailysimp]e, the function G
for 0 < t < = may then be obtained by using the time-temperature shift
factor a(T). For a reference temperature Ty» G is expressed as

- . _t _
G(T,t) = G(Tosn)s n-= a(T) s (52)
n being the reduced time.
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For the numerical calculations the relaxation modulus of the epoxy
is assumed to have the following form:

6(T,t) = (LM (MM 4wy M), (53)
where
)
e(T) = 37 to(T) » | | ~ (54)

uo(T) represents the shear modulus at t=0, n_(T) at t=«, and tO(T)
corresponds to the retardation time. For such a material the bulk
modulus may be expressed as

£ (T (T)
k(1) = 3 3u (1) = E;(NT (55)

The constants Eo, Hos Mgs and to for the temperature levels used in the
calculations are given in Table 1. The adherends are assumed to be
a]uminum plates for which E = ]07 psi, v = 0.3. The lap joint is
assumed to have the following dimensions:

Table 1. Viscoelastic constants of the adhesive

T(°F) Eq(psi) nolpsi) u,(psi) t,(hours)
70 4.65x10° 1.80x10° 0.8x10° 0.5
100 4.40x10° 1.70x10° 0.7x10° 0.5
140 4.10x10° | 1.58x10° | 0.58x10° 0.5
180 3.85x10° | 1.50x10° | 0.50x10° 0.5

h =0.09 in., £= 0.5 in., ho = 0.004 in.

For the adhesive model used the Laplace transform of the relaxation
modulus is
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u_(T)

@

u (T) - u (T) | =
S8 e — (56)

The calculated results are shown in Tables 2-7. To show the trends
some limited results are also shown in Figures 2-4. For a lap joint under
membrane loading Figure 2 shows the distribution of the shear stress in
the adhesive at various times and for various operating temperatures.
Figures 3 and 4 show the "relaxation" of the adhesive stresses z(x,t) and
o(x,t) for various operating temperatures. These figures indicate that
after approximately one hour the stress state in the joint reaches a
steady-state. From the figures, it may be observed that the peak values
of o and t (which are at the end points x = 3£ ) at t=0 may be consider-
ably greater than the corresponding peak stresses at steady-state. Except
for the variation with time and température, as expected the distribution
of stresses in the adhesive has the same trends as those obtained from
the related elastic problem [4,5].
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Table 2. Variation of r(x,t)/(No/E) for the case of
membrane loading (t in hours)

x/e | t=0.01 £=0.05 £=0.1 £=0.5 =1 t=2
T=70°F
0. |-6.98x10"%| -9.10x107%] -1.27x1073] -4.27x1073] -7.17x10"3 |-9.5ax10-3
0.1 1-1.04x1073| -1.33x1073| -1.82x1073| -5.62x1073] -9.06x10°3 | -0.012
0.2 |-2.40x1073] -2.97x1073| -3.91x1073]  -0.011 | -0.016 -0.019
0.3 [-6.10x1073] -7.32x1073| -9.30x1073]  -0.022 | -0.030 -0.035
0.4 | -0.016 -0.018 -0.023 -0.046 |  -0.060 -0.066
0.5 | -0.041 -0.046 -0.055 -0.098 | -0.119 -0.127
0.6 | -0.106 -0.116 -0.132 -0.205 | -0.234 -0.243
0.7 | -0.273 -0.292 -0.318 -0.425 | -0.458 -0.465
0.8 | -0.708 -0.732 -0.764 -0.871 |  -0.890 -0.888
0.9 | -1.831 -1.837 -1.829 -1.761 | -1.714 -1.695
1.0 | -4.740 -4.603 -4.358 -3.501 | -3.277 | .-3.233
‘ T=100°F '

0. |-9.06x10™% -1.21x1073] -1.73x1073] -6.11x1073] -0.010 -0.014
0.1 |-1.32x1073| -1.72x1073| -2.41x1073] -7.85¢1073] -0.013 -0.016
0.2 |-2.94x1073| -3.71x1073] -4.98x1073]  -0.014 | -0.021 -0.025
0.3 |-7.26x1073| -8.85x103| -0.011 | -0.028 | -0.039 -0.044
0.4 | -0.018 -0.022 -0.027 -0.056 | -0.073 -0.080
0.5 | -0.046 -0.052 -0.063 -0.114 | -0.138 -0.147
0.6 | -0.115 -0.128 -0.146 -0.230 | -0.261 ~0.269
0.7 | -0.289 -0.310 -0.340 -0.456 |  -0.488 -0.493
0.8 | -0.727 -0.754 -0.788 -0.895 | -0.908 -0.903
0.9 | -1.828 -1.831 -1.818 -1.728 | -1.673 ~1.653
1.0 | -4.594 -4.440 -4.173 -3.279 | -3.063 ~3.024
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T=140°F

~1.26x1073

-1.74x10"3

-2.58x10™3

0. -9.81x10"3 | -0.017 -0.022
0.1] -1.79x1073| -2.41x1073| -3.49x1073| -0.012 -0.020 -0.025
0.2] -3.81x1073| -4.95x1073] -6.85x1073]  -0.020 -0.031 -0.037
0.3| -9.04x1073]  -0.011 -0.015 -0.038 -0.053 -0.060
0.4 -0.022 -0.026 -0.033 -0.073 -0.094 -0.102
0.5 -0.053 -0.062 -0.075 -0.140 -0.168 -0.176
0.6/ -0.128 -0.144 -0.167 -0.266 -0.298 -0.305
0.7] -0.310 -0.335 -0.371 -0.498 -0.527 -0.529
0.8 -0.752 -0.781 -0.819 -0.921 -0.924 -0.917
0.9 -1.821 -1.819 -1.800 -1.674 -1.609 -1.589
1.0/ -4.408 -4.229 -3.928 -2.985 -2.784 -2.752
T=180°F
0. | -1.59x1073| -2.26x1073| -3.45x1073] -0.014 -0.024 -0.030
0.1 -2.21x1073| -3.07x1073| -4.57x1073| -0.017 -0.027 -0.034
0.2] -4.58x1073] -6.09x1073] -8.65x1073| -0.027 ~0.040 -0.048
0.3 -0.011 -0.013 -0.018 -0.048 -0.066 -0.074
0.4] -0.025 -0.030 -0.039 -0.088 -0.112 -0.120
0.5/ -0.058 -0.069 -0.085 -0.162 -0.192 -0.199
0.6] -0.138 -0.156 -0.184 -0.295 -0.327 -0.332
0.7/ -0.326 -0.354 -0.395 -0.529 -0.553 -0.553
0.8 -0.769 -0.801 -0.841 -0.936 ~0.931 -0.921
0.9] -1.814 -1.808 -1.782 -1.626 ~1.555 -1.534
1.0]  -4.277 -4.075 -3.744 -2.770 -2.582 -2.555
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Table 3. Variation of o(x,t)/(NO/E) for membrane
- . Toading (t in hours)

x/2 | t=0.01 t=0.05 - | t=0.1 t=0.5 t=1 =2

T=70°F
0. | 1.93x107% | 2.18x107* | 2.55x10°% | 4.07x10°% | 4.57x10-% | 4.70x10-2
0.1 ] 2.30x10™% | 2.67x10™% | 3.24x107* | 5.51x107% | 6.24x10°% | 6.41x10°%
0.2 | 9.78x10™> | 1.70x10™% | 2.81x107% | 7.15x10°% | 8.45x10°% | 8.71x10-%
0.3 |-1.69x107> |-1.60x1073 |-1.44x1073 |-8.77x107% [-7.31x107% |-7.10x10"%
0.4 | -0.011 -0.011 -0.011 -0.012 ~0.012 -0.012
0.5 | -0.050 -0.051 -0.052 -0.056 ~0.057 -0.057
0.6 | -0.174 -0.177 -0.181 -0.194 -0.197 -0.198
0.7 | -0.495 -0.502 -0.507 -0.526 ~0.530 -0.531
0.8 | -1.032 -1.034 -1.030 -1.013 -1.006 -1.005
0.9 | -0.640 -0.621 -0.587 -0.473 ~0.448 -0. 445
1.0 | 7.870 7.806 7.649 7.151 7.044 | 7.033

T=100°F
0. | 2.41x107% | 2.72x107% | 3.18x107% | 5.01x107% | 5.57x10°% | 5.70x10-%
0.1] 3.01x107* | 3.47x107% | 4.17x107% | 6.87x107% | 7.67x10°% | 7.83x10~%
0.2] 2.33x10°% | 3.21x107* | 4.53x107% | 9.54x10% | 1.00x10°3 | 1.11x10-3
0.3] -1.52x1073 [-1.41x1073 [-1.23x1073 |-6.19x10"% |-4.83x10"% [-4.68x10-%
0.4 -0.011 -0.012 -0.012 -0.012 -0.012 -0.012
0.5 -0.051 -0.052 -0.054 -0.058 -0.060 ~0.060
0.6] -0.179 -0.183 -0.187 -0.201 -0.205 -0.205
0.7 -0.503 -0.509 -0.515 -0.535 ~0.539 -0.539
0.8/ -1.026 -1.028 -1.022 -1.002 -0.995 -0.994
0.9  -0.59 -0.574 -0.537 -0.419 -0.396 -0.394
1.0 7.673 7.599 7.429 6.920 6.823 6.816
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T=140°F

— 1O |O |O |JO |O
TR B . .

0. | 3.10x10°% | 3.52x107* | 4.13x107* ! 6.45x10°% | 7.00x10°% | 7.20x10-%
0.1 4.03x10™% | 4.64x107* | 5.55¢107% | 8.91x10°% | 9.79x10°% | 9.93x10-2
0.2] 4.21x10°% | 5.35x10™% | 7.04x107% | 1.30x10°3 | 1.44x7073 | 1.45x10-2
0.3 -1.29x1073 |-1.16x1073 |-9.46x107% |-2.86x10°% [-1.71x10°% |-1.66x10~2
0.4 -0.012 -0.012 -0.012 -0.013 -0.013 -0.013

5|  -0.053 -0.055 -0.056 -0.062 -0.064 -0.064

6| -0.186 -0.190 -0.195 -0.211 -0.214 -0.214

7] -0.512 -0.519 -0.526 -0.546 -0.549 -0.549

.8]  -1.018 -1.018 -1.011 -0.985 -0.978 -0.977

9|  -0.547 -0.515 -0.472 ~0.350 -0.331 -0.330

o  7.428 7.338 7.150 6.631 6.549 _6.546

T=180°F

0. | 4.42x10°* | 5.08x10™* | 5.95x10°% | 9.35¢10°% | 1.02x10°3 | 1.04x10-3
0.1] 5.91x10"% | 6.80x107* | 8.12x107% | 1.28x1073 | 1.39x1073 | 1.41x10~3
0.2] 7.48x10™% | 9.05x10™* | 1.13x1073 | 1.90x1073 | 2.05x1073 | 2.07x10-3
0.3| -9.54x107* |-7.89x107% |-5.38x10"% | 1.56x10°% | 2.36x10°% | 2.31x10~%
0.4] -0.012 -0.012 -0.013 -0.014 -0.014 -0.014
0.5 -0.057 -0.059 -0.061 -0.069 -0.071 -0.071
0.6/ -0.196 -0.202 -0.208 -0.227 -0.230 -0.231
0.7]  -0.526 -0.534 -0.542 -0.562 -0.564 -0.564
0.8] -1.002 -1.000 -0.989 -0.954 -0.946 -0.946
0.9] -0.454 -0.423 -0.374 -0.246 -0.229 -0.229
1.0/ 7.053 6.944 6.733 6.195 6.124 6.123
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Table 4. Variation of r(x,t)/(Mo/zz) for

bending (t in hours)

X/Z]  £=0.01 t=0.05 =01 t=0.5 =1 =2
T=70°F

0. 0. 0. 0. 0. 0. 0.

0.1] -6.21x1073 [-7.80x10"2 | -0.010 -0.030 | -0.045 -0.055
0.2] -0.018 -0.023 -0.030 -0.078 -0.113 -0.134
0.3] -0.049 ~0.059 -0.074 -0.173 -0.238 -0.272
0.4] -0.127 -0.148 -0.181 -0.372 -0.481 ~0.531
0.5 -0.329 -0.372 -0.440 -0.788 -0.957 ~-1.022
0.6/ -0.851 -0.936 -1.064 ~1.653 -1.889 ~1.960
0.7] -2.204 -2.353 -2.565 -3.429 -3.696 -3.749
0.8/ -5.706 -5.906 -6.162 ~7.028 -7.177 =7.161
0.9] -14.77 -14.81 -14.75 -14.20 -13.82 -13.67
1.0/  -38.22 -37.12 -35.15 -28.23 -26.42 ~26.07

T=100°F

0. 0. 0. 0. 0. 0. 0.

0.1 -7.75x1073 |-9.92x1073 -0.014 -0.040 -0.060 -0.073
0.2] -0.023 -0.028 -0.038 -0.102 -0.148 -0.173
0.3] -0.058 -0.071 -0.091 -0.219 -0.300 ~0.340
0.4 -0.147 -0.173 -0.215 -0.453 -0.583 ~0.638
0.5| -0.369 -0.422 -0.505 -0.921 -1.113 -1.179
0.6/ -0.928 -1.028 -1.179 -1.853 -2.103 -2.168
0.7] -2.333 -2.502 -2.743 -3.681 -3.939 ~3.976
0.8/ -5.864 -6.080 -6.356 -7.217 -7.319 -7.283
0.9] -14.74 -14.76 -14.66 -13.94 -13.49 -13.33
1.0  -37.04 -35.81 -33.66 -24.70 ~24.39
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T=140°F

0. 0. - 0. 0. 0. 0. 0.

0.1 | -0.010 -0.013 -0.019 -0.059 -0.088 -0.103
0.2 | -0.029 -0.037 -0.051 -0.145 -0.208 -0.239
0.3 | -0.072 -0.090 -0.119 -0.298 -0.405 -0.450
0.4 | -0.176 -0.212 -0.269 -0.586 -0.746 -0.803
0.5 | -0.426 -0.496 -0.604 -1.128 -1.346 -1.408
0.6 | -1.033 -1.159 -1.347 -2.143 -2.402 | -2.452
0.7 | -2.503 -2.704 -2.990 -4.019 | -4.247 -4.260
0.8 | -6.062 -6.302 -6.606 -7.428 -7.452° -7.390
0.9 | -14.68 -14.67 -14.51 -13.50 -12.98 -12.81
1.0 | -35,55 -34.11 -31.68 -24.08 -22.45 -22.19

T=180°F

0. 0. 0. 0. 0. 0. 0.

0.1 | -0.012 -0.017 -0.024 -0.078 -0.115 -0.132
0.2 | -0.035 -0.046 -0.064 -0.188 -0.266 -0.299
0.3 | -0.084 -0.107 -0.145 -0.373 -0.500 -0.547
0.4 | -0.199 -0.245 -0.317 -0.706 -0.887 -0.942
0.5 | -0.471 -0.556  -0.688 -1.305 -1.536 -1.591
0.6 | -1.113 -1.262 -1.484 -2.376 -2.629 -2.665
0.7 | -2.628 -2.857 -3.182 -4.268 -4.459 -4.451
0.8 | -6.200 -6.459 -6.786 -7.547 -7.503 -7.423
0.9 | -14.63 -14,58 -14.37 -13.11 -12.54 -12.37
1.0 | -34.49 -32.86 -30.19 -22.34 -20.82 -20.60
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Table 5. Variation of c(x,t)/(MO/ZZ)

for bending (t in hours)

x/2 | t=0.01 t=0.05 t=0.1 t=0.5 t=1 =2
T=70°F
0. 0. 0. 0. 0. 0. 0.
0.1 | 1.71x1073 | 2.03x1073 | 2.51x1073 | 4.47x1073 | 5.09x103 | 5.23x10-3
0.2 18.28x10°% | 1.58x1073 | 2.73x103 | 7.25x1073 | 8.61x10-3 | 8.89x103
0.3 | -0.018 -0.017 . | -0.015  |-9.38x10™3 |-7.83x1073 | -7.60x1073
0.4 | -0.120 -0.121 -0.121 -0.124 -0.126 -0.126
0.5 | -0.529 -0.539 -0.550 -0.594 -0.607 -0.610
0.6 | -1.854 -1.888 -1.925 -2.064 -2.100 -2.106
0.7 | -5.269 -5.335 -5.393 -5.599 -5.640 -5.646
0.8 | -10.98 -11.00 | -10.95 -10.77 -10.71 -10.70
0.9 | -6.813 -6.606 -6.241 -5.032 -4.768 -4.737
1.0 | 83.72 83.04 81.37 76.07 74.93 74,82
T=100°F
0. 0. 0. 0, 0. 0. 0.
0.1 | 2.31x1073 | 2.71x1073 | 3.30x10™3 | 5.62x1073 | 6.30x10°3 | 6.43x10°3
0.2 | 2.23x1073 | 3.14x1073 | 4.52x1073 | 9.74x103 | o0.011 _ 0.011
0.3 | -0.016 -0.015 -0.013__ |-6.64x1073 |-5.18x1073 |-5.02x10™3
0.4 | -0.122 -0.123 -0.123 ~0.128 -0.130 -0.130
0.5 | -0.545 -0.557 -0.570 -0.621 -0.635 | -0.638
0.6 | -1.905 -1.944 -1.987 ~2.141 -2.176 -2.181
0.7 | -5.349 -5.420 -5.484 -5.695 -5.730 -5.735
0.8 | -10.92 -10.94 -10.88 ~10.65 -10.58 -10.57
0.9-| -6.343 -6.108 _5.707 ~4.455 -4.213 -4.191
1.0 | 81.63 80.84 79.03 73.61 72.58 72.51
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T=140°F

0. 0. 0. 0. 0. Q. 0.
0.1 | 3.18x1073 | 3.70x1073 | 4.48x1073 | 7.34x1073 | 8.06x1073 | 8.18x1073
0.2 | 4.18x107° | 5.36x1073 | 7.12x103 | 0.013 0.015 0.015
0.3 | -0.014 -0.012 -0.010 _ |-3.00x1073 |-1.86x1073 |-1.80x1073
0.4 | -0.124 -0.125 | -0.126 -0.134 -0.136° | -0.137
0.5 | -0.567 -0.582 -0.599 -0.661 -0.676 -0.678
0.6 | -1.973 -2.019 -2.071 -2.244 -2.277 -2.281
0.7 | -5.448 -5.526 5.599 | -5.813 -5.841 -5.843
0.8 | -10.83 -10.83 -10.75 -10.48 -10.41 -10.40
0.9 | -5.751 -5.474 -5.021 -3.726 | -3.522 -3.511_
1.0 79.02 78.07 76.06 70.54 69.67 69.64
. T=180°F

|o. 0. 0. 0. 0. 0. 0.
0.1 | 4.76x1073 | 5.51x1073 | 6.62x1073 | 0.0m 0.011 1 0.012
0.2 | 7.58x1073 | 9.20x103 | 0.012 0.020 0.021 0.021
0.3 | -0.010  [-8.45x10™° |-5.78x1073 | 1.64x10™3 | 2.51x1073 | 2.46x10-3
0.4° | -0.129 -0.132 -0.135 -0.148 -0.153 -0.153
0.5 | -0.609 -0.628 -0.653 -0.736 -0.754 -0.756
0.6 | -2.089 -2.146 -2.212 2.417 -2.450 -2.453
0.7 | -5.600 -5.685 -5.766 -5,981 -6.000 -6.001
0.8 | -10.65 -10.63 -10.52 -10.15 -10.06 -10.06
0.9 | -4.828 -4.497 -3.980 _2.617 -2.439 -2.434
1.0 75.03 73.87 71.63 65.91 65.14 65.13
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Table 6. Variation of r(x,t)/(Qolz) for transverse

shear loading (t in hours)

x/2 | t=0.01 t=0.05 | = t=0.1 t=0.5 =1 =2
T=70°F
0. 4.027 4.025 4.022 3.998 3.974 3.955
0.1 4.024 4.022 4.018 3.987 3.959 3.938
0.2 4.013 4.008 4.007 3.948 3.906 3.878
0.3 3.983 3.973 3.957 3.856 3.788 3.750
0.4 3.905 3.884 3.851 3.659 3.548 3.496
0.5 3.703 3.660 3.592 3.244 |  3.073 3.007
0.6 3.181 3.096 2.968 2.379 2.143 2.071
0.7 1.828 1.680 1.467 0.603 0.336 0.283
0.8 | -1.674 -1.873 | -2.129 -2.996 -3.145 -3.129
0.9 | -10.74 -10.78 | -10.71 -10.17 -9.792 -9.637
1.0 | -34.19 -33.09 | -31.11 -24.20 -22.39 -22.04-
T=100°F
4.025 4.023 4.018 3.983 3.949 3.922
1 4.022 4.018 4.013 3.969 3.929 3.901
2 4.009 4.002 3.992 3.919 3.863 3.828
3 3.974 3.961 3.940 3.808 3.721 3.675
4 3.885 3.859 3.816 3.577 3.444 | 3.385
5 3.663 3.610 3.527 3.110 2.917 2.848
6 3.104 3.004 2.852 2.179 1.928 1.862
7 1.699 1.531 1.289 0.351 0.093 | .0.055
8 | -1.832 -2.048 | -2.324 -3.185 -3.287 -3.252
9 | -10.7 -10.73 | -10.63 -9.905 -9.463 | -9.299
0 | -33.01 -31.78 | -29.62 -22.41 ~20.67 -20.35

- 1O 1O [O O O |Jo |o |0 |lo o
...'.‘.l...
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T=140°F

0. 4.022 4.018 4.011 3.953 3.898 3.858
0.1 | 4.018 4.013 4.004 3.934 3.872 3.830
0.2 | 4.002 3.992 3.977 3.867 3.785 3,737
0.3 | 3.959 3.941 3.912 3.724 3.607 3.550
0.4 | 3.856 3,820 3,762 3.442 3.276 3.211
0.5 | 3.606 3.536 3.428 2.902 2.681 2.614
0.6 | 2.999 2.874 2.686 1.888 1.628 1.574
0.7 | 1.530 1.329 1.042 0.013 -0.217 -0.231
0.8 | -2.030 -2.269 -2.574 -3.396 | -3.421 -3.360
0.9 | -10.65 -10.64 -10.48 -9.470 -8.947 -8.779
1.0 | -31.52 -30. 07 -27.64 -20.04 -18.42 -18.16
T=180°F
0. 4.019 4014 4.004 3.920 3.843 3.791
0.1 | 4.014 4.007 3.995 3.896 3.811 3.758
0.2 | 3.995 3.983 3.963 3.814 3.707 3.649
0.3 | 3.947 3.924 3.885 3.643 3.499 3.436
0.4 | 3.832 3.787 3.714 3.319 3.127 3.061
0.5 | 3.561 3.476 3.344 2.724 2.486 2.424
0.6 | 2.919 2.770 2.548 1.654 1.398 1.357
0.7 | 1.405 1.175 0.850 -0.236 ~0.430 -0.425
0.8 | -2.168 -2.427 -2.754 -3.515 -3.473 -3.394
0.9 | -10.59 -10.55 -10.34 -9.082 -8.507 -8.340
1.0 | -30.46 -28.83 -26.16 -18.31 -16.79 -16.57
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shear loading (t in hours)

Table 7. Variation of o(x,t)/(Qo/z).for transverse

61.63

x/L | t=0.01 £=0.05 £=0.1 £=0.5 t=1 t=2
T=70°F |
0. | 1.04x1073 | 2.19x1073| 2.56x1073] 4.05x1073 | 4.54x1073| 4.65x10"3
0.1 | 2.37x1073 | 2.74x1073| 3.31x1073] 5.58x1073 | 6.30x1073| 6.47x10"3
0.2 | 1.34x1073 | 2.09x1073| 3.23x1073| 7.69x1073 | 9.02x1073] 9.30x10~3
0.3 | -0.015 -0.014 -0.013 | -6.49x107% |-4.85x10"3| -4.59x10™3
0.4 | -0.109 -0.109 -0.109 -0.109 -0.110 -0.111
0.5 | -0.487 -0. 495 -0.504 -0.540 -0.551 -0.554
0.6 | -1.727 -1.757 -1.789 -1.912 -1.944 -1.950
0.7 | -4.980 -5.04] -5.094 -5.283 | "-5.321 -5.327
0.8 | -10.67 -10.70 -10.66 -10.51 -10.45 -10.44
0.9 | -8.223 -8.048 ~7.720 -6.638 -6.400 -6.373
1.0 71.59 70.97 69.47 64.74 63.73 63.63
T=100°F

0. | 2.42x1073 | 2.72x1073| 3.18x1073| 4.97x1073 | 5.51x1073] 5.63x10°3
0.1 | 3.08x1073 | 3.54x1073| 4.23x1073| 6.93x1073 | 7.72x10°3] 7.88x1073
0.2 | 2.74x1073 | 3.64x1073] 5.01x1073|  0.010 0.012 0.012
0.3 | -0.014 -0.012 -0.010_ | -3.55x10"3 |-1.98x1073| -1.79x1073
0.4 | -0.109 -0.110 -0.110 -0.112 -0.113 -0.113

{05 | -0.499 -0.510 -0.520 -0.563 -0.575 -0.578
0.6 | -1.772 -1.806 -1.844 -1.980 -2.011 -2.016
0.7 | -5.053 -5.119 -5.177 -5.372 -5.405 -5.409
0.8 | -10.62 -10.64 -10.59 -10.41 -10.35 -10.34
0.9 | -7.802 _7.601 -7.242 -6.120 -5.903 _5.884
1.0 69.71 68.99 67.38 62.54 61.56
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T=140°F

27

0. | 3.10x107 | 3.51x1073 | 4.11x1073 [ 6.37x1073 | 6.98x10"3 | 7.09x10-3
0.1 | 4.10x1073 | 4.71x1073 | 5.62x1073 [ 8.95x1073 | 9.81x10"3 | 9.95x10-3
0.2 | 4.68x1073 | 5.85%1073 | 7.50x1073 | o0.014 0.015 0.015
0.3 | -0.011  |-9.50x1073 [+7.15x1073 | 3.28x107% | 1.69x1073 | 1.79x10-3
0.4 | -0.110 -0.111 -0.112 -0.116 -0.117 -0.118
0.5 | -0.519 -0.531 -0.545 -0.597 -0.610 -0.612
0.6 | -1.832 -1.873 -1.919 -2.072 -2.101 -2.105
10.7 | -5.144 -5.217 -5.283 -5.482 -5.508 -5.510
0.8 | -10.55 -10.56 -10.49 -10.26 | -10.20 -10.19
0.9 | -7.272 -7.033 -6.627 -5.467 -5.283 -5.273
1.0 67.38 66.51 _ 64.72 59.80 59.03 59.00
T=180°F
0. | 4.39x1073 | 4.99x1073 | 5.88x1073 | 9.18x103 | 0.010 0.010
0.1 | 5.98x1073 | 6.86x1073 | 8.17x1073 | 0.013 0.014 |  o0.014
0.2 | 8.06x107% | 9.68x1073 | 0.012 0.020 0.022 0.022
0.3 |-7.11x10™ |-5.22x1073 |-2.37x10™3 | 5.81x1073 | 6.90x10> | 6.89x1073|
0.4 | -0.114 -0.116 -0.117 -0.127 -0.130 -0.130
0.5 | -0.554 -0.570 | -0.591 -0.662 -0.676 -0.678
0.6 | -1.935 -1.985 -2.044 -2.226 -2.256 -2.258
0.7 | -5.284 -5.364 -5.439 _5.639 -5.658 -5.659
0.8 | -10.40 -10.39 -10.29 ~9.980 -9.908 | -9.904
0.9 -6.443 -6.157 -5.693 -4.472 -4.311 -4.306
1.0 63.80 62.75 60.75 55. 66 54.98 54.97
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Figure 1. The geometry of the bonded Joint.
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Figure 2. Distribution of the shear stress in the adhesive in a bonded
. Jjoint under uniform membrane loading.
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Figure 3. Relaxation of the peak value of the adhesive shear stress
for various operating temperatures.
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Figure 4. Relaxation of the peak value of the normal stress in the
adhesive for various operating temperatures.









