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ABSTRACT

In this paper the problem of an elastic half plane containing a crack
and stiffened by a cover plate is considered. First, the asymptotic nature
of the stress state in the half plane around an end point of the stiffener
is studied in order to determine the 1ikely orientation of a possible frac-
ture initiation and growth. The problem is then formulated for an arbitrary
oriented radial crack in terms of a system of singular integral equations.
For an internal crack and for an edge crack, the problem is solved and
the stress intensity factors at the crack tips and the interface stress are
calculated. The case of a cracked half plane for two symmetrically loca-
ted cover plates is then considered. From a fracture viewpoint, the case
of two stiffeners appears to be more severe than that of a single stiffener.

1. Introduction

In the relatively recent past, there has been considerable interest
in the analysis of "cover plates" as a problem in structural mechanics.
This is primarily due to the fact that the structural components with a
variety of bonded or welded stiffeners and the solid state devices con-
taining elastic wafers fuse-bonded to elastic substrates may be approxi-
mated by a cover plate bonded to an elastic solid. In most cases, since
the stiffener is relatively very thin compared to the remaining dimensions
of the structure, it is approximated by an elastic "membrane" neglecting
the normal stress along the interface. Typical examples for such studies
may be found in [1-3]. The primary interest in these and similar studies
has been in the evaluation of the contact shear along the interface. The

*) This work was supported by NASA-Langley under the Grant NGR-39-007-011
and by NSF under the Grant CME-78-09737.
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results given in [3] for various elastic and inextensible cover plate
geometries show that, at the end points of the stiffener, not only the con-
tact shear stress but also the stress state in the substrate has a r'1/2
singularity. This suggests that such points of stress singularity are
locations of potential failure initiation. Furthermore, if the bond is
sufficiently strong, the most 1ikely failure mechanism would be the initia-
tion and propagation of a crack in the substrate along the weakest cleavage
plane emanating from the singular point. To study the related failure
problem, one needs to determine the weakest cleavage plane in the elastic
half plane and to solve the corresponding crack problem by placing a crack
of arbitrary length along this plane.

A problem similar to that described above was considered in a recent
paper [4], where it was assumed that the stiffener is perfectly rigid and
the crack is perpendicular to the boundary. Aside from the assumption
regarding the stiffness of the cover plate which may not be very realistic
for most practical applications, in [4] it is found that the nature of the
stress singularities at both ends of the cover plate are identical to
that of stiffened uncracked elastic half plane where the power of,singuF
Tarity is complex. This is clearly incorrect as the zero traction-zero
displacement mixed boundary conditions which prevails in the half plane
near the end points are for a wedge of angle m at one end and =/2 at
the other(*). At the crack end of the stiffener, that is, for the 90-
degree wedge, the power of the singularity is less than one half and is
real [5].

The general formulation given in this paper may be used to reduce a
number of crack-stiffener or crack-contact problems (including that dis-
cussed in [4]) to a system of integral equations. Since the kernels in
these integral equations are known in closed form and are relatively
simple functions, quite accurate solutions to the problem may be obtained
with a minimal computational effort.

(*74This is due to “rounding" the corners by approximating the mapping
function by a rational function used in [4] for mapping the cracked
half plane into a circle.



2. Formulation of the Problem

The problem under consideration is that of an elastic half plane
(= < x < w, y < 0) which contains an arbitrarily oriented crack and is
subjected to a given set of external loads. Along the boundary y = 0
the plane may contain a bonded stiffener or may be loaded through a stamp.
Perhaps the simplest way to solve the problem would be to reduce it to a
system of integral equations in.which the crack surface displacements and
the contact stresses on the boundary are the unknown functions. To derive
the integral equations, in addition to the solution of the problem for the
half plane under the given applied loads but without the crack and the
stiffener, it is sufficient to obtain the solution for a dislocation in
the plane and a concentrated force on the boundary.

Consider a half plane (-» < X < », == < y < 0) with the elastic con-
stants «,, 1, (Kz 3 - 4v, for plane strain and ¢, = (3- vz)/(1+v2) for
plane stress) which contains a dislocation at the point (x1, y1) hav1ng
a Burger's vector B. Let the components of the Burger's vector be b
f] and b = f2. Referring to [6] the stress state in the half p1ane due
to f] and f2 may be expressed as

2y
_ 2
O]XX(X’y) = W(]lKZ) [K]](X’st]sy])f] + Klz(x’Y3X]sy])f2]s

2u :
2
U]Xy(st) = ﬂ(]+K2) [Kz](XSYsX]sY1)f1 + Kzz(x:st]sY])fzj’

2u
- 2
U]yy(x’Y) = W(]fKZ) [K3](Xaysx]’y])f] + K32(Xsy,x]sy])f2]_

(1.a-c)

where the functions Kij are given in Appendix A. .

The second basic solution needed to formulate the problem is that
of a half plane under concentrated forces f3 and f4 acting on the boundary
at (x = Xg9 y=0) in x and y directions, respectively. This solution is



given by
Ooyx (X2¥) = = ;%w [(x-x°)3f3 + (x-xo)zy 1

Ioxy(Xs¥) = - ;%n-[(X-xo)zy fat (x-xo)y2 fals

2
Oyy(Xs¥) = - ;;n-[yz(x-xo)f3 + y3f4], (2a-c)
where
e = (x-xo)2 + y2 . : (3)

For this loading condition, the displacement derivatives on the boun-
dary y=0 may be expressed as

4y f Ko=1
2 1 '3 %
Tre, 3x Uz (%:0) ™ Xg=X F oA g olxexg)
ha <! 1 Ta
T?EE'Si'VZ(X’O) = - = 3 8(x-x,) + ;—23:; (4a,b)

The third problem is the determination of the stress state in the
half plane having no crack and no stiffener and subjected to the actual
applied loads. This stress state will be designated by “aij(x’Y)’

(i,d = x,y). For example, in a plane under uniform tension Po in x-
direction, we have

Taxx(Xs¥) = Pos 0z, (%o¥) = 0, oy (x,y) = 0. (5a-c)

Consider now the problem described in Figure 1. If the cover plate
is approximated by a membrane, Opy = 0 and the equilibrium condition in
x-direction gives



The, % N = f falxo)dxy + Py (6)
-2a

1

where M1 and ky are the elastic constants, h the thickness, Uy the dis-
placement, 2a the length of the stiffener, P1 and P2 the additional forces
which may be acting on the stiffener, and f3(x0) = Oyy the shear stress
acting on the contact region (Figure 1). Note that

0

[ fytxpdaxy = - by (7)

-2a

If we now assume that the half plane contains a crack along the

- 1line L, the Burger's vector E(f],fz) would be a continuously distributed
function with the coordinates Xq and yq on L. Clearly, f](xl,yl),
fz(x],y1) and f3(x0) are the unknown functions of the problem which may
be determined from the traction boundary conditions on the crack surface
and the displacement continuity along the contact area. Anticipating
the crack initiation at an end region of the stiffener, consider the
specific radial crack geometry shown in Figure 1. The boundary condi-
tions on the crack surface may be expressed as

= 25 4+ in2 +
cnn(s) 0, C0s%68 + o, sin2e + o

vy y51n26 =0, c<s <d,

)sine cose - o,.,c0s26 =0, c< s < d, (8a,b)

osn(s) = (cxx'oyy Xy

where (see (1), (2) and (5))
%3 = 9tig * %2ij * Yaige (1:3) = (). (9)

On the line of the crack note that

X =5 sing , ¥y = -5 C0SO , (10)



and we let
Xy = t sine, y; =-t cose, (c <t <d). (11)

Now, observing that f], f2 and f3 are distributed functions, substituting

from (1), (2), (5), and (9-10) into (8) we obtain the following two
integral equations:

d d 0

J k”(s,t)f](t)dt + I k]z(s,t)fz(t)dt + J k]3(s,xo)f3(xo)dxo
c c -2a

= =P, cos2g, (c < s < d),

d d
[ Rortsstafy et + [ ops,0165 (0008 + [ kpglsmg)Flxg)en,
c c -2a
=P, sine cose, (c < s <d) , (12a,b)

wheré the kernels kij’ (i=1,2; j=1,2,3) are given in Appendix B. Since
the crack is an embedded crack, from the condition of single-valuedness
of displacements it follows that

[ f10ee =0 [ f0ae =0, (13a,b)
c c

The third integral equation is obtained by expressing the condition
of continuity of 3u/5x along the interface y=0, -2a<x < 0, namely

2 up(x) = 2 uy(x,0). (14)

The strain au1/ax is given by (6). auz/ax is obtained by adding the
strains given by the stress states (1), (2) (which is given by (4a)),

-6-



and (5), and again keeping in mind that f], f,, and f3 are distributed
functions. Thus, for the crack geometry and the applied loads given in
Figure 1 we obtain

d d 0
[ kgytetatyeade + [ kpplxitdfpleddt + [ kaglesng)Fylx)dx,
o c ~2a
]+K2 1+K]'
= - 8112 pO + 8hl1] P'l s ('Za < X< O)a (]5)

where the kernels k3j, (j=1,2,3) are also given in Appendix B.

3. The Uncracked Plane

To determine the direction of crack initiation in the plane, the
asymptotic stress state near the end points of the stiffener needs to be
analyzed. In the uncracked plane, the external loads are the actual
applied loads (e.g., cxx(w,y) = po) and the contact stresses on the
stiffener-half plane interface. If the stiffener is approximated by a
membrane, the contact stress oyy(x,o) = f4(x) is zero and referring to
the insert in Figure 2, for Py=P,=0, °xy(x’0) = f3(x) is determined
from (see (15))

11 filxo) 1 up(They) o _
::f “xgx o - fﬁmf f3(xg)dxg = - po/2, (0 < x < b),
0 0
(16)
subject to
b .
f f3(x0)dx0 =0 . (17)
0
Defining



o bUz(]'hC'l)
X = (1+t)b/2, (1+T)b/2 f3(X ) = f(t), A = W s (18)

equations (16) and (17) may be expressed as

1 t
1 {%l-dr -H f(x)dr = - p/2, (-1 < t<1),
1 -
1
f(r)dt = 0 (19a,b)
2

which are solved numerically.
Once fj (x.) is determined, by substituting from (2) into the trans-

formation fonnu]as (8) and integrating in X , one may easily obtain
the cleavage stress o, along n=0 as follows:

1 :
{[r sino + (1-1)/2]3 cos26 + [r sin®

3]~

1 -
-1

+ (1-1)/2]r2 sin2e cos?e - 2r[r sine
) _
+ (1-1)/2] sine cos26}{r2cos2s + [r sine

¢ (1-1)/217 1 F(x)dr + cos2e , (0 < r < =), (20)

where r = s/b. Also, on the boundary y=0 the stress component Ty MY

be obtained from (2a) as follows:

1 £(x)
Py -_E—_%'-d't s X = b(t'ﬂ)/z’ ("°° <t< m)' (2])

51; 0y (:0) = 1+ 2
21



Note that the solution of (19a) is of the form

V2 4z, | | (22)

f(z) = F(z)/(1-12)
F(t) being a bounded function. Thus, after determining F(t) from (19),
onn(r,e) and oxx(x,o) may be obtained from (20) and (21) by using the
standard Gaussian integration formulas [7]. Figure 2 shows the variation
of the cleavage stress %nn with the ang]e‘e for a fixed value of r=s/b.
The value of r seems to affect primarily the magnitude rather than the
angular variation of Tan The angle at which %nn is maximum is approxi-
mately 3 degrees. By changing A it was also observed that this angle
does not seem to vary significantly with material constants. Therefore,
for the remainder of this study, it will be assumed that the weak cleavage
plane in the elastic half space is & = 0. This way the integral eduétions
and the subsequent asymptotic analysis are simplified quite considerably
without significantly altering the qualitative behavior of the results.
Along the plane 6 = 0, the variation of the cleavage stress qnn(s;O) =
oxx(b,y) is shown in Figure 3. From (20) it can be shown that %n has
a singularity of the form 51/2 in the neighborhood of the end points of
the stiffener. Thus, 9 becomes unbounded as s - 0.

By substituting from (22) into (21) and by using the properties of
the Cauchy-type integrals or that of the Chebishev polynomials, it may
easily be shown that [7] the function cxx(x,O) defined by (21) is
bounded in -1 < t < 1, (or in 0 < x < b) and has a square-root singularity
at t = 1 (or at x=0, x=b) for |t|] > 1. That is, as may be seen from
Figure 4, cxx(x,O) is discontinuous and is unbounded at the end points
of the stiffener.

4. The Crack-Stiffener Problem-The Internal Crack

For uniform tension p,, Py = P, = 0, and 6 = 0 from (12) and (15)
the integral equations of the problem shown in Figure 1 may be obtained
as follows:



d

2u
2 1 1 2t 4t2
nl]+n25 I (- t-s ~ t+s = (t+s)? * {t+s)3 ] fl(t)dt
c
2 0 x03f3(xo)dx0
+ ;‘J (xg2+s2)2 = =Py (c<s<d), (23)
-2a
d 0 2
2“2 [ 1 + 52-t2+4tS] f (t)dt - _2_ SXO f3(XO)dX0 -
n(]+n2$ t-s (t+s)3 2 - (X02+52)2 =U,
c -2a
(c <s<d), (24)
d d
1 -t t(t2-3x2 2 t2x
EF'J i + St 1 e - 2| iy (et
c c
) X
T+ falx ) T4k , T4k
' 2 370 1 - 2
* 41ru2 J XO-X dx0 - 8hu-| J f3(x0)dxo - 8u2 Py >
-2a ‘ -2a
(-2a < x < 0), (25)

The solution of (23-25) is to be obtained under the following condi-
tions:
d d 0

[ (et = 0, [ f(t)dt = 0, [ F3lxg)ang = 0. (26a-c)
c c -2a

For c>0 the integral equations (23-25) have simple Cauchy-type
kernels. Consequently, the functions f,, (i=1,2,3) have square root
singularities and are of the form shown by (22). These equations may

-10-



easily be solved by using_a Gaussian quadrature formula [7]. From the
viewpoint of fracture analysis, the quantities which are of primary
interest are the stress intensity factors which may be obtained as
follows(*):

k](c) = 11m/2(c-s§oxx(s,0), kz(c) = Tim/zlc-siox (s,0) , (27a,b)
S-+C S+C Y

k1(d) = 1im¢2(s-d50xx(s,0), kz(d) = Iim/zis-aicx (s,0), (28a,b)
s-+d s+d Y

k,(-2a) = 1im/2{2a+x)o,(x,0), k,(0) = Tim/<2xo_ (x,0). (29a,b)
2 24 Xy 2 x50 Xy

X>=2¢

5. The Edge Crack

The integral equations (23-25) are valid for all cracks perpendicular
to the boundary, including the physically important case of an edge
crack for which c=0. It may be observed that for c=0 the kernels of the
integral equations are of the generalized Cauchy type; that is, in addi-
tion to-simple Cauchy singularities, the kernels contain terms which
become unbounded at the end point x=0=s. Consequently, at the end point
x=0=s the functions fi’ (1=1,2,3) would not have the standard square-
root singularity.

First, we note that for a sectionally holomorphic function F(z)
defined by

1*)Note that for the geometry under consideration

fily) = fy [uy (+0,¥)-u,(-0,y)] and fy(y) = % Lv, (+0,y)-v,(-0,y)],

=-¥s Opg==0,y» and in transforming the coordinates the notation f;(s) =
f.ly(s)1, (i=1,2) is used. :

-11-



Fz) = 1 [ f{tlet (30)
a
where
f(t) = ¢(t) » (-1 < Re(a,8) < 1), .
(t) o (0-0)F ( e(a,g) < 1) (31)

one may express the following asymptotic relation [7,8]:

ionr
Fz) = 2lal e 1 ol) L1 _.¢(;), (3
(b_a)B S1!?aﬂ (z-a)°‘ (b_a)a SINBm (z-b)B 0
where ¢(t) is a bounded function and F, is either bounded or has singular-
ities of order lower than that of F(z) [8]. Also note that

b | b .
1 _ﬂil_dt=.i.[: ,.2_ fit dt=—d2—F . (33
: ja gt =g 2 ja e - £ r) (33)

By observing that for a < x < b F(z) is holomorphic at z=2a-x, one
could write

b

1J fe)dt 1 d"
= = —r (2a-x) , (a < x <b). (34)
HE (t+x=2a)"F1 M gz

Thus, for c=0 the asymptotic values of all the integrals in (23-25) may
be expressed in terms of the corresponding holomorphic functions by using
the general relations (32) and (33) and specific expressions of the form
(34). For this, it is sufficient to expand the kernels into simple
fractions. For example, '

-12-



1
(t+ix)?

]
(t-ix)?

(35)

+
ENP

X
7

for which the related function FZ(Z) would be holomorphic at z= + ix if
-2a < x < 0 (see (25)).

We now let the unknown functions fis (i=1,2,3) in (23-25) be
defined by

-211_2 t) = ¢](t) (36
g 10 8(get) ’
TIEE fz(t) = ;EZE:Z;; s (0<t< d), .(37)
Fa(t 3t) (2a < t < 0), 0 < Re( <1, (38)
= sy \-cad < < s < Re(asBsysw) < .
3T (0B (e Pl <

d
2 f.(t)
FIORR g P e A EI (39)
0.
o fo(t)
F3z) = %‘j =k (40)
-2a ‘

By substituting from (36-38) into (23-25) and by using the function-
theoretic method described above, the following characteristic equations
may be obtained to determine the constants «, 8, v, and w:
¢1(d) $5(d)
g cotmw = 0, - 5
d d

¢3(-26)

( )B cotra = 0, (41a-c)
2a

COtTT‘Y = 09

-13-



s $3(0)

[(1 -cosmg- 4B+282) + (B-2)cos 5= l1=0, (42)
S'In'rrB d 2 (2a)°‘
———= [(cosmp-1+48-2 2) + (-1)sin I8 3( ) -0 .
Sy [(cosna-Taas-26 B-1)sin 5= (a)* = )
¢1(0) $,(0) $4(0)
——— [-28cos 2 + 2(1-g)sin I - cosmB =
(44)

At the end points, the functions ¢i(t)’ (i=1,2,3) are bounded and
nonzero. Hence, equations (41) give the following expected results cor-
responding to square-root singularities:

=1/2 ., vy=1/2,a=1/2. (45)
Since it is assumed that ¢i(0) # 0, (i=1,2,3), the coefficient determinant

of the linear homogeneous system (42-44) must vanish, giving the fourth
characteristic equation to determine g8 as follows:

€os8=1 [cosng - 1 + 4p - 252]° = 0. (46)
sin3ng

It may be observed that (46) has no root for which 0 < Re(g) < 1.

For the sectionally holomorphic function F(z) given by (30), if we now
assume that the density function f(t) is bounded at t=b and let

f(t) = ot (47)
the asymptotic expression of F(z) near the point z=b becomes [8]

-14-



F(z) = 2ol 10 (2-) + F () (48)

where, near and at z=b, Fo is bounded. With the behavior at the end -
points known, ‘the density functions fi may now be expressed as

G,(t G
_TT'f](t) = ’ ¥] fz(t) = 2( )
Ko (d-t)% ~ %2

(t)
3
__—’f =
(d-t)* 3t (t+2a)®

- (49a-c)

The functions G] and G2 at t=d and G3 at t=-2a are bounded and nonzero.
However, their behavior at t=0 is as yet unknown. By using (48) and
substituting from (49) into the integral equations (23) and (25), we
obtain

1 2
G (0) ]Og X < L
nv/2a 3 mv2a

G3(0) 1og s < = , (50a,b)
‘In the third integra] equation (24) the coefficients of the logarithmic
terms cancel out. At the end point, we have x = 0- and s = 0. Hence,
from (50) it follows that

G5(0) =0 . (51)

Therefore, the characteristic equation (46) found by assuming that
¢3(0) # 0 (which means that f3(0) # 0 or G3(0) # 0) would not be valid.
Going back now to the system of equations (42-44), if we let ¢3(0) = 0,
and assume that ¢](0) # 0 and ¢2(0) # 0 (42) and (43) gives

1 ' 2\ _
STes (1 - cosmp - 48 + 282) =0, _ (52)

and from (44) we obtain

-15-



6,(0) = T 6,(0) . | (53)

It should be pointed out that (52) is the characteristic equation
corresponding to a 90-degree elastic wedge for which the tractions in
the neighborhood of the apex are zero. In the problem under considera-
tion, since cyy(x,ol = 0 and ¢3(0) = 0 implies that cxy(-o,o) = 0, this
result is expected' ’. The relation (53) indicates that even though
bounded and nonzero, at (x=0, y=0) the displacement derivatives
a(u2+-u£)/ay and a(v2+-v2‘)/ay are not independent. In passing one may
also remark that at y=0, if one forces the crack to close (i.e., if
¢7(0) = 0 and ¢2(0) = 0) and lets ¢3(0) # 0, from (44) one may easily
recover the standard characteristic equation, namely cotwsg = 0.

6. Symmetric Cover Plates.

= The formulation of the stiffener-crack problem described in the pre-
vious sections may be applied to a cracked half plane containing any
number of stiffeners without any difficulty. In particular, the problem
is considerably simplified if there are two identical cover plates
located symmetrically with respect to the x=0 plane and if the crack is
oriented along the plane of symmetry. In this case, fz(t) = 0 and the
system of integral equations (23-25) reduces to

d
21, J[_ 1.1 2t 42

1 £ (t)dt

(*)It should be emphasized that the absence of stress singularity at
the apex of a 90-degree elastic wedge stiffened on one side is
due to the membrane assumption made for the stiffener. If the
stiffener has a finite thickness, then the apex is a point of stress
singularity and the asymptotic behavior of the stress state around
this point is similar to that of two bonded dissimilar 90-degree
elastic wedges (see, for example, [5]).

-16-



-b

4J t3
+ = ————— f(t)dt = -p_, (c < s < d) , 54
! -2a (t2+s2)” 3 Po &4
d : -b
2y 2 .2
2 j [ t + ﬂt -3x ) ]f (t)d 1 [ 1 1
- t+ - (7= + =) fa(t)dt
m |+K25 . £24x2 (1:2_*_)(.2)7-r 1 ir o t-X t+X) 3( )
1+K'] UZ X po
g Tl e | fatie =2, (2 x<om) (55)
-2a

where it is assumed that the stiffeners are located on (-2a < x < -b, y=0)
and (b < x < 2a, y=0), and the crack on (x=0, -d <y < -c). The equiTibrium
and the single-valuedness conditions under which (54) and (55) must be
solved are

d -b

[0t =0, [ fea-0. | (56a,b)
c -2a S

In this problem, too, the interesting case is that of ¢=0, b=0
corresponding to the crack initiation and growth from a broken cover
plate. In the case of a single cover plate -2a < X < 2a, in the absence
of any cracks in the elastic half plane, the maximum tensile stress
Tyx in the cover plate would be at x=0. If the cover plate fails at
this point, then the problem reduces to that discussed in [3], where
it was shown that the stress state (in the half plane) at the point
(x=0, y=0) has a strong singularity. This would greatly enhance the
possibility of crack initiation in the elastic half plane around this
point. For b=0 and c=0 the asymptotic behavior of the solution of (54)
and (55) may again be examined by defining f, and fé as in (36) and (38)
and by using the function-theoretic method described in the previous
section. In this case, the characteristic equations are found to be

-17-



¢4(d) 94(-2a)
= cotmw = 0, S cotma = 0 , (57a,b)
d (2a) |
0) $,(0)
1 . 4 ag 8300
SThE [(1-cosmp-48+282) —+ 2(8-2)cos-7r-———7; =0, (58)
d (2a)
0) $4(0)
1 ng #1 3
- [-2B cos %5 ——— - (1+cosm8) 1=0. (59)
S'lmrB 2 d(JJ ’ (za)d
Equation (57) gives again the standard result w = 1/2, o« = 1/2 and the
coefficient determinant A of (58) and (59) may be shown to be
2. q_
A(B) _ cos<mg-1 (60)
sin2wg

It is again seen that A(8) = 0 has no root (for which 0 < Re(g) < 1).

If one now assumes that at the end point‘t=0 f] and f2 are bounded
“and are of the form given by (49a) and (49c), by using the procedure of
the previous section, it may be shown that G3(0) and hence f3(0) is
zero. In the asymptotic relation obtained from the second integral
equation, the coefficients of the logarithmic terms cancel out, imply-
ing that ¢](0) is bounded and (may be) nonzero (see, for example, [9]
for details).

7. Results.

The integral equations with a simple Cauchy kernel or with a gen-
eralized Cauchy kernel found in the previous sections are solved by
using the numerical integration formulas described, for example, in
[7]. The stress intensity factors defined by (27-29) for the problem
of a uniformly loaded stiffened cracked elastic half plane are given
in Tables 1-6. Tables 1 and 2 show the stress intensity factors for
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the interface shear stress at the end points x=0 and x=-2a of the stiff-
ener for the case of an internal crack (c > 0, 6 = 0, Figure 1), In
Table 1, the length of the crack is fixed and its relat1ve distance to
the boundary So = (d+c)/2a is varied. In Table 2, the crack length is

varied for a f1xed distance. In the tables the dimensionless constant
A* defined by

* _ U2(1+k])

a .

is a measure of the relative stiffness of the cover plate, smaller 2*
corresponding to stiffer cover plates. The tables indicate the expected
trends, namely that generally the stress intensity factors increase
with increasing cover plate stiffness. Tables 3 and 4 show the corre-
sponding stress intensity factors at the ends of the internal crack
which are defined by (27 and 28). It may be seen that the mode II stress
intensity factors kz(c) and k (d) are very small in comparison with the
mode I values k](c) and kT(d) indicating that a subcritically grOW1ng
crack generally would remain in the direction approximately perpendicular
to the boundary. One may also observe that the mode I values tend to
slightly decrease with increasing cover plate stiffness or decreasing z¥.
Table 5 shows the results for the edge crack (i.e., c=0) in a half
plane stiffened by a single cover plate. Note that in this case, kZ(O)
for the interface shear is zero. The results are given only for (d/a) <
1 as they appear to remain relatively constant for (d/a) > 1. This may
be seen from Figure 5 giving the mode I stress intensity factor at the
crack tip as a function of d/a. The asymptotic value of the stress
intensity ratio for (d/a) - » shown in the figure is that of a uniformly
loaded unstiffened half plane containing an edge crack. The figure
shows that as (d/a) - 0 the stress intensity factor becomes unbounded.
This is, of course, due to the fact that in this case, the governing
stress field itself is singular (see Figure 3). It may also be seen
that as A* decreases, the stress intensity factors tend to increase due
to the increase in the "stress concentration" around the stiffener.
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The results for two symmetric cover plates are shown in Table 6.
In this case, the stress intensity factor for the contact shear k2(0)
and that at the crack tip for mode IT kz(d) are zero. The important
stress intensity factor k](d) is also given in Figure 6. Again, it may
be seen that for (d/a) > 1, the effect of the cover plates appears to be
negligible (this general result may also be observed from the stress
distributions given in Figures 3 and 4). Comparison of the results
given in Figures 5 and 6 indicates that the stress intensity factor for
the two cover plate case is consistently greater than that for a single
cover plate. |
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Table 1.

Variation of the stress intensity factors
kz(-Za) and k2(0) for the interface shear stress

with the crack location, so=(d+c)/(2a) - the case

of internal crack, A*=(a/h)(uZ/ﬁ1)
2=(d-c)/(2a) = 1.

(1+K])/(1+K2)a

kz(-za)/Po/5 kz(O)/poﬁi
s~ 0.2 1 4 0.2 1 4
1.1 0.519 0.406 0.237 -1.074 -0.918 -0.633
1.5 0.605 0.488 0.305 -0.642 -0.521 -0.325
2 0.602 0.494 0.321 -0.546 -0.442 -0.279
3 0.541 0.447 0.296 -0.493 -0.402 -0.260
5 0.487 0.401 0.264 -0.474 -0.389 -0.255
Table 2. Variation of k2(-2a) and k2(0) with crack
Tength, 2=(d—c)/2a,_so=(d+c)/(2a) = 1.
kz('za)/Po/E kz(o)/po‘/E

T 0.2 1 4 0.2 1 4

0.1 0.472 0.388 0.254 -0.473 -0.389 -0.255
0.25 0.478 0.391 0.255 -0.486 -0.399 -0.260
0.5 0.496 0.402 0.256 -0.543 -0.445 -0.286
0.75 0.510 0.406 0.248 -0.700 -0.580 -0.375
0.9 0.494 0.387 0.228 -1.015 -0.867 -0.598
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Table 3. Variation of the stress intensity factors at the crack tips s=c and s=d with
the crack location, s = (c+d)/(2a), 2=(d-c)/(2a)=1 (internal crack) .
kq(c)/pyY2a ky(c)/p Vi ky(d)/p, Vi ky(d)/pyvia
D A1 0.2 1 4 0.2 1 4 0.2 1 4 0.2 1 4
1.1 1.535 1.550 | 1.592 |{|-0.077 |-0.045 |-0.001 1.092 1.116 1.155 | 0.075 | 0.062 | 0.040
1.5 1.055 | 1.088 | 1.140 ] 0.042 | 0.035 | 0.021 1.034 1.048 | 1,071 0.052 | 0.040 | 0.022
2.0 1.010 1.030 | 1.059 || 0.051 0.039 | 0.024 1.023 | 1.030 | 1.041 0.035 | 0.026 | 0.014
3.0 1.011 1.017 1.025 ]| 0.029 | 0.022 | 0.011 1.015 1.017 | 1.021 0.016 | 0.012 | 0.006
5.0 1.008 1.009 | 1.0101 0.008 | 0.006 | 0.003 1.008 | 1.008 1.009 {| 0.005 | 0.004 | 0.002
Table 4. Variation of the stress intensity factors at the crack tips with f:he crack
length, 2=(d-c)/(2a),so=(c+d)/(2a)=1 (internal crack).
k](c)/po/ﬁ kz(c)/po/z_a kl(d)/po»/z—a. kz(d)/pov’fé'
A IE: 1 4 0.2 1 4 0.2 | 1 4 0.2 1 4
0.1 0.913 | 0.935 | 0.967 || 0.035 | 0.027 | 0.015|{ 0.919 | 0.940 | 0.970 0.039 | 0.030 | 0.016
0.25 | 0.919 | 0.943 | 0.979 (| 0.033 | 0.026 | 0.014 | 0,932 | 0.952 | 0.982 || 0.042 | 0.032 | 0.017
0.5 0.965 | 0.993 1.037{| 0.023 | 0,020 | 0.014 || 0.966 | 0.987 1.018 || 0.050 | 0.039 | 0.021
0.75 | 1.130 | 1.160 | 1.212]|-0.008 | 0.001 | 0.010¢( 1.021 | 1.044 | 1.081 ([ 0.062 | 0.050 | 0.030
0.9 1.500 | 1.512 | 1.549 ||-0.083 |-0.050 |-0.004 || 1.080 1.105 { 1.145 (|} 0.073 | 0.061 0.040
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Table 5. Stress intensity factors k2(-2a), k](d), and kz(d) for the case
of a single stiffener and an edge crack (c=0) (see insert in Figure 5).

kz('za)/po‘/a_ k1(d)/P0/a7? kz(d)/Pomé-
N M1 0.2 1 10 0.2 1 10 0.2 1 10
0.1 0.441 | 0.369 | 0.169 | 2.670 | 2.438 | 1.838 | -0.380 | -0.300 | -0.095
0.25 | 0.393 | 0.335 | 0.161 | 1.959 | 1.877 | 1.667 | -0.184 | -0.143 | -0.039
0.5 0.308 | 0.269 | 0.138 | 1.687 | 1.667 | 1.606 | -0.071 | -0.055 | -0.015
1 | 0.152 | 0.138 | 0.081 | 1.501 | 1.589 | 1.586 | -0.010 | -0.008 | -0.002

Table 6. Stress intensity factors k,(-2a) and k (d) for two symmetric
stiffeners and an edge cracE (c=0) (see insert in Figure 6).

kp(-2a)/p va ky(d)/p Vd72
}\*
d/a 0.2 1 10 0.2 1 10
0.1 0.469 0.386 0.17V 4.014 3.443 2.110
-0.25 0.402 0.341 0.162 2.351 2.183 1.753
0.5 0.308 0.269 0.139 1.792 1.750 1.632
1 0.152 0.138 0.081 1.601 1.597 1.587




APPENDIX A
The functions K, appearing in equations (1):

.Y+.Y] .y'.y] Z(X‘X])z(.)'"'.y])
Kjp = P z " 7 7t 2 212
(rhy)+(x=x7)" (v=yq) 7 (x=xq)" [y 5+ (x-x)%]

2(x-%1)%(y-y;) - 6(x=x1)2(yty1 ) 242y (y+yy 13-6(x-%7 ) 2y (y+yq ) -2 (x-x )
- 2 77 - 2l
o [y=y) "+ (xxq) [{yyq)2+(x-x4)2]3

]

(x-x1)2-(y+yq)?
[{y+yq)2+(x-x;)212

+

(x-%7)2-(y-y7)? (x-x1)2-(y+y;)?
Kz = (X=X {——— -
0 [yyg)24(x-x1)212 [yHyq)2+(x-x1)2]2

YL(yty)2-(x=x1)21 + 2(y+yq) [(x-x1)2=(y+y1) 242y, (y+y;)] }

-4
d [(y4y7) 24 (e 1273

X=X X=X 2(x-x9)(y-y;)2

= - + -
U )2 exy)? (o) 2Hxex)2 Lly=yq) 24 (xex))2T2

2(x=x1)[(y+yq)2-2y, (y+yy)]
[(y+y )2+(x-x{)2]2

+

(x-x71)3 (2y+y )+ (x-%1) [3y{ (y+yq)2-2(y+y;) 3]
[{y+y)24(x-x,)2]2

+ 4_y.l
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Lo 22 ey )Gy 2]
2 Lly-yq)2+(x-x )27 [(y+y;)2+(x-x1)212

- 2y]
[(ytyp)2+(x-x{)213

{4(x=x1)20(y+y{)2=(x-x1)2-2y; (y+y{)]

+ [lyty ) 24(x-x)2103(%-x1) 2= (y+yq ) 242y (y+y1)1}

Ly P (xexg) , ) Llyayg)2=(xx)]
N L{ymy)2+(x-x)2T [{y+yy)2+(x-x1)2]2

2y1 L0y +y1)2-(x-x1)2]  4yy; (y+y) [y+y;)2-3(x-x4)2]
[(y+y;)2+(x-x7)2]12 [(y+y)2+(x-x1)27°

X-Xq X=Xq . 2(x-x7 ) (y-y1)?

Kom = -
()2 xexg)2 () 24(xexp)2 [yyq)24(xexq) 202

2(x-x1) (yy()®  40x=xq)yy [3(y+yq)2=(x-x1)2]
[(ytyq)2+(x-x1)?]? [(y+yq)2+(x-x;)2]3
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APPENDIX B
The kernels kij appearing in equations (12):

- 2u - -
k]](s,t) = n(Kzi]) { 28:9 + [2(t-s)sin26cose - (t+s)cos36]R 2

+ [(t-s)(5t2-s2)sin2scos36-2t(t+s)2cosde - (t-s)~°'coses1‘n‘*e]R"4
+ [4t2(t+s)3cos70 + 8t2(t+s)(4ts-t2-s2)sin2acos5e

-12t2(t-5)2(t+s)sin%ecos3 R},

2

2y .
= 2 __ (-sine . -
kip(s»t) = “(k2+]7—{ T+ (t-s)sin%eR

+ sinecos“et(t+s)(t2-52-8ts) + 4ts(t-s)]R',4
+ s1'n3ecosze>(t-s)(171_:-’-+s-’-—'lOts)R'4
+ [8sinecosfot(t-s)2(t+s)2 - sin59c05294t(t-sf(4t-3s)
+ 4sin3ecos“et(t2-52)(52-2t2+7ts)]R'6},
k]3(s,xo) = - %{[(s sine-xo)3cosze + s2sin26cos26(s sine-xo)
-2sinecos2es(s sine-xo)zj[szcosze+(s sine-xo)z]_z},.
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u -
k21(s,t) = W(KZE]) {- szfg + [(t-s)(sin3e-sinecosze)-(t+s)sinecosze]R'2

+ [(t+s)(2ts-s2-5t2)sinocos“s + (t-s)2(31:-5)sinaecosZe]R'4
+ [4t(t+s)2(t-s)(2t-s)sinecosbe + 8ts(t-s)(3t2-s2)sin3ecosts

-4t(t-s)3(2t+s)sin56cosze]R'61 R

_ _“"2  icoss - -2 2 -
kzz(s,t) = “(1+K27 tos " (t-s)sinscoseR™" + (8t(t-s)2cosesin“s

+ cos3esin2e[ (t+s)(t2-s2-4ts) - 2(t-s)(5t2+52-2ts)]

+ (t+s)(s2-t2+4ts)cos56)R™ + [4t(t-s)(t+s)(4t2-3s2

7ts)sinZecosSe + 4t(t-s)3(2t-s)sin“scos3s

8t(t-s)*sinbocose RS |

9
= - 2 [e2pne2 oy Y2772 c oy V3es
k23(s,xo) = -5 [s2cos2p + (s sine xo) 1 “[(s sine Xo) sinecose
- s2(s sine-xo)cos3esine - s(s sine-x,)2(sin%e-cos2e)coss],

R2 = (t+s)2cos2s + (t-s)2sin2e .
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k31(x,t) = 1:—-‘:2--?;§9-{-T'2 + [t2cos2e - 3(x-tsine)2]T'“},

k32(x,t) = - %-tz(x-tsine)cosze ™,

o 1 1 Ty
k3z(xsxp) = iy ™ XX 8 H(x-x,)

T® = t2cos20 + (x-t sing)? ,

1, x> X5
H(x-x,) = {

<
0, x x0
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Geometry of the stiffened elastic half plane containing
a crack.
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Fig. 3 Variation of the cleavage stress 9an with the radial distance
from an end point of the stiffener for 6=0.
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Fig. 5 . Variation of the mode I crack tip stress intensity factor with
the crack length for various stiffness parameters A =
[au2(1+»<])]/[hu1(1+|<2)] in a half plane containing an edge
crack and a single stiffener.
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Fig. 6 Variation of the mode I crack ‘tip stress intensity factor with
the crack 1ehgth in a half plane containing an edge crack and
stiffened by two symmetric cover plates. A* = [au2(1+|<])]/[hu-|(1+|<2)].
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