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A Monte Carlo simulation of the effects of finite clouds

on the light impulses produced by point and finite lightning

sources within cubical, cylindrical, and spherical clouds

shows that absorption is essentially negligible in the vis-

ible and near infrared. The fractions of photons which

escape various cloud surfaces are given as a function of

position and geometry of the source. The light emission is

high for intracloud discharges and the in-cloud portion of

cloud-to-ground discharges because most lightning activity

occurs at the -10 to -30°C temperature level, which, in

turn,is usually close to the optical center of the cloud.

The characteristic dimensions of the light escaping from a

cloud surface are typically 60 to 70% of the cloud dimen-

sions; and the time-broadening of an impulse by multiple

scattering can be tens of microseconds or more.
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1. Introduction

The optical effects of clouds have been of considerable interest in

the atmospheric sciences for many years. Most analytical and numerical

solutions of the equation of radiative transfer have been obtained for

situations where there are plane parallel sources of radiation Incident

on infinite homogeneous cloud layers. To the best of our knowledge, no

computations have yet been published which describe the transport of

radiation prow,ced by a transient and finite light source, such as

lightning,	 which	 is	 lo:;ated within finite clouds.
r ^

Understanding the effects of clouds on lightning signals 	 is	 ;,npori`ant

because optical sensors have been or are currently being used to detec
t

I
and locate discharges from ground-based stations (Kitagawa and Kobayashi,

1959; Brook and Ki`fagawa,	 1960;	 Krider,	 1966; Clegg,	 1971; Mackerras,

1973;	 Kidder,	 1973; Griffiths and Vonnegut,	 1975),	 from aircraft C:

(Vonnegut and Passarelli, 	 :973; Brook et al.,	 1980), and from satellites
l

(Sparrow and Ney, 	 1968;	 Vorphai et aZ.,	 1570; Turman,	 1977,	 1973,	 1979;

Edgar,	 1978,	 1980; Orville and Spencer, 	 1979; Turman and Tettelbach,

I	

1980;	 Orville,	 1981; Turman and Edgar,	 1981).	 Clouds obvio!isly affec±

the amplitudes of the light signals and the apparent dimensions of the

optical source; and the multiple scattering alters the shapes of the

tR
light signals vs.	 time.

Here we briefly describe a Monte Carlo computer simulation of the

transport of visible and near-infrared 	 light within a cloud.	 We give

results of tests of the program and then calculate the cloud transmis-

sion and absorption, the positions and angular distributions of photons

which escape the cloud, and the time-broadening of pulses by multiple

scattering.	 These calculations are done for point sources at various

K:
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locations within cubical, spherical, and cylindrical cloudb; and the effects

with finite chanrals are computed using symmetry and superposition.

2. The Monte Carlo method

The optical characte,istics of clouds are described in works by Twomey

2t at. (1967), Rozenberg (1968), Danielson et aZ. (1969), Twomey (1971, (977)0

Hansen and Travis (1974), van de Hulst (1980), and many others. Since the

radius, a, .,f a typical cloud drop is large compared to the wavelength, X, of

visible light, the size parameter, 27ra/X, is large and the scattering and

absorption by the drops is described by the Mie equations (van de Hulst,

1957). Following Danielson et at. (1969) and others, we approximate the

angular distribution of the photons which are scattered by a cloud drop by

the Henyey-Greenstein phase function:

z

(I + g	 2gu)

where p is the cosine of the scattering angle measured in the scattering

plane, and g, the asymmetry factor, is the intensity-weighted mean of p

over all angles. The scattering Is assumed to be symmetric about the

direction of the incident photon. The probability that a photon is absorbed

during a scattering event is described by the single-:scattering albedo, wo.

wo equals unity for conservative scattering, and (i - wjd is the probability

that a photon is absorbed per scattering event.

Basically, our Monte Carlo simulation approximates the physical inter-

actions between individual photons and the cloud drops, and is similar to

the methods described by Plass and Kattawar (19681, Danielson et aZ, (1969),

Van Blerkom C1971), Bucher 0973), McKee and Cox C1974), Davis et at. 0976),

Aida 0977), Davies C1978), and others. Photons arse emitted isotropically

I
from a point source, travei a certain distance, and then interact with a

4
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cloud drop at a known position within the cloud. During The interaction,

pho7 ,ons are either absorbed with a probability of (I - M d or scattered.

with the angular distribution given by Eq. (1). This process continues

until the photon either is absorbed or escapes from the cloud surface.

Here we consider only interactions with the cloud particles, and we ignore

any molecular absorption or scattering, either inside or outside the cloud.

To derive the free paths of photons between interactions, we assume that

the probability that a photon travels a distance x without an interaction is

P(x) = e-x/A
	

(2)

where ll is the mean free path. If we choose a random number, r, between 0

and I, a free path is given by

x = - Utz (r)	 (3)

i	 To save on computing time, the scattering angles were selected at random

from an array of size N, where each angle entry had equal probability.

These angles were computed using Eq. (1); that is,

un	 (i - Z ) dj	 (4)
N	 ( I + 	 )3/2

	

,q2 - 2gu
	 M

un-I	
t

I
or

(i + gz) - fN(I g qz) 
+ (I + gz - 2gUn-i)-#^

Un =

	

	 ,	 (5)
2g

so that the nth scattering angle, 8(n) is given by

9(n)	 cos-1 ^(iln 
+ 11	

)/2]	 (6)

k
For our application, N was typically 2000. When a photon escaped from the

cloud surface, its position, direction, and total path length were stored in

an array for subsequent output.

yv

w

s»e^ x



4

3. Cloud models

For large size parameters, the extinction efficiency of a spherical drop

is approximately 2 (van de Hulst, 195'); and the interaction mean free path

of photons with a uniform population of drops is approximately:

A =	 1
27ra2N

where a is the mean radius, and N is the number density of drops. The total

optical depth, T, of a uniform cloud layer of geometric thickness L is

L
T = W .

Table l shows values of mean drop radii and number densities for a cloud with

a liquid-water content of 0.42 gm/m 3 . The associated photon mean free paths

and the geometrical dimensions corresponding to total optical depths of 80,

200, and 400 are also shown. The 5 Vm radius drops in Table I correspond to

a typical continental cloud, and the larger radii correspond to maritime

clouds. In the following, we will give the results of our calculations for

a specific optical depth, and Eqs. (7) and (-8) can be used to relate these

data to the particular type of cloud.

TABLE 1 , Geometric parameters.

Mean . Number Mean Dimension, L
Radius Density Free Path (km;

a N A
()Im) (cm--3) (m) T = 80	 T = 200	 T = 400

5 800 8 0.64	 1.5	 3.2

10 100 16 1.3 3.2 6.4

15 30 24 1.9 4,8 9.6

(7)

(8)
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Table 2 gives values of the single-scattering albedo and asymmetry factor

for water and ice spheres in the visible (0.45 um) and near-infrared (0.87 um)

regions of the spectrum. The w 0 values for water drops were calculated from

j	 Mle theory using the refractive index data of Hale and Querry (1973). The wo
I	 ^

values for Ice particles at .87 lAm were approximated using the refractive 	 }

Index data of Irvine and Pollack (1968) at 0.95 Um, assuming the particles

are spherical. Note that the single-scattering albedos of both water and ice

in the visible, where there are many emissi pn lines in the lightning spectrum

(Salanave, 1980), are essentially unity; therefore, the scattering in this 	 j

region is conservative. The w o values in the near-infrared, a region where

there is strong NI radiation in the lightning spectrum and where silicon

optical detectors have optimum spectral response (Wolfe and Zissis, 1978),

range from 0.9983 to 0.99997, all nearly conservative. The calculations

which will be discussed below were performed for w 0 values of 0.999900

0.99996, and 1.0000 with 0.99996 being regarded as typical.

TABLE 2. Optical parameters.

spectral	 Radius	 Water	 Ice
a

Region	 (Wn)	 wo	 9	 wo	 9

	5 	 1.0000	 0.85	 1.0000	 0.85
Visible	

10	 1.0000	 0.87	 1.0000	 0.87
(0.45 um)	

15	 1.0000	 0.88	 1.0000	 0.88

	

5	 0.99997	 0.81	 0.99992	 0.82
Near IR	

10	 0.99996	 0.84	 0.99990	 0.87
(0.87 um)	

15	 0.99995	 0.87	 0.99983	 0.87

The asymmetry factors in Table 2 were taken from Hansen and Travis (1974),

who assumed the particle size distribution discussed by Hansen (1971). The
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values range from 0.81 to 0.88, and, in the following, we assume 0.84 is

typical. Since we will be concerned only with clouds that have rather large

optical depths, we can use the scaling or similarity principles discussed by

van de Hurst and Grossman (1968), Twomey and Bohren (1980), and van de Hurst

(1980, Ch. 14) to apply our results to other cases. That is, the results

for a given wo , g, and T can be applied to a situation where there are other

values, w p ', g', and T', provided that

wo T(I - g) = w o 'T , (I - g')	 (9)

and

(I - w 0 )'r= (I - w 0 ')T' .
	

(l0)

Recent work on the locations of lightning discharge channels and the

electric charges inside thunderclouds suggests that most lightning activity

is confined to a rather narrow vertical region of the cloud near the - 10°C

to -20°C temperature level (Tees and Few, 1974; Jacobson and Krider, 1976;

Taylor, 1978; Krehblel.et aZ., 1979; and Proctor, 1981). The -i' to -20°C

level, in turn, is usually located just about halfway between cloud base and

cloud top in both continental and maritime sic^rms (see, for example, Byers

and Braham, 1949, and Magono, 1980). In the following, we assume that the

light impulses which are produced by the individual components of an intra-

cloud discharge, or the in-cloud portion of a cloud-to-ground flash, are

isotropic point sources located on or near the horizontal mid-plane of the

cloud. The effects of an extended channel geometry, either in the mid-plane

or with large vertical components, can be derived from these results, using

the symmetry of the cloud and the principle of superposition.

4. Program verification

The two main limitations of the Monte Carlo method are the limited number

of photons which can be traced through an optically thick cloud with finite
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computer time, and the fact that a Monte Carlo program cannot be formally

proven to be mathematically correct for a finite number of photons. Here,

we choose a sufficient number of photons to keep most of our numerical

values accurate to at least 5%; and we verify the program by comparing

certain specific calculations with previous analytical and Monte Carlo

results. In the computations to be presented below, the standard devia-

Lion cif a particular numerical value is determined using the binomial

distribution. That is, if the fraction of photons contributing to a

particular result is k• and if the total number of photons Is n, then

x	 the standard deviation is gi`von by

o ` (P-( - p))	 CII)

Verification of the Monte Carlo results can be obtained by computing the

optical properties of semi-infinite cloud layers with external illumination.

Following Chandrasekhar (1950) and Twomey and Bohren (1980), the fractional

absorption, u,, of a layer of Isotropic scatterers can be expressed by

a	 (I - ^ 0 ) -^ H(u p )	 (12)

where H(p,) is the N-function as defined by Chandrasekhar (1950) and uo is

the cosine of the angle of incidences; Twomey and Bohren (1980) show that

this relafl on also approximates anisotropic scattering (g' # 0) if w o is

replaced by a scaled single-scattering albedo derived from Eqs. (9) and (10)

( I	 g I ) wo'

W ° - I	 g ► i

so that Eq. (11) becomes

Cl z	 ( 	

r

	 H(110)
I - g lA10

(13)

(14)

f

I}

C
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Figure I shows a pint of laver nbsorptic.n vs, w p computed using Eq. (14) and

our Monte Carlo results for a g' of 0.64. The acgrooment Is quite goad.

Figure 2 shows Monte Carlo calculations of the reflectance of conserva-

tive scattering layers GO w 1) with the optical depths and asymmetry factors

as shown. The T and g values were chosen so that the scaled optical thickness

for conservative symmetric scattering (g' = 0), which Is derived from Eq. (9)

T 
	 (I - g)T ,	 (15)

equals 6 in Fig. 7a and equals 12 in Fig. 2b. Note that the Monte Carlo

results preserve the scaling relation riven by Eq. (15).

Twomey et al. (1967) used a matrix method to derive the moan optical path

length of reflected and transmitted photons vs. optical thickness for layer

clouds. Figure 3 shows a plot of these values together with our Monte Carlo

results, and the agreement is quite good.

McKee  and Cox (1974) used a Monte Carlo program to calculate the reflec-

tance of both layer and cubical clouds with conservatb.,e scattering. Figure 4

shows the McKee and Cox values for different optical depths, together with

those provided by our program; and again, the agreement is good.

5. Results

i'	 For this study, we have computed the optical effects of cubical, spherical,

and cylindrical clouds with total optical depths of 80, 200, and 400. These

computations were done for a series of point sources at the locations shown in

Fig. 5. For the cube, the coordinates of the source points are labeled in a

scaled Cartesian coordinate system (x,y,z) centered on one corner and with unity

the length of each side. The center of the cube, for example, is the point
4

(0.5 0 0.5, 0.5). If the cube had a total optical depth of 200, the center is

(100, 100 0, 100) in optical depth units; or, if we consider the cloud with 10 um

radius drops in gable I, the center would be (1.6, 1.6, 1.6) In kilometers.

4

A
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Point sources within the sphere of scaled diameter unity are taken along

a fixed radius, starting at the center (0.5, 0.5 0 0.5) and moving outward

almost to the outer surface (0.99, .5, .5), The cylinder has a scaled height

and diameter of unity. Point sources within the cylinder are labeled In

(x.y,a) coordinates with the center at 0.5, 0.5, 0.5).

In order to describe the photons which escape from the cloud surface, it

will be convenient to number the faces of the cube as shown In Fig. 5a. For

the sphere, 6 output surfaces of equal area are defined afi.J labeled as shown

In Fig. 5b. For the cylinder, the vertical surface Is divided into 4 equal

sections by the x y and x - y planes, and all surfaces are labeled as

shown In Fig. 5c.

The results of Monte. Carlo calculations of the total cloud absorption

and the fraction of photons which escape from the various cloud surfaces are

summarized in the Appendl_, Tables A-i, A -2, and A-3, for the point sources

sketched in Fig. 5. The total absorption Is simply the fraction of source

photons which is absorbed by the cloud. The escape percentages are the

fractions of source photons which escape through the specified surfaces;

the sum of the total absorption and the 6 escape fractions should equal 100%.

The point sources sketched in Fig. 5 model localized discharge components,

such as K-changes or channel sections, which make up the in-cloud portion of

both cloud-To-ground and intracloud lightning (.Kitagawa and Kobayashi, 1959;

Kitzagawa and Brook, 1960; Uman, 1969; and Brook and 0gawa, 1977). The effects

of clouds on extended channels can be derived from the results in Tables A-I,

A-2, and A-3, using symme't'ry and superposition. Figure 6 shows sketches

of the geometry of several extended sources that were computed using the

cubical cloud model; the associated optical results are given (o Table 3.

The structures in Fig. 6 lie on the horizontal mid--lane; however, because
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TAo4B S, Computations of photon absorption and escape for a cubical cloud with the finite

source channels shown in Fig. 6 All computations wtre done for n 0.84,

Source

Structure
Faces

Escape in
% per

Cloud fact
faces

Escape in
x per

Cloud Face

Total
Absorption

1 
a 

x

Optical Parameters

Wo I

A 192,3,4 19.0 t 1.0 S16 11.6 :1 0.8 0.8 * 0.2 0.99996 80

A 18.2 1 0.7 9.5 t 0.5 8,6 t 0.5 0.59990 200

1A 18.8 t 0.7 IOJ t 0.5 3.6 t O.'., 0.99996

A 19,5 t 0,7

1

11.2 3 O.S 0 1.00000

A 17.9 s 0.6 8.8 s 0.5 11.1 t O.S 0.99996 400

Ai 1,2,3.4 17.0 t 1.0 S,6 15.1 t 0.9 1.1 t 0.3 0.99996 80

At 1S.5 t 0.6 13.) t 0.5 10.6 # 0.5 0.99990 200

Ai 16.6 t 0.6 14.4 t 0.6 4.6 t 0.4 0.99996

Ai 17.4 t 0.6 1S.2 s 0.6 0 1.00000

Ai 15.0 t 0.6 12.3	 O.S 16,6 t 0.6 0.99996 4001

8 1.2.3,4 20.3 t 0.7 S,6 8.1 t 0.5 2.7 ! 0.3 0.99996 200

Bi 17.7 t 1.0 ( 12.S t 0.9 4.2 t 0.5 0.99996

C 192 26.4 s 1.1 :1,4,5,6 11.6 t 0.6 0.8 t 0.2 0.99996 80

C 26.7 3 0.7 ( 9.5 t 0.5 8.5 t 0.5 0.99990 200

C 26.8 t 0.7 10.7 t O.S 3.6 t 0.3 0„99996

C 27.7 t 0.8 11.2 t O.S 0 1.00000

C 27.1 t 0.8 8.8 t O.S 11.1 t 0.5 0.99996 400

Ci 1,2 " 19.0 t 1.0 3,4,5,6 15.1 t 0.9 1.1 t 0.3 0.99996 80

Ci 17.4 t 0.6 13,,7 t 0.5 10.6 t 0.5 0.99990 200

C1 18,8 t 0.7 14.4	 0.6 4.6 t 0.4 0.99996

Ci._ 19.6 t 0.7 15.2 s 0.6 0 1.00000

Ci 17.7 t 0.6 12.3 t 0.5 lS.6 .t 0.6 0.99996 400

0 1,2,3,4 20.3 t 0.7 6,6 8.1 3 O.S 2.7 t 0.3 0.99996 200

Of 17.7 t 1.0 12.5 t 0.9 4.2 t 0.5 0.99996 I

a

0
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of the symmetry, the results for vertical channels can b y determined simply

by relabeling the output faces. Among the things ti note in Table 3 are

the comparatively small values of total absorption, even for clouds with an

optical thickness of 400. This Is because the single-scattering albados In

Table 2 are all close to unity; therefore, even under extreme circumstances,

the visible and near-infrared light escaping from the cloud will always be a

sizable fraction of the total light emitted by the discharge. Figure 7 shows

the total absorption vs. point source position for a nonconservative cubical

cloud with optical depths of 200 and 400. Total absorption Is the greatest

for point sources near the center of the cloud (also see Tables A-I, A-2, and

A-3) because of the exponential behavior of the scattering process.

Since absorption is essentially negligible, the primary optical effects

of clouds are a redistribution of the numbers and directions of photons which

escape the various surfaces and the tlme-broadoninq of the pulses due to

multiple scattering. The fractions of photons which escape face 2 in the

cubical cloud are plotted in Fig. 8 as a function of source position, single-

scattering albedo, and optical depth. The nearly exponen+ W Increase of the

escape fraction as the source approaches the surface Is not affected by changes

in the single-scattering albedo. An Increase in the absorption or optical

depth merely tends to lower- the entire curve. it should be noted that, W th

the source essentially at the surface of face 2 (0.99, 0.5, 0.5) and a T of

200, almost 93% of the photons escape from that face and only about 0.3%

escape from the opposite surface (. ace 1). The escape from face I for other

source positions can be obtained simply by relabeling the x-axis in Fig. 8 to

be from 1.0 to 0 rather than from 0 to 1.0. The data for escape as a function

of source posi.`tion along the x y diagonal (z = 0.5) are also plotted in

Fig. B.

M
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For the sources plotted In Fig. 8 along the (x, 0.5, 0.5) axis, faces

I and 2 are normal to the source axis. Faces 3, 4, 5, and 6 are parallel

to this axis. Figure 9 shows the sum of the fractions of photons which

escape through the parallel faces when the source moves along the

(x, 0.5, 0.5) axis. The curves are symmetric about x = 0.5; and, again,

the effect of increasing absorption or optical depth is i •o simply lower

the entire curve.

One of the greatest difficulties with the Monte Carlo method is in

obtaining reliable statistics for the angular distributions of the escaping

photons because of the large number of "boxes" into which -the photon angles

are divided. Fortunately, the nature of the statistical error is such that

it ;s smallest where the frequency of emission is largest [see Eq. (Ii)].

Figure 10 shows the zenith angle distribut;on of photons which escape

through parallel faces 5 and 6 (the bottom and top, respectively). Half of

the escaping photons emerge within about 45 degrees of the vertical axis

f1cos Ull > . 71, and the zenith-angle distributions are essentially inde-

pendent of the source position and total optical depth. The distribution

of azimuth angles of the photons which escape from faces 5 and 6 with the

source positions of Fig. 10 are essentially isotropic.

Figures Ii and 12 show the zenith and azimuth angle distributions for

photons which escape from faces I, 2, 3, and 4. The solid curves In

Figures 10, 11 and 12 have actually been drzwn to provide the best fit to

the means of the angular distributions derived from all point-source loca-

tions that are at least 0.25 scaled-distance units away from the surface.

The enhancement of photon optical paths within the cloud by multiple

scattering will cause a time broadening of an impulsive light signal. To

determine the magnitude of this effect, Figures 13 and 14 show distributions

of the optical paths of all photons which escape from the cloud surface in

A
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units of the mean free path (Eq. 7). if the point source Is a delta function

with time, these curves show the time broadening when the optical path Is con-

verted to geometric units and divided by the speed of light. That Is, each

unit of optical path corresponds to a time interval given by

to = A/c	 (16)

where A Is given by Eq. (7) a pd a is the speed of light. Since A for the

10 pm radius drops in Table I is 16 m, to in this case would be about

53 nanoseconds per optical path unit.

Figure 15 shows the mean and the most probable optical paths that were

computed for photons which escape the cubical cloud as a f.nction of the

poin ••source location along the (x, 0.5, 0.5) axis. It should be noted in

Figs. 13 0 14, and 15 that the time-broadening is largest when the sources

are near 'i`he middle of the cloud and when the optical depths are large.

For a point source at the center (0.5, 0.5 0 0.5), the mean optical paths

of photons reaching the surface would be 970 and 2790 for cloud depths of

200 and 400, respectively. For the 10 }tm radius drops in Table I, 'these

mean optical paths would correspond to moan time-delays of 51 and 148

microseconds, respectively, it should be noted that the curves in Fig. 15

will be symmetric about the x = 0.5 position.

The number of photons which escape a unit area of cloud surface is a

function of position on the surface. In order tO describe this function for

'the different faces of our cubical cloud, we wil! consider the dimension, S.

of a hypothetical square centered on each face and examine the fraction of

photons emitted from within its boundaries. For the spherical cloud, we

Imagine a surface bounded by a circle of diameter, S, on the hemisphere

containing the source and d6termine the fraction of the photons which escape
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this surface. A point source at the center of the sphere produces a uniform

Illumination of the entire surface. Figure 16 shows the fractions of photons

which escape from surfac6 2 of the cube and the source hemisphere as a func-

tion of the characteristic dlstancoi, S, for various point sources within

cubical and spherical clouds. All curves lie between the cases where there

is uniform illumination (curve 9) and the imequ of a point source on the

surface (curves I and 2).

If we define a characteristic dimension of the emission from a surface,

So , to be that value of S which contains 70% of the photons emitted from the

face of a cube, or, in the case of a spherical cloud, the S which contains

70% of the photons which escape from the hemisphere containing the source,

then we can plot S, as a function of the source position as shown in Fig. 17.

Note that the characteristic dimensions of the surface Illumination are all

about 0.6 to 0.7 scale units when the sources are deeper than about 0.2 from

the surfaca. It should also be noted that the characteristic dimen;?,ion

seems to be inversely proportional to the fraction of photons which escape

through the surface (see Table A-1).

If the cloud is observed from a large distance, such as from a sateil te,

the number of photons which escape from the cloud as a whole determine the

brightness of the source. In this cas(;), each face of the cube can be approxi-

mated by a point source emitting the fraction of photons listed in Table A-I,

with the angular distributions plotted in Figs. 10, 11, -and 12. The fractior

of photons, Pf, passing through a certain solid angle, Aw l is obtained by

summing over the visible faces,

P f I n "Wi
n

'	 where F2 (Awi ) is the fraction of photons emitted from face n through Awi.

(17)
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Fn (dwi ) can be expressed as Fn-en(pz)-^(^j), where Fn is the fraction of

source photons emitted from face n, ^(p j ) is the fraction of photons emitter,

from face n with pi = eose2 between pZ-j^Ap and p2 + ^-Ap and ^n ( ^j ) is the

fraction of photons emitted from face n with 0 between oZ-;jA^ and OZ + AjA^.

Here we let Ap = .I and A^ : .17, so there are 400 solid-angle elements each

of .Olff steradians.

Figures 18 and 19 give the fractions of source photons which would be

detected in the y = 0.5 plane as a function of the zenith angle, Z, measured

from the positive z-axis and moving initially toward the positive x-axis.

Note that there is a uniform brightness with angle when the source is in the

center of either the cube or the sphere. The light intensity changes very

rapidly with angle when Z is near 0 or 1r with both cubical and spherics+l

geometries.

Figure 20 shows the angular distributions of source brightness with

several extended channel sources, as sketched in Fig. 6. Note In Fig. 20

how the effects of a large source geometry tend to eliminate the rapid

intensity variations with angle. if the zenith angle, Z, is defined so that

it moves tfsward the positive y-axis, rather than the x-axis, the brightness

distributions for the sources plotted in Figs. 18, 19, and 20 are uni°iorm

with angle.

6. Discussion

In order to perform the above calculations, we have been forced to make

several simplifying assumptions about the geometry and composition of thunder-

storm clouds and the nature of lightning sources. Spheres, cubes, and

cylinders, of course, do not exhibit the ebullient irregularities of natural

clouds. A homogeneous composition virtually ignores any possible differences

in the optical characteristics of water and ice particles and possible varia-

tions in drop concentrations and mean radii within the cloud. The
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Henyey-Greenstein phase function is a good approximation for most drop-size

distributions, but it is not exact. In spite of these difficulties, how-

ever, we expect the basic aspects and trends of most of our results to be

valid.

By modeling lightning as a series of point sources within the cloud, we

obviously ignore any contributions which would arise from channels ou'rvolde

tti::^ cloud surface. Light from a cloud-to-ground channel, for example, could

reach an optical detector directly or by reflections from (or transmissions

through) cloud surfaces. In Fig. 2 and Table 3, we see that the main effect

of even a thin cloud layer on the light produced by a source outside the

surface is reflection. Table 3 also shows that the transmission through

even a small cloud (T = 80) is limited to ,just a few percent of ` ,he source

or less.

We will now summarize our results by considering the problem of detecting

lightning from an earth-orbiting satellite with an optical sensor. The high

reflectivity of even thin cloud layers will prevent almost all the light pro-

duced below or behind a cloud from reaching the detector; therefore, we can

expect a very poor detection efficiency on most cloud-to-ground channels.

This situation might be alleviated somewhat by reflections of light from the

ground or other clouds, but, in these cases, the location accuracy will be

poor.

As we have said before, most lightning activi ty occurs within the cloud

at altitudes which are close to the optical center. Most cloud-to-ground

flashes are initiated inside the cloud at these same altitudes and have

extensive in-cloud components. Since the effects of absorption tend to be

negligible, any channels or portions of channels which are symmetric about

the center of the cloud will produce time-integrated Signals which are

essentially the same as if there were no cloud present at all. if the

p
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channels are above the geometrical midplane, the effects of the cloud will

be to enhance the signal detected by the satellite, and sources below the

midplane will be reduced in Intensity quite rapidly with distance. Abso-

lute measurements of the source intenstty will not be possible unless the

locations of the channels inside the cloud are known with good accuracy.

For deep sources, the characteristic dimensions of the light escaping the

cloud will be roughly 60 to 70% of the cloud dir.ansions; and if the channels

are extensive, the intensity will be substantially Independent of direction.

The risetimes of lightning light signals are probably dominated by the

geometrical growth of the channels which produce the emissions Wider, 1966).

Short channels can produce fast risetimes (Krider, 1974), but our calculations

suggest that these risetimes cannot be measured outside the cloud because the

ti.nte-broadening due to multiple scattering can easily be several tens of micro-

seconds.
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APPENDIX

TW.t A-1. Computations of phnton absorpt%-n and escape for cubl<al clouds.

-Point
Source

Location
(s.Y,e)

►ereent Escape Through Cloud Irece Total
Absorption

1n 9
a

Optical Parameters

1 2 3 4 6 6 W^ p t

.50,30,40 16.4 10.9 16.4 t 0.9 16.4 t 0.9 16.4 t 0.9 16.4 t 0.9 . 16.4 10.9 1.3 t 0.2 0.99996 0.84 80

.65 1 .50 1 .50 8.7 1 0.7 30.7 1 1.2 14.9 10.9 14.9 t 0.9 14.9 t 0.9 14.9 t 0.9 1.1 1 0.3

.75 1 .50,050 6.2 t 0.6 39.1	 t 1.3 13.4 t 0.9 13.4 t 0.9 13.4 t 0.9 13.4 t 0.9 1.0 t 0.3

.85,.50,.50 3.4 t 0.5 57.5 1 1.3 9 17 1 0.8 9.7 t 0.8 9.7 t 0.8 9.7 t 0.8 0.3 t 0.1

.99,.50,30 1.3 10.3 86.3 t 0.9 3.0 t 0.4 3.0 t 0.4 3.0 1 0.4 3.0 t 0.4 0.3 t 0.1

.75,.50,.50 6.3 t 0.6 37.5 t 1.2 13.8 t 0.9 13.8 t 0.9 13.8 t 0.9 13.8 t 0.9 0.9 t 0.2 0.99996 0.884 80

.75 1 .50 1 .50 5.5 t 0.6 41.7 t 1.3 12.9 t 0.9 12.9 t 0.9 12.9 1 0.9 12.9 t 0.9 1.1 t 0.3 ( 0.800

.75,.50,.50 5.1	 10.6 43.3 t 1.3 12.6 t 0.9 12.6 t 0.9 12.6 1 0.9 12.6 1 0.9 1.1 t 0.3 0.750

.50,.50,.50 15.2 t 0.5 15.2 t 0.5 15.2 t 0.5 15.2 t 0.5 15.2 t 0.5 15.2 1 0.5 8.7 t 0.4 0.99990 0.87 210

.50,.50,.50 14.8 t 0.5 14.8 t 0.5 14.8 t 0.5 14.8 1 0.5 14.8 t 0.5 14.8 ± 0.5 11.3 t 0.4 0.99990 0.84 200

165 0 .50 0 .50 6.3 t 0.7 27.3 t 1.4 13.9 1 1.1 13.9 1 1.1 13.9 t 1.1 13.9	 1.1 10.7 1 0.9

.75,.50,.50 4.1	 t 0.3 ,43.7 t 0.7 10.7 1 0.4 10.7 t 0.4 10.7 t 0.4 10.7 1 0.4 9.5 t 0.4

.85 1 .501 .50 2.4 t 0.5 55.9 t 1.6 8.7 t 0.9 8.7 1 0.9 8.7 t 0.9 8.7 1 0.9 7.1 t 0.8

.990 .50,.50 0.4 1 0.1 92.7 t 0.4 1.3 t 0.2 1.3 t 0.2 1.3 t 0.2 1.3 1 0.2 1.6 t 0.2

.50,40,40 15.8 t 0.5 15.8 t 0.5 15.8 t 0.5 15.8 1 0.5 15.8 1 0.5 15.8 z 0.5 5.3 1 0.3 0.99996 0.84 200

.65,.50,.50 7.9 t 0.8 29.5 t 1.4 14.5 1 1,1 14.5 1 1.1 14.5 s 1.1 14.5	 1.1 4.5 t 0.7

.75 1 .50 1 .50 4.3 1 0.3 44.2 t 0.7 11.9 1 Q.5 11.9 t 0.5 11.9 t 0.5 11.9 t 0.5 3.8 '- 0.3

.85,.50,.50 3.1 t 0.5 60.3 t 1.5 8.1 1 0,9 8.1 t 0.9 8.1 t 0.9 8.1 1 0.9 3.1 .t 0.5

.95,.50,.50 0.8 t 0.1 82.1 1 1.0 3.7 1 0.5 3.7 1 G,.5 3.7 3 0.5 3.7	 0.5 2.3 .' 7,4

.99,.50..50 0.3 t 0.1 92.8 t 0.4 1.6 t 0.2 1.6 1 0.2 1.6 t 0.2 1.6 1 0.2 0.7 1 0.1

.65 9 .65,.50 7.9 t 0.7 28.0 t 1.2 7.9 1 0.7 28.0 t 1.2 12.1 t 0.8 12.1 1 0.8 4.0 1 O.S . 0.99996 0.84 200

.75..75,.50 3.1 t 0.2 37.0 1 0.7 3:1 / 0.2 37.0 t 0.7 8.5 t 0.4 8.5 t 0.4 2.8 t 0.2

.85..85..50 1.5 t 0.3 43.4 t 1.3 1.5 t 0.3 43.4 t 1.3 4.0 t 0.5 4.0 t 0.5 2.3 t 0.4

.99,.99,.SO 49.8 t 0.7 49.8 t 0.7 0.1 1 0.1 0.1 t 0.1 0.1 1 0.1

.65,.65,.65 6.7 t CA 25.4 t 1.1 6.7 1 0.6 25.4 1 1.1 6.7 t 0.6 25.4 t 1.1 3.7 1 0.5 0.99996 0.84 200

.75,.75..75 2.9 1 0.4 29.5 t 1.2 2.9 t 0.4 29.5 1 1.2 2.9 1 0.4 29.5 1 1.2 3.0 1 0.4

.85 9 .851.85 0.7 1 0.2 32.1 t 1.2 0.7 t 0.2 32.1 t 1.2 0.7 t 0.2 32.1 t 1.2 1.5 1 0.3

.99 9 .991.94 33.3 t 1.2 33.3 1 1.2 33.3 t 1.2 0.1 1 0.1

.50..50..50 16.7 t 0.9 16.7 1 0.9 16.7 `- 0.9 16.7 t 0.9 16.7 '- 0.9 16.7 t 0.9 0 1.00000 0.84 20C

.66,30,.50 8.1 t 0.7 31.4 t 1.2 15.1 1 0.9 15.1 1 0.9 15.1 t 0.9 15.1 t 0.9 0

.75..50,.50 5.4 t 0.6 43.3 1 1.3 12.8 1 0.9 12.8 t 0.9 12.8 t 0.9 12.8 1 0.9 0

.85..50..50 2.0 t 0.4 65.3	 1.2 8.2 ! 0.7 8.2 t 0.7 8.2 t 0.7 8.2 t 0.7 0

.99,.50..50 0.3 1 0.1 93.1 t 0.7 1.7 t 0.3 1.7 t 0.3 1.7 1 0.3 1.7 1 0.3 0

,50,.50,.50 13.8 t 0.5 13.8 t 0.5 13.8 t 0.5 13.8 1 0.5 13.8 t 0.5 13.8 1 0.5 17.4 t 0.5 0.99996 0.84 40(

.65,.50,.50 6.2 t 0.6 28.9 t 1.2 12.9 1 0.9 12.9 t 0.9 12.9 t 0.9 12.9 1 0.9 13.5 t 0.9

.75,.50..50 3.1 1 0.2 44.3 t 0.7 10.0 t 0.4 10.0 t 0.4 10.0 t 0.4 10,0 1 0.4 12.7 1 0.5

.85..50,.50 2.0 t 0.4 61.0 t 1.3 7.0 t 0.7 7.0 1 0.7 7.0 1 0.7 7.0 t 0.7 9.1 t 0.7

.95,.50..50 0.3 t 0.1 93.1 t 0.4 2.6 t 0.2 2.6 t 0.2 2.6 t 0.2 2.6 ± 0.2 3.6 1 0.3

.99..50,.50 0.2 1 0.1 93.8 t 0.4 1.0 t 0.3 1.0 1 0.3 1.0 i 0.3 1.0 t 0.3 1.9 1 0.4

t.
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TAIL[ A-2. Computations of photon absorption and escape for a sph.rical cloud.

Point
Source

Location
(:.y.a)

9percent Escape Throu h Cloud Face Total
Absorption

in 11
a

Optical Parameters

1 2 3 4 5 6
---

wo p `

.50,.50,.50 16.1 t 0.5 16.1 s 0.5 16.1 t 0.5 16.1 t 0.5 16.1 t 0.5 16.1 # 0,5 3.4	 0.3 0.99996 0.84 200

.65,.50,.50 7.2 t 0.4 31.9 1 0.7 14.5 t 0.5 14.5 t 0.5 14.5 t 0.5 14.5 t 0.5 3.1 t 0.2

.75,.50,.50 4.2 t 0.3 47.8 s 0.7 11.3 t 0.4 11.3 z 0.4 11.3 t 0.4 11.3 t 0.4 2.8 t 0.2

.85,.50,.50 2.0 t 0.2 69.5 t 0.7 6.6 t 0.4 6.6 t 0.4 6.6 s 0.4 6.6 t 0.4 2.1 t 0.2

.99 1 .50,.50 0.8 t 0.2 95.3 t 0.7 0.9 t 0.2 0.9 t 0.2 0.9 ± 0.2 0.9 t 0.2 0.3 t 0.1

TABLC A-3. Computations of photon absorption and escape for a cylindrical cloud.

Point
Source

Location
(s,y,i)

Percent Escape Through Cloud Face 'Total
Absorption

in %
a

Optical Parameters

1 2 3 4 5 6 ^s g s

.50,.50..50 17.8 t 1.0 17.8 t 1.0 17.8 1 1.0 17.8 1 1.0 12.5 t 0.6 72.5 = 0.8 4.1 t 0.5 0.99996 0.84 200

.65,.50..50 8.4 i 0.7 31.2 t 1.2 15.9 t 0.9 15.9 t 0.9 12.8 t 04 12.8 t 0.9 3.0 t 0.4

.75..50,.50 5.1 t 0.6 47.5 / 1.3 11.5 t 0.8 11.5 t 0.8 10.5 t 0.8 10.5 t OU 3.3 t 0.5

.85,.50..50 2.9 t 0.4 66.5 t 1.2 7.0 t 0.7 7.8 t 0.7 6.5 t 0.6 6.5 s 0.6 2.1 t 0.4

.99..50..50 0.5 t 0.2 93.0 ± 0.7 1.4 t 0.3 1.4 t 0.3 1.4 t 0.3 1.4 t 0.3 0.7 ± 0.2

.65,.50,.65 8.1 s 0.7 29.7 i 1.2 13.8 t 0.9 13.8 t 0.9 6.3 t 0.6 x 25.5 t 0.6 2.9 t 0.4 0.99996 0.84 200

.15..50..75 4.1 t 0.5 42.3 1 1.3 10.2 t 0.8 10.2 t 0.8 2.3 t 0.4 27.8 t 1.1 3.1 t 0.4

.85..50..85 1.4 t 0.3 48.4 t'1.3 4.7 t 0.5 4.7 ! 0.5 0.7 t 0.2 39.1 t 1.3 1.0 t 0.3

.99 1 .50 6 .99 - 49.8 t 1.3 0.2 t 0.1 0.2 t D.l 49.8 t 1.3 0.1 t 0.1

.50..50..65 16.0 t 0.9 16.0 s 0.9 16.0 t 0.9 16.0 1 0.9 6.7 t 0.6 26.7 t 1.1 2.5 t 0.4 0.99996 0.84 200

.50..50..75 13.4 t 0.9 13.4 t 0.9 13.4 t 0.9 13.4 t 0.9 4.4 t 0.3 38.8 1 1 42 3.2 t 0.5

.50..50..85 9.1 t 0.8 9.1 ± 0.8 9.1 t 0.8 9.1 t 0.8 2.0 1 0.4 59.3 t 1.2 2.2 t 0.4

.50 0 .50 1 .99 1.9 t 0.4 1.9 t 0.4 1.9 t 0.4 1	 1.9 t 0.4 1	 0.3 t 0.1 91.1 t 0.7 1.0 1 0.3

x:^	 4

)

k	 '



20

REFERENCES

Aida, M., 1977: Scattering of solar radiation as a function of cloud

dimensions and orientation. J. Ruant. Speatrosc, Radiat. Transfer,

17 0 303-310.

Brook, M., and N. Kitagawa, 1960: Electric field changes and the design

of lightning-flash counters. J. Geophys. Res., 65, 1927-1931.

and T. Ogawa, 1977: The cloud discharge, In Lightning, 1/6% 1, Ph;;a cs

of Lightning,Academic Press.

, R. Tennis, C. Rhodes, P. Krehbiel, B. Vonn:gut, and 0. H. Vaughan, Jr.,

1980: Simultaneous observations of lightning radiations from above and

below clouds. Geophys. Res. Lett., 7, 267-270.

Bucher, E. A., 1973: Computer simulation of light pulse propagation for

communication through thick clouds. , AppZ. Optics, 12, 2391-2400.

Byers, H. R., and R. R. Braham, 1949: The Thunderstorm - Report of the

Thunderstorm Project. Government Printing Office, Washington, D.C.

Chandrasekhar, S., 1950: Radiative Transfer. Oxford University Press,

393 pp.

Clegg, R. J . , 4 971 : A photoelectric detector of lightning. J. Atmos. &

Terr. Phys., 33, 1431-1439.

Danielson, R. E., D. R. Moore, and H. C. van de Hurst, 1976: The transfer

of visible radiation through clouds. J. Atmos.' Sci., 26, 1,078-1087.

Davies, R., 1978 The effect of finite geometry on the three-dimensional

transfer of solar irradiance in clouds. J. Atmos. Se., 35, 1712-1725.



21

Davis, J. M., S, K. Cox, and T. B. McKee, 1979: Vertical and horizontal

distributions of solar absorption in finite clouds. J. Atmoe. Sci.,

36, 1976-1984.	 ,

Edgar, B. C., 1978; Global lightning distribution at dawn and dusk for

August-December, 1977, as observed by the DMSP lightning detector.

The Aerospace Corp., Space Sciences laboratory, Rept. SSL-78 (3639-02)-I,

,'august.

, 1980 (.in press): The dis+rlbution of lightning superbol+s.

Proc. Vlth Int. Conf. Atmos. RUct., Manchester.

Griffiths, R. F., and B. Vonnegut, 1975: Tape recorder photocell instrument

for detecting and recording lightning strokes. Weather, 30, 254-257.

Hale, G. M., and M. R. Querry, 1973: Optical constants of water in the 200 nm

to 200 dam wavelength region. AppUzoed Optics, 12, 555.

Hansen, J. E., 1971: Multiple scattering of polarized light In planetary

atmospheres. Part 11: Sunlight reflected by terrestrial water clouds.

J. Atmos. Sci. , 28, 1400-1426.

—, and L. D. Travis, 1974, light scattering in planetary atmospheres.

Space Sci. Rev., 16, 527-610.

Irvine, W. M., and D. B. Pollack, 1968: Infrared optical properties of

water and ice apheres. Icarus, 8, 324-3600

Jacobson, E. A., and E. P. Krdder, I976: Electrostatic field changes pro-

duced by Florida IIghtn1ng. J. Atmos. Sci., 33, 103-117.

Kidder, R. E., 1973: The iocation of lightning flashes at ranges less than

100 km. J. Atmos. Terr. Phys., 35, 283-290.



.
	

22

Kitagawa, N., and M. Brook, 1960: A comparison of Intracloud and cloud-to-

ground lightning discharges. J. Geophys. Rea., 65, 1189-1201.

, and M. Kobayashi, 1959: Field changes and variations in luminosity

due to lightning flashesc in Recent Advances in Atmospheric Electricity,

Pergamon, 485-501.

Krehbiel, P. R., M. Brook, and R. A. McCrory, 1979: An analysis of the charge

structure of lig'tning discharges to ground. J. Geophys. Res., 84, 2432-

2456.

Krider„ E. P., 1966: Some photoelectric observations of lightning. J. Geophys,

Rea.,71, 3095-3098.

-----, 1974: The relative light intensity produced by a lightning stepped-

leader. J. Geophys. Rea., 79, 4542-4544.

Mackerras, D. ;, 1973: Photoelectc, ic observations of the light emitted by

lightning flashes. J. Atmus. 4 Terr. Phys., 35, 521-535.

Magono, C., 1980: Thunderstorms. Elsevier Scientific Publishing Co.

McKee, T'. B., and S. K. Cox, 1974: Scattering of visible radiation by finite

clouds. J. Atmos• Sai., 31, 1885-1892.

Orville, R. E., 1981: Global distribution of midnight lightning - September

to November, 1977. Mon. Wea. Rev., 109, 391-395.

and D. W. Spencer, 1979: Global lightning flash frequency. Mon. Wea.

Rev.:, 107, 934-943.

Plass, G. N., and G. W. Kattawar, 1968: Monte Carlo calculations of light

scattering from clouds. AppZ.' Optics, 1, 126-130.



.	 23

Proctor, D. E., 1971: A hyperbolic system for obtaining VHF radio pictures

of lightning. J. Geophye. Rea., 76, 1478-1489, 1971.

----, 1981: VHF radio pictures of cloud flashes. J. Geophye. Rea., 86,

4041-4071.

Rozenberg, G. V., 1968: Optical investigations of atmospheric aerosol.

Sov. Phys. Uapehlii, 11, 353-580.

Salanave,, L. E., 1980: Lightning and Xta ' eotrum. University of Arizona

Press, Tucson.

Sparrow, J. G., and E. P. Ney, 1968: Discrete light sources observed by

satellite OSO-B. Saie"e, 161, 459-460.

Taylor, W. L,, 1978: A VHF technique for space-time mapping of lightning

discharge processes. J. GeopPya. Res., 83, 3575-3583.

Teer, T. L., and A. A. Few, 1974: Horizontai lightning. J. Geophye, Rea.,

79, 3436-3441.

Turman, B. N., 1977: Detection of lightning superbolt,. J. Geophye. Res.,

82 9 2566-2568.

1978: Analysis of lightning data from the DMSP satellite. J. Geophya.

Rea., 83 0 5019-5024.

1979: Lightning detection from space. Amer. Sei., 67, 321-329.

and R. J. Tetteibach, 1980: Synoptic-scale satellite lightning obser-

vations in conjunction with tornados: lion, West. Rev., 108, 1878-1882.

and B. C. Edgar, 1981: Global lightning distributions at dawn and dusk.

To be published J. Geophys. Res.



24

Twomey, S., 1971; Radiative transfer: Terrestrial clouds. J. Quant.

s eotroso. Radiat. Tranefor, 11 9 779-783.

----, 1977: Atmospheric Aer000l.s. Elsevier.

------; and C. F. Bohren, 1980: Simple approximatt.nns for calculations of

absorption in clouds. J. Atmrra. Sci., 37, 2086-2094.

-^---, H. Jacobowltz, and H. B. Howell, 1967: Light scattering by cloud

layers. J. Atmoe. Sci., 24 0 70-79, 1 967.

Uman, M. A., 1969: Lightning. McGraw-Hill.

Van Bierkom, D., 1971: Diffuse reflection from clouds with horizontal

inhomogeneities. Aetrophbe..T., 166, 235-242.

van de Hulst, H, C., 1957: Light Scattering by Smatt FarticZee. Wiley.

---, 1980: MuZtipte Scattering TaKee, roxmu'Zae and AppZicarions,

Vols. i and 2. Academic Press.

and K. Grossman, 1968: Multiple light scattering in planetary

atmospheres, In The Atmospheree of Venue and Mars, ed. by J. C. Brandt

and M. B. McElroy, Gordon and Breach,

Vonnegut, D., and R. E. Passarelli, Jr., 1978: Modified time sound camera

for photographing thunderstorms and recording lightning. J. AppZ, Meteor.,

17 9 1070-1081.

Vorphal, J. A., J. G. Sparrow, and E. P. Ney, 1970: Sateliite observations

of lightning. Science, 169, 860-862.

Wolfe, W. L., and G. J. Zissis, 1978: The Infrared Handbook. Environmental

Research Cnstitute of Michigan.

F



1

a	 =

	

2^

FIGURE CAPTIONS

	 I

Fig. 1.	 The solid curve shows *he fractional absorption, a, of a semi-

infinite cloud layer with vertical incidence (Twomey and 8ohren,

1980). The dots and bars &re the means and standard deviations

computed using our Monte Carlo simulation.

Fig. 2.	 a) Distribution of reflected photons vs. zenith angle, Z, from

conservative cloud layers with normal Incidence. The fraction is

for a cos(Z) interval of 0.1. The scaled optical depth In ail

three examples equals 6.

b) Same as a) except the scaled optical depth is 12.

Fig. 3.	 The mean optical path length, T. of reflected and transmitted

photons vs4 optical depth from Twomey el'; aL (1967) [solid curves]

and the results of Monte Carlo simulations [solid symbols].

Fig. 4.	 Reflectance of vertically incident photons as determined by the

Monte Carlo program of McKee and Cox (1974) [solid and dashed

curves] and our Monte Carlo results [solid dots].

Fig. 5.	 Sketches of (a) the cubical, (b) the spherical, and (c) the

cylindrical cloud cgeo ... atries used in this study. The numbers

label the cloud faces, and the solid dots show the point-source

locations computed for that geometry.

Fig. 6.	 (a-h) Top views of the channel geometries derived from point

sources in the horizontal plane (z = 0.5).

Fig. 7.	 Total absorption vs. position for point sources located along

the line (x, 0.5, 0.5) In a cubical cloud. Note that the

absorption is symmetric about x 0.5.

i
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Fig. 8.	 The fraction of photons escaping fuce 2 of the cube vs. point

source position along the (x, 0.5 0 0.5) axis.

Fig. 9.	 The sum of the fractions escaping through faces 3, 4, 5, and 6

of the c-ibe vs. source position along the line (x, 0.5, 0.5).

Fig. 10. Distributions of emerging zenith angles, Z, for photons which

escape through faces 5 and 6 of the cube. The fractions are

for cos(Z) intervals of 0.1.

Fig. 11. Some as Fig. 10 except for faces 1, 2, 3, and 4.

Fig. 12. Distributions of the azimuth angles of photons which escape

through faces 1, 2, 3 and 4. The fractions are for azimuth

Intervals of 0.17r radians.

Fig. 13. Distributions of the optical paths traveled by photons emitted

from various point sources within a cubical cloud of total

optical depth 200.

Fig. 14. Same as Fig. 13 except for a total optical depth 400.

Fig. 15. The most probable optical path, 
TMP

, and the mean opt?cal path T

for photons emitted from point sources along the line (x, 0.5, 0.5)

in cubical clouds of the specified optical depth.

Fig. 16. The fraction of photons which escape through a region of size S,

on face 2 of a cubical cloud; and the hemispheric fraction of

photons which escape through a circular region -of minimum diameter,

S, on the source hemisphere. All sources are located along the

(x, 0.5, 0.5) axis; Cu = cube and Sp = sphere.

e
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Fig. 17. The characteristic dimension, S o , of the region which contains

70% of the photons emitted from cubical and spherical clouds as

a function of point-source position along the line (x, 0.5, 0.5).

Fig. 18. Angular dependence of the total cloud Intensity for a cubical

cloud in the y	 0.5 plane. The fractions are for a solid angle

interval of 0.017r steradians at cos(2) intervals of 0.1.

Fig. 19. Same as Fig. 18, except for a spherical cloud.

Fig. 20. Same as Fig. 18, except for the extended channel sources sketched

in Fig. 6.
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