

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

JPL PUBLICATION 81-67	
,SF,

Proceedings

Conference on the
Computing Environment
for Mathematical Software

Cosponsored by
JPL and ACM-SIGNUM

Huntington-Sheraton Hotel
y
 ^e

Pasadena, California
July 29-31, 1981	 Qk e W

lni _;;0 	 , 0E

July 15, 1981

National Aeronautics and
Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

..

(b]ASA-CE-164$49) PROCEEDINGS, CONFERENCE Obi 	 N81-33835
THE COMPUTING ENVIRONMENT FOR .MATHEMATICAL
SOFTWARE (Jet Propulsion Lab.) 37 p
HC A03/MF A01	 CSCL 09B	 Unclas

G3/61 27588

.	 _

A

JPL PUBLICATION 81-87

Proceedings

Conference on the
Computing Environment
for Mathematical Software

Cosponsored by
JPL and ACM-SIGNUM

Huntington-Sheraton Hotel
Pasadena, California
July 29-31, 19811

July 15, 1981

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

This publication was ;,)repared by the Jet Propulsion Laboratory, California
Institute of Techno ugy, under contract with the National Aeronautics rind
Space Administratipsm

4

CONTMTS

F.	 T.	 Krogh	 Conference Overview
Conference Chairman

Adams	 FORTRAN 6tan4aids, An Overview
NGAR
Chair,	 X373

L.	 P.	 Meisuner Core-and-Modules Design for Next FORTRAN
Lawrence Berkeley Laboratory Standard

A.	 Wilson	 Parallel Processing in Fortran
ICI., London

J.	 Wilkens	 Global Data Sharing and Internal Procedures in

Perkin-Elmer rurtrnn BX

W.	 Miller	 A Consumer's Report on Fortran Programming
University of Arizona Environmonts

L.	 W,	 Lucas	 Numerical Software - View from the Trenches
Naval Weapons Center

T.	 A.	 Ryan.
	

.		 ,	 . .	 . Packaging Statistical Software
Pennsylvania State University

K. Amano, M.	 Chiba, A. Mochida, T. Maeda 	 Algorithm hank ,	Information System for
Hokkaido University Mathematical Software

P.	 14.	 Gaffney	
.R	

.	 Software Ianagement
Oak Ridge National laboratory

W.	 Kahan	 The Programming Environment's Contribution
University of California, Berkeley to Program Robustness

T,	 E.	 hull	 A hardware Unit for Decimal Arithmetic with
University of Toronto Controlled Precision

M.	 Ginsberg;	 .	 .	 .	 ,	 A Brief Guide to the Literature on
General Motors Research Laboratories Supercomputers

L.	 M.	 Delves	 The Use of Extensible Languages for
University of Liverpool Mnthematicnl Software (A Case Study)

D.	 R.	 Hanson	 A Portable File System
Universit y of Arizona

L.	 Osterweil	 TOOLPACK - A Collection of Tools for
University of Colorado at Boulder Mathematical Software

E.	 Mehlachau	 SOFTOOI, S0.	 A Methodology and Integrated
Softool Corporation Collection of Tools for Software Management,

Development, and Maintenance

F.	 T.	 Krogh and W.	 Van Snyder	 A Support Environment for Software Tools
Jet Propulsion Laboratory

D.	 L.	 Bolvy, W.	 D,	 Gropp and M.	 ,.	 Theimer	 A Method for Constructing Preprocessors
Stanford University

Ii, A.	 hennell,	 I.	 J.	 Riddell and M.	 R. Woodward	 A Mutaeion Analysis of Numerical Software
University of Liverpool

A.	 K.	 Cline	 A Course on Mathematical Software
University of Texas at Austin

G.	 Cioni,	 A. Miola,	 A.	 Truffi	 Moving; Software Systems to a Minicomputer
Istixuto di Analisi doi Sistemi ed lnformatien

1

n

3

G

G

5

6

7

a

10

10

11

15

17

18

20

22

23

25

26

iii

CONTENTS (mit.)

D. S. Dodson, J. G. tew.is and W. G. Poole, .Jr. 	 .	 'Tailoring Mathematical Software for 010	 27
1loeing Computer Services Company	 CRAY-1

R. .I. 114110on. Flexibility in Mathematical Software 	 28

Saudis National Laboratories	 Development Using Option Arrays

1'. T. Krogh
Jet propulsion laboratory

S. Feldmntt . Mechanizing the Maintenance of Source, Object, 	 29
Hell Laboratories	 and Teat Results - Or, Why Should You Do All

The Work?

ABST11ACT

The conference on the Computing environment for
Mathematical Software, held in Pasadena, California
on July 29-11, 1981, was eosponsured by the act
Propulsion Laboratory nod the Special Interest Group
on Numerical Mathematics of the Assoc.lation for Com-
puting Machinery (ACM-SIGNUM). The conference pro-
vided a sequel to two previous SIGNVJI conferences

hold in pnsndenn in 1474 and 1978. Topeia included
software tools, Tortran standards activity, and
features of languages, opernting systems, and hard-
warn that are important for the development, testing,
and maintenance of mathematical software. This
publication includes extended abstracts of the papers
presented At the. conference.

iv

l

PROGRAM

1981 JPi./ACM - SIGNUM

The Computing Environment or Matheanatieal Software

Huntington Sheraton Hotel, Pasadena, California

'lliea Lhy >tulXv 2„t1

7:00 - 9:00 paa REGISTRATION

W+adneedny, July 29

8;00 - 9:00 am REGISTRAT--ION

8:55 - 9:00 Welcome, 1'red Krogh

SrSSION 01A1RMAN.	 Lloyd Fosdick

9:00 - 9:20 **Adoms, Jeanne, "Fortran Standards, An Overview"

9:20 - 10:00 **Meisaner, Loran P,, "Care-and-Modules Design for Next Fortran
Standard"

10tOo - 10:15 Adams, Jeanne, Chairperson, "Cortr.an Standards - Question Period"

10:15 - 10:30 DRRAK

10:30 - 11:00 **Wilson, Alan, "Parallel Processing in Fortran"

11:00 - 11:30 **IJilLlaas,	 Edward J.,	 "Global 0ata Sharing auad Internal Procedures
in Fortran 8S"

11:30 - 3:30 pm MMK

SESSION CHAIRMAN: 	 Stan Drown

1:30 - 6:00 **Smith, Brian, "General, Precision, 0ata Type Facility and
Ptavirunmental Inquiry Feature"

2:00 - 2:30 Adams, Jeanne, Chairperson, "rortrnn Standards - Question and
Discussion Period""

2:30 - 3:05 M ller, Webb, "A Consumer's Report on Fortran Programming
Environments"

3:05 - 3:20 BREAK

3:2C - 3:45 Lucas, i,. W., "Numerical Software - View from the Trenches"

3:45 - 4:20 **Ryan, Thomas A„ "Packaging Statistical Software"

4:20 - 4:45 *Amino, Kaname; Chiba, Mostaki.; Mochida, Akeno; and Maacdo, ,kashi,
"Algorithm Dank:	 Information System for Mithemntical Software"

4;45 - 5;05 Gaffney, P. W„ , "Software Management"

Speaker in case: of two or more authors

** Invited Speaker

Thuraday _Jul y 10

8:30 - 9:30 am

9:30 - 10:15

10:15 - 10:10

10:30 - 11:15

11:15 - 11:25

11:25 - 1:30 pm

1:30 - 2:00

2:00 - 3:00

3:00 - 3:15

3:15	 3:45

3:45 - 4:15

4:15 - 4:45

u;00 - 7:00

7:00 —

raid, July 31

SESSION 01AIRMAN: Chuck Lawson

**Kahan, W., "The Programming Environments' Contribution to
Program Robustness"

Hull, T. E,, "A Hardware Vnn't for Decimal Arithmetic with
Conttolled Precision"

BREAK

Ginsberg, Myron, "A Review of Performance Comparisons for
Supercomputers and Conventional Machines~" (The title in the
proceedings is "A Brief Guide to the Literature on Supercomputer a")

Delves, L. M., "The Voe, of Extensible Languages for Mathematical
Software"

BREAK

SESSION 64AIRMAN: Bob Mercer

**Hanson, Vavid R,, "A Portable File System"

**Csterweil, Leon, "TOOLPACK - A Collection of Tools for
Mathematical Software"

BREAK

Mehlachnu, Edward, "SOFTOOL 80 TM A Methodology and Integrated
Collection of Tools for Software Management, Development, and
Maintenance"

Krogh, Fred T., and *Snyder, W, Van; "A Support Environment for
Software Tools"

Boley, Daniel. L,; *Gropp, William D„ and Theimer, Marvin M.,
"A Method for Constructing Preprocessors"

HAPPY HOUR

BANQUET

SESSION CHAIRMAN:	 Nelson Beebe

8:30 - 9:20 **Feldman, Stuart, "Mechanizing Operations on Source, Object, and
Test Data - Why Should You Do All The Work?"

9:20 10:15 **Hennell, M. A.; Riddell, I, J.; and Woodward, M, R., "A Mutation
Analysis of Numerical Software"

10;15 - 10:30 BREAK

10:30 - 10:50 Cline, A. K., "A Course on Mathematical Software"

10:50 - :11:10 Cioni, G.; Miola , A; and °,vffi, A., "Moving Softwa a 51%-^cems to
a Minicomputer"

11:10 - 11:30 Dodson, David S.; Lewis, John Gregg; and Poole, William G., Jr.,
"Tailoring Mathematical Software for the CRAY-1" (Presentation by
Ivor Philips)

11:30 - 11:50 *Hanson, R. J. and Krogh, F. T., "Flexibility in Mathematical
Software Development Using Option Arrays"

vi

CONFERENCE OVERVIEW

FRED T. KROGH, Corterence Chairman

The mathematical software community has as
its primary goal the development of high quality
tools for the solution of a wide variety of
mathematical problems. The development of such
tools is enhanced by other tools; both hardware
and software, which provide a hospitable computing
environment. Unfortunately, our environmental
needs are not well known to the computing
cou munity at large. Under the able leadership of
C.L. Lawson, JPL and ACM-SIGNUM have previously
sponsored two conferences related to this one:
wWorkahop on Fortran P:•Pjprocessors for Numerical
Softwarey in 1974, and *Conference on the
Programming Environment for Development of
Numerical Software" in 1978. These conferences
have provided a unique forum for those interested
in the environment for the development and use
of mathematical software.

In the early days of computing there was an
emphasis on the needs of those who were solving
mathematical problems. But the perception that
mathematical computation is only a small part of
the marketplace and the fact that the needs of
those engaged in numerical computation are not
well known has led to considering those needs as
little more than an afterthought. Recent advances
in software and hardware technology are making it
economical to create computing environments
appropriate for specialized applications. The
implementation of a small specialized language or
operating system environment is now a small enough
job that significant experimental environments can
be designed and implemented. Large vector and
array processors are being designed and built with
numerical computation ea the primary or only
application. At the miuroproeessor level we are
getting arithmetic units superior to what we are
used to on general purpose computers. The
computing environment for mathematical software is
changing for the better. This conference provides
a view of those changes.

Fortran still appears to be the language of
choice for scientific and engineering computation.
Interchange between the Fortran standards
committee, 13J3, and the mathematical software
community has proven valuable to both at previous
conferences in this series. Continuing this

tradition of interaction, talks by Adams,
Melssner, Wilson, Wilkens, and Smith from X3J3
give an idea of the substantial changes that are
being planned for Fortran. Some of these new
features are being introduced primarily to meet
needs in numerical computing.

Thera has been a lot of recent work on
Fortran programming environments. !tiller gives an
overview of three of these and describes dome
current ;fork. Lucas examines 0he environment from
the vii.twpoart of one supporting the use of
mathematical software in solving scientific and
engineering problems. There is considerable
overlap between statistical and mathematical
soft«are. But there has been considerably more
emphasis on canned packages for the
unsophisticated user in the former case. Ryan
describes several statistical packages, where the
emphasis has been on their packaging. He expects
benefits from future interaction with computer
science.

Amano, Chiba, Msohida, and Maeda in or
paper, and Gaffney in another, describe system
that make it easier for users of mathematics
software to find the software appropriate fc
their needs.

At the 1978 conference, Kahan spokes
apenificetions for a proposed floating-poir
arithmetic standard, and Hull spoke on desirabi
characteristics for floating-point and elementar
functions. Kahan's ideas have led to a propose
IEEE standard for floating-point. This propose
standard is curre: : tiY available on on-
microprocessor chip, and there are strong
indications that several others will be marketed
soon. Expanding on the theme of floating-point
arithmetic, Kahan discusses the programming
environment's contribution to program robustness.
Hull's ideas have also progressed to the point of
being implemented. He describes the capabilities
of his hardware unit here.

In these abstracts, Ginsberg gives a
bibliography on suonroomputere. In h,.a talk he
reviev3 perfornance. comparisons for supercomputers
and the more co;iventional Lype. Extensible
languages have buen found useful in design!-_-
user interface for solving partial differential
equations by Delves. He describes this work which
wss done in an ALGOL 68 environment.

In the 1978 conference, Webb Miller proposed
the initiation of a collaborative effort to create
a better programming environment for the Fortran

programmer. His proposed VTOOLPACK" is now a
project involving several institutions. Osterweil
describes the TOOLPACK project. Mehlechau
presents a commercial software tool collection
available from SOFTOOL Corporation. Krogh and
Snyder describe a support environment for software
tools that is compatible with the requirements of
the TOOLPACK project, A quick method for
constructing preprocessors is decr i i^sd by Holey,
Grupp, and Theimer.

Feldman asks, "Why should you do all the
work?" and suggests mechanizing operations on
source code, object code, and test data so that
the programmer is relieved of many of the clerical
tasks aslociated with programming. Hennell,
Riddell, and Woodward describe a method for
measuring the adequacy of teat data. The method
is based on testing whether errors deliberately
introduced into the software (mutants) will be
detected by the teat data.

Cline's description of a course on
mathematical software should be helpful to those
teaching or planning such a course.. Ciori, Miola,
and Truffi present an aid for moving large
programs to a minicomputer. And going in the
opposite direction, Dodson, Lewis, and Poole
consider the problem of tailoring mathematical
software for the CRAY-1. Finally, Hanson and
Krogh describe a way of passing optional data to a
subprogram that has little Impact on the veer who
has nc need to pass such data.

Thanks are due: Webb Hiller, Leon Osterweil
and Brian Smith who helped in the selection of
invited speakers; to Chuck Lawson who reminded me
of a few oversights and helped with local
publicity; to Kris Stewart for (wo)manning my
phone while I wao gone for three weeks prior to
the conference; to Denise Chambers for secretarial
support; and most of all to JPL for their
generous support of this conference in terms of my
time, secretarial support, and the printing of
proceedings distributed at the conference.

r^

FORTRAN STANDARDS, AN OVERVIEW
	

FORTRAN 8x

Joanne Adams, NCAR
Chair, X3J3

FORTRAN 66

From the early beginnings in the fifties,
FORTRAN was used as the de facto standard
for scientific and engineering work. An
its use spread, the potential for nuneroun
imoompatible FORTRAN dialects became
apparent, A rigorous definition of FOR-
TRAN in a otanaard became necessary if
continued use of the language were to be
successful.

In 'Sou, The American Standards. Associa-
tion (ASA) established the committee for
Computers and Information Processing. A
suboummittee of this group was formed to
consider common programming languages. In
May of 1962, a working-group be llan to
study the possibility of introducing a
standard for FORTRAN which was to become
th, v irst programming langua ge to be
stair., rdized in the United States.
Manufaeturera and user groups sent
representatives to the Standards Committee
for FORTRAN (X3J3). They cooperated in
the study and preparation of the first
FORTRAN standard (X3.9 . 1966) which was
released in 1966. Many areas were con-
sidered by X3J3 including current usaget
clarity of syntax, ease of implementation
and the language's potential for future
extensions. Two clarifications were pro-
duced; one in 1967 and another in 1969.

FORTRAN 77

FORTRAN has always been a cost effective
language;, what it may have lacked in
elegance and style was gained in effi-
ciency and ease of implementation. In
1967, the group responsible for mainte
nonce of FORTRAN 66 concluded that it
would require no noro effort to begin on a
revision than to continue producing offi-
cial interpretations of the standard. In
January 1969. X3J3 voted to begin work on
a revision to X3.9-1966. The current
standard X3.9-1978 t00% eleven years to

complete; seven years were spent in
preparing the draft, and four years in
completing the approval process under the
American National Standards Institute
(ANSI) as it is no?i called. One signifi-
cant result of this eleven year effort was
that the FORTRAN 77 standard document is
now more understandable than the 66 docu-
ment. The standard itself contains Six
times more text in describing FORTRAN
features than the 'old standard', result-
ing in improved readability and clarity.
An important ronsideration in the develop-
ment of FORT;IAN 77 was the determination
not to invalidate programs written in FOR-
TRAN 66, but to ensure that these programs
were upwardly compatible, A comparison
chart of FORTRAN 66 and FORTRAN 77 will be
summarized.

There is always resistance to change $n
programming languages and their associated
standards. A programming language must
refloat the needs of the user community
and be responsive to the kinds of applica-
tions that ensure continuing popularity
among users. At the time of final pro-
ceasing of FORTRAN 77, X3J3 had already
begun the study of a design that would
modernise FORTRAN, The objective was to
keep pace with technology and state-of-
the-art programming techniques and allow
Applications specific conventions to coex-
ist and become part of a family of stan-
dards for FORTRAN.

In those early studies during 1975 and
1979, the committee studied language

features from many perspectives. The
emphasis vas to examine the language as a
whole, and how varioua candidate features
were related. Surveys of various user
groups were taken, and these needs were
placed in a broad enough context so that
candidate features for the standard could
be chosen within a carefully considered
framework. In certain areas (i.e. data
structures and program form), development
was necessary because of a. need for a
function not yet provided in the carkst-
place. An architecture is propoe6d

(described in more detail in the next
presentation on FORTRAN) that will place
certain general features in the core,
while others will be separated into
modules. Interfacing to special purpose
applications such as graphics or date base
schemes is an important part of the techn-
ical proposal for the next revision. An
important question concerns the ability to
identify obsolete features and move these
out of the language in a graceful way.

A basic array processing proposal has been
completed and will be in the new revision.
In the various surveys on user needs, the
ability to manipulate arrays as fundamen-
tal objects was a very popular request.

A need has been expressed for a. general
precision data type facility to specify
minimum precision for floating point
operations. Numerical analysts have made
important co.;tributions to the precision
proposals for the current revision, as
well as to the Environmental Inquiry pro-
posals which are discussed later in this
session.

Liaison Activities

Liaison has been established with a number
of national and international organiza-
tions. One of the very important liaison
activities continues to be with SIGNUM.
Nationally, X3J3 has established a liaison
with the Graphics Standards Committee, the
CODASYL Data Base Group, and the Purdue
Workshop for Industrial Real Time FORTRAN.
Internationally, we have a working rela-

..s.-mat ..	 ,.e.^.L.a'` ^.+t.,^•..: ^.._..e....._.	 -	 ^-

tionship wifh the British Computer
Society, the European Computer
Manufacturer . h

 Association, and Standards
Groups from a !.lumbar of countries such as
Austria, Germany, Sweden and Canada.

M1LE3TONES

X3J3 has just completed the first draft of
a document that contains all of the propo-
sals passad so far for the next revision.
The document is not intended to he text
for the standard, but is is organized into
sections such that the editors can prepare
text easily. All now proposals before the
committea are to be modifiratwrm of this
document (standing Document 6). In this
way, members wil% have a single source of
material for the next revision.

Many people ask what x is in ionx. HOW-
over, it ill diffucult to answer this ques-
tion. X313 has a milestone chart, but it
is a working scheme for establinhing ^om-
mitten objectives rather than any fixed
promise for completion. Dates that occur
before today have been modified to reflect
aatuul progress, while datea that follow
today reflect the committee's goals. A
sample milestone chart han been prorared
for this session.

CORE-AND-NODULES DESIGN FOR NEXT FORTRAN STANDARD

Loren P. Meisxner
Lawrence Berkeley Laboratory

Ughisam

Fortran isn't going to go away, no matter how much
-we deplore its irregularity and inelegance. For-
tran 77 introduced the block-if and the zero-trip
DO, and de-standardized Hollerith. But still
tobody considers Fortran 77 a really modern pro-
gramming language.

Can Fortran be modernized? If Fortran were moder-
nized. would it still be Fortran? Would it have
any advantage over Pascal? And what would "happen
to the billions of dollars of investment in "old
Fortran" programs?

There in pressure from yet another direction to
influence the future of Fortran. This is the need
for major extensions to the language for the sake
of a specialized application area (graphics,
real-time, list processing, array processing, or
CODASTL data base, for example). incorporating
any one of these major extensions erodes the prac-
tical usefulness of the language for anyone out-
side the specialized application area. To accom-
modate them all in a single language would obvi-
ously be iopractical.

A. 2RR2104. "solution

The ANSI For.ran Standards ComUtee, X3J3. is by
now firmly cosm.itted to the idea that a "core eud
nodules" approach can solve this problem. The
We, is to define a "Core Fortran" language, co+i-
sisting of Mll of the "good" features of Fctran
77, plus modern rreplssements for the "obsolete"
features of Fortran 77. The obsolete parts of
Fortran 77 would, however, be retained in an
"obsolete features module".

Other "applicationarea support modules" would
satisfy the need for major extensions needed for
specific bpplication areas.

Another kinl of module, called a "language exten-
sion module", could add ""fancier" features of
broad application to the language (for example. a
macro facility).

Structure gLthl lanituave (see Figure 1). By
the and of the life cycle of the next revision of
the Fortran standard (in the mid to late 1990'x),
it is assumed that the "obsolete" features would
no longer be heavily used. so that the typical
mina mmum-confieur tion rortran compiler would sup-
port only Core Fortran, that is. the "	 "good
features inherited from Fortran 77 plus the
replacements for the "obsolete" parts of Fortran
77. However, earlw compilers for the new language
would necessarily support all of Core Fortran p.1"
the obsolete features module.

Extended compilers would also support the language
extension module (or. moduleo .

It is contemplated that the next Fortran standard
will Uclude both parts of Core Fortran, the
obsolete features module, and pertapa one or more
extension modules. It may be possible to add
extension modules between revisions of the main
Fortran standard. Application area support
modules would be handled as separate ""collateral''
ANSI standards, and in many cases these would be
developed by a morp or less independent "task
group" reporting to the X3J3 committee, rather
than by the full committee.

kumaxx

Will the result be Fortran, or will it be a new
language? It will certainly be a new language;
the remarkable thing, if X3J3 is successful, will
be the creation a new language that 3a compatible
with its predecessor.

Will it be Fortran? Maybe; but only if X3J3 can
maintain the #elf-discipline to keep Gore Fortran
a reasonably small language that is at least as
easy to implement and to use as earlier versions
have been.

FIGURE 1.
Fortran Cora-and-Modular; Structure

1
I	 1

r I -----------------	 -------„_.___
loll I	 I	 I

r	 i R I I	 good parts	 I	 I	 new
0 I T	 I I	 of	 (k	 "basic”	 L
R	 I R	 1 1	 Fortran 77	 f	 i	 stuff	 I
TIAII
R I N I --- - -- -„.------	 -------------
Ai l
NILI

I A I ------------------	 -----__--_-_-
IN1i 1	 I	 1
I	 c l	 i obso;eto parts	 I	 I	 new	 I
I U I	 I	 of	 I	 1	 "fancy”	 1
I A I	 I	 Fortran 77	 I	 1	 stuff	 l
IGII 1	 I	 I
iE I ------------------	 -------,.-_---

r 	 1

M------------------------------------
i 1	 I	 1
L I	 i	 application	 area	 I
X I	 I	 support	 modules

I	 I	 1------------------------------------

Parallel Processing in Fortran

Alan Wilson

ICL, Lon0on

The ANSI Fortran committee X3J3 has recently
accepted proposals for parallel processing in
Fortran. These proposals have been used to
express algorithms such as Ratcher sort, FFT,
telephone network simulation, black/white $OR,
image processing, noise reduction, least
squares, solution of linear equations,
assignment problems, matrix inversion,...

An attempt will ".,e made to assess the
completeness of the proposed language extensions,

Do they seem to form a basis for the
expression of (known) parallel algorithms?

Are they likely to be useful in the search
for new parallel algorithms?

GLOBAL DATA SNARING AND INTERNAL
PROCEDURES IN MRTRAN ex

Edward J. k+lkens
VerkiA-FI-or

Tiotol, "Palls, Nov ,Jersey

INTRODUCTION

In past actions, XIJ3 has voted to remove certain
features from CORE FORTRAN, including storage association
COMMON,EQUIVALENCE,multiple entry points, extended
DC loops and statement functi.ins. It has also voted
to add, or considered for addition, such features
as GLOBAL, apA internal subroutines,

This paper presents some prop.ixed facilities to replace
those removed,

The syntax desctihed is consistent wit}, proposals
rreviously pasord and currently proposed in April 1981.
The area of data sharing and internal subroutines
has been a rather fertile one for proposals, with
several varied names and constructs proposed and
discarded. These do share a significant number of
common functions, if not name and syntax, and differ
primarily because they spring from different sources
of inspiration.

DATA SNARING

COMMON has been removed from the core of FORTRAN 8X
primarily because of the storage association
properties implied, however, there is no intention
to remove the functionality of a fast, efficient
global sharing mechanism provided by COMMON, The
replacement for COMMON, called GLOBAL, eliminates
storage association. It also provides for a single
DEFINITION of the GLOBAL data, with multiple uses
of that deflnitioa, The following is a typical
definitions

GLOBAL DEFINITION /Shared-data/Real,.,var, Integar var,Chir-var,

As the example implies, any mixture of types is
allowed, No specific order of appearance or storage
allocation is implied by rho list of data elements.

In order for a program unit other than the one
containing the GLOBAL DEFINITION to access the
GLOBAL data, it must contain a GLOBAL statement
naming the GLOBAL name (or blank) to be shared.
For example:

GLOBAL. /Shared-,data/

provides a program unit other than the one containing
the CLOBAL DEFINITION with access to the data elements
in Sh+,red data by their name. No further definition
of those variables is needed. They have all the
attributes of their declarations in the defining
program.

F

f
i

t

4

Dapondont Compilation

All Program units shArlug a GLOBAL Data Araa wa y be
separately compiled. However, the. program unit
containing the GLOBAL DEFINITION must be compiled
before the others. This places a burden on the
processor to communicate I..n some processor dependent
fashion the declared varit'^ is in the GLOBAL area,
as well as their types, diwenslotiality. And locations
in the GLOBAL area. It also places A burden on
the programmer (car some processor defined over 408)
to recompile Any program unit containing GLOBAL. after
rocowpilat on of s GLOBAL. DEFINITION in which some
information used by those dependent program units
were changed.

FORT"I 77 Compatibility

The primary difference between GLOBAL, and COMMON
is storage association And definition/use distinction.
By providing n similar but differently named
f tine tioosiity, they may be freely mixed in the
presence of the Obsolete Features Module. GLOBAL,
and COMMON may appear i,a the same program unit,
provided they refer to different data areas.

INTFRNAL PROCEDURFS

Several features removed from CORE FORTRAN in past
Xld'l actions include eoatrol constructs such as
Statement Functions, ENTRY Statements and Alternate
Returns. The facilities provided by these constructs
remain to be provided in safer, more evitsistant
constructs. Internal Procedures are provided for
this purpose, with primary functionality including;

Replacement of the Statement function
Replacement of extended range of Dan LOOP
Remote code blocks
Replacement for ENTRY

An Internal Procedure is either tin Internal Function
or an Internal Subroutine, which are Similar to the
familiar Function and Subroutine that serve as
program units in a FORTRAN program.

Internal Procedures are located at the end of a
host program or procedure, immediately before the
END statement or another Internal Procedure.
Declarations for dummy arguments of an Internal
Procedure are contained within it.

Internal Procedures are invoked from within the
host procedure in an identical manner to external
procedures,

Name Scoping

Goals for Name Scoping rules include regulo city,
convenience of sharing as in Statement Fur_ 3 ions,
safety from accidental error and replacement of
error prone ENTRY argument rules. These goals tend
to be somewhat at odds, and have resulted in
several proposals and abandonments. An INHERIT
statement with a list of names is provided to
declare what entities are to be known in the Internal
Procedure from its host, All other entities
appearing in an Internal Procedure are lo+al to it.
An INHERIT ALL statement has been proposed, but
not yet passed.

The INHERIT statement provides a regular, sere
method for sharing data from the host, It does
not provide the convenience of sh.•rang as in
Statement runctions. A replacement .°ur A Statement
function would require on INTEMAL. FUNC-ION, I"HZRIT ALI,

assignment, and END__INTERNAL, statements,

Packages and Libraries

ENTRY statements have often boon used in large
libraries. Problems occur because of the difficulties
of op "oreing Inaccessibilitr of dummy Arguments
from Inactive EHTRYs. ENT°': INTERNAL. Procedures
have been proposed to declare An Internal Procedure
callable from outside the Host. This all , wo a much
safer functionality for ENTRY,

Large libraries are normally not comda 	 a),
one time. to Procedure may be declare'	 L Mat,
which means that it is to be considered ► o be Host to
Internal Procedures which may be separately compiled,

Which Internal Procedures are to be so considered is
specified in a CONTAINS Statement, Finally, the
PACK=. Procedure may be declared to be pure aharabia
data with no executable code by declaring it to be
a SHELL procedure.

Data Sharing Revisited

A SHELL procedure may be seen to be equivalcsnt in
functionality to GLOBAL Data, Note that ENTRY, PACKAGE,
and SHELL have not yet been approved, whereas
GLOBAL Data has. Since ENTRY And PACKAGE are
especially desirable features, especially for
Mathematical lAbrsrioa ;, SHELL !a an obvious
extension to eliminate some almost redundant
functionality (GLOBAL), However, CLOBAL's strong
resemblance to COMMON makes it attractive, Final
resolution of these issues remain to be decided,.

A CONSUMER'S REPORT ON
FORTRAN PROGRAMNINO ENVIRONMENTS

Webb Miller
Department of Computer Science

University of Arizona
Tucson, Arizona 85721

In this calk we will summarize the attributes of
several available Fortran programming environments,
including the WATFIV compiler and run-time system,
the Unix operating system and SOFTOOL. 80. The
strengths and weaknesses of each will be discussed.
In addition, mention will be made of a few avail-
able free-standing software tools and of some
planned developments.

WATFIV has long been regarded as an excellent sys-
tem for debugging Fortran programs. This reputa-
tion is well deservedt the error messages r,e
exceptionally clear and the automatic run-t{me
checks are quite useful. The system supporta a
profiler and a preprocessor for a "structured"
Fortran. Moreover, an interactive version of
WATFIV that includes a symbolic debugger is
available.

While WATFIV is not wt.hout notable Omissions and
undesirable features is; the way It handl es Fortran,
its stain deflciency is its limited scope gild ma-
chino dependency. The user is left to the mercy
of the native editor, file system, etc., and these
are often relativel y primitive.

Unix is a highly successful operating system de-
voloped at Pell Laboratories and now lit Place at
over 2506 installations world-wide. It is par-
ticularly noteworthy as a program development en-
vironment for orojects involving small numbers of

programmers, Some of its more appealin g attri-
butes are a no-nonsenae command language, n very
clean file system with automatic updating of de-
rived files:, excellent text-procr&sing capabil-
ities including phototypaet tins of mathematical
eguottons, plus a oust of roftware fragments and
mechanisms for connecting the fragments to form
organized tools.

Whereas earlier versions of Unix supported Portrait
only marginally, recent versions fe.g „ Berkeley
System Distribution 4.0 for the PPP VAX-111780)
support it handsomely, ltu, luded are a Fortran pre-
processor that, Lit my mind, stands above its many
competitors, a symbolic= debugger ani a Fortran
structures.

Perhaps the main weakness of the Unix system as a
whale, beside its machine dependency, is that it
has the steep learning curve that you would expect
of an operating system designed for expert pro-
gtanmers. The Fortran component of Unix currently
suffers from a fair number of glitches because of
Its newness, a compl.int that should be resolved
with time.

SOFTOOL 80 is nn integrated collection of software
tools that aim to support it methodology
for Fortran programming. It includes not only the
expected compon-nts for static checking, prepto-
cessing structure code, profiling and test cover-
age reports, but also tools to enforce certain
programming standards and documentation formats
set by management.

Further information about WATFIV, Vnix and SOPTOOL
80 can be obtained from the xollowing sources.

WAT NEWS
Computer Systems Group
University of Waterloo
Waterloo, Ontario N2L 301
Canada

Western Electric Co.
Patent Licensing Mannger
P.O. Pox 20046
Greensboro, N.C. 271134
(919) 697-6530

SOFTOOL CORPORATION
340 South Kellogg Avenue
Goleta, Ca. 93117
(805) 964-0560

hunterical Software - View from the Trenches
L. W. Lucas

Naval Weapons Center

This PAoer relates exper ences of the author
over the past !seven years as Numerical
Mathematics Coordinator at the Naval Weapons
Center Central Computing Facility, evaluating
selecting, maintaininq and marketing numerical
software, and providing consulting, training,
and docame station services. The Center is d
consumer, not a producer, of numerical
software. Applications include missile design
and #simulation, radar analysis, signal
processing, detonation physics, and chemical
kinetics.

Tentative Outline:

Implementing a numerical software library

awareness - Mathematical Software I & It
starting point - IMSL, ,IPL library
literature survey
additions - GEAR, DEPAC, EISPACK
NESC test site - UNPACK, MINPACK

Marketing efforts

documentation - Guiue, Examples

short courses - Matrix computation
Numerical solution of
ODE'S
Computing random numbers
Curve fitting
Least squares

academic -	 Numerical Methods

Suggestions to numerical software developers

user interface

naming
documentation
reverse communication

tradeoffs

change vs. stability
flexibility vs. ease of use

constraints in engineering situations

sample data system;i

PACKAGING STATISTICAL SOFTWARE

Thomas A, Ryan, Jr.

Most statistical computations are done using
widely available statistical packages. In this
paper, I will discuss primarily the SPSS, SAS,
EMDP, P-STAT and Minitab systems, which together
account for a high percentage ofall statistical
computing. Other packages which have influenced
the development of statistical packages include
Datatext, Genstat, IDA, IMPRESS, MIDAS, Omnitab,
OSIRIS, SNAP, Sratjob.

Development of statistical packages began with
the BUD programs at UCLA, in the late 19501x.
These progrnma formed an integrated act of pro-
cedures, but were not a statistical "package"
in the current meaning of the word. They also
had a very primitive user interface (e.g., to
teke the log of a variable, the user punched an
1103" in card columns 10 and 11). In 1968, work
began on a new series of BMD programs, called
the P or parameter series, which identified
input parameters with English keywords.

The init0l design of the widely used SPSS
system was begun in 1965. The publication and
wide distribution of the SPSS manual by a
commercial publisher in 1970 marks the beginning
of statistical packages as we know them today..
This manual put c-)mputing power in the hands of
a very wide audience; the design of the SPSS
system allowed even very computationally un-
sophisticated researchers to use (and abuse)
the system.

Most statistical systems began in universities.
Some (SPSS, SAS, P-STAT, IDA) eventually went
commercial. Hardware manufacturers have had
little impact.

Packaging

An important aspect of statistical software
is a strong emphasis on the packaging. Statis-
t^.cal packages attempt to provide a total environ-
ment for data analysis, including data management,
vector 'and sometimes matrix) arithmetic, graphics,
a collection of statistical procedures, and often
report writers.

The mathematical algorithms tend to be relatively
simple and a small pzxt of the overall system.
Computing time for typical procedures (such as

least-squares regression) is often less than
the computing time for inputting the data. The
routines for output often occupy much more space
than the key computation routines. As an example,
LINPACK routines to do regression by the QR
decomposition, plus routines to call them, total
about 100 lines. Minitab's REGRESS command w*n-
tains over 1,000 lines. The largest portions are
for creating useful, readable printed output.

Portability

Most statistical packages are portable to some
degree. (SAS, which runs only on large IBM
computers, is a notable exception.) Most

packages are undergoing active development, and
issue a release with major enhancements (some
of which permeate the entire system) every year
or two. Each ralesse must be implemented on 5,
10, or more brands of computers. Most go on
mainframes such as IBM, rDC, UNIVAC, Burroughs,
Honeywell and DEC, and suparmini's such as VAX
and PRIME, BMDP and Minitab also go on 16-bit
minis such as PDP-11 and HP-390.

The major difficulties encountered in porting
these systems are; (a) their size, which is
typically 100,000 lines of Fortran code and
1,000 subroutines, which pushes limits in linkage
editors and requires heavy overlaying on some
computers; and (b) the critical importance of
the speed of input and the size of output routines,
Neither of these problems are encountered in sub-
routine libraries,

The most primitive method of maintaining a (more
or less) portable package is to develop the
package on one computer and rely on conversion
centers to adapt the program to Gher computers.
Feedback from converters is used to improve
portability. This method is still used by SPSS.
A simple yet powerful way to handle portability

problems was developed by Roald Buhler for the
P-STAT system in 1971. Under his approach, a
master sot=e is maintained with all versions
present. A simple selection preprocessor chooses
the appropriate version based on ^.udes in the
first few spaces of the lines. Thi; approach
ties also been successfully adopted by Minitab and
a slightly modified version has been adopted by
BMDP and IMSL.

Interaction with Computer Science

The developers of statistical packages are

generally not computer scientists, but have
learric3 ..Gat of the computer science they know
"on the job". Ike principal developers of some
packages (e.g., BMDP, SAS, Min'rab) are statis-
ticians, for others (e.g., SPSS) the developers
are consumers, of statistics (social scientists
for SPSS). Some of the developers are involved
in statistical consulting (e.g., BMDP, Minitab),
and all packages get extensive feedback from
users. This has tended to encourage sensible,
realistic refinements and extensions to the
packages -- but probably has focused effort near
the existing capabilities of the package rather
than on der-lopments in totally different
directions.

Computer scientists have obviously influenced
the designs of the packages and the algorithms
included in them. Equally obvious to u&, gr,S is
that the influence has not been as great as it
should have been. For example, there are still
numerically unstable algorithms in packages, and
even more inefficient, brute force methods used
to prevent instability. One reason for the lack
of influence has been that statistical package
developers have often been forced to face problems
(e.g., in portability and user interface) before
computer scientists were prepared to give answers.

Stntistira packtigu 4ovoloporn she ►old uu► ka much
morn tutu of want c ►►►,.Muter Alclontirstn know nb,aut
devolopmant of t9i.ab.tt sortwnrv, nh,iut usur
intorteaco, nbov'4 divcrotic 111);orithtos, and sk, kilt.
This pr000 p" would b '4 .jdod If Dior" computer
selautists uttidlad suilwl of ehuA Intork*st.ing prob-
lima raced by packago dovaiop#rn. 'The smart
important forinx for ox0iooRo or ideas to the
sor.iea of moetlogo, domputor Srlancn and Statistivol
Mount. Symposium ken tl a l'nterfocti.

Altlorithm ltankt
inforitintihn Syntem for Mathemoticnl Software

Kanome Amnon, Mnnaki rhihn, Akeno Moehida
and Toke phl Nnrdn ?y

romputinq renter
of llrpnrlment of tngineerinq Solenve
Ilakknldn tlniveralty, soppnrn tlbtl, Japan

I , I„„n„^ltodart ihn
ltrrgr nix# 0r of ralgorifhmn have liven propoard

for ov ientifiv vomputotionst and none of them have
born improved nuborgtently. Thear are publinked
lit publieitionu, and it is not ranµ "::r
gt,nornl users to find ouitoblr nigovithmo fnr
their purponr, We intend to veontrut ,t an
informotAnn nyntem fnr mnthematlrol onftwnre of
fine uunllty. Rive (11 pointer! nut the atrrngUio
and	 wo kneonrn	 it 	 twta ttpproaNion fnr unrr
Interfoce with 0l(lar,ithmut one In lilt, proornm
1.1hrorieu and the other is till extended 0yntema
ovoilobli , tin oil integrol part of tilt, prngrommIntl
longu#grn.	 We preaant hore n bonie iden of nn
npprourh	 of	 the	 formt,r	 typo finned (lit

information retrieval method rtxnbinvd with nonce
net iflelol lilt olIlgt+nve teehni guvo. A prel minary
Implementr►tion If !,loo reported. It will nupport
the fo inwinii Motto in drolgn.inq #nil proorpraminq
of problem Colvinq by vamputerst

netting up file problem it, eta npproprinte form
donitinlrg the algorithm
programmt7g
dt,bugglnq will exertrtion of the progrom
an111yoln^of file reaulto

Ihr	 retrieval	 nyntem	 uhould tlen.t with the
fo.ilowinq two kinds of informnllont

information ennrerninq individual algorit ►tm
Information eoneerninq n cartof nloor-tihmn far

a opevifiv purpone. Inin kind of information
;ri-it be utseful for aviertin 0 tucitnhle acre,
nod

lit
	 Otlorithmie knowledge tit

fUlper.

2	 Infnrmnlion Re renrntntinn of Al arlthmta
Wigo-M nwu ^mny nx on 'Mniaun forma, I o,, iuoti
madulra, anurve prngrnmo in wide+nprend or rather
uncommon prngrommincl lnnquagen, natural languntle
donerlption with mothemotiral notation, Mr. {Inc
may need varloun kinda of informnHon far
Identifying 0lgorithmn, v.ti., bib:liogrnph w Items,

npmeiflention of funrtionn, unag ri, of programs,
rte, One of the two atI R ,nnlivlt, must be ehonen
to drsrrihr lilt- funvttoot the Ii -ral, proredurol
donor lilt ion by highvr level lonottwo or
ronrrlitunl denvription by trelinienl termat file
noeond, desrriptinn with avverol fnrmato rnrli for
a nperifie problem field or deneriptinn with
ningle format for nil problem fields,. We ottopt
tilt, v­ivuptual dtileription with a oinglr format.

Tilt,	 Int'nrnrntit+n	 rrlivenrntotion of Individual
Clgorithnt ronn,tntn of thr f4llnwinq thrt,r typos of
fit Iributt,-voltip nett
(1) bibliagrnphlr tittributen, t.e., lilt , journal,
vnlumv, number, page, year, hilt-, outhorn,
vinsnlfivotion radon, krywordn and kt,yphrCnna,
rte`.

(k) funetional Cttribuloo, I.e., Ihr problem
tunain, method, prrformonve, etv, lhr
performanvo

lit
	 by VII time, number of

operationo, memory re quired, areuraey,
robustness, ell.

(i) operational nttr.ibutrn, I.t,., the pragrtimminq
innqungr, u0ago of progPoron, touted ti p nat
tented, err.

'Cho vtilnen for thrnn attributoo are montly the
trehnleal	 form#	 in ;nntht,mnlleo and eomputor
nvieneea. SyntCviir rdlen are needed for
dt,nrr^lpt-ion Curb nn treatment of #pr y-tnl nymbalu,
tags, drsrriptoro, otnndnrd forma, rte.

Ihio information reprroontntion #eheme rnn he
regarded	 an a kind of indrxinq method for

algnrithma.	 problem-oriented retrit,vnl becomoo
po#uINv	 to Come oxtent	 even with u0u01
informntion retrieval methods. tlitt 11
mixrd•Init,lotive dinloqur nyntem will be more
utiorul for vnmmnn usrrm. Ilion the nyolem should
den'i with the fallowing typen or information att
the nignrithmic knowled(let
(1) knowledge oil 	 I e., the relation of
nynohyrn, auparvlaas and oubrtn#n of terms,
rte. Short vamnu•nttt ore Cleo uneful to non9nt
till) ttnern.

(wa hislher level knowledge
mathemntival knowledge, for oxnmplo matrix

invera.ian von he regnreird an vquivnlrnt to
ao.lvinq l)imultnnenun llnenr ecintions, rte.

rmp,irivn.t knowledge, for rxtmple mnt:rix

Invernion may bc , ovoidrd whrnnvt,r ronoible, rte.
It In potsulhle to nanint unera by prompt Intl tit tier
uelevtivr pointo with thv nlgorithmir knnwlt,dgv.
Pilo von he implementod by the uounl infnrmntion
retr-ievnl meti.ul oombtlird with name nrtifle.tnl
Intt,IIicgvnrr 	 terhniqut,n,	 any	 lilt, production
nyntem, ett:.	 We roll define the higher level
knowledge no n mnppinq bvtwt-on reprenentntive
torm0 of funrtional attrihuten, hire (2)
dinrttn#rd the nigorithm tteleetion prnhlem nod
propoaad a muthematiral model with the problem
apnvo (inComo Oticen fenture opn-v Cad rettarin
Spare are 11100 ronnidered), nlgor;ithm pram and
porformonve menaure uptv^v.	 Thoov npacen may
vorronpnnd to the nbovr funet-fonnl nttributr0.
nor	 informatIntl rotriev vsl methnd	 In	 b on
Pint hvmot: Ivol and morn empir lent .

3 . A Oiblintrat hir Dninbenn
We The r riot o rp or file development or our
ayntem,	 we	 hnve rnnotrurtrd it

t,atnbnue nr CAtGO (Collertrd ALGOrithms from arm)
which Ineluden rertirirntionn and rrmnrks ror come
Altiorithmm, In CAtGO, there net, three prrinde
vhornrtmixed by the atnrt or rallertinn, the
rinim ror quality of enrh nitaoritiv p and erforto
rnr arreanlbility to thr rollertion> Some of the
proposed nlgorithma nrr improved eubaoquently by
remnrku.	 the	 publi pntion d CALGO in the
lunar-leor	 form	 in	 nn npproorh	 to	 the
nrressibility problem, 	 An informatlon retrievnl
npprnnrh by vomputer will be more errirlent to
thin problem.	 In our aystem, the rrrtirirntiona
and remarks are merged into the oritlinnl nlgorithm
to	 a,,%npIy	 the	 nugminntrd infnrmntion.	 This
dntobnne is now available ntthe Hokknido
university Computing Center with the retrievrtl
nyatcm ORION (Online Retriever or lnrormntinN
whirl: is nvnil.nhle an n HIM Computer), riq.i
shown no ample or the retrievnl prorrnn,

hrt.HUthirb	 mu rmari . A owitoturpi?
ENTER YOUR RFQUCST

I / F LN.l2,.§!.+tfa

	

14	 1/ 3H ► 14
21 ^i^A.lJNeil!i.t1N12..Giiiu!1S1s2IiF

k	 3A	 21 LINEAR
>G	 47	 3/ VOURTION (2 TERMS COMDINC-0)
x	 i5	 46 LINEAR AND COUATIONS

5/ F1Nk OVL'RUIT - hAtq
	4 	 51 OVERDLrFRMINCO

* G/ hlN11. LANR_;
AN D N

71 V1`^ Ay

ITVM I.

ALGORITHM 320
REMARKS	 t
TITLE	 CHCDYSHEV SOLUTION TO AN OVGRDGTERMINkt
YGARI	 OJUNI:I%7 AND 22NOVtIVS7
nUT1­1OR1 RICHARD ti.ItARTELS AND GENE H.QOLV (Got

UNIVER$ITYtSTANFORDtCALIF,94303)V
.. r,	 i r	 rr+unarn ri..i r, re-an,ty tin utrt.t.

Fiq.l Art 	 or rvtrievol of the dotnhnnr
CALGO

Senn, snurrr progrmmn, though not tented yet, ore
colored on dinkn and enn he uned online, We intend
to rnnntruet (t mixed-initintivr dielntiur nynlem
ror none oprvirir plobiem rlrlds no the nernnd
step or the drveiopment,

A, rnnrludin Remnrkamow..
We trove prrnrntett n basic .ids ► or the infnrmntion
oyntem for mothemntirol oortwvrv. A lrtrge number
of quality n.lgnrithma ore now nvnilob:le but nrr
not ut.11ixcd For nanny users. 	 The infnrmntion
retrieval	 uppranch	 will	 he	 errerlive	 ror
dinneminot inn	 problem or qunlity mnthemotlrnl
nortwnre.

rererenres
(1) J.R.R.ivea The Wiltrihution and Souroen of
Mathematical Sortwnre, in Mathrnuttiral Softwnre,
edited by J.R.Rirr, Arndrmir Pre-in, 1971.
(k) J,it,Rlre(The Algorithm Snlrrtion Problem, In
Advnnren in Computers, vnl.15, edited by
H.Rubinorr et nl., Aendemle Prrnn, 1976.

SOFVARR MANAGEMENT

P. W. Gaffney

Computer Sciences Division aat,k
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

The purpose of this talk is to describe two software
aids, esllod NASTI and NIT al that have been developed
at Oak Riog(for mau►.yd.ng numerical software. As
part of our comprehetioLvu numerical software see-
vice, we have acquired a large collection of quality
routines from sources other than mathematical
Libraries. In order to avoid duplicating the
acquisition of N piece of software anti at the same
time provide users with information about existing
software, we have developed an interactive data
base called NASTI, This data base is managed by
the System 1022 Data Hase Management System'. and
Is available on our PDP-10 computer. The Infor-
mation contained in NASTI line beun deliberately
kept to a minimum. Thus, for arch piece of soft-
wore described in NASTI, at computer user tins access
to the following quantities:

NAME - Name of the piece of software
PRORLBM - The problem area that the software

Is suitable for, e,g., Partial
Differential Equations

P11HPOS - A brief description of what the soft-
wore purports to do and some advice
on the recoaamended. time

MGT110D - Thu main numerical methods used
ORIGIN - The source of the software
VERSION - A date which usually signifies whoa:

the software was acquired
LOCATION - The location of the FORTRAN source

Of the software on our system

These quantities may be regarded an keys which the
user may employ durin g at particular seaveh sequence.
A disndvantage of NASTI in that the language of the
102 1. system is clumsy for the casual usor. A
further inadvantaga in that since the 1022 system
in not widely available, NASTI is non-portable,
ilowttvt.r, NASTI in an example of an aid which was
constructed using existing facilities, and which
adequately asslots in the management and t;..ssemi=-
nation of information About numerical softwa+ro.

lit order to provide users with advice tin the correct
choice of it numerical routine for a particular
problem, we have developed at numerical interactive
tree called. NIT. During A NIT session, it computer
user is asked certain g quations in an attempt to
identify the particular routine or group of rou-
tinea which are best suited for solving the user'n
problem, By responding to these questions, the
user is led effortlessly to a recommendation. At
pr0000t, NIT forms the basic~ of a system which is
being developed for on-line documentation. Thus,
NIT fins the capability of providing HCLI' filos and
also gives sufficient inforntaation to enable a user
to incorporate the recommended software in a FORTRAN
program. Moreover, NIT also give" information on
how to 4xtacute this program on the various computers
available at Oak Ridge. Unlike NASTI, NIT is port-
able, because it has been written to confo ma to
thtt PFORTJ verifier. Thus, NIT may be installed.
on a variety of computers.

The talk will contain a brief description of NASTI
and an explanation of the development of NIT to-
`ether with proposed extensions.

1 W. Gaffney, J. W, Wooten, and K. A. Kassel,
"NIT - A Numerical Interactive Tree," ORNL/CSD/
TM-139.

2"8yetes 1022 Data Rase Management Sustem," Soft-
ware House, Cambridge, MA 02138.

3
"The PFORT Verifier," Software Practice and
Experience., 4 (1974), p p . 359.377.

"Operated by Union Carbide Corporation under con-
tract W-7405-eng-26 with the U.S. Department of
Energy.

The Programming Environment's
Contribution to Program Robustness

W. Kahan
University of California

Berkeley

A robust program to solve a quadratic ax 2 -
2bx + c e 0 will conceal from its usg^r any
over/underflow in the discriminant b - ac
while revealing aver/underflow Just when a
calculated root lies out of range. In general,
robust programs conceal spurious exceptions from
their users while rendering faithfuil 'y those
exceptions pertinent to final results, If this
assertion characterizes program robustness
truly, then robustness is iifipractical in most
programming environments and a challenging task
even in so favourable an environment as is
specified by tre proposed IEEE standard for
floating point arithmetic.

A Hardware Unit for Decimal Arithmetic
with Controlled Precision

T.E. Hull, Department of Compvzer Science
University of Toronto

Introduction

The main purpose of this paper is to describe briefly
the capabilities of an arithmetic unit called CADAC
(for Clean Arithmetic with Decimal Base and Control-
led Precision) which is currently being constructed
(1) at the University of Toronto.

The unit is intended to support language facilities
(including exception handling, and programmer con-
trol of the precision and exponent range of the
operands, as well as of the operations performed on
the operands) such as have been advocated by the
author [see, e.g., 2J. Previous attempts to imple-
ment these ideas have been based on preprocessors,
which suffer from shortcomings in terms of both
flexibility and efficiency. The building of CADAC
is intended to provide hard data on what trade-offs
are involved if the basic ideas are supported by
the hardware.

It is intended that CADAC be interfaced initially
with a PDP-11/34, whose 105-bit, wordlength has
therefore influenced the design.

The la uaae facilities

As explained in more detail elsewhere (see (2) and
the references given there), the proposed lsnguagn
facilities, allow the programmer to specify separate
)v the precisions of the operands (along with the
exponent ranges), and the precision (and exponent
range) of the operations to be performed on the
operands. There are two main ways in which the
programmer can take advantage of this capability;
(1) one is to be able to carry out intermeftate
stages of s calculation with a precision ani/or
exponent range that is higher than the opereuids
(2) the other is to be able to repent a portion of
a calculation with higher and higher precision and/
or exponent range until soma criterion (such as an
error requirement) is satisfied. The second capa-
bility is the morecomplicated; the program outline
given below (which illustrates the main features
of an algorithm for solving equations to within a
prescribed tolerance "tol l') illustrates what we
have in mind.

float(8) root -- precision 8, default exp.
- other declarations, etc.

P . 8	 -- initialize preciaiou
flag - true
while (flag - true b p S 32)

begin precision(p)
float(p) approximation

find approximate solution
find error bound
if bound s Col

root . approximation
flag - false

end if
endbegin
p i p+4

end while

Number representation, arithmetic. - exceptions

The first 16-bit word of a memor. • location is
interpreted by CADAC as shown in the diagram shown
below:

Sign S-
1 1 10(exponent E) j 4length Lextend X

The number of decimal digits in the normalized
significand is 2L+2, and they are to be found in
succeeding words, 4 per word. E is the excess-512
exponent. E - 0 is reserved for the value 0, un-
less S is negative, in which case the first 4 bits
of the next word are hexadecimal F, E, etc., to re-
present "indeterminate", "not-yet-assigned", etc.
If X - 1 the format becomes "extended" and both
exponent and length, as well as the digits, are to
be found in subsequent words.

Properly rounded floating-point arithmetic is
carried out. It turned out to be relatively effi-
cient to work only with multiples of 2 decimal
digits. Other rounding modes are also provided, in
particular so that interval arithmetic can be
supported easily.

s

10

f
I

CADAC has a single accumulator, communicates with
its host in DMA mode, and maintains an exception
status register for the host. A 3-stage pipeline
running at 10 Mhz handles 2-digit by 2-digit pairs,
and uiultiplies two 32-digit numbers in about 30
microseconds.

Exceptions (including overflow, underfloor, and
roundoff) are flagged. Wraparound results are left
after overflows and underflowx, indeterminate after
zero-divide.

Cost

Two large boards are used, each with close to 100
integrated circuits, including a mixture of SU up
to LSI, costing a total of about $4000 (Can.) for
the two hoards. Another few hundred dollars are
needed for the interface board, power supply,
cabin ,tt and cables. It is expected that the total
time required for the design, and for construction
of the prototype, will be about 2 man-years (Can.).

References

(1) M. Cohen, V.G. Hamacher and T.E. Hull.
CADAC: An Arithmetic Unit for Clean Decimal
Arithmetic and Controlled Precision. IEEE
Fifth Symposium on Computer Arithmetic, Ann
Arbor, Michigan, May, 1981.

(2) T.E. Hull. Desirable Floating-Point Arithmetic
and Elementary Functions for Numerical Computa-
tion. Proceedings Conference on the Program-
ming Environment for Development of Numerical
Software, 96-99 (SIGNUM Newsletter 14, edited
by C.L. Lawson, 1979).

A Brief Guide to the Literature on Supercomputers

Myron Ginsberg
Computer Science Department

General Motors Research Laborrtories
Warren, Michigan 118090

As 2-D and 3-D mathematical models come closer
to rf;flecting real-world behavior, there is a
substantial increase in the number or
floating-point operations which most be
performed as the grid Ltructure is refined; for
example, doubling the number of grid points in a
2-D problem produces a 4-fold increase in
computing and for a 3-D problem in time there is
a 16-fold increase. Machines in the emerging
class of supercomputers offer some alternatives
for parallel computation in attempting to deal
effectively with such problems.

This bibliography given below provides a sampling
of references to the literature associated with
parallel algorithms (Section I), vector
architecture (Section I1), performance testing

(Section VI), and specific supercomputers such
as Cray Researcn's CRAY-1, (Seotion III),
Control Data's Cyber 200 Series (Seotion IV),
and the recently cancelled Burroughs Scientific
Processor (Section V). The author welcomes
readers to submtt additional recent references
in any of the aforaontioned areas.

The oral presentation will focus attention on
point-by-point comparisons of the CRAY-1 and
Cyber 205. Emphasis will be placed on th.se
attributes which directly affect the design and
implementation of mathematical software for such
supercomputers. Also, results will be presented
from a variety of performance studies involving
the CRAY-1, IBM 3033, and several other computer
systems.

I. Parallel Algorithms
1. Brent, R. P., "The Parallel

Evaluation of fleneral Arithmetic
Expression*," J. Assoc. Comput.
Mach., Vol. 21, No. 2, 1974, pp.
201-206.

2. Chen, S. C., D. J. Kuck, .end A. H.
Sameh, "Practical Parallel Band
Triangular System Solvers," ACM
Trans. Math. Software, Vol. 4, No. 31
September 1978, pp. 270-277•

3. Ga,iski, D. D., "Solving Banded
Triangular Systems on Pipelined
Machines," Proceedings 1979
International Conference on Parallel
Processing, August 1979, pp. 308-319.

11, Heller, D., "A Survey of Parallel
Algorithms in Numerical Linear
Algebra," SIAM Review, Vol, 20, No.
4, October 1978, pp. 740-777.

5. Kung, H. T., "The Structure of
Parallel Algorithms," Advances in
Computers, edited by M. C• Yovits,
Vol. 19, Academic Press, New York,
1980, p. 65-112.

6. Miranker, W. L. "Parallel Methods for
Solving Equations," Parallel
Computers - Parallel Mathematics -
Proceedings of the I14ACS(AICA)-G1
Symposium, elited by M. Feilmeier,
North-Holland Publishing Company,
Amsterdam, 1977, pp . 9-15.

7. Miranker, W. "A Survey of Parallelism
in Numerical Analysis," SIAM Review,
Vol. 13, 1971, pp . 524-547.

8. Ortega, J. M. and R. G. Voigt,
Solution of Partial Differential
Equations on Vector Computers, Report
No. 77-7, ICASF:, NASA Langley
Research Center, Hampton, Virginia,
March 30, 1977; also in Proceedings
of the 177 Army Numerical Analysis
and Com iute ,,3 Conference, U.S. Army
ResearchOffice, Research Triangle
Park, North Carolina, March 1977, pp.
475-525.

11

9. Poole, W. C. and R. 0. Voist, 8. Rudainaki, L. and J. Worlton, Tne
"Numerical Algorithms for Parallel Impaot of Scalar Performance on
and Vector Computers; 	 Aa Annotated Vector and Parallel Processors,
Bibliography," ACM Comput. Rev., Vol. Report 4A-UR-7 -2 5 , L03 Alamos
15, No. 10, Got ober 197 11,	 pp. 379-388. Scientific Laboratory, Los Alamos,

New Mexico, 1976; summary in H
Speed Computer and Algorithm

10. Sameh, A. H., "Numerical Parallel Organization, edited by D. J. Kuck,
Algorithms - A Survey," High Speed D. H. Laurie, and A. H. Sameh,
Computer and Algorithm Organization, Academic Press, New York, 1977, pp.
edited by D. J, Kuck, D. H. Lawrie, 1151-452,
and A. H. Sameh, Academic Press, Now
York 1977, pp. 207-228. 9, Sugarman,	 R.,	 "'Superpower'

Computers," IEEE Spectrum, Vol. 17,
11. Sameh,	 A. H. and D. J. Kuck, No.	 4,	 April 1980,	 PP.	 26-311.

"Parallel Direct Linear System
Solvers - A Survey," Parallel
Computers - Parallel Mathematics -

10. Voigt, R. G., The Influence of Vector
Computer Architecture on Numerical

Proceedings of the IMACS (AICA)-01, Algorithms, Report No. 77-8, ICASE,
Symposium, edited by M, Failmeier, NASA Langley Research Center,
North - Holland Publishing Compan7, Hampton, Virgins, March 31, 1977;
Amsterdam, 1977, pp 25-30. also in High Speed Computer and

Algorithm Organization, edited by D.
12. Stone	 H. $., "Parallel Trdiagonal J. Kuck, D. H. Lawrie, and A. H.

Equation Solvers," ACM Trans. Math. Sameh, Academic Press, Now York,
Software, Vol. 1, 	 December 1977,	 pp. 229-244,
1975, pp. 289-307.

?II.	 Cray Research's CRAY-1

1. Ames,	 W. G.,	 P.	 0.	 Buning,	 D.	 A.
lI.	 Computer Architecture Considerations Calahan, D. A. Orbits, and E. J.

Sesek, Sparse Matrix and Other
1. Chen, T. C., "Overlap and Pipeline High-Performance Algorithms for the

Processing," Introduction to Computer CRAY-1, SEL Report No. 124,
Ar^hiteeture, edited by H. S. Stone, Department of Electrical and Computer

i ' S0 ence Research Associates, Chicago, Engineering, Systems Engineering
Illinois, 1975, PP. 375-431 . Laboratory, University of Michigan,

Ann Arbor, Michigan, January 25, 197).
2. Hallin,	 T. G. and M. J. Flynn,

"Pipeliring of Arithmetic Functions," 2. Asprey , M. W.,	 "Vectorization from a
IEEE Trans. Comput.,	 Vol. C-21, 1972, Large Code Point of View,"
pp. 880-886, Proceedings of the 1978 LASL Workshop

on Vector and Parallel Processors,
3• Kozdrowicki, E. W. and D. J. Theis, compiled by B. L. Buzbee and J. F.

"Second Generation of Vector Super Morrison, Conference Proceedings
Computers," IEEE Computer, Vol. 13, LA-7491-C, Los Alamos Scientific
No. 11, Novimher 1980, pp. 71-83• Laboratory, Los Alamos, New Mexico,

October 1978, pp. 16-40.

4. Kue1[, D. J., "A Survey of Parallel
Machine Organization and 3. Buzbee, B. L., Implementation of
Programming," ACM Comput. Survey, Algorithms on the CRAY-1, report, Los
Vol. 9, No. 1, 1977, PP • 29-59. Alamos Scientific Laboratory, Los

Alamos, New Mexico August 1978.
5. Kuck,	 D.	 J,, D. H.	 Lawrie, and A. H.

Sameh (ads.), High Speed Computer and 4. Buzbee,	 B. L., G. 11. Golub,	 and J.	 A,
Algorithm Organization, Academic Howell, "Vectorization for the CRAY-1
Press,	 New York,	 1977. of Some Methods for Solving Elliptic

Difference Equations," High Speed
Computer and Algorithm Organization,

6. Lawrie, D. H.,	 "Access and Alignment edited by D. J. Kuck, D. H. Lawrie,
of Data in an Array Processor," IEEE A. H. Sameh, Academic Press, New
Trans. Comput., Vo : C-25, No. 12, York, 1977, pp. 255-271.

1975, P.P • 1145-1155.
5. Calahan, D. A., "A Block-Oriented

7. "Ramamoorthy, C. V. and H. F. Li, Sparse Equation Solver for the
"Pipeline Architecture," ACM Comput. CRAY-1," Prop , 1979 International
Survey, Vol. 9,	 No. 1, 1977, pp. Conference	 c Parallel Processing,

61-102. August 1979, Pp.116-123.

12

Calahat, D. A., W. 0. Ames, and E	 J. IV.	 Control Data's Cy'.)er 200 Series

Seeek, A Collection of

Equation-Solving Codes for the 1, Control Data Corporation, _C_DCCC^b^er

CRAY-1, SEL Report No. 138, <00 Fortran Language 1.5 Re er!	 enoe

Department of Electrical and Computer Manual for Use with CDC Cyber 200

Engineering , Systems Engineering operating System 1.5, Revision B,

Laboratory, University of Michigan, Publications and Graphics Division,

Ann Arbor, Michigan, August 1 1 1979. Control Data Corporation, Sunnyvale,
California, August 1980.

7. Cray Research, CRAY-1 Fortran (CFT)
Reference Manual, Publication No. 2. Control Data Corporation, CDC Cyber

2240009 (Revision 0) Cray Research, 200/Model 205 Computer System,

Inc., Mendota Heights, Minnesota, May Publicaion No. 60256020 (Revision 1),

1980. Control Data Corporation, St. Paul,
Minnesota, September 29, 1980.

8, Cray Research, CRAY-1 Har»ware
Reference Manual, Publication No. 3, Control Data Corporation, CDC Cyber

2240004 (Revision E) Cray Research, 200/Model 205 Technical Description,

Inc., Mendota Heights, Minnesota, May Control Data Corporations,
1 980, Minneapolis, Minnesota, November 1980.

4. Hoffman, D. E., A Parameter Study of

9. Cray Research, The CRAY-1S Series of a Veetorized Chebyshev Algorithm on

Computers,	 Publication No. 2240008D, the CDC Cyber 203. Control Data

Cray Research, Inc., Mendota Heights,
Corporation, Pelham, New York, April

Minnesota, 1980, 1980•

10. Cray Research, Scientific 5. Kaseic,	 M. J., Jr.,	 "A Direct

Applications Package Handbook, Poisson Solver on STAR," Proceedings

(Revision B), Cray Research, Inc.,
of the 1978 LASL Workshop on Vector

Mendota Heights, Minnesota, January and Parallel Processors, compiled by

1981.
B. L. Buzbee and J. F. Morrison,-
Conference Proceodinga LA-7491-C, Los

11. Higbie, L., "Applications of Vector Alamos Scientific Laboratory, Los

Proee3sing, 1' Computer Design, Vol.
Alamos, New Mexico, October 1978, pp.

17, No. 4, April 1978,	 PP. 139-1115- 137-165.

12. Higbie, L., Veotorization and: 6. Kascie, M. J., Jr., Vector Processing

Conversion of Fortran Programs for on the Cyber 200, Control Data

the CRAY-1 (CFT	 CCo	 iler,
Corporation, S6. Pau)	 Minnesota,

Publication ,Yo. 2240207, Cray 1979; also published in Infotech

Research, Inc., Mendota Heights,
State of the Art Report

'Minnesota, June 1979•
"Supercomputers", November 1979 and
in Angewandte Informatik, January

13. Johnson, P. M., "An Introduction to 1980, pp. 27-37.

Vector Processing," Computer Design,
7. Kaseic, M. J., Jr., Vector

Vol. 17, No. 2, February 1978, pp.
Processsing:	 Problem or89_97
Opportunity?, Control Data

14. Orbits, D. A. and D. A. Calahan, Data Corporation, St. Paul, Minnesota,

Flow Considerations in Implementing a 1979; also published in IEEE COMPCON

Full Matrix Solver with Backing Store_ 180, November 1979.

on the CRAY-1, Report No. 98, Systems
Engineering Laboratory, University of
Michigan, Ann Arbor, Michigan, 1976. 8. Lambiotte, J. J., Jr., Effect of

Virtual Memory on Efficient Solution

15• Petersen, W. P., 11CRAY-1 Basic Linear of Two Model Problems, Technical

Algebra Subprograms for CFT Usa ge," Memorandum TM X-3512, NASA Langley

Technical Note No. 2240208 Cray Research Center, Hampton, Virginia,

Research, Inc. Minneapolis, 1977.

Minnesota, February 1979•
9. Lambiotte, J. J., Jr, and R. G,

16. Russell, R. M., "The CRAY-1 Computer Voigt, "The Solution of Tr•idiagonal

System," Communications of the ACM, Linear Systems on the CDC STAR-100

Vol. 21, No. 1, January 1978, p
p

- Computer," ACM Trans. Math. Software,

63-72. Vol. 1, No. 4, December 1975, pp.
308-329.

17. Sites, R. L., "An Analysis of the
CRAY-1 Computer," .ACM SIOARCH 10. Lincoln, N. R., "It's Really Not as

Newsletter, Vol. 6,No. 7, April Much Fun Building a Supercomputer as

1978,pp. 101-106. It Is Simply Inventing One," High

i^
13

Speed Computer and Algorithm
ui_ 'ganixation, edited by D. J. Kuck,
D. N. Laurie, and A. It. Somali,
Aerdemio Press, Now York, 1477, pp.
i-11.

11. Lincolt., N. R., A Safari through the
Control Dgtg STAR-100 with Gun and
camera, paper, Control Data
Corporation, Arden Hills, Minnesota,
1978.

12, Mossborg,)}., An Informal Approach to
Nom0er Crunching on the Cyber
P03/205, Control Data Corporation,
Cyber 200 Support, MOM 1601 west
County Road 0, Roseville, Minnesota
55113, March 1981.

13, Noor, A. K. and R. E. Fulton, "Impact
of CDC STAR-100 Computer on Finite
Elements Systems" , J.SStruct. Div.,
ASCE, Vol. 101, 1975, pp. 731-750.

14. Noor, A. K. and S. J. Hartley,
"Evaluation of Element Stiffness
Matrices on CDC STAR-100 Computer,"
J. Comput. Structures, Vol. 9, No. 2,

1978, pp. 151-161.

15. Noor, A. K. and J. J. Lambiotte, Jr.,
"Finite Element Dynamic Analysis on
CDC STAR-100 Computer."Computers and
Structures, Vol. 10, No. 1, 1979, Pp.

7-19 .

16. Rothmund, li. J. and K, L. Murphy,
Programming Mothodogy for CDC Cybor
205 Vector Processor, Control Data
Corporation, St, Paul, Minnesota,
August 1980.

17. Redhod, D. D., A. W, Chen, and S. 0,
itotovy, "New Approach to the 3-D
Transonic Flow Analysis Usin g the
STAR-100 Computer," AIAA Journal,
Vol. 17, No. 1, January 1979, pp.

98-99.

V. Burroughs Scientific Processor

1. Burroughs Corporation, Control
Program - Burroughs Scientific
Processor, Burroughs Corporation,
Paoli, Pennsylvania, November 1977.

P. Burroughs Corporation, overview,
Perspective, Architecture - Burroughs
Scientific Processor, Burroughs
Corporation, Paoli, Pennsylvania,
February 1978.

3. Burroughs Corporation, Floating Point
Arithmetic - Burroughs Scientific
Processor, Burroughs Corporation,
Paoli, Pennsylvania, December 19786

4. Burroughs Corporation, Inm2lomentation
of Fortran - Burroughs Scientific
Processor, Burroughs Corporation,
Paoli, Pennsylvania, November 1977.

5. Jenson, 0. "Taking Another Approach
to SupercomputinB," Datam t„lon, Vol.
24, No. 2 0 February 197 PP, 159-17:.

6. Stokes, T. A.,	 Scientific
Prooessor," HI eh Speed Computer and
Algorithm Qreanization, edited by D.
J. Kuck, D, N. Lawrie, and A. H.
3ameh, Academic Press, Now York,

1977, PP. 65-69,

VI. Some Performance Testing and donohmark
Results

1. Boley, D. 4. 1 "Vatitori7thtion of Block
Relaxation Techniques Some
Numerical Expo pimentsy" Proceedings
of the 1978 LASL Workshop on Vector
and Parallel Processora, oompaed by
B. L. Suzboo and J. F. Morrison,
Conference Proceedings LA-7491-C, Los
Alamos Scientific Laboratory, Los
Alamos, New Mexico, October 1976, pp,
166-173.

2. Buoy, R. S. and K. D. Sonnet
"Nonlinear Filtering Algorithms for
Parallel and Pipeline Machines,"
Parallel Computers - Parallel
Mathematics	 Proceedings of the
IMACS (A CA) - GI Symposium, edited
by M. Failmeier, Nora,`,-Valland
Publishing Company, Amsterdam, 1977,

pp. 9:I-97.

3. Calahan, D. A., W. N. Joy, and D. A.
Orbits, Preliminary Report on Results
of Matrix Benchmarks on Vector
Processors, Report No. 94, Systems
Engineering Laboratory, Department of
Electrical and Computer Engineering,
University of Michigan, Ann Arbor,
Michigan, May 1976.

4, Dongarra, J., Some LINPACK Timings on
the CRAY-1, Report No. LA-7389-MS,
Los Alamos Scientific Laborator y , Los
Alamos, Now Mexico, June 1978.

5. Fong, K. and r. L. Jordon, "Some
Linear Algebraic Algorithms and Their
Performance on CRAY-1," Nigh Speed
Computer and Algorithm Organization,
edited by D. J. Kucl., D. H. Lawrie,
and A. H. Sameh, Academia Press, Now
York, 1977, pp. 313-316; also Report
LA-6774, Los Alamos Scientific
Laboratory, Loa Alamos, New Mexico,
,tune 1977.

6. Fornberg, B. "A Vector Implementation

0 this Fast Fourier Transform
AIgoritll m," _M_a_th j, 09re^., Vol. 36, No.
153, January lg 1 , pp.-189-191.

7. Gentzsoh, W., C. Weiland, and D.
MDiler - Wichards, Possibilities and
Problems with the Application of

F 14

a	 '	 a,

Ygo..or.r CComps,iers as Shown by the Tlu► Use of extensible Languages
Nu^ngrioai Prooaa41na of 5ayaraI for Kathematical Software

maPh aloal FioM oblo, Report,t
German ResegrbhandTesting A Cues Study
Establishment for Aerospaoe (DFVLR),
April 2 0 1980. L, M. Delves

8. Hayes, A. H. vid I. Y. Bucher, Los Department of Computational 4 Statistical Science
AlamosSoiontifio Laboratory Comud er University of Liverpool, Liverpool, England
Benchmark Psrformanoa 1^^A, Repa:•t
LA-8689-MB, Loa Alamos 3oientifio 1.	 W,_,i_t______o_n__d̂____W_ĥ ^
Laboratory, Los Alamos, New Mexico, GSM '	 s	 ral program for the solution of
February 1981, elliptic partial differential equations

9. Hertweok, F., W. Schneider, and U. -4A(x)9f(x) + B(x)f(x) + Ct (x).9f . g(x)	 (1)
Schwenn, Benchmark Tests with tha
CRAY-1, IPP Report R/31, Max Planck subject to a variety of boundary conditions, over
Institute for Plasma Physics, May arbitrary bounded or infinite Lwo dimensional
1979. regions,	 It was written in the extensible fang-

Uage Algol 68, and this iAaper outliner the advant-
10. Jefferson, T. 11. and M. R. Scott, ages of this approach. These depend strongly on

Magaflop Comparisons of Various the ability within this language to define not
Computers, Report SAND 0-2205, Sandia only new modes, but operators on those modes; and
National Laboratories, Livermore, to include absolui:aly anything inside a structure,
California, October 1980. and to deliver aboolutsly anything as the result

of a procedure.	 'fhe advantages which accrue
11, Killough, J. E.,	 "The Use of Vector include:

Processors in Reservoir Simulation,"
Paper SPE 7673, presented at SPE-AIMS a) Ease of^w:itin,t, The program is wrlf,ten in
Fifth Symposium on Reservoir taxis of oof	 bjects: lines, elements, dif,".orential
Simulation, Denver, February 1979• equations, boandary conditions; which are natural

to the mathematical problem.
12, Mz,osovsky, I., J. Y. Wong, and H. W.

L•ampa, "The Construction of a Lar ge b) Lase of debu	 in . These same features make it
Field Simulator on a Vector easy	 well, assist) to locate and remove bugs.
Computsr," paper SPE 8330, presented
at the SPE-AIME 54th Annual Fall c) Provision of a natural user interface is also
Technical Conference and Exhibition, simplified; it is possible to let the Uscr see the
Les Vegas, Se ptember 1979. highest level structures directly, and to provide

a convenient and natural language in which lie can
describe his problem. We believe that GEM2 is

13. Nolen,	 J.	 S., D. W. Kuba, and M. J. easier to use than any other PDE package; this is
H,asoie, Jr.,	 "Application of Vector achieved without any pre-processor being required.
Processors to the Solution of Finite
Difference Equations," Paper SPE7675 d) Extensibility_, Equation (1) may represent a
presented at the SPE-AIME Fifth single or a eat of coupled equations, with real or
Symposium on Reservoir Simulation, complex (scalar or vector valued)functions
Denver, February 1979. A, B,	 C, g.	 f.

14, RothmurAd, H., Implicit Navier-Stokes GEM2 is written in mode-independent form; the
Code on the Cyber 203/205 Computer, underlying field is represented via a predefined
Control Data Corporation, June 6, mode	 scat, the choice of this mode determining
1980. the close of equations covered:

15. Rudsinski, L. and G. W. Pieper, Class	 mode seal-
Evaluating Computer Program Single real PDE	 real
Performance on the CRAY-1, Report Single complex PDE	 Aom 1
ANL-79-9, Applied Mathematics Coupled real PDES	 re	 real
Division, Argonne National Coupled complex PDES 	 red [7 com 1
Laboratory, Argonne, Illinois,
January 1979.

The body of the code is written in terms of the

16. Shang, J. S., P. G. Euning, W. L. mode seal; the four versions differ only in the

Hankay, and h. C. Wirth, "Performance provision of a small U100 liner) prelude con-

of a Vectoritsc Three-Dimensional taining declarations of the primitive data type

Navier-Stokes !u	 on the CRAY-1 (e.g. mode seal - ref [] real) and of a few

Computer," AIAA Journal, Vol. 18, No. primitiveoperators on objects of these modes.

9, September 1980, pp. 1073-1079. These features of GEM 2 offer an interesting

15

i

demonstration of the use of an extsnsiblu
language in a non-trivial mathematical software
environment; we estiaate that they Nave cut the
development costs by it factor of three to five.

2. NOW
CEM7"implements tlae Global Element method [1,2];
that is, the given region is subdivided into (a
few) elements; these are mapped onto a standard
region (a square) and a high-order orthogonal
polynomial approximation used within each mapped
element. The objects required to implement the
method include sides (of elements); elements;
maps; differential equation coefficients; differ-
ential equations; boundary conditions. Each of
these has a corresponding mode declaration ixt
OEM 2. Sample (skeleton) mode declarations bllude;

mode sidefunc - struct (Union (proc (re. a1) real.

roc () real, leaai) Leal) funs, rot [) real

params);

mode side - stru- ct [I;S) real position, int

mode, [1;2) sidefunc shape);

mode eletwsnt - struct (re ef [) i„ nt side numbers,

varies of other stuff);

The offset of these declarations is that elements
are described in terms of their edges; and the
user has a fairly wide choice of modes of descrip-
tion of a side: Cartesian, polar, or parametric
coordinates, with or without parameters. As in-
dicated, the actual structures contains var=ety of
other useful but more technical bits and pieces;
we found it extremely useful daring development to
be able to add another field to the defining
structure and have the appropriate information
propagate painlessly through the entire program.
Note also (for PASCAL addicts) that we keep
procedures inside structures; we cannot imagine
writing CEM 2 witbout this facility, We also make
extremely free use of the ability to ganorate
global space dynamically (the "heap"), Unions
("variant records") are used to yield a flexible
interface for the near.

3. NOW SUCCESSFUL (was the decision to use
Algol-66MM snswsr to thin has three aspectst

Did it help implamentatio;.? As Ws are totally
hooked.

S Now .about runtime efficiency) A; Depends on
your impl6muntation; on our computer, (ICL 19065)
Algol 68 runic about as fast as FORTRAN.

(q flow easy to tivo is CRM 2 really? A; Try to judge
from the following complete program+

aU"°
an

z	 a

OU

an n 0

au^0

ate, 1 °"°
8U -0

Solve V2 U - 0 in an L-shaped region with boundary
conditions as shown,

usa:
b ie8 nrp oblem I, shape; describe problem (l. shape,

real ab,bc,cd,de.ed; read ((ab,bc,cd,de));
" ab + cd; fa: - be + de;

print ((newline, "ab be cd do", ab,bc,cd,da));
[7 real origin;- (be - fa. -4b.0,0) 'c' global,
local origin at corner c

V
f "c';

oP int a K (fa,0.0), b	 (fa,ab), c " (fa - bc,ab),
d - (fa - be, of), e 	 (0, o f), f ' (0,0,0,0);
Triangle (l, (5,6,7), fc,b,a). origin, 1,2/3,
false);

Triangle (2, (7,1,8), c,a,f, origin, 1,2(3, false ;
Triangle (3, (8,2,9),c,f,e, origin, 1,2/3, false);
Triangle (4, (9,5.4), r,,a,d, origin, 1,2/3. false);
Internal ((7,8,9)); Neumann (11,3.4,5));
Diricnlet (6, constant 1.0);
Dirichlet (6, constant 0.0);
for n from 3 to 9 do
solve (",, 1,0;1,F,--
Tabulate (rlpparams current value, nul). defunction,
6,6)
od
,id

16

A Portable Flk System*

David R, 11anson

Depa +*uicrt of Computer Science, The University of Arizona
Tucson, Arixona 85721

1. Introduction
Inpuitoutput is one of the most machine-dependent aspects of pro-
gramming, especially for portable software. The large range of ito And
file system capabilities amon g exist i ng computer systems makes It
extremely difficult to avoid idiosyncratic problems In even the most
carefully engineered portable systems, A typical solution to this
dilemma Is to use the 'standard'i/o and file primitives defined In the
language In which the portable system Is written [tan7g]. In Fortran,
for example, it is common practice to use only the forms of the i/o
statements defined in the ANSI standard, and to use verifiers that aid
In the detection of non-standard constructs (ryd74], Another common
approach is to define it set of relativelylow•level i/o routines that
can be easily implemented and can model the capabilities of most com-
monly available tale systems. By funnelling all llo through these rou.
tines, portability problems are isolated in their machine-dependent
implementation. The software described in [ker76] is evidence of the
success of this approach.
A problem with these traditional approaches Is they invariably sacrifice
capability and efficiency for portability. Designs based on these
approaches tend to have only, the 'lowest common denominator' in
capabilities of the intended host systems, such as sequential 119 to char«
actor files of restricted names, Enhancements may of course be Pdded,
but at the expense of an increase in implementation complexity qnd a
reduction in portability.
The heart of the problem with traditional approaches to portable i/o
systems lies in their attempt to manipulate highly machinc.dependent
objects,.-host machine riles and rile names. This paper describes a
portable file system that makes riles and their names machine-
independent, The Mott importan, advantage of this approach Is that
i/o is not limited by the target systems, For example, capabilities such
as random access, multiple access, and automatic expansion of files,
which are absent in some commercial operating systems, are provided
by the portable file system,
The portable file system—PF5 for short—is the combination of a port-
able file directory system (hang0a, hang ►] and a portable I/o system
[hang0b]. It provides machine-independent files and rile names, a
hierarchical directory structure in which to organize files, and a set of
directory manipulation and i/o primitives. The directory structure and
primitives arc similar to the structure and primitives of the UNIX (61,74]
file system, The PFs Is. in large part, a portable implementation of the
UNIX file system, It is packaged as a :set of Ratfor [k.cr75) (and hence
Fortran) functions and subrouti pes, which is loaded with thj program
or system that uses it. The implementation teclkniques are similar to
those used in UNIX (tho78) and are described in [hang0a] and [hang0b].

2. Directories
The directory structure in the PFs is a rooted tree structure in which the
leaves are files or directories and the nodes are directories, A direcigvy
is simply a list of files and directories. The root <'the tree is denowd
by /, and files and directories are denoted by their `path', which sped-
ties their absolute position in the tree.
A path is composed of the names of the nodes on the path from the
root to the desired file or directory. The path components are
separated by slashes, e.g. /source/pta/alloc.rat, The names'.' and',.'
refer, rerrtectively, to the directory ivielf, and to its immediate ancestor,
These n, ees may be used as path components, providing a explicit
means of using the structural properties of the tree, If a rile name does
not begin with.(, it is taken to be rooted at the 'current directory'. For
example, if the current directory is at /source/pfs, the name alloc.rat

refers to /source/pts/rlloc,rat. Files and directories are equivalent
with the exception that directories cannot be written by the user.
The primitives that deal exclusively with the directory s,vetwe are
summarized in `fable 1.

_	 Table I. I'F5 Directory Primitives
t:hdir(name)	 change current directory to name
link(namei,name2) make a link to nemet named nome2
mkdlr(nome)	 make it directory named name
rmdir(name)	 remove directory named name
slat(name,array)	 return information about file name

The current directory is charged by eh^ilr. link cstabiish s alternate
names fora file. Directories are created by mkdirand, once empty, are
deleted by rmdir. information about a file !or directory), such as its
size and date of creation, is returned by slat.

3. Prlmltives
A M file is similar to a file in UNIX and may he thought of as a finite
sequence of characters or bytes. The PFs is insensitive to the range of
byte values, so it can accommodate both 'binary' and 'character' files.
Primitives are provided to create, delete, and open files, and to read
and write characters anywhere within a file, Files are as large as is
necessary to accommodate what is written to them, but are otherwise
featureless. The basic primitives are summarized ht Table 11. Most
primitives return a value indicating the success or Hlure of the olicrti-
tiom

'fable 11, PFS 110 Primitives
Id = fopen(name,mods) open rile name
fd ^ icreate(name,moda) creute and open rile name
fclose(fd) close a rile
n	 I read (buffer,count,fd) read from a rile
n	 fwrite(buffer,couni,fd) write to a file
pos = fpos(offset,type,fd) position 'i/o pointer'
fremove(name) delete file name

Existing riles are opened for i/ o by (open,
T

he argument name is the
name of the rile and mode is READ, WRITE, READWRITE, or
APPEND and indicates'how'thc rile is to be accessed, If the file exists,
fopen returns a'file descriptor', which may be Ibought of as a'handle'
that is used to access an opened rile. Descriptors are similar in concept
to channel numbers or Fortran unit numbers. Their values are never
inspected explicitl y but arc passed to other primitives to indicate the
opened rile on which they should operate.
New riles are created by (create, which creates the natued file and
opens it as if (open had been called, if the rile already exists, it is trun-
cated to zcio length and opened,
Opened riles are closed by fclose(fd).
Data transfer to and from opened files is performed by tread and
fwrite, tread reads •ap to count characters from tllc opened file indi-
cated by the rile descriptor rid into buffer. It returns the number of
characters actually read, which may be 0 when the end of the file is
reached, Iwrlte writes count characters front to the file indi-
catcd by td. Writing beyond the current size of the rile is permitted,
and the file is automatically ext±,tdcd to accommodate what is written
to it. For symmetry with tread, fwrite returns the number of charac-
ters actually written.
An 10 pointer' is associated with each opened file and is aJvanced by
tread and fwrite. It can be repositioned by Epos according to the
values of offset and type. If type is 0, offset specifics a position rela-
tive to the beginning of the file; if type is 1, offset specifics a position
relative to the end of the file; and if type is 2, offset s pecifies a position
relative to the current positon of the file, Epos returns the previous
position of the rile.
Files are deleted by fremove. Deletion of opened files and files with
aliases is permitted; the file is actually deleted upon the removal of the
laot reference to it. After deletion, all space occupied for the rile is
available for reuse.

17
	

t,

e, CoNclerlow
Vic portable flit system provides a machtne.indc]tmident concept of
file g ild i a primitives that offer ,greater flexibility than is found to
many operating sysicnta It is typically r lore efficient than the trodo
ltennl approaches to portable r o sysiculs I • or exslnpht. measure•
rncnls stn a Iis t • 10 g ild i y bcr lay *hoar a 25.15 pvrccnt improvcrncnl
aver I'ortrgn i u farsaquential charueler h[cz

11crinips the best tharactcrtranon of PIN is Ali abstract data typc'f le.
It provides a data structure, file, and a set of operation* on that
structure. This choracterOation clarifies the important difference
between the m,- approach and traditional approaches, which aticnipt
to provide a set of operations on unspecified and highly machine•
dependent data structures host tnachuto fties-

Neferenccs
[han80u]

Hanson, 1) k A PotlAble Fde Directory System, 5o+frnare 14atrure t
1 apenenrr 10.8 (Aug. 1980),623-634

[han8ob]

Hellion. 1) K A Portable Input O utput Syslcnl, Tach Report 79.170.
Dept of computer Science.) he Dnivcrsny of Ancona, Tucson. Not•.
10"

[han81]

Hanson. 1) K Algonthns 568: PDS A Portable Directory System.
4011701'11SJ,1(Apr. 198D, 16:d67.

[kcr75]
Kern.sban, 11 W Raifor A 1 1rcprtwosor for a Raur:al Fortran,
4r!lrnore 1'turf+,rS1'spcvten,r3,^(lkc 1915096406.

[ker76]
Kernighto, It N'. nod Plauger, P J. S.N1t+are 7°duds, Addison -Wesley,
Reading, SIA.1976,

[rit74]
Ritchie. 1)- ill and Thompson. K. The VNIX 1`nneshanng S4'rtem,
Clotsol _4t'.1l11.6(Jul-1974),363.375

[ryd74]
ii)z1cr.H ti The i'Ft3ieT t'2irf'n'r, Srtl7,,irre 'r'rn,fs,d..7r.i c̀ illrt;r`f;t?..
4 (pee. 1974),3$9-317

[inn')$]
lanocnba nt. A S . Khnt . 1' and Hohnt, A. Owdelows for ProgrartPar.
lobdny,SaRuwre Nrdrrlteandttpertetue$.6(Not 1978).681.698.

[01078]
Tbnnipson, K UNIX Iroplcntetttanatt, Nell SrAlerlt 7101 l- 37. 6(Jul.
1978).1931=1946,

"I his work was supported by the N alimml Snrnm toun(1ahan sunder G rant NICS,
78112545

TOOLPACK- A Collection of
Tools for Mathematical Software*

Leon Osterwail
t;,:artmant of Computer Science

University of Colorado at Boulder
Bouldor, Colorado 80309

Introduction

TOOLPACK is a cooperative project involving
resaarchars at Argonno National Ln6boratories, Bell
Telephone Laboratories, International Mathematical
and Statistical Libraries. Ire., Jot Propulsion
Laboratory, Numerical Algorithma Group, Ltd., Pur-
duo University, Universityy of California at Santa
Barbara and University of Colorado. The project
Is being funded by the Dept. of Energy and the
National Science Foundation an well, as the parti-
cipating inatitutio'4. TOOLPACK has as its objec-
tive the conveyance of strong comprehensive tool
support to programmers who are writing, testing,
transporting or anal yzing mathematical software.
Hence it must provide strong support for documen-
tation, testing, and verification, as well as such
code creation activities as aditing.

A wide variety of tool• will be built and aapssd
to support these activities. It is expects that
those ools will, be distributed as s and-alone
entities. There ii s, ho ver, consida robis support
and sentiment in favor of oreatin an in egratad
collection of the tools as +• ldl,	 Tits paper
prostate a brief overvitrw of the astan ofp and
fans for this Into rat ed collection, The follow-
n summary is a tricted from fOste III), wherein

additional dataixle colt be found.

Before commoncin with description of the design,
it is important to enunciate the following book
assumptions;

1. The mathematical software whose writin gQ tout-
ins, and analysis is to be supportati by TtSOLPACK
Is to ho written in a dialect o Fortran 77, which
$hall b carefully chosen to span the needs of As
broad and numerous a user community an is practi-
cal. 4

2. TOOLPACY, is to be dosr,aned to provide cost
effective ,support for the produotion by up to 3

l
rogramn,ers of programs, whose length is up to 5000
ines of source text. TOOLPACK may be less Mac-
tive in supporcWS larger projects.

3. TOOLPACK is to be designed to ,rovido cost
effective support for thenalysis and transport-
ing of pro rams whose length is u to 10,00P lines
of source taxt, TOOLPACK may bs less effective in
supporting larger projects.

4. TOOLPACK will support users working in either
batch or interactive mode, but may offer stronger
more tiloxible support to interactive users.

A. Overvtew

A primary motivate 2 goal of tine TOOLPACK
integrated tool collection design is that user
suppport be uuppplied in se direct and painleae a
faattion as I , ,fessible. In particular, thedesign
attemftll Yo relieve thu user of having to under-
stand this natures and idiosyncrasies of individual
TOOLPAUX tools. It also relieves the user c: the
burden of having to combine or coordinate those
tools. Instead the design encourager the user to
express his needs in terms of the requirements of
his own software job. The TOOLPACK pup port system
Is designed to then ascertain which tools are
nocessar , Properly configure those tools. and

Y
resenthe results of using the tools to the odor
n a convenient form.

The, design encouraBBas the user to think of TOOL-
PACK as an anergatic, reasonably bright assistant
capable of snowarino questions performing menial

but onerous tasks and storing a d retrieving
important bodies of data. The aim oqt this is to
make humans more effective in creating, document-
ing, testing and verifying program code,

In order to reach this view, the user should think
of TOOLPACK as a vehicle for astabliohing And
maintaining a file system containing all informa-
tion important to the user, and using that file
system to both furnish input to needed tools and
capture the output of those teals. Clearly, such
a file system is potontiall y quite large an is to
contain a diversity of stored entities+ Source
code modules would certainly reside in the file
system but so would such more arcane entities as
token Mete end f^awgraph annotstionsr In order
to koep HOLPACK a user image as straightforward
ad possible the design proposes that most file
System management be done automaticallyy and inter-
nally to the TOOLPACK aystem, out of the si ht and
Sphere of responsibility of rho user, t user
may create, delete, alter and rename these enti-
ties, The user may, however, also manipulate
these entities with a set of commands which salac-
tivel yy and automatically configure and actuate the
TOOLPACK tool ensemble. The commands are designed
to be easy to understand and use. They borrow
heavily on the terminolog y used by programmers in
creating and testing code, and conceal the some-
times considerable tool mechanisms needed to
effect the results desired by tha user.

18

A. roo r visible Fit* system entities

In ardor to enecura1ta And facll tsto the preceding
view of TO1}LPACK, the system will support the nom»
ing, storxte, retrieval, editinS and manipulation
at the following elsesas of Antttt:4A, which should
be tuosidered to be the bast . ob joc:tr ofTOOLPACK:
I. Program units:

A ioilL1 1,1 +-:: program unit (K,;) Is the same as aFor-
Iran grogram unit, except that Tf IOLP.WX will
rc yui.e .. number of representations rat the program
1:nit other than the source coda (e.g., the
torrcopundi otg token list and parse trst .
I
	 execution Unitst

Any set of TOOLPACK program units which the user
choose# rn dostgnate can be grouped Into a TOOT.,
PACK execution unit (^C).

I. Test Data Collactlons:

A TiOLPA" teat data collation (TDC) is A colter-
tion of test data sets to be used in exercising
one or more TOOLPACK execution units,

4. Options Packets;

A T!k1LPACK options prckat (OP) Is it set of direc-
tives specifying which of the many snticilaad
options Are to be in force for a particular nvo-
eation of a particular TwIXACK tool.

G. The TOOLPACK Command Language

Thr axed syt,tax for the TOOLPACK integrated tool
collection command language has not been

established and is still under study. currently
we are in a posikion, however, to specify much o
the semantic content of 	

l.
 this language.

The proposed TOOLPACK command act rooms to divide
logically into four :rta: file system management
roemands, edit (synthesis) commands, tool sp+lica-
tion (analysis) commands, and perusal command a.

1. File System Manipulation

These will facilitate the creation, deletion,
renaming and general maintenance of TOOLPACK
file$.

2. Edit (synthesis)

Those commands would summon special purpose edi-
tors designed to facilitate the manipulation,
examination and alteration of the contents of the
various TOOLPACK file system entities.

3. Tool Invocation (Analysis)

These commands invoke the functions which Ara At
the heart of the reason for the TOOLPACK project -
nxmoly the fACilitation of documentation, testing,
verification, transportation, and source program
entry. Consequently, great pains are being taken
to mAke them easy to understand and use. In an
importantsense the rest of the TOOLPACK command
Ianguage has $ean designed sa as to make these
tool 1ncucatic,.a straightforward.

FORMAT

Invocation of this command causes a namedrogram
unit to ba taken as input to the TOOLPACK format-
ting tool.

b. STRUCTURE

Invocation of this command causes a named program
unit to be taken as input to 00 TOOLPACK strucµ
turer.

c, ANALYZE

Invocation of this command results in the static
analysis of the entity named. If the entityy is a
pro rim unit, then single unit analysis will be

thee noreachprogramm
	 entity
swill ex

bcutian
alyiecl

individually and Integration analysis will also be
performed.

An options Packet may ba :pacified by the user.
This packet will arable the user to Specify a
level of thorougknoss which will aura analysis to
go as far as the lexical level the s ntactir
level, the static semantic level. or the do a flow
lavol. T f this spec ticstion is omitted, the
T(H)LPACK system will select a default option
(probably ful). data flow analysis).

The res!ilts of this analysis will be placed into
an entity-attribute-relational data base which
will then be available for perusal by a browsing
subsyystem or for use as the basis for report son-
aratlon tool: who:e goal would be the creation of
Superior documentation.

d. F:X CUTK TEST

Invocation of this command results >r the dynamic
test execution of a collection of test data sets
by a specified execution unit.	

re
The test data sets

comprising he test data collection a 	 fed into
the executionmodule derived from the execution
unit one At a time, with the results of each exe-
cution being used to build an execution history
data base. This data bA$e would be used to supply
answers

for
user-posed question: as well as reports

needed for documentation purposes.

The user may optionally specify a test options

whichtofwthe numerous execution monitoring optionss
are to be am loved during the test runs. The
powar and flax hility of the d yYnamic test monitor-
in system is to be considerAblo (see (Faib 81)),
This is deemed to be necessary, but 1$ also con-
sidered to be a Serious problem in that a casual,
ca r novice user may be intimidated by the variety
of available choices. Ilene* it is proposed that a
act of standard Toot Optior :Packets (TOP s) be
groparod by the builders of thrs dynamic test moni-
toring a ystem and stored permanently in the TOOL-
PACK file avotsm. Usare could select from among
these tailor- them to individual needs by usir,^
the 'SOP editor, or create their own TO °s from
scratch. One of the standard TOP°s would be con-
figured to be the default TOP enabling the user
to do useful dyynamic testing withou t neading to
specify any TOP.

4 Perusal

TOOLPACK will ultimately contain tools to facili-
tate the examination of the various entities in
the TOOLPACK file system. This abstract has
already mentioned various aeclat purpose editors,
part o f whose purpose will he to facilitate exami-
nation of the user-named file lystem entities

i
c,g the PU source text El!°a, OP's and TDC°$.
different sort of tool is desirable for use in

pperusing the output of the static analysis and
dynaml4. testing tools. As AlrcAdy rioted these
tools will produce As output sets of analytic and
diagnostic packets which are most profitably
viewed as relational data bases. Toole Cor effec-
tively browsing these data bases could be specifi-
cally constructed to efficiently scan these data
bASos for Answers to expected queries. Existing
text editors will probably serve as primttive
forRrunners of these tools in aarly ralcaao$ of
TV,14131ACK.

D. I:aplam::ntation Plana and Scha.iula

The TOOLPACK integrated tool collection is
achoduled for public release in January, 483.
Preliminary releases to test sites will takeplace

i
durin 1982. Individual tools will he made avail-
able ntermittently.

REFERENCES

[Path 81)	 J. Felber, R. N. Taylor, L. J.
Osterwail "Nowton--A Dynamic Pro-
rem Anal ysis Tool Capabili ies

S ppocificati^on," Tech, ReportCU^
CS-200-81 Dept, of Computer Sci-
enee, University of Colo., Boulder,
Colo.

'	 19

loot# all	 L. J. Oaterweil, "Drg(t TOOLPACK
Architectural	 Deal no	 technical
memorandum , Vn

p
ipv
v
^a
p
rsit of CColorado

encpeBoulM,dir

La

cti i961; olvalinblor Bran

Notional Lab., AegOnne^,i
Iii, Argonne

*This work surted by N8f grant number
MOSS0000.17 and DOE grant number DE-AG02*-SOER10718.

SonooL 8o"
A METHODOLOGY AND

INTEGRATED COLLECTION OF TOOLS
FOR SOFTWARE MANAGEMENT, DEVELOPMENT,

AND MAINTENANCE

by

EDWARD MEHLSCHAU
SOFTOOL CORPORATION
340 SOUTH KELLOGG AVE,
GOLETA, CALIF. 93117

SOFTOOL 80" is a methodology and an integrated
collection of tools that addresses the entire
software development process. Release I of
SOFTOOL Be addressee the programming phase of
software development 'that iv, the portion of the
software development life cycle that begins after
a detailed design document has born generated and
continues to the point whero a eomvlete, deliver-
able software product has been produced).
Forthcoming releases of SOFTOOL 80 address the
remaining portions of the software l[fe cycle.
This paper outlines a subset of SOFTOOL 80"
Release I that provides a powerful environment
for the development of mathematical software,

SELECTED TOOLS

The AUDITOR:

The AUDITOR is a software product that automati-
cally documents Fortran programs for deviations
from a user-defined standard, poor programming
practices, and non-portable code.

The American National Standards Institute (ANSI)
definition of Fortran is used by the AUDITOR as
baseline or default standard. A user can defin
any standard desired by instructing the AUDITOR
to allow extensions to the ANSI definition. The
AUDITOR talcorporatos a powerful compile-time
diagnostic capability equal or superior to that
of the beat commercial compilers. The messages
generated can be classified into six categories;

1. Error Messages -- definite violations of
the standard.

2. Warning Messages -- potential violations
of the standard.

3. Portability Messages -- program
transferability problems.

4. DgCUMant4tion Messages 	 progr'.a
documentation.

S^ Confirmation Me#sa ;es	 COWlattoa of
analysis indication.

6. System Messages •- internal system
information.

rho INSTRUMENTERSs

Under S'' ,FTOOL Se, Fortran programs are instru-
mented for three different purposssa tracing,
testing, and optimization, The TRACING INSTRUMENTERS
generate profiles that indicate the lavule (i.e.,
routinis statement) and the path traversed by the
program flow of control during execution, The
TESTING INSTRUMENTERS generate profiles that
indicate the coverage and effectiveptos of test
runs. The OPTIMIIATION INSTRUMENT08 V;anl'rate
profiles that pinpoint the most 'tiu,u ^ consuming
.«»tions of code in a aystam,

The INTERFACE DOCUMENTER:

The purpose of the INTERFACE DOCUMENTER it to
generate clear. up-t,. dats, and complete do,u-
mentation of all interfaces between object modules.
Reports produced includes

1. A complete cross reference of all symbols
defined or referenced in the object
modules which were input to the tool.

2, A list of all symbols referenced but
not included in the modules input to
the tool for analysis,

3. A list of all symbols not referenced by
any of the modules procnawed by the tool.,

4. A summary of the interconnections and the
lengths of all the object modules processed
by the, tool.

S. A summary of all recursion that occured in
the modules input to the tool,

6. Two optional reports known as explosion
and implosion. Explosion displays the
hierarchical structure of all symbols
referenced, directly or indirectly, by a
user specified symbol. In other words,
explosion displays the subsystem referenced
by the specified symbol, Implosion, on the
other hand, shows the hierarchical, structure
of all symbols that reference the given
symbol,

The PRODUCTIVITY LIBRARY.

The PRODUCTIVITY LIBRARY allows the user to
Interactively define high level data structures
and provides a set of primitives for manipulating
and searching the defined data structures from
the user program. Range checking and dynamic
flow analysis can also be specified for the user
defined data structures. With range checking the
user may specify values that data structure items
are allowed to assume. Dynamic flow analysis
allows the user to specify allowable flow transi-
tions for a given item in a data structure.

20

;{ .	 _	 _	 ,^sa_	 __	 rte•	 a

SUMMARY

The objective of this paper is to outline a subset
of the tools available under LOPTOOL 80"
Release 1. These cools act as a fine sieve,

forming an environment for the development of
mathematical software that eliminates a large
class of potential problems. Theae problems
would otherwise manifest themselves at a hater
time as "bugs".

The tools available ut;wer SOPTOOL 80" Ralva" I
that were not described in this paper Include;

short-hand language

• structured langucge

source codw: documenters

• dynamic memory managers

• tutoriala

A &,pport Environment for Software Tools
Fred T. Krogh and W. Van Snyder

Jet Propulsion Laboratory

1. Introduction.

We summarize here a support environment useful
for the development of software tools, described
more fully in [1]. There are five components:
1/0 Primitives, filing system, working storage
manager, symbol table manager and lexer / par-
ser. The working storage manager, filing system
and I/O primitives collaborate to provide a seg-
mented virtually addressable storage access
method similar to the Multics environment: a
user program can

"directly address just those items it
needs from the extensive on-fine data
files, so that e.ch reference to such
items can (in the logical sense) be a
single operation. The actual reference
need not be preceded by an input/output
system request to input a (partial copy of
the) file, nor be followed by an input /
output system request to cutput the alter-
ed information to its original location."

[2]

2. I/O Primitives.

The primary function of the 1/0 primitives is to
provide a transportable and efficient interface
to the idiosyncrasies of various operating sys-
tems. Software tools require services provided
by sequential character input and .output devices
such as keyboards and printers, and sequential
and direct access storage devices.

To provide efficiency, access to sequential

storage devices is asynchronous and double buf-
fered; the details of the provision of such ef-
ficiency are hidden inside the primitives charg-
ed with providing such functions. Operating
system services providing synchronous and asyn-
chronous access to direct access storage devi-
ces, and services required for synchronization
of the primitives with operation of the devices
are used to provide efficient direct access.

3,	 Filing System.

The filing system is responsible for storing and
organizing representations of program units, and
tables required by higher level tools. The fil-
ing system allows the user to express relations
between objects. The user, for example, is al-
lowed (encouraged!) to declare that a program
consists of a related collection of subprograms,
etc. The operating environment of the filing
system is provided by the I/O primitives and the
working storage manager.

A simple model of the filing system is a road
map (of one way roads). An object is accessed
by specifying an ordered list of "roads" to be
traversed to proceed from a standard starting
place to the desired object. A collection of
objects is denoted by a path to some part of the
road map from which the collection, but only the
collection, may be reached. The road map is
represented s-. a directed graph. Roads are rep-
resented by edges in the graph. Intersections
of roads, and objects in the filing system, are
represented by vertices in the graph.

4.	 Working Storage Man ager.

The working storage manager operates in the en-
vironment provided by the I/O primitives and the
filing system, and in turn provides important
features of the environment needed by those
tools. The primary function of the working
storage manager is to provide space to other
tools, and recover that space when it is no
longer needed.	 Any significant restriction of
the amount of space available to a high level
tool is not acceptable. The working storage
manager is therefore also responsible for
providing the illusion of unlimited storage
capacity.

Providing the illusion of unlimited storage cap-
acity is usually accomplished by the use of a
heirarchical storage system, where frequently
used data are retained in main storage, and in-
frequently used data are retained on secondary
storage. There is a correspondence between ad-
dressing spaces managed by the working storage
manager, and objects in the filing system. The
filing system is used for ''the secondary storage
medium required to provide the illusion of un-
limited storage capacity. In return, informa-
tion in the filing system is accessed as though
it were stored in the main memory, rather than

by the direct use of I/O primitives. This mech-
anism imposes very little overhead.

21

S. Syinqui Tablo Manager.

The symbol table is logically divided into three
parts: a local symbol table for each program
unit, describing local characteristics of var-
iables, constants, labels, co ►vtrol structtir'!s
and other objects; a global syrvol sable frm
va;;h program unit and collection of program
units describing interface information for each
program unit and the relations between callin g
and called suhprocirams; and a language symbol
table describing such objects as keywords, in-
trinsic functions, anti spelled operators.

Access to objects in the symbol tables is prc.vi-
ded by functions, which should be expanded in
line rather than called, These functions assloto

the abject to be accessed is fit grain memory . all
illusion provided by the working storage manager.

6 1	texerft'arser,

The lexer and parser are Usually assumed to be
separate. tools. But a Fortran lexer may be made
significantly simpler if the parser i, available
to give it advice, The integration of the lexer
and parser does not impose an unbearable storage
penalty on applications needing only lexical

analyst S.

The lexer f parlor is controlled by tables,
stored in the standard filing system, and acces-
sed by the working storage manager. This allows
one lexer ! parser to accept several dialects of
Fortran, preprocessor dialects, or commands, tie-
pending on the tables used to control its opera-
tion.

All input to and nutput from the lexer I parser
is accomplished by the working storage manager.
If the source text is not an object in the fil-
ing system, the working storage manager provides
the illusion that it is. At the conclusion of
analysis, the source text may be retained in the
filing system If desired, even if it was not
originally an object in the filing system. All
other products of the analysis may also be stor-
ed in the filing system as desired,

7. References.

1. Fred T, Krogh, W. Van Snyder, Section 366
Computing Memorandum 476, Jet propulsion
Laboratory (May 1981).

2,	 Elliott 1. Organick, "Tire Multics Systems
An Examination of its Structure," MIT
Press, Cambridge, MA (1972) p 1.

This wort; represents the results of one phase of
research carried out at the Jet propulsion
Laboratory, California Institute of Technolog;1,
under contract No. NAS 7-100, sponsored by the
National Aeronautics and Space Administration.

A Method fur Constructing Preprocessors

Daniel l . Boley, William l), tiropp, and
Rf arvin Wl hcinler

Many provranuning and conlnland lanrtnares provide
only limited featu ► cs and paiurul user • inteil'aces (c.g.
Fortran and XI.). PleplOCes<ulrs ttte ploslan ►s that can
cstcnd and rehn-mat such ►an";tlages usint: translation
tcelinignes akin to contilile ►s. 'Chey can be ialtlable Loots
in the dcvehglmcnt of nlathelliativitl sotlw;uc. Ihhw^evcr,

finwl ► g a 1lreprocosor cull be a Lillie Constuning lack.

We plosent a method till , quickly consitueting ;1
l4clIvOtT"Nt lr troth a i'tn[tral 00"Cl'iption ot ' tlle hlrll',11;t1?e to
tie translated. We first dl% uss the properties it) expect
from o mood prellrot •essor. NV`e then descubc how we
used txisUni; teiJillittues to achieve these goats. 	 We

seprent in c`<;onpIv of n I'OURAts pteilloce, ul
Consti`licteti by owl' systeill.

A Imud picllrocessol should have the Itillotttill', ptopcltics.
It must be easy to writs the preprocessor correctly,

and it should perfi lrnl reasorwbiy etl'itientty.
Frith lecovel4 and ieportint should 110 iti;nt of the

Rinnalism Miele possshle, not just :ill addenduru.
It should i'e case to Inodifi t're lant-uae ' ac'ceptetl by

the preplocessor.
'Ill re autst be the capability it) escape back to the

(lase lanl'uage.
•	 file I1telltocessor will have it) be portable.

I he F'Cliv ► awd output code Should be rcasonabiy
efricient and readable.

l'o achleve these goals, we vGtke the Iolhhwing
n'.onlendatious. First. a pseudo-c ullpiier approach
should be taken. !his provides a nodular rraalework
employing a :;canner module to recur elite input tokens or
symbois, a paowr nlodlde to re,col,nire the syntux or the
kinguage, a semantic package to pencrate tilt desu-cd
output, told an crral parkagc to hamlet error recovel'y.

SCetrlkl, the input hu►guage should be fill°in,llly specified
using a syntax Pranlmar with attached seln;nite actions.
This provides a concise, easily nlodillable description or
the language which fits nicely into the pseudo-Compiler
approach.

Third, the above elloices along, with tilt type of cnll-
abilitics usually desired imply that the must diilicult parts
of the preprocessor oan be writtell using well-tstablished
tutus and techniques.

Fim1Uy, ust the Simplest appi,oach possible. Unless
available as a package, a niore powei'I.ul technique may
yield very little advnlltage.

As an example ofnli actual implementation of these ideas
we present the choices tuade for our implementation of nn
extended Rntror preprocessor far rorti-an.

22

scnnnet:
Our scanner is "hand-built". We considered using it
scalier generator package to nutot inticaily geticrate a
scanner routine; however, it suitable package wits not
easily available. Since most preprocessor scanners are
very simple, It Is often trite that n 1--d-built version is,
sufficient unit call be constructed quickly.
i'arser
A table-driven parser was bufit. This kind of passer Is
small, fast, and allows easy modiflcation of the Input
lttanimti , Of the two mnin techniques hi use (I]. and
1%eve chose the less powerlld 1,1. one. The reasons Mr
this were that all Ll. purser is caster to create mid snakes
certain types of error recovery easier. The Am that this
technique cannot handle as large a class of languages its
Lit was of no rent concern since it call the type of
input Inngtinges that most preprocessors are oriented
towards.
Semantic package,
`Phis section of the prcprocessor was agnin hared-tailored
to the application, This is prinrnrily becausa eve know of
no practical le(}hnique which allows a formalization of this
area, h mvin,er, by using it 	 of gninintnr attached
semantic fictions, it is possibl to divide tilt 	 tasks of lire
semantic package into sum p, inairngenble pieces,
terror package,,
By using an 1_1, passing technique It Is possible to
automatically detect, report, mud recover il'c)rn syntactic
errors In an input progiaitl, Unfiu'tururell, seniaatie
errors in it progmin must stilt be hurdled in nn ad-hoc
Rtshion (tins is also true far nn Lit parser),

]it 	 our basic attitude was to follow appseudo-
compiler Approach usirw wha tever tools or techniques
were nvaslable or cosy to implen ►ent,

Currently we have all 	 version of the original
ttatt'or prepmeessor of Kernighantad Plauger
impleniented using our approach. The fwuat version will
Include the following extensions;

data structures, forentost of which are records and
variuble•orisin arrays.

cut output code format that is as readable its possible.
• varpous special operators, including army-based
operators,

execution little profiler to allow easy invocation of
tinting statements.

fiewforniat 1/0,
Some other preprocessors that could be constructed with
this method are,.

a prepirieessor for the IBM VM operating system
comn ► nnd lansilase.
. a 111V langtinge oil top of Fo!.nin, For example, this
Inngunge could be oriented towards convenient
specification of inesh refinement programs,

all array langaage, perhaps oriented toward
optimizing code produced for to specific vector tmaehine,
(Prelimcessed constructs allow rot , polities insertion of
assembly- level language.)

it frorit•end interface for large madiernatient software
packages.

A Mutation Analysis of Numerical Sottware

M.A.tlennell, t.a.ttiddell and M.R.Woodward
Dept. Computational & Statistical Science

Univeresity of Liverpool
Liverpool L69 3OX 0 U.X.

one convincing way to demonstrate that a
to generate sy atically al.

ins
e possibilition

and then demonstrate that the teat data
can detect them allt A more realistic
approach is advocated by he Millo Ill who
han constrycted an interpretive system to
generatetKany crimple errova, e.g. errors
in individual, lexemos, in such a way that
cacti error in effectively inserted in Its
own copy ofthe original program. These
copies with needed errors are known an
"mutant programs". The idea is then to
construct test data which kills all the
mutant programs by showing incorrect output
data. Mutants which are equivalent to the
original programs will, of course, remain
live.

There are a number of problems with this
approach, one of which in. the enormous
number of mutnnts which might be generated.
For instance, for a thirty line program,
fifteen hundred mutants is a realistic
possibility andthe number of mutants
grows roughly with the square of the length
of the program. Therefore, a specialised
system (such as that of (ii) is required
for practical UPC.

However, there are various subsets of
mutants, not necessarily exclusive, wh,:ah
may be of particular interest and for
these subsets the number of generated
mutants may be manageable in a conventional
compile and run system. The ituthors have
built a mutation system which utilises a
standard editor together with compilers
and run-time systems for FORTRAN, COBOL
and ALCOL66.

In this paper we describe our experiences
using the FORTRAN version of the mutation
system to analyse the adequacy of time test
data sets for a number of numerical. routines.
We have analysed three subsets of mutants.
The first subset is that arising from the
relational operators. F'.rom a statistical
analysis Ill of numerical software we know
that:, on avocago, there will be eight
relational orators per routine, and,
since each relational operator can be
replaced by five alternative relational,
oporatorn, we obtain a total of about
forty mutants per routine. The subset is
therefore manageable and is also of interest,
since testing the predicates is one of
the more difficult aspects of path testing,
particularly if the predicates are complex.

23

Tile test data adequacy of (4) is defined
an

total numatr o • mutants.

we have measured the teat data adequat'y for
a number of NAG, routines and then average
valueof Al for thong routines is 0.66
(with a standard deviation of 0.22).
Unfortunately it is extremely difficult to
distinguish the equivalent programs from
the remaining live mutants, so the adequAcy
of the rest data may too substantially
higher than this measure indicates, Our
results show that conventional test data,
which dons not achieve particularly good
coverage in terms of ,sa y ► the TER metrics
of 1310 neverthelass does tend to detect
simple errors in then relational operators.

The second subset in the control flow
mutants. mutants are craatod which affect
the flow of control., such entitieoi are:

a) negating the raIntional operators
and logical values

b) replacing labels in cacti computed
GOTO	 and	 arithmetic IF by
pormutations of the other labels

c) incrQnonting the upper index of vii?
loops.

Trost data to detect these errors will in
general, need to achieve coverage ratios
close to TER2 r 1.0, although TER1 K 1.0
does not need to be satisfied. This is flue
to the logical It's, mince# for example,
only one leg of an IV-TIMN-ELSL construct
would nand to he executed to detect a
negated predicate. The results for this
subatt yield an average A2 ratio of 0.57
(standard, deviation 0.217) f.,:, the routines
tested. A more detailed :Inspection of tar*
reos"Itsa, however, reveal$ tint this ratio
is boosted by a high percentage of dread
mutants in category a) (averaging 60%)
compared to the relatively ;few percentage$
of dead mutants in categories b) and c)
(averaging about 40% in each case). hence,
these results indicate that, on the~ whole,
errors in the arithmetic Us, computed

GOTOS and nQ 'loops are not cosily found
with conventional test data scats.

Thethird seat are the relational opetrators
and arithmetic Ira which determine the
Inclusive boundaries of then input data
domains.. These tire the relational operators
involving equality, I. e~. - EQ. , ' NE., . LE-t

.GR., +and also the zero case of Ile
arithmetic IV4 Results obtained for this
subset lead to an average A3 ratio of 0.64
(standard deviation 0.32) for the rout:vies
tested.	 Again	 the	 relatively high
percentage of dead mutants in the
° ,̂ lational operators. (approximately 65%)
dominate$ the percentage of deaki mutant4 in
the arithmetic IF$ (approximately 26g).This
indicates that providing test data for
these domain boundaries is not a common
occurrence..

from this work we can conclude that a
limited mutation analyst, concentrating on
particular subaets which demonstrate a
specific testing strategy, is a worthwhile
activ t-y. The cost of the exercise, being
of ''ha order of fifty runs per numerical
routine, Is acceptable, although it must be
noted thAL this cost riots if the initial
test data adequacy is low. Our experiments
show that when mutants aredead the
differences between correct and incorrect
output tend to appear in the first 30% of
the output. This possibly shows that
tenter* t'Ond to put $pea al cases and other
tricky data first and more general cases
last. The effect ► however, is beneftcial to
on automatic comparator. with the provision
of a speciallaed mutation system d dramatic
cost raduction can be obtained or a wider
class of mutant be considered.

(11 De	 Millo, R+A., L Pton, R.J.	
and

3ayward, F.G.,
taints oil test data selection: help for
the practicing programmer.
Computer,vol	 ll,No.4,pp.34-41.April
1974.

(2) 11onnell, M.A. and Prudom, A.,
A Static Analysis of the NAG Library.
1HER	 Tr nss ctiona	 on	 Software
4n9tneering, Vol 6, No. 4, pp.329-W ,
July 1900.

('3) Woodward, M.1t. , liedley, D. and Htnnell,

ir.xperience with Path	 Analysis	 and
Testing of Programs.
ISRRtrans«nctionn	 on	 Software
Eng i ncrea'ring, Vol G, No. 3, pp.278-206,
may 1900.

(4) Burns, J.E.,
Stability of Test Data From Program
Mutation
Digest for the workshop on Software
Testing	 &	 Ttot	 documentation,
Ft-Lauderdale, Florida, Dec.	 10-20,
i97S.

24

A MIRSt ON 4ATNfMATICAL SOVTWARi

A. K. Cline

Vniversity of Texas at Austin

puring the four academic years ending lit hill, a one
semester course in mathematical software construction
has beer, offered by the Comoutec Sciences Department
at the Vil l versity of Texas at .Austin. Although ori g

-inally offered at a graduate level., a modified version
lane been offered three times for undergrad;ante students.
Those electing the class include students interested
in scientific programming as a profession as well as
mathematics, engineering, and science students who
seek to improve their programming skills.

Purposet
The course purposes are to aquaint students with
advanced programming topics and the theor y of quality
software construction and to allow students to gain
practical experience working on agroup project
involving organizing, coding, and tenting a package
or mathematical software subprograms,

Prerequisite,
Students are first reouired to have an interest in
programming for technical applications, A basic
knowledge of FORTRAN in assumed as well as mathe-
matics at the calculus level. A course in numerical
mothods is not required but ma y be so in the future
since many examples in the lectures oil
mothodologv raaquiro familiarity with basic numerical
algorithms such as Gaussian elimination and linear
interpolation.

Text!
The lecture material In the course lin g boon obtained
from the author's experience and follows no puhl:inhed
text, however, several short paperbacks are recom-
mended for collateral roadingt

Ledgard, H. F,, ProA ra-mmin g Proverbs for FORTRAN
Programmers, Hayden, 1975,:

Kroitzharg, C. A., slid B. Shnelderman, The Elements.
of FORTRAN St- vle, Harcourt, brace, Javanovich,
1972.

Fo "In t t
Until the final several weeks of the semester, the
class meets three times per week for lectures, The
lectures cover prograamiing methodology and background
material for the group project. These topics are
described in granter detail below. Onl y occasional
lectures are given at the end of the course as students
complete their projects and meet individually or in
„roues with the instructor for criticism of their work.

Prior to the formation of the group, a short program-
tiling assignment is given to the class. This assign-
ment has been the coding and tenting of a simple
module Implementing a search in an ordered array.
The algorithm suggested is a variant on binary search
employing inverse linear interpolation. The purpose
of this initial project is to gain experience oil
local system (many students are new to file usage,
editors, and interactive computing) and to give some
indication of the students' relative programming

capabilitloo. Another Important indication la how
energetic (alternativel y * how procrastinating) each
student performs the assignment. Although a grade
on tilts assignment is rut used in a final course
grade determination, the students' grades as aaell
as the length of time required to compieto the assign-
went are made public, Students thell or ganize them-
selves into three person groups. The performance on
the first assignment lane proved to he a ver• a:ood
predictor of a student's performance on the, group
project, and with tilts knowledgo and the ohEllt y to
foist their own groups, we have attempted to minimire
the common problem in group prof ectst all
of attitude or abilities causes all 	 tit
work fond.

The group project used tit 	 four offerings of the
course lin g been that of interpolating +!nta specified
oil an irregular ,,rid its the plane. The packages
include modules to form it triangulation of the points
In the plane nut modules for interpolation based
upon this triangulation. Several simplifying assump-
tions are made to avoid overconcorn with mathematical
details of the algorithm as opposed to the software
Implementation, Those assumptions Include Ignoring
the poasibility of any colinoarity of the points in
the plane and, '.ar the purpose of the smooth inter-
polation, that first partail derivative values are
available from the user ass well tin function values.
This project provides a good mix of mathematical
and computeE science problems.

A purpose of the course being to gain experience in
software construction, and not necessarily the ruscarch
level discovery of new algorithms; students taro given
a design of th4 package and brief descriptions or
the algorithms. It isfelt that tilts simulates well
the situation in which it programmer is implementing
the theory developed by another. Tt also allows
lecturen and class discussions eta the algorithms
with respect to their qualities.

A final examination is given with the Intention of
testing the lecture material oil 	 methodo-
logy which was not applied lit 	 project.

Lecture Topics;
initially it 	 of the usage of the local system
is presented and a discussion of the proioct and
the algorithms for its modules, The vocabulary of
quality of software is then described; applicability,
usability, efficiency , clarity, portability, modifi-
ability , modularity , and flexability . With oath
characteristic examples are given and the Importance
(or unimpurtance) of problem areas is considered.
The area of portability is explored in detail. The
methodology for the testing of software and the design
of software receive several lectures apiece (and are
applied co the project), Several lectures oil
programming practices (o, g . decomposition of workopace,
portable handling of mathematical constants, actions in
error situations, timing of .code) are given. Finally,
several miscellaneous topico are covered: a brief
introduction to scientific computer gt ,np pica including
a.he use of the WAR graphics package, various approaches

 software documentation, and the 1977 FORTRAN standard.

25

MOVING SOFTWARE SYSTEMS TO A MINICOMPUTER

G. CIONI, A. MIOLA, A. TRUFFI
lstituto di Analisi dei S{itemi ed Informatica

Via Buonarroti 12, 00185 ROMA (ITALY)

In the last few ,years a well shaped phenomenon has
been observed in the computer field: the cost of soft-
ware production and maintenance is very high respect
to the total cost of a computing system and it is still
,.rowing during this time.
Therefore it seems to be approrpiate to use all the
available software as much as possible respect to its
portability, modularity and documentation. At the same
time the new software is going to be designed and im-
plemented according to the software engineering rules
[1,21.
Tito use of a minicomputer, together with the decreasing
use of time-sharing system on large computers, quite
often presents the need to move software systems from
a medium-large computer to a minicomputer.
This operation involves quite expensive transformations
on the available software, while the quality of the
final result, as far as the efficiency is eoncerned,is
not foreseen.
In order to gain as :ouch confidence ae possible in the
transfering process an "a priori" analysis is necessary
and helpfull.
This paper sci.ua'lly presents the design and the imple-
mentation of procedures which supply informations on
how to move software systems to a given minicomputer.
We will refer in this paper to software system organized
as a library of programs, where a single program may
also use other programs of the library as its subpro-
grams, We call this organization System of Programs (SP).
Generally a SP can also be seen as a collection of se-
veral moduli, each of which is itself a set of programs
belonging to the library. If a modulus accomplishes a
specific, well defined function, it is a subsystem of
the given SP. We call this modulus Independent Subsystem
(is).
Therefore if a SP is represented as a tree an IS is a
subtree of the given tree.
If the SP has been designed to be quite flexible and
portable there is the possibility for the user to define
the dimensions of the current data. Therefore a variable

storage space is associated to each SP, together with
a fixed storage Apace which is used for the local va-
riab ­̀. of this lifferent programs. We denote the va-
riabiC	 ;.' by SPACE and the fixed space by LOCAL.
In the % lowing we will refer to SP implemented in
a programming language that uses static memory al-
location. For instance FORTRAN.
Examples of $P to be considered are the symbolic and
algebraic computation system SAC-1 [4,31 and the
Harwell Subroutines Library 171. Both these systems
have been implemented in standard FORTRAN, they are
portable, modular and very well documented,
In order to make a SP running on A computer which
has less memory respect to the computer which the
given SP was built for, one of the following techni-
ques could be used;
- overlay of programs
- spliting of the SP into several IS
- reduction of the maximum size for SPACE
- programs segmentation.

Actually these techniques may also be used all to-
gether. or in any combination.
For each SP we have ro figure out the total amount
of words

P(SP) n COD(SP)+LOCAL(SP)+SPi.CE(SP)

to put our SP on the Riven computer, where COD(SP)
is the number of words of the object code of SP,
The quantity FIX(SP) - COD(SP)+LOCAL(SP) is fixed
for the given SP, while SPACE(SP) is a variable
quantity.
If we want use an overlay techniques we also need
the tree structure representing all the calling re-
lations between subroutines of SP, and again the total
amount of words.
In general if M is the size of the given computer
memory available to the SP we must check the quantity

D - M - FIX(SlJ

In order to get all the need informations to test,we
can certainly use the compiler of the SP Implementa-
tion language, for instance FORTRAN, available on
the given computer.
An automatic procedure has been designed to accomplish
all the testa already described.

BIBLIOGRAPHY

(1) BAUER F.L. Editor; Advanced Course of Software
»:.gineerirg, Lecture notes in Economics and Me-
thematical Systems, Springer-Verlag (1972).

(21 WIRTH N.: Systematic Programming. An Introduc-
tion, Prentice-Hall (1973).

(31 CIONI G., MIOLA A,, TOZZOLI M.: Symbolic and
Algebraic Computation Systems on Minicomputers,
Proceedings of DECUS EUROPE Symposium (1980).

(41 COLLINS G.E.; The SAC-1 System, An Introduction.
and Survey, Proc. of SYMSAM II, ACM, Los Angeles
(1971).

(51 ECKHOUSE R,il.: Minicomputers Systems: Organiza-
tion and Programming, Prentice-Hall, N.Y „ (1975).

[61 CRIES D.: Principles of Compiler Design, Wiley,
N.Y. (1971).

(7) HARWELL SUBROUTINES LIBRARY: A Catalogue of Sub-
routines, A.E.R.E. R7477 Supplements n. 1-2
(1970).

181 JENSEN J., WIRTH N., PASCAL: User Manual and
Report, Springer-Verlag (1975).

(91 KNUTH D.E.: The Art of Computer Programming.,
Fundamental AZgorithms, Vol. I, Addison Wesley
(1969).

(101 DONOVAN J.J., MADNICK S.E.: Operating Systems,
Ala- GRAW HILL (Z9?4).

[111 WEITZMANN C.; Xinicomputer Systems. Structure
Implementation and Application, Prentice-Hall,
N.Y. (1974).

26

Tailoring Mathematical Software for the CRAY-1

David S. Dodson
John Gregg Lewis

William G. Poole, Jr.

Boeing Computer Services Company
Seattle, Washington

Any new computer brought into the stable of a major
computer complex offers special challenges to those
who are responsible for developing and maintaining
large mathematical software libraries. If these
libraries are expected to execute on several
different computers, as they usually are, they
should be portable. Unfortunately, portability is
often in conflict with efficiency: portability
dictates that code be common to several different
computers while efficiency suggests tailoring code
to the specifications of the individual computers.

The CRAY-4 computer is especially challenging in
terms of reconciling portability with efficiency.
Hardware vector arithmetic instructions must be
utilized to reap the benefits of highly efficient
code on the CRAY-1. Standard FORTRAN codes will
compile and execute on the CRAY-1 with little or no
modification. The FORTRAN com p iler, CFT, does an
admirable job of generating vector instructions for
certain vector DO loops. In order to approach the
maximum speed of the CRAY-1, it is necessary to
rewrite some of the FORTRAN code and, often, to use
the Cray Assembler Language (CAL). In order to
approach the maximum speed of the computer for some
problems, quite different algorithms must be
considered. However, in this paper we assume that
any required redesign has been accomplished.

If the code in question is modular, it is often
fairly easy to identify those parts which should be
specially coded. The CFT compiler can identify
which subroutines are requiring most of the CPU
time. But an astute programmer is needed to locate
the inner loops which are CPU-intensive and to
rewrite the FORTRAN codeor replace it with calls
to CAL-coded subroutines and functions. It is at
this stage that the code starts to take on a flavor
which is unique to the CRAY-1.

Boeing Computer Services offers mathematical
software libraries which are portable, modular and
efficient. The primary library, BCSLIB, is
available on at least 6 different mainframe
computers including the CRAY-1. Several additional

libraries also are maintained. V e authors are
involved in the development of library modules
which are specifically designed for the CRAY-1,

This paper contains an overview of their
experiences at tailoring mathematical software for
the CRAY-1.

There are two fundamental ideas for making
effective use of the CRAY-1 arithmetic hardware.
First, the operands and results in the innermost
loops should be structured into vectors and the
computations should be vector-vector or vector-
scalar operations such as adding two vectors or
multiplyi pg a vector by a scalar. Second, as many
aspossib're of the CRAY-l's independent functional
units should be brought to bear on the problem
simultaneously. At the FORTRAN level, little can
be done to promote a high level of concurrency.
Frequently, astounding performance gains can be
realized by using general purpose CAL-coded
routines such as the BLAS, or by developing
special-purpose CAL routines.

The first step in this project was to determine a
priority of tasks based on two considerations:
what basic numerical problems are most frequently
encountered in large-scale scientific computing,
and which problems are most amenable to CRAY-1
vectorizationl Our first efforts were oriented
toward linearalgebra problems because they are
often the innermost computations of many
mathematical models, Furthermore, they are
problems for which vector arithmetic instructions
can be readily utilized.

We have implemented and evaluated several
fundamental linear algebra subprograms, including
the BLAS package, several versions of LINPACK and
EISPACK, several versions of SPARSPAK, and we have
worked with several application codes which have
sparse matrix computations in their innermost
parts. For example, we considered four v,,,irsions of
LINPACK: the standard FORTRAN version from Argonne
Natiordl Laboratory, the version provided by Cray
Research Inc, with FORTRAN and some CAL, the
standard FORTRAN version but with calls to CAL BLAS
provided by Cray Research Inc. (CRI), acid the
standard FORTRAN version with calls to CAL BLAS
produced by ono of the authors. A brief summary of
our results follows.

o The CAL-coded versions of the real, single
precision BLAS, supplied by CRI as part of their
SCILIB scientific applications package, were
enhanced, yielding increases in execution speed of
10% to 25%. For example our version of SNRM2 can
execute at an asymptotic rate of 140 megaflops
compared to the SCILIB version of SNRM2 which
executes at an asymptotic rate of 113 megaflops.
For comparison a CFT-compiled version of SNRM2
achieves an asymptotic rate of about 36 megaflops.

27

0	 The SCILIB version of UNPACK differs from the
standard version in modifications of code which are
better suited for the FORTRAN compiler and in the
use of some CAL BLAS. The SCILIB version of SGEFA,

""
important UNPACK routine, executes in about one

third the time required by the standard FORTRAN
version. The version using locally developed BLAS
,outperforms the SCILIB version for matrices larger
than 2OOx2OO.

0	 Minor modifications to EISPACK to aid the CFT
vectorizer and to use the BLAS have dramatic
effects on some eigenvalue paths.	 Throughout
EISPACK, the execution rates are degraded
considerably for two-dimensional mat rice$ whose
leading dimension is a multipie of eight. 	 The
degradation is due to memory bank conflicts.

0	 Speedups of 10% to 1,00% over standard FORTRAN
codes can be ac0eved in sparse matrix
factorizations even with little or no
vectorization. We achieved such speedups both for
problems held in envel ope (variable band) format
and also for more general and compact storage
schemes. These improvements were achieved by
replacing some

of
the innermost loops of key

SPARSPAK routines with calls to CAL-coded routines.

In summary, the authors have found that significant
speedups can be achieved by tailoring mathematical
software to the CRAY-I's specifications. This can
be done without affecting the user's program by
changing only basic building block routines such as
those in the BLAS, UNPACK, EISPACK, SPARSPAK and
other frequently used packages. This approach also
achieves a high degree of portability since the
basic tools used all have portable FORTRAN
equivalents.

With any of the subprograms, say SUBPR (J) ,
there will be M(J) options that the user can
change. The author makes a numberao^ lint of
options for each subprogram, describing the fee-
turea and usage of each of them,

An Example to Illustrate the Ldeas

Solving dense system# of linear algebraic equa-
tions is a process that has received much atten-
tion from software specialists, Ref. (1). TO Il-
lustrate the techniques we propose we'll present
the design of the options and a sample usage of
a (mythical) subprogram for solving linear alge-
braic equations Ax-b, A - N by N real matrix.
Thic design is for illustration only; a non-
trivial real example in given in (210
The nominal usage (no options) solves a system
of equations with a single rlSht-side vector.
This usage involves the usual dimensioning of
the required arrays, the definition of datat
and the subprogram CALL statement.

Nominal Usage:
DIMENSION W(MDW,N+I), IOPT(1), ROPT(01

*IWORK(N)
(Define matrix IA:oj within arrny W
IOPT(l)-99
CALL SLI (W,MDW,N,IOPT,ROPT,IWORK)
(The solution vector, x, to returned in the
array W(*,N+I).)

This subroutine looks simple to use and narrow
in scope. But now we have a (rare) user who
wants to do a relLted computation:

I. There is no system to solve.
2. The determinant of A is desired.

FLEXIBILITY IN MATHEMATICAL SOFTWARE
DEVELOPMENT USING OPTION ARRAYS

by R. J. Hanson
Sandia National Laboratories

F. T. Krogh
Jet Propulsion Laboratory

introduction

Mathematical software (any type of software for
that matter) has at least two goals. It should
be easy to use. It should also be flexible and
broad in its problem scope and thus satisfy a
large number of the possible users of this soft-
ware. These goals conflict with each other. It
is the purpose of this paper to suggest some ways
o reconcile this conflict by use of so-called
option arrays."

The methods we are proposing for the "option
array" specifications are general. The imple-
mentation that we illustrate with an example is
presented in FORTRAN, but the extension to other
Programming languages is obvious.

The subprogram package author has provided a
number of options In the subprograms that allow
these related tasks to be done. 	 The linear
equation software Involves suiprograme SLI(
and SL2(). The subprogram SLI() calls SL2(
to perform Caussian elimination with partial pi-
voting. The subprogram SLI() to called by the
user.

Option List for SL1 ()	 Option Number

Solve Ax-b with k > 0	 1
right-side vectors7, k-1 is
nominal.

Solve (transpose of A)y-c
with m >0 right-side
vectors.

Do not decompose the matrix A;
this has alrqr^dy been done.
Nominally tha matrix A is
decomposed each time SLI
is called.

Provide an option array to
SL2 (): nominally no option
array is provided to SL2 ().

28

Option List for SL2_()	 Option Number

Provide column scaling
for the matrix A.

Compute the determinant of	 2
A in the form det (A) n

a r exp(t). Provide the
parameters a and t as
output values.

Don't redecompose the matrix 	 3
A, this has already been done.
Nominally the matrix A is
decomposed each tige SL2 ()
is called.

We'll now give the values for the option array
IOPTM that 1.) reset the number of right sides
to zero, and 2.) compute the determinant of A in
the form mentioned above. Comments in the right
margin clarify the meaning of each entry. Note
that the processing for the option arrays is
terminated with the reserved option number, 99.

Optional Usaget
DIMENSION W(MDW,N), IOPT(8), ROPT(2) 0 IWORK (N)
(Define matrix A within array W(*,$).)

IOPT(01) - 1 (option number for SLI() to
change number of right-aide
vectors.)

IOPT(02) - 0 (The number of tight-side
vectors.)

IOPT(03) a 4 (Option number for providing
an option array to SL2().)

IOPT(04) - 6 (Pointer to start of option
array for $L2().)

IOPT(05) - 99 (No more options for SLI()
remain.)

IOPT(06) n 2 (Option number for SL2() to
compute the determinant of A.)

IOPT(07) - 1 (Store a in ROPT(I) and t in
the following location.)

IOPT(08) - 99 (No more options for SL2 ()
remain).

CALL SLI (W,HDW,N, IOPT,ROPT,IWORK)

cults with the new version, and with the addition
,of the description for the new option, the old
documentation still applied.

References

(1) Dongarra, J. J., Moler, C. B., bunch, J. R.,
Stewart, 0, W., LINPACK Users' Guide. SIAM
Publications, Philadelphia, PA (1977).
(2) Krogh, F.T., Preliminary Usage Documentation
for the Variable Order Integratore aODE and DODK.
JPL Section 914 Computing Memorandum No. 399,
Nov. 3, 1975.
(3) Haskell, K., Vaudovender, W. Brief Instruc^
tions for Using the Sandia Mathematical Subrou-
tine Library. (Vero. 	 8). SAND79-2392. (1980).
(4) JPL FORTRAN V Subprogram Directory.
Ed. 5. JPL Doc. 1846-23 Rev. A. (1975).

(References (2) and (4) are internal JPI, docu-
menta and are available from Krogh).

Hanson's contribution sponsored by the U.S. Depart-
partment of Energy under contract DE-404-76DPOO789.

Krogh's contribution is one phase of research car-
ried out at the Jet Propulsion Laboratory, Califor -
nia Institute of Technology, under contract No.
HAS7-100, sponsored by the National Aeronautics
and Space Administration..

Mechanizing the Malatevence of Source, Object, and Test
Results ^— Or Why Should You Do All the Work?

Muan Frld"an

Bell Laboratories
Murray Hill, New Jersey 07974

The determinant of A is available in the form
det(A)-ROPT(I)*EXP(ROPT(2,)) after the return from
subprogram SL1().

Ideas similar to those presented here are used
in (2) and in some of the software in the
libraries (3) and (4).

There have been a few important applications
where the added flexibility provided by options
within the software has saved expensive modifica-
tions to existing code. The effect of this has
been to save the authors' time and the time of
the user while a new programming effort was made.
Another significant saving in time that prevented
complications for several library users was real-
ized by Krogh. The existing nonlinear least
squares subprogram of Ref. (4) was modified to
provide for simple bounds on the unknowns. This
change was made using a new option number. Users
of the previous version of the non-linear least
squares subprogram continued to get the same re-

The Problem
The production and maintenance of complex computer programs
involves an enormous amount of bookkeeping. First, there may be
a multiple versions for different reasons;

During development, errors will be corrected, facilities will be
added or deleted, or there may be changes of implementation
strategy.
A program may be made up of almost independent parts, and
different subsets of the collection may be provided to different
users,

The same functionality may be provided in more than one
environment (different hardware, operating system, or
language)

A particular version of a pro=ram is specified by a set of data and a
set of processing steps to be performed, Some of the data will be
fundamental (cannot be recreated automatically), such as program
source text entered by humans and data produced by the real world.
Other data can be derived, and sometimes stored, by reproducible

processing steps applied to fundamental data and already derived

data. The derived data may be used for other purposes such as

debugging, producing listings, or running the program,

29

Keeping track of the processng mope and the sate of the computa-
tion an be a major headache. operations must be performed In a
fixed order with complicated arguments and option specifications,
errors most be considered, and ruord,t mainWaed, in simple
cases, the processing is clear. 'run Ike decks thro,tgh the Fortran
compiler and execute the resulting program'. But such ., descrip.
don is often not applicable for signitkenl jobs: libraries must to be
established and updated, source files may be processed by a
sequence of programs (macro processors, language translators), a
single source file may participate In more than one compilation, and
a single compilation may involve more than one source Ala (a in
languages that permit 'Include files'), The processing steps are
likely to be similar for different versions, but with small but essen.
tial differences. Remembering the sequence of operations to be
performed is likely to be a significant task; keeping track of the
stale of intermediate Ales is even harder and more error-prone, If
more then one person is Involved in the construction or
maintenance, they must communicate and avoid inconsistency in a
disciplined way.
Testing and verification also beg to be organized. Simply making a
change, running a simple lest case, then installing the repaired ver-
sion often succeeds, but is unsatisfactory once there are users who
are remote or who depend on your program. It is important to
maintain regression test suites, establish that all the program
branches have been exercised, and check that the results are
correct, or at last sufficiently accurate, The problem is aggravated
if versions are being maintained for environments which are not
immediately accessible.

Amelleralleg Apf►nsieha
The ways to attack these problems may be viewed as a sequence of
levels, at each of which the programmer surrenders some control to
the computer in exchange for having the machine's increased assis-
tance. All are based on an organized filing system. At first, this
filing system might be a notebook full of penciled notations about
bull changes for different verelons, tape reel numbers, and
job control sequences, it is amazing bow far one can go with the
manual approach, but eventually the notebook becomes illegible,
disappears into a collaborator's ,,Rice, or suffers some other dismal
fate,
The obvious step is to store the notebook In a computer where it
an be protected against decay. The program source will also prob-
ably be kept in computer files since text editors permit easy entry
and modification. The notebook can contain file names instead of
program descriptions, It is easy to capture frequent inputs (e.g.,
canned command sequences that an be issued without retyping)
and outputs (e.g., successful test results to compare against new
runs). if several people are working on the same project, the cen-
tral file system an be used to coordinate and share t ha work and to
communicate progress and problems, At this level, the coinpu l er is
Writ used in a distant way: it stores data, but does not gkl ide the
work.
At the next level, one takes advantage of the structure of the com-
puting system, if the file system permits l e ns names of has a
hierarchical organization, related forms of a file can be stored in
files with computable names, if such a naming discipline is fol-
lowed, production of versions an be automated by parametrizing
some of the commands or by use of accessing functions. For
example, Cargill showed how complicated sets of alternatives an
be handled by disciplined use of the file system hierarchy.
The file system probably maintains certain useful information;
names and lengths of files, perhaps their type (source, object,
library, etc.), and the time the file was last changed, Such informs.
lion is reliable, free, and an be extremely useful. For examples, a
program can make magically accurate deductions without explicit
instruction: if the result of a compilation is needed, and if a source
file that was edited since the last compilation was completed, then it

is probably appropriate to recompile the source, A program an
make ibis deduction and issue commands to the system with little
Intervention or thought by a human. (My Make program does
this). This approach is independent of the dttalis or content of the
files, and only needs to know the use of the tile, which is deducible
from the name or attributes on many systems, 4r i when it was last
changed. At this able of mtc2sanimtion, the r andard computer
system Is being used in a direct vi the user mainWns his own
Ales for his commands, versions of source, progress status, and to
on, and invokes utilities explicitly.
If more help Is needed or desired, Ike computer must be involved
more intimately, The basic data are controlled by the computer,
and may be stored In unreadable forma. Various versions may be
intertwined for reasons of control or eQielenry, and an only be
examined through the tools. Thu:, the SCE', system stores many,
versions of a text In a form that saves spare, but explicit SCIS
commands are needed to extract an old verllon or to store a new
one, Tools at this level may also assist in ,ranging the project by
restricting access to programs, preventing multiple updates, and
requiring explanations of the work done before accepting a new
version. Note that these efforts have been based on a coarse unit
of operation, the complete data file,
Finally, we reach the level of sculled progr+m environments,
wbkh take over many of the operations done by programmers, In
exchange for the convenience offered by the system, the proiram-
mer must accept its restrictions. This is car; cares of active research;
some efforts In this area are Interlisp, Qindalf, Mentor, and Tool-
pack. The bade form of the fundsmenW data an be source text or
a parsed representation, The division of responsibility among tools
may then be radically different iitan In a conventional system.
Some of the tools may be invoked Invisibly, Editors, printers, and
compilers make use of the single basic representation. An editor
can check program syntax, and a compiler can be Invoked automati-
cally after an edit is complets. Maintaining statem eat usage counts
and timing analyses can be Implicit in the compilation process,
Testing and debugging can be done in terms of the user's source
language, without reference to machine-level objects. and test data
might be raved semi-automatically. In exchange for these services,
the user cannot apply standard tools to the data, since they are
encoded and the environment must control all changes that are
made.
A well-informed environniont can control large objects such as
libraries or executable programs, and an ensure that versions
remain in parallel. The environment could produce instrumented
forms of programs to monitor the testing: the instrumentation
could record the statements that have been executed and the state-
ments that consumed most of the machine time, The environment
an also re-run regression tests before Installing or distributing final
copies, and maintain records on versions that have been sent nut,

Applicability to Nsnorkel Pregrewe
The simpler approaches discussed above an all be applied to
numerical programs on any flexible system, The more complete
systems require some tailoring to the language and habits of the
programmers, The program environments currently available are
all research tools designed around languages that are rarely used for
numerical programming, The proeleihs or preprocessors, naming
conventions, and enormous libraries require special cenrtderation,
The Rating point domain pr:sents some peculiar difficulties: a
regression test may be required to achieve final results of satisfac-
tory prevision; but not necessarily to duplicate the previous run's
output bit for bit, or even to produce comparable amounts of out-
put. (Consider a change to an iterative algorithm which changes
the number of iterations to produce satisfactory convergence).
Various projects are underway to attack some of these problems, in
particular, the Toolpack project is designing a portable environme,, +
for Fortran-baud programs.

NAZI-1R-Gaol„ LA, Cali.

30

x

	1981025292.pdf
	0001A02.jpg
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif

