NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

% '\«.

JPL FAUBLICATION 81-67 o

Proceedings

Conference on the
Computing Environment
for Mathematical Software

Cosponsored by
JPL and ACM-SIGNUM

Huntington-Sheraton Hotel
Pasadena, California
July 29-31, 1981

July 15, 1981

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

(NASA-CR-164849) PROCEEDINGS, CONFERENCE OM N81-33835
THE COMPUTING ENVIRONMENT FOR MATHEMATICAL

SOFTWARE (Jet Propulsion Lab.) 37 p

HC AOQ3/MF AO01 CsCL 09B Unclas

- G3/61 27588

£ R kb s mege e

JPL PUBLICATION 81-37

Proceedings

Conference on the
Computing Environment
for Mathematical Software

Cosponsored by
JPL and ACM-SIGNUM

Huntington-Sheraton Hotel
Pasadena, California
July 29-31, 1981

July 1E, 1981

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
Caiifornia Institute of Technology
Pasadena, California

This publication was srepared by the Jet Propulsion Laboratory, California
Institute of Technc¢iugy, under contract with the National Aeronautics and
Space Administratiszn,

FoTo Krogh o o v v v v o 0 v v v 0 4 0
Conference Chalrman

JOASMB 4 x s s e e e e e e e e e

NGAR
Chair, X313

Ly Po Medssner ., . . A A R
lawrence Berkeley Laboratury

Ac MLI80N 4 v v v b v v e e e e e s e
ICL, London

Fo Jo WALKENS o v 0 v 0 4 0 0 0 0 e v s e
Perkin-Elmer

Woe MIIler o o o v 4 v o v v v v s s
University of Arizona

Lo Wy TUeAB o 0 0 6 v v v v b e e
Naval Weapons Center

T, Av Ryan .+ + + o T
Pennsylvania §tute Univorsiny

K. Amano, M. Chiba, A. Mochida, T. Macda
Hokkaido University

b, W, Gaffney « . . [
Oak Ridge National Iﬂboratory

W. Kahan . « . + v « . ‘ v e
University of Lulifornin, Bvrkcloy

P R 5
University of Toronto

Mo GINSbersg + v v v v v ¢ v v 0 b e 4 a s
General Motors Research Laboratories

L, M. Delves . . .+ . I TSP E PR
University of Liv;rpool

D, R Hangon v v o v o v v s o s s e oa s
University of Avizona

Lo Osterwedl 0 v o v o v v e e e e
tniversity of Colorado at Boulder

E. Mehlachau . & 4 ¢ 4 v o 4 o o v s &

Softool Corporation

P, T, Krogh and W, Van Snyder &
Jet Propulsion Lahoratory

b, L. Baley, . D, Gropp and M, Y. Theimer

Stanford Universnity

M, A, Hennell, I, J. Riddell and M. R. Woodward

University of Liverpool

A Ko Clive , « . L , G e e s
Univergity of Texas ut Aubcin

G. Cloni, A, Miola, A, Truffi

Istituto di Analisi dei Sistemi ed InfnrmaLicn

o g

.

CONTENTS

-
-

.

-

.
.

ii1

Conference Overview

FORTRAN Standavds, An Overview

Core~and=Modules Deaipn for Hext FORTRAN
Standard

Parallel Processing in Fortran

Global Data Sharing and Internal Precedures in

rurtran 8X

A Congumer's Report on Fortran Programming
Environments

Numerical Software - ¥iew from the Treiches
Packaging Statigtical Software

Algorithm Bank: Information System for
Mathematical Software

Software Management

The Progprammlng Envivonment's Contribution
to Program Robustness

A Hardware Unit for Decimal Arithmetic with
Controlled Preciston

A Brief Guide to the Literature on
Supercomputers

The Use of Extensible Languages for
Mathematical Software (A Case Study)

A Portable File System

TOOLPACK ~ A Collection of Tools for
Mathematical Software

SOFTOOL, 80, A Methodology and Integrated
Collection of Tools for Software Manapement,
Development, and Maintenance

A Support Environment for Software Tools

A Method for Constructing Preprocessors

A Mutation Analysis of Numerical Software

A Course on Mathematical Software

Moving Software Systems to a Minicomputer

3

10

10

11

13

17

18

a2
[

o TR TR TR

S

iu!:.‘,‘ PR,

CONTENTS (cont.)

D. §. Dodson, J. G, Lewls and W, G, Poole, Jr. .,
Boeing Computer Services Company

Re Jo HBHBON « v ¢ 0 ¢ & % s ¢ 5 8 v % 2 5 2 s 4 3
Sandia National Laboratories

v T. Krogh
Jet Propulsion Laboratory

S, Toldmdn + o ¢ o 0 0 s s s v e e e s vy o2 s s
Bell laboratories

Tatloring Mathematical Software for the
CRAY-1

Flexibility in Mathematical Software
Development Using Option Arrays

Mechanizing the Maintenance of Source, Objeet,
and Test Results - Or, Why Should You Do All
The Work?

ABSTRACT

The conference on the Computing Fovironment for
Mathomatical Software, held in Pasadena, California
on July 29-31, 1981, was cospousarved by the Jot
Propulsion Laboratory and the Special Interest Group
on Numerical Mathematics of the Asgoclation for Come
puting Machinery (ACM-SIGNUM). The conference pro=-
vided a sequel to two previous SIGNUM conferences

iv

28

29

hoeld in Pasadena in 1974 and 1978, ‘Topels included

software tools, Yortran standards activity, and

features of languages, opernting systems, and hard-
wars that are important {or the development, testing,

and maintenance of mathematical software, This

publication includes extunded abstracts of the papers

presented at the conferencc,

PROGRAM
1981 JPL/ACM = SIGNUM
The Computing Environment ' or Mathematical Softwave

Huntington Sheraton Hotel, Pasadena, Califovnia

ZTuenday, uly 28
7:00 ~ 9100 pm REGISTRATION

Wedneeday, July 29

8:00 - 9:00 am REGISTRATION
8155 - 9:00 Welcome, Fred Krogh
SESSION HAIRMAN: Lloyd Fosdick

9:00 - 9:20 **Adams, Jeanne, "Fortran Standards, An Overview"

9520 - 10:00 #*Maigsner, lLoven P., "Core-and-Modules Degign for Next Fortran
Standard!

10:00 = 10:15 Adams, Joeaune, Chairperson, "Fortran Standards - Question Perlod"

10:15 - 10:30 BREAR

10:30 - 11:00 *Wilson, Alan, "Parallel Processing in Fortran!

11:00 - 11:30 *AWilkens, Bdward J., "Global Data Sharing and Internal Procedures

in Portran 8X"
11:10 -« 1:30 pm RREAK
SESSION CHAIRMAN: Stan Brown

1:30 - 200 *ASmith, Brian, “General Precision Data Type Facility and
Environmental Inquiry Feature!

2400 - 2430 Adamg, Jeanne, Chairperson, "Fortran Standards - Question and
Discussion Perdod"

2330 - 3:05 Mtller, Webb, ™A Consumer's Report vn Fortran Programming
Environments"

3:05 - 3:20 BREAK

3120 =~ 3145 Jueas, L, W., "Numerical Software ~ View from the Trenches"

3345 - 4520 **Ryan, Thomas A., "Packaging Statistical Softwarc"

4320 -~ 4345 kAmane, Kaname; Chiba, Masakl; Mochida, Akeno; and Maeda, Takashi,
"Algovithm Bank: Information System for Mathematical Softwaye"

4345 - 5:05 Gaffney, P, W,, "Software Management"

* Speaker in case of two or more authors

*% Invited Speaker

B e T

AL

Thursday, July 30

SESSION GHATRMAN: Chuck lLawson

8130 - 9:30 am KkKahan, W,, "he Programming Envirouments' Contribution to
Program Robustness"

9:30 ~ 10515 Hull, T, E.. "A Hardware Unit for Decimal Arithmetic with
Controlied Precision®

10:15 - 10:30 BREAK

10530 - 11:15 Ginsherg, Myron, "A Review of Performance Comparisouns for

Supercomputers and Conventional Machines" (The title in the
proceedings ia "A Brief Guide to the Literaturce on Supercomputers")

11315 ~ 11:25 Delves, L. M., "The Use of Extensible Languages for Mathematical
SoFtwiare"
11:25 = 1:30 pn BREAK

SESSTON (HAIRMAN: Bob Mercer

1:30 - 2:00 *¥lanson, Lavid R.,, "A Portable File System"

2:00 -~ 3:00 #*0gterweil, Leon, "TOOLPACK ~ A Collection of Tools for
Mathematical Seftware”

3:00 - 3:15 BREAR

3315 = ;45 Mehlschau, Edward, "SOFTOOL 80 A Methodology and Integrated
Collection of Tools for Software Management, Development, and
Maintenance"

3345 =« 4115 Krogh, Fred T., and *$nyder, W, Van, "A Support Environment for
Software Toolg"

4:15 - 4345 Boley, Daniel L,; *Gropp, Willi.m D,; and Theimer, Marvin M.,
"A Method for Constructing Preprocessors’

w00 - 7300 HAPPY HOUR

7:00 - 2 BANQUET

Friday, July 31
SESSION CHAIRMAN: Nelson Bacbe

8:30 - 9:20 *kPeldman, Stuart, "Mechanizing Operations on Source, Object, and

Taest Data - Why Should You Do All The Work?"
9:20 ~ 10315 **Hegnell, M. A,; Riddell, I, J,; and Woedward, M, R., "A Mutation

AMnalysis of Numerical Software"

10:15 - 10:30 BREAK

10:30 -~ 10:50 Cline, A, K., "A Coursc on Mathematical Software"

10:50 - 11:10 Cioni, G.; Mioia, A; and " uffi, A., "Moving Softwesie Syscems to
a Minicomputer"

11:10 = 11430 Dodson, David S.; Lewis, John Gregg; and Poole, William G., Jr.,
"Tailoring Mathematical Software for the CRAY-1" (Presentation by
Ivor Philips)

11:30 - 11:50 *Hanson, R. J. and Krogh, ¥, T., "Flexibility in Mathematical

Software Development Using Option Arrays"

vi

CONFERENCE OVERVIEW
FRED T. KROGH, Corference Chairman

The sathematical software community has as
its primary goal the development of high quality
tools for the solution of a wide variety of
mathematical problems, The development of such
tools is eithanced by other tools; both hardware
and software, which provide a hospitable computing
environment, Unfortunately, our environmental
needs are not well known to the computing
coimunity at large, Under the able leadership of
C.L. Lawson, JPL and ACM=SIGNUM have jieviously
sponsored two conferences related to this one:
*Workahop on Fortran Pruprocessors for Numerical
software® in 1974, and "Conference on the
Programming Environment for Development of
Numerical Software® in 1978, These conferences
have provided a unique forum for those interested
in the environment for the development and use
of mathematical software.

In the early days of computing there was an
emphasis on the needs of those who were solving
mathematical problems., But the perception that
wathematical computation is only a small part of
the marketplace and the fact that the needs of
those engaged in numerical computation are not
well known has led to considering those needs as
little more than an afterthought. Recent advances
in software and hardware technology are making it
economical to create computing environments
appropriate for specialized applications. The
implementation of a small specialized language or
operating system environment is now a small enough
Job that significant experimental environments can
be designed and implemented, Large vector and
array processors are being designed and built with
numerical computation z2s the primary or only
application. At the miuroprocessor level we are
getting arithmetic units superior to what we are
used to on general purpose computers, The
computing environment for mathematical software is
changing for the better, This conference provides
a view of those changes.

Fortran still appears to be the language of
choice for scientific and engineering computation.
Interchange between the Fortran standards
committee, X3J3, and the mathematical software
community has proven valuable to both at previocus
conferences in this series., Continuing this
tradition of interaction, talks by Adams,
Meissner, Wilson, Wilkens, and Smith from X3J3
give an idea of the substantial changes that are
being planned for Fortran, Some of these new
features are being introduced primarily to meet
needs in numerical computing,

Ther2 has been a lot of recent work on
Fortran programming environments., Miller gives an
overview of three of these ané describes uome
current work, Lucas examines ibe environment from
the viewpoirnt of one supporting the use of
mathematical software in solvirg scientific and
ergineering problems., There is considerable
overlap between statistical and mathematical
software., But there has been considerably more
emphasis on canned packages for the
unsophisticated user in the former case. Ryan
describes several statistical packages, where the
emphasis has been on their packaging. He expects
benefits from future interaction with computer
acience.

Amano, Chiba, Machida, and Maeda in one
paper, and Gaffney in another, describe systems
that make it easier for users of mathematical
software to find the software appropriate for
their needs,

At the 1978 conference, Kahan spoke on
spenificpiions for a proposed floating-point
arithmetic standard, and Hull spoke on desirable
characteristios for floating=point and elementary
functions, Kahan's ideas have led to a proposed
IEEE standard for floating-point, This proposed
standard is ocurrenstly available on one
microprocessor chip, and there are strong
indications that severaul others will be marketed
soon, Expanding on the theme of floating-point
arithmetic, Xahali discusses the prograaming
environment's contribution to program robustness,
Hull'a ideas have also progressed to the point of
being implemented. He desoribes the capabilities
of his hardware unit here,

In these abstracts, Ginsberg gives a
bibliozraphy on suinrcomputers, In his talk he
reviews perforriance comparisons for supercomputers
and the more couventional (ype. Extensible
languages bave buen found useful in designins the
user intsrface for solving partial differential
equations by Delves. He descridbes this work which
was done in an ALGOL 68 environment.

In the 1978 conference, Webb Miller proposed
the initiution of a collaborative eflort to create
a better progresmmiig environment for the Fortran

programmer, His proposed "TOOLPACK® is now a
project involving several institutions., Osterweil
desoribes the TOOLPACK project, Mehlschau
presents a commercial software tool coliection
available from SOFTOOL Corporation. Krogh and
Snyder deacribe a support enyironment for softvare
tools that is compatible with the requirements of
the TOOLPACK projecot, A quick method for
constructing preprocessors is decriired by Boley,
Grupp, and Theimer.

Feldman asks, "Why should you do all the
work?" and suggests mechanizing operations on
aource c¢ode, object code, and test data so that
the programmer is relieved of many of the clerical
tasks asiociated with programming. Hennell,
Riddell, and Woodward describe a method for
measuring the adequacy of test data, The method
is based on testing whether errors deliberately
introduced into the software (mutants) will be
detected by the test data.

Cline's description of a course on
mathematical software should be helpful to those
teaching or planning such a course, Ciori, Miola,
and Truffi present an aid for moving large
programs to a minicomputer. And going in the
opposite direction, Dodson, Lewis, and Poole
consider the problem of tailoring mathematical
software for the CRAY-1, Finally, Hanson and
Krogh describe a way of passing optional data to a
subprogram that has little fmpact on the user whc
has nc need to pass such data.

Thanks are due: Webb Miller, Leon Osterweil
and Brian Smith who helped in the selection of
invited speakers; to Chuck Lawson who reminded me
of a few oversights and helped with local
publicity; to Kris Stewart for (wo)manhing my
phone while I wao gone for three weeks prior to
the conference; to Denise Chambers for secretarial
support; and most of all to JPL for their
generous support of this conference in terms of my
time, secretarial support, and the printing of
proceedings distributed at the conference.

FORTRAN STANDARDS, AN OVERVIEW

Jeanne Adams, NCAR
Chair, X3J3

FORTRAN 66

From the early beginnings in the fifties,
FORTRAN was used as the de facto standurd
for seientific and engineering work. As
its use apread, the potential for numerous
imcompatible FORTRAN dialects became
ayparent, A rigorous definition of FOR~
TRAN in a standard became necessary if
continued use of the language were to be
successful.

In ‘30v, The American $tandards Associa-
tion (ASA) established the committee for
Computera and Information Procesaing. A
asubcummittee of this group was formed to
consider common programming languages., In
May of 1962, a working qgroup began to
astudy the possibility of introducing a
standard for FORTRAN which was to become
th+ “irst programming language to be
star. pdized in tne United States.
Manufanrturers and user groups sent
representatives to the Standards Committee
for FORTRAN (X3J3), They cooperated in
the study and preparation of the first
FORTRAN standard {X3.9-1966) which was
relensed in 1966. Many areas waere con-
sidered by X3J3 including current usage,
clarity of syntax, ease of implementation
and the language’s potential for future
extensions, Two clarifications were pro-
duced; one in 1967 and another in 1969.

FORTRAN 77

FORTRAN has always been a coat effective
language; , what it may have lacked in
elegance and style was gained in effi-
ciency and ease of implementation. In
1967, the group responsible for mainte-
nance of FORTRAN 66 concluded that it

would require no nore effort to begin on a

vevision than to continue producing offi-
cial interpretations of the standard., In
January 1969, X3J3 voted to begin work on
a revision to X3.9-1966. The current
standard X3.9-1978 took eleven years to

complete; seven years were spent in
preparing the draft, and four years in
completing the approval process under the
American National Standards Institute
(ANSI) as it is now called., One signifi-
cant result of this eleven year effort was
that the FORTRAN 77 standard document is
now more understandable than the 66 docu-
ment. The standard itself contains six
times more text in describing FORTRAN
features than the “old standard’, result-
ing in improved readability and clarity.
An important ronasideration in the develop-
ment of FORTHAN 77 was the determination
not to invalidate programs written in FOR-
TRAN 66, but to ensure that these programs
were upwardly compatible, A comparison
chart of FORTRAN 66 and FORTRAN 77 will be
summarized.

FORTRAN 8x

Thevre is always resistance to change in
prograuming languages and their asmsociated
standards. A programmirg language must
reflect the needs of the user community
and be responaive to the kinds of applica~
tions that ensure continuing popularity
among users. At the time of final pro-
cesaing of FORTRAN 77, X3J3 had already
begun the study of a design that would
modernize FORTRAN. The objective was to
keop pace with technology and atate-of-
the~art programming techniques and allow
applications specific gonventions to coex-
ist mnd become part of a family of stan-
dards for FORTRAN.

In these early studies during 1978 and
1979, the committee studied language
features from many perspectivea. The
emphasip was to exsmine the language as »
whole, &nd how various candidate features
ware related. Surveys of various user
groups were taken, and these needs were
placed in a broad enough context so that
condidate features for the standard could
be chosen within & carefully conesidered
framework. In certain areaa (i.e. data
structures and progran form}, develonment
was negsssary because of a need for a
function not yet provided in the markat-
place. An architecture is proposed

(described in more deteil in the next
prasentation on FORTRAN) that will placs
certain genaral features in the core,
while othera will he separated into
modules. Interfacing to special purpose
applications such as graphics or data base
schemes is an important part of the techn-
ieal proposal for the next revision. An
important question concerns the ability to
identify obsolete features and move these
out of the language in a graceful way.

A basic array processing proposal has been
completed and will be in the new revision.
In the various surveys on user needs, the

ability to manipulate arrays as fundamen-

tal objects was a very popular request.

A need has been expressed for a genaral
precision data type facility to specify
minimum precision for floating point
operations., Numerical analysts have made
important coatributions to the precision
proposalg “or the current revision, as
well as to the Environmental Inquiry pro-
posals which are discussed later in this
session.,

Liaison Activities

Liaison has been established with a number
of national and international organiza-
tions. One of the very important liaison
activitiea continues to be with SIGNUM.
Nationally, X3J3 has eatablished a liaison
with the Graphics Standards Committee, the
CODASYL Data Base Group, and the Purdue
Workshop for Industrial Real Time FORTRAN.
Internationally, we have a working rela-

TS A i

tionship “ith the British Computer
Seciety, the Eurppesn Computer
Manufacturer's Association, and Standards
Oroups from & wumder of couniries such as
Austria, Germany, Sweden and Canais.

MILESTONES

X3J% has Juat completed the firat draft of
a documsnt that containa all of the propo-
gals passed po far for the next revieion.
The document i® not intended to he taxt
for the stendard, but ia is organized into
sections such that the editora can prepare
text #asily. All new proposals befors the
comdittee are to be modificationa of thia
document (Standing Document 6j. In this
way, members wil® have a singla source of
naterial for the next rsvision.

Many people ask what x is in 198x. Howe
aver, it is diffucult t0 answer thim ques-
tion, X3J% has a milestone chars, but it
is & working acheme for establishing ~om-
mittas objectivas rather than any fixed
promise for completion. Dates that occur
befare today heve been modified to reflect
actun) progresa, while daten that follow
today reflect the committee's goals., A
sample milestone chart hag teen prepared
for this saasion.

CORE~-AND-MODULES DESIGN FOR NEXT FORTRAN STANDARD

Loren P, Meissner
Lavrence Berkeley Laboratory

The Problem

Fortran isn’t going to go away, no matter how much
we deplore its irregularity and inelegance, For-—
tran 77 introduced the block—-if and the zero-trip
D, and de-standardized Hollerith, But still
hobody considers Fortran 77 a really wmodern pro=
gramming langusge.

Can Fortran be modernived? If Fortran were moder-
nized, would it still be Fortran? Would it have
any advantage over Pascal? And what would happen
to the billions of dollars of investment in "old
Fortran" programs?

There is pressure from yet another direction to
influence the future of Fortran. This is the need
for major extznsions to the language for the sake
of & specislized application area (graphics,
real~time, list processing, array processing, or
CODASYL data base, for example), iIncorporating
any ope of these major extensions erodes the prac-
tical usefulness of the language for anyone out~
side the specialized application area, To accom~
modate them all in a single language would obvi-
ously be ivpractical.

A Provosed Solution

The ANSI Fortcan Standards Committee, X3J3, is by
now firmly committed to the ides that s “core zad
modules” approach can solve this problem. fThe
idea is to define a “Core Fortran" launguage, con=
sisting of all of the "good" features of Feoicran
77, plus wmodern replacements for the "obsolete"
features of Fortran 77, 7The obsolete parts of
Fortran 77 would, hovever, be retainad in an
"obsolete features module',

Other “application ares support modules" would
satisfy the need for mejor extensions needed for
specific ¢pplication areas,

Another kinl of module, called a "language exten-
sion wmodule", could add "fancier" featurzs of
broad application to the language (for example. a
macro facility).

Structure ol the language (see Figure 1), By
the end of the life cycle of the pext revision of
the Fortran standard (in the mid to late 1990%s),
it is assumed that the “obsolete” features would
no longer be heavily used. 80 that tha typical
wminvaum~configurition Fortran compiler would aup=
port only Core Fortran, that is, the "good"
features inherited from Fortxun 77 plus the
replacewents for the "obsolete" parts of Fortran
77. However, earlv compilers for the new language
would necessarily support all of Core Fortran plug
the obsolete features module,

Extended compilers would also support the language
extension mpdule (or modulex).

It is contemplated that the next Fortran standard
will {aiclude both parts of Core Fortran, the
obsolete features module, and perlaps one or more
extension modules, It may be possible to add
extension modules between revisions of the main
Fortran standaxd, Application area support
modules would be handled as separate 'collateral®
ANSI standards, ond in muny cases these would be
developed by a more or less independent "task
group" reporting to the X3J3 committee, rather
than by the full committee.

Summary,

Will the result be Fortran, or will it be a new
language? It will certainly be a new language;
the remarkable thing, if X3J3 is successful, will
be the creation a new language that is compatible
with its predecessor,

Will it be Fortran? Maybe; but omly if X3J3 can
maintain the self-discipline to keep Core Fortran
a reasonsbly small language that is at least as
easy to implement and to use as earlier versions
have been.

i
i

FIGURE 1.
Fortran Core~-and-Modulex Structure

I 1 i
F - |
o]l ! | l1¢
FIRI]] good pexte | | naw tlo
olT]| of | I "pasic" | | R
RIRIJ | Portran 77 | | stuff | L E
TIALY { | {1
RIN . }
A !
N L

A

N | | |

G | | obsolete parts | | new]

vl of | | "fancy" |

Al l Fortran 77 | | sruff |

1611] | I
| B |

Fl |
A
M
1 | |
L } application area }
Y | ‘ gupport modules %

Parallel Processing in Fortran
Alan Wilsen
1CL, London

The ANSI Fortran committee X3J3 has recently
accepted proposals for parallel processing in
Fertran, These proposals have been used to
express algorithms such as Ratcher sort, FFT,
telephone network simulation, black/white SOR,
image pracessing, noise reduction, least
squares, solution of linear equations,
assignment problems, matrix inversion,...

An attempt will Le made to assess the
completeness of the proposed language extensions:

Do they seem to form a basis for the
expression of (known) parallel algorithms?

Are they 1ikely to be useful in thas search
for new parallel algorithms?

GLOBAL DATA SHARING AND INTERNAL
PROCEDURES IN FORTRAN 8X

fdward J, Wilkens
Perkia=El.er
Tinton Falle, New Jersey

INTROBUCTION

In past actions, ¥3J3 has voted to remove certain
features from CORE FORTRAN, including storage association
COMMON, EQUIVALENCE,multiple entry points, extended

DG loops and statement functions., It has aluo voted

to add, or consldered for addition, such featuves

as GLOBAL, and internal subroutines,

This paper presents some propssed fgrellities to raplace
those removed,

The syntax descsihed {8 consistent with proposals
#reviously paussed and currently proposed in April 1981,
The area of data sharing and internal subroutines

hag been a rather fertile one for proposals, with
several varded names and constructs proposed and
discarded. These do share a significant number of
common functions, 1f not nawe and ayntax, and differ
primarily because they spring from different sources
of inspiration,

DATA_SHARING

COMMON has been removed from the core of FORTRAN 8X
primarily because of the storage association
properties implied. However, there is no intention
to remove the functionality of a fast, efficient
global sharing mechanism provided by COMMON, The
replacement for COMMON, called GLOBAL, eliminates
storage association, It also provides for a single
DEFINITION of the GLOBAL data, with mulriple uses
nf that definiticda. The following is a typiecal
definitions

GLOBAL DEFINITION /Shared data/Real var,Integer_var,Char-var

As the example implies, any mixture of types is
allowed. No speeific order of appearance or storage
allocation is implied by the 1ist of data elements.
In order for a program unit other than the one
containing the GLOBAL DEFINITION to access the
GLOBAL data, 1t must contain a GLOBAL statement
naming the GLOBAL name {or blank) to be shared.

For example:

GLOBAL /Shaved_data/

provides a program unit other than the nne containing
the CLOBAL DEFINITION with access to the dats elements
in Shired_data by their name. No further definition
of those variables is needed. They have all the
attributes of their declarations in the defining
program,

gﬁ;‘!!tsz

Dependant Compllation

All program units sharing a GLOBAL Data Arca may be
sepavately compiled. However, the program unit
vontaining the GLOBAL DEFINITION must be vompiled
before the others. This places a burden on the
processor to communivate In gows processor denondent
fashion the declaved varia: .2 in the GLOBAL area,

ag wall as their types, diwensionality. and locations
in the GLOBAL area. It also places a burden on

the programmer (or somse processor defined user nids)
to recomplle apy program unit containing GLOBAL after
recompilation of 8 GLOBAL DEFINLTION in which some
information used by those dependent program units
wera changed.

FORTRAG 77 Compatibility

The primary diffevence betwesn GLOBAL and COMMON

is storage association and definition/use distinction,
By providing a similar but differently named
functlopality, they may be freely mixed in the
presence of the Obsolete Features Module. GLOBAL

apd COMMON may appear in the same program unit,
provided they refer to different data arcas.

INTERNAL, PROCEDURES

Reveral features removed from CORE FORTRAN in past
X333 actions include coatro} constructs such as
Statement Functions, ENTRY Statements and Alternate
Returng, 1The facilitdes provided by these construets
remain to be provided in safer, more consistant
constructs, Interpal Procedures are provided for
this purpose, with primary functfonslity including:

Replacement of the Statement Function
Replacement of extended range of Do LOOP
Remote code blocks

Replacement for ENTRY

An Internal Procedure is either an Internal Function
or an Internal Subroutine, which ave similar to the
fomilinr Function and Subroutine that serve as
program units in a FORTRAN propram.

Internal Procedures are located at the end of a
host progrum or procedure, Immediately before the
END statement or another Internal Procedure,
Declarationg for dummy arguments of an Internal
Procedure are contained within it.

Internal Procedures are invoked from within the
hogt procedure in an identical manner to externnl
procedures,

Name Scoping

Goals for Name Scoping rules include reguluovity,
convenience of shardng as in Statement Fur.rions,
safety from accidental error and replacement of
error prone ENTRY argument rules, Thesa goals tend
to be somewhat at odds, and have resulted in

saveral proposals and abandonments, An INHERIT
statement with a list of names is provided to
declare what entities are to be known in the Internal
Procedure from its hast, All other entities

appearing in an Internal Procedure are lotal to it.
An INHERIT ALL statement has baen proposed, but
not yet passed,

The INHERIT statement provides a regpular, safle

mathod for sharing dats from the host, It does

not providu the convaiience of sharing as in

Statement Functions. A raplacement for a Statement
Function would vequirve an INTERNAL FUNC™ION, IMHERIT ALL
asnignment, and END_INTERNAL atatemants,

Packages and Libraries

ENTRY statements have often been usad in large
libraries, Problems occur bucause of the difficultien
of entorcing inaccessibility of dummy arguments

from Insctive ENTRYs. ENTR: INTERNAL Procedures

have baen proposed ro declave an Internal Procedure
callable from outside the Host, This all ws a much
safer functionality for ENTRY,

Large libravies are normally not compr: = aj. .

one time, a Procedure may be declarc ; "V KAGE,
which means that it i# to be considered 1o be Host to
Internal Procedures which may be aeparately compiled.

Which Internal Procedures are to be ao considared im
gpecified {n o CONTAINS Statement. Finally, the
PACRAGS Procedure may be declared to be pure sharabiz
datas with no exvcutable code by declaring 1t to be

a BHELL Procedure,

Data Sharing Revisited

A SHELL Procedure may be seen to be equivalent in
functionality to CGLOBAL Data., Note that ENTRY, PACKAGE,
and SHELL have not yet been sapproved, whereas

GLOBAL Data has. Since ENTRY and PACKAGE are
capectally desirable features, especially for
Mathemarieal Libraries, SHFLL is an nbvious

extension to eliminate some almost redundant
functionality (GLOBAL), However, GLOBAL's strong
resemblance to COMMON makes it attracstive., Final
rvesgolution of these issues remain to be decided,

A CONSUMER'S REPORT ON
FORTRAN PROGRAMMING ENVIRONMENTS

Webb Miller
Department of Computer Science
University of Arizona
Tucson, Arizona 85721

In this talk we will summarize the attributes of
several available Fortran programming environments,
including the WATFIV compiler and run~time system,
the Unix operating system and SOFTOOL 80. The
strengths and weaknesses of each will be discussed,
In addition, mention will be made «f a few avail-
able frae-gtanding scftware tools and of rome
planned developments.

WATFIV has long been vegarded as an excellent sys-
tem for debugging Foi'tran programs. This reputa-
tion is well deserved: the error messages rve
exceptionally clear and the automatic run-time
checks are quite useful. The system suppoxts a
profiler and a preprocessor for a "structured"
Fortran. Moxeover, an interactive version of
WATFIV that includes a symbolic debugger is
available.

ibuidally,

While WATPIV {s not wishout notable omisslons and
undesivable featurer ir the way It handles Fortran,
1te main deficiency is fte limited mcope and ma-
chine dependency, The user is left to the mercy
of the native editor, file system, ete,, and these
are often relatively primitive.

Unix 1% & highly successful opurating system de=
veloped at Bell Laboratorfes and now in place at
over 2500 installations world-=wide. It is par-
ticularly noteworthy as a program development ens
vironment for orojects invalving small numbers of
programmers. BSome of its more appealing atiri-
butes are a no-nonsense command language, a very
clean file system with automatic updating of do-
rvived {iles, excellent text~processing ¢spablil-
ities Ineluding phototypsetting of mathematical
equations, plus a host of software fragments and
mechanisms for connecting the fragmente to form
organized tools.

Whereas earlier versions of Unix supported Fortran
only marginally, recent versions {e.g., Berkeley
System Distribution 4.0 for the PPP VAX~11/780)
support it handsomely, Ineluded are a Fortran pre-
processor that, in my mind, stands above its many
competitors, a symbolic debugger and a Fortran
Btructurer,

Perhaps the main weakness of the Unix pystem as a
whole, beside its machine dependency, is that it
has the steep learning curve that you would expect
of an operating system designed for espert pro-
gLammers, The Fortran compouent of Unix currencly
suffers from a fair number of glitches because of
its newness, a compl:int that should be resolved
with time.

SOFTONL 80 18 an integrated vollection of software
tools that alm to support g particular methodology
for Fortran programming, It includes not only the
expected compon~nts for static checking, prepro-
cepsing structure code, profiling and test cover-
age repores, but also tools to enforce certain
programuing standavds and documentation formats
set by management,

Further information about WATFIV, Unix and SOFTOOL
80 can be obtained from the following mources.

WAT NEWS

Computer Systems Group
University of Waterloo
Waterloo, Cntario N2L 3Gl
Canada

Western Electric Co.
Patent Licensing Manager
P,0. Box 20046
Greensboro, N.C. 27510
{919) 697-6530

SOFTOOL CORPORATION

340 South Kellogg Avenua
Goletn, Ca. 93117

(805) 964~0560

Kumarical Sofiware ~ View from the Tranches
L. W, Lucas
Naval Weapons Center

This paoer relates expariences of the author
ovér the past seven years as Numerical
Mathematics Coordinator at the Naval Weapons
Center Central Computing Facility, evaluating
selecting, maintaining and marketing numericai
software, and providing consulting, training,
and documetation services. The [enter is a
consumer, not a producar, of numerical
software, Applications include missile design
and simulation, radar analysis, signal
processing, detonation physics, and chemical
kinatics,

Tentative Qutline:

Implementing a numerical software library
awareness » Mathematical Software I & 11
starting point - IMSL, JPL 1ibrary
literature survey

additions - GEAR, OFPFAG, EISPACK
NESC test site ~ LINPACK, MINPACK

Marketing efforts

documentation - Guide, Examples

short courses = Matrix computation
Numerical solution of
ODE'S
Computing random numbers
Curve fitting
Least squares

academic -~ Nuymerical Methods

Suggestions to numerical software developers
user interface
naming
documentation
raverse communication
tradeoffs

change vs. stability
flexibility vs. ease of use

constraints in engineering situations

sample data systems

PACKAGING STATISTICAL SOFTWARE
Thomas A, Ryan, Jr,

Most statistical computations aré done using
widely available statistical packages. In this
paper, I will discuss primayily the SPSS, SAS,
EMDP, P-STAT and Minitab systems, which together
account for a high percentage of all statistiecal
computing, Other packages which have influenced
the development of statistical packages include
Datatext, Genstat, IDA, IMPRESS, MIDAS, Omnitab,
OSIRIS, SNAP, Statjob.

Development of statistical packages began with
the BMD programs at UCLA, in the late 1950's.
These programs formed an integrated set of pro-
cedures, but were not a statistical "package"
in the current meaning of the word. They also
had a very primitive user interface (e.g., to
tpke the log of a variable, the user punched an
"03" in card columns 10 and 11), 1In 1968, work
began on a new series of BMD programs, called
the P or parameter series, which identified
input parameters with English keywords.

The initlosl design of the widely used SPSS
system was begun in 1965, The publication and
wide distribution of the SPSS manual by a
commercial publisher in 1970 marks the beginning
of statistical packages as we know them today.
This manual put computing power in the hands of
a very wide audience; the design of the SPSS
system allowed even very computationally un~
sophisticated researchers to use {and abuse)

the systom,

Most statistical systems began in universities.
Some (SPSS, SAS, P~STAT, IDA) eventually went
commercial. Hardware manufacturers have had
little impact.

Fackaging

An important aspect of statistical software

is a strong emphasis on the packaging, Statis-
tical packages attempt to provide a total environ-
mont for data analysis, including data management,
vector {and sometimes matrix) arithmetic, graphics,
a coiiection of statistical procedures, and often
report writers,

The mathematical algovithms tend to be velatively
simple and a small psvt of the overall system.
Computing time for typical procedures (such as

least-squares regression) is often less than

the computing time for inputting the data. The
routines for output often occupy much more space
than the key computation routines, As an example,
LINPACK routines to do regression by the QR
decomposition, plus routines to call them, total
about 100 lines. Minitab's REGRESS command zun~
tains over 1,000 lines. The largest portions arve
for creating useful, rcadable printed output.

Portability

Most statistical packages ave portable to some
degree. (SAS, which runs only on large IBM
computers, is a notable exception.) Most

packages are undergoing active development, and
issue a release with major enhancements (some
of which permeate the entire system) avery yeaz
or two. Each release must be implemented on 5, i
10, or more brands of computers., Most go on {
mainframes such as IBM, €DC, UNIVAC, Burroughs,

Honeywell and DEC, and supermini's such ag VAX

and PRIME, BMDPF and Minitab also go on l6=-bit

ninis such as PDP~1l and HP-3 "0,

The major difficulties encountered in porting
these systems are: (a) their size, which fs
typically 100,000 lines of Fortran code and

1,000 subroutines, which pushes limits in linkage
editors and requires heavy overlaying on some
computers; and (b) the critical importance of

the speed of input and the size of output routines,
Neither of these problems are encountered in sub-
routine libraries,

The most primitive method of maintaining a (more
or less) portable package is to develop the
package on one computer and rely on conversion
centers to adapt the program to Geher computers.
Feedback from converters is used to improve
portability. This method is gtill used by SPSS,
A simple yet powerful way to handle portability
problems was developed by Roald Buhler for the
P~STAT system in 1971. Under his approach, a
master source is maintained with all versions
present. A simple selection preprocessor chooses
the appropriate version based on <uies in the
first few spaces of the linea, Thiz upproach
has also been successfully adopted by Minitab and
2 slightly modifiad version has been adopted by
BMDP and IMSL,

Interaction with Computer Science

The developers of statistical packages are

generally not computer scientists, but have
learnzd wozt of the computer science they know

"on the job". ‘ilie principal developers of some
packages (e.g., BMDP, SAS, Min'cab) are statis-
ticians, for others (e.g., SPSS) the developers .

are consumers; of statistics (social scientists
for SPSS). Some of the developers are involved
in statistical consulting (e.g., BMDP, Minitab),
and all packages get extensive feedback from
users, This has tended to encourage sensible,
realistic refinements and extensions to the
packages -~ but probably has focused effort near
the existing capabilities of the package rather
than on devslopments in totally different
directions.

Computer scientists have obviously influenced

the designs of the packages and the algorithms
included in them. Equally obvious to users is
that the influence has not been as great as it
should have been. TFor example, there are still
numerically unstable algorithms in packages, and
even more inefficient, brute force methods used
to prevent instability. One reason for the lack
of influence has been that statistical package
developers have often been forced to face problems
(e.g., in portability and user interface) before
computer scilentists were prepared to give answers.

e blle

4

po

statiaticw packags dovalopars should make wavh
mora uke of what cowputer sclentista know about
davelopment of reliable smoftware, about user
interface, abouwe digerare alporitlma, and wa on.
This process would ba saded iF more vomputer
goelonkiats studied some of tha Interesting prob-
loma facad by package developers. The most
foportant forvum for axchanpe of fdean {8 the

povien ol weetings, Computer Science and Statisticss

Annual Syaposium on the Interface,

Algerithm Banks
Informatiaon System for Mathemntieal Software

Knname Amano, Mpanks Chibn, Akenp Mochida »
and Tokaphi Moedn @

* Compul ing Centoer

e Dapnrtment of Engineering Seience

Mokkaida University, Sepporn 0603, Jepan

1y Introgoet fon
large nueber of algocithma have heen propobed

for acientific computstions and vome of them have
been jmproved subsecuently, Thewse are publiehed
in many publieations, and it ts nob ensy foe
genernl users to Find suitebles algortinme fov
theiv purpose, We dintend Yo prastruet on
information syatem for mothemat fenl software of
fine quality. Riee (1) pointed pul the strengthe
and wehknessen ot twa spprosches for user
interfoace with algovithmat one in the progeam
Yibraries and the othep s the extended syntoms
avatlable on on integral part of the proqramming
longunges. We present bere o baaie iden of an
ppproach of the foemer type based on an
intformation retrieval wmethod combined with some
petificinl intelligonce techniaues. A preliminecy
implementation ig nlso reported, It will support
the following steps in desighiog and proovamming
of problem solving by computera

+ setting up the prohlem i un appropeinte fotm

» designing the alaorithm

s PrOfrhmmIng

« debuaning aud exerutjon of the prooram

. analynin of the resulta
The rotrieval aystem chould deadl with the
following two kinda of informat fom

«information concerning individunl algovithm

+ information concerning n set of aloorithme Cov

poappeific purpose, This kind of information

will be useful for selecting o anitable one,

and 16 called algocithmie knawledoge in thin

POpLL.

2. Information Ropreseotntion of Algorithma

Aigorithma mhy exint In varioun Fotma, 1.0,, lood
modulea, shurre programs in widesprond dar thther
uncommon programming languages, natural laphuane
deseription with mathematical notation, ete, Onp
may need various kinda of information fov
ident ifying algorithmay e.q., bibliogrophde items,

specificat ion of functions. usag> of programs,
ptey Ooo of the twe altr inatives aust be chosen
to deneribe the Tunetion: the birat, precedursl
deneription by higher level langunnes op
voneceptunl deseriptfon by technical termap the
gecond, deseription with aevernl formata each for
a gpeeific problem field or deacription with a
pingle Tormat for all problem fielda. We ndopt
the ooacaptunl deseription with o aingle Formst,

The informaticn representation of individunal
algorithm conaista of the fallawing three types of
atiribute-vnlue net:

(1) bibliogrophic attribulies, {.e., the journal,
volume, number, page, year, title, authars,
v%nusxrivnlinn roden, keywords ond keyphrasea,

[\1 14

(%) Tunctional atteibutes, §.6,, the problem
tdomain, method, performbnce, ete, The
performance 14 eviduated hy CPU-time. number pff
operations, memory required, aceurscy,
robustnesn, ete,

(%) operational atteibutes, L,e,, the progromming
lonquage, uange of programs, teated or hot
teated, ote,

The valueg for thesa atteibutes are moatly the

technienl terms in aathemalicn »nd computer

BCLENCER Syntactic valen ave needed for

deapription sueh g trentwent of speeianl symbols,

taga, deaceiptors, atandord fovms, ete,

Thin information representntion achome con he
regarded ra n kind of indexing method for
algnpithma. Problem-orSented retpievnl hocomen
popsible to gome oxtent wven with usumd
informat fon retrioval methoda, fuat fl
wixed=fnitiotive dinlogue aystem will be wore
uselul for common usera, Then the ayatem should
denl with the following types of informntion oa
the nlgorithmie knowledge:
(1Y knowledge on terms, 1.0, the relntion of

ayhonyn, suparelnas and subelnss of torms,

ote, Short comments ore nlso useful to asaist

the uacra,
{2) higher level knowledoe

« muthemntical knowledare, for oxample mateix

invergion can he vegaeded an equivalent to

selving simultancous linebr ecantlons, ete,

« oempivien) knowledge, for exomple mateix

Inveraion may be avoided whenaver possible, ete,
It in posuible to paaist unera by prompting ot the
selective points with the algorithmie knowledqoe,
This ctn be implementecd by the ysunl informat jon
vetrioval metiowd combined with some artifieinl
intelligenee techoiques, any the production
aystem, ote, We con define the higher love)
knowledge s & mapping botween repreaentative
terma of functional attributes, Rice (2)
discuased the algorithm selection probiem and
proposed a mathemotical model with the problem
spnce (in gome cnses feature apr.o and eriterin
spuce nve alao considored), nlgorithm space and
performanee measure spase, Thear spaces may
corveapond te the above functional atteibutes,
fur information petrievn] method ts leas
mathematfeal and more empivienl,

3, A fibliographie Datnbese
As The Tirat atep of The development of our
pvitem, we have constructed a biblioorarhje

vatnbnse of CALGD (Collected ALGOrithms trom acm)
which fncluden cortifications and remarks for some
plgorithme, In CALGO, thepe nare tbree periods
charncterized by the atart of collection, the
clafim for quelity of each algorithe and offorts
far accopaibility to the collection. Some of the
proposed nlgorithms are fmproved subsequently by
remarky. The publicstion of CALGD in the
looge~leal form is an appronch to the
necessibility problem, An informaetipn retrievs!
npproach by computer will be more efficient to
thig problem. In our aystem, the certificstions
and remarks are morged into the originnl nlgorithm
to wenply the nugmented information. This
datnbnae i now available st the Hokknido
Univeisity Computing Centor with the retrievel
gyatem ORION (Online Retriever of InformatjON
whirk Is availsble on n HITAC computer). Fiq.l
shows nn exomple of the retrieval proresa,

K2 YRURLS VU PREF LA QWO BV BRI
ENTER YOUR REQUEST

1/ EIND SHIFa
14

% 17 snxrang
2/ EIND.LINEAR.IND. EQUATTONY
¥ E%« 29 L. INLAR
x 47 3/ EQUATION ¢ 2 TERHS COMBINED)
¥ V5 A4 LINEAR AND EQUATION®
5/ EIND QUERDETERMI! ED
¥ Ela 5/ OVERDﬁ%FRnlNED
6/ EIND.1.OND.3 .
* 3 7Te/ 1 AND Y
7/ RISELAY
ITEN 1
ALGORITHM 3208
REMARNG {

TITLE CHELYSHEY SOLUTION TO AN DVERDETERMINED

YEAR BJUNELDET AND 22NOV, 1967

AUTHORL RICHARD H, BARTELS AND GENE H,GOLU (COt
UNIVERBITY) STANFORD: CALIF . DA30N) ¥

ALVREWNIN MR AN | EAUNMED FLIITHICONTYN D MESLLEe
Fig.l An-exomple of retrievil of the dotnboas
{'ALGD

Some source progromn, thounh not tested yet, ape
atared on disks and ean be used online, Wo intend
ta conatruet p mixed=initiotive dielogue syntem
Ffor agome speeific ploblem fields an the geeond
step of the development,

3, Coneluding Remarka

¥e hove prosentod a basic idey of the informntjon
ayatem for mpthematical softwere, A large number
of quulity olgorithma are pow availeble bult ore
not utilized for mony users. The information
retrieval wpproach will be effective for
disseminotion problem of quality mnathemntical
sof'tware,

reforences

{1} J.R.Ricer The Distribulion and Sourcen of
Mathematical Softwave, in Mathemntical Software,
edited by J.RRice, Academic Press, 1971,

£2) J.R,Rice: The Algarithm Selection Problem, in
Advances in Computees, vol.l5, edited by
M.Rubinoff ot nl,, Academic Pross, 1976,

SOFTWARE MANAGEMENT
P, W, Gltf“‘}'

GComputar Sciences Division at,
Oak Ridge National Laboratory
Oak Ridge, Tennessea 3278)0

Tha purpose of this talk {u to deseribe two softwara
aids, calle/ NASTL and NIT,} thac have been developed
at Oak Riag¢ for manaving numerical softwara. As
part of our comprahensive wumerical software ser-
vica, we have acquired a lavge collection of qualdcy
routines from sources other than methematical
Iibraries. In ordar to avoid duplicating the
acquisition of A plece of aoftware and at the same
time provide users with information about existiog
sof tware, we have developed an fntecvactive data
hage ¢alled NASTI. This data base {8 managed by

tha Syatem 1022 Data Base Management System~ and

is avallable on our PDP~10 computer, The infor-
macion contained in NASTYI has baen dalibevately

kept to a mindmum. Thus, for each place of soft=
wirvae dascribed in NASTL, a computer user has aceess
to the following dquantities:

NAME = Name of the piace of software

PROBLEM =~ The problem area that the asoftware

is sulvable for, e,g., Partial

Diffavential Gquations

PURPOSE - A brief dascription of what the soft~
waprs pugports to do and some advice
on the recommanded usd

METHOD = The main numerical wmethods used

QRICIN = Tha aource uf the softwara

VERSION = A date which uaually signifies whew
the software was acquiraed

LOCATION =~ Tha lecation of the FORTRAN source
of tha software on our syatem

.

Thase quanticiaes way be regarded as keys which the
uaar may employ during a particular search sequence.
A dinssdvantaga of NASTT 45 that the language of the
1022 systom 18 clumay for the casual user, A
further disadvancage L8 chat gince the 1022 aystem
is nwot widaly available, NASTI is non-portable.
Howavir, NASTI 48 an agample of an aid which was
conatructad wiing exiscing facilitfes, and which
adequately assises in the management and ¢:ssemis
natton of dnformation about numerical sof twaru,

In opdor to provide users with advica on the sorvect
choica of a numarical routine for a pargleular
problem, we hava davalopad a numerical incaractive
trag called NIT. During a NIT session, a computer
user i asked cavtain questions in an attempt to
identify the parcleular routina or group of vou=
tinaes which are best sulted for solving the user's
problem, By vesponding to these questions, the

uiar is led affortleasly to a recommendation. At
preaant, NIT forms the bapis of a system which is
being developad for on~line documentation. Thus,
NIT has the capabllity of providing HELP files and
also gives sufficient information to enable a user
to incorporate the recommended aoftwara in a FORTRAN
program. Movoover, NIT also gives information on
how toe axecute this program on the various computers
avallable av Qak Ridge. Unlike NASTI, NIT is pore-
able, because it has been writtaeu to conform to

the PYORT? verifier. Thua, NIT may be ingtulled

on a variety of computers.

The talk will contain & brief description of NASTI
and an explanation of the development of NIT to-
gether with propnsed axtensivns.

L, W, Gaffney, J, W, Wooten, and K. A, Kessel,
UNIT = A Numerical Interactive Tree," ORNL/CSD/
TH‘139)

2"Syntu 1022 Data Base Management System,’' Soft-
ware House, Cambridge, MA 02138,

e PFORT Verifier," Software Practice and
Experience, 4 (1974), pp. 359377,

*Operated by Union Carbide Corporation under con-
cract W-7405-eng~26 with the U.S. Department of
Energy.

The Programming Environment's
Contribution to Program Robustness

W, Kahan
University of California
Berkeley

A robust program to solve a quadratic ax2 -

2bx + ¢ = 0 will conceal from ijts us%r any
over/underflow in the discriminant ¢ - ac
while revealing over/underflow just when a
calculated root lies out of ranga. In general,
robust programs conceal spurious exceptions from
their users while rendering faithfully thuse
exceptions pertinent to final results, If this
assertion characterizes program robustness
truly, then robustness is fipractical in most
programming environments and a challenging task
even in so favourable an environment as is
speciffed by tie proposed I1EEE standard for
floating point arithmetic.

A Hardware Unit for Decimal Arithmetic
with Controlled Precision

T.E. Hull, Department of Compycer Science
University of Toronto

Introduction

The main purpose of this paper 1s to describe briefly
the capabilities of an arithmetic unit called CADAC
(for Clean Arithmetic with Decimal Base and Control-
led Precision) which is currently being conatructed
[1] at the University of Toronto.

The uait is intended to support language facilities
(including exception handling, and programmer con-
trol of the precision and exporient range of the
operands, as well as of the operations performed on
the operands) such as have been advocated by the
author [see, e.g., 2]. Previous attempts to imple-
ment these ideas have been based on preprccessors,
which suffer from shortcomings in terms of both
flexibility and efficiency. The building of CADAC
is intended to provide hard data on what trade-offs
are involved if the basic ideas are supported by
the hardware.

10

It 18 intended that CADAC ba interfaced initfally
with a PDP-11/34, whose 1£-bit wordlength has
therefore influenced the design.

The language facilities

A explained in more detail elsewhere (see [2]) and
the references given there), the proposed languaga
facilities allow the programmer to specify separate-
lv the precisions of the operands (along with the
exponent ranges), and the precision (and exponent
range) of the operations to be performed on the
operands, There are two main ways in which the
programmer can take advantage of this capability:
(1) one is to be able to carry out intermedjate
stages of & calculation with a precision ani/or
exponent range that is higher than the operunds;
(2) the othex is to ba able to repeat a portion of
a calculation with higher and higher precision and/
or exponent range until some criterion (such as an
error requirement) is satisfied. The second capa-
bility is the more complicated; the program outline
gilven below (which illustrates the main features

of an algorithm for solving equations to within a
prescribed tolerance "tol') illustrates what we
have in mind.

float(8) root == precision 8, default exp.
== other declarations, etc.
== initialize precision

p=8
flug = true
while (flag = true & p s 32)
begin precision(p)
float(p) approximation

find approximate solution
find erroxr bound
if bound S tol
root = approximation
flag = falae
end if
end begin
p = pt4
end while

Number representation, arithmetic, exceptions

The first 16-bit wprd of a memor . location is
interpreted by CADAC as shown in the diagram shown
below:

sign § ‘I 1

extend X 10(exponent E) | 4 =—length L

The number of decimal digits in the normalized
significand 1s 2L+2, and they are to be found in
succeeding words, 4 per word, E is the excess-512
exponent, E = 0 is reserved for the value 0, un-
less S is negative, in which case the first 4 bits
of the next word are hexadecimal F, E, etc,, to re-
prasent "indeterminate", "not-yet-assigned", etc.
If X = 1 the format becomes "extended" and both
exponent and length, as well as the digits, are to
be found in subsequent words.

Properly rounded floating-point arithmetic is
carried out. It turned out to be relatively effi-
cient to work only with multiples of 2 decimal
digits, Other rounding modes are also provided, in
particular so that interval arithmetic can be
supported easily.

CADAC has a single accumulator, communicates with
ite host in DMA mode, and maintains an exception
status register for the host., A 3~stage pipeline
running at 10 Mhz handles 2~digit by 2-digit pairs,
and uultiplies two J2-digit numbers in about 30
microseconds,

Exceptions (including overflow, underflow, and
roundoff) are flagged. Wraparound results are left
after overflows and underflows, indeterminate after
zero~divide,

Cost

Two large boards are used, cach with close to 100
integrated circults, including a mixture of SSL up
to LSI, costing a total of about $4000 (Can,) for
the two hoards, Another few hundred dollars are
needed for the interface board, power supply,
cabinzt and cables. It is expected that the total
time required for the design, and for construction
of the prototype, will be about 2 man-years (Can.).

References

[1]) M. Cohen, V.C. Hamacher and T.E, Hull,
CADAC: An Arithmetic Unit for Clean Decimal
Arithmetic and Controllud Precision., IEEE
Fifth Symposium on Computer Arithmetic, Ann
Arbor, Michigan, May, 1981,

[2} T.E. Hull, Desirable Floating~Point Arithmetic
and Elementary Functions for Numerical Computa-
tion., Proceedings Conference on the Program-
ming Environment for Development of Numerical
Software, 96-99 (SIGNUM Newsletter 14, edited
by C.L, Lawson, 1979).

A Brief Guide o the Literature on Supercomputers

Myron Ginsberg
Computer Science Department
General Motors Research Laboratories
Warren, Michigan 48090

As 2-D and 3-D mathematisal models come closer
to r.flecting real-world behavior, there is a
substantial inerease in the number of
floating~-point operations which must be
performed as the grid ubructure is refined; for
example, doubling the number of grid points in a
2~D problem produces a Y4-fold increase in
computing and for a 3-D problem in Lime there is
a 16~fold increase. Machines in the emerging
class of supercomputers offer some alternatives
for parallel computakion in attempting to deal
effectively with such problems,

The bibliography given below provides a sampling
of references to the literature associated with
parallel algorithms (Ssction I), vecter
architecture (Section II), performance testing

e e A - L

11

{Section VI), and specific supercomputers such
as Cray Researcn's CRAY-l, (Seotion III),
Control Data's Cyber 200 Sepiea (Seation 1V),
and the recently cancelled Burpoughs Sclentific
Procaasor (Seation V). The author welcomes
readers to submit additional recent referunces
in any of the aforsmantioned areas.

The oral presentation will focus attention ¢n
point~by-point comparisons of the CRAY-1 and
Cyber 205, Emphasis will be placed on thise
attributes which directly affect the design and
implementation of mathematical software for such
supercomputers. Also; results will be presented
from a variety of performance studies involving
the CRAY-1, IBM 3033, and several other computer
systems,

I. Parallel Algorithms
1. Brent, R. P., "The Parallel
Evaluation of General Arithmetic
Expressiors," J. Assco. Comput.
Mach., Vol. 21, No. 2, 1974, pp.
201-206,

2. Chen, 8. C., D. J. Kuck, and A. H.
Sameh, "Practical Parallel Band
Triangular System Solvers," ACM
Trans. Math., Software, Vol, 4, No. 3,
September 1978, pp. 270-277.

3., Gajski, D. D., "Solving Banded
Triangular Systems on Pipelined
Machines," Proceedings 1979
International Conference on_Parallel
Processing, August 1979, pp. 308-319,

4, Heller, D., "A Survey of Parallel
Algorithms in Numerical Linear
Algebra," SIAM Review, Vol. 20, No.
, October 1978, pp., THO-TTT.

5. Kung, H. T., "The Structure of
Parallel Algorithms," Advances in
Computers, edited by M. C. Yovits,
Vol. 19, Academic Press, New York,
1980, p. 65-112.

6. Miranker, W. L. "Parallel Methods for
Solving Equations," Parallel
Computers - Parallel Mathematies -
Proceedings of the IMACS(AICA)-Gl
Symposium, aelited by M. Fellmeier,
North-Holland Publishing Company,
Amsterdam, 1977, pp. 9-15.

7. Miranker, W, "A Survey of Parallelism
in Numerical Analysis," SIAM Rsview,
Vol. 13, 1971, pp. 524-547.

8, Ortega, J. M. and R. G. Voigt,
Solution of Partial Differeéntial
Equations on Vector Computers, Report
No. 77-7, ICASE, NASA Langley
Reseaveh Center, Hampton, Virginia,
March 30, 1977; also in Proceedings
of the 1977 Army Numerical Analysis
and Computens Conference, U.S. Army
Research Office, Research Triangle
Park, North Carolina, March 1977, pp.
hr5-525.

ST TR

L

II.

9. Poole, W. G. and R. G. Voigt,
"Numerioal Algorithms for Farallal
and Veotor Computers: An Annotated
Bibliography," ACM Comput. Rev., Vol.
15, No. 10, October 1974, pp. 379-388.

10. Sameh, A. H.; "Numerical Parallel
Algorithms - A Survey," High Spesed
Computer and Algorithm Organization,
edited by D. J, Kuck, D, H. Lawrie,
and A, H. Sameh, Academic Press, New
York 1977, pp. 207-228,

11, Sameh, A+ H. and D. J. Kuck,
*paprallel Direat Linear System
Solvers - A Survey," Parallel
Computers - Parallel Mathematies -
Proceedings of the IMACS (AICA)-01,
Symposium, edited by M, Feilmeier,
North - Holland Publishing Company,
Amsterdam, 1977, pp 25-30.

12. Stone, H., S., "Parallel Tridiagenal
Equation Solvers," ACM Trans. Math.
Software, Vol. 1, No. I, December
1975, pp. 289-307.
TII.

Computer Architecture Considerations

1. Chen, T. C,, "Overlap and Pipeline
Processing,” Introduction to Computer
Arshitecture, edited by H. S. Stone,
Science Research Associates, Chicago,
Illinois, 1975, pp. 375-431.

2. Hallin, T. G, and M. J. Flynn,
"Pipelining of Arithmetic Funotions,"
IEEE Trans, Comput., Vol. C-21, 1972,
pp. 880-886,

3. Kozdrowicki, E. W. and D. J. Theis,
"Sadond Generation of Vector Super
Computers," IEEE Computer, Vol. 13,
No. 11, Novamher 1980, pp. 71-83.

4. Kueit, D. J., "A Survey of Parallel
Machine Organization and
Programming," ACM Comput. Survey,
Vol. 9, No. 1, 1977, pp. 29-59.

5. FKuek, D. J,, D. H. Lawrle, and A. H.
Sameh (eds.), High Speed Computer and

Algorithm Organization, Academic
Press, New York, 1977.

6. Llawrie, D, H., "Access and Alignment
of Data in an Array Processor," IEEE
Trans. Comput., Vol. C-25, No. 12,
1975, pp. 11451145,

7. Ramamoorthy, C. V. and H. F. Li,
"Pipeline Architecture," ACM Comput.
Survey, Vol. 9, No. 1, 1877, pp.
61-102.

12

8'

9,

10,

Cray

1,

Qe

3.

Rudsinski, L, and J, Worlton, The
Tmpagt of Secalap Performance on
Veotor and Parallel Processors,
Report LA-UR-T6-2656, Los Alamos
Seientific Laboratory; Los Alamos,
New Mexico, 1976 summary in High
Speed Computer and Algorithm
Organization, edited by D. J. Kuck,
D, H. Lawrie, and A. H. Sameh,
Academic Preas, New York, 1977, pp.
51-452,

Sugarman, R., "'Superpower!'
Computers,” IEEE Spectrum, Vol. 17,
No. 4, April 1080, PP. 28-3M.

Volgt, R. G., The Influenne of Vector
Computer Architecture on Numerical
Algorithms, Report No. 77-8, ICASE,
NASA Langley Research Center,
Hampton, Virgina, March 31, 1977;
also in High Speed Computer and
Algorithm Organization, edited by D.
J. Kuck, D. H. Lawrie, and A. H.

Sameh, Academic Press, New York,
1977, pp. 229-244,

Research's CRAY=~1

Ames, W. G., P. G. Buning, D. A.
Calahan, D. A. Orbits, and E. J,
Sesek, Sparse Matrix and Other
High-Pqpformance Algorithms for the
CRAY-1, SEL Report No. 124,

Department of Electrical and Computer
Engineering, Systems Engineering
Laboratory, University of Michigan,
fnn Arbor, Michigan, January 25, 1974.

Asprey, M. W., "Vectorization from a
Large Code Point of View,"
Proceedings of the 1978 LASL Workshop
on Vector and Parallel Progcessors,
compiled by B, L. Buzbee and J. F,
Morrison, Conference Proceedipgs
LA-TH91-C, Los Alamos Scientific
Laboratory, Los Alamos, Hew Mexico,
October 1978, pp. 16-40.

Buzbee, B. L., Implementation of
Algorithms on the CRAY-1l, report, Los
Alamos Seientific Labopratory, Los
Aamos, New Mexico August 1978,

Buzbee, B, L., G. H. Golub, and J, A,
Howall, "Vectorization for the CRAY-1
of Some Methods for Solving Elliptie
Difference Equations," High Speed
Computer and Algorithm Organization,
edited by D. J. Kuck, D. He Lawrie,
A. H. Sameh, Academic Press, New
York, 1977, pp. 265-271.

Calahan, D. A., "A Block-Oriented
Sparse Equation Solver for the
CRAY-1," Proe, 1979 International
Conference .:: Parallel Processing,
August 1979, pp.116-123,

e

64

T

8,

9.

10.

11.

12,

13.

14,

15.

16.

17.

Calahat, D, A., W, G, Ames, and E. J, Iv.
Sesek; A Collegtion of

Equation-Solving Codes fop the

CRAY~1, SEL Report No. 133,

Department of Eleotrical and Computer
Engineering, Systems Engineering

Laboratory, University of Michigan,

Ann Arbor, Michigan, August 1, 1979.

Cray Research, CRAY-1 Fortran (CFT)
Reference Manual, Publication No.
2240009 (Revision G) Cray Ressarch,
Ing., Mendota Heights, Minnesota, May
1980.

Cray Research, CRAY-1 Hap.ware
Reference Manual, Publication No.
2240004 (Revision E) Cray Research,
Inc., Mendota Heights, Minnesota, May
1980,

Cray Research, The CRAY-1S Series of

Computers, Publication No. 2240008D,
Cray Research, Inc., Mendota Heights,
Minnesota, 1980'

Cray Research, Scientific
Applications Package Handbook,
(Revision B), Cray Research, Ina.,
Mendota Heights, Minnesota, January
1981,

Higbie, L., "Applications of Vector
Processing," Computer Design, Vol.
17, No. 4, April 1978, pp. 139-145.

Higbie, L., Vectorization and
Ponveraion of Fortran Progran Progran 5 for
3he CRAY-1 (CFT) Cozpiler,
Publication No. 22 C°07, Cray
Research, Inc., Mendota Helghts,
‘Mipnesota, June 1979.

Johnson, P. M., "An Introduction to
Vector Processing," Computer Design,
Vol. 17, No. 2, February 1978, pp.
89-97.

Orbits, D. A, and D. A. Calahan, Data
Flow Considerations in Implementing a
Full Matrix Solver with Backing Store
on_the CRAY-1, Report No, 98, Systems
Engineering Laboratory, University of
Michigan, Anrn Arbor, Miochigan, 1976.

Petersen, W. P, "CRAY-1 Basic Linear
Algebra Subprograms for CFT Usage,"
Technical Note No. 2240208 Cray
Research, Inc. Minneapolls,
Minnesota, February 1979.

Russell, R. M., "The CRAY-l Computer
System," Communications of the ACM,
Vol. 21, No. 1, January 1978, pp.
63-72.

sites, R. L., "An Analysis of the
CRAY-1 Computer,! ACM_SIGARCH
Newsletter, Vol. 6, No. 7, April
1978, pp. 101-106.

13

Control Data's Cyber 200 Series

1. Control Data Corporation, CDC Cyber
00 Fortran Language 1.5 Reference
Manual for Use with CDC Cybar 200
Operating System 1.5, Revision "B,
Publications and Oraphics Division,
Control Data Corporgtion, Sunnyvale,
California; August 1980,

2. Control Data Corporation, CDC Cyber
200/Model 205 Computer System,
Publicaion No. 60256020 (Revision 1),
Control Data Corporation, St. Paul,
Minnesota, September 29, 1980,

3+ Control Data Corporation, CDC Cyber
200/Model 205 Technical Desuription,
Control Data Corporatioj,
Minneapolis, Minnesota, November 1980.

4., ‘Hoffman, D. E,, A Papameter Study of
a Vectorized Chebyshev Algorithm on
the CDC Cyber 203. Control Data
Corporation, Pelham, New York, April
1980.

5, Kascic, M. J., Jr., "A Direct
Poisson Solver on STAR," Proceedings
of the 1978 LASL Workshop on Vector
and Parallel Processors, compiled by
B, L. Buzbee and J. F. Morrison,.
Conference Proceedinga LA-7491-C, Los
Alamos Scientific Laboratory, Los
Alamos, New Mexico, October 1978, pp.
137-165.

6. Kascic, M. J,, Jr., Veotor Processing
on the Cyber 200, Control Data
Corporation, St. Paul Minnesotsa,
1979; also published in Infotech
State of the Art Report
"Supercomputers", November 1979 and
in Angewandte Informatik, January
1980, pp. 27-37.

7. Kasecic, M. J., Jr., Vector
Processsing: Problem or
Opportunity?, Control Data
Corporation, St. Paul, Minnesota,
1979; also published in IEEE COMPCON
180, November 1979.)

8. Lambiotte, J. J., Jr., Effect of
Virtual Memory on Efficient Solution
of Two Model Problems, Technical
Memorandum TM X-3512, NASA Langley
Research Center Hampton, Virginia,
1977,

9., Lambiotte, J. J., Jr. and R. G,
Voigt, "The Solution of Tridiagonal
Linear Systems on the CDC STAR-100
Computer," ACM Trans. Math. Software,
Vol. 1, No. §, December 1975, pp.
308-329.

10. Lincoln, N. R., "It's Really Not as
Much Fun Building a Supercomputer as
It Is Simply Inventing One," High

|

V.

11.

13,

lu .

15.

16.

17.

8peed Computer and Algorithm
Opganization, edited by D. J. Kuck,

D: H. Laurie, and A. H. Sameh,
Acrdemic Presa, Naw York, 1977, pps
3-11.

Lineoir, N, R., A_Safari through the
Control Data STAR-100 with Gun and

Camera, paper, Control Data
Corporation, Arden Hilla, Minnesota,
1978.

Mossberg, B+, An Informal Approach to
Nueber Crunching on the Cybar
2037205, Control Data Corporation,
Cyber 200 Support, RSMO2N, 1801 West
County Road H, Roseville, Minnesota
56113, March 1981,

Noor, A. K. and R. E. Fulton, "Impaot
of CDC STAR«100 Computaer on Finite
Elements Syatems," J, Styuck, Div,,
ASCE, Vol. 101, 1975, pp. 731-750,

Noor, A. K. and S, J. Havrtley,
vEvaluation of Element Stiffness
Matrices on CDC STAR-100 Computer,"
J. Comput. Structures, Vol. 9, No. 2,
1978, pp. 151-161.

Noor, A. K. and J. J. Lambiotte, Jr.,
"Finite Element Dynamic Analyals on
CDC STAR-100 Computer," Computers and
Structures, Vol. 10, No. 1, 1979, pp.
7-19.

Rothmund, H. J. and K. L, Murphy,
Programming Methodo for CDC Cyber
205 Vestor Progessor, Control Data
Corporation, St, Paul, Minnesota,
Auguat 1980,

Radhead, D. D,y AL We Chan, and S. G,
Hotovy, "Naw Approach to the 3-D
Transonic Flow Analysis Using the
STAR=100 Computer," AIAA Journal,
Vol. 27, No. 1, January 1979, pp.
98-99,

Burroughs Scientific Proocgasor

1.

r3

h,

Burrougha Corporation, Control
Program - Rurroughs Seientific
Processor, Burroughs Corporation,
Paoli, Pennsylvania, Novambew 1977.

Purrougha Corporation, Overview,
Parspective, Architecture - Burroughs
Seientific Processor, Burroughs
Corporation, Paoli, Pennsylvanin,
Februapy 1978,

Burroughs Corporation, Floating Point
Avithmetic - Burroughs Scientific
Processor, Burroughs Corporation,
Paoli, Pennaylvania, Decembaer 1978.

Burroughs Corporation, Implamentation
of Fortran - Burroughs Scientific
Processor, Burccugha Corporation,
Paoli, Pennsylvania, November 1977,

14

VI,

Re

6.

Jansen, €, "Taking Another Appreach

to Supercomputing,® Datamation, Vol.
24, No» 2, February 1978, pp. 189-172.

Stokes, T. A., "Bucroughs Sciantific
Procassor," High Spesd Computar and
Algorithm Qrganization, adited by D.
Jd, Kuok, De Hy Lawpie, and A, H.
Sameh, Academic Prass, New York,
1977, pps 85-69,

Some Parformance Testing and denchmark
Results

1.

5.

8.

Belay, D, L,, "Vecotorization of Blook
Kelaxation Techniques - Some
Numeprical Experiments," Ppoceadings
of the 1978 LASL Workshop on Vegtor
and Parallel Processora, compised by
B. L., Buzbae ahd J, F, Morrison,
Conference Procesdings LA-TH91-C, Los
Alamos Scientific Laboratory, Los
Alamos, New Mexico, Ootobar 1978, pp.
166-173.

Buey, R+ 8¢ wnd K. D, Senne,
tNonlinear Filtering Algorithms for
Parallel and Pipeline Machines,"

Parallel Computers - Parallel
Mathematics - Procesdings of the

IMACS (AICA) = GI, Symposium, edited
by M. Feilmeier, Noruii~ifoiland
Publighing Company, Amsterdam, 1977,
pps 90-97.

Calahan, D. A, W, N. Joy, and D, A.
Orbits, Preliminary Report on Rasults
of Matrix Benchmarks on Vestor
Progesasors, Raport No. 94, Syatems
Enginesring Laboratory, Department of
Eleatrical and Computer Engineering,
Univeraity of Michigan, Ann Arbor,
Michigan, May 1976.

Dongarra, J., Some LINPACK Timings on
the CRAY-1, Repert No, LA-T389-MS,
Los Alanos Scientific Laboratory, Los
Alamoa, New Mexico, June 1978,

Fong, K. and T, L. Jordon, “Some
Linear Algabrals Algorithms and Their
parformance on CRAY-1," High Speed

Computer and Algorithm Organization,
edited by D. J. Kuck, D. H. Lawrie,

and A. H. Sameh, Academic Praeas, New
York, 1977, pp. 313-316; alao Report
LA-BTTH, Los Alnmos Sclentific
Laboratory, Los Alamos, New Mexico,
June 1977.

Fornberg, B. "A Vactor Implementation
2f thbe Fast Fourier Tranaform

Aigorithm," Math. Comp., Vol. 36, No.
153, January 1981, pp. 189-191,

Gentzsoh, W., €. Weiland, and D.
Miller - Wichards, Possibilities and
Problams with the Application of

P

8,

9,

10.

1.

13.

1" -

15.

16.

Vag.or Compriers as Shown by the
Numerioal Processing of Several
Physioal Flow Problems, Rueport,
Gariman Research and Testing
Establishment for Aerospace (DFVLR),
April 2, 1980,

Hayes, A, H. o4d X, ¥, Buahop, 1&!,
Alames Scientifio Laboratory Computer

Benohmark Performance 1979, Report
LA-8689-M3, Los Alamos Sciantific
Laboratory, Los Alames, New Maxico,
Febpuary 1981,

Hertwack, F., W. Sohneider, and U.
Schwenn, Benchmark Tests with the
CRAY~1, IPP Report R/31, Max Planck
Instituta for Plasma Physlas, May
1979,

Jofferson, T. H, and M, R. Scott,
Megnflop Comparisons of Varlous
Computers, Report SAND80-2205, Sandia
National Lahoratories, Livarmore,
California, October 1980.

Rillough, J. B., "The Usa of Vector
Processors in Reservoir Simulation,*
Paper SPE 7673, presented at SPE-AIME
Fifth Symposium on Reservoir
Simulation, Denver, February 1979.

Mrosovsky, I., J. Y. Wong, and H. W,
Lamps, "Tha Conatruction of a Largs
Fleld Simulator on a Veotor
Computer," paper SPE 8330, presented
at the SPE-AIME 5S4th Annual Fall
Techniocal Conference and Exhibition,
Las Vegas, September 1979.

Nolen, J. S.y D. W. Kuba, and M. J.
¥ascia, Jr., "Application of Veator
Processors to the Solution of Finite
Diffarence Equations," Paper SPET675
presented at the SPE-AIME Fifth
Symposium opn Reservoir Simulation,
Denver, Febpuary 1979.

Rothmund, H., Implicit Navier-Stokes
Coda on the Cyber 203/205 Computer,

Control Data Corporation, June 6,
1980,

Rudsinski, L. and G. W. Pleper,
Evaluating Computer Program

Performance on the CRAY-1, Report
ANL-79-9, Applied Mathematios
Division, Argonne Naticnal
Laboratory, Argonne, Illinois,
January 1979.

Shang, J. S.. P, G. Buning, W. L.
Hankey, and M. C. Wirth, "Performance
of a Vestorizsa Three-Dimenaional
Navier-Stokes Zule on the CRAY-1
Computer," AIAA Journal, Vol. 18, No.
9, September 1980, pp. 1073-1079.

15

The Use of Ixtensible Languages
for Mathematical Software

A Cuse Study
L. M. Delves

Depavement of Computational & Sravistical Science
Universiry of Liverpool, Liverpool, England ;

}, What and Wh
GEM Z 18 a general program for the solution of
elliptic partial differential equations

“VA(XIVE(x) + B(X)E(x) + CE(x).VE = g(x) n

subjact to a variety of boundary conditions, over
arbitrary bounded or infinite ywo dimensional
regions, It was written in the extensibla lang-
uage Algol 68, and this ygaper outlines the advant-
agas of this approach. These depend strongly on
the ability within this language te define not
only new modes, but operators on these modes; and
to include absoluvely anything inside a structure,
and to dolivar absolutely anything as the result
of a procadure. ‘fhe advantages which accrue
includay K

a) Base of weiting. The program is wriften in
terms of objects: lines, elements, diffarential
equations, boundary conditions; which are natural
to the mathematicul prablem,

b) Ease of debugging., These same features make it
easy (well, easier) to locate and rémove bugs,

¢) Provision of a natural user interface is also
simplified; it 18 possible to let the user see the
highest level structures directly, and to provide
a convenient and natural language in which he can
describe his problem. We believe that GEM2 is
easier to use than any other PDE package; this is
achieved without any pre-~processor being required.

d) Extensibility, Equation (1) may represent a
single or a sat of coupled equations, with real or
complex (scalar or vector valued) functions

A. B, G, By f.

GEM2 is written in mode-independent form; the
underlying field is wepresented via a predefined
mode scal, the choice of this mode determining
the class of equations covered:

Class mode scal;
Single veal PDE real
Single complex PDE compl

re] real

Coupled real PDES
Tef [] compl

Coupled complex PDES

The body of the code is written in terms of the
mode seal} the four versions differ only in the
provision of a small (¢ 100 lines) prelude con~
taining declarations of the primitive data type
(e.g, mode scal = ref [] real and of a few
primitive operators on objects of these modes.
These features of GEM 2 offer an interesting

damonstration of the use of an extaensible

language in a non-txivial mathematical software
envivonment; we estimste that they have cut the
development costs by a factor of three to five.

2, How

GEM 2 implements the Global Element method [1,2);
that ia, the given region {a subdivided into (a
few) elements; these are mappad onto a gtandard
reglon (& square) and a bigh-order orthogonal
polynomial approximation used within each mapped
elemant, The objects required to implement the
method include sides (of eclements); elements;
maps; differential equation coefficients; differ=
ential equations; boundavy conditions., Each of
these has a corresponding mode declaration in
CEM 2, Sample (skeleton) mode declarations irclude:

mode sidefunc = struer (Unfon (proc (real) real,

pro¢ [] real, real) real) fune, ref [] real

params) ;

mode side = struet [1:3] real position, int

mode, [13:2} sidefunc shape);

mode element = struct (ref {) int side numbers,

variety of other stuff);

The effect of these declarations is that elements
are described in terms of their edges; and the
user has a fairly wide ¢holce of modes of deagrip-
tion of a side: Cartesian, polar, or parametrie
coordinates, with or without paramerers. As in-
dicated, the actual structures containa varlety of
other useful but move technical bits and picces;
we found it extremely useful during development to
be able to add another fiald to the defining
structure and have the appropriate infornation
propagate painlessly through the entire program.
Note also (for PASCAL addicts) that we keaep
procedures inside structures; we cannot imagine
writing GEM 2 without this Facillty., We also make
extremely free use of the ability ro generate
global space dynamically (the “heap"), Unions
("variant records") are used to yield a flexible
interface for the user.

*
r

16

3, HOW SUCCESSPUL (was the decision to use
Algol 0B)7 The answer to thir has three aspects:

Q Did it help implementatior? At We are totally
hooked.,

Q How about runtime efficiency? A: Depends on
your implementation; on our computer, (ICL [9068)
Algol 68 runn about as fast as FORTRAN,

Q How easy to use is GEM 2 really? A: Try to judge
from the following complate program.

W
Ty [
4 D
S 3y
\\@ w0
\ %‘_I_.D
Us @ ™~ " B2
@ (D U=0
F - A
F-o
Solve V2 U =0 in an L-shaped reglon with boundary

conditions as shown,

Usez program:

EEETEEEF§STEQ L shape; describe problem (L shape,
] »

real ab,be,ced,de,ed; read ((ab,be,cd,de));

af: = ab + ¢d; fa: = be + de;

peint {{newline, "ab be ¢d de", ab,bc,ed,de)):

{ 1 real origin: = (bc - £a, -ab.,0,0) 'c' global,

local origin at corner c f 'e';

point a = (fa,0.0), b = (fa,ab), ¢ = (fa - be,ad),

d = (fa - be, af), e = (0, ef), £ = (0,0,0,0);

Triangle (I, (5,6,7), fc;b,a), origin, 1,2/3,

false);
Triangle (2, (7,1,8), ¢,a,£, ovigin, 1,2/3, false);
Triangle (3, (8,2,Y),¢,f,e, origin, 1,2/3, false);
Triangle (4, (9,3,4), &,e,d, origin, 1,2/3, false);
Internal ((7,8,9)); Neumann (i1,3,4,5));

Dirienlet (6, constant 1.0);

Dirichlet (6, constant 0,0);

for n from 3 to 9 do

salve (n, 1,0,1,);

Tabulate (wneparams current value, nul) defunction,
6,6)

od

&

2w

R S i e uh A i

A Portable File System®

David R. Hanson

Deparinent of Computer Science, The University of Arizona
Tucson, Arizona 85721

1, Introduction

Inpuisoutput is one of the most machine-dependent aspects of pro-
gramming, especially for portable software. The large range ol i7o and
file system capabilities among existing computer systems makes it
extremely difficult to avold idiosyncratic problems in even the most
carefully enginecred portable systems, A typical sohwion to this
dilemma is to use the ‘standard’ i/o and file primitives defined in the
language in which the portable system is written {tan78] In Fortran,
for example, it is common practice to use only the forms of the 1/o
statements defined in the ANSI standard, and to use verifiers that aid
in the detection of non-standard constructs [ryd74]. Apother common
approach is 1o define u small set of relatively low-level ifo routines that
can be cusily implemented and can model the capabilitics of most com-
monly available file systems, By funnelling all /o through these rous
tines, portability problems are isolated in their machine-dependent
implementation, The software described in [ker76) is evidence of the
success of this approach,

A problem with these traditional approaches Is they invariably sacrifice
capability and efficiency for portability. Designs based on these
approaches tend to have only the Ylowest common deseminator* in
capubilities of the intended host systems, such as sequential ifa to char-
acter files of restricied names, Enhancements may of course he sdded,
but at the sxpense of an increase in implementation complexity and o
reduction in portability,

The heart of the problem with traditional approaches to portable i/o
systems lies in their attempt to manipulate highly machinc-dependent
objects~-host machine files and file numes, This paper describes a
portable file system that makes files and their names machine.
independent, The most importan® advantage of this approach s that
i/0 is not limited by the target systems, For exarple, capabilities such
as random access, multiple access, and automatic expansion of files,
which are absent in some commercial operating systems, are provided
by the portable file system,

The portable file system—PFs for short—is the combination of a port-
able file directory system (han80a, han81] and a portable i/0 system
[han80b). It provides machine-indcpendent files and file names, a

hierarchical directory structure in which to organize files, and a set of
directory manipulation and ifo primitives, The directory structure and
primitives are similar to the structure and primitives of the UNIX [rit74}
file system, The PFSs Is, in large part, a portadle implementution of the
UNIX file system, Jt is packaged as a sct of Ratfor [ker75) (and hence
Fortran) functions and subroutines, which is loaded with thu program
or system thut uses it. The implementation techniques are similar to
those used in uNIX {tho78]) and are described in (han80a] and [han8Cb).

2. Directorles

‘The directary structure in the PFS is a rooted tree struciure in which the
leaves are files or directories and the nodes are directories, A direcyavy
is simply a list of files and directories. The root ¢ "the tree is denoted
by /, and files and directories arc denoted by their *path’, which speci-
fies thelr absolute position in the tree,

A path is composed of the names of the nodes on the path from the
root to the desired file or directory, The path components are
séparated by slashes, c.g. /source/pfs/alloc.rat, The names '’ and ‘.’
refer, rernectively, to the directory jtaelf, and to its immediate ancestor,
These n, Yies may be used as path components, providing o explicit
means of using the structural properties of the tree. If a file name does
not begin with , it is taken to be rooted at the ‘current directory’, For
example, if the current directory is at /source/pfs, the name alloc.rat

17

refen to /source/pis/alloc.rat. Files and directorics nre equivalent
with the exception that directorics cannot be written by the user.

The primitives that deal exclusively with the directory £ . ycture sre
summarized in Table 1.

Table L. pFy Directory Primitives
thdir(name) change current directory to name
link{name1,namez) makea link to name1 named name2
mkdir(name) make & directory named name
rmdir{name) remoyve dircctory pamed name
stat(name,array) return information about file name

The current directory is chasged by chdir, link estabiishes ulternate
nismes for a file, Directories are created by mkdir and, once empty, are
deleted by rmdir. Information about a file for directory), such as its
size and date of creation, is returned by stat,

3, Primitives

A Pk file is similar to 3 file in uNIX and may be thought of as a finite
sequence of characters or bytes. The PES i3 insensitive to the range of
byte values, so it can neccommodate both *binary’ and ‘character’ files.
Primitives are provided to create, delete, and open files, and to read
and write characters anywhere within a file, Files are as Jarge as is
necessary to accemmodate what is written to them, but are otherwise
festureless. ‘The basic primitives are summarized in Table 1. Most
primitives return n value indicuting the success oy fiture of the apera-
tion,

Table 11, #Es 170 Primitives
fd = fopen(name,mode) open file name
{d = {create(name,mod3) creute and open file name
fclose(fd) close a file
n = fread(buffer,countfd) read from a file
n = fwrite(buffer,count,fd) wriie to a file
pos = fpos(offset,type,fd) position ‘i/o pointer’
fremove(name) delete file name

Existing files are op=ned for i/o by fopen, The argument name is the
name of the file and mode is READ, WRITE, READWRITE, or
APPEND and indicages *hovw' the file is to be accessed, 1f the file exists,
fopen returns a ‘file descriptor’, which may be thought of as a*handlc’
that is used to access an opened file, Descriptors are similar in copcept
to channel nurabers oy Fortran unit numbers. Their valtes are never
inspected explicily but asze passed to other primitives to indicate the
opened file on which they should operate,

New files arc created by fcreate, which creates the naned file and
opens it u3 if fopen had been called, 1fthe file already exists, it is trun-
cated to zeto length and opened,

Opened files are closed by felose(fd),

Data transfer to and from opeped files is performed by fread and
fwrite, fread reads “ip to count characters from the opened file indi-
cated by the file descriptor fd into buffer. It returns the number of
characters actually read, which may be 0 when the end of the file is
reached, fwrite writes count characters from buffer to the file indi-
cated by td. Writing beyond the current size of the file is permitted,
and the file is automatically ext#.ded to accommodate what is written
to it. For symmetry with fread, fwrite returns the number of charac-
ters actually written,

An ‘ifn pointer’ is associnted with ¢ich opened file and Is advanced by
fread and fwrite, It can be repositioned by fpos sccording to the
values of offset and type. If type is O, offset specifies 2 position rela-
tive to the beginning of the file; if type is 1, offset specifics a position
relative to the end of the file; and if type is 2, offset specifies a position
relative to the current positon of the file, fpos returns the previous
position of the file,

Files arc deleted by fremove, Deletion of opencd files and files with
aliases is permitted; the file is actually defcted upon the removal of the
last reference to it. After deletion, all space accupied for the file is
available for reuse,

e

Sy

4
-
:

4, Concluddom

The porsable Dile system provides s machinesindependent concept of
file and § o primitives that offer greater Nexbility than is found in
many operating systems. 1t is typically more efficient than the wade
tional approaches to portable 1.0 systems. bor example, measues
taents o w I3EC0 and Cyber 128 show g 25438 percentimprovement
over Fortran i o for sequential character fifes.

Perhaps the best charactorization of FIS 18 an abstract data type Hite®.
It provides o data stroeture, file, nnd a set of operations on that

stiructure. This characterization clarifies the important difference
between the 118 approach and traditional approaches, which attetapt
te provide o et of operations on unspecified and highly maching.
dependent data structures host inachine files

References

[hanB0a}
Hansan, D R A Portable e Directory System, Sofinare - Practice &
Fapenence 10, 8 (Aug. 1980}, 623634

[han80b))
Tanson, 1. R A Portable Input Output System, Tech. Report 29-1%,
l’qtéijl of Computer Science, The Umversity of Anzona, Tucson, Nov.
!

[hanBi}
Hanson, 53 R Algonthm $68. PDS A Portable Directory System,
ACM TOPLAS L, 2(Apr. 1981), [62:167.

[ker?5)
Kernghan, B W Ratfor A Preprocessor for a Ratie:al Fortran,
Software Practue & Puperience $,4 (Dec. 1975), 196-406.
{ker?6) ,
Kermighat, B W and Plauger, P J. Software Toods, Addison-Wesley,
Reading, MA. 1976,
[rit24}
Ritghie, D. M. and Thompson, K. The UNIX Tumesharng System,
Comm. ACM 1%, 6(Jul. 1973), 365.078

fryd™]
Ryder, B G The PEORT Venlien, Sofbwire - Practive amd Experience 4,
4 (Dee. 1974),389.372.

[tan78] .
Tannenbatm, A 8., Khint, P und Bolun, W. Gudehnes {or Program Por-
tatulity, Software Practice and Fxperience 8, 6 {Nov. 1978), 681-698.

[tha?8)
Thompsan, K UNIX Implementation, Bell Sustenm Tech J 82, 6 (Jul.
1978), 19311946

"This work was i\}i\pur\cd by the National Science Foundation under Grant MUS.
T80284%

TOOLPACK~ A Collestion of
Tools for Mathematical Software*

. Laon Osterwell
fugartment of Computor Sclence
Unjversity of Colorado at Boulder
Boulder, Colorade 80309

Intyoduction

TOOLPACK 18 a cooperative prugecc involvin

researchers at Argonne National Laboratories, Bel

Telephone Laboratories, International Mathematical
and Statistical Libraries, 1Ire., Jet Propulsion
Laboratory, Numarical Algorithms Group, Ltd., Pur<
due Unive:sit{. Univers tg of California at Santa
Barbara and University of lolorado. The project
is being funded by the Dept. of Enargx and the
National Science Foundation, as well as the parti-
cipating institutionsd. T00LBACK has as its objee-
tive the conveyance of strong comprehensive tool
support to programmers who are writing, testing,
transporting or anulgzing mathematical "software.
Hence it must provide strong support for documen-
tation, testing, and verification, as well as such
code creation activities as editing.

e = e e et A

18

A wida variatx of tools will ba buflt and adapted
to uueport these activities. It is expected that
those tools will be distributed as s{and-a one
antities. Thera i, howzvn. conwiderable

and sentiment in favor of creating an integrated
collection of the tools as P

prasents a briefl overview of the ul‘n of _and
B busnReS 8 aREERSELT (hon. (Bite" 81]" Unevein
3 . U1 herein
add1tional dacatls can be founds i

Kafore commencing with deseription of the design,
t 4 Important to enunciate the following basie
amsumptions:

1+ The mathematical software whose wrh:ln* test=

ing, and analysis {s to be nugpottnd by doLPACK

38 to ha writtun in s dialect of Fortran 77, which

shall be carvefully chosen to span the neads of a»

2.‘.‘{“‘ and numerous a4 user community as {s practi=
’)

2. TOOLPACY. is to be desfzried to provide cost
effactive support for ;hg productign by up to 3

rograme=ers of programs whose length iz up to 5000
in§s of nnc:cepugca TOQLPACK ngy he h‘;a effec~
tive in supporciug larger projects,

3. TOOLPACK i# to be deaigned to Lrovide cost
effective support for the analyul and _tragsport-
ing of program whose length 18 up to 10,000 lines
of source text. TOULFACK may b2 less effactive In
supporting larger projects.

4, TOOLPACK will support users work1n§ in either
bateh or interactive mode, but may ofler stronger
more rlexible support to interactive users.

Av Overview

A primary mo:ivuc;;g goal of the TODLPACK
integrated taol c¢ollectfion design is thar user
nuprorc be uupglied in as direct and painless a
fashion as 1+ faasible. In particular, the design
nttemyey o relieve the user of having to under
stand thp natures and idiosyncrasies of individual
TOOLPACK tools: It also relieves the user ol the
burden of havinﬁ to combine or coordinate these
tools. Instead the design encourages the user to
express his needs in terms _of the requirements of
his own software job, The TOOLPACK -upgorc system
{8 designed to then ascertain which tools are
neccasnr¥. properly configure those tools. and
resent the results of using the tools to the user
n a copvenlent form.

The design encouragcn the user to think of TO0L~
PACK as an energetle, reasonably bright assistant
cagablc of answering questions, performing menial
but onerous tasks and storlng and retrieving
imaorcauc bodies of data, The aim of this 18 to
make humans more affective in creating, document=
ing, testing and verifying program code,

In order to reach thia view, the user should think
of TOOLPACK as a vehicle for awtablishing and
maintaining a file system containing all infotma-
tion dimportant to ~the user, and usping that file
gystem to both furnish input to needed tools and
cngcuré the output of those tools. Clearly, such
a Iile system I8 pocantiallz quite large and is (o
contain “a diversity of stored entitles, Source
code modules would certainly veside in the file
system, but #o would such more arcane entities as
token lists, and flowgraph annotations. In order
to keeg TIOLBACK®s user image as wtraightforward
as possible the design proposes that wmost file
system management be done automatically and inter-
nally to the TOOLPACK system, out of the s%th and
sphere of responeibility of the user, Ve user
may ereate, delete, alter and rename these enti-
ties. The user may, however, also manipulate
these entities with a set of commands which selec-
tively and avtumatically configure and actuate the
TOOLPACK tool ensemble.” The commands are designed
to be easy to understand and use. They borrow
haavily on the cnrminologx used by programmers in
creatihg and testing code, and conceal the some-
times considerable tool mechanisms needed to
effect the results desired by tha user.

B, User Viwible File System Entities

In apder to unccurngc and facilitata the preceding
view of TOOLPACK, the system will support the nam
ing, storage, retrieval) nditinf and uanlﬁulutlon
of the following elaused of entitcea, which should
he considered to be the hasi- objecte of TUILPACK:

1. Program units:

A rwiILPACK prograsm unit {(FU) is the same 43 & For=
tran program unit, except that TILPACK will
rc?uizu & number of representations of the prograa
uait other than the =sourcs rode (e.g.; the
corraspunding token list and parse trae).

e« bDrecution Units:

Any set of TOULPACK program units which the usasr
chioges ro designate, can be grouped into & TOUL~
PACK execution uait (Be).

3+ Tost Dara Collections:

A TeOLPACR test date collection (TNC) Is 2 collec-
tion of test dats sets to be used in exsrcising
ong or more TJOLPACK execution units.

4. Options Packets:

A TOOLPACK optiong pscket (OP) 1s a set of diree~
tives specifying which of the nan{ anticigutcd
options are to be in force for & particulsr 1nvo-
rabion of a particulay TOOLPACK tool.

£+ The TOOLPACK Command Language

The exact syntax for the TOOLPACK integrated tool
enllection ~ command language has not been

cstablished and {s still undar setudy. Lurxent1¥
we are in a position, however, to specify much o
the semantic content of this language.

The proposed TODLPACK command set reams to divide
logically into four parta: file system management
cormands, edit (synthesis) commands, tool gpglicn-
tion (analysis) commands, and perusal commands.

1, File System Manipulation

These will facilitate che creation, deletion
renaming ani general maintenance of TOOLPACK
{len,

2y Edit (synthesis)

These commands would summon speclsl purpose edi-
tors designed to facilitate the manipulation,
examination and alteration of the contents of the
various TOOLPACK file system antities.

3. Tool Invocation (Anslysis)

These commands invoke the funetions which are at
the heart of the reason for the TOOLPACK project =~
namely the facilitation of documentation, testing,
verification, transportation, and sourge program
entry. Consequently, great pains are baing taken
to make them aasy to understand and uses 1In an
important sense, the rest of the TOOLPACK _command
language has been denigned s0 as to make these
tool in vcatic.a straightforward.

»« FORMAT
Invocation of this command causes a named grogtam
unit to be taken as input to the TOOLPACK formate
ting tool.

b. STRUCTURE

Invocation of this command causes & named program
wnit to be raken as input to the TOOLPACK struc-

turer.

¢« ANALYZE
Invocation of this command results in the static
analysis of the entity named. If the enticxliabg

program unit, then single unit analysis wi
performeds f the entity is an execution unit

then each program unit’ will bhe analyze

19

individually and integratfon analyafs will alsc be
performad,

An options Euckct nay be specified by the user.
This_ packet will ‘enable the user to specify a
level of tharougkness which will c¢ause analydis to

o & ar as the laxical level the syntmctic
evel; the static semantic level or the data flow
lavels Y€ this specificat{ion s omitted, the
TOOLPACK #, stem will select a default option
{probably full Jdata flow analysis).

The results of this analysis will be placed into
an_ entity~attribute-relational data base wliich
will then be available for perusal by a browsing
subsystes or for use as the basis for repart gen=
eratlon tools whose goal would be the creation of
superior documentation.

d« EXECUTE TEST

Invocation of this command results ir the dynamic
test exacution of a collection of tast data sets
by a4 specified sxecubtion unit, The test data sets
conpr&ning the test dats collectinn are fed into
the execution module derived {rom the executian
unit one at a time, with the results of each axe=»
cution being used to bulld an_ execurion histery
data base, This data base would be used to supply
ansvers to user-posed questions as well as reports
needed for documentation purposes.

The user may optionally specify a test options
packet whose purpose’ ix to “select and specify
which of the numerous execution monitoring optiong
are to be umgloyud during the test runs. The
fower and flexibility of the dynamic test wonitor-

ng #ystem 4i# to be considerable (sse [Feidb 81]),
Thig is deemed to be ne¢cessary, but is also con-
siderad to be a sericus problem, in that a casual
oF novice usar may be intimidated by the variety
of available choices. llence it is Eropoled'thac a
set of standard Test Optior Packets (TOP®4) be
gre ared by the builders of tha dynamic test moni~
oring u{stcm and stored permnneutl{ in the TOOL-
PACK "file wsystem, LUsera could select from among
thage, tailor them to Individual needs by usirF
the TOP aditor, or create their own TOP®s frou
seratehs One of the standard TOP®s would be con-
figurad to be the default TOP, anabling the user
to do useful d{namic testing without needing to
specify any TOP.

4 Porusal

TOOLPACK will ultimately contain tools to facili-
tate the examination "of the varlous entitfies in
the TOOLPACK file gystem. This abstract has
alrund¥ mentioned varions ageclnl purfoue editora,
part of whose purpose will be to facilitate exami-
nation of the wuser-named file

Xe.giffche PU source ccxhi EU®g, OP°% and

TDC®8) .
arent sort of too

18 desirable for use in
gezusing the output of the static analysis and
ynamie testing tools. As nlready aoted, these
tools will produce as output sets of analytic and
diagnostic ackets which are most profitably
viewed sg relational data bases. Tools for effec~
tively browsing these data bases could ba specifi-
cally constructed to efficiently scan these data
hases for answers to éxgeccad queries. Exisking
text aditors will probably serve as Erimitive
%gﬁggxgacra of these tools in early releases of
1 +

D. Iuplementation Plans and Schedule

The TOOLBACK 1n§§§rated tool

collection is
scheduled for p

ic release ip Jnnuarxé 1983,

Preliminary releasos to test sites will take place
during 1982, Individual tools will be made avail-
able Intermittently.
REFERENCES
[Feib 381} J. Feiber, R. N. Taylor, L. J.
Osterwell, "Newton-~A “Dynamic Pro-
gram Anaiiaisw Tool Cnpubiliﬁiea
ecifieation,” Tech. Report #CU-
C5~200~81, Dept, of Computer Sci~
ence, Unilversity of Colo., Boulder,

Colo.

A it

L

L

[Oute 81] L. Js Osterwefl, “Drgft TOOLPACK
Arehitectural Design tnchnical
memorandum, Univetli ¥ of Colorade
at ulder Dgg puter Sci=
ence March 1981; nvni able from

Apl tled Mathematics Div., Argonne
Natlonal Lab,, Argonne, 11l.

*#This work #u her
M0 E an t BBE” S 2 ne BYmben DE-AROI BORRIOI S,

S0FTO0L 80
A METHODOLOGY AND
INTEGRATED COLLECTION OF TOOLS
FOR BOFTHARE MANAGEMENT, DEVELOPMENT,
AND MAINTENANCE

by

EDWARD MEHLSCHAU
SOFTOOL CORPORATION
340 SOUTH KELLOGG AVE,
COLETA, CALLF, 93117

SOFTOOL 80" is & methodolopy and an integrataed
collection of tools that addresses the entire
software development process. Release T of
SOFTOOL 80" addressas the programwing phage of
goftware development ‘that ic, the portion of the
software development 1ife cycle that begins afner
a detalled dasign document has bean genersted and
continues to the peint whers a couplete, deliver~
able software product has baen produced),
Fortheoming relesses of SOFTOOL 80" addrese the
remaining portions of the software life cycle.
Thia paper outlines a subset of SOFTUOL 80"
Release I that provides a powerful environment
for the development of mathemstical software,

SELECTED TOOLS
The AUDITOR;

The AUDITOR is # softwaze product thet automati-
cally documents Fortran programs for deviations
from a user-defined standard, poor programming
practices, and non-portable ceda,

The American National Standards Institute (ANSIL)
definition of Fortran is used by the AUDITOR as a
baseline ox default standard, A user can defin
any standard desired by instructing the AUDITOR
to allow extensions to the ANSI definition. The
AUDITOR incorporaties a powerful compile-time
diagnostic capability equal or superior to that
of the besat commercial compilers. The messages
generated can be classified into six categories:

1. Error Messages -~ definite violations of
the standard,

2, Warning Messages -~ potential violations
of the standard.

3. Portability Messages -~ program
transferability problems.

20

he Documantstion MeNsages == proge
documentation,

5. Confirmation Measages == compietion of
anslysis indication.

6. System Magdages =~ internal systen
information.

The INSTRUMENTERS:

Under §°PTOOL 80", Fortran progrems are instrue
mentaed for thres diﬁforanc purpusest tracing,
testing, and optimization, The TRACING INSTRUMENTERS
generate profiles thac indicate the levols (l.e.,
routine, wtatemant) and the path traversad by tha

program flow of control during execution, The
TESTXNG INSTRUMENTERS generate profiles that
indicate the coverage and effectiveness of tast
runs, The OPTIMIZATION INSRTRUMENTERS venerate
profileas that pinpoint the wost tise ~ensuming
wwstiong of code in a system,

The INTERFACK DOCUMENTER:

The purpose of the INTERFACE DOCUMENTER ig to
gengrate claar, up~-t-~date, and conplete docuw
mentation of all interfaces betwean objact modules.
Reports produced include:

1. A complete cross reference of all symbols
defined or referanced in the object
modules which ware input to the tool,

2, A list of all symbols xeferencaed but
not includad in the modules input to
the tocl for enalysis,

3. A list of all symbols not referenced by
any of the modulas procassed by the tool.

4y A summary of the interconnsctions and the
lengths of all the object modules processed
by the tool,

5, A susmary of all recursion that occured in
the modules input to the tool,

6. Two optional reports known as explosion
and implesion. Explosion displays the
hierarchical structure of all symbols
referenced, directly or indirectly, by a
user specified symbol. In other words,
explosion dieplays the subsystem referenced
by the specified symbol, Implosion, on the
other hand, shows the hierarchical structure
of all symbols that reference the given
symbol,

The PRODUCTIVITY LIBRARY:

The PRODUCTIVITY LIBRARY allows the user to
interactively define high level daca structures
and provides a set of primitives for manipulating
and searching the defined data structures from
the user program. Range checking and dynamic
flow analysis can also be specified for the user~
defined data structures, With range checking the
uger may specify values that data structure iltems
are allowed to assume. Dynamic flow analysis
allows the user to specify allowable flow transi-
tions for a given item in a data structure.

|

SUMMARY

The objactive of this paper is to outline a subsat
of the tools available under LOFTOOL BO"

Relense I. These tools act as a fine sieve,
forming an environment for the davelopment of
mathematical software that elimindtes a large
class of potential problems. Thege problams
would otherwise manifest themselves at a later
time as "bugs",

The tools available uuder SOFTOOL 80" Release I
that were not described in thie paper include:

. short-~hand language

* structured langurle

» source cody documenters
« dynamic memory managexs
« tutorials

A Sipport Environment for Software Tools
Fred T, Krogh and W, Van Snyder
Jet Propulsion Laboratory

1. Introduction.

We summarize here a support environment useful
for the development of software tools, described
more fully in [1]). There are five components:
1/0 Primitives, filing system, working storage
manager, symbol table manager and lexer / par-
ser. The working storage manager, filing system
and 1/0 primitives collaborate to provide a seg-
mented virtually addressable storage access
method similar to the Multics environment: a
user program can

"directly address Jjust those fitems fit
needs from the extepsive on-line data
files, so that euch reference to such
jtems can {in the 1logical sense) be a
single operation. The actual reference
need not be preceded by an input/output
system request to input a (partial copy of
the) file, nor be followed by an input /
output system request to cutput the alter-
ed information to its original location.”

(2]

2. 1/0 Primitives.

The primary function of the 1/0 primitivey is to
provide a transportable and efficient interface
to the idiosyncrasies of various operating sys-
tems. Software tools require serwices provided
by sequential character input and putput devices
such as keyboards and printers, dnd sequential
and direct access storage devices.

21

To provide efficiency, access to sequential
storage deviceas is asynchronous and double buf-
fered; the details of the provision of such ef-
ficiency are hidden inside the primitives charg-
ed with providing such functions. Operating
system services providing synchronous and asyn-
chronous access to direct access storage devi-
ces, and services reguired for synchronization
of the primitives with operation of the devices
are used to provide efficient direct access.

3, Filing System.

The filing system is responsible for storing and
organizing representations of program units, and
tables required by higher level tools. The fil-
ing system allows the user to express relations
between objects. The user, for example, is al-
lowed {encouraged!) to declare that a program
consists of a related collection of subprograms,
etc. The operating environment of the filing
system is provided by the I/0 primitives and the
working storage manager.

A simple model of the filing system is a road
map (of one way roads), An object is accessed
by specifying an ordered list of "roads" to be
traversed to proceed from a standard starting
place to the desired object. A collection of
objects is denoted by a path to some part of the
road map from which the collection, but only the
collection, may be reached, The road map s
represented &3 a directed graph. Roads are rep-
resented by edges in the graph. Intersections
of roads, and objects in the filing system, are
represented by vertices in the graph.

4. Working Storage Manager.

The working storage manager operates in the en-
vironment provided by the 1/0 primitives and the
filing system, and in turn provides important
features of the environment needed by those
tools. The primary function of the working
storage manager is to provide space to other
tools, and recover that space when it is no
longer needed. Any significant restriction of
the amount of space available to a high level
tool 1is not acceptable. The working storage
manager s therefore also responsible for
providing the i{llusion of unlimited storage
capacity.

Providing the illusion of unlimited storage cap-
acity is usually accomplished by the use cof a
heirarchical storage system, where frequently
used data are retained in main storage, and in~
frequently used data are retained on secondary
storage, There is a correspondence between ad-
dressing spaces managed by the working storage
manager, and objects in the filing system. The
filing system is used for the secondary storage
medium required to provide the illusion of un-
limited storage capacity. In return, informa-
tion in the filing system is accessed as though
it were stored in the main memory, rather than
by the direct use of I/0 primitives. This mech-
anism imposes very little overhead.

Tt PG

¥

5. Symbol Table Manager,

The symbol table is logically divided into three
parts: a local symhol table for ecach program
unit, deseribing loeal characteristics of vars
fables, constants, labels, control structuves
and other objects; a olobal symbal able for
each program unit and collection of program
units describing interface {information for each
program unit and the relations between caﬂinq
and called subprograms: and a lanquane symho
table describing such objects as keywords, in-
trinsic functions, and spelled operators.

Access to abjects in the symbol tables is previs
ded by functions, which should be expanded in
tine rather than called, These functions assume
the object to be accessed is in malp memory - an
illusion provided by the working storage manager.

6, Lexer/Parser,

The lexer and parser are usually assumed to be
soparate tools. But a Fortran lexer may be made
signif fcantly simpler if the parser 1s available
to give 1t advice, The integration of the lexor
and parser does not mpose an unbearahble storage
penalty on applications needing only lexical
analysis,

The lexer / parser is controlled by tables,
stored in the standavd filing system, and ac¢es-
sed by the working storage manager. This allows
ane lexer / parser to accept several dialeets of
Fortran, preprocessor dialects. or compands, de-
pcianding on the tables used to contrpl its opera-
tion.

AN input teo and output from the lexer / parser
is accomplished by the working storage manager,
IT the source text is not an object in the £1i1-
ing system, the working storage manager provides
the {llusion that it 1s, At the conglusion of
analysis, the source text may be retained in the
filing system {f desired, even if L was not
originally an objeet in the filing system, Al
other products of the analysis may also be stors
ed in the filing system as desired.

7. References.

1. Fred T, Krogh, W. Van Snyder, Section 366
Computing Memorandum 476, Jet Propulsion
Laboratory (May 1981).

2. El1liott 1. Organick, "The Multics System:
An Examipation of its Structure,* MIT
Press, Cambridge, MA (1972) p 1.

This work represents the results of one phase of
research carried out at the Jet Propulsinn
Laboratory, California Institute of Technology,
under contract No. NAS 7-100, sponsored by the
National Aeronautics and Space Administration.

A Method for Constructing Preprocessors

Paniel 1, Boley, William D, Gropp, and
Marvin M, Theimer

Muny programming apd command lanpuapes provide
only linnited feawnres and painfol user-intetfices (e,
Fortran ated JCL), Preprocessars ate proptams that can
extend and reformat such lansuages using transkation
techniques akin o compilers. ‘They can be valuable tools
in the development of mathematical sollware, However,
whiting @ preprocessor can be 0 ime consuming sk,

We pesent o method for quickly construeting a
preprocessor from g Rovmal deseription of the lanpuage to
be transhuted. We first dispuss the propertios (o expect
from a peod preprocessor, We then deseribe how we
wsed custing techniques to achieve these poals, We
present an esample of o FORIRAN preprocessor
constrieted by owr system,

A goad preprogessar should have the following poperties,
= 1t must be asy to write the preprocessor correctly,
and it should perform reasonably elfiviently,

» Fiar recovery and teporting should be pat of the
formalism whete possible, pot just omaddendun,

= 1t should be easy o modify 1w lopuage accepted by
the preprocessor,

= There must be the capability to escape baek to the
hase lainpuage,

o The prepracessor will have o e portable,

< Phe penerated - ouiput code shoold be reasomably
efficient and readable,

To achieve these poals, we nwke the following
recomenddations, First, o pseudo-compiler approach
should be wken. This provides o modular framewark
elmploying a seanner module to tecopnize input 1okens ar
symbals, a parser module to recopnize the syntax of the
language, a semantic packape to penerate the desired
output, and an error package w handle errar recovery.

Second, the input anguage should be formally specified
using b osyntax gramntar with attached semantic actions,
This provides a concise, easily modifiable description of
the language which fits nicely into the pseudo-compiler
approach,

Third, the above choices vlong with the type ol cap-
abalities usually desived imply that the most difficult parts
of the preprocessor van be written using well-established
tools and techniques.

Finally, use the simplest approach possible, Unless
available as a package, a more powerful technique may
yield very little advantage,

As an example of an actual implementation of these ideas
we present the choices made for our implementation of an
extended Ratfor preprocessor for Fortran,

Sconnet:

Our scanner is "hand-bullt”, We considered using a
scapner gencrator package to automatically generate a
scanner routing; however, n suitable package was not
oasily available. Since most preprocessor scanners are
very simple, it s often teue that a »=.d-built version is
sufficient and can be constructed quickly.

Parser;

A tablesdriven parser was built, This kind of parser is
small, fast, and allows easy modification of the input
‘;mmmnr. Of the two main techniques in use (L1, and
R) we chose the less powerful LL one. The reasons for
this were that an L1, parser is easier to create and makes
certain types of error recovery easier, The fact that this
techuique cannot bandte as large a class of languages ay
LR was of no real concern since it can handle the type of
input languages that most preprocessors are oriented
towards,

Semantic package:

This section of the preprocessor was again hasd-tailored
10 the application, 'This is primarily because we know of
no pragtical technique which allows a formalization of this
arca, However, by using a scheme of grammar attached
semantic actions, it i possiblz to divide up the tasks of the
semantic package Into smntl, manageable pieces,

Error package:

By using an L1, parsing technique it is possible to
autonutically deteet, report, and recover from syntactic
crrors inan input program, Unfortunately, semantic
errors in & progioni niust still be handied in an ad-hoc
fashion (this is also true for pa LR parser),

In summary, our basic attitude was to follow a pseudo-
compiler approach using whatever tools or techniques
were available or easy (o implement,

Currently we have an oxtended version of the original
Ratfor preprocessor of Kernighan and Plavger
implemented using our approach, The final version will
include the following extensions:

= data structurey, foremost of which are records and
varfable-origin arrays.

» an output code format that Is as readable as possible,
- various specinl operators, Including arcay-based
operators,

- exceution time profiler to allow eusy invocation of
timing statements,

= free<format 12Q.

Some other preprocessors that could be constructed with
this method are: 4

- o preprocessor for the 1BM VM operating system
command fanguage.

= PDE language on top of Foriran, For example, this
fanguage could be ariented townrds convenient
specification of mesh refinement programs,

< an amay lenguage, perhaps oriented toward
optimizing code protuced for & specific vector machine,
(Preprocessed constructs allow Tor painless insertion of
assembly-level language,)

= a front-end interface for large mathematical software
packages.

A Mutation Analysis of Numerical Software

M«A.Hennell, I.J.Riddell and M, R.Woodward
Dept, Conputational & Statistical Science
University of Liverpool
Liverpool L69 JDX, U.X.

One convinelng way to demonatrate that a
partisular program contains no errors s
to generate systematically all the poasibilitien
and then demonstrate that the test data
can detect them alll A more realistic
approach in advocated by De Millo {1] who
han constrycted an interpretive system to
generate many slmple errors, e.g. frrors
{n individual lexemes, in suech a way that
each arror ias effectively inserted in ita
own copy of the origipal program. fThese
copies with soeded errors arg Kknown asz
"mutant programa®. UThe idea is then to
construct test data which kills all the
mutant programs by showing incorrect output
data. Mutanta which are equivalent to the
giigxnnl programs will, of course, vemain
ve,

Thexe are a number of problems with this
approach, one of which {8 the aenormous
numbar of mutants which might be ganerated.
For jinstance, for a thirty line program,
fifteen hundred mutants i3 a realistic
possibility apd the number of mutants
grows roughly with the sguare of the length
of the program. Therefore, a apecialised
gystem (such ag that of [l)} is reguired
for practical use.

However, there ara various subgets of
mutants, not necessarily exclusive, wi.ch
may be of parhticular intereat and for
these subsets the number of generated
mutants may be manageable in a conventional
compile and run syastem. The authorz have
built a mutation system which utilisea a
standard editor together with compilers
and rupn-time systems for FORTRAN, COBOL
and ALGOLGS.

In this paper we describe our experiences
using the FORTRAN version of the mutation
system to annlyse the adequacy of the test
data sets for a number of numerical routines.

We have analysed three subsets of mutants.
The first subset is that arising from the
relational operators., From a statistical
analysis [2] of numerical software we know
that, on avecage, there will be eight

relational operators per routine, and,
gince each relational oper=ztor can be
raplaced by five alternative relational
operatora, we obtain a total of about
forty mutants per routine. The subset is
therefore manageable and is also of interest,
since testing the predicates is one of
the mote difficult aspects of path testing,
particularly if the predicates are complex.

. T
L S S

s 2

The test data adequacy of [4) s defined

as
AL = numbey of dead wutants
total numbaer of mutants

Wa have measured the test data adequacy for
a numbae of NAG routines and the average
value of AL for these routines iw 0.066
{with a atandard deviation of 0.22),
Unfortunately it ls extremely difficult to
distinguish the equivalent programs frow
the remaining live mutanta, no the adeguacy
of the test data may bae substantially
higher than this measure Iindicates, oOur
raoults show that conventional test data,
which does not achleve partlicularly good
covarage in terma of ,say, the TER metrica
of [3], naeverthaless does tend to detect
gimple errors in the velntional opevators.

The second subset is the control flow
mutants. Mutants are created which affact
the flow of control, such antitiex araet
a) negating the relational vperators
and logical values
b) replacing labels in each computed
GOTQ and arithmetic IF by
permutations of the othur labols
¢) incramenting the upper index of DO
loops.

Teast data to detect these errora will in
general need ta achleve coverage ratios
slose to PER2 = 1,0, although THRL = 1.0
does not need to be gatisfied. This is due
to the logleal IFs, aincwe, for example,
only one leg of an IP-THEN-BLSE construct
would need to bhe executed to detect a
negated pradicate. The results Ffor thls
subset yield an average A2 ratio of Q.57
(standavd deviation 0.27) £, the routinos
tested., A more detalled inspection of the
rasrlts, however, reveals that this ratio
is boosted by a thigh percentage of dead
mutants in category a) (averaglng 80%)
compared to the relatively low parcentages
of dead mutants in categories b) and «©)
{(averaging about 40% in each case). Hence,
these results indleate that, on the whole,
errors in the arithmetic 1IFa, computed
GOTOs and DO loops ave not easily found
with conventional test data mets.

The third get are the relational operators
and acithmatic IFs which deteemine the
inclusive boundaries of the input daka
domains. These are the relatlonal operators
involving equality, $.e. .BQ., «NE., JLE.,

24

+GBey and almo the zero ocase of the
arithmetie IF, Results obtained for this
subset lead to an average AJ ratlo of 0,064
(standard deviation 0.22) for the rout.nes
tepted, Again the relatively high
parcentage of dead mutants in the
ralational operators ({(approximately 65%)
dominates the percentage of daad mutants in
the arithmetic Irs (approximately 26%),.Thls
indicates that providing test data for
these domain boundaries is not a common
occurrenca.

From this work we can conclude that a
limited mutation analysiz, concenteating on
particular subsets which Jdemonstrate a
specific teating ntrategy, is a worthwhile
activity., The cost of tha exevcisa, heing
of %ne order of fifty runs per numerical
routine, is accaptable, although it must be
noted thait this coat risez if the Initia)
test data aduquacy i3 low. Our experiments
ahow that when mutants are dead the
differences between corxract and incorrect
output tend to appear in the first 308 of
the output, This possibly shows that
testers tend to put speclial cases and other
tricky data first and more general cases
last. The effect, hovever, is beneficial to
an automatic comparator, With the proviaion
of a specialined mutation aystem a dramatic
cont reductlon can be obtained or a wider
clags of mutant be considered.

{l) Da ML‘-!.Q' R:hsg Ll}?t@!‘u Reds and
Sayward, P.Gsy
Rints on test data selection: help for
the practicing programmer .
ggggute:,Vol 11, No.d,pp.34=41. April
{2] Bennell; M.A. and Prudom, A.,
N Static Analysls of the NAG Library.

IBER Transacciona on Software
Enq‘.“ﬂ@ni“gl Vol 6, No. 44 pp|329“3331
July 1980,

[3) woodward, M.R., Hedley, D. and Hennell,
MQAQ'

Bxperience with Path Analysis and
Testinyg of Programs.

IBBE | TIransactions on Software
Engineering, Vel 6, No. 3, pp.278-286,
May 1980,

{4) Burns, J.E., h
Stability of Teast Data From Program

Mutation
Digest for the Workshop on Software
Teating & Teat Documentation,

Pt.Lavderdale, Florida, Dec. 18-20,
1978,

s A

e R 0 I

L e Tk

Vi s e,
BT

P

A COURSE ON MATHEMATICAL SORTWARE
A Ky Cline
tniversite of Texas at Austin

Puring the four academic vears ending in 1981, a one
semgater courpe in mathematical noftware conatruction
has beer offered by the Cowmputer Scieunces Department

at the Unlversity of Texas at Austin, Although orig-
fnally offered at a graduste ievel, a modified version
has baen offered three times for utdergraduate students.
Those glecting the clasy include students intevested

in selentific programming as a profession as well as
mathematics, engineering, and science students who

seck to improve their programming skills.

Purposat

The course purposes are to aquaint students with
advanced programming topies and the theorv of quality
software construction and to allow students to gain
practical experience working on a group project
involving organizing, coding, and tasting a package
of mathematical software subprograms,

Provequisitet

Students are first reouived to have an interest in
programming for tachnical applications. A basic
knowledge of FORTRAN i agsumed as well as mathe-
matics at the caleulus level. A course in numerical
mathods iy not required but mav be so in the future
since many examplés in the lecturaes on programming
methodology raquire familiarity with basic numerical
algorithms such as Gaussian elimination and linear
interrolation.

Toxt!
The lecture material in the course has baan ohtained
from the author's experience and follows no puhlished
text, Howaver; geveral short paperbacks are recom-
mended for collateral reading:
Ledgard, H, ¥., Programming Prroverbs for FORTRAN
Programmers, Havdan, 1975,
Kreitzherg, C» B,, and B. Shneiderman, The Elements
of FORTRAN Stvle, Harcourt, brace, Javanovich,
1972,

Format:

tntil the final several weeks of the semegter, the
clags meets three times per week for lectures. The
lectures cover programming methodology and background
material for the group project, These topics are
described in greater detail below. Only occasional
loctures are given at the end of the course as students
complete their projects and meet individually or in
Jroups with the instructer for criticism of their work,

Prior to the formation of the group, a short program-
ming assignment is given to the class, This assign-
ment has been the coding and testing of a simple
module implementing a search in an ordered array.

The algorithm suggested is a varlant on binary search
employing invarse linear interpolation. The purpose
of this inltial project is to gain exparience on the
local gvstem (many students are new to file usage,
editors, and intcractive computing) and te give some
indication of the students' relative programming

25

capabilition, Another iwportant fndicatfon is how
energetic (alternativelv, how procrastinating) each
student performs the asaignment, Although o grade
on this assigument ig rot used in a final course
grade dotermination, the students' grades as vell

ag the length of tame raguired to complete the assigi=
ment aremade publie, Students then organize them=
selves dnto three person groups, The performance on
the First assignment has proved to be 3 verr nood
predicror of a gtudent's performance on the group
project, and with this knowledge and tha shility to
form thelr own groups, we have attempted to minimize
the common problem 4{n group projects: an imbalance
of attltudd or abilities causes an imbalance in the
work load,

The growp project used in all four offerings of the
course hag been that of interpolating ssca specified
on an irrvegular prid in the planes The packages
Include modules to form a tviangulation of thae points
in the plane anc modulas for fnterpolation based

upon this trianguidtion, Several simplifying assump-
tions are made to aveid overconcern with mathematical
details of the algorithm as opposed to the software
implementation. These assumptions inelude ignoring
the poasibility of any colinearity of the points in
the plane and, *ar the purpose of the smooth inter-
polation, that first partail derivative values are
avatlable from the user as well as funetion values.
This project provides a good mix of mathematival

and computesr science problems,

A purpose of the course being to gain experience in
goftware conntruction, apd not neecagarily the rescarch
level discovery of new algoritlms; students are given

a design of the package and brief descriptions or

the algorithms. Tt is felt that this simulates well
the sitvation in which a programmer is implementing

the theory developed by another. Tt also allows
lectures and class discussions on the algorithms

with respect to their qualitles,

A final examination is given with the intention of
testing the lecture material on programming methodow
logy which was not applied in the project,

Lecture Toples:

Initially » review of the usage of the local system

is pregented and a digscussion of the project and

the algorithms for its modules, The vocabulavy of
quality of software is then described: applicability,
usability, efficiency, clarity, portability, modifi-
abilivy, modulaxdty, and flexabdlity. With esch
chavacteristic examples are given and the fmportmca

(or urimpurtance) of problem areas is considarved.

The area of portahility is explored in detail. 'The
methodology for the testing of software and the design
of gsoftware reaceive geveral lectures apiece (and are
applied to the project). Several lectures on clever
progranmming practices (e.g. decomposition of workspace,
portable handling of mathematical constants, accions in
error situstions, timing of code) are given. Finally,
several miscellaneous topies are covered: a brief
introduction to sclientific computer geaphics including
the uge of the NCAR graphics package, varlous approaches
to softwarc documentation, and the 1977 FORTRAN standard.

TR TR

Rl ac L ARRAAEEE

MOVING SOFTWARE SYSTEMS TO A MINLCOMPUTER Actually these techniques may also be used all to-
gether, or in any combination.
G. CIONT, A. MIOLA, A. TRUFFI For each SP wa have ro figure out the total amount
Istituto di Analisi dei Scatemi ed Informatica of words

Via Buonarroti 12, 00185 ROMA (ITALY) 1(SP) = COD(SP)+LOCAL (SP)+SPLCE(SP)

. In the last few years a well shaped phenomenon has to put aur SP on the glven computer, where COD(SP)
been observed in the computer field: the cost of soft- is the number of words of the objer$ code of SP.
ware production and maintenance is very high vespect The quantity FIX(SP) = COD(SP)+LOCAL(SP) is fixed
| to the total cost of a computing system and it is still for the given SP, wbife SPACE(SP) is a variable
] mrowing during this time, quantity,
Therefore it seems to be approrplate to use all the If we want use an overlay techniques we also need
\ available software 48 much as possible respect to its the tree structure representing all the calling re-
- portability, modularity and documentation, At the same lations between subroutines of SP, and again the total
time the new software is going to be designed and im- amount of words.
plemented according to the software engineering rules In general if M is the size of the given computer
1,2}, memory available to the SP we must chack the quantity

The use of a minicomputer, together with the decreasing

use of time-sharing system on large computers, quite D = M - FIX(sH}

often presents the need to move software systems from In order to get all the need informations to test,we
a medium~large computer to a mipicomputer, can certainly use the compiler of the SP jmplementa-
This operation involves quite expensive transformations tion language, for instance FORTRAN, available on

on the available software, while the quality of the the given computer.

final resule, as far as the efficiency is concerned,is An automatic procedure has been designed to accomplish
not foreseen. all the tests already described.

In order to gain as fuch confidence ar possible in the
transfering process an "a priori" anslysis is necessary
and helpfull,

This paper actually presents the design and the imple-
mentation of procedures which supply informations on
how to move software systews to a given minicomputer,

We will refer in this paper to spftware system organized

as a librvary of programs, where a single program may BIBLIOGRAPHY

algo use other programs of the library as its subpro- {1] BAUER F.L. Editor; Advanced Course of Software
groms, We cail this organization System of Programs (SP). ’"""uzeemrg, Lecture notes in Economics and Ma~
Generally a SP can also be seen as a collection of se- thematical Systems, Springer-Verlag (1972).

veral moduli, each of which is itself a set of programs

belonging to the library. If a modulus accomplishes a (2} WERTH N. ¢ qutamatmo Programming. An Introduc-
specific, well defined function, it is a subsystem of tion, Prentice~Hall (1973),

the given SP. We call this wmodulus Independent Subsystem {3] CIONI G., MIOLA A,, TOZZOLL M,: Symbol;c and
(18), Algebraie Computation Syatems on Minicomputers,
Therefore if a SP is represented as a tree an IS is a Proceedirgs of DECUS EUROPE Symposium (1980).
subtree of the given tree.

If the SP has been designed to be quite flexible and [4] COLLINS G.E.: The SAC-1 System: An Inirodxatmin
portable there is the possibility for the user to define and Survey, Proc. of SYMSAM II, ACM, Los Angeles
the dimensions of the current data, Therefore a variable (1971).

gtorage space is associated to each SP, together with [5] ECKHOUSE R,H.: Mznzaomputera Systems: Organisa-
a flxed storage space which is used for the local va- tion and Programming, Prentice-Hall, N.Y,.,(1975).
riablss of the different programs. We denote the va- .

riable 4pes by SPACE and the fixed space by LOCAL. (6] SR5E5(26}1§r1ncpree of Compiler Dasign, Wiley,
In the fvilowing we will refer to SP implemented in the ’

progeamming language that uses static memory al- {7) HARWELL SUBROUTINES LIBRARY: A Catalogue of Sub-
location, For instance FORTRAN. routings, A.E.R.E. R7477 Supplemeénts n, 1-2
Examples of SP to be considered are the symbolic and (1970).

algebraic computation system SAC-1 [4,3] and the
Harwell Subroutines Library [7], Both these systems
have been implemented in standard FORTRAN, they are

(8] JENSEN J., WIRTH N., PASCAL: User Manual and
Report, Springer-Verlag (1975).

portable, modular and very well documented, [9] KNUTH D.E,.: The Art of Computer Programming:
In order to make a SP running on a computer which Fundamental Algorithms, Vol, I, Addison Wesley
has less memory respect to the computer which the (1969).

given SP was built for, one of the following techni~
ques could be used:
- averlay of programs

{10] DONOVAN J.J., MADNICK S.E.: Operating Systams,
Mc- GRAW HILL (1874),

~ gpliting of the SP into several IS [11] WEITZMANN C,: Mintcomputer Systems. Structurc
- reduction of the maximum size for SPACE Implementation and Application, Prentice-Hall,
- programs segmentation, N.Y. (1974).

26

Ao ammans

Tafloring Mathematical Software for the CRAY-1

David S, Dodson
John Gregg Lewis
William G, Poole, Jr.

Boeing Computer Services Company
Seattle, Washington

Any new computer brought into the stable of a major
computer complex offers special challenges to those
who are responsible for developing and maintaining
large mathematical software libraries. If these
1ibraries are expected to execute on several
different computers, as they usually are, they
should be portable. Unfortunately, portability is
often in conflict with efficiency: portability
dictates that code be common to several different
computers while efficiency suggests tailoring code
to the specifications of the individua) vomputers,

The CRAY-1 computer s especially challenging in
terms of reconciling portability with efficiency.
Hardware vector arithmetic {nstructions must be
utilized to reap the benefits of highly efficient
code on the CRAY-1. Standard FORTRAN codes will
compile and execute on the CRAY-1 with little or no
modification. The FORTRAN compiler, CFT, does an
admirable job of generating vector instructions for
certain vector DO loops. In order to approach the
maximum speed of the CRAY-1, it is necessary to
rewrite some of the FORTRAN code and, often, to use
the Cray Assembler Language (CAL). In order to
approach the maximum speed of the computer for some
problems, quite different algorithms must be
considered. However, in this paper we assume that
any required redesign has been accomplished,

If the code in question is modular, it is often
fairly easy to ideptify those parts which should be
specially coded. The CFT compiler can identify
which subroutines are requiring most of the CPU
time. But an astute programmer {is needed to locate
the inner 1loops which are CPU-intensive and to
rewrite the FORTRAN code or replace it with calls
to CAL-coded subroutines and functions. It is at
this stage that the code starts to take on a flavor
which is unique to the CRAY-1.

Boeing Computer Services offers mathematical
software libraries which are portable, modular and
efficient, The primary library, BCSLIB, is
available on at Jeast 6 different mainframe
computers including the CRAY-1, Several additional
libraries also are maintained, The authors are
ipvolved in the development of library modules
which are specifically designed for the CRAY-1,

This paper contains an overview of their
:;peal:cc:s at tajloring mathematica) software for
e ' =L

There are two fundamental ideas for making
effective use of the CRAY-1 arithmetic hardware,
First, the operands and resul*s in the innermost
loops should be structured intu vectors and the
computations should be vector-vector or vector-
scalar operations such as adding two vectors or
multiplyirg a vector by a scalar. Second, as many
as possibie of the CRAY-1's independent functiona'
units should be brought to bear on the problem
simultaneously, At the FORVRAN level, 1ittle can
be done to promote a high level of concurrency.
Frensuently, astounding performance gains can be
realized by using general purpose CAL-coded
routines such as the BLAS, or by developing
special-purpose CAL routines.

The first step in this project was to determine a
priority of tasks based on two considerations:
what basic numerical problems are most frequently
encountered in large-scale scientific computing,
and which problems are most amenable to CRAY-1
vectorization? Our first efforts were oriented
toward linear algebra problems because they are
often the innermost computations of many
mathematical models, Furthermore, they are
problems for which vector arithmetic instructions
can be readily utilized,

We have implemented and evaluated several
fundamental linear algebra subprograms, including
the BLAS package, several versions of LINPACK and
EISPACK, several versions of SPARSPAK, and we have
worked with several application codes which have
sparse matrix computations in their innermost
parts. For example, we considered four varsions of
LINPACK: the standard FORTRAN version from Argonne
Natioral Laboratory, the version provided by Cray
Research Inc, with FORTRAN and some CAL, the
standard FORTRAN version but with calls to CAL BLAS
provided by Cray Research Inc, (CRI), aud the
standard FORTRAN version with calls to CAL BLAS
produced by cna of the authors. A brief summary of
our results follows,

o The CAL-coded versions of the real, single
precision BLAS, supplied by CRI as part of their
SCILIB scientific applications package, were
enhanced, yielding increases in execution speed of
10% to 25X, For example our version of SNRMZ can
execute at an asymptotic rate of 140 megaflops
compared to the SCILIB version of SNRM2 which
executes at an asymptotic rate of 113 megaflops.
For comparison a CFT-compiled version of SNRM2
achieves an asymptotic rate of about 36 megafiops.

QT

0 The SCILIB version of LINPACK differs from the
standard version in modifications of code which are
better suited for the FORTRAN compiler and in the
use of some CAL BLAS. The SCILIB versjon of SGEFA,
an important LINPACK routine, executes in about one
third the time required by the standard FORTRAN
version. The version using locally developed BLAS
soutperforms the SCILIB version for matrices larger
than 200x200,

0 Minor modifications to EISPACK to afd the CFT
vectorizer and to use the BLAS have dramatic
effects on some eigenvalue paths., Throughout
EISPACK, the execution rates are degraded
considerably for two-dimensional matrices whose
leading dimension is a multipie of eight, The
degradation is due to memory bank conflicts,

0 Speedups of 10X to JOOX over standard FORTRAN

codes can be achieved in sparse matrix
factorizations even with little or no
vectorization. We achieved such speedups both for

problems held in envelope (variable band) format
and also for more general and compact storage
schemes, These improvements were achieved by
reptacing some of the innermost loops of key
SPARSPAK routines with calls to CAL-coded routines.

In summary, the authors have found that significant
speedups can be achieved by tailoring mathematical
software to the CRAY-1's specifications. This can
be done without affecting the user's program by
changing only basic building block routines such as
those in the BLAS, LINPACK, EISPACK, SPARSPAK and
other frequently used packages, This approach also
achieves a high degree of portability since the
basic tools used all have portable FORTRAN
equivalents.

FLEXIBILITY IN MATHEMATICAL SOFTWARE
DEVELOPMENT USING OPTION ARRAYS

by R. J, Hanson
Sandia National Laboratories

F. T. Krogh
Jet Propulsion Laboratory

Introduction

Mathematical software (any type of software for
that matter) has at least two goals. It should
be esasy to use, It should also be flexible and
broad in its problem scope and thus satisfy a
large number of the possible users of this soft-
ware, These goals conflict with each other. It
is the purpose of this paper to suggest some ways
to reconcile this conflict by use of so-called
“option arrays.”

The methods we are proposing for the "option
array” specifications are general, The imple-
mentation that we illustrate with an example is
presented in FORTRAN, but the extension to other
progcamming languages is obvious.

28

With any of the subprograme, say SUBPR {J} ,
there will be M(J) options that the user can
change., The author makes a numberer, list of
options for each subprogram, describing the fea~
tures and usage of each of them,

An Example to Tllustrate the Ideas

Solving dense systems of linear algebraic equa~
tions is a process that has received much atten=
tion from software specialists, Ref, [1], To 11~
lustrate the techniques we propose we'll present
the design of the options and a sample usage of
a (mythical) subprogram for solving linear alge-
braic equations Ax=b, A = N by N real matrix.
Thic design is for d1llustration only; a non=
trivial real example is given in [2].

The nominal usage (no options) solves a system
of equations with a single right-side vector,
This usage involves the usual dimensioning of
the required arrays, the definition of data,
and the subprogram CALL statement,

Nominal Usaget

DIMENSION W(MDW,N+1), IOPT(1), ROPT(1),
*TWORK(N)

(Define matrix jato] within array W (%,%),)
I0PT(1)=99

CALL SL1 (W,MDW,N,IOPT‘ROPT.IWORK)

(The solution vector, x, {8 returned in the
array WO, N+1),)

This subroutine looks simple to use and narrow
in scope. But now we have a (rare) user who
wants to do a releted computation:

1. There is no system to solve.
2. The determinant of A is desired.

The subprogram package author has provided a
number of options 1in the subprograms that allow
these related tasks to be done, The linear
équation software dinvolves suvprograms SLI()
and SL2(). The subprogram SL1{) calls S5L2()
to perform Gaussian elimination with partial pi-
voting, The subprogram SL1() is called by the
user.

Option List for SL! () Option Number

Solve Ax=b with k > 0 1
right-gide vectors; k=1 is
nominal.

Solve (transpose of A)y=c 2
with m >0 right-side
vectors.

Do not decompose the matrix A; 3
this has alrezdy been done.
Nominally the matrix A is
decomposed each time SL1 ()

is called.

Provide an option array to 4
SL2 (); nominally no option
array is provided to SL2 ().

Option List for SL2 () Option Number

Provide column scaling 1
for the matrix A.

Compute the determinant of 2
A in the form det (A) =

s * exp(t), Provide the

parameters s and t as
output values.

Jon't redecompose the matrix 3
A; this has already been done.
Nominally the matrix A is
decomposed each time SL2 ()

is called.

We'll now give the values for the option ayray
IOPT(%) that 1.) reset the number of right sides
to zero, and 2,) compute the determinant of A in
the form mentioned above. Comments in the right
margin clarify the meaning of each entry. Note
that the processing for the option arrays is
terminated with the reserved option number, 99.

Optional Usaget

DIMENSION W(MDW,N), IOPT(8), ROPT(2), IWORK (N)

(Define matrix A within array W{*,%).)

I0PT(01) = 1 (Option number for SLI1{) to

chzige number of right-side

vectora,)

(The number of right-side

vectors,)

{Option number for providing

an option array to SL2().)

(Pointer to start of option

array for SL2().)

{No more options for SLI()

remain.)

(Option number for SL2() to

compute the determinant of A.)

(Store s in ROPT(1) and t in

the following location.)

I0PT(08) = 99 (No more options for SL2 ()
remain).

CALL SL1 (W,MDW,N, IOPT,ROPT,IWORK)

I0PT(02) = D
I0PT(03) = &
IOPT(D4) = 6
TOPT(05) = 99
IOPT(06) = 2
I0PT(O7) = 1

The determinant of A is available in the form
det(A)=ROPT(1)¥EXP(ROPT(2)) after the return from
subprogram SL1().

Ideas similar to those presented here are used
in {2) and 4in some of the software in the
libraries [3] and [4].

There have been a few important applications
where the added flexibility provided by options
within the software has saved expensive modifica-
tions to existing code. The effect of this has
been to save the authors' time and the time of
the user while a new programming effort was made.
Another significant saving in time that prevented
complications for several library users was real-
ized by Krogh. The existing nonlinear least
squares subprogram of Ref. [4] was modified to
provide for simple bounds on the unknowns. This
change was made using a new option number. Users
of the previous version of the non-linear least
squares subprogram continued to get the same re-

29

sults with the new version, and with the addition
,of the description for the new option, the old
documentation still applied,

Refarences

[1] Dongarra, J. J., Moler, C. B,, Bunch, J. R.,
Stewart, G, W., LINPACK Users' Gulde., SIAM
Publications, Philadelphia, PA (1979).

{2} Krogh, F.T., Preliminary Usage Documentation
for the Variable Order Integratore 30DE and DODK,
JPL Section 914 Computing Memorandum No. 399,
Nov, 3, 1973.

[3] Haskell, K,, Vaudevender, W. Brief Instruc~
tions for Using the Sandia Mathematical Subrou-
tine Library, (Vers. 8). SAND79-2382, (1980),
[4] JPL FORTRAN V Subprogram Directory.

Ed, 5. JPL Doc. 1846-23 Rey. A. (1975),

(References [2) and [4] are internal JPL docu-
ments and are available from Krogh).

Hanson's contribution sponsored by the U,8. Depart~
partment of Energy under contract DE~AC04-7GDPO0789.

Krogh's contribution 4s one phase of research car-
ried out at the Jet Propulsion Laboratory, Califor-
nia Institute of Technology, under contract No.
NAS7-100, sponsored by the National Aeronautics
and Space Administration.

Mechanizing the Maintesance of Source, Ubject, and ‘L'est
Results — Or Why Should You Do All the Work?

Stuart Feldman

Bell Laboratories
Murray Hill, New Jeesey 07974

The Problem

The production and maintenance of complex computer programs
involves an enormous amount of bookkeeping. First, tiere may be
a multiple versions for different reasons;

During development, errors will be correctzd, facilities will be
added or deleted, or there may be changes of implementation
strategy.

A program may be made up of almost independent parts, and
different subsets of the coliection may be provided to different
users,

The same functionality may be provided in more than onc

environment (different hardware, operating system, or

language)
A particular version of a program is specified by a set of data and a
set of processing steps to be performed, Some of the data will be
fundamental {cannot be recreated automatically), such as program
source text entered by humans and data produced by the real world.
Othér data can be derived, and sometimes stored, by reproducible
processing steps applied to fundamental data and already derived
data. The derived data may be used for other purposes such as
debugging, producing listings, or running the program,

Keeping track of the processing steps and the state of the computa-
tion can be a major headache. Operations must be performed in &
fixed order with complicated arguments and option specifications,
ervors must be considered, and records mainixined. In simple
cases, the processing is clear: 'run the decks throigh the Fortran
compiler and execute the resulting program®. But such - descrip.
tion is often not applicable for significant jobs: libraries must to be
established and wpdated, source fles may be processed by a
sequence of programs (macro processors, langusge translafors), a
single source file may participate in more than one compilation, and
a single compilation may involve more than one source fle (as in
languages that permit “include files®). The processing steps are
likely to be similar for different versions, but with small but essen-
tial differences, Remembering the sequence of opemtions to be
performed is likely to be a significant task; keeping track of the
state of intermediate files is even harder and more error-prone, If
more than ome person s inveived in the comstruction or
maintenance, they must communicate and avoid inconsistency in a
disciplined way.

Testing and verification also beg to be organized, Simply making a
change, running a simple test case, then installing the repaired ver-
sion often succeeds, but is unsatisfactory once there are users who
are remote cr who depend on your program. It is important to
maintain regression test suites, establish that all the program
branches have been exercised, and check that the results are
correct, or at least sufficiently accurate, The problem is aggravated
if versions arc being maintained for environments which are not
immediately accessible.

Ameliorating Appreaches

The ways to attack these problems may be viewed as a sequence of
leyels, at each of which the programmer surrenders some control to
the computer in exchange for having the machine's increased assis-
tance, All are based on an organized filing system. At first, this
filing system might be a notebook full of penciled notations about
bug fixes, changes for different versions, tape reel numbers, and
job control sequences, It is amazing how far one can go with the
manual approach, but eventually the notebook becomes illegible,
disappeats into a collaborator's uffice, or suffers some other dismal
fate.

The obvious step is to store the notebook in & computer where it
can be protected against decay, The program sousce will also prob-
ably be kept in computer files since text editors permit easy entry
and modificati The notebook can contain file names instead of
program descriptions, It is casy to capture frequent inputs (c.g.,
canned command scquences that can be issued without retyping)
and outputs (e.g., successful test results to compare against new
runz). If several people are working on the same project, the cen-
tral file system can be used to coordinate and shars th2 work and to
communicate progress and problems. At this level, the coinputer is
being used in a distant way: it stores data, but does not guide the
work.

At the next level, onc takes advantage of the structure of the com-
puting system. If the file system permits lsng names or has a
hierarchical organization, related forms of a file cai be stored in
files with computable nsmes, If such a naming discipline is fol-
lowed, production of versions can be automated by parametrizing
some. of the commands or by use of accessing functions. For
example, Cargill showed how cumplicated sets of alternatives can
be handled by disciplined use of the file system hierarchy.

The file system probably maintains certain useful information:
names and lengths of files, perhaps their type (source, object,
library, ¢tc.), and the time the file was last changed, Such informa-
tion is reliable, free, and can be extremely useful. For examply, a
program can make magically accurate deductions without exglicit
instruction: if the result of a compilation is needed, and if a rource
file that was cdited since the last compilation was completed, then it

30

is probably sppropriate to recompile the source, A program can
make {his deduction and issue commands {o the system with fiitle
intervention or thought by a human, (My Make program does
this). This approsch is indeper.dent of the details or content of the
files, and only needs 1o know the use of the file, which is deducible
from the pame or atiributes on many systems, ar: | when it was last
changed. At this stage of mechanization, the 7 andard compuler
system s being used in a direct war; the user maintains his own
files for his commands, versions of source, progress siatuy, and so
on, and invokes utilities explicitly, '

1f more help is needed or desired, the computer must be involved
more intimately. The basic data are controlied by the computer,
snd may be stored in unreadable forms. Various versions may be
interiwined for reasons of conirol or eMciency, and can only be
examined through the tools. Thus, the SCCS system stores many:
versions of & text in a form thet saves spase, but explicit SCCS
commands are needed to extract an old veriion of to store & new
one, Tools at this Jevel may also assist in panaging the project by
restricting access to programis, preventing multiple updates, and
requiring explanations of the work done before accepting a new
version. Note that these efforts have been based on & coarse unit
of opemation, the complete data fle,

Finally, we reach the level of sccalled program environments,
which take over many of the operations done oy programmers, In
exchange for the convenience offered by the sysiem, the program-
mer must £ccept its restrictions. ‘This Is #% area of active research;
some cfforis in this area are Interlisp, Gundalf, Mentor, and Tool-
pack, The basic form of the fundamental date can be source text or
a parsed representation. The division of responsibility among tools
may then be radically different than in a conventional system,
Some of the tools may be invoked invisibly, Editors, printers, and
compilers make use of the single Susic representation, An editor
can check program syntax, and a compiler can be invoked automati-
cally after an edit is complete, Miintaining statemzat usage counis
and timing analyses can be implicit in the compilation process,
Testing and debugging can be done in torms of thié user’s source
language, without reference 1o machine-level objects. and test data
might be saved semi-automatically. In exchange for these services,
the user cannot apply standard tools to the data, since they are
encoded and the environment must control ali changes that arc
made.

A wellsinformed environmant can control large objects such as
libraries or exccutable programs, and can ensure that versions
remain in parallel. The environment could produce instrumented
forms of programs to monitor the testing: the instrumentation
could record the statements that have been executed and the state-
ments that consumed most of the machine time, The environment
can also re-run regression tests before installing or distributing final
copies, and inaintain records on versions that have been sent out,

Applicability to Numerical Pregrams

The simpler approaches discussed above can all be applied to
nunierical programs on any flexible system. The more complete
systems requirc some tailoring to the language and habits of the
programmers, The program environments currently available are
ali research tools designed around languages that are rarely used for
numencal progamming. The prodbiemns of preprocessors, naming
conventions, and enormous litiaries require special contideration,
The floating point domain prisents some peculiar difficulties: a
regression test may be required to achieve final results of satisfac-
tory presision, but not necessarily to duplicate the previous run's
output bit for bit, or even to produce comparable amounts of out-
put. (Consider a change to an iterative algorithm which changes
the number of iterations to produce satisfactory convergence),

Various projects are underway to attack some of these problems. In
particular, the Toolpack project is designing a portable environme: *
for Fortran-based programs.

NASA~)PL—Comi, LA, Calil

	1981025292.pdf
	0001A02.jpg
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif

