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PREFACE

This volume is a collection of papers presented at the Symposium on

Numerical Boundary Condition Procedures held at Ames Research Center, NASA,

October 19-20, 1981. The purpose of this symposium was to provide a forum

for the presentation and interchange of recent technical findings in the field

of numerical boundary approximations. The symposium was held in conjunction

with the Symposium on Multigrid Methods, and both were sponsored by the

Applied Computational Aerodynamics and Computational Fluid Dynamics Branches

at Ames.

Probably, the single most important aspect in the successful application

of any numerical technique in solving gas dynamic problems is the proper

treatment of the impermeable and permeable boundaries that encompass the

computational line, plane, or volume. Papers were solicited in this research

area which utilized new or existing numerical boundary condition procedures

for various types of boundaries and governing equations.

It is apparent from the contributed papers that computational fluid

dynamicists as well as numerical analysts are quite active in this discipline.

The papers cover a wide spectrum of research on topics that include numerical

procedures for treating inflow and outflow boundaries, steady and unsteady

discontinuous surfaces such as shock waves and slip surfaces, far field bound-

ary conditions, and multiblock grids. In addition, papers were presented

which consider the effects of numerical boundary approximations on stability,

accuracy, and convergence rate of the numerical solution.

The symposium presented three invited and over nineteen contributed

papers. The invited speakers were Dr. A. Bayliss, Prof. G. Moretti, and

Prof. B. Gustafsson. Nearly all of the papers presented at the symposium

appear in this proceedings. Those which do not, will appear as a supplement.

Paul Kutler
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)181-33857

(Invited paper)

FAR FIELD BOUNDARY CONDITIONS FOR COMPRESSIBLE FLOWS

Alvin Bayliss

Courant Institute of Mathematical Sciences, New York University

Eli Turkel

Tel-Aviv University

Institute for Computer Applications in Science and Engineering

INTRODUCTION

An important goal of computational fluid dynamics is the computation of

steady state flows exterior to a body, such as an airfoil. This is frequently

accomplished by integrating the time dependent Navier-Stokes or Euler equa-

tions until a steady state is achieved. This raises two (related) computa-

tional problems:

a) How to compute in an exterior region;

b) How to accelerate convergence to the steady state.

The numerical treatment of exterior regions requires a method to convert

the problem to one in a bounded region. One method is to map the exterior

region into a finite region. However, many equations have oscillatory solu-

tions near infinity. For these cases, the mappings can create substantial

errors since waves in the vicinity of infinity cannot be resolved (see, e.g.,

Grosch and Orszag (ref. i)). An alternative approach is to truncate the un-

bounded region at some finite, artificial surface. This creates a finite

computational region at the expense of imposing boundary conditions at the

artificial boundary.

If the problem has wave-like solutions near infinity, then these boundary

conditions must simulate the radiation of energy out of the computational do,

main and towards infinity. Incorrect specification of these radiation boun-

dary conditions can cause spurious reflected waves to be generated at the

artificial boundary. These waves represent energy propagating into the com-

putational domain from infinity. Since they are not part of the desired so-

lution, they can substantially degrade the accuracy of the computed solution.

If the time dependent equations are only an intermediate step towards compu-

ting a steady state, then a flow of energy into the computational domain can

delay convergence. Conversely, the correct specification of radiation boun-

dary conditions can accelerate convergence. Thus, the two questions raised

in the first paragraph are related through the concept of radiation boundary
conditions.

This work was partially supported under NASA Contracts No. NASI-14472 and

NASI-16394 while the authors were in residence at ICASE, NASA Langley Research

Center, Hampton, VA 23665. Additional support for the first author was pro-

vided by Air Force Contract No. AFOSR-76-2881.



In order to minimize the effect of spurious reflections, the computational

region can be enlarged so that the artificial boundaries are far from the

region of interest. This will increase both the memory requirements and the

running time of the computer program. It is preferable to specify boundary

conditions that allow the computational region to be constructed as much as

possible.

Our goal is therefore to construct radiation boundary conditions which

have the following properties:

(a) To accurately simulate the radiation of energy out of the computa-

tional domain;

(b) To accomplish (a) with an accuracy which improves as fast as feasi-

ble as the artificial surface is moved outward. Equivalently, the boundary

conditions will be accurate when the computational domain is constricted;

(c) To accelerate convergence to the steady state (by minimizing spurious

reflections).

The approach taken here is similar to that of references 2, 3 and 4. We

assume that in the far field the (possibly nonlinear) equations reduce to some

simple form, e.g. a wave equation, Poisson's equation or the reduced wave equa-

tion. An asymptotic solution to the model equation is then constructed. This

solution is usually based on a general functional form which specifies the be-

havior of the solution near infinity. In the problems considered here, the

desired behavior is that the solution be composed of outgoing waves. We wish

to stress that the expansion depends on the geometrical properties of the

computational domain. For example, the asymptotic expansion will differ in

duct-like geometries (infinite in only one dimension) from that in fully ex-

terior regions (infinite in all dimensions). Thus, the expansion is based on

global properties of the solution. The asymptotic expansions will usually be

in terms of a reciprocal radius, i.e. in terms of distances, but can also be

in terms of frequencies.

Once the functional form of the asymptotic expansion is known, we can

derive differential relations that are exactly satisfied by any function having

the given functional form. These differential relations, when used as boun-

dary conditions, effectively match the solution to the asymptotic expansion

valid near infinity. These radiation boundary conditions become increasingly

accurate as they match the solution to more terms of the asymptotic expansion.

This procedure of matching the solution to an expansion valid near infin-

ity requires some knowledge of the solution in a neighborhood of infinity.

Gustaffson and Kreiss (ref. 5) have shown that problems in an exterior domain

can in general be restricted to a bounded domain only when the dependent vari-

ables (and coefficients) approach constants at infinity. This suggests that

radiation boundary conditions, to be applied at some artificial finite bound-

ary, can work only by conveying information about the behavior of the solution

near infinity.

In this lecture we will concentrate on applications to fluid dynamics.

Viscous effects are important, in aerodynamics, only in the vicinity of bodies.

Hence the far field behavior is governed by the Euler equations. A consequence



of this is that solutions in the far field have a wave-like behavior. Hence,

a steady state can be achieved only by allowing the radiation of energy out-

side the computational domain. Therefore, a more accurate simulation of the

outward radiation of energy can accelerate the convergence to a steady state.

In the far field the solution is relatively constant. Hence, to derive

the boundary conditions, we linearize the Euler equations about this constant

solution. The resultant system is equivalent to a convective wave equation.

A family of radiation conditions for the standard wave equation was developed

in reference 2. This family was based on an expansion that was asymptotic in

the distance from an arbitrary origin. A family of differential operators,

Bm, was derived which annhilated the first m terms in the asymptotic expan-
sion. An _ priori estimate was obtained that showed that the error due to the

use of an artificial surface coupled with the use of the boundary condition

Bmu = 0 was O(r-m).

The first member of this family was generalized to the convective wave

equation in reference 3. As stated above, this allows the construction of

boundary conditions for the full time dependent compressible Navier-Stokes

equations. This condition will be discussed in more detail in this paper.

In reference 4 these operators were generalized to elliptic equations such as

the exterior Poisson and exterior Helmholtz equation.

Other approaches to the construction of outflow boundary conditions were

developed by Rudy and Strikwerda (ref. 6 and 7) and Engquist and Majda (ref.

8 and 9). Rudy and Strikwerda analyzed a one-dimensional model problem. A

boundary condition was developed which accelerated the convergence to a steady

state. This condition depended on a free parameter, which was chosen, in the

one-dimensional case to maximize the convergence rate. In references 6 and 7

this boundary condition was applied to some two-dimensional problems where the

free parameter was chosen by computational experimentation. This boundary

condition was shown to substantially accelerate convergence to the steady

state.

A different philosophy was adopted by Engquist and Majda (refs. 8 and 9).

Their approach was to construct a pseudo-differential operator which exactly

annhilated outgoing waves. This pseudo-differential operator was a global

boundary operator. In order to derive local (i.e., differential boundary

operators) they expanded the pseudo-differential operators in the deviation of

the wave direction from some preferred direction of propagation. In this

manner they constructed a family of local boundary conditions which absorbed

waves in a progressively larger band around a given propagation direction.

These boundary conditions were tested by Kwak (ref. i0) on the time de-

pendent small disturbance equation. It was found that the first order con-

dition significantly improved the standard condition (# = 0); where _ is the

potential. The second order condition was found to offer no significant ad-

vantages. (This was an accuracy study and not a steady state problem.) In

this case, as in other cases with circular or spherical symmetry the first

order Engquist and Majda condition and the first order condition in reference

2 coincide.



Wehave so far concentrated on the use of radiation boundary conditions
to accelerate convergence to steady state. There are also a great variety of
problems which are inherently time dependent. Theseproblems include the
problem of acoustic radiation in a jet (ref. ii), problems in duct acoustics
(ref. 12) and problems involving oscillations in the position of shocks (ref.
13). In these types of problems it is necessary to simulate the condition
of outgoing radiation in order to obtain a correct numerical solution for the
time scale of interest.

The theory to be presented here will be equally valid for these time
dependent (or time harmonic) problems provided there is someknowledge of the
functional form of the solution near infinity. In section 2 we will derive a
family of boundary conditions designed to simulate outgoing radiation for the
wave equation. This will lead to a radiation boundary condition applicable in
the presence of a meanflow. This boundary condition showsgreat promise in
accelerating flows to steady state. Numerical results illustrating this will
be presented in section 3. In section 4 we will present extensions of this
theory.

DEVELOPMENTOFRADIATIONBOUNDARYCONDITIONS

Consider the wave equation in three space dimensions

(i) Ptt = Ap.
In a general inviscid flow, if p is the deviation of the pressure from the
far field pressure p_, then p will satisfy equation (i) provided the free
stream velocities are zero. (Throughout this paper wewill use the subscript
"_" to indicate free stream values.)

(3)

where the operator

(4)

Condition (3) can be regarded as matching the solution

form (2).

A spherical wave solution to equation (i) has the functional form

f (t - r)
(2) P = r

Here f is an arbitrary function and r is the distance from some fixed

origin from which the spherical wave emanates. A boundary condition designed

to simulate outgoing radiation should be exact at least for waves of the form

(2). Suppose the artificial boundary is the sphere r--r I. A boundary condi-

tion which is exactly satisfied by all waves of the form (2) is

BlP = 0,

BI is given by

BI _ _ i= _--{+-_+--r "

p to the functional

In general the waves impinging on the artificial surface are not exactly

spherical. As an example, dipoles and quadrupoles often arise in aero-acous-

tics. In general, an outwardly radiating solution to equation (i) will have

the asymptotic expansion
f (t-r,0,_)

(5) P _ _ J
j=i rj "

4



Here 8 and _ are the angular variables associated with a spherical co-
ordinate system centered at r = 0 while the functions f are arbitrary func-
tions. (In principle f_ for j > i can be determined from the radiation
pattern fl' however for-numerical purposes they should be treated as arbitra-
ry functions.) The argument t- r determines that the wave is outgoing, while
the 8,_ dependenceallows for a skewing from spherically sy_mnetricwaves.

The series (5) has been studied by manyauthors (see, e.g., Friedlander
(ref. 14)). Weare not concerned here with conditions for convergence, but
merely require that this series represents the behavior of the solution in a
neighborhood of infinity.

Applying the operator B1 to the representation (5) we see that

(6) BlP = 0 I_3).

r = rI

It therefore follows that the radiation boundary condition

(7) BIP = 0,

will be increasingly accurate as the position of the artificial boundary, e.g.

the sphere r= rl, approaches infinity. The condition (7) is exact only for
the first term i_ the expansion (5). It can be regarded as matching the solu-

tion to the first term in the expansion (5) with the error in (6) depending on

the amount of skewing expressed in the next order term f2"

Based on this motivation, a natural procedure to improve the condition

(7) is to derive boundary conditions which match the solution to the first

two terms in (5). Such a condition is

(8) B2P I = 0,

I
r=r I

where the operator B2 is given by

(_ _ +3, (_ _ i) _2 _2 2_2 4/_ _ \ 2(9) B2 +_ rJ _+_+r _t 2 _r2

It can easily be verified that (8) is exactly satisfied by the first two terms

in the expansion (5). Applying the operator B 2 to (5) we obtain

r= r1

Thus, the boundary condition (8) is more accurate in the vicinity of infinity

because it matches the solution to the first two terms in (5). Consequently,

the boundary condition (8) can be expected to be more accurate at near dis-

tances. Alternatively if the solution is, for example a pulse, (8) would be

expected to accelerate convergence to the steady state value because the re-

flected waves generated at the boundary will be Smaller.



The procedure which led to the operator (9) can obviously be extended to
boundary operators which annhilate any numberof terms in (5). The well-pose_
hess of the resulting boundary conditions together with rigorous error bounds
are discussed in reference 2. Somenumerical results, for acoustic radiation
problems will be presented in the next section.

In order to derive boundary conditions for more general fluid dynamics
problems, we next consider the effect of a constant free stream flow. For

simplicity we consider the two-dimenslonal Cartesian case. Let x and y

denote the coordinate directions and u and v the corresponding velocity

components. In addition, we let p be the pressure and p the density. We

assume that in the far field the resulting steady state is given by

U='U

v=O
(ii)

P = P_

P = 0_

(This can always be arranged by a rotation of the coordinate system.)

In the far field, away from bodies and boundary layers, viscosity and

entropy changes can be neglected. If we therefore introduce the deviations

from steady state

U = U -- U

(12) Q = v - v

fi = p - p_

= p - p_ ,

and assume that quadratic terms in these variables can be neglected, we ob-

tain the linearized Euler equations

(13)

A

ut + UooUx + --Px= 0
P_
^

^ +PY=O
vt + U_x p_

^ p c2fit + U_Px + (u + _ ) = 0.oooo x y

(Here c is the far field sound speed.)

By straight forward manipulation (13) can be reduced to a convective

wave equation for p,

^ 2 2 ^ 2^

(14) Pit + 2U_Pxt - (c - u )px x - c pyy = 0.

Assuming that the steady state is subsonic in the far field, i.e. u < c , we

can derive radiation boundary conditions for (14) in the same manner as for

the standard wave equation (i). At a subsonic boundary one boundary condi-

6



tlon must be imposed, either for (14) or the system (13) (see ref. 15).
Choosing a radiation boundary condition can be expected to accelerate the con-
vergence to a steady state•

At a supersonic outflow boundary all of the characteristics go out of
the domain. No extra boundary condition can be imposed in this case, instead
the solution should be obtained by a numerical procedure such as extrapola-
tion.

Wenext proceed to derive a radiation boundary condition based on the
convective wave equation (14). The most convenient way to proceed is to in-
troduce new coordinates which transform (14) into the standard wave equation.
Let M be the free stream Machnumber,

U

M _ I •

C

is the condition for a subsonic boundary.) Introducing new coordl-

(15)

(M < 1
nates

(16)

(14) is transformed into

(17) PTT = P_ + Pyy"

Equation (17) is the two-dlmenslonal version of (i) and will therefore

have outgoing circular waves, which in the two-dlmenslonal case are

asymptotic solutions. Introducing polar coordinates

(18) d2 = _2 + y2; tan 8 = Y/t,

then for large values of t and d, p will have the asymptotic form

(19) _ = f(T-d,8)/d _.

I

(This was shown, for example, by Lax and Phillips in reference 16.)

In the same way as the boundary operator (4) was derived, it can be shown

that the boundary condition

(20) PT + Pd 0,

is exact for all functions having the functional form (19)• We next express

(20) in the physical coordinates t, x and y. For clarity we will write it

in terms of the total pressure

Ix(21) 1 1 d

c /1-M 2

where in physical coordinates

(22)

p = _ + p . We obtain the condition

Pt +_ Py + 2d -- 0,

2

d2 x 2

co



(The factor of 2 in the last term in (21) is due to the d½ decay in equation

(19) which is characteristic of two-dimensional problems.) We finally use the

linearized Euler equation (13) to eliminate the spatial derivatives of p.
The result is

2

1 pc x P - P_

(23) 2 i ! Pt 2 2 d [ut-uooVy ] - P_ _ [vt +u Vx] + 2_ = 0.(ca- u )2 c-u

In the steady state (23) does not strictly enforce p = p_, i.e. p = _

only when the gradient of v vanishes. ! Based on the functional form (19) any

steady state must satisfy p- p_ = 0(d72) and it can then be seen that at

the steady state (23) enforces p = p_ to within 0(d-½) which is the accu-

racy of the boundary condition. In practice the gradients of v are negli-

ble and in fact u and v are often obtained from zeroth order extrapolation

which is a consistent approximation to Ix = 0 and hence v v = 0 (from eqn.
(13)). The numerical results presented zn section 3 were geherally obtained

by neglecting the spatial derivatives of v in equation (23).

1 P_c_ x P - p_

(24) 2 2)½Pt 2 2 d ut - P_ _ vt +-- - 0.
(C- _- C- U 2d

The coefficients in (23) require knowledge of p_,u , c which are not
generally known _ priori at the boundaries. We have used the values at the

preceeding time step and have found no difficulties from this.

The boundary condition (24) is an outflow boundary condition which simu-

lates outgoing radiation. When coupled with some numerical procedure for the

other variables (typically zeroeth order extrapolation) it permits a boundary

treatment which substantially accelerates convergence to the steady state.

Our numerical experiments indicate that this acceleration is relatively insen-

sitive to the choice of origin. From the nature of its construction, it is

also applicable to truly time dependent problems, where there is a continuing

radiation of energy across the outflow boundary.

Another application of this theory is at characteristic boundaries.

These boundaries are tangent to the free stream velocities and arise even in

supersonic flow. For example, in flow past a flat plate, with free stream

velocity u_, v = 0, the boundary y = constant (i.e. the top of a computa-
tional rectangle) is characteristic. At these boundaries one frequently ex-

trapolates all the dependent variables. This can cause oscillations which

delay convergence to a steady state. In addition, these oscillations require

that the top boundary be sufficiently far away so that the oscillations will

not degrade the accuracy of the steady state (see, e.g. reference 7).

We have applied condition (24) at characteristic boundaries with success.

Since no condition (other than v = 0) should be imposed at a characteristic

boundary, better results were obtained by replacing p_ by p at the pro-

ceeding time step. An alternative is simply to impose the one-dimensional
characteristic condition



(25) Pt - P_cooVt= 0,
which is valid even if the basic flow is supersonic. The use of equation
(25) can also dramatically improve convergence. The numerical results to be

presented in the next section show the improvements that can be obtained by

correctly treating the characteristic boundaries.

NUMERICAL EXAMPLES

To validate the boundary condition (24) we have studied several test pro-

blems. The first set of problems is designed to study the rate of convergence

to a steady state.

In the first problem a compressible vortex is superimposed on a uniform

flow u= i, v=O in a rectangular domain 0<x< I, 0!y!l. The vortex is

modelled by

d2 = R2 + (x-½)2 + (y_½)2 , R = 0.15

(26)

r (y_ ½)/d 2
u=_

r d2v = - - (x- ½)
7T

r = circulation = 2w R(VS)ma x •

The Mach number is found by assuming that the temperature is a fixed constant

while the pressure is calculated from the total pressure by assuming isentro-

pic flow. Analytically the vortex convects downstream and out of the compu-

tational domain. The steady state is then Just the free stream flow. Hence,

the number of iterations required for convergence is directly related to the

ability of the downstream boundary condition to allow the vortex to pass out

of the domain without reflections.

This problem (which was suggested by David Rudy of NASA Langley) is a

model for both steady state problems and time dependent compressible Navier-

Stokes equations. MacCormack's method is used to numerically solve the equa-

tions. The free stream Mach number is 0.4 and the Reynolds number is approx-

Imately 2100.

In Table I the number of iterations required for convergence is shown for

different choices of the origin. The boundary condition (24) is compared with

that suggested by Rudy and Strikwerda (see ref. 6) and also the boundary con-

dition p = p . The steady state is assumed to occur when the change in all
the dependent variables is less than 10-7 .

The results show that (24) provides a significant acceleration to the

steady state and that the number of iterations is relatively insensitive to

the choice of origin. Similar results are obtained when the disturbance is

a region of high pressure instead of a vortex (see refs. 3 and 6).

9



TABLEI. NUMBEROFITERATIONSTOACHIEVEA STEADYSTATEFOR
A MODELPROBLEMCONTAININGA COMPRESSIBLEVORTEX.

Boundary
Conditions

(24)

(24)

(24)

(24)
Ref 6
p=p_

Origin

(0., 0.5)

(0.5, 0.5)

(0., 1.0)

(o., o.)

B

Number of

Iterations

2251

2878

2503

2530

7860

> 20,000

As a more realistic test case we consider the development of a subsonic

boundary layer over a flat plate. This problem was used in reference 7 to

compare a wide range of outflow boundary conditions. The computational do-

main is a rectangle with the bottom corresponding to the plate. The top of

the computational rectangle is a characteristic boundary. A standard boun-

dary treatment at this upper surface is to extrapolate all of the variables.

We also consider the effect of constricting this upper boundary. In Table II

the number of iterations required for convergence is shown for both different

boundary treatments and for different positions of the upper boundary. Re-

sults are also presented for the radiation boundary condition of ref. 7 with

the free parameter, _, chosen to be equal to 0.3. Distances are measured in

boundary layer thicknesses with the x coordinate varying between 0.0 and 2.0

and the maximum upper boundary chosen as 1.0.

TABLE II. RESULTS FOR BOUNDARY LAYER OVER A FLAT PLATE

(Extrapolation on upper boundary)

Position of

upper boundary

1.0

1.0

1.0

1.0

0.6

0.4

Boundary

Condition

(24)

(24)

Ref. 7

P= P_

(24)

(24)

Origin

(i.,0.)

(0.,0.)

(i.,0.)

(1,,o.)

Iterations

12,500

14,000

12,800

> 20,000

13,950"

> 14,000"

Inaccurate steady state

i0



The results presented in Table II demonstrate that all of the radiation
conditions, i.e. (24) and those in refernce 7 provide a substantial improve-
ment over the condition p = p . The effectiveness of (24) is still relative-

ly insensitive to the choice of origin. Constricting the upper boundary and

using extrapolation, led to oscillations which delayed the attainment of the

steady state. The final steady state in this case also differed significant-

ly from the steady state obtained by integrating the equations in the larger

region.

The use of a larger computational domain substantially increases the cost

of the computation. This is particularly true because, in many cases, only

the solution near the surface (in this case the plate) is of interest. In

order to test the possibility of constricting the upper boundary we applied

the radiation condition (24), at the upper boundary. In this case, we replace

p_ by p at the previous time step, as the condition p = p_ in the steady
state is not valid when the upper boundary is reduced. In Table III the re-

sults of applying (24) at the upper boundary are shown.

TABLE III. THE EFFECT OF THE RADIATION CONDITION AT THE UPPER BOUNDARY

Position of

Upper Boundary

1.0

1.0

0.6

0.4

Outflow

Boundary
Condition

(24)

Ref. 7

(24)

(24)

Top Boundary

Condition

(24)

(24)

(24)

(24)

Iterations

88OO

12850

8800

9400

The data show that a substantial acceleration of convergence can be ob-

tained by using a radiation condition at a characteristic Boundary. We note

that in all cases the steady states in Table III were virtually identical to

the steady states obtained on the larger regions. Thus, a substantial savings

in computer time can be achieved by a correct choice of the boundary condition

at the characteristic boundary. We have found similar improvements by using

a characteristic condition such as (25) which can be used for supersonic flow

as well. The reason that the boundary condition of reference 7 is not acce-

lerated by a radiation condition at the characteristic boundary is not pres-

ently clear.

As another example we consider Invlscid flow in a quasl-one-dlmensional

nozzle with variable area A(x). The equations are

(A0) t + (A0u) x = 0

(27) (A0u)t + [A(0u2+ P)]x = AxP

(AE)t + [Au(E+P]x = 0,

ii



where E is the total energy. At the (subsonic) inflow both u and E are
specified. Wewill only consider the case of a subsonic outflow so that one
boundary condition should be specified. By properly adjusting this outflow
pressure both shocked and shock-free solutions can be obtained.

Weconsider the effect of different radiation conditions on convergence
to a steady state for the system (27). In this case, the condition p= p_ is
valid during the temporal evolution of the flow. The use of a radiation con-

dition is therefore a physically inconsistent artifice to accelerate the con-

vergence to a steady state.

Since the system (27) is one-dimensional, traveling waves have no spatial

decay in constrast to (2) or (19). Therefore, the appropriate generalization

of (24) is the characteristic condition

(28) _p_ 3u
_t pc %-{= O.

This condition was tested along with the generalized radiation condition (see

ref. 6)

(29) _P pc _u_t - _ + _(p- P_) = O.

The solution method used was a linearized, implicit Euler method (see refs. 7

and 8). Boundary conditions on the pressure are computed by using an equation

for _p/_t and using a linearization technique similar to the basic differ-

ence scheme. In Table IV we present results for several different choices of

_. Both the number of iterations required for convergence and the steady

state L 2 error are presented.

TABLE IV. STEADY STATE RESULTS FOR THE

ONE-DIMENSIONAL NOZZLE FLOW

Boundary
Condition

_=_ (i.e.

p = p_o)

_= 0.0

C_ = 0.278

_= 1.0

-- i0.0

L 2 Steady State
Error

11.4

8.11

9.33

8.40

11.16

Iterations

153

52

118

182

158

The results show that the radiation condition at the outflow can sub-

stantially accelerate convergence. In this case it is not necessary to have

a boundary condition which enforces p = p_ in the steady state (i.e., _= 0).

The steady state condition p = p= is a consequence of the initial conditions.

Similar results can be obtained by using the MacCormack explicit scheme (see

ref. 3).
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As an additional examplewe consider the use of the higher order boun-
dary condition (i0) in a time harmonic problem. In this case we compute the
acoustic due to a quadrupole source in a mediumat rest. Quadrupole sources
are important in the theory of jet noise and an effective computation requires
boundary conditions which will not allow spurious reflections. The first
order condition (3) is inaccurate in this case because the leading term in
the expansion (5) becomesvery small at 90°.

In Table V the phase changebetween 0° and 90° is presented for the two
boundary conditions (3) and (i0). The analytic solution should exhibit a
phase change of _/2 (i.e. from a cosine to a sine dependenceas the angle
changes from 0° to 90° . It can be seen that the second order boundary condi-
tion (i0) gives an accurate phase changewhile (3) gives a completely wrong
phase change. This result clearly indicates the crucial importance of radia-
tion boundary conditions in simulating fluctuating flows such as those occur-
ring in aeroacoustics.

TABLEV. PHASECHANGEFORQUADRUPOLESOURCE

Boundary Condition

(3)

(lO)

Phase Change

0.77 + 0.08

1.64 -+ 0.08

EXTENSIONS TO TIME-INDEPENDENT EQUATIONS

In the previous sections we have concentrated on developing boundary con-

ditions for time dependent equations. These conditions were used even in

cases where the time dependence was only a mechanism for achieving the steady

state solution. There are many applications, however, when one solves the

time independent equations directly. Generally in those cases a time harmonic

solution is sought. Some examples of such aerodynamic problems are the small

disturbance equation about a fluctuating airfoil (ref. 19), acoustic propaga-

tion in a duct (ref. 20) and the scattering of acoustic waves by a body such

as an airplane fuselage (ref. 21). In this section we will consider the pro-

blem of deriving radiation boundary conditions for such problems.

As a model equation we consider the Helmholtz equation

(30) A_ + k2_ = 0.

(In applications @ can be a velocity potential or a fluctuating quantity

such as the pressure.) When (30) is considered exterior to a body it describes

the scattering of waves by the body. When (30) is integrated in a duct it

describes the propagation of acoustic (or electromagnetic) waves in the duct.

13



In each case, (30) must be supplemented by appropriate boundary conditions on
the physical surfaces and a radiation condition enforcing outgoing radiation
at infinity.

The appropriate radiation boundary condition is different in fully ex-
terior geometry and in the duct geometry. This occurs since in the duct geom-
etry there can exist a finite numberof propagating modeseach with a differ-
ent wave number. In fully exterior regions, on the other hand, radiation
propagates radially (with someangular skewing), and there is essentially only
one wave number.

In the fully exterior region the appropriate boundary condition at in-
finity is the Sommerfeldradiation condition

(31) _r - ik_ + _r -- °(I) (r+_).

This condition can be derived by formally differentiating the expansion
f (8,_)

(32) _ = e-ikr [ J ,

j=l rj

which is the direct analog of (5) for the case of a harmonic time dependence.

Higher order boundary conditions can be obtained by matching the solution to

more terms in the expansion (32). For example, a second order boundary opera-

tor, analogous to (9) is

(33) B2 = (-ik+_+r)(-ik = - _r2 - - (-_- r "

The properties of these boundary conditions are discussed in detail in refer-
ence 4.

A different situation occurs in the duct Helmholtz equation. For sim-

plicity, we consider the Helmholtz equation in the rectangular region 0 < x < _,

0_y_z. The equations are

(a) _xx + _yy + k2_ = 0

(b) _-_ = 0 at y = 0,7
_y

(c)

It is easy to see that the general solution is

lei_j Xaj .-ig.x] '.2(35) _ = _ Aj cos(jy) +bj e 3 ;where _j = /k 2-3 •

We see that for j _ k the outgoing solution is obtained by choosing
+ia.x

3
(36) _ _ e

14



The modeswith J _>k are evanescent (i.e. exponentially decaying) and the
correct solution is obtained by requiring exponential decay as y÷oo, i.e.

(37) _ e-/(J 2- k2)x .

Thus, the wave numbers of the solution at infinity vary with the mode.

A boundary operator which is exact for the propagating modes is

[k]

(38) B _ = _ _

j=l 3

It can be shown that imposition of the boundary condition

(39) B _ = 0,

X=X 1

accurately simulates the outgoing solution with an error that decreases ex-

ponentially as x + _.

If the problem (34) is formulated in cylindrical geometry, it will

describe waves propagating in a hard walled duct. Introducing cylindrical

coordinates r and z, where r is normal to the duct centerline and z is

distance along the axis, the problem becomes (the duct diameter is scaled to

unity)

(a) _zz + ! (r_r) + k2_ = 0r

(40) (b) _r = 0, at r = 0, and r = ½

(c)

The solution is

+io.z

(41) _ = Z AjJ0(Ojr)e 3 ,

where J0 is the zero order Bessel function and lj

of J_ also

th
is twice the j zero

(42) _j = _2_ 12

It can be seen that the boundary condition (39) is equally valid in this

case. There is no need for the ducts to have straight walls except in the

vicinity of infinity.

15



Similar boundary conditions can be developed for computing spin modes,
ducts with flow, or for computing in ducts with liners where condition (40c)
is replaced by an impedenceboundary condition. The second order boundary
condition can be implemented in finite element codes in a mannersimilar to
that described in reference 4.

This theory has also been applied to underwater acoustics. A typical
problem here is

(r_r) r

(a) _zz + _r + k2_ -- 0

(43)

(b) _ = 0 on z = 0

(c) _z 0 on z =

(d) _ = f on r = r .
c

This problem differs from (40) in that the computational domain is infinite

in the r direction. The outwardly radiating solution is

(44) _ = _ Aj sin(ljz) + /k2 2
j=l Ho(_jr); %j = j- ½ ' _'3 = - %J "

(See for example, Fix and Marin, ref. 22.) Here + is the Hankel function
of zero order and of the first kind. By using theH_symptotic expansion

(45) H_(z) = /2--_ e i(2- w/4)[l__/fz + 0(z-3/2)],

and the definition of o. we see that the solution is composed of a finite

number of propagating mo_es (%j < k) and an infinite number of evanescent

modes (%j > k).

Fix and Marin have developed an exact, global radiation condition for

problem (43). This condition, can be applied at any artificial boundary

r = r.. Local approximations can be developed using the ideas presented here.

If t_ere are m propagating modes, we can use the boundary condition

(46) Bm(rl) _ = 0,

th
where B is the unique, m order differential operator which has as its

m +
fundamental set of solutions {Hn(_r) ; j=l,...,m}. Such an operator can

easily be constructed using the Ehe6ry of ordinary differential equations.

Simpler boundary conditions can be constructed by accepting an error of

r-3/2 and using the leading order term in the expansion (45). In this case,

we take as the operator B the operator which has the fundamental set of

i_jr _ m
solutions {e //r, j=l,...m}. For the case m= 2 we get

16



(47) (8___ io 2 +i) (_r _iol+l)B2(r) = Dr

This second order boundary condition has been applied to various problems.

The theory presented here is also valid in the case of a variable sound

speed or varying topography of the ocean bottom. The second order boundary

condition can be easily implemented in variational principles as described in

reference 4. An efficient implementation of the higher order boundary

conditions must still be developed. Similar boundary conditions have been

proposed by Kriegsmann (ref. 23) for wave guide problems in a cartesian

coordinate system.

CONCLUSION

We have derived boundary conditions which can be used on the artificial

boundaries that arise when an unbounded region is truncated for computational

purposes. These boundary conditions are based on matching the solution to a

known functional form valid near infinity.

These boundary conditions have been applied to the nonlinear compressible

Navier-Stokes and Euler equations. They have been shown to yield a substan-

tial acceleration of convergence to the steady state. Over or under specifi-

cation can lead to oscillations which degrade the accuracy of the steady

state. The radiation boundary conditions can be used at both subsonic outflow

boundaries and at characteristic boundaries where the normal velocity is zero.

The radiation boundary conditions can also be developed directly for the

steady state equations. For subsonic flows the equations are elliptic. Thus

we are led to the development of Sommerfeld-type radiation conditions for

elliptic equations. As before these allow for the constriction of the domain

of integration without loss of accuracy. It is also seen that the appropriate

boundary conditions depend on the geometry of the region. Hence, even though

the boundary conditions are local they depend on global properties of the

solution. This occurs since the boundary conditions are developed based on

asymptotic solutions valid in the vicinity of infinity. These asymptotic ex-

pansions depend on global properties of the solution. In particular, the

geometry of the region in the far field strongly affects the proper choice of

boundary conditions. This is true for both the steady state and time depen-

dent problems.

The boundary conditions developed are all local, i.e. differential boun-

dary conditions. It is also possible to incorporate the asymptotic expansion

directly in a finite difference scheme. This will lead to a relationship

between the outermost grid points. This relationship is just the finite

difference analog of the differential boundary conditions.

Numerical results have been presented here and in references 2, 3, 4, ii

and 24 which verify the usefulness of the proposed boundlary conditions.
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A COMPARATIVE STUDY OF NONREFLECTING FAR-FIELD BOUNDARY CONDITION

PROCEDURES FOR UNSTEADY TRANSONIC FLOW COMPUTATION

Dochan Kwak

Ames Research Center

SUMMARY

Various nonreflecting far-field boundary condition procedures are com-

pared by implementing them in the computer code LTRAN2. This code solves the

implicit flnite-difference representation of the small-disturbance equations

for transonic flows about airfoils. The first- and second-approximate non-

reflecting conditions, as proposed by Engquist and Majda, are compared with

the condition derived from the full-characteristic equation. The far-field

boundary conditions and the description of the algorithm for implementing

these conditions in LTRAN2 are discussed. Various cases are computed and

compared with results from the older, more conventional procedures. One con-

cludes that the full-characteristic equation produces the most effective

results, thus allowing the far-field boundary to be located closer to the

airfoil; this decreases the computer time required to obtain the solution

because fewer mesh points are required.

INTRODUCTION

To compute time-dependent flows over an infinite region using finite-

difference procedures requires that either the problem be reduced to one in a

finite domain via a coordinate transformation, or that boundaries be placed

at a finite distance from the body and the boundary conditions modified along

them. However, for many practical problems the coordinate transformation

method is not applicable. In such cases, computational simulations of unsteady

flows in an unbounded region are performed on grids with finite dimensions.

The artificial wall effect created by these grid far-field boundaries must

therefore be minimized so as not to degrade the resulting numerical solution.

Various approaches have been developed to reduce this spurious influence

of far-field boundaries on interior solutions (refs. 1-9) (a brief review of

these methods is given in ref. I0). Among those approaches, the first- and

the second-approximate local-condition procedures by Engquist and Majda

(ref. 4) were selected to be compared with the procedure derived from the

full-characteristic equation. All three procedures require a modest change

in the existing computer code; however, these conditions result in an improve-

ment in the computational efficiency of that code. In particular, there was

marked improvement by the full-characteristic condition.
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Unsteady transonic regions are encountered in many existing flight

vehicles. Typical examples include a fluttering airfoil and spinning heli-

copter rotors (ref. Ii). For unsteady small-disturbance transonic flows,

Ballhaus and Goorjian (ref. 12) have developed a time-accurate, implicit

finite-difference computer code, LTRAN2. Their boundary conditions at the

top, bottom, and upstream boundaries (see fig. i) are perfectly reflecting

conditions and are permissible for boundaries placed far away. In the present

work, approximate nonreflecting boundary conditions are employed in this code

to bring the far-field boundaries closer to the airfoil. As illustrated in

figure i, waves originating from the airfoil propagate to the far-field

boundaries. The old boundaries, which are placed at a large distance from

the airfoil, leave the near-field solution unaffected by reflective waves

from the outer boundary. With nonreflecting conditions, the new boundary

can be located closer to the airfoil, thus reducing the area of computation.

In the following sections, the governing equation and the boundary condi-

tion procedures are presented; the finite-difference scheme for implementing

these conditions in LTRAN2 is described; and computed results, using the old

reflecting far-field boundary conditions and those using the new nonreflect-

ing conditions, are compared with large-grid solutions.

GOVERNING EQUATION AND FAR-FIELD BOUNDARY CONDITIONS

Governing Equation

The unsteady, transonic small-disturbance equation for low reduced fre-

quencies can be written as

A#xt = B_xx + _yy (la)

where

A = 2kM_2/_2/3 m }
B = (i - M 2)/_ 21_ - (y + I)M _x

(ib)

Here, _ is the disturbance velocity potential, _ is the airfoil thickness-

to-chord ratio, and M_ is the free-stream Mach number. The reduced fre-

quency is defined as k _ _c/U_ for an airfoil of chord length c executing

some unsteady oscillatory motion of frequency _. The choices of the expo-

nent m are somewhat arbitrary and are made to extend the Mach number range

of the small-disturbance theory (a fairly complete review is given in

ref. ii). The quantities x, y, t, and _ have been scaled by c, c/6 I/3
-1 /

, and c6 2 3U_, respectively. In deriving equation (la), it is assumed that

k ~ _2/_ ~ (i -M_ 2) << i (2)
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Far-Field Boundary Conditions

In LTRAN2,equation (la) is solved for the flow about airfoils by an
alternating-directlon implicit (ADI) finlte-difference algorithm. The exist-
ing far-field boundary conditions imposed in LTRAN2are

upstream: _ = _o
downstream: _x = 0

top and bottom: #y = 0

(3)

Here Go is the steady-state solution. These conditions are perfectly
reflecting. In other words, all the waves originating from the airfoil for
unsteady problems are reflected back into the computational domain from the
boundaries. Hence, the outer boundaries must be placed far enough from the
airfoil in the original version of LTRAN2.

Following Engquist and Majda (ref. 4), conditions are introduced to
absorb at least a portion of the waves incident on the outer boundaries. For
the upstream condition, B in equation (Ib) is assumedto be locally constant;
therefore, the analysis is performed on a linear equation. This approximation
assumesthat the flow field is governed by a linear equation in the vicinity
of a far-field boundary. By considering waves traveling left from the inte-
rior to the upstream boundary for subsonic free stream, a perfectly nonreflect-
ing condition is derived. Since this condition requires information from the
mathematical domain of dependenceof that boundary, approximations are made
to get the following local conditions.

upstream ist approximation:
2nd approximation:

B
_t - A _x = 0

_xt A i- B _tt + A _yy

(4)

= 0 (5)

The first approximate condition absorbs waves normally incident on the bound-

ary, and higher approximations absorb portions of obliquely incident waves.

Since waves travel infinitely fast in the downstream direction, the

following consistency conditions seem appropriate (ref. 9):

downstream
_x = 0 (6)

or Cxx = 0 (7)

Considering waves traveling to the top and bottom boundaries, a nonre-

flecting condition is developed. Subsequently, local approximations to it

are made, resulting in
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top and bottom ist approximation:
2nd approximation:

_y ± _ +x = 0 (8)

_ty + r2_xy ± r1_xt = 0 (9)

Here, ± corresponds to the top and bottom boundaries, and rl, r 2 governs

the absorption of waves obliquely incident to the boundaries. The values

rl, r 2 are discussed in more detail by Engquist and Majda. Following one of

their strategies, r I and r2 are chosen for the present study as

rI = 6.4641 /B

r2 = 5.4641(2B/A)

Alternatively, a nonreflecting far-field condition can be designed by

considering characteristic equations. Assuming B = constant in equation (ib)

at a large distance from the airfoil, the characteristic equation can be
written as

B_x_ x + _y_y - A_x_ t = 0
(I0)

This equation is satisfied by the characteristic plane

_(x,y,t) = r - (x/_ + 2_ t/A) = constant (lla)

where

and

r = (x , y)

= f(_) (lib)

is a solution to equation (la) that represents a traveling plane wave. From

these, the following equation is derived (Goorjian, P. M.: unpublished note)

by forcing linear combinations of the derivatives of _ to be zero:

X_x+ +7 Brr --- _t = 0 (12a)

To use this as an approximate nonreflecting condition on boundaries far away,

a further simplification is made. In the upstream region, x ÷ -= with IYl

finite, so that equation (12a) becomes

B

_t - A _x = 0 (12b)

For the top and bottom boundaries, y ÷ ±= with Ixl finite, so that equa-

tion (12a) becomes

1A--_ t --0
#y ±_ /_
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Replacing _t by _x using equation (llb), this equation can be written
equivalently as

_y ± _ _x = 0 (12c)

These are the flrst-approximate relations obtained by Engquist and Majda.

Therefore, we may interpret equations (4) and (8) as special forms of a far-
field characteristic relation.

As will be shown later, equation (12b) is quite efficient at upstream

boundary and easier to implement in LTRAN2 than equation (5) or (12a). Since,

for the problems we are solving, the influence of y-boundary is more pro-

nounced, an improvement is attempted using equation (12a) to absorb waves

incident on the top and bottom boundaries. First, the stability properties

of this equation are examined, uslng the energy method, as done by Enquist

and Majda (ref. 4). Taking the total x-component of the kinetic energy as

a measure of stability, we require the time rate of change of this quantity

to satisfy

b

(13a)

Integrating this by parts using equation (la),

b b

dy - dy(ke) = 0x - % 0y 0x - _ _y
b b

x=a x=-a

(13b)

y=b y=-b

Substituting equation (12a) into equation (13b) and then using equations (lla)

and (llb), we can show that the inequality in equation (13b) is satisfied.

For stability, we need at the top boundary (y = b),

_x_y E 0 (14)

Substituting equation (12a) into (14),

_x_y = -(b _x 2) - rl (-Ax+ A-_)_t_ x
b2 Br /_

I I I ,

(I) (II)
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From equations (lla) and (llb), we can show that (I) + (II) E O. However,
the first term (I) _ 0 for x < O. This causes somedifficulty in obtaining
stable results. To avoid this difficulty, a new nonreflecting condition for
the top and bottom boundaries is chosen as follows:

x r_ 1 ( A x +A)#t = 0 (15)_r_x + _y+Y -_r

where B = 1 when x _ 0 and 0 when x < 0. This is equivalent to imposing

the first approximation on the upstream side while using the full-

characteristic equation on the downstream side of the airfoil at the top and

bottom boundaries.

FINITE-DIFFERENCE SCHEME

In LTRAN 2 (ref. i), equation (la) is solved by a two-step procedure to

advance from time-step n to n + i.

f_n+1 _ _n ) = Dxfj + _ nx-sweep: A(At) -I _x_j, £ j,£ ,£ yy_j, £ (16)

n+1 1
(17)

The operators in equations (16) and (17) are defined by the following

equations:

_xCj,E -- 2(_pj, - _j_1,£)(xj+ l - xj_l)-1
(first order)

= (3q_j,E - 4_j_i, £ + _j_2,E)(xj+ l - Xj_l)-1 (second order)

6yy_j,E = 2[(_j,E+I - Cj,_)(Y_+I- Y_)-_

- ¢j,£_l)(y_ - y£_1)-1](y£+1 - y£_l) -I

I [Bn n+l + (i - 2 n 3]--- j,_*xj,_ M )*x /_2/fj ,9. 2
3,£

Bjn,_ = (I - M 2)/6 2/3 - (y + l)Mm¢ nj,£

= (_j+1,_ - _j,_)(xj+_ - x.)-_

26



= - -i[(1 ej) - fj ,£)Dxfj,£ 2 (xj+1 xj-1) - (fj+i/2,_ -I/2

+ gj_l(fj_l/2,£ - fj_3/2,E)]

ej = [10] for (B3+II 2, £ +Bn ) >j-l/2,_ [<]0

Here, At is the time-step and j, _ are the grid-point indices in the

x and y directions.

The first-approximate nonreflecting far-field boundary conditions are

readily incorporated into the above two-dimensional sweep procedure. For

the x-sweep, the upstream boundary condition (12b) becomes

-I_n+I ~n+1
1 2,_A -1(Ax) _Tj+I, £ - ¢j,£)-i n+l _ cn 2,_) - Bj+I

(At)
_j+I/2,_ j+11 /

+ (_+i,_ -¢_,£ )] = 0 , j = i, £ = i, . . ., £max (18)

Here,

Bj+I/2,i = [(i - M 2)/62/3] - [(7 + I)M m(¢n=00 kj+l,i - #'n Z)/(xj+1 - xj)]'3, j=l

The downstream boundary condition is

~n+1 + n _ _n+l _ n = 0 (19a)
#jmax,£ Cjmax,£ -jmax-l,£ Cjmax-l,£

n _ n = 0, from the previous iteration
or equivalently, since Cjmax,£ _jmax-1,£

Sn+l = sn+l £ = I £max (19b)
jmax,_ jmax-1,Z ' ' "'

Here, jmax and £max are maximum indices in x and y directions and represent

downstream and top boundaries, respectively.

Similarly, for the y-sweep, the top and bottom boundary conditions
become

¢n+I/2 _ _n+i12 )l(y_ ) I II/2[¢ n+I/2j-llz,_ -j-i12,£-i - Y_-I ± Bj-I/2,£-I/2 k j,_-i/2

_ _n+I12 _I xj_ I) = 0_j_1,__112j, (xj -
j = 2, . .., jmax (20)
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where

=! (¢jCj+_i/z,_ 2 ,_ + ¢j+_l,_)

@n+i/2 = ! (_n+l + _n)
2

When j = 2, equation (20) requires _ at j = i. Therefore, for j = 2 we

use equation (12b) also. Here, the upstream condition, equation (18), is

changed to

&n+l 1

_ #n (dx) - _j,g(At) Vj+I/2,_ j+i/2,_) - _ Bj+I/z,£A- j+l,_

+ (_nj+l,£ - _n )] =0j,£ , j = I, £ = i or_max, (21)

Then, equations (20) and (21) are solved simultaneously.

The second approximation (9) and the characteristic condition (15) are

discretized in a similar manner. For the y-sweep, the top boundary condi-
tions become

Second approximation:

r 6 _n+l r _ _n+i/26 _n+l + + = 0
yt_j-i/2,£ i xtTj,_-I/z 2 xy'j,£

Characteristic condition:

x E-I #n+I/2 Y -1 E-l) _n+I/zr (nx)-l(1 - ) + (_y) (1 -x j,E-m/2 r y _j-I/Z,E

+ A _ (At)-l(l E-I)..... ¢n+i
/ t j-i/Z,£-I/Z

(22)

where

6yt = (Ay At)-l(l - Etl)(l - Ey I)

6 = (Ax Ay)-l(1 - E-I) (I - E-I)
xy x y

-i n = n-I -i n n
Et _j,£ _j,£ ' Ex _j,_ = _j-l,_ ' etc.

= 0 (23)

The bottom boundary conditions are applied in the same way.
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COMPUTEDRESULTSFORVARIOUSTESTCASES

In the production version of LTRAN2,the default grid boundaries are
located 857 chords from the airfoil in the y-direction, and 200 chords from
the leading edge, with smoothly stretched grid spacings in both directions
(113, 97 mesh in x, y-directions). The large-grld solutions in figures 2-10
are obtained using this grid. However, depending on the particular problem,
equivalent results can be obtained with smaller grids; the minimumnumberof
meshpoints required is shownin the figures. Therefore, identical solutions
are obtained when far-field boundaries are placed farther away than the
minimumrequired.

In computing the large-grid solutions, two different sets of far-field
boundary conditions are imposed independently, namely:

I. Perfectly reflecting conditions, as given by equation (3)

2. The flrst-approximate conditions, as given by equations (4), (6),
and (8)

These boundary conditions yield essentially identical results, that is, within
plottable accuracy. Since the large-grld results can be duplicated using
different combinations of grids and boundary conditions, it is reasonable to
assumethat these are solutions of equation (I) with far-fleld boundaries at
infinity.

In a previous study (ref. I0), the first-approxlmate conditions were
shownto be very effective in bringing the upstream boundary close to the
airfoil, that is, 3.8 chord lengths away from the leading edge for the cases
tested. On the other hand, the y-boundary had to be placed relatively
farther away, for example, 61 chord lengths away for the case of a step change
in angle of attack at M_ = 0.85. Therefore, in the present study, four dif-
ferent far-field conditions (described in the previous section, Finite-
Difference Scheme)are comparedby implementing them on the top and bottom
boundaries, namely:

i. Perfectly reflecting condition -- equation (3)

2. The flrst-approximate nonreflectlng condition -- equation (8)

3. The second-approxlmate nonreflectlng condition -- equation (9)

4. The nonreflecting approximation from the full-characterlstic
equation -- equation (15)
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Step Changein Angle of Attack

An impulsively started airfoil in plunging motion creates a pressure
pulse. This is simulated numerically by a step change in the angle of attack.
Owing to the low-frequency nature of the governing equation, the lift and
momentcoefficients gradually increase after the initial change in the angle
of attack. A problem such as this provides a good test case for investigating
the influence of the computational far-fleld distances on the flow solution
near the airfoil.

Starting from the standard large grid, the far-field boundary distances
are reduced by removing outer grid lines in the y-directions. Both the old
reflecting boundary conditions (eq. (3)) and the new ones (eqs. (8), (9), and
(15)) are tested with these reduced grids. In figures 2 and 3, the lift and
momentcoefficients for an NACA64A006airfoil are plotted on a time scale in
units of chord lengths (c) of airfoil traveled. The indicial responses to a
unit change in the angle of attack, =, are and , as described inC_ Cma
reference 12, and can be regarded as C_/_ and Cm/_ in this case. By using
the old conditions, the computedresults start to deviate from the large-grid
solutions when the y-boundary distance, Ymax, gets smaller than 80 c at
M_ = 0.85. Applying the first approximate condition, Ymax can be reduced to
61 c without significant deviations from the large-grid results. Using the
characteristic equation, Ymax can be further reduced to I0 c. However, there
was no improvement using the second approximation over the results obtained by
implementing the first approximation. It may be possible to adjust the two
parameters r I and r 2 to produce better results. Since adjusting the param-
eters for different problems may not be practical, r I and r 2 are chosen by a
fixed strategy in the present study. The sonic line extends to 1.04 c at time
t = 170, as shownin figure 4. Therefore, the far-field boundary remained in
the subsonic region throughout the computation. In table i, the minimummesh
in the y-direction (_max) and the y-boundary distance (Ymax) required to use
the old or the new boundary conditions are shown. Whenthe characteristic
condition is used at the top and bottom boundaries, the gain in computational
efficiency is about 18%. (Because the second approximation is not better than
the first, the results for the second are not shownin table i.)

Oscillating Flap Case

Another test of the nonreflecting boundary conditions was performed for
the case of an oscillating trailing-edge flap. The configuration consisted of
an NACA64A006airfoil with a sinusoidally oscillating flap. Two of the three
types of possible shock-wavemotions are shownin figures 5-8: (I) type A,
sinusoidal shock-wavemotion, and (2) type B, interrupted shock wave motion.
In both cases, large-grid results can be obtained with a grid as small as
93 x 77 (Xmax= 3.8, Ymax= 47). As expected, the minimum x-boundary dis-
tance, Xmax, is very small, and the influence of y-boundary is very pronounced.
By reducing the y-boundary distance, Ymax, further to 2 chords from the air-
foil, the old reflecting conditions cause significant deviation of the lift
and the momentcoefficient from the large-grid solution. The reflecting
boundary conditions on the top and bottom, Cy = 0, model solid-wall boundaries.
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Hence, imposition of the y-boundary at this close position restricts the flow
and produces stronger shocks (ref. 13).

However, it is expected that by applying nonreflecting conditions at the
top and bottom boundaries, waves incident on the far-fleld y-boundaries will
be absorbed. In figures 5-8, results after implementing various approximate
nonreflecting conditions at the top and bottom boundaries are compared. For
type-B shock, the characteristic condition (15) produces somewhatbetter
results than the first approximation (8) as shownin figure 7. For type-A
shock, the characteristic condition was marginally better than the first
approximation, as shownin figure 5. However, in this case (Ymax= 2), a
smaller time-step was required to use the first approximation. Therefore, the
minimumCPUtime to obtain solutions using the first-approxlmate condition was
based on a larger grid (Ymax= 2.9) where a larger time-step was allowed for
stability. The gains in computational efficiency are listed in table I.

Impulsively Started Airfoil

To visualize the behavior of waves originating from the airfoil and then
propagating throughout the computational domain, an NACA64A006airfoil is
impulsively started from rest at time zero with M_ = 0.85. This is equiv-
alently done in LTRAN2by turning on the free stream from rest. To see the
reflection more clearly, the far-field boundaries are placed very close to the
airfoil (Xmax = 1.22 c, Ymax= 1.08 c). The propagation of disturbances is
demonstrated by the pressure contour of the upper half plane of the computa-
tional domain. In figure 6, the results are shownat three sequential times
measuredby chord lengths of airfoil traveled.

Figure 9(a) is obtained from the large-grld solution by looking through
the window of 1.22 c x 1.08 c. In this sequence, taken from a movie produced
from the calculation, waves from the airfoil propagate outwardly only during
the time observed, as though the domainwere infinite. In figure 9(b), the
old reflecting conditions are used. Physically, this is equivalent to placing
solid walls on the boundaries. As time increases, the influence of the
boundaries, especially the y-boundary, becomesmore apparent, and at
t = 7.1, the flow is shown to be choked. This illustrates a possible influence
that a solid wind-tunnel wall can have on experimental results. Whenthe
first approximate nonreflecting conditions are used (fig. 9(c)), the
pressure-contour mapmore closely resembles the large-grid solution. As shown
by the upper-surface pressure-coefflcient plot in figure I0, the reflecting
conditions contaminate the near-field solution much faster. Since the non-
reflecting conditions used are simple approximations to perfectly absorbing
conditions, somereflections still exist.
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CONCLUDINGREMARKS

The first- and the second-approximate nonreflecting boundary condition
procedures of Engquist and Majda and the one derived from the full-
characteristic equation have been comparedby implementing them in solving
various practical problems, using the unsteady small-disturbance transonic
flow code, LTRAN2. It has been demonstrated successfully that the computa-
tional domain can be reduced significantly using the characteristic condition
and to a somewhatless extent using the first-approximate condition; that is,
for the most severe case of the indicial response, the far-field y-boundary
distance could be brought from 80 c to i0 c using the characteristic condition
and to 61 c using the first-approximate condition. However, since the mesh
system is stretched in LTRAN2,the numberof computational grid points is not
linearly proportional to the distance of the boundary from the airfoil. The
gain in computer time, after implementing the new conditions at the top and
bottom boundaries, is problem-dependent; for the cases tested, the time saved
ranged from 18 to 58%when the characteristic condition was used and from
0 to 41%when the first-approximate condition was used. For the particular
set of r I and r 2 chosen for the present study, the second-approximate condi-
tion was not as effective as the first one. The boundary conditions applied
here are all local in space and time and, therefore, should be applicable to
any type of unsteady motion. In conclusion, the simplicity of the character-
istic condition and the computational efficiency gained are difficult to
surpass for applications in the design process.
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TABLEi.- COMPUTATIONALEFFICIENCYOFVARIOUSFAR-FIELDBOUNDARYCONDITIONS:
NACA64A006 (YmaxIN UNITSOFCHORD)

Case ia

Case 2c

Case 3d

Ymax

£max

cPub

Ymax

£max

CP?

Ymax

%max

ceub

Reflecting

condition,

eq. (3)

80

81

1.18

47

77

1.58

47

77

i .48

First-approximation

condition,

eq. (8)

61

79

1.21

2.9

51

1.12

7.6

61

1.23

Characteristic

condition,

eq. (15)

i0

63

i

2

47

1

2

47

i

acase I: Indicial response to a step change in angle of attack

a = 1 °, M_ = 0.85.

bCPU time is normalized by the characteristic condition case.

CCase 2: Sinusoidally oscillating trailing-edge flap: Type-A shock,

M_ = 0.875, k = 0.468.

dcase 3: Sinusoidally oscillating trailing-edge flap: Type-B shock,

M_ = 0.854, k = 0.358.
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Figure I.- Schematic of computational domain: old reflecting boundary vs new

nonreflecting boundary.
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Figure i0.- Upper-surface pressure coefficient for an impulsively started
NACA 64A006 airfoil.
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IMPLEMENTATION OF NONREFLECTIVE BOUNDARY CONDITION

AT THE OUTFLOW BOUNDARY*

D. R. Hall and S. M. Yen

University of llllnois

INTRODUCTION

The purpose of our work is to develop numerical techniques for the

solution of free surface flows about a disturbance on or near a free surface.

Any disturbance moving on or near a liquid surface generates surface waves

that propagate away from the disturbance. We shall consider the potential

flow problems in which the evolution of free surface waves is the principal

phenomenon of interest. The distinct feature of these problems is that the

position of the surface is also unknown and is to be determined as part of

the solution. Two boundary conditions are required at the free surface

since there are two unknown functions there, the free surface height and the

potential function. The required boundary conditions are satisfied by the
kinematic condition which states that no flow can cross the surface and the

dynamic condition which matches the fluid pressure to the pressure acting on

the surface through Bernoulli's equation. These boundary conditions intro-

duce the nonlinearity that makes their solution difficult.

We have developed two computational schemes (ref. I) designed to deal

with the computational difficulties encountered in these problems. In one

scheme, we use the finite element method to make the field calculation of the

velocity potential and the finite difference method is used for the time

evolution. The feasibility of this scheme was demonstrated by numerical

solutions obtained for the two-dimensional problems of the pressure distribu-

tion and the submerged body. In the other scheme, a finite difference method

that couples an explicit, single stage, second order time integration scheme

with the solution of the Laplace equation for the velocity potential is

used. The feasibility of this scheme has been demonstrated by numerical

solutions obtained for a two-dimensional pressure distribution problem and

a three-dimensional accelerating strut problem.

In both schemes, the computational domain is expanded downstream

periodically during the computation as the disturbance on the free surface

is propagated close to the downstream boundary. Therefore, the undisturbed

condition is applied on the cut-off downstream boundary.

In order to obtain the longer time and steady state solution, we have

studied the case of a fixed downstream boundary set close to the disturbance.

This research was supported by the National Science Foundation under Grant

NSF ENG 77-20436 and the Office of Naval Research under Contract
N00014-80-C-0740.
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Thus, we can increase the computation efficiency by using a small computa-
tional domain. Wehave focused this study on the application of our numeri-
cal schemesto the nonlinear free surface problems with a fixed and small
computational domain. There are two major tasks involved in this study:
(I) investigate the implementation of the open boundary condition at the out-
flow boundary to allow the waves to pass through it and (2) improve our
numerical schemesso that accurate numerical solutions can be obtained using
the open boundary condition at the outflow boundary.

Wehave studied in detail the method to implement the open boundary
condition used by Chan (ref. 2). It is based on Orlanski's scheme (ref. 3)
in which the Sommerfeld radiation condition is applied at the outflow bound-
ary and the phase velocity is calculated numerically. Wehave conducted
numerical experiments to study systematically the errors of Chan's numerical
schemeto implement the advection equation and to study ways to minimize
these errors.

Transient solutions have been obtained for the pressure distribution
problem and have been comparedwith those obtained for expanding domain in
order to establish their accuracy. These accuracy studies have led to the
development of accurate time-dependent methods. Using these methods, we have
obtained accurate transient and steady state solutions for the pressure
distribution problem.

Wehave been studying an alternative method to implement the open
boundary condition. In this method, we use directly the governing free sur-
face equation instead of the advection equation at the outflow boundary.
This method does have a problem of slow instability which can be dealt with.

The detailed results of our study have been presented at two
international symposiumson numerical ship hydrodynamics (refs. i and 4). In
this paper, we shall focus our presentation on the aspects of our study on
the application of non-reflective boundary conditions at the outflow bound-
ary to obtain steady state solutions of the pressure distribution problem.
Weshall first review briefly the nonlinear free surface problems under study
and our numerical schemesto solve these problems using an expanding domain.
Then, we will present the results of our study of the numerical schemeto
implement Orlanski's method, our numerical schemesto solve nonlinear free
surface wave problems using a fixed and small computational domain, and
numerical solutions obtained.

FREESURFACEPROBLEMS

Weconsider the potential flow produced by a disturbance moving forward
on or near a free surface. The flow is governed by the potential equation,
free surface boundary conditions and conditions at other boundaries. The
free surface is characterized by two distinct conditions, kinematic and
dynamic conditions. The kinematic condition comes from the fact that the
free surface is a streamline so that the normal componentof velocity
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vanishes on the free surface.

_(x,y,z;t) = 0,
the kinematic condition becomes

D_
--= 0 on _ = 0 .
Dt

Hence, by defining the free surface height as

If the free surface is given by the equation

(i)

(2)

y = _(x,z;t),

the free surface is given by

(3)

_(x,y,z;t) = y-_(x,z;t) = 0 .

The kinematic condition yields

(4)

_t + _x_x - _ + _ _z = 0 on y = _ . (5)y z

If the pressure P is given on the free surface, the dynamic condition

can be derived from the Bernoulli's equation

P = H(t) (6)_t + ½ (V_)2 + gh +

where the time function H(t) is an integration "constant".

We shall summarize below the basic equations and the boundary conditions

for the domain bounded by the free surface and three cut-off boundaries

approximating boundaries at infinity. We show the pressure distribution

problem in figure I. The coordinate system (x,y,z) is attached to the dis-

turbance with negative y oriented toward the acceleration of the gravity.

The flow variables are the potential function _, the velocity V(Vx,Vy,Vz) ,

and the pressure P. All the variables in the basic equations and boundary

conditions are nondlmensionalized with respect to U, L, and PO which are the

reference values of velocity, length and pressure respectively. We intro-

duce two flow parameters:

and

U
Fr = -- (7)

PO
= -- (8)

p gL

The free surface height is defined as

y = _(x,z;t) . (9)

A two-dimensional problem of a moving disturbance can be defined as
follows:
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+_ = 0
xx yy

in _.

= -_ _x_t _y x ony=_.

= ½_ ½(_2x + _2y) i---f_---fp
Fr Fr

ony:_.

_ = X on cut-off boundaries.

= 0
_n

on solid boundary.

= 0, _ = - ap at t = 0 in 2>.

Here P is the applied pressure on the free surface.

(i0)

For this paper the pressure distribution problem serves to illustrate

our technique. In this problem, we consider the distribution

P : f (x) :

P0 2 _ x_
-_- (1-cos -f---. 0--< x <_ i

0 elsewhere

(ii)

where P0 is the maximum pressure in the surface distribution. The pressure

distribution is initially at rest and starts to move with the uniform speed

U in the negative direction on the x-axis. The span of the applied pressure

is chosen as the length unit. The computational domain is bordered by the

free surface and three cut-off boundaries. The downstream boundary is

expanded periodically to contain the entire region of disturbance within the

computational domain. The domain is initially divided into regular

triangular elements with Ax = Ay = 0.05 for the case of finite element method.

NUMERICAL METHODS FOR EXPANDING COMPUTATIONAL DOMAIN

We shall describe here the numerical methods used for solving our free

surface problems with an expanding computation domain.

Finite Element Method

In this method, the finite element method is used for the field

calculation of the velocity potential while the time evolution is updated

by using the finite difference method. The finite element method for field

calculation is given in detail in reference i.

The time advancement of the free surface boundary conditions is carried

out using a predictor-corrector method. Let the free surface boundary

conditions be expressed by
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_t = F(x,y; t)

and (12)

_t = G(x,y;t) .

The Euler method predicts the values at a particular x position at the new

time step by

_ = _n + At F
n+l n

and (13)
_* = _* + At G

n+l n n

where _* denotes _ on the free surface, the subscript n refers to the time

level, and At is the time increment. The values at the new time-step are

obtained from the corrector step by

_n+l = _n + _ (Fn + F )
n+l

and (14)

_*n+l = _*n + _ (Gn + G____)
n+l

In computing F and G, the spatial derivatives can be computed from the

finite element algorithms. However, when the triangular mesh is used, the

derivatives have comparably larger errors. In this case, the spatial deri-

vatives are obtained from polynomial approximations after the iterative

solutions converge at each time step.

The successive overrelaxation method is used to solve the Laplace

equation iteratively with the specified values of _* on the given boundary _.

The updating of _ and _* is carried out by the predictor-corrector method

after the iterative solutions converge within a required limit. The pre-

dictor-corrector method has less stringent conditions for stability and

converges even in nonlinear problems; however, it does require two solutions

for each time-step.

Finite element solutions were obtained for the pressure distribution

problem and the problem of submerged bodies.

Finite Difference Method

Our finite difference method is to couple an explicit, single stage,

second order time integration scheme with the solution of the Laplace equa-

tion for the potential function. In this method, the free surface

conditions are integrated to provide a Dirichlet condition at the surface

for the Laplace equation, the Laplace equation is solved, and the solution

is used together with the free surface conditions to determine the

derivatives needed for another time integration.
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The time integration schemeis expressed by

+ (At2/2) (_tt)_n+l = _n + At(_t)n n
(15)

and

_*+I = _*n + At(_)n + (At2/2) (_t)n + Am[ (_)n + (A_/2) (_y)n+ At(_t)n ] . (16)

The subscript n denotes values at time t = tn, _* denotes _ at y : _,

and

At = tn+ I - tn

Am = _n+l " _n

The Dirichlet condition at the new surface provided by the application

of equations (15) and (16) and the other boundary conditions for the problem

are used to solve the Laplace equation.

The final step of the method is to compute the derivatives appearing on

the right hand side of equations (15) and (16).

Finite difference solutions were obtained for the pressure distribution

problem and the surface piercing strut problem.

NUMERICAL SCHEME FOR A FINITE, SMALL COMPUTATIONAL DOMAIN

The fixed outflow boundary, as shown schematically for the pressure

distribution problem in figure 2, requires special and careful treatment in

order to prevent wave reflections that may impair the accuracy of solutions,

or even destroy the calculations. Chan (ref. 2) used Orlanski's method

(ref. 3) to implement boundary conditions at the open boundary. This method

consists of imposing the Sonlnerfeld radiation condition at the outflow bound-

ary and numerically evaluating the phase velocity of the boundary. We shall

describe below our method of implementation of Orlanski's method.

The Sommerfeld radiation condition can be written as

Qt + CQx = 0 (17)

where Q is any perturbed variable and C is the phase velocity of the wave.

In the free surface problem, we have the perturbed variable _ and the

potential function _. Therefore, we have to implement the following two

equations at the outflow boundary:

and

(18)

(19)
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Using Chan's (ref. 2) method to difference the derivatives, the open
boundary condition for _ can be written as follows:

_n+l n-I C_ (At n) ' n n

= BIB.I + [1-2 Ax ][_IB - BIB-I] + 2 CB(Atn )' , (20)IB

in which (Atn) ' = (At n+Atn-l)/2,

(Atn'l) , = (At n'l + Atn'2)/2,

At n = nth time step,

n+l tnt = + At n,

C_ = phase velocity for potential function B.

For the wave height,

C_ (Atn) '
_n+l n-i n . _n
_IB = _IB-I + [1-2 Ax ][_IB IB_I ] , (21)

in which C_ = phase velocity for wave height _.

The phase velocities C_ and C_ are evaluated from equations (20)
and (21):

n n-i n-i n-2

Ax _IB-I + BIB-2 - _IB-I - BIB-2

CB = n-I n-i ' (22)

2(Atn-l)' (_IB-2 " _IB-I + Ax)

Ax _IB-I + _IB!2 n-i n-2n - - _IB-I - _IB-2

c_ = • . (23)
2(Atn-l) (_IBI2 n-i, _ _IB_I )

We also take into account the wave crest or trough passing out of the

downstream boundary. When this phenomenon happens, the denominators of

equations (22) and (23) get very small. Thus, when

n-I n-I
I_IB-2 " _IB-I + Axl <- 10-7' (24)

we set

when

n+l n

_IB = BIB '

n-i n-i
I_IB.2 - _IB_I I _ I0 -9 , (25)

we set
n+l n

_IB = _IB "
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We constrained the range of the values of C_ and C_ could take.

Letting CI be the right hand side of equation (22),

0 , ifC_ < 0.
C_ = C_ , if 0_ C_ _ Ax/At. (26)

Ax/At , if C_ > Ax/At.

Similarly, letting C_ be the right hand side of equation (23),

0 , ifC_<0 .

, *

C_ = C_ , if 0 _ C_ _ _x/At. (27)

Ax/At , if C_ > Ax/At.

As to be discussed later, we have found an alternative method to

evaluate C_ and C_ that leads to more accurate implementation of the open

boundary condition. In this method, we use the derivatives of _ and _ that

have already been calculated on the free surface at nodes upstream of the

outflow boundary. The expression for C_ and C_ using this method are

and

c0 0xl [ nl nl ](_x)iB_2 + (_x)iB_l - 2

_t [ (_t)IBl2 n-i+ (_t)iB_l ]

= = - n- n-i

C_ - _x [(_x)iBl2_ + (_x)iB_l ]

, (28)

(29)

In numerically implementing equation (19) for the potential _, the

spatial derivative _ is better represented by
x

_i+l - _i _i+l " _i

(_x)i+_ = Ax ax (_y)i+½
(30)

The second term in this expression is to correct for error due to any

significant change in wave height _ at the outflow boundary.

As to be discussed later, we have found that, for long time solutions,

the wave height at the outflow boundary becomes unstable. We are able to

insure stability by setting the lower limit of C_ to be the free stream

velocity. The new limits of C_ becomes
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_i , if C_ < i.
C_ = C_ , if I---<C_ -----Ax/At.

Ax/At , if C_ > Ax/At.

For our time integration scheme, we used the following predictor-
corrector formula:

_n+l = Qn + At(Qt)

_n+l = Qn + (At/2)(Q t + _t )

Qn+l = Qn + (At/2)(Q t + Qt ) .

(31)

(32)

NUMERICAL SOLUTION

Our first effort in using a fixed, small computational domain was to

solve the pressure distribution problem and to compare the solutions to those

obtained with the expanding computational domain. We set the outflow bound-

ary XiB = 1.5. Transient solutions have been obtained for Fr = i/V_ and

= 0.01. It was found that two-grld interval (2Ax) waves of appreciable

magnitude start to appear at t = 0.8 near the outflow boundary, spread

quickly upstream and eventually cause the calculation to stop at t = 5. The

appearance of 2Ax waves over the solution of the wave height at t = i is
shown in figure 3.

The contamination of the solution by 2Ax waves discussed above led to

our effort to conduct "advection experiments" to evaluate the performance of

schemes that could be used to implement accurately the S on_nerfeld advectlon

equation at the open boundary. We wanted to compare Chan's scheme with
other numerical schemes.

A series of experiments was tried for a simple problem. We were trying

to reproduce the results we were getting in the free surface problem in the

simpler problem. There are two experiments. In one experiment, a sine wave

of several combinations of parameters (amplitude, wave length and advection

velocity) is advected through a boundary. In another, a 2Ax wave is super-

posed on the advecting sine wave. In each experiment, we find the solution

of the Sommerfeld advection equation using the chosen numerical schemes at

the boundary. Each solution will yield boundary values of amplitude, phase,

and phase velocity from which we may evaluate the performance of the schemes.

The performance characteristics evaluated include amplitude and phase errors
and stability.
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In the first experiment, Chan's schemeproved to be superior to the
other schemes. In the second experiment, we tested the performances of
numerical schemesnot only with 2Ax wave error but also with (and without)
phase velocity error. It was found that: (i) all the schemestested perform
poorly with 2Ax waves present, (2) the effect of the phase velocity error
without 2Ax waves present is not as significant; however, it becomeslarge
in the presence of 2Ax waves. These findings are significant in that the
2Axwaves were present in the solution of free surface wave calculations
(as shownin figure 3); therefore, somemeanshas to be used to eliminate
them.

These numerical experiments have helped us to identify two problems in
numerically implementing the open boundary condition: high frequency errors
in the free surface wave solution and phase velocity error in the calculation
of the boundary condition.

On the basis of the results of the numerical experiments, we have
formulated the following requirements for numerical schemesthat could be
used for free surface wave problems for a finite, small computational domain
(I) somemeansshould be used to minimize the 2Ax waves in the solution, (2)
the open boundary condition should be implemented so that the phase velocity
at the free surface should be calculated independent of the open boundary
condition to insure the accuracy of its calculation and (3) a correction is
necessary in implementing the open boundary condition for the potential
function at the free surface. Wehave developed numerical methods to meet
these requirements.

Wewanted to eliminate the 2Axwaves by using damping in the numerical
schemes. We modified our time marching integration schemesso that the high
frequency wave errors are dampedby the dissipation and dispersion. First
we modified our schemesso that they would be dissipative. For the second
order Taylor's series, we changed it to third order with the third term as
the damping term. From the basic predictor-corrector scheme (equations (12)
and (13)) we developed three dissipative predictor-corrector schemes. The
one we chose was given in equation (32). Secondly we changed from center
differencing of the spatial derivatives for equations (18) and (19) to
upwind differencing.

Wehave found that the schemesbecomeeffective in damping the 2Ax waves
whenwe use upwind differencing. Figure 4 shows the effectiveness of this
method in minimizing the high frequency errors in the wave height solution
for the pressure distribution problem at t = 2. The second and third
requirements have been fulfilled respectively by equations (28) and (29),
and equation (30).

Wehave obtained transient solutions for the pressure distribution and
the accelerating strut problems and the steady state linear and nonlinear
solutions for the pressure distribution problem. Figure 5 shows a compari-
son of the expanding domain solution with the corresponding solution for the
fixed domain. The solutions are virtually the sameexcept near the open
boundary. Figures 6 and 7 show the wave height of the two steady state



solutions for the following parameters: Fr = i/_ and _ = 0.01. The out-
flow boundary is set at x = 2. The linear calculation by Haussling (ref. 5),
using a spectral method, is also shownfor comparison. As can be seen in
figure 7, our linear solution agrees with Haussllng results only in the
region of the pressure distribution.

ALTERNATIVEMETHODOFIMPLEMENTATIONOF OPENBOUNDARYCONDITION

An alternative method of implementing the open boundary condition at
the free surface is being studied. In this method, we used the wave height
free surface boundary conditions at the outflow boundary. We feel that the
use of the free surface boundary should be physically more comparable to the
condition near the outflow boundary. The problem with using this technique
is that it is unstable for the wave height solution under someconditions.
Since the instability develops slowly, we use our experience with filtering
to the following second order smoother to smooth the wave height at IB and
IB-I:

+
_IB = (9_IB-4 " 20_IB-3 + 6_IB-2 + 12_IB-I + 6_IB)/13 (33)

_IB-I = ('2_IB-4 + 3_IB-3 + 3_IB-2 + 6_IB-I + 3_IB)/13 (34)

in which _+ is the smoothed wave height. These expressions have been

developed on the basis of a combination of a second order interpolation

formula with a 2Ax wave smoother. In practice, our smoother is used to

detect the onset of the instability and is then applied to the wave height

solution at the boundary. Comparing the wave height solution using both

open boundary techniques, we found that the free surface boundary condition

gives slightly better results near the outflow boundary. Figure 8 shows two

solutions for the pressure distribution problem at t = 4 using the two
techniques.

CONCLUDING REMARKS

i. To implement accurately the open boundary condition at the outflow

boundary using Orlanski's method, we have found that (a) an accurate numeri-

cal scheme should be used to solve the advectlon equation at the boundary,

(b) the numerical calculation of the phase velocity should be decoupled from

the open boundary condition, (c) the evaluation of spatial derivative of the

potential at the free surface (needed in the calculation of phase velocity)

should take into consideration the change in wave height and (d) limiting

values of the phase velocity should be set properly to insure stability of

calculations at the boundary.
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2. The most important task in developing method to solve free surface

problems using a fixed and small computational domain is to find ways to

eliminate the two-grid interval (2Ax) waves that appear in the solution and

that inhibit the accurate implementation of the open boundary condition. We

have used damping in our time marching schemes to control the high frequency

errors. However, careful studies should be made to ascertain its influence

on the accuracy of solutions.
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RAPID, HIGH-ORDER ACCURATE CALCULATION OF FLOWS DUE TO FREE SOURCE OR

VORTEX DISTRIBUTIONS*

Douglas Halsey

Douglas Aircraft Company

ABSTRACT

Fast Fourier Transform (FFT) techniques are applied to the problem of
finding the flow due to source or vortex distributions in the field outside

an airfoil or other two-dimensional body. Either the complex potential or

the complex velocity may be obtained to a high order of accuracy, with comp-

utational effort similar to that required by second-order fast Poisson

solvers. These techniques are applicable to general flow problems with

compressibility and rotation. An example is given of their use for inviscid

compressible flow.

INTRODUCTION

Although distributed singularities (sources and vortices) arise most

frequently in the study of inviscid, incompressible flows, they can also be

useful for calculating much more general flows. Compressible potential flow
is equivalent to an incompressible flow with distributed sources (or sinks)

in the external field. Viscous incompressible flow is equivalent to an
inviscid flow with distributed vorticity in the external field. General

flows are equivalent to inviscid incompressible flows with distributed

source and vortex singularities superimposed.

A number of investigators have developed flow calculation methods which

make use of distributed singularities in the external field. Because they
generally discretize the field distributions into panels over which the

singularities vary in a simple manner (such as constant or bi-linear), these

are referred to as field-panel methods (as opposed to finite-difference or

finite-element methods). They are also sometimes referred to as integral

representation methods. A source field-panel method for calculating com-
pressible subsonic flow and shock-free transonic flow about two-dimensional

airfoils or cascades has been developed by Luu and Coulmy (ref. 1). Exten-

sion to cases with shocks has been accomplished by Piers and Sloof (ref.

2). A vortex field-panel method for calculating incompressible viscous flow

about two-dimensional bodies was developed by Wu and Thompson (ref. 3). Wu

and his coworkers have subsequently made a number of improvements and exten-

sions, reported in a series of papers, such as reference 4. The present

author has also developed a source field-panel method for two-dimensional

airfoils and is working to extend it to multielement airfoil cases.

*This research was sponsored by the Independent Research and Development

program of the McDonnell-Douglas Corporation.
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Some flow calculation methods using finite differences are closely
related to the field-panel methods. Martin and Lomax (ref. 5) proposed a
calculation strategy for transonic flows in which the field equations are
arranged in the form V2_ = f(x,y), where the left-hand side is the
Laplacian of the velocity potential and the right-hand side contains all the
other terms in the field equation. Each iteration, the right-hand is frozen
and a Poisson equation is solved using one of the fast elliptic solvers such
as Buneman's (ref. 6). This is equivalent to finding the flow due to a
source distribution with density proportional to the value of the right-hand
side. Jameson(ref. 7) has used this approach to accelerate the convergence
of a transonic flow calculation method.

The main computational difficulty in a field-panel method concerns the

calculation of the influence of the distributed singularities on the veloc-

ity potential and/or its derivatives. Since each panel has an effect on
each other panel, the amount of data storage and the number of arithmetical

calculations both vary as the square of the total number of panels. For

cases with large numbers of panels, it is therefore not feasible to apply a

direct summation of all panel influences. Recognizing this, Wu (ref. 4)

developed a relatively complicated flow-field segmentation procedure and has

since (ref. 8) employed various hybrid flow calculation techniques.

The present author has adopted a procedure for the efficient calculation

of the flow due to the distributed singularities. The influence is

expressed in terms of Poisson's equation [V2_ = 4_o(x,y), where o

is the local source density] and the velocity potential is found using a

fast solver. The main difficulty of this approach (and the matter which

makes this paper of relevance to this symposium) concerns the boundary con-

ditions to be specified for the fast solver. A direct application of the

fast solver given in reference 6 requires that the values of the potential

at the boundary points be specified (Dirichlet conditions). Since these are
not initially known, an alternative procedure to find them must be used. A

direct summation of panel influences could be applied, but for large panel

numbers the amount of data storage and arithmetical operations would still
be excessive. This could lead to a situation in which the determination of

the boundary conditions required several orders of magnitude more computa-

tional expense than the solution of the differential equations. Various

approximate methods (ref. 9) could be employed to calculate the boundary

conditions, but these could seriously affect the solution accuracy.

The remainder of this paper describes a method for determining the

boundary conditions which combines the features of high-order accuracy and

low computational cost. Accuracy should be of higher order than the fast

solvers (which are generally second-order) and cost is of the same order.

An extension to the procedure is also described which allows the direct

calculation of the entire flow field and eliminates the need to apply a fast

solver.
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COMPUTATIONAL PLANE AND GRID TRANSFORMATIONS

The present method determines the complex potential (¢ + i@) or the
complex velocity (u - iv) at a discrete set of points on the inner and
outer boundaries of a two-dimensional polar-coordinate grid, given the
source or vortex densities (a or y) at discrete points within the grid
and on the boundaries. In the extended version of the method, it also
determines the complex potential or complex velocity at the same interior
grid points where the singularity densities are given. Both versions also
determine the coefficients of series expansions for the flow outside the
grid.

Since the method makes use of Fourier transforms in the circumferential

direction, there are some restrictions on the number and spacing of the

points. It is presently assumed that the function representing the singu-

larity density at any fixed value of the radial coordinate is continuous and

is defined by specifying 2n values (where n is a small integer) at

equally-spaced intervals. Some of these assumptions can undoubtedly be

removed, but to date they have not proven to be overly restrictive.

There are generally no restrictions on the number and spacing of points

in the radial direction. In some applications, however, it may be desirable

for grid points to correspond directly to points in a rectangular grid (as

used in most fast solvers). Since polar and rectangular grids are related

by a logarithmic mapping, this condition would require that the radial grid

coordinates vary in proportion to the exponential of the radial point index.

The present method may be applied to singularity distributions in the

field surrounding an airfoil or other two-dimensional body of arbitrary

shape by the application of a conformal transformation which maps the given

body to a unit circle. Figure 1 shows a typical grid (65 x 21) for a

modern airfoil and the corresponding grid in the polar computational plane.
It is shown in elementary texts (ref. lO) that a conformal transformation

does not alter the form of Poisson's equation, though the magnitude of the
right-hand side is changed. Therefore, to calculate the influence of the
singularity distributions in the physical plane, it is sufficient to be able

to find the influence in the polar computational plane and to be able to

perform the mapping between the two planes.

RELATIONSHIP BETWEEN SOURCE AND VORTEX FLOWS

It is well known that the velocity vector in a flow produced by a point

vortex is identical to the velocity vector in a flow produced by a point

source, except for a rotation through 90 degrees. The flow produced by a

vortex distribution is related to the flow produced by a source distribution

in the same way. Since a method to calculate source flows can be used

directly to compute vortex flows, only source distributions will be dis-

cussed in the remainder of this paper. Plows due to vortex distributions

(with vorticity positive clockwise) can be obtained by replacing the Quanti-

ties (a, ¢, @, u, v) by (y, -_, ¢, -v, u).
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SOURCEINFLUENCEONTHEREGIONBOUNDARIES

In a polar grid, the exact expression for the complex velocity due to a
source distribution is given by

[u(_) - iv(_)] = 2 i° / _

ri 0

o(r,w)[_ - _s(r,w)]-lrdrdw (i)

where r is the radial coordinate, ri and ro are the inner and
outer limits of r, w is the angular coordinate (measured clockwise from

the positive horizontal axis), _ is the complex coordinate of the point

at which the velocity components (u and v) are found, and _s is the
complex coordinate of an elemental area of source density (o). Separat-

ing the integrations in the radial and circumferential directions allows

this equation to be represented by

_0

- = 2 j
r.

l

rI(_,r)dr (2)

where

2_

I(_,r) = /

0

o(r,m)[_ - Cs(r,m)]-idm (3)

The basic idea of the present method is to find series expansions for the

integrand of equation (3), and to integrate analytically in the circumfer-
ential direction and numerically in the radial direction. This gives a

series expansion for the complex velocity, from which another series for the

complex potential is easily obtained. Due to differing regions of converg-

ence, separate series must be found for the inner and outer boundaries.

The integrand of equation (3) is expanded by multiplying the series

expansions of its two factors. In order to facilitate the multiplication, a

complex form of the series for a(r,w) is used. For a given value of

r, o(r,w) can be represented by

¢@

o(r,w) = ao(r)+ _, [aj(r)_ + a_j(r)_sJ]

j=l

(4)
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where each coefficient is generally complex. Making use of the requirement
that _(r,w) be purely real, a relationship can be derived between val-
ues of the coefficients with positive and negative indices. This allows the
function to be expressed as

o(r,w) = ao(r) + _ [2aj(r)rJ]e +ijw
j=l

(5)

In this form it is clear that a finite number of the series coefficients can

be found very efficiently with one application of the FFT algorithm.

The other factor of the integrand can be expanded analytically. For
points on the inner boundary (or at smaller values of the radial coordin-
ate), the expansion

[_ _ _s(r,w)]-l -1= _---_[1 + (_l_s) + (_l_s)2 + ...] (6)

is applicable, while for points on the outer boundary (or at larger values
of the radial coordinate), the expansion

- _s(r,w)]-I = ! [1 + (_sl_) + (Gsl_) 2 + . ]
"'

(7)

is applicable. Each expansion is evidently divergent at the point

= _@, but it will be shown below that this does not compromise the
validlty of the final results. After multiplying the series in equation (4)

by the series in either equation (6) or equation (7), the integrand of
equation (3) takes the form

@@

o(r,w)[_ - _s(r,w)] -1 : bo(r ) + _ [bj(r)_ + b_j(r)_sJ]

j=l

(8)

where each bi coefficient may be found by summing a series involving the

aj coefficients and the complex coordinate _.

Integrating equation (8) term by term, it is found that all terms drop

out except the zeroeth term. Equation (3) therefore reduces to

I(_,r) = 2#bo(r) (9)
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For points on the inner boundary, it is found that

bo(r) = -[al(r) + a2(r)_ + a3(r)_2 + ...] (I0)

while for points on the outer boundary, it is found that

bo(r) = i/_[ao(r) + a_l(r)/_ + a_2(r)/_ 2 + ...] (ll)

These series will be absolutely convergent on their respective domains of

application, provided the sequence of values of [2aj(r)rJ] in equation
(5) is convergent. Since the convergence of this sequence depends only on

the function o(r,w), the possible divergence of the series in eQua-
tions (6) and (7) is of no consequence. This is consistent with the clas-

sical result that a continuous source distribution produces a finite flow

solution, even though its influence is expressed in terms of singular

integrals.

An expression for the complex velocity at points on the inner boundary

is obtained by substituting equations (9) and (i0) into equation (2):

where
[u(_) - iv(_)] = co + ClC + c2_2 + ... (12)

_0

cj = -47 J aj+l(r)rdr

ri

An expression for the complex velocity at points on the outer boundary is

obtained in a similar manner (using equation (ll) instead of equation (lO))

[u(_) - iv(_)] = dl/_ + d2/_ 2 + ... (13)

where

ro

dj = 47 / a_j(r)rdr

ri

The integrals in the radial direction may be evaluated using a numerical

method of any desired order of accuracy. In the present application, the

trapezoidal rule is used.

Given the series for the complex velocity, the corresponding series for

the complex potential are determined by analytic integration. For points on

the inner boundary, it is found that
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[_(_) + i_(_)] = Co_ + {c1_2 + {c2_3 + ... (14)

while for points on the outer boundary, it is found that

1 d31_2[¢(_) + i_(_)] = dI log_ - d2/_ - _ - ... (15)

The determination of all series coefficients is accomplished with N
applications of the FFT algorithm, where N is the number of grid points in
the radial direction, plus a small number of additional arithmetic opera-
tions. Each of these Fourier transforms involves a purely real function and
therefore requires a number of additions and multiplications approximately
equal to M log2M , where M is the number of grid points in the circumfer-
ential direction. The evaluation of the series on the grid boundaries
requires two additional general Fourier transforms, each requiring approxi-
mately 2M log2M additions and multiplications. The total number of addi-
tion and multiplication operations is thus approximately (N+4)M log2M.
This compares to 2MN log2N multiplications and several times that many
additions for the fast Poisson solver of reference 6. The determination of

source influences at 811 grid points (on both the boundary and interior of
the grid) can thus be performed without seriously compromising the computa-
tional efficiency of the fast Poisson solver.

EXTENSION OF THE METHOD TO THE REGION INTERIOR

In addition to providing boundary conditions for a fast Poisson solver,

this method can be extended to give the flow directly at all points in the

region interior. This eliminates the need for the fast Poisson solver or

any other use of finite-difference techniques. The procedure is very simi-

lar to that discussed above. At any given radial coordinate, the flow due

to the source distribution is broken into two parts; the flow due to por-

tions of the source distribution at smaller radial coordinate is computed
using the method for points on the outer boundary, and the flow due to por-

tions at larger radial coordinate is computed using the method for points on
the inner boundary. To calculate the complex potential or the complex vel-

ocity at all grid points requires N applications of the Fourier transform

algorithm for real functions and N applications of the general Fourier

transform algorithm. The total number of addition and multiplication opera-

tions is approximately 3MN log2M. It is thus comparable in computational

expense to the basic method (including the fast solver), but is probably of

a higher order of accuracy.

SAMPLE CALCULATION

The method described above has been incorporated into a computer program

to calculate the compressible potential flow about two-dimensional airfoils

using a source field-panel method and iteration scheme similar to those

described in the Introduction. Although the ultimate application of this
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computer program will be to multielement airfoils, it is currently opera-
tional only for single-element cases. It has proven to be very accurate and
efficient for all cases run to date, provided the flow is entirely sub-
sonic. A typical result is shownin figure 2, which comparesthe calculated
pressure distribution about a modern supercritical airfoil at a high sub-
sonic Machnumberwith the result calculated using a finite-difference tech-
nique (ref. ll). The grid used in the present method is shown in figure 1.
The grid used in the finite-difference method is the default grid for that
method. The good agreement between the results of the two methods is
evidence of the accuracy of the present method. The fact that the present
method required less than two seconds of CPUtime on an IBM 570 computer

(compared to lO seconds for the finite-difference method) is evidence of its

efficiency. Each calculation of the influence of the field source distribu-

tions required only 0.16 CPU seconds.
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A PHYSICAL APPROACH TO THE NUMERICAL TREATMENT

OF BOUNDARIES IN GAS DYNAMICS

Gino Noretti

G.M.A.F., Inc.

INTRODUCTION

I intend to discuss the numerical treatment of boundaries for hyperbolic

problems in gas dynamics. I will consider only two types of boundaries: r_-

gid walls, and artificial ("open") boundaries which have been arbitrarily

drawn somewhere across a wider flow field.

A set of partial differentia] equations (typically, the Euler equations)

has an infinite number of solutions, each one defined by a set of initial and

boundary conditions. The initial conditions remaining the same, any change

in the boundary conditions will produce a new solution. To pose the problem

wel], a necessary and sufficient number of boundary conditions must be

prescribed.

Physical arguments, which can easily be formulated mathematically, show

how many and which boundary conditions are needed. In fact, Euler's equa-

tions describe the propagation of s_gna]s. There are signals which reach the

boundary from inside and signels which travel along the boundary. There are

also signals which reach the boundary from outside or (in the case of rigid

walls) which can be imagined to reach the boundary from outside to produce

the same effect as the boundary itself. The latter signals must be equal in

number to the available boundary conditions, and must be defined by them. In

ref. I these concepts are expressed in mathematical form, and the reader may

I uIleasily see that the vectors u and of ref. I correspond to our incoming

and outgoing signals, respectively.

When the solution is sought through numerical analysis, one chooses a

necessary and sufficient number of unknow]Is and discretizes the equations of

motion 2n order to update the unknowns approximately at each interior point.

Naturally, for a numerical scheme to be reliable, it must be proven to be
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stub!e under _ny small perturbation generated by the dffscretization.

At boundary points, not all the unknowns can be updated usin£ the same

discretize8 scheme as nt interior roints. Indeed, if the unl_nowns are recom-
7 IY _

Dined to form all terms u and u , it is clear thst all com_in_itions of the

u--type must be defined by boundary conditions. Such .9 psrtition is neces-

sary, regardless of the ori_Tina] choice of unknowns for interior points. I

will, therefore, introduce t?,e following

Ii
RULE. At boundery points, only quantities of the u -_, and all of

them, must be eva]uJted using i_terior information; and all quantities of the

u - type must be evs]uate_ usJn£ the %ounJsrv conditions I _ t_e ru!c is

violetcd, arbitrary e!emepts _re introduc(,J.

How net to violate the rule Js the main subject of this p_per. In addi-

tion, I will introduce some guidelines for the modeling of bound_ry condi-

tions on open bounderJes (the choices _re not as numerous as commonly

believed, and eecb choice expresses a different Froblem). These ere neces-

sary premises for the building of _ numerics] technique, consistent with the

physics of the problem as a whole•

With the pre_arstory work properly done, is there any chance of failure?

_ °_ert_nly, if instabilities develop. This may occur, even w}_en the integra-

tion scheme for interior !ooJDts is s_sble, es a result of the interaction

between such a scheme and the procedure used at *he boundaries, r,Tethods ex-

ist for testing this kind of st_bility; when the test is satisfied, t}_e

numerics] initial-boundary-value [ro_]em is said %o be we]l-_osed. The most

. t! /
efficient met_od is the normal mode analysis developed by Kreiss _.see, for

example, refs I, 2, _• j/ •

I recommend testing the wel]-posedness of a code according to such for-

mal rules, although 7 expect well-posedness to follow automatically if the

sdvioe given in this paler is followed.

By the same token, I anticipate trouble if the advice is not followed.

In this respect, 1 believe that _ word of warning must be given to inex-

perienced readers who may work in e formal way, missing the main points. The

mathematical style, unfortun,_tely, does not facil_tate communication with the

majority of people who have to set up s computational code Jn practice.

;Tisreading can be particularly dangerous when a procedure Js scce_ted as usa-

ble but it was, instead, only mentioned, perhaps negetive]y, in the course of

an academic exercise. For example, most of the time, the complex analysis of
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ref. 3 deals with techniques which violate the Rule, that is, with techniques

which should not be used in practice; but no word of warning is given. I

will begin my discussion with one-dimensional considerations, for the sake of

clarity.

ONE-DIMENSIONAL PROBLEMS

Some of the basic concepts can be examined in the framework of one-

dimensional problems (x, t are the space and time coordinates, respectively).

Eu!er's equations for one-dimensional or quasi-one-dimensional problems are

quasi-linear and hyperbolic. At each point, they possess three characteris-

tics, a "right-running" characteristic, defined by dx/dt=u+a, a "]eft-

running" characteristic, defined by dx/dt=u-a, and the particle path, defined

by dx/dt=u (u and a are the particle velocity and the speed of sound, respec-

tively). The Riemann quantities, a/6+u and a/6-u (where 6=(v-I)/2 and y is

the ratio of specific heats), are propagated along right-running and left-

running characteristics, respectively; if the flow is strictly one-

dimensional and homentropic, they are actually constant along such lines

(whence their name of "invsriants"). Entropy is always convected, unchanged,

a]ong a particle path.

For the sake of simplicity, let us consider first a strictly one-

dimensional, homentropic problem. It can be formulated in divergence form:

p t + (pu) x = 0

(ou) t + (p + pU2)x = 0

(I)

or in non-conservative form:

Pt + UPx + Y Ux = 0

+TP =0
ut + UUx x

(2)

In the first set, P is the density and p is the pressure, obtained from _ via

the isentropic relation; in the second, P is the logarithm of pressure and T

is the temperature, obtained from P, similarly. Neither set is as good for

numerical analysis as the following, equivalent set:

Rit + AiRix = 0 ,2) (3)
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where

R_ : a/_ - u, R2 --a/_ ÷ u (4)

_I = u - a, 12 -- u + e (5)

Set (3) suggests a numerical procedure in which the domains of dependence of

and R 2 are clearly defined; therefore signals proceeding from one side

can be approximated using information from that side only, without introdu-

cing spurious information. Such a technique can easily be extended to non-

homentropic flows. Its origin may be traced to s paper by Courant, Isaacson

and Rees (ref. 4). The technique has been recently exploited by the numerous

schemes of the l-family (refs. 5,6,7,8).

Interaction of techniques

for interior and boundary points

Now, let us interpret some passages of ref. 3. The system of partial

differential equations studied in that paper,

= ÷Bu +F
u t A u x

is in the form of eqs. (3) above. Nevertheless, the authors decided to in-

vestigate numerical techniques which are formulated in a different way (a na-

tural consequence of the computational style of the sixties). Instead of

one-sided derivatives, as naturally suggested by eqs. (3) for the l-schemes,

other schemes such as Lax-Wendroff and leap-frog are considered. These

schemes use centered derivatives. Therefore, they violate the law of forbid-
I II

den signals, which is consistent with the partition of the vectors u and u

(which, in the present instance are the R.) Such an inconsistency of the
' ' 1 "

integration scheme with the physics of the flow appears in all its ugliness

in transonic regions. In subsonic regions the schemes may work reasonably

well. It should be clear, though, that special care has to be applied at the

boundaries, if an integration technique for interior points is used, which is

unfit to handle the boundary.

Let us see first the consequences of starting from eqs. (3) and using a

k-scheme in which (for subsonic flows) R. is computed using only forward in-, ]

formation and R 2 only backward information. If the problem is to be solved

to the right of x=O, at the boundary itself R 2 cannot be computed directly;

it must, therefore, be determined by a boundary condition. _[ot considering
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open, supersonic boundaries which, obviously, present no difficulties, we ex-

amine six cases:

(a)

interior

(4).

The boundary is a rigid, fixed wall. R I is determined as at any

point and, since u = O at the wall, a and R 2 become known from eqs.

(b) The boundary is a wall, moving with a velocity V.

= x - V t, T = t, A. = I - V
1 i

eqs. (3) are replaced by

By letting

(6)

Hit + ^iRi_ --0 (i=1,2) _f)

and the same arguments as in (a) hold, except that u=V at the boundary.

(c) The boundary is traversed by an incoming flow, strictly one-

dimensional and subsonic, and all perturbations have been produced in the

computational region. In this case,the flow crossing the boundary can only

be a left-running simple wave, through which R2 is a constant. The boundary

condition, then, is

R2t = 0 at x=O (8)

This equation and the one defining Rlt from the interior, as above, solve the

problem.

(d) The boundary is traversed by an incoming flow, which is subsonic,

but right-running waves may cross the boundary. Such a situation occurs, for

example, in quasi-one-dimensional problems, where the geometry of the duct

varies up to the boundary, and no simple wave concept can be applied. In

this case, a physical model of the outside must be provided and the choice of

it depends on the nature of the problem. In many cases in which a steady

state is asymptotically reached (for example, in problems involving nozzle

design), a good model consists of assuming that the flow proceeds from an in-

finite capacity where the total temperature is prescribed. The boundary con-

dition:

at = - 6Ua ut at x--O (9)

obviously follows. From eqs. (4) we get
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_ u - a RI at x=O (I0)R2t u + a t

(e) The boundary is traversed by an outgoing flow (to be computed on

the left of x=O), strictly one-dimensional and subsonic, and all perturba-

tions have been produced in the computational region. The flow crossing the

boundary can only be a right-running simple wave, through which R 2 is a con-

stant. The boundary condition, then, is

R1t = 0 at x=O (11)

This equation and the one defining R2t from the interior solve the problem.

(f) The boundary is traversed by an outgoing flow, which is subsonic,

but left-running waves may cross the boundary. Only one boundary condition

can be imposed. Note that, in establishing a boundary, we declare our ig-

norance of all details of the external wor]d and we are forced to replace it

with a model. A good one consists of assuming that the gas flows into an in-

finite capacity where the pressure, p_, is prescribed. We consider the boun-

dary as a partition, on the inner side of which R2 can be determined whereas,

on the outer side, P_t is given and the velocity, u , is yet unknown. The

continuity equation, written between the two sides of the boundary, reads:

at ut P®t u®t
+ -- +

a U Y u

[1Z)

The total energy must be conserved in the boundary crossing, as well as the

entropy. Therefore, the energy equation can be written in the form:

6 2 + 8u u (13)aa t + 6uu t = _ a P®t ® ®t

The unknown u
®t

thus obtained:

can be eliminated between eq. (12) and eq. (13); the equation

(a 2- u2) at/a + 6(u 2- u 2) ut/u = 6(a 2-® u2) P®t/_ • (14)

together with the definition of R2t determine a and u. Obviously, a simple

relation between R
and R1t can be obtained in this case as well as in the2t

previous ones:
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2 2
_ a+U 2U8 a_-u_

R1t a-u R2t - a-u _(a -u®)
- 2 2 P®t

(15)

The sample of cases is not exhaustive but similar arguments can always

be used, and it can always be shown that, if a discretization of eqs. (3) is

used which emphasizes the role of the domains of dependence, the boundary

conditions can be enforced without introducing physical arb_trarinesses

and/or new procedures at the boundary points. In ref. 9, some results have

been presented, the accuracy and stability of which are evident.

One may start appreciating how important the choice of a good integra-

tion scheme for interior points is for a proper handling of the boundary con-

ditions. If any scheme, other than those of the _-family, is used for in-

terior points, some special treatment of the boundaries must be introduced,

in order to isolate the Riemann variable which is defined from the interior.

This happens if the discretization is applied to the equations in the form of

eqs. (I) or (2), which was common, but not necessarily correct practice in

the past. In building up the boundary point scheme, though, one should only

define R I from the interior, not other variables or combinations thereof.

When evaluating R I alone, one is naturally brought to use on___eeequation, based

on the concept of characteristics and, again, the procedure does not introdu-

ce arbitrary elements. In all my work prior to 1978, when I was integrating

eqs. (2), mostly using the two-level NacCormack scheme, at the (x--O) left

boundary, I always evaluated the combination:

(which is equivalent to R I for isentropic flows) instead of P and u separa-

tely. The procedure satisfies the Rule. It is, however, not as direct as

the ones discussed above in connection with the use of eqs. (3); it requires

additional coding and, obviously, the boundary point procedure is so dif-

ferent from the procedure for interior points that differences in truncation

errors may occur and continuously be fed back into the region of interest.

Nevertheless, results were always stable and, as far as we could compare with

reliable benchmarks, accurate.

In the following section, I will show what is physically wrong with

prescribing one of the variables, either P or u, at the inlet. If one at-

tempts, instead, to evaluate P and u separately from the interior, then one

needs tw____oequations and, of course, the calculation becomes redundant and the

Rule is violated. With these simple considerations in mind, one does not
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feel an urgent need for a large part of the existing literature.

Let us go back, for example, to ref. 3 and browse through its 37 pages

as an inexperienced mathematician, looking for practical advice, would do.

At page 661 we find three ways to compute R I at a boundary, using interior

point information, prior to applying the boundary conditions to get R 2 (eqs.

(6.3)). The second and, in a more complicated way, the third, use the

correct method of characteristics, but the first is simply an extrapolation.

The fact that the Lax-Wendroff method is stable when extraFo]ations at the

boundaries are used tends to legitimate rudimentary methods for the treatment

of boundaries which were found unacceptable fifteen years ago (ref. _O). The

fact that the Lax-Wendroff method, which is dissipative, can stand the test

whereas the leap-frog method, which is nondissipative, cannot, tends to sug-

gest a need for dissipative mechanisms, which is totally unnecessary if a

technique is used which is physically consisten%.

The ultimate confusion is produced when the leap-frog method, which car-

ries information to the right, without dissipation, is used to integrate (to

the right of x=O) the equation

ut - u x = 0

which has a single family of characteristics, running to the left (ref. 11).

Obviously, in this problem no boundary conditions are needed, because the

line x=O is not traversed by any signal proceeding from the left. Therefore,

all values must be computed from the interior, but in a physically consistent

way, that is, by stating that signals are carried to the boundary along

left-running characteristics. If the boundary is treated accordingly, the

amount of perturbation is minimized and the calculation proceeds as well as

the leap-frog scheme permits elsewhere. This boundary treatment (not a boun-

dary condition ) is mentioned as acceptable at the very end of ref. 11, after

a lengthy discussion of other obviously unacceptable techniques.

In addition to misinterpreting these early papers, many authors have

shown a total lack of constructive curiosity, in not inquiring whether numer-

ical methods, which should interpret the physics of a problem, really require

more boundary conditions than the physics itself. The answer to the ques-

tion, of course, should be an unqualified No. We find, instead, a large num-

ber of recent papers which keep dealing with the subject, making the same

mistakes as pointed out above and even amplifying them. See, among the most

recent contributions to confusion,_ ref. 12 and, particularly, ref. 13, page

_See note added in print on page 94.
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328 (which are mentioned as a random sample, not meaning to single them out).

I feel obliged to repeat what I said in 1968 (ref. 10):

Any extrapolation , bein G a__n act of arbitrariness, i__s wr_ by

definition.

Overspecification is also wrong.

And, as I am going to show in the next section, _ conditions which

ar___emathematicall_ acceptable doe__ssno___tmea____nntha____!tthe _roblem is physicall Y

correct (for example, because the boundary generates entropy when it is not

supposed to do so).

Practical problems

Perplexity, to put it mildly, stems from _ack of understanding of the

physical role of the boundary conditions and of the physical consistency of

their numerical treatment. In addition, one should never forget that a prob-

lem must be examined as a whole, so that the flow evolution depends not only

on the events at one boundary but on the interaction of the two boundaries

and of the interior as weSl.

For the following discussion, let us consider a duct with a

cross-sectional area and lift the restriction of homentropic flow.

must be replaced by

variable

Eqs. (3)

St = - u Sx (I 6)

Rit -- aS t - Ai(Rix - a Sx ) - aua (i:I ,2) (17)

where S is the entropy divided by the gas constant and by v, and a is the lo-

garithmic derivative of the cross-sectional area of the duct. In the spirit

of the l-scheme, for subsonic, positive u, the x-derivative of S in eq. (16)

is approximated by backward differences, and the x-derivatives of R. and S ini

eqs. (17) are approximated by forward and backward differences for _=I and 2,

respectively.

Going back to page 426 of ref. I, and interpreting it in the context of

one-d_mensional flows, we see four combinations of parameters mentioned as

acceptable, when prescribed at an infSow (]eft) boundary. In our notation,

they are:

(I) total temperature, To, and R2,

(2) T and u,
O
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(3) T and p,
0

(4) u and o.

To these, we add the combination which we consider most appropriate for

asymptotically steady flows:

(5) T and S.

Our choice _5) is again justified by the model of a flow proceeding from an

infinite capacity, where the gas is stored with a prescribed total energy,

and which flows to the inlet without changing entropy, or increasing it by a

prescribed amount. The interaction between outgoing perturbations and incom-

ing f]ow does not produce entropy waves and does not produce work. There-

fore, according to eq. (16), the entire flow in the duct tends to become

homentropic, even if it was not so initially.

If choice (I) is made (a rather difficult one to be given a practica_

interpretation), eq. (9) and the definition of R2 tie at and ut, while eq.

(17) with i=I ties at, u t and St . The entropy at the inlet is thus deter-

mined as a consequence of the imposed conditions. Physically, this amounts

to describing a mechanism which produces or destroys entropy without altering

the total energy. Without discussing the practical merits of a model of this

kind, let us only see what consequences it may have on the calculation. At

this stage, we must consider the outlet boundary as well, and let us assume

that model (f), prescribing the pressure, is used. Entropy waves, produced

at the inlet, will be convected along the duct. At the exit, where the pres-

sure is prescribed, the changing entropy will produce changing values of a

and u. These values will be carried back along the left-running characteris-

tics, reach the inlet and interact again with the boundary conditions to pro-

duce a new change in entropy. These changes may produce instabilities, or

periodical oscillations, or a steady state of a sort, according to the value

of the exit pressure and the geometry of the duct. Generally, a convergent

duct tends to stabilize a subsonic flow, and a divergent duct tends to am-

plify perturbations produced at the inlet and destabilize the flow.

Similar considerations can be made for choices (2) and (3). In case

(4), p provides a relation between s and S which, together with eq. (17) for

i=I, determines a; and R2 follows, since u is prescribed. Nevertheless,

neither S nor T maintain a constant value, because S is again determined by
o

the interaction between left-running waves and a prescribed 0, and eq. (9) is

generally not satisfied. The mass flow is the only quantity which remains

constant at the inlet, if 0 and u are constant; but this does not prevent the

82



f]ow in the duct from becoming unstable.

In conclusion, the analysis of mathematically acceptable conditions for

one single boundary does not guide to the choice of a proper set of condi-

tions, which has to be made on the study of the problem ss a whole.

TWO-DIMENSIONAL PROBLEMS

Increasing the number of space-like dimensions by one not only increases

the amount of computations to perform but changes the nature of the prob]em

and makes Jt extremely more difficult to solve. In one-dJmpnsional problems,

the characteristics define the directions along which signals propagate and

the signals themselves (the Riemann variables and the entropy) are clearly

defined. Mathematically, this is expressed by saying that the matrix A in

the equations of motion, written in vector form as

u + A u + C : 0 (18)
t x

can be diagonalized. The equations of motion become ordinary differential

equations along the characteristics. Each family of signals is, as much as

possible, uncoupled from each other family.

With one more space dimension, signals are propagated along surfaces

(typically, the Mach conoids). The two-dimensional counterpart of eq. (18)

Js

+ B u + C : 0 k1_)
u t + A ux y

No matter how the basic variables are defined, and how integration paths on

the conoJds are chosen, the equations of motion cannot be reduced to ordinary

equations so that the integration of any variable along a generator of a

conoid depends on derivatives taken in a perpendicular direction. This is

because the matrices A and _ in eq. (I 9) cannot be diagonalized simul-

taneously. At first sight, it seems that there is no proper way to discrim-

inate among domains of dependence of different signals, and that all advan-

tages shown by equations such as eqs. (3) are lost. Consequently, it may

seem tl t integration schemes not based on the concept of characteristics,

although clearly unsatisfactory from a physical point of view, should be

adopted, for lack of better procedures. The boundary conditions seem to be

similarly affected. The closest one can get to the one-dimensional analysis

is by recasting the equations of motion in such a way that the normal to the
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boundary is evidenced, and the velocity vector is decomposed into a normal
and a tangential component. Considerations maybe madealong the normal
which are very similar to the ones madefor one-dimensional problems.

Wewill show that the boundaries can be treated without introducing ar-

bitrary procedures. First, we will determine which conditions must be used

and give examples of proper ways to use them. Then, we will introduce an in-

tegration scheme which naturally blends with the procedure used at the boun-

daries.

Rigid walls

Let us consider the rigid boundary and the open boundaries separately.

For the rigid boundary the condition of vanishing of the normal velocity is

sufficient. When integration schemes such as Lax-Wendroff, MacCormack or

leap-frog are used for interior points, one easily slips into redundancy if

one attempts to compute each variable separately and then impose the boundary

condition (ref. 10). There is only one sequence of steps which avoids redun-

dancy and is physically acceptable:

(I) Integrate S along the wall,

(2) Integrate the velocity along the wall,

(3) integrate a generalized Riemann variable, containing the velocity

component normal to the wall, using the boundary condition,

(4) Determine the velocity components in the given frame of reference

by using the modulus of the velocity and the boundary condition again.

The first two steps are justified because the wall is a streamline; the

energy equation and the relevant momentum equation can be written in the

form:

_t + q SX = 0

a a2Sxqt + q qx +-6 ax - = 0

where q is the modulus of the velocity and X is the arc length along

(20)

(21)

the

wall. Therefore, S and q are obtained using only information from the wall.

The third step is in line with the one-dimensional analysis. The norms]

velocity component vanishes at the wall, so that the third step provides a,

or P. The fourth step is simply a redistribution of the velocity components

according to the given frame.
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Inflow boundaries

At an inflow boundary with subsonic flow, the tangential velocity com-
ponent, or the slope of the velocity vector, as well as the entropy, depend
on outside information. Another condition must be written along the normal;
considerations similar to the ones presented in the one-dimensional case can
be made. Oncemore, certain combinations of prescribed quantities produce
entropy or unaccountable work, and should be avoided.

Typical]y, open boundaries occur in two categories of problems. The

first contains flows in channels, with an inflow and an outflow boundary

across the channel. Cascade flows can also be ascribed to this category,

with some rigid walls replaced by a periodicity condition. Whatever crosses

the inflow boundary, it comes from a more or less distant region where the

physical state is assumed as known but about which, most of the times, one

possesses only an imperfect description. For example, one can imagine the

gas coming from an infinite capacity with gas practically at rest, or from a

combustion chamber where energy is globally added according to a certain law,

perhaps as a function of time, or, finally, from a supersonic intake in front

of which the gas may pulsate and produce strongly irrotational flows, etc.

[4odels of this kind suggest the use of T and S as parameters to be prescri-
0

bed outside the inflow boundary. In addition, something has to be prescri-

bed, related to the tangential velocity component, v which, as we said above,

cannot be evaluated on the basis of interior information. Nevertheless,

prescribing v itself is not advisable; in fact, the modulus of the velocity

is already made to depend on T and S so that not v, but the slope of the
0

velocity, o = v/u, is a better choice. In a channel flow, s is obviously

known on the walls; in between, it must be guessed. A simple distribution of

a between the walls can be prescribed; for example, a linear distribution of

a between its values at the lower and upper wall. Physically, we can always

justify it by thinking of a series of vanes, distributed along the inlet, to

guide the flow without producing work. In addition to its practicality and

to its closeness to an experimental setup, the model is safe because minor

changes in a at the inlet do not affect the flow at a relatively short dis-

tance.

Outflow boundaries

At the exit, one can follow the trend establ_shed by the one-dimensional

analysis. The model of the outside world, however, is not complete without a

specification of the flow direction at infinity. We are, thus, brought to
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imagining a series of vanes, located astride the boundary, which deflect the

flow into a region where the pressure is prescribed. As in the one-

dimensional case, the continuity equation must be written between the two

sides of the boundary, together with the conservation of total energy and the

non-restrictive condition of isentropy at the boundary crossing.

DenotinF by an index, _, the values of P, u and o outside the boundary,

the continuity equation, eq. (12), remains unchanged and the energy equation

can be written in the form:

aa t + 6uu t + _vv t = _ + 6u®u t(
(22)

In these two equations, P=t' °=t and v t are known (v depends only on inside

information); therefore, three unkno_ms remain, at, u t and u®t. The system

is closed by a compatibility equation along a line reaching the boundary from

the interior (a two-dimensional counterpart of a right-running characteristic

compatibility equation in our previous one-dimensional analysis).

It is worth noting that in the preceding considerations there is no re-

quirement for any boundary to be only an inflow boundary or an outflow boun-

dary. The boundary can allow the flow to proceed in both directions in any

of its portions, provided that the code switches automatically from inflow to

outflow calculations wherever and whenever the normal velocity changes in

sign. A pretty example of a calculation of this type has been given in ref.

14. By the same token, there are no restrictions in having the flow partly

subsonic and partly supersonic along the same boundary.

Flows extending to infinity

The second type of problems is related to the analysis of flows surroun-

ding finite bodies and extending to infinity. Such flows are usually con-

sidered as steady and uniform at infinity and one generally expects to find a

steady flow in the vicinity of the body as well. The inner boundary of the

flow is the wall of the body and there is no outer boundary, in principle.

In practice, however, the calculation must be confined to a finite region and

an artificial boundary must be introduced.

There is, indeed, a way to avoid considering an artificial boundary if

the problem is started with the body at rest and the gas around it at rest.

The body is then accelerated to a cruising speed, equal and opposite to the
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preceding velocity at infinity. The flow is then to be computed within a

growing perturbation front, along which the boundary conditions are clearly

defined (ref. 15). Since a steady state sets in very rapidly near the body,

as soon as the cruising speed is reached, the computational region does not

necessarily grow beyond unacceptable limits.

If one prefers to use a smaller region, with a fixed outer boundary,

once more one has to choose a model for the inflow portion and s model for

the outflow portion of it.

Now, the incoming flow at infinity is undoubtedly homentropic and homen-

ergic; therefore, the assumptions of T and S constant in space and time
o

along the inflow boundary are correct. At the outflow boundary, the assump-

tions that the pressure at infinity is constant and the flow is not deflected

are acceptable and not inconsistent w_th part of the outgoing flow having a

different entropy (if shocks occur inside the computed region). The model is

thus clearly stated, as above for the channel flow, again with the exception

of the inf]ow values of a. Here too s reasonable guess on the distribution

of s along the inflow boundary must be made.

Improved methods

for two-dimensional flows

The current trend to solve eq. (19) is towards methods which emphasize

the concept of characteristics as much as possible. Embryonically, the idea

is applied in the original two-dimensional h-scheme (ref. 5) but a much bet-

ter physical interpretation of it is given in ref. 6, and can be explained

with the help of fig. I, which is suggested by that paper. Here we assume

that the computational grid is orthogonal, and that the flow is homentropic.

Let P be the point to be computed, and _ the velocity vector. The circle

represents the base of the Mach conoid having its apex at P. All signals af-

fecting P travel along generators of the cone. If the four generators shown

in the figure and numbered 1,2,4,5 are chosen, four compatibility equations

can be written along them. Each equation contains generalized Riemann varia-

bles of the type

_- a + u
Ri _- - (i=2, I )

Ri = _ ± v (i=5,4)

(23)

and the directions of the generators are defined by corresponding values:
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A i = u + a (i=2,1)

X. = v +- a (i=5,4)
l

(24)

In addition, we define the auxiliary symbols:

R 3 = v, R 6 = u, 13 = u, 16 = v (25)

Actually, only three unknowns (a,u,v) must be computed at P, so that one

equation is redundant. Nevertheless, following Putler (ref. 16), we take ad-

vantage of the redundancy to eliminate the cross-derivatives which appear in

all compatibility equations. When discretizing, the position of the genera-

tors with respect to the grid in fig. I will determine how derivatives have

to be approximated. For example, R2x will be approximated by backward dif-

ferences, R2y by backward differences too; R4x by backward differences again

but R4y by forward differences.

A second-order accurate, two-level scheme can be devised (ref. 17) which

integrates the equations of motion, written in the form:

6 (fl + f2 + f4 f5 )a t -- _- +

1
ut = _ (f2 - fl ) + f6 (26)

1
vt = 7 (f5 - f4 ) + f3

(for the sake of simplicity, we have omitted additional terms which do not

contain derivatives of the unknowns and are produced by non-Cartesian, but

orthogonal frames of reference). }{ere,

f. =-_. R.
1 I IX

f. =-l. R.
I z zy

(i=I ,2,3)

(i=4,5,6)

(27)

The splitting (which is almost identical with the one obtained by the ori-

ginal l-scheme) is convenient to update the variables at the corrector level,

when information has to be taken from different directions according to the

index of fi' that is, according to the sign of l.m.

Suppose now that a rigid boundary has to be computed, defined by y=1,

with the flow in the region defined by y<1. The boundary condition is:
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v -- o (28)

and fig. I should be replaced by fig. 2. Information necessary to evaluate

fl and f2 is available along the wall; f3 and f6 vanish identically because

of eq.(28), and f5 can be computed from the _nterior of the flow. Only f4

remains unknown, and it can obviously be defined using the last of eqs. (26)

with vt=O:

f4 -- f5 (29)

The problem is solved.

Consider now an inflow subsonic boundary, along the x=O line (fig. 3).

Let us assume that the slope of the velocity vector,

o -- v/u _,>0)

is given as a function of y but, for simplicity, constant in time.

lows that

It fol-

v t = o u t [_I )

Let us also assume that the total temperature is considered constant in space

and time. Therefore, an equation similar to eq. (9) follows:

a t = - 6(I + a 2) Ua ut

An inspection of fig. 3 shows that fl can be determined from the interior of

the flow, f4' f5 and f6 are computed using only information along the boun-

dary, whereas f2 and f3 must be evaluated using the two boundary conditions,

eqs. (31) and (32). Once more, the problem is physically well posed, there

is no redundancy in the numerical procedure, and the scheme is consistent

with the scheme for interior points.

The application of eqs. (31) and (32) is indeed straightforward.

eq. (32) and the first two equations (26), one obtains:

From

where

(A-1)fl - (f4 + f5 + 2Af6)
f2 = A + 1 (33)
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A --(I ÷ o2) u
a

and from eq. (31) and the last two equations (26), one obtains

f3 = ½ If4 - f5 + °(f2 - fl + 2f6)_] (_4)

At an outflow boundary, the same fig. 3, considered as having the in-

terior of the computational region to the left of the y-axis, shows that only

one condition must be imposed. Sometimes it is sufficient, for example, to

impose a, which provides fl through the first eq. (26), or N, which again

yields fl but through a combination of the first two eqs. (26). The value of

v t is totally determined from the interior. In a more sophisticated way, one

can eliminate u®t between eq.(12) and eq. (22) and use eqs. (26) to get

c - (A+B)f2- (a-v)f 4- (a+v)f 5- 2vf 3- 2Bf6
fl = A - B (35)

where

2 2 u2(1C = u®a®s®t + P®t [ a- +a2))/'r

Boundary points which belong to two boundaries can be treated in a simi-

lar way. Consider, for example, point P in fig. 4, which belongs to a wall

(y=O) and to an inflow boundary (x=O). As we said before, f3 and f6 vanish

identically, because v=O. Two quantities cannot be determined from the in-

terior: f2 and f4" Two conditions are also available at P, one given by eq.

(52) and the other either by eq. (28) or by eq. (30), which are equivalent.

Eq. (29) follows, and then f2 is determined from eq. (33) with f4 = f5; the

vanishing of f_ is identically satisfied by eq. (34).
J

Non-orthogonal meshes

It remains to discuss the case when non-orthogonal meshes are used. To

show how the method works, without complicating the algebra unnecessarily,

let us assume that a non-orthogonal mesh is obtained from a basic Cartesian

mesh by the affine transformation:

x _ x, Y --y/_x (36)
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The mesh is convenient for the analysis of the flow in a duct with a straight
wall along the x-axis and another straight wal3 defined by y = _x, so that Y

= 0 and Y = I at the two walls, respectively. Since for any function, ¢:

Cx -- CX + CYYx' Cy = CyYy

the equations of motion, eqs. (26), must be replaced by the more

equations:

6
at = _ (fm + f2 + f4 + f5 + f7 + f8 )

I

ut = 7 (f2 - fl ÷ 2f6 + fs - f7 )

I

vt = _ (f5 - f4 + 2f3)

with

(37)

complicated

(38)

B = uY + vY
x y

_4 --B - aYy, _5 = B + aYy,

X., = - aY , _ = aYx 8 xf

_6 =B

(39)

_7_ = - 17 EIY' f8 = - X8 R2y

and the other definitions in eqs. (24),(25) and (27) unchanged, except for

replacing x and y with X and Y, respectively.

per

is

Since Yx = - Y/x < O, the domains of dependence of f7 and f8 at the up-

wall are as shown in fig. 5. At the upper wall, the boundary condition

v = e u (40)

It is clear, thus, that B vanishes identically, so that f6 = 0 as well. The

X-related terms, f1' f2 and f3 are computed along the wall. Of the remaining
terms, f

5 and f7 are computed from inside, but f4 and f8 must be determined

otherwise. It seems here that, since we have only one boundary condition,

eq. (40), at our disposal, and two unknowns to determine, we have fallen

again into a problem of redundancy. This is not true, however, because the

physics of the flow on the boundary provides us with an additional piece of

information. The wall _s a streamline, along which the relevant momentum
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equation can be written in the form shown in eq. (21), containing no Y-

derivatives. If we express qt in terms of u and v, using the last two eqs.

(38) and eq. (40), we obtain

q if2 - fl ÷ f8 - f7 ÷ _(f5 - f4 ÷ 2f3)] (41)

Therefore, the sum of terms in eq. (40) containing Y-derivatives must vanish;

this yields the needed additions] condition:

f8 - f5 = a (f4 - f5 ) (42)

CONCLUDING REMARKS

Tec_miques for the handling of boundary conditions must be devised keep-

ing in mind that:

(I) No numerical arbitrariness is allowed; the numerical technique

should use all the boundary conditions which are prescribed physically and no

other conditions,

(2) A physically consistent model of the outside world must be provi-

ded, when the boundary is open; such a model is not necessarily equiva]ent to

common assumptions of steady state theoretical analyses, such as a uniform

flow at infinity.

I have shown how the first requirement can be satisfied. The second is

completely independent from the first; I have given some examples of proper

choices of models.

Recent applications of the concepts discussed in this paper can be found

in refs. 9, 14, and 17 through 21.
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NOTE ADDED IN PRI_;T

At a recent ICASE workshop, the subject of treatment of boundary condi-

tions was extensively debated. YY discussions with Robert War__ing and Saul

Abarbanel brought us to conclude that the confusion mentioned above (page 8)

depends on semantics. What are called numerical boundary conditions and,

even worse, additional numerical boundary conditions in refs. 12, _3 and el-

sewhere, should actually be called numerical treatments of boundaries. My

ideas on how to handle boundaries, as exposed in the present paper, are not

necessarily in conflict with some of the treatments suggested in refs. _2 and

13.

Another semantic problem arises form the use of the word "extrapola-

tion", r<any people apply it to embrace all calculations of boundary points

on the basis of inside information. In this paper, I meant to limit the word

to all formulas which cannot be interpreted es representing physical propaga-

tion or convection.
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THREE DIMENSIONAL BOUNDARY CONDITIONS IN SUPERSONIC FLOW

S. Rudman t and F. Marconi t

Grumman Aerospace Corporation

Research Department
Bethpage, New York 11714

ABSTRACT

A theoretical analysis of the flow pattern at a solid surface in three

dimensional supersonic flow is presented. The purpose of the study is to

develop the additional information necessary to overcome the nonuniqueness

associated with the body tangency condition in three dimensions. The

analysis is based on the fact that three dimensional waves propagate locally

exactly as they do in axisymmetric flow when viewed in the osculating plane
to the streamline. The supersonic flow over an infinite swept corner is

examined by both the classical solution and the three dimensional solution in

the osculating plane and the results are shown to be identical. A simple

numerical algorithm is proposed which accounts for the three wave surfaces

that interact at a solid boundary.

INTRODUCTION

Future success in the prediction of complex three dimensional

supersonic flow fields will require increased theoretical understanding of

such phenomena. In particular, the key to accurate and reliable numerical

computations lies in the proper imposition of boundary conditions. A variety

of three dimensional boundary point algorithms have been developed which are

based on method of characteristic type analysis of the governing equations.

The techniques reported in references 1-5 rely on the reduction of the full

equations to a reference plane system in two space dimensions. The reference

plane is employed in the vicinity of the boundary point in which the calcula-

tion is performed. The orientation of this plane relative to the boundary

surface has been chosen, in the past, based on intuitive and ad hoc

reasoning. Velocity components and gradients normal to the reference plane
appear as forcing terms in the charactertistic equations. Theoretical

analysis of the full three dimensional Euler equations (ref. 6) indicates

that there is a unique plane in which the flow is equivalent to an
axisymmetric (a two space dimension)flow. There is no velocity component

normal to this plane and the only term appearing in the equations beyond the

t Senior Staff Scientist
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pure planar two dimensional expressions is a velocity gradient term analogous
to that appearing in the axisymmetric equations. It is the object of this
paper to study the implications of employing these concepts in the boundary
point calculations involved in three dimensional supersonic flows.

The complexities of three dimensional flow calculations as compared to
their two dimensional counterparts are manifest in the application of the
boundary conditions. In two dimensional supersonic flow there is a well
developed theoretical basis (c.f. refs. 7-9) upon which to model the
numerical simulation of the boundary surface/flow interactions. Moretti (c.f.
refs. I0,ii) was the first to recognize that the standard finite difference
algorithms employed for interior point calculations had to be replaced by a
local solution based on the method of characteristics at solid boundary
points as well as at shock points. Later, Abbett (ref. 5), showed how to
combine finite difference calculations with a local Prandtl-Meyer solution at
a solid boundary and thus greatly reduce the complexity of the boundary
point calculation. DeNeff (ref. 12) and Rudman (ref. 13) extended this
method to shock surface and contact surface boundary point calculations. The
central new feature that arises in the three dimensional calculation is the
nonunique nature of the boundary conditions. At a solid surface, for
example, the boundary condition that the velocity vector be tangent to the
surface is a single condition for the two unknown cross flow angles. In two
dimensions a single flow angularity unambiguously determines the ratio of the
two velocity components. In three dimension the surface tangency condition
only determines a single linear relationship between the two cross flow
velocities. This paper addresses the resolution of this ambiguity.

The boundary point algorithm under consideration employs first a finite
difference calculation and then a "correction" to satisfy the surface
tangency requirement. That is, the flow properties at the unknown point are
computed using a variation of the finite difference scheme at the interior
points. A modified interior point calculation is necessary because no mesh
points are computed interior to the body. Either one sided differences away
from the body are employed to model the cross derivatives or a reflection

plane is used to define hypothetical flow properties at a plane one mesh

width interior to the body. The flow properties so computed at the unknown

point (fig. 1) do not in general satisfy the body tangency condition, and are

denoted FD (finite difference). Following the methods of references 5,8 or 9

a wave is added to the solution at the boundary point (the correction) to

bring the velocity in line with the desired direction. In two dimensional

flow this is a simple Prandtl-Meyer wave. In three dimensional flow the

orientation of the "correction" wave is not known a priori. Any rotation

into the tangency plane satisfies the boundary condition. In the notation

used in figure 1 the value of ¢ is unknown and must be determined from a

detailed analysis of the flow.

The first step in developing the required information is recognizing

that three dimensional supersonic flow is locally directly analogous to a two

space dimension (axisymmetric) flow (ref. 6) when viewed in the osculating

plane to the streamline. In supersonic flow all changes in flow properties

are brought about by wave surfaces. Each wave surface in three dimensional
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flow when viewed locally is a plane wave moving at the local speed of sound
relative to the fluid. The component of velocity normal to the wave front is
sonic. Beyond that the orientation for the wave front is arbitrary so that
it can rotate the oncoming velocity both vertically and horizontally
depending on its strength and direction. In two dimensional flow, by
contrast, the waves rotate the flow either upward or downward (first or
second family waves) about an axis perpendicular to the plane of motion. In
three dimensional flow the rotation takes place about the binormal vector to
the local streamline direction. The direction of the local binormal vector
is determined by the wave orientation.

In the following sections further discussion of the role of the
osculating plane in three dimensional flow will be presented. These concepts
identify two main bicharacteristics in the fore Mach cone (the intersection
of the cone and the osculating plane) that determine the solution at any
point. This description of the flow is then reconciled with the classical
solution for flow over an infinite swept expansion (or compression) corner
which is the prototype model for plane wave solutions. It is shown that the
classical solution which is achieved by examining the flow in a plane normal
to the sweep line is identical with the solution employing the osculating
plane. For infinitesimal rotations the flow over the corner is a Prandtl-
Meyer expansion (compression) for the total velocity vector. The rotation is
about the binormal vector defined byVpx_ . At the body surface three wave
fronts determine the solution; an incident wave, a reflected wave and a wave
emitted by the body. In general, the sweep angle of the incident/reflected
waves is different from that of the emitted wave. This is another
manifestation of the three dimensionality of the flow. Each of the three
waves has a binormal vector associated with it. In the context of numerical
calculations these waves are considered infinitesimal, i.e. the body slope
and the flow properties change in proportion to the step size. Because
infinitesimal rotations can be added the rotations of each wave can be
combined to yield a single binormal vector which defines the interaction at
the body surface. A three dimensional boundary point calculation procedure
is set forth based on these ideas. In the procedure the incident wave and
reflected waves are computed as part of the finite difference calculation
substantially simplifying the algorithm. The final rotation (correction)
accounts for the emitted wave about the binormal vector associated with the
change in body shape.

THREE DIMENSIONAL WAVES

A streamline in three dimensional space has the general properties of

any line in space. Figure 2 shows the unit vector triad defined by the

tangent, normal and binormal vectors at point O. At 0 the velocity vector is

parallel to the tangent vector. The streamline has a principal curvature in

the normal direction. The acceleration of the fluid element at point 0 is in

the t-n plane and the streamline remains in the t-n plane to second order.
The streamline has a torsion in the binormal direction but this results in a

higher order displacement. The Euler equations written using as local

Cartesian coordinates t, n, b with velocity components, U, V, W are (ref. 6)
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(PU)t + (PV)n + pWb = 0 ,C1)

pUUt + pVUn + Pt = 0
(2)

pUVt + pVVn + Pn = 0 (3)

Pb = 0 (4)

½(U2+V 2) + yp/(y-1)p : ho (5)

The fact that W = 0 at point 0 has been employed throughout. The momentum
equation in the b direction (equation (4)) expresses mathematically the fact
that there are no accelerations (or forces) in the b direction. Equations
(1) - (3) and (5) are the familiar Euler equations in two space dimensions
with the single additional term Wb in the continuity equation. This term
is analogous to the forcing term in axisymmetric flow and produces intensifi-
cation or decay as the wave progresses. Based on our understanding of
axisymmetric flow this term does not produce qualitative changes in the wave
nature of the solution.

The local solution to the flow is defined by two space dimension problem

exactly like axisymmetric flow. Figure 3 is a schematic of the wave pattern

near point O. The intersection of the Mach cone through 0 and the osculating

(t-n) plane are two bicharacteristics. These two lines carry the same
characteristic information as first and second family waves in axisymmetric

flow. The full three dimensional equations defined the Mach cones as

possible characteristic surfaces as an expression of the fact that wave

fronts can propagate at any arbitrary orientation to the local velocity
vector. The local analysis presented in reference 6 and sketched out here
shows that when the flow is not singular at point 0 only two bicharacteris-

tics are at work. These bicharacteristics are in the osculating plane

containing vp the only force on the fluid element.

In order to develop further confidence in these ideas and get quantita-

tive results we examine the model problem of an infinite swept expansion

using the classical solution and then the osculating plane analysis. The
solution is examined at the point where the deflection occurs so that no wave

intensification or decay is considered. Figure 4 is a sketch of flow which

is infinite in the y or chord direction. A uniform flow parallel to a flat

surface expands about a corner (true angle normal to the sweep line a) which

is swept relative to the oncoming velocity vector by the angle A . In the
classical solution the oncoming velocity vector is decomposed into components

normal and tangential to the sweep line. The tangential velocity vector is

unchanged by the corner while the normal component undergoes a two

dimensional expansion through the angle 6_ Denoting downstream conditions

by 2 and oncoming conditions by 1
A ^

ql = qlnN1 + qltT (6)
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72 : q2nN2+ q2t_ (7)

_here N is the unit vector normal to the sweep line lying on the surface and
T is the unit vector tangential to the sweepline. Furthermore,

q2n - qln = qln6///Mn 2-1= qln 6tan _n (8)

q2t : qlt (9)

Mn = M1 cos A (10)

where equation (8) is the Prandtl-Meyer relationship for an infinitesimal

wave which turns a flow at Mach number Mn an angle 8. Combining (8) and
(9) with (7) and using

N2 = (cos^ cos6, sinA cos6, -sin6 )

: (sin A, -cos A, O)

and retaining only first order terms

q2 = ql (1 + 6c°s2 Atan _n' 6sin Acos Atan _n' - acosA )

where ql is the magnitude of the upstream velocity.

(11)

The change in the magnitude of the velocity vector is qiven by

q2-ql
_ v/ (l+6cos2Atan 2 2Aaq

- _n)2+ (6sinAcosAtan_n)2 + 6 cos -1
ql ql

retaining only the highest order terms

aq = 6cos2Atan_n
ql (12)

A sketch of the wave pattern is shown in figure 5. A plane wave is emitted

by the sweep line at a true angle _n given by the expression

1 I sin_l
sin _n - - -

Mn MlCOSA cosA

The flow is turned by this wave front about a vector

÷ ql x q2
R - 2 = (0, 6cos A, 6sinA cosA tan pn ) (13)

ql

It is interesting to note that the rotation line is not parallel to the sweep
line, in fact it has no x component. It is inclined to the x-y plane by the
angle B

tan B = z/y = cot _n sin A
(14)
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The direction of the initial and final velocity vectors can be related
by a simple rotation about the vector _. The angle between these two
directions (in the plane normal to R) is (see Appendix)

_c°sAc°s_1 _c°s2Ac°S Ul

= (15)

a' = cos Un /cos2A_sin2 1

In the following paragraphs it will be shown that this exact solution

can be achieved by solving the three dimensional flow problem using the

osculating plane. The bicharacteristic in the osculating plane is first

located as the line of tangency of the wave front leaving the swept leading

edge and the Mach cone. The osculating plane is then shown to be
perpendicular to the rotation vector R from the classical solution. There
the b vector and the _ vector are parallel and the required deflection is

exactly that given by equation (15). Then it is shown that the final

velocity achieved by expanding (or compressing) the total velocity ql
through the rotation _' results in the same magnitude of the final velocity as

the classical solution. Thus since the rotation direction, magnitude of
rotation and final velocities are identical the two solutions are identical.

Refering to figure 6 at any point on the sweep line a Mach cone is

emitted with half angle_1 = sin-i(1/M1) • The Mach cone at the origin
is shown on the figure but all are similar. The wave front attached to the

sweep line rests on the Mach cones. The intersection (tangency line) of this

wave front and the Mach cone occurs along a line (bicharacteristic) which can

be easily found geometrically using vector analysis. In the cross section

view (fig. 6(b)) the angle _ locating this line is given by

cos_ = tan _i tanA (16)

the tangent of this angle can be found by standard trigonometric

relationships and related to _n (see Appendix)

i (17)tan_ =
tan _n sinA

A vector tangent to the plane containing the intersection line and the axis

of the Mach cone (streamline direction) is therefore

T = (0, -i, tan _)

A vector parallel to the rotation vector C (equation (13)) is

R1 = (0, 1, sinA tan _n )

The dot product of ffl and T is always zero.

T • R = -i + tan_ sinA tan _n = -I + i = 0 (18)
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Therefore the b vector which is normal to the osculating plane and the
vector are parallel.

The b vector and _ are parallel and the same turning anglea'is

specified by equation 15 in both solutions. All that remains is to show that

expanding the total velocity ql an amount a' changes its magnitude to the

same value as the classical solution. The change in velocity is given by the

Prandtl-Meyer expression (This is the same expression used in equation 8)

Aq = _ Aetan _I
ql

In this case AO = -a'

Aq = a' tan _1
ql

Using the value ofa' given by equation 15

Aq = aC°SAsin_1

ql cos _n

Mn = MI cos A , therefore sin _n

sin _1 - cos A

(19)

Substituting this in equation 19 yields

Aq = aCOS 2 Atan un
ql

Comparing this to equation 12 the results are identical.

(20)

The conclusion is summarized in figure 7. The flow over the swept

expansion (or compression) corner can be evaluated by using the bicharacter-

istics in the osculating plane. The orientation of the osculating plane is

determined by the relative orientation of the sweep line and the oncoming
velocity. In the osculating plane figure 7b the flow is two dimensional and

the incoming wave is oriented at the free stream Mach angle _1-

THE BOUNDARY CONDITIONS AT A SOLID WALL

The purpose of the previous discussion was to demonstrate that the wave

processes in three dimensional flow are in fact locally equivalent to the
familiar two dimensional wave process. The passing of an infinitesimal

strength wave front in three dimensinal flow produces a change in flow

direction, magnitude of velocity and hence pressure and density given by the

Prandtl-Meyer relationship. The orientation of the deflection is given by a
rotation about the binormal vector whose direction is determined by the

relative orientation of the oncoming velocity and the wave front. In general

in a three dimensional flow there can be an arbitrary number of wave fronts

passing a given point. Each wave front has a given strength and associated
binormal vector. Because the waves under discussion are infinitesimal in

strength the rotations they produce are additive as well as are the
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increments in velocity. Therefore at any given point the effect of all wave
fronts can be added to produce one binormal vector associated with all the
changes in the flow properties at that point.

The wave pattern at a solid surface is shown schematically in figure 8.
In general there are three wave fronts that must be considered: an incident
wave and its reflected wave and an emitted wave. The incident wave
originates in the flow and strikes the boundary. Upstream of this wave the
flow is parallel to the surface. A reflected wave front originates at the
body surface to bring the flow back parallel to the surface. These two waves
intersect the body along line BB in figure 8. In addition at point 0 the
body surface changes orientation. This results in a wave front moving away
from the surface which originates on the body along line AA. This wave front
rotates the velocity vector to make it parallel to the new body direction.
The lines AA and BB are swept at different angles to the oncoming flow. This
is one reason that the three dimensional boundary condition is more complex
than the two dimensional counterpart. In two dimensional flow AA and BB are
coincident as are the emitted and reflected waves. In that case there is no
need to distinguish between the reflected wave and the emitted wave.

With this theoretical background it is now possible to suggest an
algorithm for the correct imposition of the boundary condition at a solid
surface in three dimensional flow. Figure 9 shows a portion of the
computational mesh. At station Z all flow properties are known at the
interior points and the boundary points. The boundary point denoted N at
station Z +&Z is to be computed. Using a grid that is orthogonal to the
body surface an additional line of mesh points interior to the body is
defined using reflection conditions (more discussion later on these values).
The standard interior point calculation is performed at point 0 to compute
values at N. The values so computed at point N account for the incident and
reflected waves by virtue of the construction of the reflected points. The
emitted wave is now added by expanding (or compressing) the flow to the new
body slope. This can be achieved by either of the two methods discussed in
the previous paragraphs. The sweep line of this expansion is determined by
taking the cross product of the new body normal at N and the normal at 0
(fig. 10).

The one question that remains is the specification of the flow proper-
ties on the reflection plane. The flow properties required on the reflection
plane have the property that they cancel the incident wave. In the following
discussion it will be shown that the values of the flow variables on the
reflection plane are computed by the usual formulas despite the fact that
there is wave intensification due to the velocity gradient normal to the
osculating plane. Scalar variable and velocity components parallel to the
plate are reflected using symmetry conditions while the velocity component
normal to the plane is reflected using antisymmetry. Figure lla shows a
schematic of the osculating plane at the boundary point N for the incident/
reflected wave process. Figure llb is the wave pattern in the osculating
plane. The characteristic starting at B reaches the body surface at N and
propagates into the flow as the reflected wave. In the osculating plane the
wave propagation process is equivalent to an axisymmetric flow (ref. 6). The
characteristic equations governing axisymmetric waves are (ref. 7)
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d_ + do = Kds along AN (21)

d_ - do = Kds along BN (22)

where _ is the Prandtl-Meyer function, S is distance along the characteris-
tic and K is the forcing term due to the velocity gradient normal to the
characteristics.

These equations are integrated in the usual manner.

VN- VA + ON- eA = ½ (KA + KN)AS (23)

VN - VB - ON - °B = ½ (KB + KN)AS (24)

The construction of the flow properties at point B by reflection relates
the values at A and B by

VB = VA = Vo + (VA - _o ) = Vo + A_ (25)

0B : 0o - (o A - oo) = 0o - AO (26)

KA = Ko + Knon A + KnnonA2/2 (27)

= + + KnnonB2/2KB Ko Knon B (28)

(29)nB :-n A = -As sin ,

Substituting equations 25-29 into the solution (eqs. 23 and 24) and

solving for the values at N yields

= Uo + (Av - _0) + ½(K ° + KN + Knno sin2.(As)2/2)V N (30)

0N = -(CAs)2/2) Kno sin. (31)

The result sought is equation 31. To lowest order the reflected wave

constructed by reflection produces no change in flow direction. This is a
direct result of the fact that the nonhomogeneous terms in the characteristic

equations 21 and 22 have the same sign.

CONCLUSIONS

An algorithm for the boundary point calculation at a solid surface in

three dimensional flow has been proposed. It is based on an analysis of the

three dimensional wave pattern that occurs at the surface. In three

dimensional flow the body tangency condition does not uniquely determine the

velocity direction at the boundary. The additional information necessary to

complete the solution is contained in the wave pattern at the boundary point.
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For a solid surface an incident and reflected wave and a wave emitted by the
body represent the interaction of the flow with the boundary. The alogrithm
proposed accounts for these processes in a relatively simple mannerand is in
fact a combination of two widely used techniques.

In the process of studying the boundary point algorithm several
important concepts in three dimensional supersonic flow were developed. A.
Frohn (ref. 6) showedthat in the osculating plane to the streamline the wave
propagation is locally exactly equivalent to an axisymmetric flow. Using
this concept the model problem of the infinite swept expansion or compression
corner was analyzed by classical methods and the three dimensional osculating
plane analysis. The solutions were shownto be identical. The relative
orientation of the wave front to the oncoming velocity defines the binormal
direction or rotation (b) vector associated with the wave. The intersection
of the osculating plane and the Machcone defines the two bicharacteristics
which determine the solution. At a point in a three dimensiona! flow there
are an arbitrary numberof wave fronts each with an associated b vector. For
infinitesimal strength waves a resultant b vector can be defined because
infinitesimal rotations are additive.

The boundary condition at a contact surface discontinuity is the next
logical problem to study. The wave analysis presented here can be used to
examine that problem where there are six wave fronts at work. On each side
of the contact surface an incident wave gives rise to a reflected wave and a
transmitted wave on the other side of the contact surface.
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APPENDIX

I. Evaluation of a'

The unit vectors ql and q9 are parallel to the initial and final velocity
vectors and are related by the_formula

^ ^ ^ ^

q2 = ql + R6' x ql (A1)

where R is the unit vector parallel to the rotation vector and 6' is the

angular rotation between q2 and ql"

= (0, cOSPn/COS_, sinAsinPn/COS_)

Using

in equation (A1)

^

ql = (1,o,o)

^

q2 = (l'6'sinAsin_n/C°S_' -6' cOS_n/COS_)

q2 is parallel to the surface whose normal is

n2 : (6cosA, 6sinA, I)

q2 n2 = 0

(A2)

(A3)

Substituting equation (A2) in equation (A3) and solving for a'

6' : 6COSACOSp/COSp n

COS Pn can be eliminated by

sinp n = sinp/cosA

cos_ n =Jl-sin2_n =A-
= / cos2A-si'n2_

COSA

(A4)

(A5)

(A6)

6 ! =
6cos2Acosp

Jcos2A-sin2_

(A7)

II Evaluation of tan

Using the value of cos _ given in equation (16)
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tan _ - sine
cos_

_ /1-cos2E : /1-tan2_tan2A
cos_ tan_tanA

tan { -
v/cos2_cos2A sin2_sinZA

sinusinA

tan C : /--(13sin2p)c°s2A-sin2u(l-c°s2A)
sinusinA

cos2A-si n2
:

sin_sinA

Using equations (A5) and (A6)

1

tan _ - tanunS.nA,

Note: The subscript 1 has been suppressed on u in _he Appendix. Wherever

appears without a subscript it refers to _ = sin-i(I/Ml).
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Figure l.-Schematic of the computational mesh at a solid boundary point.
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Figure 2.-The osculating plane to a streamline.
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Figure 3.-The mach cone and the main bicharacteristics.
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Figure 4.-Schematic of the geometry for the infinite swept expansion corner.
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Figure 5.-Wave pattern at swept leading edge.

(a) Wave front plane.

(b) Top view,
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Figure 6.-The mach cone, osculating plane and wave front plane for the
swept expansion.

(a) Three dimensional view.

(b) Cross section in yz plane.
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INTRODUCTION

The potential equation that governs transonic inviscid flowfields is elliptic in subsonic regions and

hyperbolic in supersonic regions. The transition from supersonic to subsonic flow may occur either con-

tinuously or across a surface of discontinuity known as a shock. Because of the changing type of govern-

ing equation and the presence of the surfaces of discontinuity, special treatments of the governing equa-

tions are needed at shocks to preserve mass conservation and to ensure satisfaction of the governing equa-

tion. In the so-called shock-capturing techniques, shocks are captured by smearing the discontinuity over

several mesh cells in the computational domain. Most existing conservative schemes conserve mass flux

throughout the flowfield, including shock boundaries; however, they also introduce zero-order errors in

the approximation to the governing equation. It will be shown in this paper that the zero-order errors,

which do not diminish as the mesh spacing approaches zero, can cause discrepancies in the prediction of

shock strength and location. These parameters are extremely sensitive features of transonic inviscid

flowfield calculations. It also will be shown that the zero-order errors can be avoided by developing

higher-order schemes that properly model the governing equation at shocks.

The original Murman and Cole scheme (ref. 1) is nonconservative; it was modified later by Murman

(ref. 2) to yield fully conservative solutions to the small disturbance equation by introducing a special

shock-point operator. Unfortunately, the shock-point operator introduces a zero-order error term in the

approximation to the governing equation at shocks. Jameson (ref. 3) generalized Murman's conservative

scheme to treat the full potential equation and showed how to introduce a second-order artificial density

to construct second-order-accurate fully conservative schemes. Jameson's second-order schemes also

introduce zero-order errors in the approximation to the governing equation at shocks. Chen (ref. 4)

developed a second-order-accurate quasi-conservative scheme which similarly introduces a zero-order error
term in the approximation to the full potential equation at shocks. He found that both second-order fully

conservative and quasi-conservative schemes tend to overpredict the shock strengths for cases with strong

shocks because of the zero-order terms. In order to improve the second-order quasi-conservative scheme,

special treatments of the governing equation at shocks will be introduced. To further improve the order

of accuracy of supersonic-flow solutions, a new third-order quasi-conservative scheme will be presented.

To the author's knowledge, this is the first demonstration of a fully consistent finite-difference represen-

tation of the governing potential equation at a shock and also of a successful third-order scheme for tran-

sonic potential flow calculations.

Studies of various finite-difference schemes and shock-point operators will be presented. Funda-

mental differences between the quasi-conservative and fully conservative schemes can be illustrated by

analyzing a one-dimensional potential equation. However, to account for two-dimensional and surface-

curvature effects, it is necessary to perform a more general numerical experiment. A series of numerical

* This work was supported by the McDonnell Douglas Independent Research and Development program.

**Research Scientist, McDonnell Douglas Research Laboratories

t Consultant, McDonnell Douglas Research Laboratories; Associate Professor, Sibley School of
Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
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resultsisobtainedusingfirst-andsecond-ordernonconservativeandfirst-,second-,andthird-order
quasi-conservativeschemesfor transonicflowsinsidea converging-divergingnozzle.Theresultsarecom-
paredwithRankine-Hugoniotsolutionsin thedivergingsectionwhereflowsbecomenearlyone-
dimensional.

Finally,thenumericalsolutionsobtainedusingthefully consistentsecond-andthird-orderquasi-
conservativeschemesfor thetransonicflowpastseveralairfoilswill bepresentedandcomparedwith
earliersecond-orderquasi-conservativeandfully conservativesolutionsfor whichthegoverningfinite-
differenceequationsolvedatshockpointsintroduceda zero-ordererrorterm.

THE FULL POTENTIAL EQUATION

The full potential equation for two-dimensional transonic inviscid potential flow is given as

(a 2- u2)¢xx + (a 2 - v2)_yy - 2uV_bxy = 0, (1)

where u and v are the velocity components in the x and y directions, respectively, and a is the local speed

of sound determined from the energy equation

a 2 = ao2 - (3' - 1)(u 2 + v2)/2, (2)

where ao is the stagnation speed of sound and 3" is the ratio of specific heats for the assumed, calorically
perfect gas.

In the computational plane, equation (1) is rewritten as (ref. 4)

Cl_bxx + C2_yy + C3q_xy + C4q_x + Cs_b v = O, (3)

where

and

C, = [a2(x 2 + y2) _ (Uyy- VXy)2]/D 2

C2 = [a2(x 2 + y2) _ (uy x _ VXx)2]/D2

C 3 = -2 [a2(XxX , + yxyy) -(uy v -vxv)(uy x -VXx)]/O 2

C 4 = [(ClYxx + C2Yyy + C3Yxy)X Y - (ClXxX + C2xyy + C3xxy)Yy]/D

C 5 = [(CIx×x + C2Xyy + C3Xxy)Y X - (CiYx_; + C2Yyy + C3Yxy)Xx]/D

u = (yy_b x - yxey)/D

v : (Xx4_Y - Xy_bx)/D

D = XxYY - xyy X

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(ll)
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Thetransformationderivatives Xx, Yx, Xy, yy, Xxx, Xyy, Xxy, ..., can be computed analytically if an
analytical coordinate transformation can be found, or numerically through finite-difference approxima-

tions. In order to uncouple the grid generation from the flow equation solver, the transformation coeffi-

cients are computed numerically by using a second-order (figure 1) or third-order (figure 2) isoparametric

element. The derivatives of the potential function, _x, q_v, _bxx, t_VV, and _xv in equations (3), (9), and
(10) are similarly computed. A finite-difference representation of equation (3) can thus be obtained and

solved at control points in the computational domain.

The required boundary conditions to be satisfied include the impermeability condition on solid sur-

faces, the Kutta condition at the airfoil trailing edges, and a compressible vortex flow representation of

the potential on the far-field boundary for airfoil flows. Consistent finite-difference approximations of

the boundary conditions can be obtained for the second-order or third-order isoparametric element, as

discussed in reference 4.

ARTIFICIAL VISCOSITIES

The finite-difference representation of the full potential equation thus far described needs to be

augmented by the addition of a proper artificial viscosity or density to reflect the directional bias of

supersonic flows. The addition of the artificial viscosity or density can reduce the solution accuracy in

supersonic regions. Earlier first-order quasi-conservative schemes (refs. 5, 6, 7) have been found to pro-
duce results which are virtually indistinguishable from those of first-order fully conservative schemes,

although the differencing of the potential equation in the quasi-conservative schemes is in a nonconser-

vative form, while the differencing of the artificial viscosity is in a conservative form. Several second-

Physical plane Computational plane

1 Y

6_ 7 12

y 5 3 6 9 -----_ X

4 • P(X,Y)
--_ x 5 3

4

Figure 1. Transformation of second-order element.

Physical plane

10

_..x 6 5 4

Computational plane

Y

6 5

)
:"-- X

3

4

Figure 2. Transformation of third-order element.
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order schemes have been developed, and their unique capabilities for predicting double shock structures

have been demonstrated. Most first- and second-order, quasi- and fully-conservative schemes conserve

mass flux across shocks, hut generally introduce zero-order error terms in the governing finite-difference

equations solved at shocks.

The best form of the potential equation to use at shocks is debatable. The potential equation holds

everywhere in the flowfield except at shocks where the velocities are discontinous. However, as long as

the equation is in conservation form, it is believed that solving the full potential equation at shocks as
well as elsewhere is probably the most reasonable choice. It will be shown later that by eliminating the

above mentioned zero-order error terms, more-consistent shock solutions can be obtained.

The second streamwise derivative of the potential function can be written as

Css = PlCxx + P2OYY + P3¢xY + P40x + PsOY, (12)

where Pl .... P5 are functions of the transformation derivatives. To simplify, further assume the stream-

wise direction to be approximately the X-direction; then the principal part of Css is approximated by

_bss _ Pl CXX" (13)

The second-order artifical viscosity of reference 4 added to the finite-difference approximation of the full

potential equation at supersonic points is

H = (AX) 2 (#P,_xx)xx = (#PI6xx)i-2 - 2 (#pl_bXX)i_ l + (#PlOxx)i, (14)

where

0)/.t = Max (1 - q2
(15)

Although this viscosity introduces only a second-order error at supersonic points, it results in a zero-order

error at two points just downstream of a shock, i.e., the governing equation solved at these two points

does not reduce to the full potential equation as the mesh size goes to zero. At the first subsonic point

downstream of a shock/2i_ 1, _i-2 ;_ 0 and/z i = 0, and at the second subsonic point,/.ti_ 2 _ 0 and

#i-1 = _i = 0; therefore H becomes a zero-order term. To eliminate this zero-order error, the following
first-order artificial viscosity was used at the first subsonic point downstream of a shock:

H = H s = - (AX)(#Pl_xX) x = (#Pl_xx)i_2 - (/zPlCXX)i_l. (16)

It can be verified that the quantity/.tPlq_XX is conserved along Y = constant as in the earlier scheme,
implying that mass flux is conserved. A stable, finite-difference relaxation scheme can be developed,

incorporating a second- or third-order coordinate transformation to provide flowfield solutions that are at
least second-order accurate at both subsonic and supersonic points and first-order accurate at shock

points.

To improve further the order of accuracy of flowfield solutions at supersonic and shock points, a

new third-order quasi-conservative scheme can be developed by adding the following third-order artificial

viscosity.

H = (AX> 3 (#PlOXX)XXX = (p.pfibXX)i- 3 (/-tPlOXX)i_ l + 3 (/,tpfibXX)i_ 2 - (/.tpl_bXX)i_ 3 (17)

124



at supersonicpointsandaddingasecond-orderartificialviscosity

H = Hs = - (AX) 2 (gpl_bXX)X X = - (/zpl_bXX)i_ 3 + 2 (/.tPxx)i_ 2 - (/Zpl_bXX)i_l (18)

at the first downstream sub-sonic point after shocks. It can again be verified that the quantity/zpl_x x is
conserved. A similar, stable, finite-difference relaxation scheme has been developed which incorporates a

second- or third-order coordinate transformation and provides flowfield solutions that are at least second-

order accurate at both subsonic and supersonic points and second-order accurate at shock points.

A summary of approximations of the full potential equation solved at subsonic, shock, and super-

sonic points by adding the various forms of artificial viscosity is presented in table 1. The shock point is

defined as the first subsonic point downstream of a shock. In the original second-order quasi-conservative

scheme, the artificial viscosity continues to be added to the second subsonic point downstream of the
shock in order to maintain the flux balance. In the other schemes, no artificial viscosities are added after

the shock point. From the table it is obvious that the approximation at shock points is always at least one

order lower than the approximation to the equation at supersonic points.

ONE-DIMENSIONAL SHOCK JUMP ANALYSIS

The solution procedure suggested previously does not correspond to shock fitting where the shock

jump relation is explicity enforced during iterations. It is therefore necessary to know how the predicted

shocks compare with Rankine-Hugoniot shocks. The following one-dimensional analysis suggested by

Caughey and Jameson (ref. 5) ignores the surface curvature effect as well, but can provide upper and

lower bounds for normal shock jumps predicted by quasi-conservative schemes. Two-dimensional effects

on shock predictions are important, especially on a curved surface, and the shock location and strength

become undefined in nonconservative schemes in one-dimensional analysis; this aspect will be discussed
separately in subsequent sections.

The one-dimensional potential equation,

(a 2 - u 2) _bxx = 0 (19)

can be rewritten as (ref. 5)

1 .2 A- M )_xx = 0, (20)

where the normalized Mach number M* = u/a* is the dimensionless ratio of the fluid velocity u = a*6 x

= q_x to the sonic speed of sound a" and is related to local Mach number, M, as

M* = [ 1.2 M 2
(21)

1 + 0.2 M 2

if 3' = 1.4 is assumed.

In the second-order quasi-conservative scheme, the following finite-difference approximation to
equation (20)

(1 - M; 2) (_i-I - 2_i + _i-l) + Hi-2 - 2Hi-1 + Hi = 0 (22)

is solved at supersonic and subsonic points, and

(1 - M; 2) (_i-l - 2_i + _i+l) + Hi-2 - Hi-I = 0 (23)
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is solvedat shockpoints,where

Hi =/.t i (t_i+ l - 2t_i + t_i_l) (24)

and

P'i = Max (Mi .2 - 1, 0). (25)

The normalized Mach number M_ is determined by

Mi* = (t_i+ 1 - _i_l)/2(AX) (26)

if the second-order element is used and by

Mi" = (2_i + l + 3_i - 6_i - 1 + _i - 2)/6(AX) (27)

if the third-order element is used. When using the second-order element, equation (22) satisfies a

piecewise linear condition, i.e., the solution for _ is a piecewise linear function of X in both subsonic and

supersonic regions. However, if the third-order element is used, the piecewise linear behavior can be

maintained only if equation (26) is used at two subsonic points downstream of the shock and equation

(27) is used elsewhere. At the discontinuity point that divides the solution into two piecewise linear solu-
tions, equation (23) is used to determine the shock jump condition, depending on the relative location of

the discontinuity point to the nearest neighboring mesh point.

Following the analysis in reference 5, assume the shock to be located at a fraction, or, of the distance

between the (i- 1)-th and i-th mesh points. A lower bound of the shock jump relation can be found, by
setting ct = 0, to be

M 2 =2-M1, (28)

where M_ and M 2 represent the normalized Mach numbers upstream and downstream of the shock. An
upper bound can be found by setting a = 0.5(AX), as

M 2 = - 0.6M; + 0.8 (5 - M;) 1/2 (29)

for the second-order element. Equations (28) and (29) are the same as the solutions derived for the first'

order quasi-conservative scheme. The same upper- and lower-bound solutions for the second-order ele-

ment can be found for the third-order quasi-conservative scheme, described by equations (17) and (18).

For the third-order element, a similar analysis can be carried out for first-, second-, and third-order

quasi-conservative schemes. The upper- and lower-bound solutions are the same for all the quasi-
conservative schemes. A lower-bound solution found for the third-order element by setting ot = 0 is iden-

tical to the one found for the second-order element, i.e., equation (28); by setting a = AX, the upper-
bound solution is found to be

M 2 = 3-2M;. (30)

Shock jump results thus obtained in equations (28), (29), and (30) are presented in figure 3. The band
between the upper- and lower-bound solutions for the third-order element is much wider than the band

for the second-order element. The third-order element analysis also shows that as the location of the

discontinuity point changes from + e(AX) to - _(AX), where _ is an infinitesimal number, the solution

changes suddenly from the lower bound to upper bound. These undesirable features are due to the

127



Third-order
element

/
"it

Quasi-

solution

M 2 0.5 pic
mass conserving

I/

Hugoniot

'M*- M'3/3

1.0 I i I
1.0 1.5

Figure 3. Shock relations for quasi-conservative solutions obtained by

applying a second- and a third-order element.

asymmetry of the third-order element which tends to introduce additional asymmetric errors that generally

cancel each other for the second-order element. A simple one-dimensional computer code was written to

verify the above analysis. By specifying Cauchy data at the upstream supersonic boundary point and a

Dirichlet condition at the downstream subsonic boundary point, and by adjusting the initial solutions and

the number of mesh points between the two boundary points, various shock jumps corresponding to

various values of ot can be obtained and are found to be within the band predicted in the above analysis.

Three other shock jump relations are shown in figure 3. The lower curve represents the Rankine-

Hugoniot shock relation. The middle curve represents the shock relation obtained by conserving mass flux

across the shock isentropically, i.e., the exact fully conservative solution. The upper curve represents the

shock relation obtained by conserving the quantity, M ° - M*3/3, across the shock, or by solving

1 =o.[%x - (31)

The shock relation is found to be

M 2 = - 0.5 M; + 0.5 (12 - 3 M; 2) 1/2 (32)

Equation (31) is obtained by rewriting the one-dimensional quasi-linear potential equation in divergence

form. The exact, fully conservative solution lies closest to the Rankine-Hugoniot shock relation. Applying

the third-order element at shock points in the quasi-conservative schemes can introduce large errors in the

prediction of shock jumps. However, two-dimensional effects resulting from surface curvatures which are
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absent from the one-dimensional analysis, seem to provide relief from the overprediction of shock
strength in many cases and will be discussed later.

TWO-DIMENSIONAL NOZZLE FLOWS

The precise strength of the shock wave is difficult to determine when it intersects a curved solid

boundary because of the large gradients in the flow immediately downstream of the shock. These

gradients result from the incompatibility of the normal momentum equation with the jump relations. The

normal momentum equation that relates streamline curvature to the pressure (or velocity) gradient

requires a negative normal pressure gradient in both subsonic and supersonic regions if there is a positive
streamwise curvature; the shock jump relation that relates the flow properties on either side of the shock

requires that the normal pressure gradient change sign crossing the shock. In fact, a logarithmic singu-
larity must exist in the flow immediately downstream of the intersection of a normal shock with a wall of

continuous, finite curvature (ref. 8). The inability of the numerical scheme to accurately resolve the flow

in the region immediately downstream of the shock leads to an inaccurate prediction of the local Mach

number, and, hence, to an imprecise estimate of the shock strength. For this reason, the shock strength
can be more precisely determined in the special case of the intersection of a normal shock with a plane

wall. A model problem which considers a choked flow inside a converging-diverging nozzle with a conical
diverging section will be studied here.

A previously developed inlet program (refs. 9, 10) was modified to compute transonic flows about a
planar symmetric inlet by incorporating the first-, second-, and third-order quasi-conservative schemes

described earlier and the first- and second-order nonconservative schemes described in references 9 and 4,

respectively. The transformed full potential equation is approximated within a local second- or third-order

element, and a finite-difference solution is obtained by an extrapolated relaxation scheme. The prediction

of shocks and the conservation of mass flux across shocks in the solutions obtained by various schemes

will be scrutinized. The boundary conditions are adjusted so that the shocks occur in the diverging nozzle

section where the surface slope is constant so that no surface curvature effects are present.

Figure 4 shows the contour and the grid system of the inlet considered for this study. The highlight

of the inlet is located at _/D = 0, where D is the outer height of the inlet. A converging section extends
from the highlight to a minimum cross-section which is located at _/D = 0.5675 or x = 0 and has a

height equal to 0.3D. A diverging section extends from the minimum cross-section to x/D = 1.4675 or

x = 1.0 where the height is equal to 0.345D. Two meshes are used in the calculation: a coarse mesh

having 40 cells from the upstream infinity to the nozzle exit and 12 mesh cells from the axis of symmetry

to the nozzle surface, and a fine mesh having twice as many mesh cells in each direction. The converged
solution obtained on the coarse mesh is used as an initial estimate for the iterative solution on the fine

mesh. For all the results presented here, the freestream Mach number is arbitrarily set to be 0.700. A con-

stant and sufficiently large flow rate is required at the nozzle exit as a boundary condition such that the

flow is choked at the throat cross-section during iterations in the coarse mesh and during the first few

hundred relaxation iterations in the fine mesh. Then the potential function at the nozzle exit is frozen for

subsequent relaxation steps until a converged solution is reached, i.e., the total number of supersonic

points ceases to change and the maximum residual has been reduced to less than 10 -6 . Freezing the

potential function at the nozzle exit boundary changes a Neumann boundary condition to a Dirichlet

boundary condition, which not only improves the convergence rate but also ensures a well-defined shock.

The flowfield inside the diverging nozzle is nearly one-dimensional. However, since the grid is not conical

in the diverging section, the flowfield is effectively two-dimensional. Several sets of solutions obtained

using the various schemes with the second-order element are summarized in table 2. H represents the

order of artificial viscosity, M e is the average Mach number at the nozzle exit, xs represents the average
shock location, Mlw and M2w are the Mach numbers upstream and downstream of the shock at the nozzle

wall, Mla and M2a are the Mach numbers upstream and downstream of the shock at the axis of sym-
metry, m 1 and fil2 are the mass flow rates per unit width at cross-sections upstream and downstream of
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Figure 4. Contour and grid system for a converging-diverging nozzle.
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TABLE 2. SUMMARY OF SHOCK SOLUTIONS IN A CONICAL DIVERGING NOZZLE.

e
Case H M e X s Mlw M2w MIA M2A rh I r_ 2 (%)

• 1
.>_

g4
_ 5
o

Z 6

1 0.665 0.190 1.142 0.912 1.139 0.906 0.2766 0.2849 3.0

1 0.695 0.395 1.210 0.844 1.269 0.897 0.2639 0.2781 5.4

1 0.715 0.555 1.295 0.804 1.301 0.857 0.2639 0.2815 6.7

2 0.665 0.190 1.214 0.889 1.139 0.932 0.2764 0.2849 3.1

2 0.684 0.325 1.180 0.881 1.306 0.907 0.2638 0.2757 4.5

2 0.712 0.640 1.387 0.760 1.318 0.826 0.2638 0.2810 6.5

7

=> 8
"; 9

!1o11

°12

"_ 13

(_ 14

15

1 0.629 0.335 1.221 0.754 1.294 0.732 0.2645 0.2638 -0.3

1 0.623 0.490 1.297 0.696 1.317 0.709 0.2646 0.2624 -0.8

1 0.618 0.695 1.384 0.636 1.364 0.681 0.2650 0.2613 -1.4

2 0.625 0.490 1.278 0.698 1.334 0.710 0.2645 0.2628 -0.7

2 0.620 0.640 1.371 0.640 1.308 0.698 0.2644 0.2616 -1.2

2 0.605 0.915 1.408 0.593 1.451 0.597 0.2486 0.2425 -2.5

3 0.629 0.325 1.184 0.773 1.328 0.707 0.2644 0.2638 -0.2

3 0.633 0.425 1.229 0.733 1.362 0.709 0.2648 0.2647 -0.04

3 0.627 0.490 1.289 0.699 1.238 0.742 0.2645 0.2632 -0.5
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the shock, and e is the percentage change of mass flow rate across the shock, i.e., (fla2 -- rill) rill, where
fla is defined as

PtUo ° pudy,
(33)

P.t is the stagnation density/upstream of the shock, and U= is the freestream velocity. For isentropic flow,
m can be expressed as

(1 + 0.2 Moo2) 0'5 IMoo M x (1 + 0.2 M 2)-3 dy,

where M x is the axial Mach number. Applying equation (34), the percentage changes of fla can be com-
puted and are listed in table 2; the nonconservative solutions are consistently shown to predict an increase

of rn while the quasi-conservative solutions consistently predict a decrease of fla. This result is consistent

with the observed underpredictions and overpredictions of shock strengths in the nonconservative and

quasi-conservative solutions, respectively, as shown in figures 5 to 10. Mach number distributions

obtained by the various finite-difference schemes are plotted versus x in figures 5-10, for the diverging

wall and along the axis of symmetry, and are compared with predictions of one-dimensional isentropic

flow theory combined with Rankine-Hugoniot shocks. In the one-dimensional calculations, the throat

Mach number was set equal to unity, and the shock location was matched to the shock location predicted

by the finite-difference scheme. In supersonic regions, the average of the Mach number distributions on

the wall and along the axis of symmetry agrees with the one-dimensional Mach number distribution;

however, Mach numbers immediately downstream of shocks and throughout the subsonic regions are

overpredicted for nonconservative solutions and underpredicted for quasi-conservative solutions.
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Figure 5. Mach number distributions for Case 1.
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Even the nonconservative schemes provide well-defined shock locations in this nearly one-dimensional

case. If the flow were exactly one-dimensional, the nonconservative schemes would admit any solution

having a shock located upstream of the position given by the quasi-conservative schemes, which can be

verified easily by analyzing equation (20). It is apparent that the two-dimensionality of transonic flows

provides well-defined shock location in the nonconservative schemes.

AIRFOIL FLOWS

As mentioned in the previous sections, surface curvature may cause a logarithmic singularity in the

flow solutions near the shock, which can result in an inaccurate prediction of the local Mach number

distribution immediately downstream of the shock. Proper treatment of the potential equation at a shock

can be made to eliminate the zero-order term. Solutions obtained by the improved second-order scheme

and a new third-order quasi-conservative scheme will be shown and compared with earlier solutions.

Typical results obtained by the various treatments at shock and supersonic points are presented in

figures 11 to 13. In figure 11, solutions obtained by the original and improved second-order quasi-

conservative schemes are compared for a NACA 64A410 airfoil at a freestream Mach number M= = 0.72
and angle of attack o_ = 0. N is the total number of grid points on the airfoil surface, and M is the

number of grid points in the surface normal direction. The original scheme has a zero-order H term

added to the governing equation at shock points and results in a stronger shock than the consistent

scheme. In figure 12, solutions obtained by using different artificial viscosities are compared for the same

airfoil. The pressure jumps across the shock predicted by the solutions are shown, and the percentage dif-

ferences between the jumps and the ones predicted by the Rankine-Hugoniot shock jump relation are

listed in parentheses. The present solutions obtained by the second-order and third-order artificial

viscosities agree within plotting accuracy and predict shock jumps almost identical to those calculated
from the Rankine-Hugoniot shock jump relation. This conclusion is in contradiction to the one-
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dimensional shock jump analysis which predicts that the shock jump obtained from a quasi-conservative

scheme should always be stronger than the mass-conserving isentropic shock jump, which is also stronger

than the Rankine-Hugoniot shock jump, as shown in figure 3. This contradiction can be explained by the

failure of the numerical scheme to resolve the large gradient which will be present near the logarithmic
singularity downstream of the shock.

N M Shock C L Method

............. 128 32 0th order 0.6772 Ref. 4

128 32 1st order 0.6804 Present

I I i i

C
P

-1.6
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1.2
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NACA 64A410

Moo = 0.72; _ = 0 °
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x/c

I
0.8 .0

Figure 11. Comparison of second-order solutions obtained by the
original and consistent second-order quasi-convervative solutions.
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It has been shown in reference 4 that second-order quasi-conservative solutions generally avoid

numerical shock smearing better than Jameson's second-order fully conservative solutions. The improved
second-order and new third-order quasi-conservative solutions are compared with Jameson's first-order

and second-order fully conservative solutions in figure 13 for a Korn airfoil at M= = 0.74 and c_ = 0.

The present quasi-conservative solutions obtained by using second- and third-order artificial viscosities

agree, except for a slight discrepancy near the first shock. The first-order solution cannot capture the first

N M H Shock C L Method

192 32 1st order 0th order 0.6664 FLO-36

............ 256 48 1st order 0th order 0.6662 F LO-36

128 32 3rd order 2nd order 0.6804 Present
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0.9882 I

(c = -6.7%)

0.8

1.2

NACA 64A410

Moo = 0.72; t_ = 0°

1 1 I I
0 0.2 0.4 0.6 0.8

×/C

1.0

Figure 12. Comparison of first-order and third-order solutions for a

NACA 64A410 airfoil.
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shock.The second-order fully conservative solution predicts a first-shock location further downstream,

which has been shown to move upstream as the mesh size becomes smaller (ref. 4), and also predicts an

unrealistic pressure oscillation after the second shock, which also exists in the original second-order quasi-
conservation solution (ref. 4). Again these discrepancies are believed to be caused by the zero-order error
at shocks.

N M H Shock C L Method

256 48 1st order 0th order 0.5955 FLO-36

256 48 2nd order 0th order 0.6005 Fully conservative

128 32 2nd order 1st order 0.6039 Present

128 32 3rd order 2nd order 0.6043 Quasi-conservative
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\
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1.2
0

I I I I
0.2 0.4 0.6 0.8 1.0
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Figure 13. Comparison of first-, second-, and third-order solution for a Korn airfoil.
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CONCLUSION

A new, third-order, quasi-conservative algorithm has been successfully developed for two-dimensional
transonic flowfield calculations. Various treatments of the potential equation at shocks have been in-

troduced that satisfy the conservation rule and the full potential equation at shocks as the mesh size is

decreased. An extensive study of a nearly one-dimensional transonic flow inside a converging-diverging

nozzle was conducted by applying various finite-difference schemes and comparing solutions with the

Rankine-Hugoniot relation. Nonconservative solutions consistently underpredict the shock strength, while

quasi-conservative solutions consistently overpredict the shock strength for this nearly one-dimensional

flow case. Proper treatments of the governing equation at shocks have been shown to eliminate pressure
oscillations which otherwise occur downstream of the shock for airfoil applications. Two-dimensionality

has been shown to have a significant effect on obtaining a well-defined shock for nonconservative
schemes.
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FULLY IMPLICIT SHOCK TRACKING

J. B. BELL, G. R. SHUBIN, AND J. M. SOLOMON
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Silver Spring, Maryland 20910

Abstract

We present a fully implicit shock tracking method for solving hyperbolic

free boundary problems arising in fluid dynamics. The new method is based on

the noniterative implicit methods developed by Beam and Warming and others.

The principal feature of the new approach is that the implicit form is used

to simultaneously treat both interior points and boundary conditions. In

particular, the location of the free boundary (shock) surface is treated

implicitly and coupled with all other unknowns. The method is presented here

in the context of unsteady one-dlmenslonal flow in a variable area duct with

an internal shock wave. The fully implicit method and other strategies for

advancing the shock are compared for computing a steady solution via a time

asymptotic approach. Issues regarding extension of the method to multiple

dimensions are also discussed.

i. Introduction.

In this paper we develop a fully implicit shock tracking (or fitting)

method for one dimensional flow in a variable area duct. The method is based

on the noniteratlve implicit methods described, for example, in Beam and

Warming [I]. Implicit methods have recently become popular for fluid

dynamics problems, especially when using a time asymptotic approach to obtain

steady state solutions (see e.g., [2]-[4]). The reason for this popularity

is that implicit methods (based on von Neumann stability properties) allow a

larger time step than is possible for explicit methods and consequently

reduce the number of steps needed to reach a steady solution. However, in

practical problems such as the supersonic blunt body problem we can often

improve the accuracy and efficiency of computations by tracking at least

some of the shockwaves present in the problem. This entails usln_ the

tracked shock as a computational boundaryjthe geometry of which is

unknown and is to be determined. Existing applications of implicit methods
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to such problems treat the shock geometry explicitly (eg. [4]). It then

becomesquestionable whether the large time steps allowed at interior points

can in fact be taken since the explicit advancementof the shock could

impose restrictive bounds on step size.

The fully implicit method presented here (see section 3) addresses this

issue by treating both the interior flow equations and the boundary

conditions in an implicit, fully coupled, time accurate manner. This

approach is rather complicated and requires more work per step than is

needed when treating boundaries explicitly. However, the allowable time step

also increases, in somecases quite dramatically. For comparison purposes,
wealso consider a method which explicitly advances the shock. In addition,

we develop an implicit but uncoupled approach which enjoys someof the

advantages of the fully implicit method without the attendant increase in

work per step (see section 3).
Section 4 contains a detailed study of the computational efficiency of

three methods for computing steady state solutions. It should be noted

that to someextent the dramatic results for the fully implicit method are

related to the one-dimensionality of the model problem. In the limit as

time step size goes to infinity the fully implicit method reduces to Newton's

method [5], which provides an extremely efficient technique for computing

steady solutions whena good initial guess is available [6]. Unfortunately,
in multidimensional problems, the associated matrix problem becomes

prohibitively large and operator splitting or approximate factorization is
generally used. In this case the reduction to Newton's method will not

occur and splitting error will limit the allowable size of time steps.

Issues relating to the extension of implicit shock tracking methods to
several dimensions will be discussed more fully in section 5.

2. Analytic Formulation

In this section we formulate a model problem on which to illustrate the

fully implicit method. We wish to compute the steady one-dimensional flow

in a duct of variable cross-sectional area A(x) using a time asymptotic

approach. The unsteady duct flow is described in physical space 0 < x <_ _xmax

by
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(A_I)
3t

(A_)
+ _--f -_= 0 (1)

where

(i) c°u)_ 0u2 dA 0
= 0u , = +P ' _=_x

E \(0E + p)u

u2
and 0 is density, u is velocity, E = e +_-- where e is specific internal

energy, and p is pressure. For simplicity the equation of state is chosen

to be that of a perfect gas, p = (y-l) pe.

For certain duct shapes A(x) and boundary specifications (discussed

later), a steady solution exists in which a shock stands at some location

in the duct. For numerical solution we will not treat the problem in the

form of (i) because of the difficulties associated with resolving the shock.

Instead, we will use a tracking procedure in which the shock location is

treated as a dependent variable. This is accomplished by tranforming the

problem to a computational space (_,T) in which the physical shock location

s(t) is forced to be at a fixed location. An example of a transformation

which does this is given by the mapping to computational space

T= t

= _(x,t) =
xls(t) , 0 < x < s(t)

i + (K-I)Fx--s(-t-)_s(t,l ' s(t)_< x _< Y_max
L max- U

(2)

so that the physical shock location s is mapped into the internal computa-

tional boundary $ = I. Likewise the inflow location x = 0 and the outflow

location x = Xma x are mapped into _ = 0 and _ = K respectively (see Fig. I).

Under transformation (2) the governing equations in computational space

(_,T) can be written in the weak conservation form [7]

_U

_T

_F 1

_+7 _ _ RI(_; u, s, st) (3)

where U = AI_/J, F = _tU + A_ x_/J and J = _x is the Jacobian, for fixed T,

of the transformation (2).

It remains to specify the boundary conditions at inflow (_ = 0), outflow

(_ = K) and at the shock (_ = I). Appropriate boundary conditions can be
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determined by a characteristic analysis of the system.

presented in detail in Appendix A for the case of supersonic inflow and

subsonic outflow with an internal shock with flow crossing the shock from

left to right.

Such an analysis is

At the supersonic inflow all flow quantities are specified so that

(°o )Po Uo

Po (eo + U2o/2)

U (0,T) = sA(0)

where the subscripts "o" refers to the specified inflow quantities. At the

subsonic outflow boundary (_ = K), only the density Pe is specified; hence,

(4)

U I (K,T) = A(Xma x){x - s

/

max Pe" (Sa)

\ K-I

In addition, two compatibility conditions must be satisfied on _ = K. These

can be written in the form

E R 2 (U, s, st)

B

(Sb)

where
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I ue - ae I '
B = --

ae 2 - ue (ae - Ue)

y-i 2 #

T

with the "e" subscript denoting quantities at the outflow boundary and "a"

the sound speed (y p/0) ½.

The shock _ = i represents an internal boundary. Quantities at the

left (the low pressure side) will be denoted with an "L" subscript and

quantities at the right (the high pressure side) will be denoted with an

"R" subscript. The flow quantities on both sides of the shock must

satisfy the Rankine-Hugoniot relations. These can be written in the

following form

UR =_(UL, s, st). (6)

The vector valued function _ is given explicitly in Appendix B for a perfect

gas with constant y. On the left side of the shock, all of the original

equations (3) hold with the _ partial derivatives interpreted using only

quantities on the left side (i.e., 0 < _ < i). On the right side of the

shock (the high pressure side), only one compatibility condition need be

satisfied. This condition combined with the Rankine-Hugoniot relations

differentiated with respect to T gives the following equation for st:

__ __ E r3(U,s,s t)
_st = _I _(_x U/A) - _2 _(_x U/A) + _3 d-X =I
_T _ L_ _ _

,=.II

where _i' _2 and _3 are defined in Appendix A. Thus, the equations for s and

st can be summarized in the form

-_ r3 (U, s, st) -R 3 (U, s, st); S-- st (7)

The transformed form of the equation (3) and the boundary conditions

(4), (5), (6) and (7) fully specify the problem to be discretlzed.
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3. Numerical Methods.

The implicit methods considered here are based on generalized time

differencing in delta form introduced by Warming and Beam [8]. Namely, for

any vector of unknown W satisfying a system of equations of the form

we have

8W
8T R(_ T; W)

AW n - Clh A(R(_, Tn; wn)) = c2 AWn-I + c3h R(_, Tn; Wn)

+[2ci-(i+_2c2 )] 0(h 2) + 0(h 3)
L _

where A (.)n=(')n+l-(') n, h = Tn+I-T n, _ = (Tn-Tn-l)/h, c3 = i-_c2,

and Cl, c 2 are scalar parameters.

Fully Implicit Shock Tracking (FIST):

The FIST approach is to consider both the conservation variables U and

the shock geometry S simultaneously in an implicit manner. Using (8), the

FIST time discretization takes the form

AU n - clhA (RI(U n, sn)) = c 2 AU n'l + c3h RI(Un , sn); 0<_!l,l<_<k (9)

(8)

AUnR = A (_(UnL , sn)); _ = 1 (lO)

AU n - Clh A (R2(U n, sn)) = c2 AUn + c3h R2 (Un, sn); _ = k (ii)

AS n - Clh A (R3(Un , sn)) = c2 A Sn-I + c3 h R3(un, Sn) (12)

Here (9) represents the interior equations (3), (i0) represents the shock

relations (6), (ii) represents the two outflow compatibility conditions

(5b), and (12) represents (7). When AR i (i=1,2,3) and A_Lare linearized, the

resulting equations remain fully coupled. More precisely, the linearizations

involve both U and S; e.g.,

n -_ _R" n n
A(Ri(Un, S )),_[_] AU n +[.___i] AS n

where [_-I]DR" n .I-___R"] n
[-_--j anaL_ S j represent the (unique)linear differential operators

corresponding to the "derivatives" of R i with respect to U and S, respectively,
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taken at (Un, sn). The evaluation of these linearizations will be discussed

latter in this section.

The problem is discretized spatially using equally spaced points

j=l,...,j s to the left of the shock and j=js +l_...,jma x to the right of the
shock (see Fig. i) and replacing spatial derivatives by centered differences

at interior points and appropriate one-sided differences at _ = 1 and

= K. For convenience, the unknownsU at _ = 0 are eliminated by

substituting (4) into the discretized equations. The resulting discrete

matrix problem for AUn (j=2,...,Jmax) , &Sn admits essentially a block
tridiagonal solution when the equations and unknownsare suitably ordered.

In particular, the linearized system is written with the following ordering

(I - clh ) &Ujn - ASn = c2 AUjn-I + c3h R1 (j=2,...

AUjn+l - s - -_ ASn= 0

(I - Clh t_U 3) AUJ n - clh LYf-] ASn= c2 AUj + c3h Rln

(j=Js+l,...,Jmax -I)

n A (Xma x)

AUl,Jmax + K-I Oe ASn= 0

['_R2"] n

-Clh[y#J)AUi,Jmax
[_R 2 ]

- Clh [-_--] ASn
n-I

c2 + c3h= AUi,Jmax R2n
(i=2,3)

[_R3] [-_R3] Asn-I n
-Clh [TU--] ANn +( I - Clh L-_J) AS n = c2 + c3h R 3 .

Writing the system in this way yields an algebraic system of the form

\
\

II : R_S

|

(13)
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where A is a block tridiagonal matrix with (Jmax -i) rows of blocks of size

3x3, B is 3(Jmax-l) x 2, C is 2x 3(Jmax-l), and B is 2x2. This system

is solved using a block inversion procedure as found in ref. [9] (see

. n+l
Appendix C for details). After the solution of (13) is obtained, Ujs+l is

redefined using (6) to insure that the Rankine-Hugoniot conditions are

satisfied.

Explicit Shock Tracking (EST):

For comparison purposes, we consider an algorithm, EST, in which the

shock quantities S are not treated implicitly. Preliminary experimentation

with several ways of explicitly treating the unknowns S indicated that the

following method showed the best convergence behavior. First, the

conservation variables U are advanced implicitly using (9) - (ii) linearized

with S fixed at Sn subject to the boundary conditions (4) and (5a) with

n
s = s . The discrete algebraic system for AUn(j=2,...Jmax ) is _AU n = RHS

where the matrix A is the same as in (13). Next, S is advanced explicitly

using

n+l n (un+l n+l n n+l
s t = s t + h r 3 , sn), s = s + hs t

The final step, as in FIST, is to redefine U n+1. using (6) with U7 +I
J s+l s

Alternating Unknown Implicit (AUI):

We also consider a compromise approach in which some of the implicit

character of the shock advancement is maintained. In essence the method

alternates the unknowns which are treated implicitly (AUI). First, the

variables U are advanced implicitly keeping the shock fixed as in EST. Next,

the shock variables S are advanced implicitly keeping U fixed at U n+l using

Asn-' [c + _(I - Clh L-_j )AS n = c 2 + h i (c3 Cl)

Finally, as in FIST and EST, U n+l. is redefined using (6) . As will be

3 s+l

discussed in section 4, this method allows a larger time step than EST with

no significant increase in computational time. For this reason AUI may be a

valuable tool for multidimensional problems where operator splitting limits

the time step.

,S n+l "
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Numerical Linearizat ion :

Implementation of all the above methods require evaluations of various

Jacobian matrices. Indeed, suppose we consider the differential operator

_G

_-_ where G = G(V) and V = V(_) are vector valued functions. Then the

linearization of _G with respect to V is given by

( E
where_G] is the Jacobian matrix of G with respect to V. In principle, for

a perfect gas, analytic expressions can be obtained for the required

Jacobian matrices. An alternative approach is to directly evaluate the

Jacobians numerically (to order of the square root of machine error) by

replacing the derivatives with respect to the components of V by appropriate

first order forward differences. This direct numerical approach is used

in the present study. It is simpler to progrmm (especially for FIST) and

appears to cause little or no difference in quality of results or

execution time. Note that, using the direct numerical approach, the

formation of the matrix for FIST requires essentially 6 evaluations of

R i (i=1,2,3) and _ (since U, S contain a total of 5 components). This is

comparable to 4 evaluations for EST and AUI and 2 evaluations for an

explicit predictor - corrector method.

4. Numerical Results

We now present our computational results for the duct flow problem,

assessing first theaccuracy of the steady state finite difference solution,

and then the computational efficiencies of the various methods (FIST, EST,

AUI). For the purposes of further comparison, we also compare with the

explicit predictor-corrector method of Brailovskaya; see Appendix D. (For

the present problem, this method converges faster than the second order

accurate MacCormack scheme, and also enjoys the advantage that it reduces to

the same steady state difference equations as do the other methods tested

here.) In the numerical experiments, the duct shape was taken to be

A(x) = 1.398 + 0.347 (tanh (0.8 x-4.)), with x = I0.
max
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In all cases we take K = 2, _= 1.4, Po 0.502, u = 1.299, e = 1.897,o o

pe -- .776 and we use Euler implicit time differencing (i.e., ci=c3=I, c2=0).

We use two different initial guesses, hereafter referred to as the "good

guess" and "bad guess". The good guess is the exact steady state solution

for a slightly perturbed duct shape, cf. ref. [ 6 ]. The bad guess is an exact

solution for flow in the given duct A(x) but with a different downstream den-

sity Pe specified. In our experiments, the outflow condition Pe = .776 was

imposed impulsively at t = O. Figures 2a and 2b illustrate the quality of

the pressure profiles for the two guesses relative to the exact steady state

solution. The steady state solution of the difference equations (obtained

with any of the methods) is shown in Figures 3a and 3b for j = 18 and 34
max

respectively. In the latter case the numerical solution is virtually indis-

tinguishable from the exact solution. We wish to emphasize that, in these

results and all those that follow, no numerical dissipation was used.

In comparing the efficiencies of the various methods, we shall refer to

runs made with time steps corresponding to various multiples of the CFL

(Courant, Friedrichs, Levy) number, defined to be a_AT/AE where _ is the

maximum over all j of the spectral _aditrs of rT____l__U]j" We first determine

the approximate maximum value of CFL at which each of the methods will run

with Jmax = 34 and when started with the good or bad guess.

Max CFL Max CFL Time units
Method

Good guess Bad guess per iteration

Brailovskaya 1 1 I

EST 9 6 3.4

AUI I0 I0 3.5

FIST 101° 175 4.8

We note that, as expected, FIST approaches Newton's method in the limit

of large time steps. Indeed, with CFL = 106 , FIST converged in 5 iterations

to steady state tolerances within machine error (10 -13 ) when started with

the good guess.

We next examine convergence behavior for the various methods. We plot

maximum residual (value obtained by substituting the current difference

solution into the steady state difference equations) versus either iterations

or computer time. Computer time will be based on units where one unit is
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the time necessary for one step of the Brailovskaya method (see Table above).

Wenote that in implementing FIST, EST, and AUI, the inversion of matrix _ was

actually obtained using a _anded solver rather than a block tridlagonal

solver. This was done because the block trldiagonal decomposition could
becomeill conditioned at large values of CFL.

Wefirst look at runs madewith FIST, EST, and AUI at various values

of CFL (Figures 4a,4b,4c). In all cases, the bad guess was used and Jmax= 34.
As usually assumed, each method converges in fewer iterations as the CFL

factor becomeslarger. (It is interesting to note that starting with the
good guess it is possible to find CFLvalues for which ESTand AUI oscillate

between two states instead of converging.) Whencomparedwith respect to

computer time at fixed CFL= 3 and 6 (Figures 5a and 5b) we see that there

is very little difference between ESTand AUI, and that the extra work per

iteration needed in FIST does not pay off in faster convergence. However
when comparedat their maximumallowable CFLvalues (Figure 5c), the FIST

method is clearly superior.

5. Concludin_ Remarks

As demonstrated by the numerical results, for one-dimenslonal problems

the FIST approach produces significant increases in computational efficiency

when compared with purely explicit methods and with implicit methods using

explicit shock tracking. In some sense, this comparison is unfair since for

very large time steps FIST approaches Newtons method for solving the difference

analog of the steady state equations, and thus exhibits quadratic convergence

behavior. In fact, the FIST approach combines the advantages in computational

efficiency of Newton's method with the robustness of time asymptotic methods.

The implications of the present study for multidimensional problems are

difficult to assess. This is especially true if operator splitting or

factorization is used. It is not clear how the various methods will compare

with respect to computer time needed per iteration, or how large the maximum

allowable CFL values will be. Two competing factors affect the computational

time per iteration. Assuming a single shock, the fully coupled implicit

shock treatment will occur in only one of the directional sweeps. However,

the number of variables needed to specify the shock geometry and movement

will increase. The maximum allowable CFL values for each method are
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problem dependent and will certainly be limited by splitting error. Since

FIST will no longer reduce to Newton's method in this framework,the suitability

of the various methods depends on the relation between the CFLrestriction

due to splitting and the CFLrestriction due to explicit shock treatment. It

is impossible to discern a priori which method will be best.

In closing we note that a split version of FIST is being developed for

the supersonic blunt body problem. The results of this work will appear

in a forthcoming paper.
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Appendix A: Characteristic analysis of the boundaries

The background on characteristic theory and characteristic compatibility

conditions may be found in ref. [I0]. For their application to the treatment

of boundaries in fluid dynamics, see ref. [II]. We give here only an outline

of the general approach and apply it to system (3).

Since system (3) is hyperbolic, it is equivalent to three characteristic

compatibility conditions. These conditions take the form of ordinary

differential equations which hold along characteristic curves in (T,S) space.

At a boundary of the computational domain, certain of these curves are

"admissible" since they reach the boundary from inside the computational

domain (when moving along them in the direction of increasing T). The compati-

bility conditions associated with these admissible characteristics may be

applied as computational boundary conditions. Other characteristic curves

are "inadmissible" since they reach the boundary from outside the domain.

The compatibility conditions corresponding to these curves must be replaced

by specified boundary valves.

Specifically, (3) is equivalent to the quasilinear system.

J L (U) _ J _(_ - RO= _ _?i 1 (dA _)A 3-T +_ _ + A d_x _ - _ _(_) = 0 (A.I)

where 6 = St I + Sx -_--_ , and -_-- is the Jacobian matrix of _ with

respect to _. The characteristic matrix associated with (A-I) is

Ao A 1 0

y-3 Alu2 Ao - A l(Y-3)u A l(v-1)2 •

.__ a2 3y-2 u2 ) Al[__l _(y _ 2)u 2] %o+yUA 1-Alu( i 2

(A.2)

where Ao : _o + %1 _t' A1 = _I _x, and a is the speed of sound. A characteris-

tic curve $ (S,T) : constant satisfies the characteristic condition

det C : o (02 - a2 A12) = 0 (A.3)

where o : A° + uAl, _ : $T' and _i = _$" The slopes of the characteristic

curves _o, _+ associated with the three distinct characteristic conditions
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o = 0, o+ = + a A1 are given, respectively, byO

dE
to: d_ q

dE (A.4)

_+: d--_ = q _ a _x

where q = St + U_x" The _o curve is a particle path and the _+ curves

represent Mach (or sound) waves. Corresponding to the three charateristic

conditions are three independent left null vectors (defined by _'_ = 0)

given by

)
a

=
o _-i _ -u _ 1

(A.5)

au -a + u + i'-

]hethree characteristic compatibility conditions holding along the charac-

teristic curves are obtained by left multiplying (A.I) by _o,_± in the form

Z'L(U) : 0 or _'_(_) : 0. (A.6)

Inflow and Outflow Boundaries

At the inflow boundary _ = 0, we assume the flow to be supersonic (u>a).

= > 0 at $ = 0, it follows from (A.4) that theSince _t 0 and Sx

characteristic slopes are as depicted in Fig. A-I. Hence, none of the char-

acteristics are admissible and accordingly all the flow variables must be

specified at E = 0.

u 0 > a0

r

Fig. A-I. Characteristic slopes at $.= 0 for supersonic inflow.

158



At the outflow boundary _ = K, we

assumesubsonic flow (0 < u < a). In

this case, the characteristic slopes

are depicted in Fig. A-2. Hence, at
= K, the compatibility conditions

associated with the admissible charac-

teristics to and _ _ should be
satisfied and one flow variable must be

specified. Although several possibili-

ties exist, we specify the density, Pe,
at outflow. This leads to (5a) for the

first componentof U on _ = K. The

0 < U e < _/_

g=K

Fig. A-2. Characteristic slopes
at g = K for subsonic
outflow.

derivative of (5a) with respect to T and the compatibility conditions (A.6)

for _o and __ give the following system on _ = K:

(_U_ _F i_ + d_(xmax _s)_Pe st
To \aTj_=K TI a_ J = K K-i _t

where

TO

i

½u 2 - a2

y-I

lay-I u U

0 0

-u 1

a -I

y-i
= K

•can be solved I_(8"_-'_ and(_U3_ .The above

f°r\ °T J_ = K \_T / _ = K
in (5b).

T I =T o -

1 0 0

0 0 0

0 0 0

The result is given

Shock Wave Boundaries

The shock wave _ = 1 is an internal computational boundary. We first

analyze each side separately and then combine the results appropriately. We

assume that the flow crosses the shock from left (L) to right (R) which

implies that the left side of $ = 1 is the low pressure side. In addition

we have that wL = uL - st > aL and 0 < wR = uR -s t < aR (see, for example,

ref. [12]). Since on both sides of _ = I, _t = -_x st and Sx > 0, it follows

from (A.4) that the characteristic slopes on each side of $ = 1 are as

depicted in Fig. A-3.
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wL >a L

(a.)

I
_= i

Low pressure (left side) (b.)

I t

0 <wR<a R

F

$= i

High pressure (right side)

Fig. A-3. Characteristic slopes on each side of _ = I

For the left side of _ = I, all the compatibility conditions should be

satisfied, c.f., Fig. A-3(a). This is equivalent to satisfying the full

system (3) on the left side of _ = 1 (with the _ - derivatives interpreted

using quantities only to the left side of _ = i).

For the right side of _ = I, only the compatibility condition correspond-

ing to _+ should be satisfied; c.f., Fig. A-3(b). The form of this

compatibility condition used in this study is obtained from the second
---i

expression in (A.6). Noting that (_o/_i) R _+ = -_+ ._ and that

(_o/%1) R = -(_x)R (wR - aR) , we obtain

_+ . _}'t,! = -(Cx) R (WR - aR) -_+ " _ - X l+ . (_xx'_-_ (A.7)
R R

Here _+ is evaluated at the right side of the shock. The left side of (A-7)

can be written in terms of Q = (p, u, 0)t as

I
R = _+ "L_JR = 7-1 -_ - ap (A.8)R

wherep_]is the Jacobian matrix of_[ with respect to Q which, for a perfect

gas, can be obtained by direct calculation. In (A.8), the derivatives of

PR and uR can be eliminated using the Rankine-Hugoniot relations, (B.I) of

Appendix B, differentiated with respect to T. The result is
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_st + bl _PL= -Co _T _-_ + b2 _0L + b3 _UL_T _T (A.9)

where

c
o

OR-PL r ]

t|(v-l) wR (WL-W R) - aN (wR + aN) jwR-a R

b I = y(w L - WR)

w R - aR
+i

b2, la wR [wR-aR - aL2 wL - (wL - Wp) (y-l)w L wR

b3 = co - aRP R.

+ aR (wL-aRll

An expression for the T derivatives of PL, UL, PL required in (A.9) can be

obtained from the differential equations on the left side of _ -- 1 in the form

I ,[<,A ]I3T = - [ 3QAL B_ + _ dxx _- _'_ L (A.i0)

Substitution (A.10) and (A.9) gives, after some manipulation, the final result

_T : _1 " _ - _2 " + m3 dxx = 1

where

e-_l= (y-l) (_x)R (wR-aR) Fu 2 aR

Co L2- + _C_2 UR)

7
-UR - aR ii

#r-1 ]

_-_2 = ($X)Lco [UL bl(_UL wL-aL 2) + _-_uL b3( _UL - WL)+ b2(WL-UL)'

b I (aL2 - (y-1)u L w L) + b3
0-L (WL-(Y-1)UL) + b2 _

(v-l) (we b I + b__3 )l

0L ]

'[ ]_3 = -- YPR UR UL (Y PL bl + 0L b2)
C O
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Appendix B: Rankine-Hugoniot Shock Relations

We give here the jump conditions across the shock in terms of the U var-

iables and s, st . For a perfect gas, we have (cf., ref.[12])

QR _ UR =IUL -(UL - st)E I _ f(QL'St ) (B.I)

0R \PL / (1-8) j

where

M2 = (UL-St)2p L /(ypL ) and 8 = 2(M2-1)/[(Y+ I)M2].

Since on the left side (subscript L) of the shock _x = i/s,

l(y-1) f u2 1

QL _ UL = _ g(UL'S)"

(U2/UI)L

PL _ (Ul)n/[SA(s)]

On the right side (subscript R) of the shock
X

= (K-I) / (x
max

(Xmax-S)A(s) I OR _)UR = K-I 0RUR _ _(QR 's)

\PR /(Y-I)+PRU_/2J

implies

We therefore have

UR = _(UL,S,S t) = h(f(g(UL,S) s ),s).' t

(B.2)

-s) which

(B.3)

Appendix C: Inversion Algorithm for Equation (13)

Here we give a 2x2 block matrix inversion algorithm for the system

A B

C D

Y

I

fl

f2.

where 0 is a very small (in the present context 2x2) and A admits a conven-
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ient L-U factorization (in this case A is block tridiagonal).

Following ref. [9] observe that

Ay + 0z = fl (c.l)
and

Cy + Dz = f2" (c.2)

Then from (C. I),

;-I _ ;-z
Y = fl ( e )z. (C.3)

Substitution of (C.3) into (C.2) yields

C(A -I fl ) - C(A'Im)z + Oz = f2
or

z = (0- C A-IB )-i (f2- C A-Ifl ). (c.4)

Substitution of (C.4) into (C.3) yields

X-I fl - A-I - IB )-I (f2 - ) (c.5)= B ( O C A- C A-if 1Y

Note that in the evaluation of (C.4) and (C.5), A-Ifl and A-Is are

simultaneously; indeed, the evaluation of A-Iflis a standard inver-obtained

sion technique and the computation of A-In requires only one extra backsolve

for each column of B. Theoretical work estimates indicate that (for the

case when 0 is 2×2) the evaluation of A-IB increases the work by only 60%

over that required for A-Ifl . By design, 0-C A-IB is a small matrix and Q

thus easily inverted.

Appendix D: The Brailovskaya Scheme

The Brailovskaya scheme [13](also known as the Matsuno scheme) for the

system U + F + H = 0 is given by the following explicit predictor-correc-

tor sequence:

(predictor) * Un n nU. = A_[
J J - (Fj+I-5_I)/(2A_) + H ]

(corrector) Uj +I = Un- AT[ * * *J (Fj+I-Fj_I)/(2A_) + Hj]

* * n+l *

where Fj, Hj are evaluated at T using U.. For the differential equationsJ

(5b),(7), the above scheme is used with appropriate one-sided _ differences.

The formal truncation error of this scheme is O(AT, A$ 2) and a sufficient

stability (yon Neumann) condition is CFL ". I (cf., Sec. 4).

163



N81- 338

CHARACTERISTIC BOUNDARY CONDITIONS FOR THE EULER EQUATIONS

T. H. Pulliam

Ames Research Center

SUMMARY

Stable and accurate numerical boundary conditions are applied to the

Euler equations in terms of characteristic variables. The boundary conditions

are demonstrated for the quasi-one-dimensional Euler equations with the exten-

sion to two and three dimensions being straightforward. In this application

an implicit finite-difference scheme is employed with the boundary conditions

being applied implicitly. The boundary application uses both characteristic

extrapolations and evaluations which distinguishes it from other theories.

Flow fields with shocks are calculated with inflow-outflow conditions of

supersonic-subsonic and subsonic-subsonic flow.

I. INTRODUCTION

Formulation of boundary conditions (BC) in terms of characteristic

variables and directions is an obvious and frequently explored area of

research (refs. 1-7). It seems natural to express the transfer of informa-

tion at boundaries in terms of characteristics. The characteristic direc-

tions (the eigenvalues of the system of equations) reveal the propagation

directions of information. The characteristic variables (variables trans-

formed by the eigenvectors of the system of equations) are the natural

variables with which to work. In general, though, we cannot recast our

equations in terms of the characteristic variables because the equations are

usually nonlinear, for example, the Euler equations. We shall present here

a way in which the characteristic directions and variables can be used in
boundary condition applications.

Many forms of characteristic and noncharacteristic boundary condition

applications for the Euler equations exist in the literature. In particular,
Yee (ref. i) and Yee et al. (ref. 2) provide a detailed discussion of various

methods and an extensive literature reference on such boundary condition

application. They provide a comprehensive study contrasting a number of

different boundary conditions for this class of problems and also provide

some rigorous stability and consistency arguments. The concepts presented

here are similar to others and are actually suggested in form by Yee (ref. I),

but this particular derivation presents some novel concepts and observations

which make it unique. It should be pointed out that this paper does not

attempt to provide any rigorous stability, well-posedness or accuracy analy-

sis. Rather, conditions are employed which are consistent with available

analysis, and through numerical experiment we validated the techniques used
here.
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II. CHARACTERISTICS

It is quite obvious that characteristic formulation of boundary condi-

tions is an appropriate way to approach the problem. Once the variables are

transformed to their characteristic directions, the form of boundary condi-

tion application is easily chosen. For example, let us examine the coupled

system of linear equations

where

Qt + Ex = 0 (la)

E = A Q (ib)

and A is an m x m constant coefficient matrix. The Euler equations can be

put into a similar form and have the same property of equation (ib), called

the homogeneous property.

Assuming that the matrix A has a complete set of eigenvectors and eigen-

values (this is also true for the Euler equations), then a similarity trans-

formation exists,

A = X D X-l (2)

where X is the eigenvector matrix and D is a diagonal matrix of the eigen-

values of A.

Multiplying equation (la) by X-I and using the identity I = X X-l, we

have

or

with

(X-I Q)t + (X-l A X X-I Q)x = 0

w t + (D W)x = 0

W=X-1 Q

where since X-I is a constant matrix it has been placed inside of the

derivative expressions without creating any error.

(3a)

(3b)

The vector W is the characteristic vector and each of its elements w i

is a characteristic variable. The elements of the matrix D, di determine

the direction of propagation of information. Notice that since D is diag-

onal, equation (3b) represents m uncoupled equations. The sign of the

elements of D at a boundary tells us which variables wi can be used from

outside the boundary domain and which cannot. That is, which characteristic

variables feed information into the domain of interest and which do not (and

therefore should not be included in any boundary conditions).
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Let us choose a boundary in space and talk of left- and rlght-hand
domains where the left-hand domain is the region of interest and the right-
hand domain is not, in a sense an outflow boundary (see fig. I). In terms of
the characteristic variables, if di > 0 at the boundary, information prop-
agates from the left to the right and the corresponding wi should not be
specified, that is, a fixed value of wi is not included in the boundary con-
ditions for the left domain. It should be either calculated at the boundary
or allowed to float, since it is information which is propagated out of the
left domain into the right. For di < 0, information propagates into the left
domain from the right, and therefore the wi should be specified at the
boundary and used as a boundary condition for the left domain.

FLOW DI RECTION

LEFT

DOMAIN di>0 --

OF
INTEGRATION ._-

RIGHT

-- di<0

BOUNDARY

Figure I.- Propagation of characteristic information at boundary.

These concepts will be used for the Euler equations where the eigenvalues

of the system will be used to determine which variables are to be calculated

and which must be specified. Also, the boundary conditions will be developed

in terms of W, the characteristic variable, and any numerical application of

conditions will be in terms of these variables.

III. EULER EQUATIONS

The quasi-one-dimensional Euler equations in nondimensional form trans-

formed by a one-dimensional stretching are

where

Q

[X_a(_)Q] t + E_ - H = 0 , X -- X(_) (4a)

P

pu

e

E = a(E) ul lilpu z + p H = at

(e + p)u I

(4b)

p = (y - l)(e - 0.5 pu 2) ; a = a($), the area ratio.
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Now E has a representation as

where
E =AQ (5a)

a(O

i

-(y- 3)u

[y(e/p)- (3/2)(y- l)u 2]

and A has a complete set of eigenvalues and eigenvectors

0]
y- I

with

D =X-X AX

u 0 0 cl
D = a(_) 0 u + c 0 ,

0 0 u-

= _p/p

and

X __ u _(u + c)

_- _ + uc + (y i)

_(u- c)

c 2

X -1 =

u;
i 2 (%- i)c-2 (Y- l)uc-2

Buy - 1) T-

u2 uc] -B[c+B[(y- 1)T+ (y- 1)u]

I

-(¥- l)c-2

13('r-_)

B('Y- 1)

B = 1 / (v'2pc)

(5b)

(5c)

(Sd)

(5e)

(5f)

In further discussions we will consider A to be held at some reference

value, A*. This will be convenient when a finite difference scheme is chosen

and a local linearization will produce a similar representation.
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We can now examine the form of the flux vector E and develop a repre-

sentation of E in terms of characteristic variables. From the above

relations

E = A* Q = A* X* X *-I Q = A* X* W (6)

This form of E will be used at the boundaries, and the eigenvalues of

A* will be used to determine which variables are specified and which are
calculated.

The vector W contains the three characteristic variables

w I

w 2

w 3

=X *-l Q , Q=

ql

q2

q3

where

wl = ql - (Y - i)(c*)-28 ,

w 2 = B*(Y - i)8 + 8"c*@ ,

w 3 = B*(Y- 1)8 - 8"c*@

0 q3 +0. * *= 5(q2/ql)

= q2 - (q*/q*)ql

2
*/ *ql - (q2 ql)q2

(7)

It is interesting to examine W at the reference values, that is, evaluate

equations (7) at Q*. Then we have

w*i = Y - 1 q*i = (Y - 1) p*
Y Y

, = _ ql c = __i c*
w2 Y vqy

*_*_*

w* = _----1c*
Y /gy

We see that the characteristic variables at the reference values reduce to

known simple variables with which we are more familiar.

(8)

IV. IMPLICIT NUMERICAL METHOD

An implicit finite difference scheme is chosen to demonstrate the

boundary condition application. The conditions are applicable to any

numerical scheme for the Euler equations. We have the first order in time

implicit scheme
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with

[Xsa($)l - hBn + h_An]AQ = -h(6_En - Hn)

B = a$(y - I)

0 0 0
2

U

T -u 1

0 0 0

, A: eq. (5b)

AQn = Qn+l _ Qn , h = At

(9a)

(9b)

where the second-order linearizations

En+l = En + An(Qn+l _ Qn) + O(At2) I

JHn+l = Hn + Bn(Qn+l _ Qn) + 0(At 2)

(9c)

are used. Note that, due to the homogeneous property, En = AnQ n, and there-

fore equation (9c) reverts to

En+1 = AnQn +I + O(At) 2 (9d)

Here, n refers to a reference level *. Second-order central differences are

used for the spatial derivatives, where

6_(Q)j = (Qj+I - Qj-I )/2A_ (io)

The above implicit scheme is well-known and is unconditionally stable in

the linear sense. The specific boundary conditions and their implicit appli-
cation will be discussed below.

Introducing a discrete mesh (see fig. 2) with J points in the computa-

tional domain, equation (9a) has the general form

h n n n n h n n

(X_al - hBn)j AQ_ + 2-_ (Aj+ 1 AQj+ I - Aj -I AQj -z) = 2A_ (Ej+ z - Ej -z) + hH_

(lla)

and the specific form at J, the last computational point,

h n n n n h n n hH_(Xsal - hBn)j AQ_ + 2-_ (AJ+ l AQJ+I - AJ -I AQJ -I) = - 2A---_(EJ+ I - EJ -I) +

(lib)

(Here we will assume that j = J is an outflow boundary and j = 1 is an

inflow boundary.)
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Figure 2.- Discrete computational mesh.

Now note that if j = J is the last computational point, then we need to

evaluate terms in equation (lib) at J + i which is outside the domain of

integration. Given the previous discussion on characteristics, certain
variables can be obtained from outside the domain of interest and others

cannot. The form of the specific boundary conditions depends upon the type

of flow conditions at the boundary (i.e., subsonic or supersonic). Similar

arguments occur at the first computational point j = I.

Below we present a derivation of the characteristic boundary conditions

for subsonic outflow, and then point out the slight differences for other

cases, such as subsonic inflow and supersonic inflow, and outflow. The

present concepts are based on a flux splitting which is in some sense similar

to ideas introduced by Steger and Warming (ref. 8). Instead of splitting the

eigenvalues into two types (Steger and Warming (ref. 8) split the positive

from the negative eigenvalues) and forming associated fluxes, we partition the

eigenvector set into two parts, very much the same as employed by Yee (ref. i).

The eigenvector partitioning produces two characteristic vectors, one asso-

ciated with incoming wave propagation of information at a boundary and one

associated with outgoing propagation.

V. CHARACTERISTIC BOUNDARY CONDITIONS

V-a. Characteristic Boundary Application

To demonstrate the characteristic boundary conditions, we shall first

choose the case of subsonic outflow. For subsonic outflow, the eigenvalues of

A at the boundary are

u>0}u+c>O

u-c<O

(12)
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The propagation of information is therefore outside of the integration domain
for two of the characteristic variables (wI and w2) and into the domain for
the one variable (w3).

First, note that the characteristic vector W can be partitioned into
two vectors

W =W. +Win out (13a)

where

W°

in

0

0

w 3

W
out

w I

= w 2

0

(13b)

The subscript in refers to incoming characteristics (information) and the

subscript out refers to outgoing characteristics.

Using the definition of W in equation (3b) and splitting the X-I into

two matrices, one containing the last row of X-l and zero for the first two

rows and the other containing the first two rows of X-I and zero for the

last row, we can rewrite Win and Wou t as

Win = Xin Q , Wou t = Xou t Q (14a)

where

X°

in

and

Xou t =

0

0

U2 UC 1_[(_- z) T +

u 2

z -T (Y - z)c-2

-- U2 UC]B[(y i) _- -

0

0 0

0 0

-B[c + (y- 1)u] B(y- 1)

(y- l)uc-2 -(y- l)c-2

B[c- (x- 1)u] _(¥- 1)

0 0

(14b)

(14c)

Examining equation (llb), we see that two quantities involve values

outside the domain of integration. They are

n n n
Aj+ 1 AQj+z and E j+ 1 (15)
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Nowwe can rewrite the expressions in equation (15) in terms of W as

n n n n n n
Aj+ 1 Xj+ 1 AWj+ 1 and Aj+ 1 Xj+ 1 Wj+ 1 (16)

where equation (6) was used and an error of the same order as in equation (9c)

was introduced in forming the first term as a function of AW. That is, we

can move the eigenvector matrix X-l inside the AQ expression, thereby

producing an error of the same order as the linearization error. This process

will later be reversed when we finally put the formulation back in terms of

AQ.

The characteristic vector W is split as in equations (13) and (14),

and we have

A_+I X_+1 Awnnj+l + A_+ I X}+l Awnutj+1
(17a)

for the first term of equation (16) and

n Xn n
An n n + AJ+l J+1Woutj+1J+1XJ+l Winj+1

(17b)

for the second term.

The values of Win and Wou t must be provided at J + 1 to complete the

problem definition. The previous analysis shows that Win must be specified,

and from equation (8) we see that this reduces to specifying c, the speed of

sound. For Wout, we will use a linear extrapolation of Wou t from the

interior points J - i and J. That is,

Woutj+1 = 2 Woutj - Woutj_1
(18)

Win is to be specified AWin = 0 and the same linear extrapolation is used

for (AWout)j+ I as in equation (18). Equation (17a) then becomes

n n n n n n 12{n AQjn n n i_ I

r i

AJ+l XJ+l Xinj +I AQJ+I + AJ+I XJ+I t_X°utj - Xoutj_1 AQj__Ij (19)

where the same error as before is introduced when we extract X-l

AW_ut'u A similar expression can be written for equation (17b).

from
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Equation (llb) can now be rewritten as

h AX n _--[(X_a)l - hBjn + _ ( )J+I(Xnut)j]AQJ n h [ n (AX)_+I(Xnut)j_I]2A_ AJ-I + AQ -i =

n2A_ (AX)j+I Win)j+1 + 2(X°utQ)J - (XoutQ)n ] - EnJ-lJ J-1 + hHj n

(20)

The elements on the left-hand side of equation (lla) form a block tri-

diagonal matrix which must be inverted to obtain _he solution. The corre-

sponding elements of equation (20) show how the block tridiagonal matrix is

modified to obtain the implicit characteristic boundary conditions. The

right-hand sides of both equations are evaluated in the usual straightforward

manner.

Examining equation (8), we see that for subsonic outflow the condition

that (W_n) is specified, that is, equivalent to fixing the speed of sound at

j = J + i. We are therefore assuming that the flow variables at j = J + i

reach some overall reference state, *, so that equation (7) collapses to

equation (8). For steady-state problems this means that we need to know the

steady-state value of c or in unsteady (forced at the boundary) problems we

need to provide the unsteady value of c. Usually, one is used to having

other variables specified, such as pressure, at boundaries and the speed of

sound seems to be an unnatural variable. It is important to stress that the

speed of sound is a consistent variable, since the characteristic formulation

directly introduces it. Therefore, one should try to use the speed of sound

when available and, if not, other boundary conditions such as those suggested

by Yee (ref. i) are adequate and work very well.

The characteristic conditions introduced here are applied implicitly and

therefore do not degrade the unconditional stability of the implicit algorithm.

They are also consistent with the physics of the flow, since they are based on

the characteristic propagation of information, and they are consistent with

the spatial and temporal accuracy of the main integration scheme.

V-b. Subsonic Inflow

In the subsonic inflow case the eigenvalues of An at the boundary point

j = i are

u>0}u+c>0

u-c<O

(21)

In this case, Win is composed of w I and w 2 which implies that both density,
p, and speed of sound c must be specified at j = O. The characteristic

vector Wou t is only composed of w 3. The application of the characteristic

boundary conditions are the same as above with equation (20) now having the

form
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X_a)11 - hB1 n h n] h [ n 2]A_ (AX) 0n(Xout ) l AQI n + _ A2 n + (AX) 0 (Xout) AQ2 n =

2A_h {E2n _ (AX) 0[(Win) 0 +2(XoutQ)* in _ (XoutQ)2n]}+ hH1n

(22)

V-c. Supersonic Inflow and Outflow

For supersonic inflow all the flow and characteristic variables are

specified since all the eigenvalues of A are positive, that is, Wou t = O.

At supersonic outflow, all information propagates out of the integration

domain and therefore the conditions are that Win = O. Equation (20) then
has the form

+ An A_+J AQj___X_a)jl- hBj n A_ A_+I]AQJ n h [ j_1 + =2A_

h [A +,(2Qjn_ - + hHjn2A_

(23)

(Note that for Win = O, Xou t = X -I and XX -I = I.) For supersonic inflow,

the central differencing naturally attaches the fixed flow variables.

V-d. Flow Variable Boundary Application

In the above derivation, nothing has been said about how to evaluate
n n

Aj+ I and Xj+ 1 in eqs. (20), (22), and (23). The flow variables at the pre-

vious time step, n, are used to form these terms, and they must be updated

before the next time step can be taken. The only restriction on the value

n
of Qj+I is that it is consistent with Win fixed. In the case of subsonic

outflow, the variables p and u are extrapolated from the interior to the

exterior, for example, at j = J + I,

n n)0j+l = 20j n - Pj-1

n 2ujn nuj+1 uj-1

(24)

and pressure is calculated such that the speed of sound, c, is fixed, that is,

n (c 2Q_n
= = O)j+ 1 , (w3)j+ I is fixed. (25)PJ+I _-_-JJ+l (2yw3Z n

This insures that Win is fixed at j = J + 1 for all n. In the subsonic

inflow case only u is extrapolated, and fixed density and speed of sound

are used to insure that Win is fixed. For supersonic outflow all the flow
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variables are extrapolated since Win = 0, and in supersonic inflow all the
variables are held at fixed values.

V-f. Multidimensional Application

In two and three dimensions, the mechanics of the above schemecan be
applied in a straightforward manner. The characteristic formulation only
requires that each flux vector be handled in the appropriate way. That is,
each flux vector produces a characteristic splitting. An examination of the
characteristic directions at the boundary determines which variables are
specified and which are extrapolated. Note that the schemedoes not rely
upon any commutative or simultaneous diagonalization properties of the
multidimensional flux Jacobians (properties that the Euler equations do not
possess). Whencurvilinear transformations are used in multidimensional
flows (see refs. 9 and i0), the transformed fluxes, Jacobian matrices, and
eigensystems are employed.

Vl. RESULTS

Results are presented for two different nozzle shapes at different flow
conditions. The first case is a diverging nozzle at either supersonic-
supersonic or supersonic-subsonic conditions. The second case is for a
converging-diverging nozzle at subsonic-subsonic conditions. For both cases
the numerical solutions are comparedwith theoretical results taken from
classical nozzle flow theory. The characteristic boundary conditions are
shown, through numerical experiment, to be accurate and stable in both a
physical and numerical sense. In all the cases to be shown, the numerical
results comparequite well with theory.

Vl-a. Diverging Nozzle for Supersonic-Subsonic Flow

The quasi-one-dimensional Euler equations are solved for a nozzle flow
with supersonic inflow and subsonic outflow. With a specified outflow speed
of sound, the conditions produce a shock which stands inside the nozzle. The
nozzle shape used is one suggested by Shubin et al. (ref. 3) and also used by
Yee (ref. i). The area shape is

a(x) = 1.398 + 0.347 tanh(0.8)(x - 4) for 0 < x < i0 (26)

With this area ratio and an inflow Machnumberof 1.26 and outflow speed of
sound (nondimensionalized) of 1.127, a shock occurs at x = 4.816. The exact
solution taken from the shock tables is comparedin figure 3(a) with a con-
verged result where the characteristic boundary conditions were used. Clus-
tering in the region of the shock is used to produce a sharp shock jump.
Figure 3(b) shows a result for a uniform grid with dx = 0.169. In the
clustered case the minimum dx = 0.075. Every other numerical point is
plotted in the figures for clarity.
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Figure 3.- Supersonic-subsonic flow through diverging nozzle.
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Free-stream (at inflow conditions) initial conditions are used with no

special treatment of the boundaries. The solution evolves naturally in time.

A sequence of results taken at various stages in the solution process is

shown in figure 4. These illustrate the fact that this application of charac-

teristic boundary conditions allows for the physical development of the solu-

tion. Note that the outflow boundary variables are computed to their final

steady-state values and the shock progresses across the solution domain in a

time-accurate fashion.

.8

.7

.6

.5

.4

.3

.1 1
0

T = N._t

N = NUMBER OF TIME STEPS

CONVERGED

I I I I I I I I 1 I

1 2 3 4 5 6 7 8 9 10
x

Figure 4.- Convergence development of supersonic-subsonic flow

through diverging nozzle.

The numerical solution process was very stable with very large Courant

numbers. Initially, the Courant number was kept low at about 5, for about

i00 time steps, so that the shock could form physically and not be propagated

too fast. Then the solutions converge in 300 more steps at a Courant number

of 50. Courant numbers of up to i million were tried and were stable. If we

want an unsteady time-accurate propagation of the shock, then a Courant num-

ber less than i should be used for time accuracy. These particular boundary

conditions would then form a time-accurate calculation of the outflow values.

Vl-b. Diverging Nozzle for Supersonic-Supersonic Flow

A pure supersonic case was solved for the diverging nozzle, and results

are shown in figure 5. This is a very simple flow case with a smooth

solution.
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Figure 5.- Supersonic-supersonic flow through diverging nozzle.

Vl-c. Converging-Diverging Nozzle for Subsonic-Subsonic Flow

Subsonic-subsonic flow is solved for flow through a converging-dlverging

nozzle with an inflow Mach number M = 0.2395. The nozzle shape is

a(x) --t + 1.5[(5 - x)/5] 2 , x< 5

a(x) = i + 0.5[(x - 5)/5] 2 , x > 5

(27)

The boundary conditions are a nondimensional inflow density, P = I, incoming

speed of sound, c = I, and an outflow speed of sound, c = 0.98633. Results

are shown in figure 6 for a clustered one-dimensional grid. The initial con-

ditions are set to the inflow conditions with the inflow Mach number

M = 0.2395. Again, the solution evolves in a time-like fashion, and uncondi-

tional stability is achieved.
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Figure 6.- Subsonic-subsonic flow through converging-diverging nozzle.

Vll. SUMMARY

A boundary condition procedure for the Euler equations has been presented

which employs characteristic conditions. They are applied to a conventional

implicit numerical method and have been shown to be very stable, accurate, and

consistent with the physics of the problem. The boundary conditions can be

easily extended to two and three dimensions and other numerical methods.

Numerical results for an implicit finite difference scheme at a variety

of inflow and outflow conditions demonstrate the consistency, stability, and

accuracy of the characteristic boundary applications.
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NUMERICAL BOUNDARY CONDITION PROCEDURE FOR THE TRANSONIC
AXlSYMMETRIC INVERSE PROBLEM*

Vijaya Shankar
Rockwell International Science Center

INTRODUCTION

Despite the advances made over the last ten years in the computational
treatment of the transonic axisymmetric analysis problem[l] to compute
pressure distributions over prescribed axisymmetric bodies, currently there
exists no axisymmetric inverse methodology (aside from expensive optimiza-
tion techniques[2]) to predict the body shape corresponding to a given
favorable pressure loading. In this period of energy conservation, achieve-
ment of low drag shapes is of critical interest from the point of improving
range, acceleration, and maximum speed characteristics and reducing fuel
consumption. At transonic speeds, the wave drag rise is extremely sensitive
to the area distribution along the axisymmetric body. Use of area ruling
based on linear theory and concepts developed by Whitcomb[3] as well as
Oswatitsch's equivalence area rule[4] to achieve low drag shapes usually
results in nonoptimum configurations at transonic speeds due to lack of
nonlinearity in the formulation. A strong need exists for the development
of nonlinear transonic area ruling. The purpose of this paper is to provide
an inverse methodology for predicting axisymmetric body shapes corresponding
to prescribed pressures exhibiting low wave drag as a step towards the
ultimate development of nonlinear area ruling concepts. The crux of the
axisymmetric inverse problem is the proper implementation of the nonlinear
pressure boundary condition involving the unknown body shape.

This paper describes two types of boundary condition procedures for the
axisjnnmetric inverse problem. One is a Neumann type boundary condition
(analogous to the analysis problem) and the other is a Dirichlet type
boundary condition, both requiring special treatments to make the inverse
scheme numerically stable. The dummy point (or ghost) concept[5] is
utilized in implementing both the analysis and inverse boundary conditions.
The results from this study indicate that the Dirichlet type inverse
boundary condition is more robust and conceptually simpler to implement
than the Neumann type procedure. The paper includes a few results demon-
strating the powerful capability of this newly developed inverse method that
can handle both shocked as well as shockless body design.

*Supported in full by AFOSR under contract F49620-80-C-0081.
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FORMULATION OF THE ANALYSIS-INVERSE PROBLEM

where

The axisymmetric transonic small disturbance equation is given by

K - (y+l)_b x @xx + = 0
r

K = (I-M_)/(Mo_T) 2 ; r :%r .

(I)

The parameter T is the thickness ratio of the body defined by

rb(x) = TRb(X) where Rb(X) is the nondimensionalized body radius such that

Rb,max(X) = 0.5. The analysis and the inverse problem both use equation (I)

and differ only in the way the boundary condition is applied at the body.

Analysis Problem

In the analysis problem the body shape Rb(X) and % are prescribed and

equation (I) is solved subject to the slender body boundary condition

!

lim(f@_) = RbRb(X) = S'(x) - _(@f)_:_ (2)

or

lim @ = S'(x)_n(f) + g(x)
_÷ 0

(3)

where S(x) = Rb(X)2/2 is the nondimensional cross-sectional area divided by

2_ and prime denotes differentiation with respect to x. For convenience,
the boundary condition equation (2) is applied not at the actual body loca-
tion (see figs. 1,2) but on a cylinder of finite small radius _. The value
of _ is chosen sufficiently away from the axis[l] to avoid the log singu-
larity in @ represented by equation (3). Using a dummy point procedure as

shown in figure 2 such that (r3"r2) = (r2-rl)' the finite differenced

form of equation (2) at the cylinder point j=2 can be written as (the dummy
point has to lie above the axis for numerical stability)

a@3 + d@2 + b@1 = c (4)

where a=l, b=-l, d=O, and c=S'(f 3-fl)/f2. Similarly, the finite

differenced form of equation (I) at the same cylinder point j:2 can be
written as (using the transonic type dependent operator)

al_b3 + dl@ 2 + blqbI = cI (5)
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Combining equations (4) and (5) to eliminate the dummy point potential @I'
the boundary discretization at j=2 is written as

a@3 + dqb2 : _'" (6)

In the successive line overrelaxation algorithm, equation (6) will be used

to modify the coefficients of the tridiagonal matrix at the body point to

bring in the analysis boundary condition. After the relaxation procedure

converges the pressure coefficient Cp(X) on the axisymmetric body is
computed from the relation

(Cp)body = - T2[2S"(X)_R(M_T2Rb/_) + 2(_x)j= 2 + (R_) a] . (7)

Equation (7) has been derived by matching the outer transonic solution to an
inner solution represented by equation (3). This formula includes the cross

flow contribution (R_)2 which is significant near the body. The pressure

coefficient at any point in the flow field (other than the body point) can
be obtained from

Cp = - 2T2@ x .

This completes the analysis problem.

(8)

Inverse Problem

The main purpose of this paper is to illustrate the inverse procedure

where the pressure coefficient equation (7) is prescribed and the corres-

ponding body shape Rb(X ) is sought. It can be seen from equation (7) the

Cp(X) involves the unknown body information S"(x), Rb(X), and R_(x), as well

as the velocity potential @. The objective here is to solve equations (1)

and (7) at the cylinder point j=2 and compute the resulting body shape Rb(X)
by satisfying the body boundary condition, equation (2). There are two

ways to implement equation (7) at the body point. One is a Neumann type
treatment and the other is a Dirichlet formulation. Both will now be

described.

Neumann boundary condition - In this formulation, equation (7) will be

used to get an estimate for (@_) at the cylinder point j=2 from the

prescribed Cp distribution. Knowing this @f at j=2, the problem can be

treated as an analysis boundary condition (just like eq. (2)). In the real

analysis problem, Cf at j=2 is given and held fixed during the calculation,

but in this Neumann type inverse problem, @f at j=2 will be changing during

the transient calculation and convergence critically depends on the repre-

sentation of equation (7) as a pseudo-time dependent process.
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First, the pressure relation given by equation (7) will be rewritten in

terms of _ as much as possible in the following way by replacing S" and

R_ terms

S'(x) : RbR _ : lim(f¢_) : _(¢r)g c "
r÷O =

(9)

From equation (9), we can write

s"(x):

R_(x) = (_/Rb)(@f)_= c .
(lO)

Substituting equation (lO) into equation (7) we get

(Cp)body = - T2128@_ x _R(MT2Rb/_ ) + 2@x + (_/Rb)a(@_)21 (ll)

In order to finite difference equation (ll), the nonlinear square term (@f)2
will first be linearized by considering each relaxation iteration cycle
as a marching procedure in the pseudo time direction t as in Jameson's[6]

analysis.

(@r)n+l - (@r)n + 2qbfqb_tAt+ ...

2__(_n+l(@)n + -r'Tf _@ ) + ...

n n+l _ (@r)n (12)

Substituting equation (12) into equation (ll) the prescribed Cp can be
written in the form

(-Cp/T 2) = A@fx + B@_t + C@x + D (13)

where A = 2c Cn(M T2Rb/_) B = 2 _ 2 n 2 n, (E /Rb)@ f, C = 2, D = (_2/Rb)(@f)2, and

n represents the previous cycle value. Interpreting the difference scheme
for equation (13) as a representation of a time-dependent process, for the

evolution of (@p), equation (13) has a solution of the form

(@_)n+l _ e-(A/B)t (14)

where t = nat. Whether this Neumann type (eq. (13)) treatment will converge

or not depends on the sign and magnitude of (A/B) in equation (14). If

(A/B) is negative at some point on the cylinder j=2, then ¢_ will grow as

the relaxation process continues and will diverge eventually. A stable
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iteration scheme for equation (13) can be devised by adding a temporal

damping term B@rt to alter the form of the solution to

(_)n+l _ e-[A/(B+_)]t . (15)

The sign and magnitude of B can be chosen in such a way [A/(B+B)] remains
positive at all points on the cylinder j:2. Usually A and B vary along the
cylinder and change signs and use of B is very critical to achieve a

convergent solution for @g" When B is set to zero, the inverse calculations

usually diverged within I0 iteration cycles, but when an appropriate B value
was chosen at each cylinder point under inverse mode, the calculations
remained stable.

Di_chlet formulation -- In the Dirichlet procedure, equation (7) is

used to get an estimate for the velocity potential @ at the cylinder point

j=2. This potential is then imposed as a Dirichlet boundary condition

while solving equation (1) at the point above the cylinder (j=3 in fig. 2).

From the given prescribed Cp distribution and assuming the previous body

shape, a value for Cx is first computed from equation (7) and then inte-

grated to get _ at the cylinder point j=2. To ensure numerical stability,

the quantity @x obtained from equation (7) was usually underrelaxed. The

amount of underrelaxation was based on how often the body shape changes were

updated in the Cp relation, equation (7).

Both the Neumann and Dirichlet inverse formulations as reported here
proved to be successful. However, it was found that the Dirichlet method

was more robust and always yielded converged results much sooner than the

Neumann treatment. The inverse results to be reported here were obtained

using the Dirichlet method.

RESULTS

The results presented here were performed using the LBL CDC 7600

machine and a (90x40) grid in the (x,f) plane. Analysis calculations

typically required 500 iterations and the subsequent inverse calculations

needed 300 iterations for a convergence level of lO -" to lO-s change in
@ between any two consecutive iterations.

Figure 3 shows the pressure distribution over a parabolic arc of

revolution at M = 0 98 and T = 0.167. The analysis calculation using a

dummy point procedure (the cylinder point located at f = 0.0075 and the

dummy point at f = 0.006) shows the pressure of a shock wave on the body

at x/_ _ 0.75. The Cp on the body was computed using equation (7) while

the pressure distributions in the flow field as shown in figure 3 were

computed using equation (8). An estimate of the drag was made by computing
the integral
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1C-D: S' (x/_)Cpd(X/_) (16)

Whenmultiplied by an appropriate nondimensionalization factor, the quantity
CD would provide the actual inviscid drag coefficient. For the case shown

in figure 3, the value of CD cameout to be 0.0462, representing a sizeable
wave drag. The shocked pressured distribution of figure 3 was modified to
a shockless pressure as shown in figure 4 and used as an input to the
axisymmetric inverse code. The inverse calculations were started from the
converged analysis results of figure 3 and after 300 inverse iterations the
body shape and the flow field is converged to less than I0 -" accuracy. The
resulting body shape is shownin figure 4 and indicates a flattening of the
body surface to avoid the formation of a shock. The flow field pressure
distributions as shownin figure 4 also indicate that specification of a
shockless pressure on the body seemsto eliminate the shock away from the
body also. The associated CD estimate for the new body is 0.0269 which is
considerably less than that exhibited by the original body.

Figure 5 shows two design studies indicating a gradual flattening of
the body due to increasingly mild specified shockless pressure distributions.

The real test of the inverse code comeswhen the designed body is run
in an analysis mode to verify if the specified pressures are recovered.
Figure 6 shows the performance of the designed shockless body of figure 4
in an analysis mode. The pressure distribution that cameout of the
analysis code did indeed check very well with the specified pressures in
figure 4.

Shockless bodies at a given design point are usually very sensitive
to off design conditions. This is illustrated in figure 7. Whenthe
shockless body of figure 4 was run at an off design Machnumberof 0.99,
the shock wave appeared at x/_ _ 0.85. However, the strength of the shock
and the resulting CD were smaller than that for the original body at the
sameoff design Machnumber.

Figure 8 showsanother test case using the inverse code, First, an
analysis calculation was performed on a parabolic arc-circular cylinder body
of revolution (parabolic arc for 0 _x/_ _0.5, and constant cylinder for
x/C _0.5) at M = 0.98 and T = 0.167. The resulting pressure distribution
shows the presence of a weak shock near the shoulder region (x/_ _ 0.5).
The pressure was modified to reflect a no shock situation. The resulting
designed body is not appreciably different from the original body but
those slight modifications are critical to eliminate the weak shock.
Figure 8 also showsa table comparing the ordinates of the original body
and the designed body. The drag estimate is considerably less for the
modified body (CD= 0.00115) than the original body (CD : 0.011). The
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entire analysis-inverse calculation usually takes 25 seconds of CPU time on
the CDC 7600 machine.

Sometimes, specification of an arbitrary pressure can lead to an

unphysical or unacceptable base area. One can construct optimization type

routines within this inverse methodology whereby the specified pressures

can be altered systematically to achieve a more desirable base area. This

idea will be pursued in the future, along with extensions of this work to

design favorably interfering wing-body configurations using an equivalent

body of revolution model.
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STABILITY OF TWO-DIMENSIONAL HYPERBOLIC INITIAL BOUNDARY VALUE

PROBLEMS FOR EXPLICIT AND IMPLICIT SCHEMES*
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SUMMARY

The paper discusses stable and unstable boundary conditions for various

explicit and implicit schemes for the linear two-dimensional wave equations.

A modal analysis is used to analyze stability.

INTRODUCTION

Recently much more attention has been given to the effect of boundary

conditions on the overall stability of finite-difference calculations employ-

ing schemes which are stable for the pure initial value problem. The basic

theoretical approach was established in a series of papers by Kriess (refs i,

2), Osher (ref 3,4), Gustafsson et al (ref 5) and others. Surveys of these

and more recent developments can be found in Yee (ref 6) and Coughran (ref 7).

More recently Gustafsson and Oliger (ref 8) and Yee, Beam and Warming

(ref 9) considered, among other things, the scalar-outflow boundary condition

(i.e. the numerical boundary condition which cannot be specified for the

original p.d.e, problem but must be given for the system of difference equa-

tions) in the case of a class of one-dimensional algorithms given by

rU n n

p(E)U = Ate(E) / j+l- Uj-l 
3 [ 2ax J (la)

where E is the shift operator defined by Eu.n = U n+_ and Q(E) and O(E) are

defined by 3 3

Q(E) = (i + _)E 2 - (i + 2_)E + _ (ib)

O(E) = @E 2 + (i - 0+ _)E - _. (ic)

*This work was partially supported by the Air Force Office of Scientific Re-

search (NAM), United States Air Force under Grant AFOSR-80-0249, and by NASA

Cooperative Agreement NCCI-45, while the senior author was visiting MIT; par-

tially by NASA Contracts NASI-15810 and NASI-14101 at ICASE, NASA Langley Re-

search Center, Hampton, VA 23665; and by NASA Grant NGT 22-009-901.
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This class of algorithms contains both explicit and implicit schemes. For

example, _= -1/2, @=_ = 0 yields the leap-frog method and _= _= 0, 8 = 1 yields

the backward Euler schemes. One may find tables listing other combinations

in references (8, 9). The methods defined by equations (i) solve numerically

the linear partial differential equation

U t = Ux " (2)

The constant coefficient of U was absorbed, without loss of generality, by
x

"stretching" the coordinate x.

For the present study we consider the p.d.e.

Ut = _x F(U) + _ G(U) (3)

in the half space 0 _x <_ - _ <y< _ , (t>0), where for the purpose of the

(linear) stability consideration we may set F = G = U, and _ = At/Ax = At/Ay.

Within the limitation of linear stability analysis this assumption is not

severe since by "stretching" the x, y and t coordinates one may account for

different (constant) coefficients in the partial differential equation (3).

We investigate the effect of imposing at x = 0 the same type of extra-

polations considered by Yee, Beam and Warming (ref 9) and Gustafsson and

Oliger (ref i0). The analytical results are obtained for the 2-D explicit

Burstein (ref i0, ii) and MacCormack (ref 12) schemes and for the implicit

backward Euler and Crank-Nicolson schemes. The results are summarized in

the following sections.

STABILITY OF TWO-DIMENSIONAL EXPLICIT SCHEMES

We first consider the two-step explicit algorithm due to Burstein (ref

i0, Ii). It is second order accurate both in time and space and is given by

n+, n nlj,k = _x_yUj,k + -- _x_yUj,k + _y_xUj,k (4a)

n+l n _. n+i/2 . . n+I/2 1Uj, k = Uj, k + At [0x_yUj, k + _y_xUj,k (4b)

The difference operators _ and _ are defined by
x y

n = n n /Ax and n = n - U _ k i/2 )/Ay"_xUj,k (Uj+i/2,k - Uj-i/2,k) 6yUj, k (Uj,k+i/2 3, -

The averaging operators _x and _y are defined by

n = n n /2 and n = (ujn + ujn_xUj,k (Uj+I/2,k + Uj-i/2,k) _yUj,k ,k+i/2 ,k-i/2 )/2"

the pure initial value problem the stability condition is _ _<i// 2.

For

At this point we would like to describe briefly the procedure for

checking stability for the initial-boundary value problem in the half-space.

The analysis is based on assuming that the finite difference equations have
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solutions of the type

n = znKJe ik_ (5)
Uj,k

where the indices n,j,k are those appearing in the finite difference schemes

and i=/-l. For IKI < i; Izl > 1 indicates instability and Izl < 1 establishes

stability. If we get a solution such that Ill = IKI = i, we will check the

origin of this solution, i.e. how does a perturbation in K affect z.

Substituting equation (4a) into (4b) and using equation (5) one gets

after some manipulations the following characteristic equation:

I 12

<(z - i) = _(<-l)(K+l)(l+cos n) +_ ((K2+l)cosn- 2<)

¼ t2+ i (K+l) 2sin q +i T (<-l)(K+l)sin _.

Consider first the space extrapolation type of boundary condition:

(6)

n+l n+l n+l

U0, k = 2Ul, k - U2, k
(7)

where j = 0 is the boundary point. Substituting equation (5) into equation

(7) we obtain the resolvent equation:

2
(K- i) = 0 , or K = 1. (8)

Using equation (8) in equation (6) gives

z = 1 - 12(1 - cos Q) + i I sinq

or

zl 2 = 1 - 212(1 - cos _) + 14(l-cos n) 2 + 12sin2n.

The "worst" case is for I = 1//2, leading to

= 1
Izl 2 1-7 (i- cosn)2_<l. (9)

We thus get our

Result i: The 2-D Burstein scheme (eq 4), under the implicit boundary

condition (eq 7), is stable.

Note, however, that the boundary condition (eq 7) is not the only way to

generalize the analogous I-D condition.

U0n+l = 2UI n+l - U2 n+l . (i0)

Boundary condition (eq 7) is a generalization of equation (i0) which is taken
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in a direction normal to the boundary x = 0. A more general analogy to

equation (i0) would be taken in a skewed direction, for example

n+l n+l n+l

U0, k = 2Ul,k+ 1 - U2,k+ 2 . (ll)

In fact, sometimes such "skewed" extrapolations are indeed used. For

example, if a shock wave intersects the boundary at some angle, near the in-

tersection skewed extrapolation is sometimes used to avoid differencing

across the shock. We now ask what is the effect of equation (ii) on the

stability of the Burstein scheme (eq 4). Using equation (5) in equation (ii)

we get

(<eiD 1) 2 -iD- = 0 or < = e . (12)

We will now show

Result 2: The 2-D Burstein scheme (eq 4) under the skewed boundary condition

(eq ID is unstable. It will suffice to provide a counter example to stability.

Take D =z i.e., from equation (12), _=-i. Equation (6) becomes z= 1 since

sin _= 0 and cos _ = -i. We thus have to invoke the perturbation procedure

around < = -i, z = i. Set

z= l+ e , <=-l- 6

and substitute into equation (6). A simple calculation shows that

6=±(/2/I)/e + 0(£/12), and we have instability.

Another type of boundary condition considered in references (8) and (9)

was the space time extrapolation

-1U0n+l = 2UI- U . (13)

Its "normal" and "skewed" generalizations to the two-dimensional case are,

respectively

n+l = 2U n n-i
U0,k l,k - U2,k

and

n-I

un+l = 2Ul n, _ U20, k k+l ,k+2

(14)

(15)

-i_
leading to _ = z and _ = ze respectively. Computations analogous to those

carried above yield similar results; namely

Result 3: The 2-D Burstein (eq 4) scheme under the boundary condition (eql4)

is stable.

Result 4: The 2-D Burstein (eq 4) scheme under the boundary condition (eq 15)

is unstable.

Next we consider the 2 step 2-D MacCormack scheme (ref 12)
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* = U n n n n _ Unk )Uj,k j,k +I (Uj+l,k UJ, k) + I(UJ, k+l 3,

Uj, k = Uj,k+I(Uj, k - Uj_I, k) +%(Uj, k - U 3,k-i )

U n+i/2 n **
j,k = (1/2) (Uj,k + Uj,k )

Ut = U n+I/2 (U n+i/2 . n+i/2 (U n+i/2 . n+i/2
3,k j,k + _ j,k - Uj-l,k ) + _ j,k - Uj,k-I )

(16)

n+l 1 n+i/2 U #% )
U = -- (Uj +3,k 2 ,k j,k

which is stable for the pure initial value problem under the condition I S i.

Substituting equation (5) into equation (16) gives the characteristic

equation

z= 1 + _ (K- _) + -7 (<+---K 2) 1 + ilsinn - (i - cos_) (17)

Modal analysis carried out as above yields

Result 5: The MacCormack scheme (eq 16) is stable under all the above men-

tioned boundary conditions (eqs 7, ii, 14, and 15).

STABILITY OF THE TWO-DIMENSIONAL IMPLICIT SCHEMES

The 2-D implicit backward Euler scheme that solves equation (3) may be

written as

U n+l n
j,k = Uj,k + At(6x_x + 6y_y)un+lj,k " (18)

Usually, however, it is put in a time-split, or approximate-factorization

form*

U n+l n
(i - At6x_x) (I - _t_y_y) j,k = Uj, k . (19)

*It may be shown that all forthcoming results hold also for the non-split

form of the difference equations. Also, putting equation (19) in the delta-

form will not change the linear-stability considerations.
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Substituting equation (5) into equation (19) gives the characteristic
equation

z[l - _ (K -T?)] [i - ilsinH] = 1 (20)

Wenow consider equation (20) under the various boundary conditions (eqs 7,
ii, 14 and 15). The computations for the case of equation (7) are trivial
and we get from equation (20)

z(l - i _ sinD) = 1 . (21)

For _ = 0 equation (21) reduces to the I-D case that was shownto be stable
(see ref 8). For 0 <n <_, the factor (i- il sin n) is greater than 1 in mag-
nitude and hence IzJ<l for that case. There remains to examine the case
n = 7, in which case we get z = K = i. The perturbation procedure of putting

z = I+e,K = 1+6, n = _ into equation (20) leads directly to e = ld and hence to

our

Result 6: The 2-D backward Euler scheme (eq 18) under the boundary condition

(eq 7) is stable.

-in
Next consider the skewed extrapolation (eq ii), i.e. K = e and take

= 7, i.e. < = -i. We find again that z = i. Now we have to perturb about

z= i, <=-i, n =_. Substituting z= i+ e, K=-I - 6 into equation (20) gives

e=-_ and thus,

Result 7: The 2-D backward Euler scheme (eq 18) under the boundary condition

(eq ii) is unstable•

Next consider the space-time extrapolation (eq 14). Again, since the

factor (I - i _ sin _) is at most unity, the I-D analysis holds and we have

Result 8: The 2-D backward Euler scheme (eq 18) under the boundary condition

(eq 14) is stable.

For the skewed space time extrapolation (eq 15) we put (for n = 7)

-in
z = Ke = - K . Substitution into equation (20) yields a quadratic equation

in z whose solutions are z= 1 and z=-l-(2/I). Since JKJ = JzJ the second

the second root is stable, but we also have to investigate once more the case

z = i, K = -i. The calculation is identical to that which led to Result 7 and

thus we have

Result 9: The 2-D backward Euler scheme (eq 18) under the boundary condition

(eq 15) is unstable.

The 2-D implicit Crank-Nicolson scheme has the following time-split

form

(i _ _x_x] (I At _ _ I un+l = [i + _ _x_x] [i + _ _y_ylUjn, k-_- yyj j,k
(22)

Using equation (5) leads to the characteristic equation
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[ i][ ] [ l][ ]Z 1 - _ (<-_) 1 - _- sin n = 1 + _ (<-_) 1 + _- sinn • (23)

Analysis completely analogous to that carried in the preceding section gives

also analogous results, namely:

Result i0: The 2-D Crank-Nicolson scheme (eq 22) under boundary condition

(eq 7) is stable.

Result Ii: The 2-D Crank-Nicolson scheme (eq 22) under boundary condition

(eq ii) is unstable.

Result 12: The 2-D Crank-Nicolson scheme (eq 22) under boundary condition

(eq 14) is stable.

Result 13: The 2-D Crank-Nicolson scheme (eq 22) under boundary condition

(eq 15) is unstable.

SUMMARY

The present study applies modal analysis to the two-dimensional linear

wave equation in half space in order to investigate the effect on numerical

stability of outflow-type boundary conditions.

The boundary conditions under investigation may be considered as 2-D

generalizations of I-D ones which were studied by Gustafsson and Oliger (ref

8). This generalization is not unique. Thus, for example, the space-time

extrapolation in l-D, equation (13), may be considered as extrapolation

along the characteristic. The true characteristic extrapolation in 2-D is

the skewed boundary condition equation (15), but we also consider its pro-

jection on the x-t plane, equation (14).

We consider the boundary conditions for four typical algorithms. Two

of them are explicit (Burstein and MacCormack) and two are implicit (backward

Euler and Crank-Nicolson).

The major results may be summarized as follows:

(i) The boundary conditions equations (7) and (14) in which the extra-

polation is taken normal to the y-t plane are stable for all cases. In this

sense they seem to be the proper generalization from the I-D case.

(ii) The boundary conditions equations (ii) and (15) in which the

extrapolation is taken along the characteristic, (eq 15), or its projection

on the t-constant plane, (eq ii), are unstable for all schemes except the

split MacCormack. This may be explained by noting that for the pure-initial

value problem the Burstein, backward Euler and Crank-Nicolson algorithms are

not dissipative at the point _ = D = _; _,_ being the dual Fourier variables.

The MacCormack scheme however is strictly dissipative, i.e. its amplification

factor, G, is less than unity for all 0 < _, N_ (at _=n = 0 consistency de-

mands that G= i).
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Gas dynamic computations require solving sets of nonlinear equations
represented by equation (3). It is expected, however, that the results of
the modal analysis of the linearized model equation will help in the selec-
tion of stable numerical boundary conditions. A parallel study at MIT by
Thompkinsand Bush (ref 13) is presented elsewhere in these proceedings.
The study involves the solution of the 2-D Euler equations for cascade
geometries using a backward Euler schemewhich is unconditionally stable
for the linear pure initial value problem. Whensomeextrapolation boundary
conditions are done explicitly the computations are unstable for Courant
numbersexceeding about 2. However, whenall extrapolation boundary con-
ditions are done implicitly and normal to the boundary (i.e. not skewed),
stability is improved to the point that the maximumpractical Courant number
is limited by other factors. In an unpublished study by Thompkinsand Tong,
calculations for the samegeometry and equations but using the explicit
MacCormackschemehave shownthe characteristic extrapolation normal to the
boundary [represented by equation (14) in the present study] is stable.
These computational results in agreement with the modal analysis are
encouraging.
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Abstract. In this paper we will discuss two fundamental problems for mixed

initial-boundary-value problems with applications in fluid mechanics. First

different stability properties are discussed, which are of importance for long

time integrations and steady state calculations. Secondly we introduce a new

numerical technique for problems with an artificial boundary.

i. Introduction

The general term stability for a difference approximation to a time dependent

problem can be given many different intepretations. For ordinary differential

equations there are presently so many different kinds of stability defined,

that the alphabet seems to be too short for the one-letter type labeling

l_tarting with A-stability. For partial differential equations there are few-

er definitions. All the different stability definitions for O.D.E.s can of

course be applied to a P.D.E. once the discretization in space has been made.

In fact, the procedure of semi-discretization followed by the use of a stand-

ard O.D.E. solver for the resulting time-dependent system

(i)
8t - Pu

has gained popularity. For this so called "method of lines", the O.D.E.-stab-

Llity theory is frequently used. However, one must be aware that system (i)

depends on the step-size h, and the number of equations is unbounded when we

consider arbitrary small h.

When one is interested in the solution over large time-intervals, or when a

time dependent method is used for obtaining a steady-state solution, all meth-

ods which allow growing solutions are of course useless. On the other hand,

a method which for a given fixed step-size gives solutions which converge to

a steady state solution, might have very bad stability properties. Recently

Yee, Beam and Warming [8] defined P-stability for initial-boundary-value pro-

blems, such that stability holds in the sense of Gustafsson, Kreiss and

SundstrSm [4] (Definition 3.3) and furthermore such that (almost) no growing

solutions are allowed. The last condition is made precise by requiring that

the operator Q in the difference scheme written in one-step form

n+l n
(2) u = Qu

has no eigenvalues outside the unit circle.

_n %his paper we will analyze these matters further for general hyperbolic

initial-boundary-value problems. Sufficient ,onditions are given such that

all the eigenvalues to Q are all inside the unit circle.

If the equations are defined on a domain which is unbounded in space, the most
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common computational techniques are based on the introduction of an artifi-

cial boundary. If the hyperbolic system has characteristics pointing into

the computational domain, then extrapolation-procedures do not work well as

was shown in [5]. The construction of stable and convenient conditions at

artificial boundaries has been considered by many authors. Engquist and

Majda [2] designed absorbing boundary conditions, Hedstrom [6] constructed

a similar type. Rudy and Strikwerda [7] considered the steady state problem

for the Navier-Stokes equations, and managed to speed up the convergence

rate by introducing a parameter in the boundary condition. Bayliss and Turkel

[i] derived a down-stream boundary condition for the Euler equations using

the asymptotic behaviour of the wave equation.

In Section 3 we will introduce a new numerical technique, which is based on

the very natural requirement that the solution remains bounded on the in-

finite domain. It is applied to the down-stream boundary problem in fluid

dynamics for the Euler equations. The full report on this latter work will

be presented in a joint work with Lars Ferm [3].

2. Stability

It is well known that the numerical boundary conditions for a hyperbolic pro-

blem may introduce instabilities to a difference approximation which is stable

for the Cauchy-problem. One reason to this sensitivity is that the energy of

the true solution is almost conserved, the only dissipation is created through

the boundary. As an example, consider the simple problem

0 < x < i , 0 < t

ut = ux , __ __ __

(3) u(l,t) = 0

u(x,o) = f(x)

With the norm defined by

we get immediately

(4)

i

l lul 12 = f u(x,t)2dx
0

_--I lul 12= - u(o,t) 2
dt

A semi-discrete approximation is

(5)

where D

tion is 0required at

am.

at = D0uj ' J = 1,2,...,N-I

UN(t) = o

uj(0) = f'a ' J = 0,I,...,N

is the usual centered difference operator. An extra boundary condi-

j = 0, and we use zero order extrapolation
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(6) u0(t ) = ul(t )

With the norm defined by N-I
llull 2 = _ uj(t)2h

j=l

a simple calculation shows
(T)

--dIlu[12 = - ul(t_u0(t_,,,,= - u0(t)2dt

which is completely analogous to (4).

However, the accuracy of (6) is too low, and we may consider second order ex-
trapolation

(8) u0(t ) = 2ul(t ) - u2(t )

With the norm defined as above, we get

(9)
dllull2 = - ul(t) 2 - ul(t)(ul(t ) - u2(t))

The last term destroys our estimate, and the sign of the right hand side is

unknown. The extra boundary condition (8) has introduced the possibility of

an increasing energy represented by the norm chosen. This does not mean that

the difference scheme is unstable, it can be shown that with another choice

of norm, we get the energy-dissipation back. The example only serves as an

illustration of the sensitivity of the approximation to the choice of bound-

ary conditions. Thesituation becomes even worse for the fully discretized

problem. For example, if a centered difference operator is used also in time

resulting in the Leap-frog scheme, it is well known that if the operator P

in (i) has eigenvalues in the left half-plane, there is a growing mode in the

solutions to (2). This again does not by itself necessarily mean that the

scheme is unstable, but in this case it can be shown by the normal mode

analysis that it really is.

Sometimes it is argued that a sufficient test would be to compute the eigen-

values _ of the matrix Q in (2) and make sure that there is none outside

the unit circle and only simple ones on the unit circle. The following examp-

le shows the insufficiency of such a procedure.

The Lax-Wendroff scheme for the model equation ut = ux is

n+l k2

u. = (I + kD 0 + F D+D_)u_ j = 1,2 ,N-IJ 2 j ' '''"

where D and D are the forward and backward difference operators resp-• +
eetlvely, Instead of specifying the value at j = N, we reverse the bound-

ary conditions used above and obtain

I n

u0=0

n n
uN = UN_ I
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This simulates an extrapolation procedure at a subsonic down-streamboundary,
and an overspecification at a subsonic inflow boundary, see [5]. The result-

ing matrix representation of the operator Q in (2) is

Q

P

\

)t 2
- )k +_

2%2

0

%
%

%

\

%

\

\

\

I-X 2

2%k 2 %
,%

%

%

X%. k2
+

2 2

\
%

where _ < i is the ratio between the timestep

%

\

\

\

_2

2 2

%

\ % X2
1_ 2 _

2 2

), jk2 _. _.2
---+-- 1 +-----

2 2 2 2
qll

k and the space step h.

-- , .. )T must satisfy the relationsThe eigenvectors (Vl,V 2 . ,VN_ I

1-X 2 )vj(-l+X) _Vj_l + ( + (z+_) Vj+l = _vj ,

j=I,2,...,N-I

Vo=O

vN = VN_ I

The first equation is an ordinary difference equation which has the solution

(10) Vj ='dlK1 J + G2K2 J , K1 $ K2

where KI,K 2 are the roots of

-- k 2
(ll) (-l+X) + (1-X2)K + (I+X) < = U<
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The boundary conditions imply

(12) { _l + _2 = oN-I N N-I
<K_-<l )% + (<2-<2 )%--0

An eigenvector and corresponding eigenvalue W exists if and only if this

system has a non-trivial solution, and the condition for this is

4 4 4
A straightforward calculation using (ii) shows that if N is odd, all the

eigenvalues U are strictly inside the unit circle. Therefore the solutions

un will eventually die out as n goes to infinity, and there might be a

temptation to consider the scheme as stable for odd N. However, if an

inhomogenous term is introduced simulating rounding errors

~n+l ~n gn(14) u. = Qu. + ,
J. 0 J

the scheme behaves very ill. The finer mesh that is used (of course keeping

the mesh-ratio l), the worse the solutions becomes, as can be seen in fig i.

The reason is that the scheme is unstable which is easily shown by the normal

mode analysis [5]. It is sufficient to study each boundary separately, and

in order to analyze the effect of the second condition in (i0), we can as

well define the corresponding approximation for u t =- Ux:

(15)

I n+l k2 u_

u.j = (I-kDo+-_- D+D_) J

n n

u 0 = UI

0"=J

, j = 1,2,...

The normal mode analysis is analogous
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to the eigenvalue calculation above.

We look for non-trivial solutions to the resolvent equations

k2

¢ zv.3 = (l-kD 0 +--2 D+D_)vj

(16) Vo = Vl
oo

_v.2h <_

j=O ,1

, j = 1,2,...

For Izl > i , one can show that the last condition implies that there is

only one mode in the solution, i.e.

v. = UK J
3

where K is the root of

% 2
zK : (l+_) _ + (1-_2)K + (-i+_) 7 <

satisfying IKI < i for Izl > i. Obviously, a non-trivial solution exists

if and only if < = i, which happens when z = i. One says that there is a

generalized eigenvalue at z = i, and the approximation is unstable.

If on the other hand the boundary conditions are posed in the more normal

way such that we have for the original problem

f n n

u0 = uI
(17) n

uN = 0

then the scheme is stable. The numerical experiments for this approximation

with an inhomogenous term introduced, is represented by the dotted line in

fig 1. The norm is practically independent of the mesh size in this case.

As discussed in the introduction, for long time integrations no growing modes

can be allowed in the solution. Therefore, it is natural to require that in

addition to stability the operator Q in (2) has no eigenvalue outside the

unit circle.

Since one may want to use the approximation for steady state calculations, it

is actually desirable to require that all the eigenvalues of Q are strictly

inside the unit circle. In that way convergence is guaranteed when the number

of time steps tend to infinity. We say that the problem has only decreasing

modes.

The normal mode analysis and the stability theory in [4 ] has the advantage that

a problem defined on a domain with two boundaries can be divided in two quar-

ter-space problems ([0 < x] x [0 < t] and [x < i] x [0 < t]) which are

analyzed separately. We--will inves--tigate under w--hat conditions any conclu-

sions about decreasing modes for the two-boundary problem can be drawn from

the analysis of the quarter-space problems. We take the view that it is good

enough if one can show that only decreasing modes are present for N suf-

ficiently large, provided the quarter space problems are stable. (From now
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on "stable" refers to Definition 3.3 in [4] )

Let us consider the eigenvalues calculation for the Lax-Wendroff schemein
somemore detail. The elements of the eigenvalues of the eigenvector v have
the form (i0), and the different modes <I,K satisfy (Ii). For JUJ> i
the two roots are separated by the unit circl_, and we define the roots such
that JKII < i , JK2J> i. Since the condition

l-i
KI<2 - l+l

is always satisfied, there is a constant _ > 0 independent of H such that

(18) IKll! , 1
( I<21! i , i

In fact one can prove that K2 approaches the unit circle only when
approaches i, and in this case < = i. For the stable boundary conditions

(17) the coefficients _i,_2 in (_0) satisfy

I (i-_i)_ I + (I-K2)_ 2 = 0
(18) N

<IN_I + _2 _2 = 0

and the condition for a non-trivial solution is

(19) i - <i - r(N) = 0

where

(20)
KI N

r(N) = (_2) (1-K 2)

The term i - K is well separated from zero and r(N) vanishes when N

tends to infinity. Therefore the result is:

The operator Q for the problem with two boundaries has all its eigenvalues

strictly inside the unit circle if N is sufficiently large.

We will now generalize these results to larger classes of equations and

approximations. Consider the general hyperbolic system with constant coeffi-

cients

(21 ) ut = Au x

Without restriction it can be assumed that the (mxm)-matrix A

form. The difference approximation is

s
n+l

(22) Q_I u = [ Q_u n-_
_=0

has diagonal

Wber_ Q_ are difference operators in space.^ Boundary conditions are speci-

fied at x = 0 and x = i. The symbols Q_(e) , 0 _< J@J _< w are obtained
after Fourier transformation. It is assumed that the yon Neumann condition

is fulfilled, i.e. the equation
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A S
(23) [zQ_I(@) - _ z-_ _ (8)] v : 0 , v =(v (I)

_=0

has no non-trivial solution for Izl > i.
The resolvent equation for (22) is

s

(24) zQ_iv = [ z-v QV v
v=0

This difference equation in space can be written in one-step form

(25) w : Mw.
j+l j

It is shown in [4] that M can be transformed to block-diagonal form

(26) T-I(z)M(z)T(z) = diag (LI,L2,NI,N2)

The properties of the blocks when L.,N. when z approaches the unit circle

are crucial for the stability theory_ F_r a large class of approximations,

class R, the following inequalities hold in the neighbourhood of any given

point z0 on the unit circle:

f"EllI £ (i-6)I

L2L2_ _< (l-6)(Izl -1)m
(27) _

NLNl _ (l+6)I

N2N 2 _ (l+6)(Iz l-l)I , 6 > 0

The eigenvalues of the different blocks are the roots K. to the charac-

teristic equation derived for the Lax-Wendroff scheme above. In that case it

was demonstrated that the block L2 is empty near the whole unit circle, and

that N^ is empty except near z = i, where NI is empty. We will prove
the fol_owing general result for problems with two boundaries.

Theorem. Assume that both quarter-space problems are stable and that the

inequalities (27) are fulfilled. If either L_ or N are empty, then there

are only decreasing modes in the solutions to'the two'boundary problem for

N sufficiently large.

Proof. Without restriction it can be assumed that M has the form (26).

Assume first that L2 is empty, w= is partitioned correspondingly:

w. = (vj,yj(lJ,yj(2)_

The stability assumptions imply that without restriction the boundary condi-
tions can be written in the form

(i) (2)

v0 + DIY 0 + D2Y 0

ElVN + (i) = 0
YN(2)

E2VN + YN' 0

= 0

(2! ))T,v ...v (m
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or equivalently

I l) (2)

v0 + DlY0 ( + D2Y 0 = 0

_FILlN(Dly°(i) + D2y°(2))+ NiNy°(i) 0

(2))+ N2 N (2)-E2LIN(DIY0 (I) + D2Y0 Y0 = 0

Hence, the condition for a non-trivial solution is that the matrix

-E2L1N[DI(I-N1-NE1L1ND1)-IE1L1ND2 + D 2] + N2N

is singular. Obviously the inequalities (27) makes this impossible for N

sufficiently large.

The case that N2 is empty is treated completely analogously, and the theo-
rem is proved.

It was shown in [4] that the inequalities (27) are fulfilled for dissipative

approximations.

The requirement of an empty L2 or N2 .is normally fullfilled for systems
(21) with all the eigenvalues of A havlng the same sigh. This was proved

for the Lax-Wendroff scheme above since (22) is a set of scalar equations. If

the requirement is not fulfilled, the situation is still not too bad for

dissipative approximations or "almost" dissipative approximations. The rea-

son is that only those points where LQ and NQ are not empty requires an
investigation. We illustrate by an exaz_ple. ConNid_er the problem

I wt = A wx , A = w =
-- V

v(0,t) = 0

u(l,t) = v(l,t)

and the Lax-Wendroff approximation

n+l k 2

= (I + kAD 0 + _- A2D+D )wnw

with the boundary conditions

n

v0 = 0

n n

uN vN
I

n 2vNn I nvN _ - VN_ 2

n n n

u0 2u I - u2

Both quarter space problems are easily shown to be stable.
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Using the samenotation for the variables in the resolvent equation we have

u. = _ KJ + U2KJ2J i i
J J

vj = TlW I + T2_ 2

where KI,< 2 and _I,D2 are roots to

X2 )2z< = < + (K2-1) + _ (<-i

and

x2zp = p - (p2-1) + _ (w-l) 2

respectively.

The only crucial point where the conditions in the theorem are not fulfilled

is z = I where I<ii < i - 6, <2 = I _. = i, _^ > i + 6 (The identi-
fication with the gener_l notation in (26) is obtalned through the relations

L2 = K , L2 = _i' N = p_, N2 = K2.) However, the equation for v is
independent of u an_ fro_ the scalar result we know already that there is

no eigenvalue z with Izl > i for N sufficiently large. The boundary

conditions for u imply

N N NT N

KIGI + K2_2 = WI i + W2 _2

(Kl-1)2_ 1 + (<2-1)2_2 = 0

Since TI = T2 = 0 for Izl _ i, the scalar result for u applies, and there
are obviously only decreasing solutions for N sufficiently large.

Let us go back to the original model example ut = u and study the Back-
ward Euler approximation x

(l-kD0)u_ +I = ujn

n n n

u0 = 2u I - u2

j = 1,2,...,N-I

n

_ UN= 0

The characteristic equation is

- = <(28) Z(K

i8
For < = e we have

i

z = l-li sin8

and z hits the unit circle at z = i not only or @ = 0 but also for

@ = w. For z = i the two roots to (28) are <! = -i, <2 = i, which shows
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that L2 and N2 in (26) are non-empty. However, this point is easily in-
vestigaZed. The general solution to the resolvent equation for z : i is

V. -l)J+ 02j = _l(

with 01,02 satisfying

401 = 0(-I)NoI + 02 = 0

Obviously there is no non-trivial solution to this system, and therefore only

decreasing solutions exist for N sufficiently large.

We end this section by making a comment about problems with non-constant coef-

ficients. The analysis above gives no information about the behaviour of the

solutions to problems with variable coefficients. In fact, it must be expect-

ed that in such cases there exist growing solutions even if the analysis above

shows decreasing solutions for constant coefficients. We would like to empha-

size that this is in general the correct behaviour. Consider the non-linear

model problem

ut = uu x

u(1,t) : o

u(x,0) = f(x)
1

with positive solutions u . The norm IIul 12 = f u(x,t)2dx is decreasing,

since 0

d ilull= 2 3d-_ = - 7 u(O,t)

The -]/nearized problem is

Ut = a(x,t)u x , a(x,t) > 0
u(1,t) : o

u(x,0) = f(x)

and for the same norm we obtain

d 2 i i
d--tllull = f 2auuxdx =- a(O't)u(O't)2- J a2u2dXx

0 0

Obviously there may be growing solutions to this problem. Therefore, if the

full non-linear problem cannot be analyzed, it makes sense to "jump over" the

variable coefficient case and analyze the problem with constant coefficients.
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3. Unbounded domains

We will consider an ideal fluid in a channel according to fig. 2

L fff ffffp i fffjp pp Jffr fff,_ _,'-f_'_" rlf_1.P'S"pf

x=0 x=8

_X

fig 2

The Euler equations are

(29) wt + A(w)w x + B(w)w
Y

where with the usual notation

= 0

w = u , i(w) = 2/p u , B(w) = v

v 0 2/0 0

The flow is assumed to be subsonic, but no data are available at D8.

Seeking the steady state solution, we will construct the down-stream condi-

tions using the condition

(3o) suplwl< , lwle = +u2 +re
x,y,t

The solution still contain an undetermined constant, therefore we add a condi-

tion on the massflow:

(31) 1
f pudy=m
0

Since m does not depend on x, it can be measured at the inflow boundary.

The question is how these conditions can be converted into something usable

in a computational procedure.

For the derivation it is assumed that the matrices A and B in (29) are

constant, and since v = 0 at the boundary we assume a zero diagonal in B,

p and u are expanded in cosine-series in the y-direction, v is expanded
in a sine-series.
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QO

F

=0

u(x,y) = _ _w(X) cosr,-_
a)--O

v(x,y) = _ _(x) sin_y

Introduction of these expansions into the steady state system gives the trans-

foreequation_--7+ = =

The solution has the form

3 _1.(x-_)

^ = [ ajqje J
(33) we j=l

where the scalars I and the vectors q_
J J

satisfy the eigenvalue problem

(34) (At. + B)qj = 0J

19 is positive, and the condition (30) therefore implies _2 = 0 for _ @ O.

A_straight-forward calculation gives the final form of the solution

(35) U = _1 1 + a 3 e , _=1,2,...

0

The quantities u,p represent the coefficients in A,B, and s is defined

by ms = _c _ _ q2u _ (35) immediately gives the desired conditions to be

used at x = _ :

(36) ^ = - !{Q @ , m = 1,2,...
P_ cs

The remaining condition for P0 is obtained form (31).

It can be shown by the energy-method that the system

( 37 ) a_ a_
.._.__m+ _ m__
at _x + wwBQm = 0 , e = 0,i,...

is well posed with the boundary conditions derived above. Therefore methods

for time-dependent problems can be used for computing the steady state solu-

tion.
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In our numerical experiments we Dave used Newton's method for a difference
approximation using centered differences in both directions.

For comparison two other boundary procedures have been used. In the first the
conditions are based on the commonlyused assumption that the solution has
flattened out at x = B. If w = w = 0 in (29) it follows that O = O.
With the discretized version o_ thi_ equation as the down-streamboundary
condition (everything else the sameas above)a method is defined which is de-
noted by RC in the figures below.

The second alternative used for comparison is the Bayliss-Turkel method men-
tioned in the introduction, which is denoted by BT in the figures.

The boundary DR was placed at x = 5/14 and x = 1/14. The figures show
the remarkably good agreement beetween the correct solution and the one ob-
tained with the conditions (36) (denoted by FG).
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INFLUENCE OF BOUNDARY APPROXIMATIONS AND

CONDITIONS ON FINITE-DIFFERENCE SOLUTIONS*

F. G. Blottner
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Albuquerque, New Mexico 87185

ABSTRACT

Numerical representations of boundary approximations and conditions for

three problems are investigated to determine the resulting global acG_racy

of the steady-state solution. Numerical accuracy with various boundary

approximations is determined for quasl-one-dimensional invlscld flow in a duct

with the interior grid points evaluated using the MacCormack scheme. When an

extrapolation approximation with first-order local truncation error is used,

the global second-order accuracy of the difference scheme can be destroyed.

For one-dimensional flow in a porous medium, an implicit midpoint difference

scheme which is consistent with the boundary conditions is developed without

the need of boundary approximations. A dissipative model problem issolved

with the boundary conditions discretized with first- and second order accuracy.

The overall second-order accuracy of the difference scheme is destroyed if

flrst-order numerical representation of one of the boundary conditions is

used. With a boundary approximation, the second-order global accuracy of the

model problem is retained if either second-order extrapolation or flrst-order

representation of the governing equation is used.

INTRODUCTION

Finlte-difference schemes are usually developed for computing the interior

points of the computational domain and then boundary conditions and special

relations are used at and near boundaries. For a given set of governing equa-

tions, there are appropriate boundary conditions that result in a well posed

problem with continuous solutions and provide relations which allow some of

the dependent variables to be determined at the boundaries. These boundary

conditions are usually obtained from the physics of the problem. The remaining

relations required to determine the dependent variables at the boundaries must

be determined from boundary approximations; such as extrapolation, characteris-

tic compatibility relations or difference relations obtained from the governing

equations. The boundary approximations can influence the stability of the

overall scheme and can influence the global accuracy of the difference approx-

imation. These properties of the boundary approximations must be investigated

for each interior difference scheme and set of governing equations. A review

of this problem has been given recently by Turkel (ref. l). Gustafsson (ref.

2) indicates that boundary approximations for the transient solution of hyper-

bolic equations can be differenced with one-order lower accuracy than used

for the interior difference scheme without decreasing the overall accuracy.

This statement is perhaps misleading due to the accuracy definition.
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Skollermo (ref. 3) restates this conclusion as "formally, the local truncation
error in the boundary approximation should also be of the sameorder as the
global error of the interior scheme." Bramble and Hubbard (ref. 4) have shown
that the solution of Polsson's equation with Dirichlet boundary conditions on
an irregular computational region can use first-order difference relations
of the governing equation near the boundary and still provide an overall second-
order scheme. In this case the boundary condition can be satisfied exactly
but the governing equation has a local truncation error of order of the step-
size near the boundary due to non-uniform grid spacing. If the solution is
interpreted in terms of a uniform grid with grid points exterior to the boundary,
the boundary condition discretization uses quadratic extrapolation for the
exterior grid points. Thomas(ref. 5) investigated the boundary approximations
with implicit ADI techniques at various flow boundaries that occur in external
and internal flow problems. The boundary approximations are conservatively
differenced forms of the flow equations and have a local truncation error that
is first order. The global truncation error in space is indicated to be second-
order accurate but no numerical results are given to demonstrate this behavior.

The present study is concerned with obtaining a better understanding of
the influence numerical representations of the boundary approximations and
conditions have on the global accuracy of the finite-difference solution to
steady-state problems. Quasl-one-dimenslonal flow in a duct is used as an
illustration of the influence boundary approximations have on the global accu-
racy when the MacCormackexplicit schemeis used for the interior grid points.
The steady-state problem is obtained from the asymptotic time solution of the
transient equations. The case of subsonic entry to supersonic exit flow has
previously been investigated by Turkel (ref. i) while the present study is
concerned with this problem plus the case of complete subsonic flow where an
exit boundary condition must be specified. The numerical treatment of comp-
utational boundaries for a limited region with subsonic flow is discussed by
Moretti and Pandolfi (ref. 6). A physical model of the flow outside of the
boundaries provides the boundary conditions which can interact with the interior
flow.

The importance of the interior difference schemeis illustrated with the
problem of compressible flow through a porous material where the governing
equations are the sameas the quasi-one-dimensional problem with a friction
term added. The porosity of the material corresponds to the cross-sectional
area of the duct and for low speed flows the friction factor is related to the
permeability of the porous material. The problem considered is the steady-state
subsonic flow resulting from a pressure drop across the porous material. The
solution is obtained with an implicit, midpoint difference schemewhich provides
exactly the correct number of difference relations along with the boundary
conditions needed to solve for the dependent variables at all of the grid
points. Therefore, with this approach the interior difference relations are
not supplementedwith boundary approximations. With central differences,
three boundary or extraneous approximations are required for this problem and
the influence on the global error is investigated.

Finally, a dissipative model problem is studied to illustrate the effect
of numerical dlscretlzation of the boundary conditions and boundary approxi-
mations on global error. For this case the global error is determined both
numerically and analytically.
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QUASI-ONE-DIMENSIONALFLOW

The properties of the governing equations for transient flow in a duct
are well understood from the point of view of the method of characteristics
and are described by Shapiro (ref. 7). This relatively simple flow problem
provides an excellent test case for studying the effects of boundary condi-
tions and approximations as the exact steady-state solution for this flow is
known. The quasi-one-dimensional flow problem is also of engineering interest
to approximate more complex flows. The tlme-dependent approach is used in the
present study to obtain the steady-state continuous solution to the flow in a
duct with subsonic entry flow and with either subsonic or supersonic exit flow.
The flow in a nozzle with supersonic flow has been investigated by Turkel (ref.
i) with both continuous flow and with a shock where a downstreampressure is
specified. The handling of computational boundaries for subsonic flows has
been investigated by Moretti and Pandolfi (ref. 6).

The quasl-one-dlmenslonal Inviscld flow equations are written as

_Q _F

_+_= s (i)

where

I01j;u1 [001Q = uA F = Pu 2 + P) S =

[eAJ [(e + p) uA 0

The variable A is the cross sectional area of the duct and the remaining

variables have the usual meaning. The total energy is defined as

1

e = p(h + _ u 2) - p (2)

where the enthalpy for a perfect gas is

the characteristics of the governing equations (i) are

(3)

dx
- u + c (Mach lines)

dt

dx
- u (Path lines)

dt

(4)
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where the speed of sound for a perfect gas is determined from c = /yP-70. The

compatibility relations along the characteristics are

ou du + dp + pu7 d_AAdt = 0 along u + c
--. - A dx

2
dp - c dp = 0 along u

(5)

These relations can be written as finite-difference equations and used to

determine the solution at the next time step from the appropriate initial and

boundary conditions. A finite-difference approach for solving the governing

equation (I) is used rather than the method of characteristics. The above

relations are given to help understand the physical boundary conditions and

to obtain computational relations at the boundaries.

The dependent variables at the interior grid points are advanced in time

with the MacCormack explicit scheme. The variables are first predicted at

time (n + i) with first-order accuracy from the known conditions at time (n)

and then a corrector is used to obtain the new results at time (n+l) with

second-order accuracy. The difference relations for the governing equations

(i) with the backward-forward difference version are

Qi ( )n S nn At F i - Fi_ 1 + At i = 2,3 I= Qi Ax i-i/2 .....

i = 2 Qi n + Qi - _-x Fi+l

i = 1-1,1-2,...,2

The MacCormack scheme requires the following Courant number restriction:

(6)

c = (lut + c) At/ax < i (7)

When the steady-state solution is obtained with the MacCormack scheme, the

governing equations (i) are effectively evaluated with a midpoint difference

scheme, which is second-order accurate in space.

At the boundaries of the computational domain the MacCormack difference

relations are not adequate and additional difference relations must be used

along wi_h the boundary conditions to complete the solution procedure for Q1

and QI n_l. In addition, the variations of three dependent variables along the

duct at the initial time is also required to start the solution.

For the case of subsonic entry flow, the u + c and u characteristics are

entering the computational domain and the u-c characteristic is leaving the

computational domain. Therefore, two conditions must be specified and the
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remaining dependent variable must be determined from the compatibility rela-

tion equation (5) along the u-c characteristic or from some other difference

relation. Since in the present study only the steady-state solution is

desired, the two physical boundary conditions utilize the steady-state isen-

tropic relations for the entry pressure and density as a function of the

entry Mach number, stagnation density and stagnation pressure

= _ )-i/(7-i)Pl Po(l + _MI 2

Pl = P0 (Pl/°0)Y

(8)

where

1 Ul 2]MI2 = u12/ y - _ (y-l)

The subscript i indicates the entry conditions while subscript 0 indicates

the variables are stagnation conditions in an infinite reservoir. The above

relations assume quasi-steady streamtube flow to determine the pressure and

density from the entry velocity and become exact for the steady-state solution.

For steady-state conditions the governing equations (i) are evaluated with a

midpoint scheme where subscript i and 2 are the entry point and next grid

point downstream. This gives three relations which are used to solve for the

entry velocity at the new time level after the corrector step of the MacCormack

difference scheme has been used to determine the dependent variables at grid

point 2.

u I = (-b + _/2a (9)

where

a = 1- (y4_)AI/(A 1 + A2)

[ u2A)2 1 ]b = (l-a) (. + _ P2(AI + A 2) /(_uA)

C = -2 [(e+P)IP]2

Equation (9) is second-order accurate and consistent with the MacCormack scheme

when the steady-state solution is obtained and replaces the compatibility rela-

tion, equation (5). An extrapolation technique is often used to obtain a

dependent variable at the boundary if a physical boundary condition does not

specify the variable. The following linear extrapolation relation for the

velocity at the entry has been investigated:

231



uI _ 2u 2 - u 3 (i0)

where the velocities are at the (n + i) time level.

For subsonic exit flow, there are two characteristics leaving the compu-

tational domain and one entering. For supersonic flow, all three characteris-

tles leave the computational domain. Therefore, one physical boundary condition

is required for subsonic flow at the exit while no boundary conditions can be

specified for continuous supersonic exit flow. Three boundary relations have

been investigated for subsonic exit flow and are applied to obtain the dependent

variables at the (n + i) time level.

The characteristic boundary relation method uses the compatibility condi-

tions, equation (5), along the u + c and u characteristics to obtain the first-

order, flnite-difference relations

n+l _ [_n+l (_ dA) ]uI = Ua PI - Pa + -- At /(pc) (lla)
dx _ I

n+l (llb)

pressure pl n+l is specified. The dependent variablesFor subsonic flow the exit

at the grid points a and b are at time n and are on the u + c and u character-

istics respectively. Linear interpolation along with a flrst-order difference

relation for the characteristic locations are used to determine these variables

as follows:

W a = (i - _) W I + e WI_ 1

W b = (i - B) W I + B WI_ 1

where W = u or p

where W = p or

(12)

and the coefficients are

= At (u I + ci)/&x

8 = At Ul/&X

With the above relations, equation (12) used in equations (ii), the right

side of these equations are known and the exit velocity and density can be

determined.

The unsteady midpoint boundary relations are developed from the continuity

and momentum equations (i) using one-slded _patlal differences and are written

in the following flnite-dlfference form:
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 on+1on)(FI:x'i1)n+1+ 1
At I = 2(SI + SI-I)

The continuity equation becomes

n+l (13)

At n+l] ( At .n+l_
(14)

The momentum equation (13) and the above continuity equation (14) are combined

to obtain the exit velocity

= [ n+l 1 n+l ] In+l I(PuA) I + At (pu2A)i_ 1 - -- (PI - PI 1 ) (AI + AI-I) /Ax IuI I 2 -

I '^uA' n+l . I-i* (pA)nl + At _w )l-i/Ax I

(15)

With exit velocity determined from equation (15), the density is then eval-

uated from equation (14).

The extrapolation boundary relations for a uniform grid spacing use the

following expressions to determine the exit density and velocity:

First-order:

Second-order:

W I = WI_ I + 0(Ax) I W = e or u

W I = 2WI_ 1 - WI_ 2 + 0(_x2)_

(16a)

(16b)

According to Gustafsson's definition (ref. 2), equations (16a) and (16b) are

zeroth and flrst-order accurate boundary approximations, respectively.

The flow in ducts with the geometries utilized by Griffin and Anderson

(ref. 8) are used to illustrate the accuracy of the various boundary conditions.

These geometries are of the Laval nozzle type with the throat height above the

centerline used as the reference length L. With entry at x = O, the throat at

x = x T and the exit at x = Xl, the area variation of the duct is given as

[ ]2A = i + (A1 - i) (xT - x)/x T

A = I + (AI- i)[(x- XT)/(x I - XT) ]

x <_x T

x > x T

(17)

The entry area A 1 and the exit area A I must be specified to complete the des-

cription of the duct.
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The first example is a duct flow with A1 = 1.5, AT = 2.0, X I = 40 and xT
= i0 with supersonic flow at the exit without any shoc_ waves. The exact

analytical solution for the isentroplc flow is used as the initial conditions

for the dependent variables along the duct. The numerical solution is obtained

with Ax = i and At is chosen at each time step such that the maximum Courant

number at any grid point is 0.9. The steady-state solution to the finite-

difference equations is different than the initial conditions due to truncation

error and will be the same only when _x ÷ 0. The MacCormack flnlte-difference

technique is used to obtain the steady-state solution for the duct configura-

tion. The approach of the solution towards a steady-state is illustrated in

Table I where the entry velocity is presented for the midpoint boundary rela-

tion, equation (9). With the number of decimal places shown in this table, a

steady-state is obtained after 400 time steps for the midpoint boundary rela-

tion. The time shown is the nondimenslonal time (t/L)_7_o. The result of
using the linear extrapolution relation, equation (i0), _or the entry velocity

is shown in Table I. After i000 time steps a steady-state is not obtained and

this technique appears to give a solution that is drifting. When linear

extrapolation is used to determine the dependent variables 0, u and p at the

exit, a steady-state solution is obtained and the entry velocity is the same

TABLE I

ENTRY VELOCITY FOR SUPERSONIC DUCT

Number of

Time Steps Time Midpoint Extrapolation

0 0 0.499922 0.499922

100 33.5 0.500244 0.498947

200 66.9 0.500247 0.498998

300 100.4 0.500246 0.499271

400 133.9 0.500247 0.499201

500 167.3 0.500247 0.499042

600 200.8 0.500247 0.498816

700 234.3 0.500247 0.498532

800 267.7 0.500247 0.498189

900 301.2 0.500247 0.497781

1000 334.7 0.500247 0.497306

as that given in Table I with the midpoint relation, equation (9). However,

since the linear extrapolation relations are not consistent with the MacCormack

finite-difference relations; the mass flux near the exit oscillates about the

"correct" numerical value as shown in figure i. The correct upstream numerical

solution is used to judge the error of 0uA and this "correct" numerical solu-

tion has an error of 0.053% relative to the exact analytical solution. Although

the oscillation shown in figure i is unpleasant, the error is about the same

or less than the truncation error of the "correct" numerical solution with

_x = i.

The second example considered is subsonic duct flow with A 1 = 6, A I = I,

sI = 20 a_ S_T _ _ The pressure at the exit has a value of 0.93716250 Po and
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is held fixed as the known physical boundary condition. Steady-state solutions

are obtained with Ax = 2, i and 0.5 with i000, 2000 and 4000 time steps respec-

tively. The exit velocity is used to judge the spatial accuracy of the steady-

state solutions where the exact value of the exit velocity is 0.358610_o.

The percent error of the steady-state exit velocity is given in figure 2 for

the boundary relations given by the characteristic equation (Ii), finite dif-

ference equation (15) and the extrapolation equation (16). All o_ the methods

have an error behavior that indicates that the spatial differencing is second-

order. When the characteristic boundary relation is used, the mass flux

wiggles at the grid points near the exit with behavior similar to that shown

in figure I.

The global second-order behavior with the first-order extrapolation

boundary approximation cannot b_ expected to occur in general. The foregoing

example has zero gradients of the dependent variables at the exit and the

first-order extrapolation is appropriate. The solution was obtained for the

same problem except the exit conditions are applied at x I = i0 where the

dependent variable gradients are non-zero. The results of this accuracy

study are given in Figure 3, where the first-order extrapolation boundary

approximation results in first-order global accuracy. The other boundary

approximations result in global second-order accuracy. The characteristic

approximation is based on flrst-order approximations to the governing equa-

tions and does not destroy the global second-order behavior. A boundary

approximation which uses the governing equations can have a local truncation

error of first order while extrapolation techniques must be second-order in

order to avoid reduction of the global accuracy.

FLOW IN POROUS MEDIA

One-dlmenslonal, high-speed, subsonic compressible flow thru a porous

material is considered. The gas and porous material are allowed to have dif-

ferent temperatures but energy transport due to conduction and dispersion is

neglected. The governing equations are of the same form as equations (I) except

there are four dependent variables as follows and the flux vector is

O

pe

pu6

efe

e s (l-E)

QI I

Q3 1

Q4 I

F _

Pug

(Ou 2 + p)e

(ef + p) u_

0

(18)

where P = density of fluid

p = pressure of fluid

u = local or interstitial velocity of fluid

ef = total fluid energy per unit fluid volume

e s = total solid energy per unit solid volume = Ps Cs Ts

e = porosity of solid material.
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These relations are the same as the quasi-one-dimensional equation (i) except

the cross sectional area is replaced by the porosity. The source term in

equation (i) becomes

D

o

p(d£/dx) - (au + Boug)g2u

- h ap (T - Ts)

ha (T- T )
p s

(19)

where a and _ are dependent on the flow resistance model

h = heat transfer coefficient

a = particle surface area per unit volume of porous media

P = 6 (l-E)/d_ for spherical particles of diameter d

T temperature of fluid = M c p/R0 P

T = temperature of solid porous material.
s

The coefficients _ and 8 are determined from the Ergun (ref. 9) equation for

gas flow thru a packed bed of particles with effective diameter dp

a = 150 (i -£)2/(£3dp2)

B = 1.75 (i - e)/(£ 3 dp)

(20)

The foregoing momentum equation includes the usual Forchhelmer equation which

relates the pressure gradient to the flow resistance terms. In addition, the

momentum equation includes the inertia term as suggested by Emanuel and Jones

(ref. i0) and predicts choked flow if there is sufficient pressure drop. The

energy equations are the Schumann (ref. ii) model for heat transfer in a bed of

particles except the kinetic energy of the fluid and work done on the fluid

by pressure forces are included.

The governing equations require two boundary conditions at the inflow

locations (x = O) and one boundary condition is needed at the outflow (x = L).

The pressures Pin and Pout are assumed known at both locations while the gas

temperature Tin is specified at the inflow. The initial variation of the

dependent variables across the porous material is obtained from the steady-

state, isothermal solution with the inertia term neglected in the momentum

equation. The pressure variation has been determined by Morrlson (ref. 12) and

the result is

1/2

P = Pin + (Pout - Pin ) (x/L)
(21)
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The mass flux density is

I [ 11/212 2 P/pLJ I/2_pU6 = - ap + (ep)2 + 2B(Pin _ Pout )
(22)

The density is determined from the equation of state with the inflow tempera-

ture used along with the pressure obtained from equation (21).

This investigation is concerned with obtaining the steady-state solution

where the solid and gas temperatures are the same at any location without

heat transfer between the two phases. The adiabatic flow case has an exact

solution but for the present formulation a difficult iteration process is

required to determine the inflow Mach number. Therefore, even for the steady-

state solution, an efficient numerical solution is needed. The initial

approach considers the steady-state form of equation (i) and uses midpoint

difference relations to obtain the difference equations

(Fi+ 1 - Fi)/Ax i = (Si+ 1 + Si)/2 (23)

where Ax i ffixi+ 1 - x i. The quantities F and S are linearized about the pre-
vious known value which is indicated with a bar and the expansions are

(24)

where AQ = Q - Q. The Jacobian matrices A and D are obtained

from

The difference equation (23) becomes

~ + 1 Di Axi) AQii Axi) - (AiAi+l - 2 Di+l AQi+I

= -Fi+l + Fi + 2 Axi (Si+l + Si ) i = 1,2,3,...,I-i

(25)

and the difference equation for the energy equations for the solid has the

special form
4

D4n Qn = $4 i = 1,2 ..... I (26)
n=l
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The boundary conditions are

At x = 0

LQI = (01) - QI
in

where (QI) = M 6 Pin/R Tin (27a)
in

At x = 0 or L

_ 1 2/_ 1i _2 AQ 1 _ _ AQ 2 + AQ 3 = £ p./(y_l) - Q3 + _ Q22 (27b)

where p, is Pin or Pout at the appropriate boundary.

The difference equations (25) and (26) along with the boundary conditions (27)

provide 41 relations which are used to solve for the 41 unknown dependent vari-

ables at the I grid points. The difference equations and boundary conditions

are written as the following block-tridiagonal system:

BI WI - CI W2 = D1

- A i Wi- I + Bi Wi - Ci Wi+ I = Di (28)

i = 2,3,..., I-i

- A I WI- 1 + B I W I = D I

where

W. =
1

AQII

AQ21

AQ3|

gQ4J
l

and the governing relations are used in the following manner for the midpoint

scheme:

At i= i

Boundary condition equation (27a)

Momentum equation (25)

Boundary condition equation (27b)

Solid energy equation (26)

(29a)

At i = 2, 3, ..., I-i

Continuity equation (i ÷ i+l in equation 25)

Momentum equation (25)

Fluid energy equation (25)

Solid energy equation (26)

(29b)
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At i= I

Continuity equation (i = I-I in equation 25)

Boundary condition (27b)

Fluid energy equation (25)

Solid energy equation (26)

(29c)

The conventional method for solving equation (i) with an implicit scheme is

to use central spatial differences and to use the transient solution to obtain

the steady-state result. When this approach is applied to the governing equa-

tions (I) with the linearization (24), the difference equations are of the form

of equation (28) where the central difference coefficients are:

and

A i = OAi_i/x T

B = Y/_t - 0fi
l 1

C i = -0Ai+i/x T

= sn - Fi_l)n/x TDi i - (Fi+l

i = 2,3 ..... I-i (30)

x T = xi+ 1 - xi_ I

I 1 Fully implicit (or steady-state solution)
8

1/2 Trapezoidal scheme

Y = unit matrix (zero for steady-state equation)

These difference equations can be used to replace the midpoint difference

equations (25) except the relations for i = 1 have been loss. Therefore,

there is a need to provide a boundary approximation at i = 1 and two boundary

approximations at i = I. The solid energy equation still can be applied at i

= 1 and I. The foregoing central difference equations (30) for the steady-

state can be obtained from equation (25) and equation (25) with i replaced

with i-l. These two equations are added and divided by x T to obtain the

additive midpoint coefficients.
1 ~

Ai = (Ai-i + 2 Axi-I Di-l)/XT

1 ~
B i = _ _ D i

i Ax i
Ci = -(Ai+l - 2 Di+l)/X T i = 2,3 .... I-i (31)

D i = _ xi(Si+ 1 + si)n + AXi_l(S i + Si_l) /x_
!

- (Fi+ I - Fi_l)n/xT

J
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The steady-state form of equations 430) becomes equations 431) if the quanti-

ties D i AQi and S i are evaluated with the following weighting relation:

(wi+1÷wi>+ + 11]j(2xTl 432)wi

Since difference equations (28) with the additive midpoint coefficients (31)

are just another formulation of the midpoint scheme, the appropriate relations

at i = 1 and I are the midpoint relations 429a) and 429c) respectively.

These same boundary approximations are used with the central difference scheme

430) replacing equations 429b).

The numerical results are obtained for the following conditions:

E = 0.32

dp = 5 x 10-6 m

y = 1.4

Pin = 1.01325 x 107 N/m 2

Pout -- 1.01325 x 105 N/m 2

Tin = 297.15 K
L=I cm

= 1.458 x IQ-6 Tfl'5/4Tf + 110.4)
h 18.75 J/mZ-s-K

cs -- 880.0 J/kg-_ l

P_B 2648.0 kg/m J

M = 28.966 kg/4kg mol)

R = 8314.3 J/(kg mol)(K)

kg/m-s

Not needed for steady-state solution

The numerical solution of the steady-state form of the governing equations is

readily obtained with the midpoint scheme (29) and this procedure requires

several iterations with rapid convergence. When the central difference scheme

(30) with 0 = 1 and T= 0 is used, the solution does not converge. This same

behavior is observed with the additive midpoint scheme. If a subtractive mid-

point scheme is developed from equation (25), then this approach has the same

convergence properties of the midpoint scheme. In order to obtain the steady-

state solution with the central difference scheme, the transient solution

approach is used. With a fully implicit scheme (0 = I) a steady-state solution

is obtained while with the Crank-Nicolson approach 4e = 0.5) the solution tends

to have small oscillations. When the transient midpoint scheme is used, the

fully implicit scheme (0 = i) converges to a steady-state while with e = 0.5

the solution has large oscillations. With more time steps the magnitude of

the oscillations can be reduced. The numerical results presented with the

transient procedure are for the case of 0 = i.

With the midpoint scheme the numerical solution is obtained without any

boundary approximations. The mass flux pu¢, which is constant through the

porous media, is used to judge the accuracy of the numerical solutions with

the exact solution obtained with Richardson extrapolation. The accuracy of

the midpoint scheme is illustrated in figure 4 where the number of grid points

through the porous media is varied. This method has the expected second-

order behavior. The accuracy of the central difference scheme with the second-

order midpoint boundary approximations defined by equations (29a) and 29b)

has nearly the same accuracy as the midpoint scheme as shown in figure 3.
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The influence of boundary approximations with the central difference scheme
is investigated by replacing the momentumequation (29a) at the entry with
the following first-order difference relations for the momentumequation:

#i:

#2:

(Fi+1 - Fi)/Ax i = Si i = 1

(Fi+1 - Fi)/Ax i = Si+1 i = 1

(33a)

(33b)

The first boundary approximation (33a) actually improves the accuracy of the

results but the overall accuracy is not completely second-order for the grid

size investigated. The second boundary approximation (33b) is less accurate

but the overall accuracy of the scheme has second-order behavior. The use of

a flrst-order boundary approximation of the governing equation with a second-

order interior difference scheme still results in a scheme with overall

second-order behavior.

DISSIPATIVE MODEL PROBLEM

The importance of boundary condition discretization and boundary or

extraneous approximations on the finite-difference solution of a dissipative

type differential equation is investigated by considering the model problem

_ -b2W= 0 (34)

with boundary conditions

At q ffi0

Dirichlet

or

Neumann

(35a)

(35b)

At n ffi1

Wffi 1 (36)

The exact solution of this equation is

WE = (ean +_ e-aFJ)/(e e +_ e-e) (37)
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where the plus sign corresponds to the Neumann boundary condition while the

negative is for the Dirichlet boundary condition. The parameter _ = b//£ and

for the numerical solutions b ffi£ ffi2. For the Dirichlet problem, the value

of W at n = 0.i is 0.073327303 and is used to test the accuracy of the numerical

solutions. For the Neumann problem the value of W at n = 0 is 0.45909813 and

is used for judging the accuracy of these numerical solutions. These exact

solutions for the two types of boundary conditions are given in figure 5.

The numerical discretization of the boundary conditions are approximated

with the following relations where h is the grid size and the local truncation

is indicated:

Dirlchlet (Boundary D = 0 is located between first and second grid points

and the distance from first grid point is fh where 0 < f < i)

First-order:
W 1 = W B + 0(h)

(38a)

Second-order:

W 1 = W B - f(W 2 - W I) + 0(h 2)
(38b)

Neumann

First-order (Boundary _ ffi0 at first grid point)

(W2 - W1)/h = _-_ + O(h) (39a)

Second-order (Boundary midway between first and second grid points)

(W2 - Wl)/h = (_W)B + 0(h 2 )
(39b)

The numerical solutions are obtained with a uniform grid in order to

isolate the influence of the boundary condition discretization errors. The

derivative in equation (34) is evaluated with a central difference scheme and

the equation becomes

(Wj+ 1 - 2Wj + Wj_l)/h2 - e 2 Wj = 0 (40)

which has a local truncation error of 0(h2). The resulting difference equations

and boundary conditions (38) or (39) are tri-diagonal equations of the form of

equation (28).

With the Dirichlet boundary condition W ffi0 at _ ffi0, the numerical solution

has been obtained to the model difference equation with the boundary located
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midwaybetween the first and second grid points. The results for the first-
order boundary condition (38a) and the second-order boundary condition (38b)
are given in figure 6. A comparison of the first-order solution with the
exact solution is given in figure 5. For this problem the first-order boundary
condition approximation has a significant adverse influence on the solution
which has first-order behavior.

The model problem has been solved with Neumannboundary conditions with
a uniform grid. The results of this study are given in figure 7 for the
first-order boundary conditions (equations (39a)) and second-order boundary
condition (equation (39b)). A comparison of the first-order solution with
the exact solution is given in figure 5. With the boundary at the first grid
point, a second-order boundary condition can be obtained with the use of the
governing equation. A grid point j = 0 is introduced beyond the boundary

such that n 2 - n I = n I - n O = h. The derivative boundary condition is written
as

(W2 - W0)/2h = (3W/3q) B + 0(h 2)

The governing difference equation (28) is applied at the boundary and for this

case becomes

- A I W 0 + B I W I - C 1 W 2 = D I

where bars have been added to the coefficients. The above equations are com-

bined to eliminate W 0 and the boundary condition is of the form of the first
equation of (28) where

BI = B1

D1 = gi - 2h Aq (_W/_,]) B

This method gives a second-order boundary condition with the same accuracy of

the previous methods.

The foregoing investigation of the influence of boundary condition numeri-

cal error can also be investigated analytically. The exact solution of the

difference equation (40) is

j-i _ j-i
Wj = a _i + b _2 (41)

and for the exact Dirichlet boundary condition (35a) becomes

( j-i _ j-l) (_IJ-i 2J-l)Wj = _I - -2 / _ - g J = 1,2 ..... J
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where

1 2 i 3
Ol, 2 = 1 + eh + _ (ah) + _ (ah) + ...

= e-+ah _ _4 (ah)3 + "'"

The terms in equation (42) are approximated as

j-i e+a_j 1 3 h 2 (43)
Ol, 2 = - (i ; _ a Dj + ...)

The error of the difference solution is defined as

E = (Wj - WE) / WE
(44)

The difference solution or global error with the use of equations (37), (42)

and (43) in equation (44) becomes

where

E = E 2 h 2 + ...

i 3

E 2 = _ a (coth a - _j coth anj)

(45)

This shows that the central difference scheme with exact Dirichlet boundary

conditions results in a second-order global error.

Consider the case where the Dirichlet boundary condition is located

between the first and second grid points. The exact solution (37) to this

case is

w E = sinh _/sinh (46)

The difference solution of equation (40) with boundary conditions (38) becomes

Wj = Cj/¢j
(47)

where

W 1 ffiCW 2

Cj (i- COl) 023 - (i- co2) olJ-i

C ffi0 for boundary condition (38a)

C ffi-f/(l-f) for boundary condition (38b)
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Since n. = h(j-l) - fh and 01, 2 is given by equation (42), the following is
obtaine_ :

_1,2 = e-- 1 + fah + (afh)2 _ i a3 h 2_ _-_ _j + ... (48)

The error as defined by equation (44) becomes with equations (37), (47) and

(48) the following:

First-order Boundary Condition (38a)

E = fe (coth enj - coth _) h + ... (49a)

Second-order Boundary Condition (38b)

E = E 2 h 2 + ... (49b)

Therefore the global accuracy corresponds to the local truncation error of

the boundary condition. The errors predicted from equations (49) are the

solid lines in figure 6 and are in excellent agreement with the numerical

computations indicated with the circles.

If the flrst-order Neumann boundary condition (39a) is used, the dif-

ference solution is

where

Wj = Cj/¢j (50)

• j-i

_j = 12 °13-1 - Ii 02

11, 2 = (i - al, 2) = T h (i _ oh + ...)

With the use of equations (37) and (43), the error for the above difference

equation becomes

First-order Boundary Condition (39a)

1
E = _ a (tanh _ - tanh __)h + ...3 (51a)

For the second-order Neumann boundary condition (39b), the difference solution

is given by equation (47) where C = i. The use of equations (42) and (48)
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with f = 0.5 gives the error of the difference solution as

Second-order Boundary Condition (39b)

1 3
E = _-_ _ (tanh _ - _=J tanh _Nj)h 2 + ... (51b)

The global accuracy corresponds to the local truncation error of the Neumann

boundary conditions. The errors predicted from Equations (51) are the solid

lines in Figure 7 and are in excellent agreement with the numerical computa-

tions indicated with the circles.

In order to investigate the influence of boundary or extraneous approxi-

mations, it is assumed that a relation is needed to determine W 2 while W I is

known from the Dirlchlet boundary condition (35a). Extrapolation approxima-

tions are considered first where the local truncation error is indicated and

obtained from a Taylor's series expansion

First-order: W 2 = W 1 + 0(h) (52a)

Second-order: W 2 = W I + (W 3 - W I) / 2 + 0(h 2) (52b)

The finite-dlfference solution is given by Equation (50) where

and

_i,2 = al,2 = i _ _h + ...

_i,2 = ci,2 (al, 2 - 2) = -i + (ah) 2 _ (eh) 3 +

(53a)

(53b)

for the first and second order approximations respectively.

error becomes

First-order boundary approximation (52a)

The solution

E = _ (coth _ - coth _j)h + ... (54a)

Second-order, boundary approximation (52b)

E=E 2 h2+ .... (54b)

The locally second-order extrapolation approximation results in global second-

order accuracy and has the same error as the central difference scheme (45).
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Another approach for obtaining a boundary approximation is to difference
the governing equation and for this case the result is

(Wj+1 - 2 Wj + Wj_l)/h 2 - e2[@Wj_l+ (i - @)Wj] = 0 (55)

where

e J

I 1o

First-order local truncation error

Second-order local truncation error

If 8 = 0, then equation (40) is obtained and a second-order global accuracy

results as given by equation (45). If e = i, the solution to difference equa-

tion (55) is given by equation (42) where

O1, 2 = i _ eh

and
j-i _a3j i 2

O1, 2 = e (i - _ e _jh + ...)

The difference solution error becomes

1 2
E = _ a (i - __)h + ...3

which shows that the global accuracy is flrst-order. If the flrst-order form

of Equation (55) is used at j = 2, the difference relation (55) becomes

W2 = 2 (Wl + W3) - (eh)2 W1 + 0(h3) (56)

When this approximation is used along with the second-order form of equation

(55) at all the remaining grid points, the difference solution error is the

same as equation (45) and the global error is second-order. This behavior have

been observed previously by Srivastava, Werle and Davis [14] and is the only

case where a flrst-order approximation has not destroyed the second-order global

accuracy. Although equation (56) represents the governing equation with a

flrst-order local truncation error, the approximation appears to be thlrd-order

when written as equation (56) and is compared to the extrapolation relations

(52). This example illustrates the importance of stating whether extrapolation

or a difference form of the governing equation is being used to provide the

boundary approximation.

SUMMARY OF RESULTS

I. For the quasi-one-dimensional flow in a duct with the interior grid points

solved with the MacCormack scheme, the boundary approximations have the following

influences on the accuracy of the solution:
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a. For boundary approximation difference relations that are inconsistent

with the interior scheme, small oscillations near the boundary occur.

b. The midpoint relation gives the most accurate results for the proce-

dures investigated.

c. With first-order extrapolation boundary approximations, the global

accuracy is generally reduced to first-order.

2. An interior implicit midpoint difference technique is utilized for solving

the compressible one-dimensional flow in a porous material (or quasi-one-

dimensional flow with friction). This procedure is consistent with the boun-

dary conditions and does not require any boundary approximations. When spatial

central differences are used in the interior implicit scheme, three boundary

approximations are required to complete the system of difference equations.

The midpoint scheme provides guidance in indicating the appropriate boundary

approximations to be employed. If first-order boundary approximations to the

governing equations are used, the global accuracy of the solutions still tends
to be second-order.

3. Boundary condition discretization accuracy has significant influence on

the global accuracy of a dissipative (second derivative) model problem. When

a second-order interior difference scheme is used, the use of first-order

boundary condition dlscretization reduces the overall accuracy of the solution

to flrst-order. This result occurs for both Dirichlet and Neumann boundary

conditions. A boundary approximation investigation indicates that global

second-order accuracy is retained with second-order extrapolation and with the

model equation approximated with first-order accuracy.
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STABILITY ANALYSIS OF NUMERICAL BOUNDARY CONDITIONS AND IMPLICIT

DIFFERENCE APPROXIMATIONS FOR HYPERBOLIC EQUATIONS 1

R. M. Beam, R. F. Warming, and H. C. Yee
Ames Research Center

ABSTRACT

Implicit, noniterative, finite-difference schemes have recently been

developed by several authors for multidimensional systems of nonlinear hyper-

bolic partial differential equations. When applied to linear model equations

with periodic boundary conditions those schemes are unconditionally stable

(A-stable). As applied in practice the algorithms often face a severe time-

step restriction. A major source of the difficulty is the treatment of the

numerical boundary conditions. One conjecture has been that unconditional

stability requires implicit numerical boundary conditions. An apparent

counter example was the space-time extrapolation considered by Gustafsson,

Kreiss, and Sundstr_m. In this paper we examine spatial (implicit) and space-

time (explicit) extrapolation using normal mode analysis for a finite and

infinite number of spatial mesh intervals. The results indicate that for

unconditional stability with a finite number of spatial mesh intervals the

numerical boundary conditions must be implicit.

i. INTRODUCTION

The boundary-condition analysis described in this paper was motivated by

the application of implicit finite difference algorithms to hyperbolic partial

differential equations. As a simple example, consider the quasi-one-

dimensional inviscid flow described by the gas-dynamic equations in conserva-
tive form:

___U_U+ _F(U) + H(U) = 0 (i.i)
_t _x

A typical implicit algorithm has the form

n

_ + At (_x An + Dn)] AUn = -At _(_x + H) (1.2)

where AU n = Un+l - Un, A = _F/_U, D = _H/_U and _/_x is approximated by a

3-point central difference operator. Consider the nozzle sketched in Fig-

ure i.i with purely supersonic flow. For a well-posed problem U is

iThe one-step method results of this paper were presented at the SIAM

1981 National Meeting, Troy, New York, June 8-10, 1981.
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I Ii
0 xj

x

Figure i.i.- Divergent nozzle (ref. i).

specified on the inflow boundary (x = O) and nothing is given on the super-

sonic outflow boundary. Algorithm (1.2) with central spatial differencing

requires "numerical" boundary conditions on the right boundary at x = xj.

One way of providing the numerical boundary condition is by simply setting

AU_ = 0 (l.3a)

on the right boundary and, after the interior solution is computed (by a block

tridiagonal inversion), extrapolating the numerical solution to J

ujn+l = un+ij_i (I. 3b)

For the backward Euler temporal differencing used in (1.2) procedure (1.3) is

linearly equivalent to using zeroth-order space-time extrapolation

un+l n (1.4)
j = Uj_ 1

as the numerical boundary condition. There are two good reasons for using

(1.3), or (1.4), as the numerical boundary scheme: it is extremely simple

to implement and the interior scheme (1.2) with either (1.3) or (1.4) is

stable for the initial-boundary-value problem according to a (linear) normal

mode analysis of Gustafsson, Kreiss, and Sundstr_m (ref. 2).

To test the stability of the scheme (1.2), (1.3) we computed the steady-

state solution to the nozzle flow (fig. i.I) using various CFL numbers. The

number of time steps to converge is tabulated in table i.i. We found the

following peculiar results: Let J be the number of spatial intervals. For

an odd value of J the scheme is unconditionally stable but if J is even

there is a finite stability limit. For even J the stability limit depends

on J. In addition, if we replace the zeroth-order extrapolation (1.4) by a

linear space-time extrapolation

U_+I n n-I= 2Uj_ I - Uj_ 2 (1.5)

we obtain similar results but with a lower CFL limit (for the case of J even).
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TABLEi.i.- ZEROTH-ORDERSPACE-TIME
EXTRAPOLATION

19 spatial intervals 20 spatial intervals

CFL
Numberof Numberof
steps to CFL steps to
converge converge

i 274 i 283
i0 33 5 50
20 48 i0 34
30 46 15 52
40 42 20 92
50 56 22 141
60 67 23 199
70 77 24 353
80 84 25 2072
90 90 26 does not converge
l02 93 27 does not converge
10 3 20

i0 _ 15

i05 14

106 14

109 14

The linear stability analysis of Gustafsson, Kreiss, and Sundstr_m (GKS)

(ref. 2) for the above problem is based on a theorem due to Kreiss (ref. 3)

which relates the stability of the initial-boundary-value problem on a finite

interval to the stability of the difference approximation applied to the

Cauchy problem and the right- and left-quarter plane problems. From the GKS-

analysis it is clear that the results of a quarter-plane problem cannot pre-

dict either the stability dependence on the number of mesh intervals (odd or

even) or the dependence of the stability limit on the order of the space-time

extrapolation.

In this paper we analyze the initial-boundary-value problem on the finite

interval with a finite number of mesh points. This leads to a more restric-

tive definition of stability (than GKS-stability) which we call P-stability.

In section 2 we give the difference approximations for the model scalar

hyperbolic equation. We use a central spatial difference approximation and

a linear multistep formula for the time integration. The extra numerical

boundary condition is approximated by q-th order space or space-time extrap-

olation. In section 3 we review the definition of A-stability and define GKS-

stability and P-stability. In addition, we delineate the normal-mode analysis

for a quarter-plane problem.

Section 4 contains the stability analysis and the main results of this

paper. We prove three theorems regarding the GKS-stability and P-stability
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of A-stable linear multistep methods and space or space-time boundary extrap-

olation. To simplify the proofs we make use of known properties of the sta-

bility regions of A-stable linear multistep methods. In the appendix we

present a more detailed analysis of the necessary and sufficient P-stability

conditions for the class of one-step methods and space-time boundary extrap-

olation. The results show, for example, that the backward Euler method has a

P-stability bound that depends on the number of spatial intervals: for an

odd number of spatial intervals it is unconditionally P-stable; for an even

number of spatial intervals it is conditionally P-stable with the bound being

a function of the number of spatial intervals (fig. 1.2). Our analysis

explains the peculiar computational results of table i.i.

4O

3O

-6[ '<] 20
II

10

-- _R" ............_......................._;:i::..i::_

:':::!::!:""

"""" F IRST-OR DE R

i:!$i$i:i:i_$!$_i:.:.'i_.................
10 20 30 40

NUMBER OF SPATIAL INTERVALS

Figure 1.2.- P-stability bound for Euler implicit and space-time

extrapolation (even number of spatial intervals).

We give a complete P-stability analysis for the class of all A-stable

interior algorithms with all orders of space extrapolation as the numerical

boundary condition, for example, zeroth-order space extrapolation

bn+l .n+l (1.6)
j = uj_l

and first-order space extrapolation

n+l n+l _n+l (1.7)
Uj = 2Uj_ 1 - Uj_ 2

We show that all of these schemes are unconditionally P-stable. As a numeri-

cal test, table 1.2 presents results of the nozzle problem when (1.6) is used

as the numerical boundary condition.

A more detailed discussion of the implementation of the boundary condi-

tions for the equations of gas dynamics is presented in reference i.
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TAI_I,I':1.2.- ZI';I_OTII-()I_I)I':RSI'ACE
I",XTI_AI'OI,AT I ()N

20 ._p,'lti,'ll inLc, rwLl._
....................................

Number o F

CFI, s t el),_ to

(:()n ve rl4e

I 295

I0 28

20 15

3O ] I

4O 9

50 8

60 7

70 7

80 6

90 6
102 6

10 3 4

10 4 4

10 5 4

10 6 4

10 9 4

2. DIFFERENCE APPROXIMATIONS AND BOUNDARY CONDITIONS

In this paper we consider the numerical stability of finite difference

approximations for the scalar hyperbolic initial-boundary-value problem

ut - cu x = 0 , 0 _ x _ £ , t _ 0

where c > 0. For a well-posed problem, initial data are given at

u(x,0) = f(x) , 0 _ x _

and boundary values are prescribed at x = £

u(£,t) = g(t)

For the spatial mesh we divide the interval

(2.1a)

t= 0

(2.1b)

(2.1c)

0 -< x -< £ into J equally

spaced intervals, Ax =£/J, i.e., x = jAx (j = 0,1,2,...,J-i,J). We consider

only the centered three-point spatial difference approximation to 9u/$x in

(2. la), i.e.

duj uj+ I - u..] - I
dt - c 2Ax = 0 , j = 1,2,...,J-I (2.2)
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To integrate the first-order system of ordinary differential equations
(2.2) we use a linear k-step formula defined by

du n

p(E)u n = Ato(E)_ (2.3)

where p and a are the generating polynomials

k k

P (_) = _ _i _i , a(_) = E 6i _i (2.4a,b)

i= 0 i= 0

and E is the shift operator, that is,

Eun = un+l (2.5)

In (2.3), un is the numerical solution at t = tn = nat and At is the time

step. As an example, the most general consistent two-step formula (i.e.,

k = 2 in (2.4)) can be written as

e dun+2(i + _)u n+2 - (i + 25)u n+l + _un = At d-_
du n+l dunl

(2.6)

where (e,_,_) are arbitrary real numbers. The operators p(E) and o(E) are

p(E) : (i + _)E 2 - (i + 25)E + (2.7a)

o(E) : eE 2 + (i - e + _)E - (2.7b)

If we apply the linear k-step formula (2.3) to (2.2) we obtain

u2.o(E) : 2A---_o(E) - , j : 1,2,. .. ,J-l,

n = k,k+l,k+2,...
(2.8)

The values u_ are obtained from the prescribed analytical boundary condi-

tion (2.1c), i.e.,

n

uj = g(nAt) , n = 1,2,... (2.9)

To complete the computational algorithm we need, in addition to (2.8) and

(2.9), a method for computing the values of u_ at the boundary j = 0,

i.e., u_; and a prescription for initial values u_, n = 0,1,...,k-l,

j = 1,2,...,J-i.

For the calculation of the boundary values

olation techniques: space extrapolation

n we consider two extrap-
u 0

q n
(F - i) u. : 0 , j : 0 , q : 1,2,...

]
(2.10)
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and space-time extrapolation

_ q n(FE-I i) u. = 0 , j = 0 ,
J

where F is the spatial shift operator

q -- 1,2,... (2.11)

Fu_ n
3 = uJ+I (2.12)

and E is the temporal shift operator (2.5). The two lowest degree spatial

extrapolations (q = 1,2) are simply zeroth- and first-order extrapolation

n n
U 0 = U 1

n n n
u 0 = 2u I - u 2

or zeroth- and first-order space-time extrapolation

n n-i
u0 = u 1

n n-I n-2
u 0 = 2u I - u 2

0
The initial values u.

tion (2.1b), i.e., 3

(2.13a)

(2.13b)

(2.14a)

(2.14b)

are obtained from the analytical initial condi-

n f(jgx) j = 0,I, ,J (2.15)
Uj = , ...

For higher order k-step methods (k > l) we assume that additional levels of

initial data are given or they are calculated using an alternate numerical
method.

In the following sections we investigate the numerical stability of the

algorithm defined by (2.8), (2.9), and (2.10) or (2.11).

3. NUMERICAL STABILITY DEFINITIONS

In this section we first review the definition of A-stable linear multi-

step methods. Next, we review the normal mode stability analysis of Kreiss

(ref. 3) and Gustafsson, Kreiss, and Sundstr_m (ref. 2) and define GKS-

stability. Finally we add an additional constraint to the GKS-stability and

define what we believe is a stability definition applicable to many practical
calculations.

3.1 A-Stability

If the linear k-step formula (2.3) is used to integrate the first-order

ordinary differential equation

du

d--_= f(u,t) , u(0) = u 0
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one obtains the linear multistep method (LMM)

p(E)un = Ato(E)f n (3.l)

The linear stability of an LMM is analyzed by applying (3.1) to the

linear test equation

d--u-u= %u (3.2)
dt

where, in general, X is a complex constant. The stability region of an LMM

consists of the set of all values of EAt for which the characteristic

equation

p(¢) - XAto(_) = 0

satisfies the root condition; that is, its roots _&

and the roots of unit modulus are simple (ref. 4).

all satisfy

An LMM is said to be A-stable (ref. 5) if its stability region contains

all of the left half of the complex XAt plane including the imaginary axis.

It can be shown (ref. 6) that a linear two-step method, i.e., (2.6), is

A-stable if and only if

1
e _ _ + _ (3.4a)

> i
_ -_ (3.4b)

1

-< 0 + _ - _ (3.4c)

In this paper, for the stability analysis, we assume that the temporal

difference approximation (2.3) would produce an A-stable LMM. In part of the

analysis a stronger stability definition is required.

An LMM is said to be strongly A-stable if (i) it is A-stable,

(ii) its stability boundary locus is tangent to the imaginary

axis only at the origin, and (iii) all roots of p(_) are

inside the unit circle except for the root _ = i.

For example, the backward Euler (O = i, _ = 0, _ = 0), second-order backward

differentiation (0 = I, _ = i12, _ = 0), and Adams type (0 = 3/4, _ = 0,

0 = -1/4) methods are strongly A-stable; however, the one-step trapezoidal

rule (0 = 1/2, _ = 0, _ = 0) does not satisfy condition (ii) and the two-step

trapezoidal (0 = 1/2, _ = -1/2, _ = -1/2) and the Lees type (0 = 1/3,

= -1/2, _ = -1/3) methods do not satisfy either condition (ii) or (iii).
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3.2 GKS-Stability

Kreiss (ref. 3) has shownthat the stability of a difference approxima-
tion for the initial-boundary-value problem (2.1) is related to the stability
of the difference approximation applied to the initial-value, or Cauchy,
problem

Ut - CUx = 0 ,

U(X,0) = f(x)
-_ < X < _, t > 01 (3.5a)

and to the related quarter-plane problems: the right-quarter-plane problem

ut - cux = 0 ,

u(x,0) = f(x)
0-<x<=, t>0 1 (3.5b)

and the left-quarter-plane problem

ut - cux = 0 , -_ < x S £, t _ 0_

u(x,0) = f(x)

u(£,t) = g(t)

(3.5c)

Gustafsson, Kreiss, and Sundstr_m (GKS) (ref. 2) developed a normal mode
stability theory for general difference approximations to mixed initial-
boundary-value problems, e.g., (3.5). For the purposes of this paper we make
the following definition:

A difference schemefor an initial-boundary-value problem on a
finite domain is said to be GKS-stable if it is stable (by the
von Neumann2 method) for the Cauchyproblem and stable (according
to definition 3.3 of reference 2) for the related left and right
quarter-plane problems.

3.2.1 Normal mode analysis- In some of the proofs in section 4 we rely

on the previous work of Gustafsson and Oliger (ref. 7). In their paper they

provide a concise description of the application of the normal mode analysis.

We repeat those parts required in the present analysis.

Results obtained by means of the normal-mode analysis are based upon the

behavior of the so-called resolvent equations. These are formally derived

(for the right-quarter-plane problem) from (2.8) and (2.10), or (2.11), by

substituting u_ = znvj where z is a complex number. We obtain,
respectively 3

2For the problems considered here the von Neumann test is necessary and

sufficient for the Cauchy problem.
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: ca__!to(z)(vj+ I _ vJ-1 )p (z)vj 2Ax (3.6)

and

(F - l)qv. = 0
]

(3.7)

or

(Fz -I - l)qv. = 0
J

The general solution of (3.6) which is bounded as

written in the form
j -9- oo for

(3.8)

Izl > i, can be

where

Vj = VoK]

is the root of the characteristic equation

(3.9)

cat O(Z)(K-_)p (z) = 2Ax (3.10)

such that IKI < 1 if Izl>1.

Equation (3.10) is formally obtained from (3.6) by substituting vj = <J.
Only one root of the quadratic in _, (3.10), has modulus less than one. This

is an immediate consequence of the stability of (2.8) for the Cauchy problem

(which is assured since the temporal integration scheme is assumed to be

A-stable) and justifies (3.9). It is proved in reference 2, Lemma 10.3, and

the following sentence, that the approximations are stable for the (right-

quarter-plane) initial-boundary-value problem if, and only if, (3.6) with

boundary condition (3.7) or (3.8) has no trivial bounded solutions of the

form (3.9) for Izl _ i. (Note that one must include [z I = i.) This is

established by substituting (3.9) into (3.7) or (3.8) and showing that

v0 = 0. When Izl = i, one or both of the roots of (3.10) may have modulus

one. If this is the case, the < in (3.9) is defined by continuity to be

that root which is the limit of the root _(z'), l<(z')l < 1 for Iz'l > i,

as Iz'l + i. A nontrivial solution when Izl > 1 is said to be an eigen-

solution and the corresponding z an eigenvalue. A nontrivial solution when

Izl = 1 is said to be a generalized eigensolution and the corresponding z

a generalized eigenvalue.

3.3 P-Stability

The stability analyses that provide GKS-stability bounds are very useful

since they are relatively simple for scalar equations (with low order spatial

difference approximations) and provide CFL limits that are directly applicable

for many calculations which use explicit temporal difference approximations.

They also provide a convenient method for eliminating undesirable numerical

boundary schemes. However, they fail to provide a sufficient stability con-

dition for some practical calculations with implicit schemes. This is a
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result of the stability definition 3.3 of reference 2 which allows growing
solutions if the mesh interval, At or gx, is not sufficiently small for a
fixed value of At/Ax. Possible growing solutions for the classical wave
equation are discussed in reference 2. Therefore, it is desirable to have a
more restrictive stability definition. Weincorporate GKS-stability as a
necessary condition and make the following definition:

A difference schemefor an initial-boundary-value problem is said
to be P-stable if it is GKS-stable and all eigenvalues of the
characteristic equation for a finite number of spatial mesh inter-
vals have modulus less than or equal to unity.

n nj
The characteristic equation is obtained by substituting uj = z K into the
difference approximation for the initial-boundary-value problem on the finite
domain, e.g., (2.8), and eliminating K with the homogeneousboundary condi-
tions, e.g., (2.9) with g = 0, and (2.10) or (2.1l). Note that this charac-
teristic equation, which includes both boundary conditions, differs from the
characteristic equation in the GKSnormal modeanalysis, which includes only
one boundary condition (in the analysis of each quarter-plane problem).

4. STABILITYANALYSIS

In this section we present our principal results. First we consider the
space-extrapolation boundary conditions and the general class of all A-stable
temporal difference schemes. Next we consider the space-time-extrapolation
boundary condition for the more restricted class of strongly A-stable temporal
schemes.

4.1 Space-Extrapolation Boundary Scheme

Wewill prove the following:

Theorem4.1. Let _ = cAt/Ax, c > 0. The algorithm (2.8), (2.9) and space-
extrapolation boundary scheme(2.10) is P-stable if the polynomials 0(E) and
o(E) correspond to an A-stable LMM.

The GKS-stability for a limited class of two-step LMMswas investigated
by Gustafsson and Oliger (ref. 7). The extension to the general class of all
A-stable LMMsrequires only minor modifications which we consider here. As
mentioned previously, the von Neumannstability of the Cauchyproblem is
assured since the temporal integration schemeis assumedto be A-stable. The
GKSanalysis of the left-quarter-plane problem is trivial. For the right-
quarter-plane problem we substitute (3.9) into the boundary condition (3.7)
and find that v0 = 0 unless _ = i, which can only happen when Izl = i.
Therefore, we need only check for a generalized eigenvalue and the generaliza-
tion of the Gustafsson and Oliger analysis of the right-quarter-plane problem
requires only the following lemma:
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Lemma4.1. Assumethe polynomials p(z) and o(z) correspond to an A-stable
LMMand _ > 0. The equation p(z) = (I/2)Va(Z)[K - (I/K)] has no solutions
JzJ = i + 6, K = i - e where 6 > 0, e > 0, 6 and e small.

Proof: Let K = i - e, E > 0. Then K - (I/K) = -2e + 0(e2). Since
Re{_[K - (I/K)]} < 0 and the polynomials p(z), a(z) correspond to an
A-stable LMMit follows that JzJ J i, or _ _ 0.

Wehave proven GKS-stability. To complete the P-stability analysis and
the proof of Theorem4.1 we must prove that the eigenvalues of the character-
istic equation have modulus less than or equal to unity. Weobtain the char-
acteristic equation by substituting u_ = znKj into equation (2.8) and
eliminating K by using the homogeneousboundary conditions (2.9), with
g = 0, and (2.10). From (2.8) we obtain

_(z) = _ _(z) K -
(4.1)

which is a quadratic with two roots K, --K-I. Let

n [aKJ + b (_i) j]u. = zn
J

(4.2)

Boundary condition (2.9) with g = 0 leads to

0=aK +b -

or

un=j zna[KJ _ (_I)JK 2J(-1) 3 ] (4.3)

and the space-extrapolation boundary condition (2.10) gives us an equation for

<, i.e.,

(K - i) q - (-i) J+q K2J-q( K + i)q = 0 (4.4)

Note that z does not appear explicitly in (4.4).

As a preliminary to the remaining proofs of this section we note the

following. The characteristic equation (4.1) can be rewritten as

O(z) - %Ato(z) = 0 (4.5)

where

(c.f., (3.3)).

_At =_ - , _ > 0

An LMM is A-stable if and only if

(4.6)
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rp(z)] = _ _
Re Lo(z)J Re(XAt) < 0 = Izl < 1

or

Re(K- i) < 0 _ JzJ < I

where z denotes the roots of the characteristic equation (4.5).

more, from the identity

Re(K- i)= a( K2 --i)2

where K = a + ib, JKJ 2 = a2 + b2, it follows that

a>ilor _Re K - < 0

IKJ >l,a<

(see the shaded region of fig. 4.1).

;_t

(4.7)

(4.8)

Further-

(4.9)

(4.10)

Figure 4.1.- Transformation %At = (v/2)(K - I/K).

Before we examine the roots of the polynomial 3 (4.4) it is useful to

have the following lemma:

Lemma 4.2. Assume the generating polynomials p(z) and a(z) correspond to an

A-stable LMM and _ > 0. If JKJ _ 1 and Re(K) _ 0 then all roots of the

polynomial (4.1) have modulus less than or equal to unity, i.e., JzJ _ i.

Proof: The proof of the lemma follows from (4.10) and (4.8).

3The characteristic equation would be formally obtained by solving (4.4)

for K and eliminating K from (4.1) to obtain an equation in z. This

procedure is neither practical nor necessary.
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If K is a root of (4.4) then -K-I is also a root; however, each pro-
duces the samevalue of K - (l/K). Therefore we need only consider values of
IKI _ i. To complete the proof of Theorem4.1 we need only prove:

Lemma4.3. The polynomial (4.4) has no roots, K, with IKI < i, Re(K) < 0.

Proof: Rearrange the terms in (4.4)

K2J--q(K + i)q

(K - i) q

= (-I) J+q (4.11)

The LHS of (4.11) has 2J - q zeros at K = 0, q zeros at K = -i, and q

poles at K = 1 as shown in figure 4.2. The modulus of the LHS of (4.11)

must equal unity if K is a root of (4.11), i.e., using the vectors defined

in figure 4.2

Ir112[-qlr2 lq

Ir31 q

= i (4.12)

0

'X 0 1

_J
Figure 4.2. K plane.

If IKI < i, Re(K) < 0 then Irll < i, Ir21 < i, and Ir31 > i; there-

fore K cannot be a root of (4.4). Consequently, the roots of (4.4) must

fall in the shaded region of the K-plane of figure 4.1, and by (4.10) and

(4.8) the eigenvalues of the characteristic equation (4.1) have modulus

1.I_<i

This completes the proof of Theorem 4.1.
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4.2 Space-Time-Extrapolation Boundary Scheme

For these boundary schemesit is convenient to first consider GKS-
stability and prove:

Theorem4.2. Let _ = c&t/Ax, c > 0. The algorithm (2.8), (2.9) and space-
time-extrapolation boundary scheme(2.11) is GKS-stable if the polynomials
p(E) and a(E) correspond to a strongly A-stable LMM.

Again we present only those modifications of the Gustafsson and Oliger
analysis (ref. 3) which are necessary to generalize their results to the class
of all strongly A-stable LMMs. Wesubstitute (3.9) into boundary condition
(3.8) and find v0 = 0 unless z = K which can only happenwhen JzJ = i.
Therefore we need only check for generalized eigenvalues and the modifications
can be summarizedby the following generalization of Lemma4.1:

Lemma4.3. Assumethe generating polynomials p(z) and a(z) correspond to a

strongly A-stable LMM and _ > 0. The equation p(z) = (I/2)Va(Z)[K - (l/K)]

has no solutions Jz I = 1 + 6, IKI -- I - E where _ > O, e > 0, 6 and E
small.

Proof: Since p(z) and a(z) correspond to a strongly A-stable LMM the sta-

bility region (IzJ _ i) includes the entire left half of the complex

p(z)/a(z) plane plus a region to the right of the imaginary axis except at

the origin (fig. 4.3a). All values of JKJ = 1 lie on the imaginary axis of

the K - (l/K) plane and values JK I = i - C lie near the imaginary axis

i_iii_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiliiiiiiil

jl_l=1

Figure 4.3(a). p(z)/a(z) plane. Figure 4.3(b). K - (l/K) plane.

but these values of K - (I/K) correspond to JzJ ! 1 (except at the origin)

in the p(z)/a(z) plane, i.e., JzJ = i + 6, 6 _ 0. The values K = ±i map

into the origin of the K - (i/c) plane. Note that z = i (K = i) is not a

generalized eigenvalue (by lemma 4.1) but we must check K = -i. Set z = K,

i.e., p(z) = (l/2)_a(z)[z - (l/z)] and then z = -i which implies p(-l) = O;

271



however, -i is not a root of p(_) since p(_) corresponds to a strongly
A-stable LMM.

This completes the proof of Theorem4.2.

Next we prove that the space-time-extrapolation boundary schemeleads to
a conditional P-stability bound.

Theorem4.3. Let _ = cAt/Ax, c > 0. Assume p(E) and a(E) correspond to a

strongly A-stable LMM. For even values of J the algorithm (2.8), (2.9) and

space-time-extrapolation boundary scheme (2.11) has a necessary P-stability
condition

_ I+K _
In _1 -" "17_/

J > q In(_2)
(4.13)

where

P (-1) ifr o (-1) ]2
va(-l) V Lva(-l)J + i (4.14)

Remark: Inequality (4.13) implies a necessary conditional stability bound of

the type sketched in figure 4.4.

of
We proceed as in the case of space extrapolation, i.e., by substitution

un from (4.3) into boundary condition (2.11) which leads to
J

(K - Z) q - (-i) J+q 2J + z = 0 (4.15)

Note that, in contrast to (4.4) for space extrapolation, z appears explicitly

in (4.15). (Again we avoid the formal procedure of finding the characteristic

equation which would require solving (4.15) for K(z) and eliminating K from

(4.1).) Note that (4.15) can be rewritten

z - _ .}ql
j = In[ (-l)J (I/K + z' J

In(K 2)
(4.16)

and (4.1) can be rewritten (_ _ 0, a(z) # 0)

< = va(z) + 1 (4.17)

We seek solutions of (4.16) and (4.17) on the stability boundary,

z = -(I + 6) as _ ÷ O, 6 positive and real. Since o(E) and a(E) corre-

spond to an A-stable LMM
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r o(--)]<o = 1ReL_-_] - I'-I -<

or conversely

I_.1> 1 = Re > o
Lvc_(z)J

Since z = -(l + 6) is real and Izl> 1 we have

p(-i - a) > o
v_(-i - 6)

and from (4.17), as v goes from 0+ to _, K increases monotonically from

-i + to 0, i.e., -i < _ f 0. For even values of J and z = -i, (4.16)

becomes

J

I+K )qIn \-I/K + i

In(K 2)

and clearly for each value of <, -i < K < 0, J has a positive real value.

From the derivative dv/dJ (obtained from equations (4.13) and (4.14)) it is

easily shown that v(J) is a monotonically increasing function, e.g.,

figure 4.4. The direction of the inequality (4.13) follows from GKS-stability

of the scheme, i.e., for fixed _ no values Izl> i as J ÷ _.

J

Figure 4.4.- Necessary stability region.

This completes the proof of Theorem 4.3.

Remark: Equations (4.13) and (4.14) provid e a necessary P-stabillty condi-

tion. In the appendix we consider necessary and sufficient P-stability con-

ditions for the class of one-step methods.
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5. CONCLUDINGREMARKS

In the analysis of the scalar hyperbolic initial-boundary-value problem,
we have shownthat if one combines the implicit space-extrapolation boundary
schemeswith an unconditionally stable interior schemethe combined schemeis
unconditionally stable. However, if one combines the explicit space-time-
extrapolation boundary schemewith an unconditionally stable interior scheme
the combinedschemewill be conditionally stable (if both odd and even numbers
of mesh intervals are allowed) and the stability condition will depend on the
number of meshintervals. Wehave confirmed these results by numerical
example for special cases of the quasi-one-dimensional equations of gas
dynamics.
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APPENDIX

P-STABILITYCONDITIONSFORONE-STEPMETHODSAND
SPACE-TIME-EXTRAPOLATIONBOUNDARYSCHEME

In section 4.2 we found a necessary P-stability condition for the general
A-stable LMMand space-tlme-extrapolation boundary scheme (2.11). In this
appendix we investigate the necessary and sufficient P-stability conditions
for the class of one-step methods.

The class of one-step or 8 methods is (_ = _ = 0 in (2.7) with the
temporal index shifted downby one)

0(E) = E - i (A.la)

_(E) = 8E + (1- e) (A. ib)

and they are A-stable if and only if (eq. (3.4))

8 > _ (A.2)- 2

GKS-Stability Analysis

Before proceeding with the P-stabillty analysis, it is useful to examine
the GKS-stability analysis of the right-quarter-plane problem. From the
analysis of the right-quarter-plane problem we have the characteristic equa-
tion (see (4.1))

(z - i) --_(ez + l- e) _ - (A.3)

and from the space-time-extrapolation boundary condition (2.11) the condition

z = _ (A.4)

GKS stability requires that there are no nontrivial solutions to (A. 3) and

(A.4) with Izl > i, IKI < i. Substitution of K from (A.4) into (A.3) leads

to

i ( 0(z - i) --_(ez + 1 - e) z -

or if z # I (z = +l can be shown not to correspond to a generalized eigen-

value, see fig. 4.1)

z 1
- _8 (A.5)

((z + i) z +---f--
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The locus of the roots of (A.5) for all v > 0, 8 _ 1/2 are shownin Fig-
ure AI. The arrows indicate the direction of the motion of the roots as the
parameter ve changes from 0 to _.

-1

1
(a) _ ="_-" (b)l< (_< 1

1 -1 1

(c) _ = 1 (d) _ > 1

Figure AI.- Locus of roots for equation (A.5).

The only possibility of a generalized eigenvalue occurs at the intersec-

tion of the root locus and the unit circle, JzJ = i. We have already elim-

inated z = +I. Clearly, the only other possibilities are for e = 1/2

where the locus lies on the unit circle or z = -I for e > 1/2.

Consider first 8 = 1/2. Equation (A.3) becomes

z + i 4 K - (A.6)

Next, we consider values of < near z = K = i (v = 2). Let

= (i - a)e , e > 0 , _ > 0 (A. 7)

where e and _ are to be considered small. The RHS of (A.6) with K from

(A.7) becomes
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Z ( I) Z [(i - - i<-

For small

(i - ¢) 2 + i

1 -- E sin (2 + _)]

I

-2e + e2

2(1- e)
(-_)

Thus for e small (¢ > 0, _ > 0)

>o (A.8)

Since 8 : 1/2 corresponds to an A-stable LMM with none of the right-half

plane in its stability region we know that a positive real part of the RHS of

(A. 6) implies JzJ > i. Therefore, z = < = i (v = 2) represents a generalized

eigenvalue. It is easy to show that there is a generalized eigenvalue for all

> 2 and no generalized eigenvalue for v < 2. To summarize, if 8 = 1/2

the scheme if GKS-stable for v < 2. (This result is obvious from a compari-

son of fig. Ala and fig. 4.1.) Note that e = 1/2 does not correspond to a
strongly A-stable LMM and this result does not violate Theorem 4.2.

Next, we consider 8 > 1/2, v + _ (i.e., z = -i). Let

z : -i - 6 , 6 > 0 (A.9)

and substitute into (A. 3)

<2 _ 2(2 + _)
(60 + 20 - l)v < - 1 : 0 (A.10)

For large values of

< _ (60 + 20 1)v + 1 +_- (60 + 20 - 1)v "'"

We choose the negative sign to ensure < ÷ -i

2+6

< _ -i + (60 + 20 - l)v -I + e (A. II)

where e > 0 and < ÷ -i + as v ÷ =. We conclude that z = K = -i is a

generalized eigenvalue for X ÷ _. However, there are no generalized eigen-

values for X < _ and the scheme is GKS-stable in agreement with Theorem 4.2.

P-Stability Analysis

The necessary P-stability condition of Theorem 4.3, equations (4.13) and

(4.14), has (as the asymptotic limit J ÷ =) the generalized eigenvalue just

considered in the GKS-stability analysis (z : K = -I). For the finite values
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of J we no longer have the condition z = _ and must consider the more

complicated relation (4.15). To simplify the investigation we seek only the

asymptote (J large) of the P-stability bound.

First we rewrite the characteristic equation (A.3) and the boundary con-

dition polynomial (4.15), i.e.,

ez + i - e = 2 v K - (A.12)

and

(_l)J/q K-[(J/q) -I] + K(J/q )-I

z -- j/q (A. 13)
(-i) J/q _-(J/q) - K

and we will assume J >> q. Next we assume J >> i and eliminate _ from

(A.12) and (A,13), For notational convenience let

z - i = _=_*^t (A.14)
ez +i- 0

From (A.12) we have

_2 2%*At K - 1 = 0

or

-- V(®)_*&t + + i (A.15)
M

Recall

cat cat
M=--=--j

Ax

therefore for large J, (A.15) becomes

K = 1 +---- (A.16)
c J

Note that the choice of the sign before the radicand is arbitrary due to the

special form of (A.12) and (A.13). We have chosen the positive sign. If we

introduce K from (A.16) into (A.13) and assume J >> i we obtain

Z

eEX*/q c + (-i) J/q e-(_k*/q c)

e&%*/q c _ (_i) J/q e-(&X*/q c)
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or

e2&X*/qc = (-l)J/q(z - i) (A.17)
z+l

Thus, we have replaced K in (A.12)

At the stability boundary JzJ = i.

characteristic equation (A.14)

and (A.13) by %* in (A.14) and (A.17).

We set z = e i_ and substitute in the

,, 2
A --

At
F (2e - l)tan _2 + i

- -- L-(2e - l)2 ta_ "2_ +" ctn 2
(A.18)

and the boundary condition (A.17)

X, = c___2£/n[ i(-l)J/q tan _]
(A.19)

For example, if we choose zeroth- or first-order space-time extrapolation,

q = 1 or 2, (A.19) becomes

X, = qc24[/n(tan 2_)+ i (2+ 2m_)] ,
= even integer (A.20a)

q

= qc24[/n(tan 2_)+ i (_+ 2m0] ,
= odd integer (A.20b)

q

= q¢ [/n(tan2_)+24 i(_ + 2m_)] ,

J i
--= even integer +_ (A.20c)
q

24

1
J-- odd integer +_ (A.20d)
q

where m = 0,±i,±2, ....

Symbolically we can write (A.18) and (A.19)

i
X_E = _ f(X)

(A. 21a)

, qc g(X)
XBC =

(A. 21b)

where X = tan(_/2) and f and g are complex functions of X. The subscripts

CE and BC on X* have been added for notational convenience; of course, %CE

must equal XBC.

We have found the following procedure to be convenient for solving (A.21).

Choose 8. Equate the arguments of X_E and X*BC, i.e.,

279



Arg(%;C ) = Arg(%CE)

or

Arg(f(X)) = Arg(g(X)) (A.22)

where (A.22) is a nonlinear equation in X which can easily be solved by

Newton's method. Next equate the absolute values of %_E and X_C, i.e.,

I  EI--I  cl

or

1 ]f(x) l = qc ]g(X) i
At £

or, since v = c&t/Ax, Ax = £/J,

J f(X)v = -- (A.23)q

which is an asymptote for the stability boundary, Izl = i. In general, there

can be more than one asymptote since g(X) is a function of m, e.g., equa-

tion (A.20). The P-stability condition is the most restrictive condition

(minimum v) obtained from the set (A.23) and (4.13), (4.14). P-stability

domains for typical methods with the space-time-extrapolation boundary scheme

(J even, q = i) are shown in figure A2.

For some values of 8 and q there are no asymptotes (A.23). For

example, let q = i and J be even. We have from (A.18)

f(X) = (20 - I)X + i

(202 - 28)X +

and from (A.2Oa)

g(X) = _ Zn(X) + i + 2m
i.

therefore (A.22) becomes

-- + 2k_
i 2

=

(2e - I)X In(X)
(A.24)

Equation (A.24) has no solution (e > 1/2) if

e>_ +
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4O

jEQ. (4.13)

" ..../7'/'"

, s i!_iiii_iii_iiiiii_::_i_ii_i!i_ii::iii::iiiii::::_iiii_i_ii::iii::iiiiiiiii::i!iiiiiiiiiiii_i_::i_ii_i:_::iiiii::iii::_::iiiiii

(a) 0 = 0.52

Eliiiiiiiii"!i_iii(i4!_i_ii'!li....:3!i!i!i)i_:._i_iiii.i.:i:i_iiiii!iiiii_iiiiii_i:i..iii_i_i_i_!iii!i!:iii:!:!iiiiiii!iii!iiiiiiiiiiiii_iiiiii_iiiiiiiiiiii:ii_ii:iiiii:iiiii:iiiii:ii_.:::" 1

40
J

EQ. (4.13)

(b) 8 = 0.60

0 40

J

(c) 8 = 0.75 (d) 8 = 1.0

Figure A2.- P-stability domain (shaded region) for typical e methods, space-

time-extrapolation boundary condition, J even, q = i.

Therefore, if

1 1

> 2 + --_e_ 0.6171 (A.25)

there are no asymptotes (A.23) and the P-stability bound is (4.13), (4.14).

Similarly, if q = 1 and J is odd there are no asymptotes (A.23) if

1 1

8 > _ +-- _ 0.5390 (A.26)3_e

and the schemes are unconditionally P-stable. Note that the values (A.25)

and (A.26) were derived for large J and may not apply for J near unity.
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STABILITY THEORY OF DIFFERENCE APPROXIMATIONS FOR

MULTIDIMENSIONAL INITIAL-BOUNDARY VALUE PROBLEMS

Daniel Michelson

University of California at Los Angeles

Consider a first order hyperbolic system of partial differential
equations

8u m
(1) _ + _ x,t) 8u

j=l Aj( _x i - F(x,t)

which is solved in the domain

xI > 0, t > 0,

with zero initial condition

x_ = (x2,x3,...,Xm) c Rm-z

(2) u(x,0): 0

and boundary condition

(3) Su(O,x_,t) = g(x.) .

We assume that system (1) is strictly hyperbolic, i.e. the elgenvalues of

the symbol A(_) =_Aj_j are real and distinct for real w _ 0. We also

assume that the boundary is not characteristic, i.e. AI is not singular.

The well posedness of the problem in (1)-(3) is stated _n terms of the
a priori estimate

(4) _IIu(x,t)e-_t[I 2 + [In(0,x ,t)e-_tI[ 2 _ K(_ IIF(x,t)e-_tl[ 2 + Ilg(x.,t)e-_tll 2)

which should hold for any _ > _^ > 0 and some constant K independently

on the fUnction u(x,t). HereV _'H denotes the L_ norm over domains

indicated by the arguments. The problem in (1)-(3) w_s investigated by

H.-O. Kreiss in [1], where he shows that estimate (4) follows from so-called

uniformKreiss condition (referred farther as UKC) and in the cases of con-

stant coefficients is equivalent to this condition.

Now suppose that equation (1) is approximated by a multistep difference
scheme

(5) _Ex,Et)u(x,t ) : At.F(x,t)

with corresponding zero initial condition and boundary condition

(6) S(Ex,Et)u(0,x_,t ) = g(x.,t)

Here Ex = (Exl'''"Exm)' where Exj,E t are the displacement operators in
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the directions xj and t with the increments Zkxj and &t respectively
(Zkx./_t are constant), and L(Ex,E_), S(Ex,Et) are difference operators
consistent with equations (1) and (3_. Weassumealso that the difference
equations (5)-(6) are solvable in time, i.e. assumption 3.1 in [3S. our goal
is to obtain for the difference problem (5)-(6) the sameestimate (4) with
discrete L2 norms. Insofar this problem was treated only in one-space
dimensional case: for some dissipative schemes by Kreiss in [2S and for more

general dissipative as well as strictly non-dissipative schemes by Gustafsson,

Kreiss and Sundstr6m in [3S. An attempt to generalize these results for

arbitrary multi-dimensional difference schemes encounters severe obstacles.

However for dissipative difference schemes the problem may be resolved. In

fact we prove the following.

THEOREM i. Let the difference operator _Ex,Et) be uniformly dissi-

pative, i.e. for _ i 0 the eigenvalues z of the characteristic equation

det _ei_,z) = 0, where

ei_ (ei_l,ei_2 ,el_m)

are in the unit disc Izl < 1 and for small ILl each eigenvalue z.

satisfies an inequality J

2n. 2n.

1 - 521_I J _ Izjl _i - 511_I J

Then UKC is sufficient and, in the case of constant coefficients, necessary

for estimate (4) to hold.

The UKC is formulated as for the differential problem. However the

verification of this condition in multidimensional case is very complicated.

Applying to problem (5)-(6) Fourier transform in the tangential variables

x with the dual variables _. = (_2,''',_n) we arrive at the difference

p_oblem in xl,t depending on the parameters __

i_.

(7) _Exl,e ,Et)U(Xl,t) = _t'F(Xl, t)

it_

(8) S(Exl, e ,Et)u(0,t) = g(t)

with zero initial condition.

We can prove the following result:

THEOREM 2. If (5)-(6) is a consistent approximation of a well-posed

problem (1)-(3), then UKC for problem (5)-(6) is satisfied if and only if it

is satisfied for (7)-(8) for any __. (I.e. we do not need uniformity in _ .)

So the multidimensional problem is reduced to a set of one-space dimen-

sional ones. It is still a difficult task to check well posedness of each

one of the problems (7)-(8). However, by adding sufficient amount of dissi-

pativity in the tangential variables, this problem may be further reduced

to the single case of (7)-(8) with _. = 0. Namely, introduce the difference
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m

operator A = _ (E +E'I-2) and consider the difference problem
j=2 xj Xoi

(9) _Ex,-Et(1 - N_k))u(x,t) = At. F(x,t)

(10) S(Ex,Et(1 - K_k))u(0,x.,t) = g(x_,t)

with zero initial condition. Here K is a positive constant and k is a

positive integer. We have the following result.

THEOREM 3. Let problem (5)-(6) satisfy the conditions:

(a) the Cauchy problem for (5) is well posed

(b) (5)-(6) is consistent with a well posed problem (1)-(3)
(c) (5)-(6) is solvable in time

(d) For __(= 0 problem (7)-(8) is well posed and the operator in (7)
is dissipative. Note that we do not require the general dissipativity of L.)

Then for any positive integer k there exists a positive constant K

such that problem (9)-(10) is well posed (in the sense of estimate (4)).

Theorem 1 is essentially proved in [4] for the more complicated but

particular case of Burstein difference scheme applied to same characteristic

boundary value problem. Theorems 2 and 3 follow easily from the proof of
Theorem 1.

[l]

[2]

[3]

[4]
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SOME EXPERIMENTS ON EXPLICIT BOUNDARY ALGORITHMS

K. F6rster

University of Stuttgart

Summary

This paper describes some experiments done with the aim of impro-

ving the accuracy and efficiency of explicit boundary algorithms

for quasilinear hyperbolic systems of partial differential equa-

tions in matrix form.

The starting point

Some time ago we tested a number of finite difference schemes

using an exact but non-trivial solution of the gasdynamic equa-

tions due to Ringleb /I/. This solution had been cast into some

convenient subroutines for the purpose of a workshop held by the

author in 1977 (see /2/) and further developed since then into a

veritable "Ringleb machine" which is described in the appendix I.

The outcome of these tests was surprising: if we inserted the

exact boundary values (fig.la) instead of computing them numeri-

cally (fig.lb), the error level was decreased drastically, even

by orders of magnitude. That means that the accuracy potential of

the tested field algorithms is much higher than commonly antici-

pated but is deteriorated by common boundary algorithms to an

astonishing degree.

The consequences are important. Should it be possible to cure the

defect and to maintain reasonably similar accuracy levels for

both, boundary and field, the number of grid points necessary for

a certain accuracy would be substantially reduced resulting

2s7 Precedingpageblank



Fig.1 Comparison of Lax-Wendroff-Richtmyer scheme with a) exact

boundary values and b) 2nd order boundary algorithm (extrapola-

tion of the marching derivative from the field to the boundary).

General remark: All figures in this paper refer to the case of

steady supersonic channel flow with 0.7 _ _ _ 0.8, -200 4 _ = 200 .

All computations were done with 10 meshes across the channel.

The figures show the distribution of the error in static pres-

sure E = P/Pexact- I, multiplied by the indicated power of ten.

either in a decrease in cost or in the possibility to tackle more

complex problems on smaller computers than before.

We tried two independent paths in the direction to this goal. The

first one, already well trodden, consists in scrutinizing common

boundary schemes by their Taylor expansions, testing whole groups

of algorithms and trying to fit them together in some sense. The

second one is a new approach based on a special handling of the

differential equations at the boundary. Both ideas are still far
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from being in a final shape: we report on work in progress and

give only some promising examples.

Error matching and rest_lied en_ineerin_

The following train of thought leading to possible improvements

is simple enough: if the application of some algorithm at the

boundary brings forth a distinct change, this algorithm must be

different from that in the field. Provided that both are of pth

order of accuracy, i.e. their Taylor expansions agree up to this

order, the difference must be contained in the remaining part of

the expansion which can be taken as an infinite series or repre-

sented by the (p+1)st order term at a different locus, the trun-

cation error or restglied.

So our immediate concern should be to construct boundary algo-

rithms inside their strongly asymmetric regime in such a manner as

to match the Taylor expansion of the (typically symmetric) field

algorithm as far as possible.

And a more general point of view were to concentrate not only up-

on the order of accuracy of an algorithm but also upon its trun-

cation error, for instance to assimilate it to the expansion of

the exact value as far as possible without too much coding ex-

pense - in other words: to exercise "restglied engineering" in

the broadest sense. 0)

In practice this simple concept meets some technical difficulties.

Especially if we use the differential system in matrix form

=A + ,
there are usually many possible discretization variants with re-

0)
This is of course only one side of the triangle: we may not

disregard the theory of characteristics (most important: the do-

main of dependence) and we must ask how far the assumption of

strong solutions which is basic for the application of the Taylor

expansion, is at all admissible in hyperbolic problems.
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spect toA , so it is not adequate to expand the linear model (con-

stant matrix) because it does not contain sufficient information.

On the other hand, the labor of expanding the quasilinear system

=  b,v)u, + +
h = c(u,v)u +  lu, v) +

(which is only slightly more general than our test example, see

appendix I) is considerable even if one confines himself to se-

cond order only - the minimum for examining first order schemes

in the above sense! Thus the aid of a formula handling compiler

is nearly indispensable (we use the very comfortable MASYCA sys-

tem by W.Degen /3/ installed in interactive form on a Cyber 174).

Even then one may meet limits in the form of storage restrictions.

Luckily, however, in many cases sufficient information can be

gained already from the scalar model

which is much less involved. We start with applying it to the

examination of some second order schemes.

Application to second order schemes

Execution of the above concept yields the table I. Below the ex-

pansion of the exact value -+u_FUexact(ih,(n+1)k), h = Ax, k = At, 0)

the two most common field algorithms are listed: Lax-Wendroff-

Richtmyer and MacCormack (though results for the latter will not

be presented in this paper). Then follow some boundary schemes,

part of them known, others constructed ad hoc:

A) "Rusanov", given in its general form by Rusanov and Nazhest-

kina /4/ for the conservative form. From the two most practical

discretization variants of the matrix form we have chosen

U:: u0 + ½_A_ + A_ }(ua-un) + (A, ÷ A0)(u,-u0)- (A_+A,)( u_- u,)]
because it can be coded very compactly together with the field

u)
The indexing used is: u_= u(ih,nk), u_v_ u(([+_)h, (n÷_)k),

u_ = u(ih, (n+1)k) .
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algorithm using a statement function

DU_ _ ½(A_ +A_I)(u[- u_4),

symbolized in the computational molecule by

the horizontal brackets. The computed value

bears a tilde because in the sense of the

characteristic correction approach (see ap-

pendix 2) it is only a provisional value.

elk

n+½

n
L=O

8 6

_ 2

B) "Extrapolation" - already mentioned in the introductory fig. 1

in its crudest form, but used in this context with characteristic

correction - is based upon the very simple concept of extrapola-

ting u t at the level (n+_)k from inside the field to the boun-

dary: (U_)o = 2_(u_:)_(b4_:)l

yielding for instance

C) "Version II" is a multiparameter family of algorithms also

using exclusively values at the intermediate level (n+_)k, but

derived via a general ansatz. Matching its h3-term as far as pos-

sible with that of the LWR scheme gives the one-parameter family

_= Uo+_ (3Av2-A3x)(u_-u_)- (_-36)A,a-(3-B)A_ _ A_ _2_6)u,a_(3_8)u3,z+u,,2]"

D) "Version IIspez" stems from the additional requirement (for-

bidden in Version II) that the last term be a second difference:

B_= Uo+_(3A_-A_)(u%-u_) - _2 +_)A_a-(1 + 2 _)A_+ _ As/z](u,,_- Z%/_ + u,4).

Other families of algorithms, mainly using values at both levels

nk and (n+#)k, have been tested but are omitted here.

For the test proper with the help of the Ringleb machine, all

these algorithms had to be transduced to the forms appropriate

for the quasilinear system and also for the other (righthand)

boundary x= 1. The results were as follows.

Firstly, we could state that a variation of the family parameter

in C) and D) introduced nearly no changes at all. Therefore one

can venture that the truncation error is sufficiently well repre-

sented by the third order term and that similar relations might
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Error diagrams for the boundary schemes A), E) and F)

be true for higher order schemes.

Secondly, we found the following particular results also depic-

ted in figure 2 and assembled in table 2:

Rusanov's scheme (fig.2 A) yields fair values compared with a

computation using exact boundary values (fig.1 a) but the other

three (fig.2 BO, CO, DO) fail, and they do so in a most insidi-

ous way: they are completely stable and the errors are large but

not dramatic (of "technical quality" so to speak), so in a pro-

duction run they might pass undetected.

A glance to table I raises the suspicion that the remarkable

term h3/6 { -5AUxxx ".. which is to be found in all three cul-

prit expansions might be responsible for this behaviour, and in-
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Error diagrams for unmatched boundary schemes

B, C and D

deed if we change this term into h3/6 { AUxx x ...} by simply adding

Ao(u 3 - 3u 2 + 3u I - uo)

to the algorithms - and thus matching this term to the LWR

scheme - the defect is completely cured (see fig.2 BI, CI, DI).

Now the simple Extrapolation is tolerable, the more sophisticated

Version II is nearly equal to Rusanov and Version IIspez is dis-

tinctly better in the mean square error

1 " 2 _2
E msq = (N _4EL ) , N number of computed points

which is a good measure for the overall quality of the solution.

We have tried one more algorithm: E) in table 1, "Compact".
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Fig. 2 (continued)

E IOz,

..... .....

Error diagrams for matched boundary schemes

B, C and D

Its philosophy roots in the theory of characteristics insofar as

it tries to use points as close as possible to x= O. The compu-

tational molecule shows this in comparison to the field algorithm

n_4 q

n (
i

t/k

_,,,.ok_,_. c_ x/h

0 I z

note especially the characteristic

--o
i-4 i L+'I

×/h

drawn for the case of Courant

number one. The derivation of this algorithm is more involved

than the usual Runge-Kutta procedure: u_ _u(O,(n+_)k) must be
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Table 2 Figures of merit for second order schemes

E E
mln max

Field points only,

6 meshes computed -23 38 7.0

8 meshes computed -25 39 8.0

A) Rusanov -57 16 I 8.7

E •105
msq

without error-matching:

BO) Extrapolation -588 25

CO) Version II -57 3571

DO) Version IIspez -91 6185

218.0

1219.0

2261.O

with error-matching:

BI) Extrapolation

C1) Version II

DI) Version IIspez

-97 14 37.6

-58 22 19.2

-38 31 12.9

E) Compact -38 28 12.3

F) Boundary Equation -39 17 11.3

computed such that

Z(u1_-u_) = uu2-u__ + 0(h_)
h

(n+_)k) is a fictitious point outside the gridwhere u__ _ u(-_,

and used only for the purpose of derivation. The general amsatz

yields a two-parameter family, and a sensible matching towards

the LWR scheme gives

from which we can compute

u0 = u0 + 2A0_(u_- u0/_) .
Of course no characteristic correction ks to be applied at the

level (n+_)k as it would destroy the correct h3-term.

This scheme is a bit better than Version IZspez in the smooth

Ringleb flow (see fig.2 E and table 2) and we hope for good re-

sults in not-so-smooth flows too.
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A new approach

For a system of differential equations all aforementioned algo-

rithms are a little awkwardly to apply because they need the cha-

racteristic correction procedure for good accuracy. In our case

that means that instead of computing the non-Dirichlet variable

only, both variables must be computed and mingled according to

the formula derived in appendix 2. Thus a lot of extra code is

needed.

Based on a preliminary paper /5/ we will try a simpler way in-

stead. If in addition to the system

u_ = c_u,, +_v, +._ (1)

V_= CM_+ d v_+_

along the boundary x=O (we assume boundary fitted coordinates)

a boundary condition is prescribed:

B(u,v,r(t) ) =O (2)

the whole system (I) + (2) is overdetermined. However, differen-

tiation of eq. (2) with respect to the marching direction t yields

Bu ut + Bv vt + Br rt = O

and now we have two possibilities:

1. We can use this equation to eliminate v t from eqs. (I):

and by the two linear combinations indicated at the right

we arrive at the two simple alternatives

B,
B_ [(_c-ad)vX+c_-o¢-_ar_] (3)Ut - CLB_C By

or

s_s ]ut= _5.+a

containing v x or u x but not both.

2. Eliminating u t along the same tracks yields

B,cr._]_" _,r(od-hc)v_-c_f.+ae- Nvt= o,_.+c

(4)

(5)
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or
B_

_B_dB_

In principle, any of the equations (3) through (6) can, together

with the equation (2), form the computational system at the boun-

dary, so we call them "boundary equations" The selection among

its different variants is usually simplified by the fact that

the denominator may not vanish at the boundary or be unduly small

there. Further the ease and/or the accuracy with which the re-

maining spatial derivative can be computed should be decisive.

A special case occurs if one of the dependent variables, say v,

is a Dirichlet variable, i.e. its value is prescribed along the

boundary so that for the calculation eqs. (5) and (6) are unin-

teresting. The boundary condition takes the special form

B(u,v,r) _ v(O,t) -v0(t) =O (2')

so that B u = O, B v = I, B r =-I and we get instead of eqs. (3) and

(4):

or

which now together with eq.(2') can form the computational system.

For selection, again an eventual vanishing of c or d at the boun-

dary must be considered. In our case which is simplified by d= a,

f =O, g= g(v), a can be zero at the boundary so that finally

Integration over t gives

+ _+ Q_

Here the terms (_ - v 0) and g are exact Dirichlet values

whereas the wedge brackets denote appropriate mean values in the

sense of numerical integration. From linear analysis (the nonli-

near case is not yet completed) we derived the following second

order accurate discretization:
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-v0 +v0))+
where the coefficients at level (n+l)k are linearly extrapolated,

for instance a_ = 2a_ - a_ etc.

The result is the best one in the examined series of second order

algorithms (see figure 2 F and table 2).

Application to a third order scheme

For field points, a family of symmetric schemes of the Runge-

Kutta type has been given by Rusanov /6/. We confine ourselves to

its simplest member (also published by Burstein and Mirin /7/).

Appropriate boundary and boundary neighbor algorithms have been

developed by Rusanov and Nazhestkina /4/; summarizing, we have

for the differential syste m in conservative form _t = Fx + _

the following computational sequences:

a) w_,+41z=½(w._+_+w.L)+k(_.,1-_)-I-_(,_+1+,_i,) O)

4k_F. t
cl) field points wT=w,+T{h[_( ,,4-_,)- + }

_{_ _(_ -F'-_)+ _

C2) boundary neighbor Wl:W4+¥{h[Z(Fz- _

c3) boundary point

,_{_[FZ- F'-{_F z] + k [4t5_'/_]} *_% &"w z

with _ZL-ZLt4/_z___/2and _LI(idz+d)f_z-#)/4Z0 , L>Z

dF
d=m?*(h_lj),_jeigenvalues of d_

For the tested Ringleb flow, _0=_=0 is allowable.

d)Upon the provisional boundary values w0the characteristic cor-

0)The indexing used is u i =ulih,nk) u((i+{)h (n+_)k)u i = u(ih, (n+Z)k) , u i = u(ih (n+1)ki.Ui+4/z= ' '

299



rection is to be inflicted as described for the second order

schemes.

For the system in matrix form the discretization is based upon

the identities _2F_ _(_F)) and _3_ _f_(_ F))

It is helpful to sketch the computational molecules
±/k

n+_

L-----_-----J

o o o o n+_

o I 2 3 4

t/k

9
L.-----J.----_J

o o o o

_×lh
0 i 2 3 4-

5 o b

O O O O

L-2 _4 [ [+i L+I

The solid brackets symbolize again first differences, the dotted

ones stand for higher differences needed for third order accuracy.

The field point algorithm (right) is quite symmetric whereas the

other two exhibit asymmetries seemingly'larger than necessary.

One could think out less asymmetric schemes using the boundary

points at the intermediate levels which could be computed readily

by one of the boundary algorithms of first respectively second

order. However, the Taylor expansion procedure shows that their

incorporation is not compatible with third order accuracy; in a

general ansatz their coefficients become identically zero, and

one must live with the above asymmetries. Thus it is not surpri"

sing that in the Ringleb test the error level from the field

point calculation alone (fig.3 left) is distinctly raised by com-

puting the boundary neighbors numerically (fig.3 center), and

still more, of course, by numerically calculated boundary points

(fig.4 left).

We set out first to redevise the algorithm for the neighbor with

the aim to achieve as much symmetry as possible, in spite of the

above. Obviously we can use first differences F 2 - F 0 and F 2 - F 0

as in the field point algorithm if and only if u 0 is computed in

such a way that its Taylor expansion is not only second order ac-
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8

6

E" 105

Fig.3 Error diagrams with exact boundary points. Left: also ex-

act boundary neighbors. Center: neighbors calculated after Rusa-

nov and Nazhestkina. Right: neighbors after the new formula.

curate but also matches the expansion of u i in the field algori-

thm including terms of order h 3. To effect this (according to our

flow problem in matrix form, and with f = O) we make the extra-

polating ansatz

and expand it. Matching it up to order h 3 with the expansion of

the field point scheme using the fictitious point x =-h yields

the algorithm

Using this value we can - along the usual tracks - derive a for-
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Table 3 Figures of merit for the third order scheme

Emin _ax _sq • IO 5

Boundary and neighbor exact -O. 4 3.6 O. 8

Boundary exact, neighbor: Rusan/Nazh. -5.0 8.6 I .9

Boundary exact, neighbor: new formula -I .4 4.2 I .2

Boundary and neighbor: Rusan/Nazh. -17.2 8.5 9.3

Boundary: boundary equation,

neighbor: Rusan/Nazh -9.5 9. I 4.3

Boundary: boundary equation,

neighbor: new formula -3.2 6.1 2.4

mula for the boundary neighbor. A general ansatz produces a fami-

ly of algorithms, their simplest member is

The inclusion of f into the above schemes is straightforward.

The computational molecules show clearly that this algorithmical

sequence has the advantage of being based only upon points i =

0...3, i.e. it stretches only 2h from i = I toward the inner field

like the field point formula itself whereas the Rusanov/Nazhest-

kina algorithm extends 3h into this direction. The domain of de-

pendence of the new formula is therefore closer to the theoretical

one than that of Rusanov/Nazhestkina's:

n,l

n
L=O

n+1

o o o

,1 2 3 C=O "1 2 3

o 6

x/h

The Ringleb test (fig.3 right) consequently shows a considerable

improvement against the corresponding fig.3 center and also the

figures of merit are clearly better.

The incorporation of a boundary equation based algorithm for u_
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-I0

-10

-15

- 5

-70_ 5

-1:

-10

5

5

El0 5

..... .....

Fig.4 Error diagrams for third order scheme. Left: boundary and

neighbor: Rusan/Nazh..Center: boundary equation, neighbor: Rusan/

Nazh.. Right: boundary equation, neighbor: new formula.

is the next and last step. The discretization becomes

u_=% +¼[(_)o (Fo+- Vo- I<9o) +_ (b-_')o ( v,-Vo- ½[v2-2_v_+ Vo) +½(v_-Bv2+Bv,-vo)]

o)

From the possible combinations we present here results for the

boundary equation plus u_ after Rusanov/Nazhestkina (fig.4 center)
+

and plus u_ after the new formula (fig.4 right). The latter dis-

plays a mean square error of only about one quarter of that of

the original scheme (fig.4 left) (table 3).
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Appendix I: The Rin_leb machine

Ringleb's solution /I/ of Tchaplygin's equation consists of three

Riemann surfaces from which only the first one makes practical

sense: it describes the homentropic flow of a gas with a ratio of

specific heats < = 1.4 from, for instance, upper righthand infini-

ty around a blunt body which is symmetric to the x axis to lower

righthand infinity (fig.5). It contains subsonic and supersonic

regimes and can thus be used as test solution for plane sub-,

trans- and supersonic channel- or free jet- or Coanda flow, all

steady or unsteady (transient flow with asymptotic steady state).

Details, formulae and some applications are given in /2/.

The real computation is facilitated by two sets of subroutines,

one for the description of the flow in cartesian, one for polar

coordinates - see also /2/. In the high precision testing descri-

bed in this paper the polar subroutine PWRING, if used on a com-

mon minicomputer with an effective (including hexadecimal norma-

lization) mantissa of only 21 bits was too inaccurate around the

line of symmetry and was therefore redevised (Geiger,A., inter-

nal report).

X

Fig.5

Ringleb flow, first Riemann

surface.

=0.6 is the border stream-

line to this surface.

The Ringleb machine used in this paper is specialized for the

following case:
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a) The dependent variables are P- natural logarithm of the static

pressure, and T = tan 8, 8- angle between streamline and circum-

ferential direction (see fig.6). Thus the boundary conditions

are always of the Dirichlet type: T given along solid walls

and P along free jet boundaries.

2

Fig.6

Boundary fitted, polar

based coordinate system

_, n.

b) The coordinate system is boundary fitted: the boundaries

_u = const and 4o = const are lines n =0 and n = I, respectively.

is the marching direction as long as one deals with steady

supersonic flow. In this case the governing equations are:

T_- +.p% + pp% --f (4+T z)

with pp=[_ + _(_-a,)-r M2T/#2]/(k-_) , M - Mach number

-_p= - r (F;-4)('l +T;)2/(- M 2/_2)/(,_- a)

#z=M__(_ +T_) }_ @T(4,_j) .

This system appears sufficiently non trivial for a realistic test

of smooth flows.

The following listing gives the complete FORTRAN program for

testing a third order algorithm using the intermediate levels

(n+_)k and (n+_)k which is to be substantiated in the subroutine

called CP1130.
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Listing of test program "Ringleb machine"

c FOR

C FOR

9

99

COMHON/SV/P(I I),T(I I),CS(I I),DX, DE,X,XA, A0, B0, AI,BI,A2, B2,AN,BN

COMMON/CV/ PP(34), PT(3a),TP(34)

DATA PSU, PS0,XAG,XEG, 10, NP /.7, .8,-20.,20., 10,2/

LX=5

XA=XAGCATAN( | • )/45.

XE=XEG_ATAN ( ! • )/45.

X:XA

IO0:IO't 1
IOV--I 0-2

DE= 1 •/FLOAT( I 0) grid size An

CALL RAND(XJPSU, PS0, A0, B0, P(1),P(100),T(!),T(100))

DO I I=2, I0

CALL _ERTE(A0",-(I-I)*DEW'(B0-A0)aX, P(I),T(1))

CALL SAVE(100, LX)

DO 5 N= l, I 000 marching loop

DX= I •

DO 6 I = |, I 00 marching step At (CFL-condition)

CALL C0EFF(P(1),T(1), (I-I)*DEsA0, B0,A0_T(I),B0_T(100),

|PP(1),PT(1),TP(1))

CQ( I ) =DE/(ABS (PP( I ) ) +S_P.T (PT ( I )*TP( I ) ) )

IF(C_(1).LT.DX) DX=C3(1)

C0NT INUE

DX= • 8 *DX

DO 8 I--l,100

C_( I )=DX*DX/CQ( I )/CQ( I ) square of Courant Number

CALL RAND(X+DX/3.,PSU, PS0, At,BI,PUI,P01,TUI,T01)

GALL RAND(X+2. _DX/3., PSU, PS0, A2, B2, PU2, P02, TU2, T02)

X=X+DX

CALL RAND(XsPS!bPS0, AN,BN, PI;,P0, TU, T0)

CALL CPI I30(TUI,TOI,TU2, T02, TU, T0)

T( 1 )=TU

T(100)=T0

A0=AN

B0=BN

GOT0 99

EXACT BOUNDARY POINT VALUES, INSERT

P( I )=PU

P( 100:P0

EXACT BOUNDARY NEIGHBOR VALUES, INSERT

DO 9 I=2,10,,10M

CALL 'JEETE(AN+(I-| )*DE*CBN-AN),X,P(1),T(1))

CONTINUE

IF(MOD(N,NP*I0/|0).NE.0) GOT0 4

CALL SAVE(100,LX)

IF(X.C-E.XE) GOT0 7

C0NT I HUE

CONTINUE

X=IO.

CALL SA'IE(100_LX)

STOP

Ekl D

I special case

of third or-

der scheme
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SUBROUTINERAMD(X,PSUsPS0_A,B_PUsP0_TUsT0)
XX=ABS(X)
CALL PtrRING(XX•PSUa2.,V,A,'37)

CALL PWRING (XX, PSO, 2. • U• B, G7 )

CALL %'ERTE(A,X•PU•TU)

CALL _*'ERTE(B, X, PO, TO)

IF(XX.GE..O!) GOT0 !

PR= 109.*X

CALL. P_:RING ( • 01 • PSU, 2. • V• AA_ G7 )

CALL PURING(.0I•PS0•2.,'],BB, GT)

CALL _ERTE(AA•.01•UsTU)

CALL ';ERTE(BB,.O],V, TO)

TU=TI;*PR

T0=T0*PR

RETURN

END

Computation of

radii a,b and of

exact boundary

values

SUBROUTIHE _ERTE(RD, X_P,T)

CALL PRINGL(RD,ABS(X),2.,V_G7,PSI)

P=ALOG(GT)

S=SIN(X)

C=S_RT(I.-S_S)

H=SQ_T(I./(V*U_PSI*PSI)-I.)

IF(X.GT.0.) H=-H

IF(X.EQ.O.) H=O.

T=(S+C*H)/(C-S*H)

RETURN

END

Computation of

P and T

SUBROUTINE

T_=I.+T,T

qM=5./EXP(P/3.5)-5.

H=CA+E*CB-A))/(_M-TQ)

PP=(AX+E*(BX-AX)-H*T_QM)/(B-A)

PT=-I.4*H_CH/(B-A)

TP=-H*TQ*T_*(QM-i.)/I.4/QM/(B-A)

RETURN

END

COEFF(P,T,E, A, B, AX, BX, PPaPT•TP)

Computation of

coefficients

pp, pt, tp

SUBROUTINE SAVE(100, LX)

COMMON/SV/P(!I)sT(II),C_(ll)•DX, DE,X,XA, AO, BO,AI,BI,A2_B2,_N,BN

INTEGER F(ll)

DIMENSION H(3, 11)

IF(X.GT.9.) H(1,1)=I0.

IF(X.GT.9.) GOTO 2

DO I I=1,I00

J=100+l-I

R=A0+FLOAT(I-I)*DE_(B0-A0)

H(IJI)=2.-R_COS(-X)

H(2_I)=R*SIH{-X)

CALL PRIH_L(R,-X,2.,V,GT,PSI)

H(3,1)=EXP(P(I))/GT-!.

| F(J)=IFIX(H(3•I)*I0."*LX)

_M=-X*57.295S

'_RITE(6,20) $M,(F(1),I=I,10O)

20 FORMAT(FI0.4, 1 |15)

2 CONTINUE

'JRITE(7,2]) X,AO, B0,(H(3,L),L=],4)

_RITE(7,2I) (H(3,L),L=5,!|)

21 F0_MAT(TF| ].7)

RETURN

END

Example of

output program

t Integer part of
error for

quick-look

mass storage of
_grid and error
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3

2

SUBROUTINE P_..VRI MG ( 0., PS I, Xp, V, Rs G 7 )

DIMENSION VV ( 20 ).,FF (20) _,Z (20)

0M=ABS ( 0 )

V=.5/PSI-. 175*PSI+.425+(.5/PSI+.I75*PSI-.425)*COS(2.*0R)

GALL FFS ( 0M., PS I.,XP., V.. F, FS, R,, G7 )

F0=ABS(F)

IF(FO.LT.I.E-6) GOT0 I &)

VU( 1 )=V

FF( l )=F

DEC=F/FS for CDC.

IF(DEC.LT. |.E-_) DEC=| .E-6 &) Reduce for shorter

V=V- DEC machine word

DO _ I=2,29

CALL" FFS (0M, PSI, XP, V, F, FS, R, G7 )

VV( I )=V

FF( I )=F

FQ=ABS ( F )

IF(F_q. LT.I.E-6) SOT0 ! &)

V=AINE(VU, FF, Z, I, PSI )

C0'_T INUE

RETURN

END

SUBR01;TI_)E FFS(0M, PSI,XP, V,F_FS, RsG7)

PC:PSI-PSI

VQ=U*V Auxiliary routine
GQ=ABS ( I • -. 2*'J_)

G = S _ RT ( G Q ) for PWRING

G3=G_*3

GS=G_*G3

XL=XP-C((.2/Sg+I./3.)/GQ+I.)/G-ALOG((I.+G)/(I.-G))/2.)/a.

%_=SOP, T (AMAX l (0., l •/VQ-P,q) )

IF(t:.LT. ! .E- lO) T,;=I .E- ] 0

A= PS I *';

B=PQ-. 5/VQ+GS*XL

AS= -PSI/_ IV/% r

BS=I •/VQ/V-.33,,V.(XL+3/lO.*(I • I(I .-Sa).,.(( I • IS-_.,-I. ) IS&+ I. )IG_) )

AB=A/B

lF(AB.LT.I.E-30) F=-0M

IF(AB.GE. I.E-30) F=ATAN(AB)-OM

FS= ( B_AS-A_BS )/(A_A+B_B)

R=S_RT (A'A+ B.B)/_5

GT=GQ_G5

RETURN

END

FUNCTION AINE(X,Y,Z,N, PSI)

DIMENSION X(N),Y(H),Z(N)

DO 1 I=I.N

Z( I )=X( I )

DO 2 I:2,N

IJl=l-I

DO 3 d=l,Idl

dll=l-d

IId=dII÷l

Yr_I--Y(JI I )-Y( I )

ZN=Y(JI I )_g( I IJ) -Y( I )*g (dl I )

VGL-- l • E-38

IF(ABS (YN) .LE.VGL) Z(JII)=I./PSI

IF(ABS (YN) .GT.VGL) Z(JI I)=ZN/YN

C0NT I NUE

CONTINUE

AINE=Z ( I )

RETUP.N

END

Auxiliary routine

for PWRING
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SUBROUTINEPRINGL(O.,0M,XP,V,GTaPSI)
X=XP-R*COS(OM)
Y=R*S IN(0M)

V= ! ._

RR=X*X+Y'*Y

IF(HR.GE..088) U=I.ISCRT(2.*SQHT(RR))

DEC= ! .

DO I N=I,IO0

_)Q=V*V

G_I=I .-VQ/5.

IF(G3.LT.0.) G_=0.

G=SQRT(GQ)

G3='S*GQ

G5=GQ_G3

XL=X-. 5* ( ( • 216Q÷ I • 13. ) IGQ+ I • ) IG+.25=ALO_ ( ( I • +G) 1( I • -G) )

IF(ABS(DEC).LT..2E-5) _0T0 2 &) for CDC. Reduce for

Z2= (XL*XL÷Y*Y) *4 • shorter machine word

XLS=I./(I.-GQ)*((I.÷I./GQ)/G_+|.)/3Q

F=Z2_VQ_V_*G5*G5- I •

F5=2, *V3*V_G 5-G5- ( Z2* ( 2. -V&/G Q ) -. 41V Q/G _XL*XL S )

DEC=F/FS

tt:V-DEC

C ONT I NUE

PSI =SQRT( • 5/VQ-GS*XL)

GT=G5*GO

RETt.'RW

END
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Appendix 2: Characteristic correction vs.boundary equation

As an heuristic approach to better boundary algorithms in finite

difference methods people tried to switch at the boundary to the

scholarly method of characteristics, i.e. in the two dimensional

case the application of a compatibility condition along a charac-

teristic inciding backwards from the new boundary point x=O,

t = (n+l)k to the line t = n k. The results were in general much

worse than to be expected from a method so theoretically sound,

the reason being perhaps the necessary interpolations which do

not fit into the basic concept of grid functions which are de-

fined only in isolated points.

Work towards better methods, based on a suggestion by Kentzer /8/

was begun by Moretti and Pandolfi /9/ (see also /2/). The final

shape is due to Rusanov /10/; an independent ad hoc deduction is

by deNeef /11/. According to /4/ it is as follows:

We consider the m dimensional system

where A has r positive and (m- r) negative eigenvalues

i j I"'"-....

L -
Further, there exists a matrix T reducing _ to diagonal form:

Then the compatibility conditions for the leftrunning characte-

ristic (which is needed at the lefthand boundary) arise from

T+w_ = A÷T*w-

The trick now is the following:

instead of applying the diagonal transformation to the differen-

tial equations one applies it to the chosen difference system

w_= Wo+ k_(w_) , i._O,_,...
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giving +
T"w,, -T" [w,, + k,4,]

and the computational system at the boundary is closed by the m-r

boundary conditions _(W0, r(tl) = 0.

In two dimensions simpler procedures can be applied. To get the

compatibility condition the system is subjected to a linear com-

bination

I:v_= cu_+ dv_ k+ • A__=d{ =
Ch

giving U+=(O,.+_)U,,-'_V_ +_(_+_)V, (A)

which together with the boundary condition forms the computatio-

nal system in the method of characteristics proper,

whereas for the inclusion into a finite difference method the

same linear combination is applied to the difference equations

< = ,.,o-,-k <(_,_, V_ )1+4<=Vo + k 4,, (_<, v: ) +_*

giving-in the case of v being a Dirichlet variable-

<= (Uo- k<,) [(,,,o+
_, U o _V o

This is the characteristic correction formula as applied in this

paper.

In contrast to the above method the boundary equation approach

certainly uses a linear combination, too:

but it is derived with a different purpose: that of obtaining a

formula which is optimal with respect to accuracy and simplicity

of discretization. A comparison of eqs. (A) and (B) shows the dif-

ference: (B) does not contain the difficult variable u but only

the "easy" v.
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PSEUDOSPECTRAL METHOD FOR PROBLEMS WITH NON-PERIODIC BOUNDARY CONDITIONS

H. N. Lee

Department of Meteorology
University of Utah

Salt Lake City, Utah 84112

1. INTRODUCTION

Numerical methods which are in general used are the spectral method,
the finite element method and the finite difference method. The phase speed
errors associated with finite difference methods have been recognized.
Spectral methods generally have very small phase speed errors. The pseudo-
spectral method is an approximation which is merely used to evaluate spatial
derivatives on a grid in physical space in place of finite difference or
finite element approximations. In a simple analysis of the advection
equation with constant velocity, the pseudospectral method and spectral
method give the same results. The pseudospectral method is as accurate as
the spectral method and is more general, simpler and at least a factor of 2
or more faster than the spectral method [I].

The pseudospectral technique has been used by many researchers for
solving the problems with periodic boundary conditions because the numerical
error associated with it is minimized and the high accuracy is achieved.
But it has not been widely applied in solving the problems which have non-
periodic solutions subjected to non-periodic boundary conditions. This is
because of the periodic boundary conditions which are necessary in the
pseudospectral approximation. Hence, a technique for applying pseudospectral
method to the problems with non-periodic boundary conditions will be discussed
in this paper.

The techniques used for solving non-periodic problems via FFT (Fast
Fourier Transform) procedures have been recommended by many authors. The
technique used by Gazdag [2] was to add an additional data in the computa-
tional regime. Hence additional computational time is required for the FFT
and the form of the data added is appropriate only for that particular prob-
lem (see [3]).

In order to apply pseudospectral technique in diffusion problem,
Christensen and Prahm [4] added a sink term of the form -C(_,t)/C(_) to the
diffusion equation, where C(x,t) is the pollutant concentration and _(_) is
the decay constant. The decay constant _(x) was chosen so as to give no
advection near the horizontal boundaries. Physically this means that a dis-
tribution C(x,t) which is not allowed to advect out over one boundary appears
periodic characteristic satisfying the pseudospectral approximation. However,
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the problem is that the Fourier Transformation is madeon a 32 x 32 grid
point system while the real computational regime consists only of 17 x 23 grid
points (see [5]). Howto determine correctly the sink term is another diffi-
culty. And the term chosen is also appropriate only for that particular
diffusion problem studied.

Following the studies of Orszag [6], Lyness [7] and Gottleib and Orszag
[8], Roache [3] introduced a "reduction-to-periodicity" technique which was
more generally applicable. Essentially it is a polynomial subtraction
technique. The idea is to express the solution as the sum of periodic func-
tion and a polynomial function in one direction at a time. The pseudospectral
technique is applied only to the periodic function to obtain its derivatives.
The finite difference methods are used to evaluate the high order derivatives
at the boundaries in order to obtain the coefficients of the polynomial
function. The technique has been used in solving the diffusion problems [9]
and the results are encouraging.

In this work, a general and accurate technique which is constructed to
obtain the coefficients of polynomial function, instead of using finite
difference method, is discussed. An advection-diffusion equation is examined.

2. TECHNIQUE FOR NON-PERIODIC BOUNDARIES

Consider the advection-diffusion equation.

_C
_t

_ _ _2_
u T_+ Ky--+ source

_y2
(1)

where C(x,y,t) is the solution of pollutant concentration, u the horizontal

velocity in the x-direction and K, the constant eddy diffusivity in the y-
direction. .y

We express the solution to Eq. (1) as the sum of periodic function-
and a polynomial function with degree N in x-direction at time t Cpx

N

C(x,y,t) = _x(Y,t) + _ bi(Y,t)X i (2)
i=l

where b.'s are the polynomial coefficients. The constant coefficient bo has
been combined into periodic part. The bi's are chosen such that

_(m) _(m)

Cpx I = Cpx n , 0 <m_ < N - I (3)

where superscript (m) denotes the m-th derivative and subscripts XI and X
• I n

denote the distances at the left and right boundaries in the x-direction,

respectively. The general solutions for b i are

314



where

bk = I . Dk-I k E (i-k+1) l(k-1)r bi 0 < k < N
i=k+l " "

(4a)

(4b)

(k) (k)

Dk : _ (Xn,Y,t) _ _ (Xl,Y,t) (4c)

E = Xn - XI (4d)

In order to obtain the polynomial coefficients b_ in Eq. (4a) and (4b), the
one-sided finite difference methods can be used to evaluate the high order
derivatives for Dk in Eq. (4c) at the boundaries. However, there is short-
coming in the finTte difference formula for evaluation of high order deriva-
tives by one-sided formula (see [3]). Hence, the idea to avoid applying
finite difference formula is to use periodic polynomial spline [I0] satisfy-
inq the periodic boundary conditions Eq. (3) in order to get the solutions

for b i .

For the periodic quintic spline which is defined to be piecewise con-
tinuous with continuous first, second, third and fourth derivatives, a
system of algebraic four equations can be obtained for the periodic boundary
point. For instance, imposing the continuity condition at the boundary
point for m=4 in Eq. (3) we have

(2) ((1) (1) _(1) )_(2) _ _ :_ I - + 16Cpxn
Cpxn-o.5 PX2-o.5 _- 7Cpxn-o 5 + 7Cpx2-0.5

(o)
Note that C = - and h
By assuming px cpx

15 ( _DXn 0 - T )
(h} 2 .5 _PX2-o.5

is a equal grid point interval in x-direction.

_(q)

Cpxn- 0 .5

_(q)

CpX2-o. 5

I -(q) -(q)

= -_ Cpxn_ 1 + Cpx n

1/-(q) _(q)l

=-2_Cpx n + Cpx21

O<q<2

(5)

(6)
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Eq. (5) can be rewritten as

II li

Cpxn 1 - Cpx2 2 (7_'PXn 1_ + 46_'px n + 7_'PX2)

Similarly we can have for the continuity conditions

(7)

B

m=3; Cpxn I

m:2;

" -1o  Xn•-"Cpx2=-  'xn_1-')Px2
80 { _ - + _PX2 )- _-_ Cpxn_ 1 2Cpx n

' ( )= -- I I

--" -" 8 --' + 52Cpx n + 4 px 23Cpxn_ I - 3Cpx 2 h 4Cpxn_ I

(8)

and

m=l;

24°C )- -_ -Cpxn_1 - Cpx 2

OI tO tl

9Cpxn 1 + 22Cpxn + 9Cpx2

(9)

240 (- - 2C + _ )h2 Cpxn_ I PXn PX2 (lO)

If N = 5 is chosen, the solutions for b2, _i b4 and b_ can be obtainedby solving Eqs. (7) - (10) with the use of Eq. . Since _he functions in

Eqs. (7) - (10) are periodic, the pseudospectral method is applied to obtain

_ _ _dsp e_va_Vea_ ixb_ndb_e_db_e__" " -""_Xset_;_lh_ N:5thesolu-in

Eq. (4b). SimiTar procedures are applied to have the solutions for the poly-

nomial coefficients in the y-direction.
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3. TIME-INTEGRATION SCHEME

The time-integration schemes used were second-order Adams-Bashforth
method and "partially-correct second-order Adams-Bashforth" method [II].
It has been shown that for pure advection problems the "partially-corrected
second-order Adams-Bashforth" method is stable and appears in all ways to be
preferable to the second-order Adams-Bashforth method. With a non-zero
value of the diffusion term the partially-corrected Adams-Bashforth scheme
for the advection term and the backward scheme for the diffusion term are
suggested in this paper. Such a semi-implicit scheme can be written as

{ _-n+l =-_n + (3_n _ _n-l) At/2 + At _n (lla)_-n+l = _-n + (_n + _n+l) At/2 + (_n + Fn+l) At/2 (11b)

where C n stands for C (x,y, nat), A stands for the advection term and

F for the diffusion term Quantities with "~" mean uncorrect___d values, for
instance, _n which arenot computed from the corrected values C . Therefore,
the partially-corrected second-order Adams-Bashforth scheme required about
1% more computation than the customary second-order Adams-Bashforth scheme
[11].

4. NUMERICAL INTEGRATION OF THE ADVECTION-DIFFUSlON EQUATION

The pseudospectral technique and the time-integration scheme described
in theprevious sections were tested by applying them to Eq. (I). In the
test, u = 1.0, Ky = 0.I, Ax = Ay = 1.0 and At = 0.I on a 16 x 16 grid point
system were chosen. Four continuous adjacent sources each of source : 250
were assumed and placed in grid points (4,8), (4,9), (5,8) and (5,9). The
analytical solution and numerical steady state solutions are shown in Fig. i.
The numerical steady state solutions give the final coacentration field
which is approached after a long integration. Fig. l.b is a numerical steady
state result after t = 32 corresponding to advection of a point twice through
the grid point system. For comparing the present numerical solutions with
the published results using other numerical techniques under the same test
conditions, Christensen and Prahm's [4] and Pepper and Baker's [12] numerical
solutions are shown in Fig. l.c and Fig. l.d, respectively. The information
from the two outmost column grid points is sacrificed in Christensen and
Prahm's solutions because the sink term is applied in these grid points
which act as the boundary. It is seen in Fig. I that the solutions using
present method give very well agreement with the analytical solutions and
the present method is superior to the other in technique.
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5. CONCLUSIONS

The present paper demonstrates the capability of the pseudospectral
technique and the time integration schemefor the time dependent non-
periodic problem. Significant improvements have been shownin the accuracy
for calculation of the two-dimensional time-dependent advection-diffusion
equation. The pseudospectral method has emergedas a viable alternative to
finite difference methods for the evaluation of the spatial derivatives.
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a. Analytical solutions

18 65

125 366 444

125 366:444

18 65

12 16 19 23

14 24 34 43 51 58 64 69 74

107 129 143 151 156 160 161 162 162 161

388 356 331 311 294 280 267 256 246 238

388 356 331 311 294 280 267 256 246 238

107 129 143 151 156 160 161 162 162 161

14 24 34 43 51 58 64 69 74

12 16 19 23

b. Present numerical results

12 16 20 23

14 24 34 43 51 58 63 69 74

33 78 109 129 142 151 156 159 160 161 161 161

_---'t -1L124 432 38o 3293112932792662s5246242
33 78 109 129 142 151 156 159 160 161 161 161

14 24 34 43 51 58 63 69 74

12 16 20 23

c. Christensen and Prahm's numerical results

I0 15 18

17 27 37 46 55 57 70

48 84 116 134 145 156 156 165 160 172

129 385 431 381 359 331 315 295 285 265 268

129 385 431 381 359 331 315 295 285 265 268

48 84 116 134 145 156 156 165 160 172

17 27 37 46 55 57 70

I0 15 18
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d. Pepper and Baker's numerical results

11 14 17

12 19 27 35 43 49 56 61

34 70 97 116 130 140 147 151 154 156

111 340 426 392 363 339 319 302 287 273 262

111 340 426 392 363 339 319 302 287 273 262

34 70 97 116 130 140 147 151 154 156

12 19 27 35 43 49 56 61

11 14 17

Fig. 1 Steady-state solutions of advection-diffusion equation from four

continuous sources placed within the heavily drawn square. (a) analytical

solutions (b) present numerical solutions (c) Christensen and Prahm's

numerical solutions based on pseudospectral technique (d) Pepper and Baker's

numerical solutions using cubic spline approximation. Values numerically

less than 10 have been suppressed.
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ABSTRACT

In this paper we study the stability of finite difference

approximations to initial-boundary hyperbolic systems. As is well-known, a

proper specification of boundary conditions for such systems is essential

for their solutions to be well-defined. We prove a discrete analogue of the

above - if the numerical boundary conditions are consistent with an inflow

part of the problem, they render the overall computation unstable. An

example of the inviscid gasdynamics equations is considered.

1. INTRODUCTION - WELL DEFINED HYPERBOLIC SYSTEM

We consider the first order hyperbolic system

8u au
(I.1a) _ + A(x) _x = F(x,t), t > 0 ,

with initial data

(1.1b) u(x,0) = f(x), t = 0 ,

in the first quarter of the plane 0 _ x < =. Here u _ u(x,t) is the N-

dimensional vector of unknowns and by hyperbolicity we mean that the

(nonsingular) coefficient matrix A 5 A(x) is similar to a real diagonal
h

(1.2)
TAT -1 = A _ diag(ll,...,AN) ,

A 1 ) ... _ l£ > 0 > l£+ 1 ) ''' ) lN, Aj H Xj(X) .

Sponsored in part by the United States Army under Contract No. DAAG29-80-C-

0041.
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The system (I .la) - rewritten in its characteristic form

(1.3) _-_+ A _x ffi

(" denotes multiplication by T on the left), asserts that the

characteristic variables uj are uniquely determined by the forcing terms

Fj along the characteristic curves _. (t) + I (xj) = 0. The last N - £J J
of these curves are outgoing curves impinging on the boundary x = 0 from

the right, each of which carries one piece of initial data; thus, exactly

N - £ pieces of information flow toward the left boundary x = 0; these

are the last N - £ outflow components of u associated with

x'3 = -_'3 > 0'£_j_N'I It therefore follows that for the system (I .I) to be

uniquely solvable, exactly £ additional pieces of information must be

provided at the boundary x = 0,

(1.4a) BU]x=0 = G, rank [B] = £ .

The requirement of these boundary conditions to be on top of the

predetermined outflow components can be expressed as follows (Hersh [1]):

For all nontrivial $ in the eigenspace #+ spanned by the

eigenvectors {_j }£ associated with the positive eigenvalues
9=I

we have

{lj}_ 1'=

(1.4b) B$ _ 0 .

Had the system (1.1a) been given to us in its characteristic form (1.3), the

boundary conditions (1.4) then can be reformulated as the standard

reflection

(I .5) u = Bu +

where u = (u+,u-) partitioned corresponding to its inflow and outflow

parts. The first £ inflow characteristic variables u+ are then

everywhere determined via (1.5) and (1.1b) along the ingoing characteristics

x" = -_" < 0'1(j(£;i combined with the N - £ outflow pieces of data, the3 3
solution u is then well defined throughout the region of integration.

Example. The linearized inviscid 1 - D gasdynamics equations take the

primitive form (I)

(E.la) _-_ + A = F, 0 _ x < _, t > 0

(1)Neglecting low order terms due to the linearization.
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where u - (p,U,p) t are the density velocity and pressure respectively,

F stands for the external forces and

(E .Ib) A =

t
with (_,n,_)

The system is hyperbolic since

2
c

T = 0

0

n _ o

0 n I/_ y = ratio of specific heats

0 Y_ n

denoting the corresponding variables we linearize about.

A

0

_c

-_c

is diagonalizable by

-I

1 , c = 7_

1

TAT -I - diag(q,n + c,n - c) •

We consider the subsonic inflow case 0 < n < c; two boundary conditions

are required at x = 0 to complement the only predetermined outflow

variable u3 _ p - _cU associated with A _ n - c < 0. While prescribing
the two conditions one should neither set _undary values for the

predetermined p - _cU. ^, nor should he prescribe only Ulx=0 and

Plx=0 (or otherwise t_wo independent relations will again set values

f6r- p - _CUlx=0). Failure to satisfy either one of the above constraints

will either imply inconsistency, or at best, the consistent condition will

give no new information and we will still be missing one piece of data at

the boundary. Both cases are saved by requiring (1.4b) to hold:

For all u 5 (p,U,p) t _ 0 in span{#l,_ 2} where _1 = (2_c'0'_)t'

#2 = (_c'c2'_c3)t corresponding to AI = n > 0, _2 = n + c > 0 we should

have Bu _ 0. Indeed, requiring B# I # 0 amounts to the requirement of not

imposing Ulx=0 and plx= 0 alone (i.e, without involving Plx=0 ), while

B# 2 # 0 (or -- which is the same thing -- B(2_2 - _1 ) # 0) prevent us

from prescribing p - _CUlx=0. We are then assured that we have two

genuinely additional boundary conditions complementing the third

predetermined outflow one (for more details we refer to [2])°

In this paper we study difference approximations to the hyperbolic

system (1.1). We show that when our numerical boundary conditions are

zeroth-order accurate with an inflow part of the problem, they render the

overall computation unstable -- a discrete analogue of the necessary condi-

tion (1.4b). In the next section we set the exact mathematical framework

for our discussion, and proof of the main theorem is given in Section 3.

This paper was written while visiting the Mathematics Research Center,

University of Wisconsin-Madison, Madison Wisconsin, and I thank the Center

and its Director, J. Nohel for their hospitality.
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2. WELLDEFINEDDIFFERENCE APPROXIMATIONS-STATEMENT OF MAIN THEOREM

We would like to solve (1.1), (1.4) by difference approximations. In

order to do so, we introduce a mesh size Ax > 0 and a time step At > 0

such that _ _ At/Ax = const. Using the notation v_(t) _ v(_Ax,t) we

approximate (1.1) by a consistent two-step solvable basic scheme of the form

(2.1a) A (xv)vv+j(t + At) = _ A.(xg)vv+j(t) + AtHv(t),
j= -r J j=-r ]

v = r,r + I,... .

Starting with the initial data

(2.1b) v (t = 0) = f , 9 = 0,1,.0. ,

the scheme (2oia) is then used to advance in time o To enable our calcula-

tion, the r boundary values {vv(t + At)} r-1 are required at each time
• %..- f%

step, and these are obtained from solvable _ndary conditions of the form

(2 .lc) Bjg(x 9)vj (t + At) =
j=0

Bj9(x )vj(t) + AtH (t),
j=0

= 0,1,...,r - I •

Usually for obtaining v 0 (t + At) one complements the N - £ inflow values

taken from (1.4) by additional £ consistent outflow relations and in case

of higher order basic scheme, r > I, extra boundary conditions as in

(2.1c) must be provided for both the outflow and inflow components of

{v (t+ At)}r-1
V= I

We now have an overall difference approximation consisting of interior

scheme (2.1a) together with boundary conditions (2.1c) and the main property

we would like our approximation to have is stability; that is, we want small

initial perturbations not to excite our homogeneous computation but rather

to have only a small comparable affect. For, it is the stability which

guarantees the convergence of our results to the exact solution of (1.1),

(1.4), as we refine the mesh Ax,At + 0. In factllack of stability is most

likely to cause our computation to diverge. We therefore make the natural
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Assumption. 1_e basic scheme (2. la) is stable for the pure Cauchy problem
__ < v < _ ( .

We are now left with the task of determining whether our boundary

conditions (2.1c) maintain the assumed interior stability overalltor either

our careless boundary treatment renders the overall computation unstable.

During the last decade since the appearance of the works of Kreiss and his

coworkers, [3]-[5], which introduce a stability theory for approximations to

such mixed problems, many safe procedures to handle the outflow components

were analyzed (e.go [5]-[8] )o Here however, we are interested in the inflow

components whose boundary calculation is required when either the exact

inflow conditions (I .4) are not known or when extra inflow values must be

provided at {xv} r-1 . Our main result is basically a negative one telling

what one should no_Ido.

Theorem. If the boundary conditions (2.1c) are zeroth-ord_r ac_rate with

an inflow component of system (1.1), i.e., there exists _, e _ such that

(2.2)
_ +

[ _jv BjV] _, = 0,

j =0 Ix=0

v = 0,1,...,r - 1 ,

then the overall approximation (2.1) is unstable.

The above theorem is clearly the discrete analogue of the necessary

requirement (1.4b) for well-posedness; both reflect the independence of the

inflow boundary values on the differential equation. In the special case of

explicit one-leveled boundary extrapolation it was first proved by Kreiss

[9] for the scalar case, and extended substantially by Burns [10] for the

vector case. Here we give a simplified version of her proof for the general

two-leveled implicit approximation. The assumption made in [10, Assumption

3.2], that A_, A_ are polynomials in A, is removed here so our result is

also valid forJ multileveled multidimensional approximations, as can be shown

using the standard devices which for simplicity are omitted. Finally we

give a direct estimate of the unstable polynomial growth of the computed

solution. Even though such growth by itself may be accepted as weak

instability, it is rejected here due to the possible reflections at the

other (right) boundary which will then result into the untolerable

exponential instability [5].

As an example, consider any standard 5-point interior scheme

approximating the system (E.la) above. Two dimensional inflow eigenspace is

to be determined at (xl,t) and - in case the exact inflow conditions are

not known - at (x0,t) as well. According to the above theorem, any

attempt to calculate the missing values in an inflow-dependent manner, that

(I)Local stability around x = 0 is in fact enough - see Section 3.
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is using zeroth-order accurate conditions for either pc2 -p, _cU + p or

any combination of them will result into instability.

We close this section by finally noting that in general the boundary

conditions (2.1c) are obtained using consistent discretizations of the two

sources available to us - the differential system (1.1a) augmented by the

inflow boundary Conditions (1.4). By the above theorem, the approximated

inflow boundary values cannot be calculated in an inflow-dependent manner by

a consistent discretization of solely the inflow part of system (1.1a;; one

must take into account also the outflow data via oonditions (I .4;. A

detailed procedure along these lines to achieve these values with any degree

of accuracy is described in [8].

3. UNCONDITIONAL INSTABILITY-PROOF OF MAIN THEOREM

From the nature of our negative result it is sufficient to restrict

attention to the case localized about x = 0, since it is the constant

coefficient case A _ _ (0), A E A (0), _ E _ (0; E (0;
3 3 3which infers the instability of the general3_ase. 3v , Bj_ Bju ,

The solution of the homogeneous approximation (_.I; with vanishing

interior initial data f = 0 (f E (f0,...,fr_l) yet to be determined;

is given by the Cauchy formula

I / n. (z)dz, t = n'_t .
(3.1) vv(t) = 27---[F z _v

Here

operator and

F

(3.2a) _ (z_ - A )4 (z) = 0,

j=-r 3 3 u+j

is any Contour enclosing the spectrum of the underlying difference

I" ? 12
(Z)j , L {¢_ < m obeys the resolvent equation

_)=0 _)=0

'_ = r,r + I,... ,

together with the side Conditions

(3.2b) _? (z_j_ - B4wg)_j" (z) = f_,
j=0

= 0,1,...,r - 1 .

Equation (3.2a) is an ordinary difference equation with constant coefficient

matrices; its most general £ -bounded solution is given by [11]
2

(3.3) Ok(Z) = X(z)Lk(z)q, k = 0,1,... ,

where we employed the assumption of the Cauchy stability. Here X(z)
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consists of

{*m(Z)} Nr
m=l

(3.4)

Nr columns vectors - they are the N-dimensional Jordan chains

associated with the characteristic eigenvalue problem (I)

(zAj -A )_J(z)_m(Z) = 0 ;
j=-r J

L(z) is an Nr-dimentional matrix consisting of the Jordan blocks associated

with the eigenvalues < (z); and o is an Nr-dimensional free vector yet

to be determined by Nr m boundary _nditions (3.2b):

(3.5a) D(z)_ = f, D(z) = [D0(z),...,Dr_1(z) ]

where

(3.5b) Dr(z) = _ (zBj9 - Bjg)X(z)LJ(z),

j=0

= 0,1,...,r - I •

The key of the instability proof lies in the study of the singular

point z = I; indeed in what follows we will show that z = I is an

eigenvalue of the problem whose eigenprojection has a polynomial growth;

this in turn implies the unstable polynomial growth of the whole difference

operator. In order to do so, we are now going to use the consistency

condition to gain more precise information about the behaviour near z = I.

In [5] it was proved by the assumption of Cauchy stability, that the

matrix L(z) in the neighbourhood of z = I takes the form [5, Theorem

9.1]

L+(z) 0 ]
(3.6a) L(z) = ,

0 L 0 (z)

where using the consistency of the interior scheme it follows that the

E-dimensional L+(z) is of the form [5, Theorem 9.3]

(3.6b) L+(z) = I - (AA+)-1(z - I) + 0(z - I) 2 ,

while the

(3.6c)

(Nr - 4) × (Nr - 4) L0(z ) satisfies

L0(z)L0(z) 4 (I - _)I,
_ > 0 •

Consider the first 4 column vectors # (z) in X(z) which we

m [I<m44

(1)By consistency it is enough to consider only simple Jordan chains

around z = I - see below.
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denote by X+(z). Inserting the corresponding eigenvalues of L+(z) from

(3.6b), Mm(Z) = I - (ll)-1(z - I) + 0(z - 1) 2, into (3.4), and using the

consistency of the basicmscheme which amounts to the standard

[A. [ [j(A - A.) - IA A]= 0
R

j=-r 3 - Aj ]= j=-r J 3 J '

we arrive to

(z - 1) •

j=-r

By the solvability _ A.e ij@

j=-r J 18=0 = 7" Aj

(z - 1)Z A. we obtain that
3

(3.7) X+(z) = X+(1) + 0(z - I),

A [I- zAl-1]_ (z) = 0(z - I) 2
j m m

is nonsingular; dividing by

X+(1) e $+ ,

take

T
~+t

where X+(1) consists of the £ column vectors %(I) _ _m - the
eigenvectors of A corresponding to its positive elgenvalues > 0.

m

We now claim that [D(z)] -I is singular at z = I. To see that we

T to be an Nr-dimensional vector whose first £ scalar components,

are uniquely determined as the solution of (see (2.2))

+

x+(1)_+ = _. ,

and the remaining Nr - £ components are taken to zero.

account (3.6b) and (3.7) we then find by (2.2)

Taking into

(3.8a) D(z)T
~+

j=0
(_jV - Bj_)X+(1)T ~+

+ 0(z - 1) = 0(z - I)

and hence for d(z) 5 det[D(z)] we conclude that

(3.8b) d(z) = 0(z - I) s s ) I .

The proof of the theorem is almost at our hands now; we consider that part

of the solution corresponding to the eigenprojection associated with z = 1:

I f n(3.9a) wv(t) = 2_i z (z)dz, _ = 0,I,..., t = n'At ,
Iz-ll=_

where bYI(3.3), (3.5), Cu(z) has the analytic representation
([D(z)] E _(z)/d(z))
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(3.9b)
_v(z) = [X+(z),X 0(z)][L+iz) 0 ] V)(z)f/d(z ) •

L0 (z)

Taking (3.8b) into account, the residue theorem implies

(3.10)

s-1

w ct)= I l es[Cz1)k- _v(z) ]
k=O I z=l

and since by (3.6b) L+(z = I) = I we finally conclude

(3.11) (n+_) °r
"w(t)U • [ I%(t) l

V=0

2_/2_ const.[t/At]snfa .

(i)

(ii)

REMARKS

AS in [10] one can show that also in our case, the resolvent condition

"_(z)N 4 const.(Izl - I) -I is violated. Indeed using the

representation (3.9b) and employing the equivalent H-norm,

_(z)R H = [ I _v(z)H(z)_v(z)] I/2 , with H(z) -[X+(z)X:(z)] -I, one
_=0

gets n_(z)ll • const.lz - II -3/2.

Unlike the case of one-leveled boundary extrapolation [10, Section 5],

it does not follow that the more accurate the boundary conditions with

an inflow part of our problem, the wDrse is the singular behaviour

at z = 1 - the R.H.S. of (3.8a) remains unaffected in the genuinely

two-leveled case.
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IMPLICIT BOUNDARY CONDITIONS FOR THE SOLUTION OF THE

PARABOLIZED NAVIER-STOKES EQUATIONS FOR SUPERSONIC FLOWS #

by M. Barnett, R.T. Davis and J.V. Rakich

*University of Cincinnati

**NASA Ames Research Center

ABSTRACT

A fully implicit set of boundary conditions is developed for the solu-

tion of the parabolized Navier-Stokes equations for supersonic flow in two

dimensions. Shock fitting is employed at the shock and the body has no-

slip and specified temperature conditions. A specified heat transfer

condition at the wall can be handled in a similar manner. In addition, the

shock location is advanced in space in a fully implicit manner by utilizing

the Rankine-Hugoniot conditions along with global conservation of mass.

ci,c2,c3,c4
e

F,G
i

J
J

M

P

Q
u

V

x,y

Y

_,n

0

subscripts

NOMENCLATURE

constants arising from linearized shock relations

specific internal energy

vectors in governing equations

index in streamwise (_) direction

index in stream-normal (q) direction

Jacobian of the coordinate transformation

Mach number

pressure

vector of flow variables

velocity component in x-dlrectlon

velocity component in y-direction

Cartesian coordinates, physical plane

ratio of specific heats, y = Cp/C v
shock standoff distance

coordinates in transform plane

density

b body
s shock

t total
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v

w

x,y

_,n

viscous

wall

partial derivatives with respect to x and y respectively

partial derivatives with respect to _ and n respectively

freestream value

INTRODUCTION

In reference 1 a parabolic form of the Navier-Stokes equations for

supersonic compressible flow is solved using the Beam-Warming factored

implicit algorithm (ref. 2). External flows over bodies at angle of attack

were calculated for the domain bounded by the body surface and the enveloping

shock wave. In that work, and most other works of a similar nature, the

shock boundary conditions (the Rankine-Hugoniot jump conditions) are applied

in an explicit manner. While adequate for small marching steps, (within the

CFL condition at the shock), the explicit method has a stability imposed

stepsize limitation. It is advantageous from the standpoint of computational

efficiency to have fully implicit boundary conditions at both the shock and

the body in order to remove this stability restriction on stepsize and allow

the solution over a given domain to be obtained with less computational

effort.

The earlier studies of Srivastava, Werle and Davis (ref. 3) and Lubard

and Helliwell (ref. 4) are examples of viscous shock layer calculations

utilizing the Rankine-Hugoniot relations at the shock. The study of

Srivastava, et al. utilized a relaxation technique to obtain the overall

solution and iterate on the shock shape. Lubard and Helliwell's study

utilized space marching with iteration at each streamwise station. The solu-

tion scheme developed in the present study requires no iteration.

Although the problem is viscous, the shock boundary condition can, for

most applications, be treated in an inviscid manner as viscous effects are

mainly of interest near the solid boundary where a boundary layer exists.

This implies that the Rankine-Hugoniot relations may be employed at the shock

since the flow there is inviscid.

In the present study the equations are solved in block tridiagonal form

by a matrix inverter tailored to solve four second order equations. The set

of equations which is solved here consists of two first order and two second

order equations. To achieve compatibility with the inversion scheme, an

appropriate finite difference scheme must be applied to the inviscid type

equations at the boundaries. This situation is illustrated through a simple

model problem. The use of a difference scheme at the boundaries such as that

developed here removes what may be the source of oscillations in many numeri-

cal solution techniques. In the present parabolized Navier-Stokes solver,

smooth solutions are obtained without the use of numerical smoothing schemes

for flows without imbedded discontinuities.
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GOVERNINGEQUATIONSANDTHESOLUTIONSCHEME

The system of equations which is solved in this study is a parabolic
form of the Navier-Stokes equations. The gas considered is laminar, perfect
and compressible.

The development of the basic solution schemeand the transformation
from the physical to the computational plane follows much the sameline of
reasoning as was employed in reference i.

Parabollzation of the full Navier-Stokes equations is accomplished by
assuming steady flow and neglecting streamwlse diffusion in comparison to
diffusion normal to the body surface• With these approximations, the
governing equations can be written in nondimensional form as

+ (i)

These equations are in strong conservation form in the transform ($,n) plane
where

with

= y F, G = - y_F + G and Gv (2a-c)

pu

pu2+ p

F _

P uv

(Pet + P)U
B

G

= - y_F v + Gv

pv

0uv

pv 2 + p

(Pet+ P)V

(2d,e)

F
v

xx

T

xy

uo + VT + _axXX xy

and G
V

i

BT
xy

n

0

T
xy

O
YY

+ VOyy + qy

(2f,g)

The continuity, x-momentum, y-momentum and energy equations are represented
in each vector.

The above equations are written in the present case for the coordinate

transformation defined by

x = $ and y(_,n) = yb(_) + s(n)_($) (3a,b)

where s(n) is the stretching function employed to cluster mesh points near
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the wall for proper boundary layer resolution and d(_) is the shock standoff
distance measuredfrom body to shock along constant _. The corresponding
Jacobian of the transformation is given by

i
J =- = n • (4)

Yn Y

The n coordinate is given by

n = (j-l) An (5a)

with n = 0 at the shock and _ = I at the body. The index in the _-direction

is denoted by "i" so that

= Eo + i _

with $o being the location of the initial data plane.

(5b)

Typical physical and transformed planes and their nomenclature are

given in figures la and lb.

The elements of F, G_ Fv and Gv can be written in terms of the elements

of Q and their derivatives where

and

P

pu

Q -- (6a)
pv

Pe t
i

Q (6b)

In the present formulation, the q-momentum equation is assumed inviscid;

this is a consistent assumption with regard to the order of magnitude of the

terms already neglected as long as the body slope is small. The more

appropriate assumption would be that the momentum equation for the direction

normal to the body surface is inviscid.

The streamwise pressure gradient term is treated in a manner similar to

that of reference i in order to prevent the appearance of departure solution_

The development of the implicit finite difference scheme and appropriate

linearization are discussed in detail in reference 5. The finite

difference scheme in incremental variable form is given by

elF+'- (AiG-AiGv = (7)
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where Ai i+l iz = z - z along n = constant. Equation (7) is first order
accurate in E. Local linearization applied to (7) results in

8
v Ai_ 3 (_i __ )] .

_Q 8Q _Q v

(8)

Discretization of equation (8) is performed later, after the boundary condi-

tions have been developed.

DEVELOPMENT OF THE BOUNDARY CONDITIONS

Equation (8) describes a sixth order set of equations in the _-directio_

two first order (continuity and H-momentum) and two second order (E-momentum

and energy) equations. Hence six boundary conditions are required and they

must be distributed between the shock boundary and wall boundary in an

appropriate manner. For the present purposes, three boundary conditions are

applied at each boundary.

Shock Boundary

by

The physical unknowns at the shock are the incremental variables given

AQs --

w ..4

Ap

i Apul

Apv I

Apetl
. js

(9)

which can be rewritten, utilizing the shock jump relations of reference 6,

in the form

q

c1

= c2 = _ (i0)AQ s AP s AP s

c3

c4

where cI through c4 are obtained by locally llnearizlng about the shock slope

and corresponding values of the flow variables at the previous march station,

hence the ci's are all known. They are given by

Cl = (y+l) Ps [i - ps y_l ] , (lla)
2sin28
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c2 = ClUs - Ps '
(llb)

c3 = Ps[COte - 7+1 (l_Us)] + ClV s
4sin30 cose

(llc)

and (u 2 + V2)s
i (lid)

c4 = y---_+ C2Us + C3Vs - Cl 2 "

The jump conditions providing the above relationships are derived from con-

servation of mass, momentum and energy at the shock. Through linearization

they serve to reduce the four unknowns at the shock to one unknown parameter,

APs , hence providing three boundary conditions. The linearization performed
here is consistent with the basic solution method, equation (8).

Because the strongly._onservative form of the governing equations is

used, an expression for AIQ is required where

and

Q

Ai_ = AiQ_ _i Aij • (12)

J j1

In order to have a fully implicit method, the term Aij in equation (12) must

be evaluated in terms of the solution vector AiQ. This is accomplished in

the following manner.

Based on the definitions of the Jacobian J and y(_,n) the following

relationship exists

I (13a)
J = 6($)s(n) "

Therefore, since AJ is taken along constant q, it follows that

AI___J =_ AI_

ji 6i

(13b)

An implicit means for finding Ai_ can be developed through the principle of

global mass conservation. For this purpose the continuity equation is

utilized in the form of equation (7). Thus,

+ AS (14)
_n : - _n "

For the continuity equation, the appropriate variables are
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-- Y_ 1 --
= ynpu = Pu and g = - y_Du+pv = - --_ +-- pv • (15a,b)

Yn Yn

Equation (14) is next discretized across a box centered at i+_, j-½ to obtain

i (Ai_j Ai_j i) A_ i- i- A_ -i -i (16a)+ _ +_ (A gj - A gj_l ) = - _ (gj - gj_l ) •

Equation (16a) is now summed from shock to body, which is effectively trape-

zoidal rule integration, giving

3z-=^NJ__i (Ai_j+Ai_j_llAn + _A$ _i2"= (AZgj'-- Aigj_l ) An

NJ t.

X (-i -i
An j=2 gj - gj-l) Aq

(16b)

where j = NJ at the body. This is the appropriate integration for the

present scheme. Performing the indicated summation and imposing the no-

slip condition at the body results in

1 (Ai_l Ai_2 Ai_N J i) A_ " A_ -iY + + "'" + - - _ A1gl = A--_gl " (17)

The first term on the left-hand side of equation (17) is -Aiys, the

change in shock position between i and i+l, as next shown. Integrating the

mass flux through the inflow and outflow planes of two subsequent S-stations

and setting the difference equal to the amount of mass admitted through the

shock between those two stations (if no mass is injected at the body) leads
to

i

Aiy s =- f Ai (puy n) dn
0

(18)

The right-hand side of equation (18) is the negative of the first term on

the left-hand side of equation (17), giving

-i
(Aigl + gl )Aiy s = _ Aq (19)

Now, since

Ys=Yb +_ (20a)

it follows that
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Ai_ Ai i= Ys - A Yb " (20b)

Equation (19) is then substituted into equation (2Oh) giving us an
expression for Ai_ in terms of the prescribed Aiyb, known terms, and the
unknownAigl of continuity. Using this expression for Ai6 together with
equation (i0) in equation (12) gives us the desired expression for _iQs in
terms of one unknownparameter, Amps. Performing the._above described
manipulations and rearranging terms to solve for AZQswe can write in com-
pact notation

i
A Ps

s = +
j1

(21)

where S and _ are easily obtained.

Before proceeding to application of the boundar# conditions at the shock

using the finite difference scheme, we next turn to the body boundary

conditions.

Wall Boundary

At the body the no slip conditions (u= v= 0) are applied and the wall

temperature is specified. This provides three boundary conditions.

We can write

0
AQb =

i 0

L_(_et_ b

(22)

Since at the wall e = e t the equation of state yields

(0et) b = ewP b (23a)

thus

A(0et) b = ew A0b
(23b)

where e is a constant given by
W

T
W

e --

w y(y_l)M2

(23c)
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Therefore we can write

1

0
AQb = Ap b

0
(24)

e
w

m

We wish now to consider the form of A_.

write

According to equation (12) we can

Ap_ _ AJ= T- 7
m

and A0e t = j

Ape
t

m AJ (25a,b)
Pet_-- •

Use of equations (23a) and (23b) permits us to write

AC_-et) b = ewA_ b • (26)

Finally we can write at the wall

1 I

AQb = AOb •
0

e
wl

As at the shock, one unknown parameter remains at the wall, A_ b.

(27)

DEVELOPMENT OF THE BOUNDARY POINT DIFFERENCE SCHEME

The boundary conditions and use of the continuity equation has allowed

us to express the eight unknowns at the shock and wall boundaries in terms of

two unknowns, AiPs and Ai_b, respectively. With application of a suitable

finite difference scheme at the boundaries the system of equations can be

cast into block tridiagonal form, which results in a set of equations that

is relatively easy to solve with existing methods, see reference 7, for

example. We intend to show that there exists one particularly suitable

finite difference scheme to use at the boundaries. Further, if the boundary

point difference scheme can be developed directly from the interior point

difference scheme, then the finite differencing will be completely compatible

over the entire solution field. It will be demonstrated that incompatibility

of the boundary point differencing with the interior point differencing can

lead to oscillatory solutions.
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Model Problem

A simple model problem is used to illustrate the above claims. It is
desired to numerically integrate the equation

df
dy _cos_y , f(0) = 0 (28)

over the interval 0 < y < i.

Onemight discretize equation (28) as follows:

fi+l- f"1

Ay = 2 (c°s_Yi+l + c°s_Yi) (29a)

With a boundary condition on f at i = 1 (fl = F), the solution can be obtained

at all points by stepping equation (29a) out from the boundary. If equation

(29a) is written across i-½ by decrementing i by one and these two expres-

sions are added together, one obtains the central difference form for

constant by

fi+l- fi-i

2Ay = 4 (c°s_Yi+l + 2c°s_Yi + c°s_Yi-l)
(29b)

With equation (29b) the system of equations can be cast into tridiagonal

form and solved by conventional methods using a tridiagonal inverter. This

is how the model problem is solved in this study.

An alternative method of solution is the following. By stepping equa-

tion (29b) from i= i, the solution can be obtained at all of the odd

numbered mesh points. To obtain the solution at the even numbered mesh

points, a difference expression relating f at i and i+l must be employed.

The obvious choice is equation (29a) which can be employed once, and then,

with the solution at one even numbered mesh point, equation (29b) can be

used to find the solution at all remaining even numbered mesh points. This

technique will give precisely the same solution as when equation (29a) is

used for all points or when the system is solved in tridiagonal form.

Equation (29a) is not the only possible finite difference expression which

can be used to transfer the solution to an even numbered mesh point when

using equation (29b). However, it is the only compatible difference

expression for this task, having been used to derive the interior point

difference scheme. This model problem was solved for this study and the

percent error in the solution is plotted for the compatible and an incom-

patible boundary point difference expression in which the derivative is

written as a three point backward difference at the upper boundary. The

incompatible expression was not chosen at random. It has formally the same

order of accuracy at the boundary point as the interior point difference

scheme for df/dy has at those points. The results (fig. 2) show that the

incompatible boundary point differencing yields an oscillatory solution

which reproduces the compatible differencing results only at the odd
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numberedmeshpoints. The solution has not been properly transferred to the
even numberedmeshpoints.

If the solution method for this model problem utilizing equations (29b)
and (29a) is written out in matrix form, it is found to be a tridiagonal
system with all zero elements on the main diagonal except at the upper
boundary where equation (29a) is applied. This system is clearly lacking
diagonal dominance, yet we note that this poses no problem provided the
boundary point differencing is treated properly.

The situation can be summarizedas follows. A first order equation is
integrated using a two point central difference written across three mesh

points. In order to correctly recouple the solution points a "numerical

boundary condition" is required which we shall call a "connection condition".

Hence the first order equation with a two point central difference written

across three mesh points requires one boundary condition and one connection

condition. This is exactly analogous to the parabolic Navier-Stokes problem,

which we recall was formulated with two invlscid equations.

We now proceed to develop the finite difference scheme for the solution

of equation (8). Only the inviscid form of that equation is considered

because the connection conditions are required only for the inviscid (first

order) equations.

Equation (8) is discretized across the box centered at i4_, j4_ for

an inviscid equation as

[i _ j+l _Q j) +_ ( j+l - _ j) AiQ

= _ A_ - _ _j)iA-_(gj+l
(30)

As for the model problem, decrement J by one to give the expression for the

box centered at i4_, j-½, then add this and equation (30) to give

4 _fj+l j j-1 _ ( - )] AiQj+l _ j-i

a_ - - _j_l)i (31)2An (gj+l

This is the interior point difference scheme for the inviscid terms in

all of the conservation equations. Note that as for the model problem the

n-derivatives are two point centeral differences written across three mesh

points. We should thus expect the same uncoupling of adjacent solution

points in the inviscid equations as was observed in the model problem. This

also occurs in the viscous equations in inviscid regions where the viscous

terms die out. Hence we choose to employ equation (30) at the two boundaries
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on the inviscid equations, one at each boundary. This will allow us to
apply the correct connection conditions while at the sametime providing a
relationship between the one remaining unknownat each boundary and the

solution vector at the adjacent mesh point. Thus the boundary points are

eliminated from the inversion of the system of equations and the desired

block tridiagonal form is achieved. Note that the present algorithm could

be used for computing totally inviscid flows by providing two more required
connection conditions.

The application of the connection conditions for the viscous problem
is detailed in the next section.

Application of Connection Conditions

The continuity equation written in the form of equation (30) is

utilized at the shock boundary. Using compact notation the equation is
rewritten as

• Ai_2A AZQl + B = R (32a)

Noting that &Qs = &QI, equation (21) is substituted into equation (32a)

and &ps/J solved for to yield

Alp s

ji (AS) -I [R - A_ - B &iQ2]
(32b)

expressing Aps/J in terms of the unknown vector AQ and known quantities.

Next substituting equation (32b) into equation (21_ gives AQI in terms of

AQ 2 and known quantities. The final step is to substitute for AQI in terms

of &Q2 in the overall finite difference scheme written at j = 2 for all of

the governing equations. This redefines the coefficient matrices and right-

hand side term for j = 2 and eliminates the shock point from the direct
-- D

inversion of the system of equations. Once AQ2 is known, AQI is obtained
from the expression relating the two.

The procedure at the body is almost identical to that at the shock,

therefore it will not be detailed here. The main difference is that at the

body the connection condition is made on the n-momentum equation.

The boundary conditions in conjunction with the connection conditions

have been developed in this study in a completely implicit manner. One

other point must be discussed, namely, the method for advancing the shock

shape in a fully implicit manner.

IMPLICIT ADVANCE OF THE SHOCK SHAPE

Some parabolized Navier-Stokes schemes which employ shock fitting have

in the past not used implicit means to advance the shock shape, even though
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the rest of the schememayhave been implicit. In reference 1 the authors
note that the use of Euler explicit integration to march the shock shape

downstream leads to restrictions on the maximum allowable streamwise step-

size. It is found that an implicit method for advancing the shock can be

developed straightforwardly based on global conservation of mass.

In reference 3, the shock shape is solved for implicitly by making the

shock standoff one of the unknowns solved for when the equations are in-

verted. This is more costly than the present approach in terms of the

computational effort required.

The integration indicated in equation (18) is all that is needed to

implicitly advance the shock. Once the equations have been inverted at

station i+l, the vector AiQ is known, hence Ai(puy n) is available. The

integration of equation (18) is performed using the trapezoidal rule to

find Aiy s. Ai_ follows from equation (20b) with the prescribed A1y b.
Finally

6i+i = 6i + Ai6 (33)

Once 6i+l is known, ji+l is computed and -Qi+l is decoded to give Qi+l,

the physical variables.

RESULTS

In this study a fully implicit set of boundary conditions for the

parabolized Navler-Stokes equations in strong conservation form has been

developed. Figure 3 shows the surface pressure for the 10% parabolic arc

airfoil at the conditions solved for in an earlier numerical study by

Schlff and Steger (ref. 8). Agreement is good between the present code and

their results. All profiles were found to be free of oscillations except

for very small magnitude oscillations near the shock. No smoothing of any

sort was applied in the present scheme.

The three-dimensional solution scheme of reference 1 was reduced to

two dimensions and a stepsize study performed to compare the effect of the

difference in the boundary conditions between the two schemes. The earlier

scheme was found to be limited in stepsize to a condition which corresponds

approximately to a CFL number of one at the shock. The present scheme

permits shock CFL numbers up to approximately seven, although the accuracy

of the results declines as expected at the higher CFL numbers. This is

illustrated in figure 4 where wall shear profiles are plotted for various

shock CFL numbers and compared to the results of self similar compressible

boundary layer theory.
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CONCLUSIONS

The importance of a carefully considered choice of the boundary point
difference schemehas been indicated through a simple model problem.

Finally, an implicit method has been devised for advancing the shock
based on the principle of global massconservation. It was found that if
the present schemeis used with the shock advanced by Euler explicit
integration, the maximumstepsize is again curtailed to a shock CFLnumber
of approximately one, independent of the fact that the boundary conditions
are otherwise fully implicit.

Thoughthe present analysis is for two dimensional flow, extension
of the boundary conditions to three dimensions should be possible using the
sameprinciples.
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BOUNDARY TREATMENTS FOR IMPLICIT SOLUTIONS

TO EULERAND NAVIER-STOKES EQUATIONS*

W. T. Thompkins, Jr.

R. H. Bush

Massachusetts Institute of Technology

INTRODUCTION

Implicit time marching schemes like those of Beam and Warming [i],

Briley and McDonald [2], and MacCormack (1980) [3] generally have not been as

robust as would be expected from a stability analysis for the pure initial

value problem. Recently, Yee, Beam and Warming [4] illustrated that a more

general stability analysis, which includes the effect of boundary conditions,

may explain some of the seemingly anomalous behavior of these schemes. The

major theoretical basis for this type of modal stability analysis was estab-

lished in a series of papers by Kriess [5,6], Osher [7,8] and Gustafsson

et al [9].

Yee as well as Gustafsson and Oliger [i0] considered the effect of

inflow/outflow boundary condition formulations on the stability of a class of

numerical schemes to solve the Euler equations in one-space dimension. The

characteristic feature of a subsonic inflow/outflow boundary is that a priori

boundary values may be specified for only some problem variables while re-

maining boundary values must be determined as part of the solution process.

Yee demonstrated a rather large disparity in stability bounds between the use

of explicit or implicit extrapolation procedures and in general demonstrated

that implicit extrapolation procedures had the least restrictive stability

bounds. The intent of this work is to explore computationally the implica-

tion of this work for several two-dimensional Euler and Navier-Stokes simula-

tions. A parallel effort by Abarbanel and Murman [ii] has begun the exten-

sion of the modal analysis to problems in two-space dimensions.

NUMERICAL PROCEDURES

The two-dimensional Navier-Stokes equations may be written in vector

form as

0U DE OF DR 0S
0--_+ _x + 0-_ = 0-_ + 0y "

(1)

This work was partially supported by NASA Lewis Research Center under

NASA Grant NAG 3-9.
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where

U =

R

P

pu

pv

Et

= 0

T
XX

T

xy

R4

E _

S

pu

pu 2 + p

0uv

u(E t + p)

0

T
xy

T
YY

S 4

F _ Ov

)uv

0v 2 + p

v(E t + p)

and

i v 2))Et = ple +y (u2 +

Txx = (% + 2_) _xU + %_

: _v _u
Tyy (I + 2_) _y + _x

R 4 : u T + vT + kp-l(y _ i)-i _a2
xx xy r _x

pjl i)_i _y2S4 = u T + v T + k (y -xy yy

The strong conservation law form may be retained under a general

coordinate mapping as illustrated in Viviand [12]. All computations to be

described were conducted in a mapped computational domain but numerical and

boundary condition procedures will be described in the simple two-dimensional

geometry shown in figure i for simplicity.

A 1979 paper by Beam and Warming [13] outlined a solution scheme for

systems of equations of the form (i) which includes most numerical schemes

for which the modal boundary condition analysis has been conducted. This

scheme uses the well developed methods for ordinary differential equations

as a guide to developing numerical methods for partial differential equation_

The scheme presented combines Linear Multistep Methods, local linearization,

approximate factorization and One Leg methods. The scheme, a generalization

of the scheme presented in reference [1], solves for a variable 0(E)U which

is equivalent to AU n in the class of schemes represented by the earlier

paper. The earlier scheme is somewhat easier to understand as AU n is just
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the change in the solution from time level n to level n+l, while O(E)U is a
more general time differencing formula.

The solution schemeschosen are implemented as:

(I + L AU = RHSn

(I + Lx5 AUn = AU*

Un+l = Un + AUn

(2)

(3)

(4)

where

RHS n is very nearly the finite difference approximation to the steady

state equations, and

L and L are linearized finite difference operators representing a

particular tim_ and spatial differencing scheme.

Full details of these operators are contained in Beam and Warming [i].

If the spatial differencing is taken to be centered, the computational form

of either equation (2) or (3) appears at each interior point as:

Anl AU2-1 + BinAU nm + Cni AUi+I = Din (5)

where A., B°, and C. are 4x4 matrices, known at time level n, and D i is the
i l 1

right-hand side vector at node point i known at time level n and AU is
1

the unknown vector at node point i. The boundary points will be assumed to

involve only the nearest two points.

n
+ + (6)

The full matrix equation appears as:

A 0 B0 CO 0

A I BI C I 0

0 A 2 B 2 C2

0 0

" " A
• : n-I

0 0 ... A
n

eee 0

eee 0

eee 0

Bn_ I Cn_ I

B C
n n

Au 0

AU I

Ju2

AUn_ 2

AUn_ I

AU
n

DO

DI

•D2

Dn_ 2

Dn_ I

D
n

(7)
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th
and will reduce to tridiagonal form bYhSUbStituting the first and n
equations into the second and the n-i t equations•

BI

A 2

0

0

An_ 2 Bn_ 2 Cn_ 2

0 . 0 A' B'
•" n-i n-i

AU I

AU 2

AUn_ 2

AUn_ I

Dn_ 2

D'
n-i

(8)

where for example

B I' = B I - AIA0-1B0 .

This cumbersome development allows us to show clearly how a large variety of

explicit or implicit boundary forms can be included without difficulty•

BOUNDARY TREATMENTS

Inflow/Outflow Boundary

The finite difference algorithms studied usually require more boundary

values than are required for the partial differential equations which they

simulate• These extra numerical boundary conditions cannot be set arbitrarily

and are usually determined through a_ extrapolation procedure• These extra-

polation procedures may either be explicit, that is boundary values needed at

a new time are determined uniquely from the old time level solution, or

implicit, that is boundary values are determined as part of the new time

level solution• The analytical boundary conditions or the extrapolation

quantities are usually not conservation variables but primitive variables

and a local linearization is usually required as part of defining the

extrapolation procedure.

Consider, for example, an implicit, subsonic outflow boundary at which

the local static pressure is specified as a boundary condition, and all other

variables are to be determined by extrapolation. Figure i shows a typical

computational grid and defines the subscripts used.

pn+l p
i,j = 1,j ; given (9)
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P

pu

pv

n+l n+l

-- 2

i,j i,j-i

pu

pv
P ]n+l implicitpu space

pv i,j-2 extrapolation

(10)

In order to complete the boundary formulation, all equations must be ex-

pressed in delta form and in terms of conservation variables. For the total

internal energy this may be done through its definition:

Et = (y-l----_+ _ + -- (ii)

Since the relations between conservation variables are nonlinear, some

linearization step will be necessary before the boundary condition formulation

may be used. We choose to introduce our linearization step here as:

1 (u 2+v 2) nAp+unA(pu)

+ vnA(pv) + (A-Av, Au 2, Av 2, Apgu, ApAv) (12)

If terms of order AuAv are neglected, the error is equivalent to the

linearization error of the interior point scheme. We may express the trans-

formation from boundary variables to conservation variables as:

rAUi, J
AO I

iApul

Aovl
i

i 0 0 0

0 i 0 0

0 0 l 0
n

-,(u2+v 2) n n 1

2 u v (y-l)

Ap

Apu

Apv

AP

: Ni,jAWi, j

(13)

We will in general denote transformation from conservative to primitive
variables as

AWi, j = Ti,jAUi, j (14)

The extrapolation conditions for AWi, j are:
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W°

l,J  [iooil °°ilf  1Apu 2 0 Apu -i 0 Apu

l_vI o _ l_vl o-_ i_vl
[ APJi,j 0 0 lAP J i,J-i 0 0 lAP J i,J-2

or

AWi, J = Pj_IAWi,J_I + Pj_2AWi,J_2

The final equations relating the boundary conservation variables and the

interior conservation variables are:

AUi, J = Ni, J +

or

AU.I,j = Gin,J-i AUi,J-Z + H_,j-2AUi,J-2

With the definition of Pj . and given in equation (15) Ti,j_ I and
Ti,j_ 2 are the identity matrix. PJ-2

An explicit outflow boundary treatment was constructed using:

pn+l pn
= ; given

[inIin0u = 0u

O i,J O i,J-i

and setting Gi,j_ I = H. = 0i,J-2

(15)

(16)

(17)

(18)

(19)

Solid Wall Boundary Procedures

The boundary treatment procedures illustrated for inflow/outflow

boundary are easily extended to cover solid walls in either inviscid or

v_scous flow situations. Here,
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AUo, J
= Ap

Apu

Apv

AE t

y/T pIT 0

'u/T pu/T 0

yvlT pv/T 0

i yv 2 i Oq+2 T 2 T Pq

Sq

0

AP

AT

Aq

Au

(20)

or

Au0,J = NO,.1AW0,..i (21)

where q is the velocity parallel to the wall and S is the wall slope. For

the inviscid flow examples 3P/By, ST/By and 8U/By are set equal to zero;

while, for the viscous flow examples v, u, and ST/By are set equal to zero

and 8P/By is equal to 4/3 _(8/SyZ)(v). All derivatives are evaluated by one-

sided finite difference formulas.

As indicated by Buggeln, Briley and McDonald [14], an ADI type pro-

cedure requires boundary conditions for the intermediate step. Usually the

intermediate step was in the "y" direction and the boundary conditions were

applied as if the intermediate results were physical quantities; that is, the

boundary conditions of equation (20) were applied to the quantities AU* of

equation (2).

Explicit wall boundary treatments are generated by applying the primi-

tive variable form of equation (20) and forcing the correction matrices to
be zero.

NUMERICAL RESULTS

Three geometries were selected for detailed study: an invlscid super"

sonic diffuser with weak oblique shock, supersonic in - supersonic out; an

inviscid supersonic diffuser with a strong normal shock, supersonic in -

subsonic out, and a viscous supersonic diffuser with weak oblique shock

illustrating a shock-boundary layer interaction. Sketches of the geometries

are shown in figures 2, 3 and 4. Solutions for each geometry were run to

steady state for a range of time step size or CFL number. A typical con-

vergence history is shown in figure 5 which shows the log of the value of

the steady state residual

3E 8R 3F 8S

plotted against the iteration number. A solution was not t_rmed stable unless
the residual converged to the machine accuracy, about ixl0 -v.

Each geometry calculation was run with fully explicit extrapolations,
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AU = 0, and with fully implicit extrapolations, and the results summarized in
Table i.

The results for the strong shock diffuser can reasonably be compared to

those of Yee, Beam and Warming [4]. They reported a CFL number stability

limit between i0 and 20, while we found stability limits between 90 and 150.

Thus the analysis in one-space dimension does appear to provide a sufficient

condition for stability, but it may not provide a close approximation to the

stability limit. However, it is essential to emphasize that the largest con-

vergence rates were observed at time steps corresponding to CFL numbers of

order i0 and that only a marginal advantage for the implicit boundary formu-

lations was observed.

The results for the shock-boundary layer calculation are of somewhat

more interest, but they demonstrate a substantial computational advantage for

the implicit solid wall conditions, not for the inflow/outflow extrapolation.

Here the stability boundary and the best convergence rates were observed at

time step sizes corresponding to streamwise CFL numbers of 5 to i0. When

using the implicit wall conditions, the algorithm stability appeared to be

independent of grid spacing in the normal direction as might be hoped. When

using the explicit wall condition, the algorithm stability was limited to a
CFL number in the normal direction of about 500.

CONCLUSIONS

While it is difficult to generalize from only a few test examples, it

does seem apparent that for inviscid calculations the differences between the

explicit and implicit boundary formulations tested are far smaller than had

been anticipated. In fact the most interesting result is that the time step

size for maximum convergence rate is so small, CFL numbers of order i0.

This also seems to be the limiting factor for viscous flow computations and

new work should focus on understanding of how the convergence rate is limited

or affected by boundary formulations. Since the inflow/outflow boundary

treatments tested were simple extrapolations, it may easily be the case that

treatments more closely representing the differential equations will prove to

have superior convergence properties. However several such "improved"

boundary treatments have been attempted with very disappointing results.
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Abstract

In this paper it is shown that a rigorous mathematical treatment of the boundary conditions for rigid
no-slip surfaces requires, in general, that two passes be made in solving Poisson's equation. A Fourier
solution procedure was the key to this realization. It is also shown that a corresponding method exists
for finite differences and, for the same local approximation, the usual one step method gives the same
result for the geometry considered here. The more fundamental two step method gives a new

insight into the physical significance of boundary vorticity.

I. Introduction

Numerical solutions of the Navier-Stokes equations are often obtained using the so-called
"primative equation" formulation. If the flow is incompressible, it is necessary to solve an elliptic
equation as part of the system, and this implies some form of simultaneous solution of the entire flow
region for any given time. In the primative equation case, this is usually a solution in terms of a
pressure field with Neumann boundary conditions. An alternate formulation allowing Dirichlet

boundary conditions is the "vorticity streamfunction" formulation. The latter has widespread use,
particularly if the solution is restricted to two space dimensions.

Because the solutions are approximations, it is generally necessary to satisfy the conservation
laws within the framework of the approximation and thereby provide constraints on error propagation
which may lead to false solutions. Generally, but depending on the numerical method, better
constraints are provided by the vorticity formulation, and hence better results are obtained.

Here we consider the mechanics of satisfying the physical conditions at a rigid surface in the
vorticity formulation. Clearly the normal component of velocity much vanish at the surface, but in a
Newtonian flow the tangential component likewise must vanish. The normal component condition is
easily satisfied in the streamfunction solution and provides the necessary and sufficient condition for
solution of Poisson's equation. In fact, the additional condition is too much, and the problem is
overspecified. Thus one condition must reside with the inhomogeneous part of the equation, the
vorticity. It seems natural for the no-slip condition to apply to the vorticity, and this is usual in
numerical treatment. It turns out that reversed roles of the conditions are apparently more fundamen-
tal. That is, to associate the no-slip condition with the streamfunction and no wall penetration with
the vorticity. This leads to an interesting insight.

This new approach came to light in the desire to obtain solutions using Fourier transforms. We
consider a parallel flow problem in a rectangular reference frame with periodic lateral end boundaries.

Assuming an arbitrary distribution of vorticity in the flow region and on parallel rigid boundaries, a
first solution is obtained by an image calculation. The image vorticity values are of like sign to real
interior values and symmetrically placed relative to a rigid boundary. This satisfies the no-slip
condition at the rigid boundaries, and further the image provides an imposed periodicity. Appropriate-
ly, we thus have periodicity in both space dimensions for solution by Fourier transforms.
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The solution we obtain is in general one that will exhibit wall penetration, since the normal

velocity condition is not satisfied at the solid boundaries. There is, however, one unique distribution

of boundary vorticity for which there is no wall penetration. We therefore regard the first solution as

tentative and follow it with a second solution in which the proper vortieity values have been placed on

the boundary.

Finding the correct vorticity values to place on the boundary involves simultaneous solution of a

system of linear agebraic equations that give constant values to the streamfunction at the walls. It is
shown here, in the case of the Fourier solution, that a fast and physically meaningful technique, using

an influence function, may be used to simply correct initial values present there. The correction

represents, for example, the amount of generated vorticity in a time interval of a sequence of solutions

and gives insight in the use of suction to modify flow behavior.

We further consider the same procedure in terms of finite differences. We find that through

matrix convolution the Fourier convolution may be imitated throughout. This leads to a slightly less

accurate solution of local approximation but mimics the fundamental procedure. Comparing this

solution to a one step result, using the same local approximation, the solution agrees to within

computer roundoff. The one step procedure does not discriminate between slip and no-slip. The

normal wall velocity derivative, i.e. the vorticity, of course differs. It appears then that one may

justifiably seek out a one step method for faster solution but should use the two step procedure to

verify that it is valid for the geometry under consideration.

II. Parallel Flow and the Commonly Used Difference Method

We illustrate the numerical procedures here by considering two dimensional flow between

parallel plates. In particular, one may think of plane Poiseuille flow with a characteristic parabolic
profile and with a superimposed disturbance so that irregular flow occurs relative to the plates. If the

disturbance imposed or naturally occurring has periodicity in the direction of flow, we may readily
make use of Fourier series to obtain solutions.

We are interested here only in the solution of Poisson's equation for the streamfunction with

vorticity as the "source" term, namely

_2ff _2_
+ ffi -_ (1)

0x 2 0y 2

where velocity components in the x and y directions, respectively, are

u ffi _ and v = --- (2)
c_y Ox"

The boundary conditions at the plates are u -- v -- o, and solutions differ only in that the internal
and/or boandary vorticity values differ leading to differing internal flow fields. For example, a

developing disturbance of an unstable Poiseuille flow frozen at some instant in time is a typical
solution of interest, although it is also of interest to regard changes in boundary vortieity as a

generation process occurring over some discrete time interval. In the interior vorticity is modified in
time by convection and diffusion I (neither considered here), but at the rigid boundaries a timewise

change also must occur if both u = o and v ffi o conditions are to be satisfied. This is to be illustrated

in the following.

Intuitively (1) is most simply solved by requiring the normal velocity v at the walls to be zero

and thereby, through the second of (2) to have constant values of the streamfunction at the walls.
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The usual finite difference expression which is solved simultaneously for all grid points, either

directly or iteratively, is

'/'1 _'o '_o -'k3 '/'2 -_o '/'o - '/'4

Ax Ax Ay Ay
+ = -Wo, (3)

Ax Ay

where the grid layout is

6 2

3 0

7 4 8

At a rigid plate ffl = *ko ffi _b3, and we are left with an expression with y dependence only. Consistent
with the order of approximation, we assume a local image with oppositely directed flow to satisfy the
u = 0 condition. This leads to I/'2 ffi 1/'4and an expression for the boundary vortieity

2(_bb - _bi) (4)
60b -_

Ay2 '

where _i is the nearest internal streamfunction value, I/'2 or if4.

Much confusion arises at this point because the vorticity at the wall (4) seems to be placed

there as an afterthought to solution of the flow field by (3). Particularly confusing is that solution for
a free-slip condition would be the same except for (4) replaced with a,b = o. It must be realized that
no-slip and free-slip imply the passage of time, and here time is frozen. There is no contradiction in
obtaining solutions the same way since with any past history the flow fields would not be the same.
Only at the first instant of an impulsive start would the internal flows coincide.

When considering the above procedure in terms of a discrete Fourier solution, one finds that the
local character of (4) can no longer apply. In the Fourier ease, all grid information is used, that is,
additional mesh points come into play as if, in the finite difference ease, we were to first include
points 5, 6, 7 and 8, as indicated in the layout, for a better approximation and then consider better
and better approximations until we used all mesh points. In the Fourier ease then, an analogous
procedure, if possible, would not be very satisfying and confidence in its correctness would be low. In
the following a different viewpoint applicable to both Fourier solution and finite difference solution is

explored.

!II. Matrix Convolution

Though the method we consider here had its origin in Fourier solution to our problem, the
analogous procedure for finite differences is more readily understood, so we choose to describe it first.
We consider the alternative to the above difference procedure; that is, to satisfy the no-slip condition
first and then ask what must follow to satisfy non-penetration. We tentatively examine a result
satisfying no-slip by employing an image region such that flow relative to a rigid wall is equal and
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opposite in the image (see Figure 1). This corresponds to a like vorticity field (image with same sign).

The boundary values of vorticity may be arbitrary but are generally those of a previous time step in a
time dependent calculation. We obtain our tentative result with (3) applied over the entire folded

doubly periodic region of grid points M x 2N. Here Hockney's 2 direct method was used, although

any other simultaneous solution of (3) will suffice. Figure 2 is a typical first pass solution.

Clearly in the result, wall penetration occurs (Fig. 2) because no reference is made to any

uniform values of _ at the wall. It also is evident that our only lacking feature to precisely defining

the flow and getting a correct solution is that the boundary _0's are arbitrary. Thus, if the unique

boundary values of vorticity can be found that provide non-penetration, they will be the correct ones

for solution of the problem. That is, at each boundary point, we must satisfy an equation

where _B is the uniform (constant) value along the boundary and A_ B is the change from first pass

(_F) values obtained by the image procedure above. The required change in _F, i.e. A_B must be due
to the extra boundary vorticity only. Hence if we obtain the corrected values of vorticity to satisfy

(5) at each boundary point, then we can again apply (3) to the combined flow and image region to get
the final solution.

Since (1) is linear, and because of our simple geometry, we can use an interesting procedure
involving an influence matrix derived from the superimposed effects of unit vorticity at boundary

points. We obtain the overall solution of a unit vorticity at one point on the boundary in the same

manner as the initial pass described above (this result is needed only once in a timewise developing

solution). The streamfunction field values for a unit vorticity at the origin is illustrated in Figure 3.

Now the boundary streamfunction values resulting from the unit vorticity may be catalogued and the
others discarded. A convoluted matrix A may be set up that provides the effects of moving the unit

vorticity from point to point along the walls. More explicitly we can write

A_1,2

A_I,M

_¢N,1

A_N,2

A_N,M

n

A1,1 A1,2 • . "AN, M

A1,M A1,1 • • "

L01, M|
(6)

where the convolution matrix A is generated by slipping elements one notch cyclicly on succeeding

rows after the first (accounting for the two walls separately). The corrections to the boundary

vorticity then follow by obtaining the inverse of A and solving the matrix equation

f_ ffi A-I_,t , (7)
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When the full boundary vorticity (initial pass plus results of (7)) are used in a final pass, the flow field

satisfying both u ffi o and v ffi o will emerge (see Figure 4).

The solution here is identical (within roundoff) to the one pass traditional method of the

previous section. The matrix method required a doubled grid solved twice. Nevertheless, the

confidence level concerning correctness is very high.

IV. Fourier Convolution

In the Fourier method, the convolution takes on a particularly simple form. Though not very

physically intuitive it follows from the theory of Fourier transforms. 3 The "wrap-around" procedure
illustrated in matrix convolution is effectively automatic in transform space.

Again, we obtain a solution for a folded space, Figure 1, in which the vorticity image is such
that the distribution is "even" in the y direction. Because of already existing periodicity in the x

direction, no further folding is required there. The tentative result which satisfies the no-slip condition

is obtained by taking the discrete Fourier transform of the vortieity distribution with arbitrary vorticity

values at j = o and j = n. In transform space we have

_e = _e (8)

(_)2 + (e/D2

where * indicates transform and & and ¢' are integers. Further, a = 2_r/Lx and _ -- 2_r/Ly, where

Lx and Ly are the lengths of the folded flow region (Figure 2) in the x and y directions respectively.

We now, in the same manner (Equation(8)) obtain the streamfunction field for a point (unit)

vorticity. Again, only the boundary streamfunetion values are needed and are set up in a two row

sequence of M elements each. Corresponding to the matrix convolution expression (6), we write for
any element (m,n)

2 M

Aft(re,n) -- _ _ ffu(m-r,n-s) _(r,s) (9)
s=l r--1

where the _ku'S are (symbolically) the two row sequence of streamfunction values for a unit vorticity at

each point on the boundary. The A_k's are the corrections we must apply as determined from equation

(5) to give constant values of the streamfunetion at the boundaries, and the _'s are the unknown

corrections to the vorticity to be found. Expression (9) is also referred to as the Green's Function for

the boundary (see, for example, reference 4, page 700). m and n of course take on values as r and s

respectively, namely M and 2.

The convolution theorem provides for simple treatment of (9) in transform space giving for each
element

a_'(_,e) = _u(,_,e) _*(i,t). (I0)

Hence in transform space

•(#,t_) = A_*(h,t) (II)

_u(#,e)
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The inverse transform then gives the correction to be applied to the vorticity at the walls and

reapplication of (8) leads to the final solution.

V. Conclusions

A number of interesting thoughts follow from the above study. Perhaps most important is that
the two step approach is very fundamental and rigorous in that the final values of the vorticity are

clearly unique in providing the no-penetration condition. Symmetry in the self image and flow field

vorticities provides for no-slip. In our test problem, this was easy to achieve. Presumably more

general treatment will allow other geometries to be treated similarly, or transformations to convert the

geometry to the parallel flow case will allow the present approach to be used.

To appreciate the significance of wall vorticity generation as that amount of vorticity required to

provide non-penetration is perhaps a very useful non-traditional view with important consequences. It
is a measure of what modifications must be made to flow fields to keep the flow steady by appropriate

removal of a local layer of fluid, for example. This is relevant to time dependent calculations where

the generated vorticity during a time interval compensates for internal changes.

Of incidental interest in connection with time dependent calculations is that it was found here

that Fourier solution of Poisson's equation does not provide dramatically improved accuracy. The

accuracy is much more a function of grid resolution in contrast to the dramatic improvement when
using Fourier techniques to treat the non-linearity of the Navier-Stokes equations. 5 It is perhaps

generally true that in most numerical applications one needs to be concerned mainly with accuracy of

local approximation of the non-linear terms.

Finally, for the sake of fast computation of Poisson's equation one should still seek out one pass

methods, but it must be shown that they produce corresponding solutions to a two pass calculation.
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NUMERICAL TREATMENT OF

BOUNDARY CONDITIONS AT

GENUINE TWO-DIMENSIONAL

NON-LINEAR LATENT HEAT

MOVING INTERFACES IN

SOLIDIFICATION PROBLEMS

P. M. Beckett

University of Hull, England.

Introduction Two-dimensional solidification problems which do not possess

the sort of symmetry that permits only one space variable to be involved (as

is the case with freezing spheres or cylinders) are virtually intractable

analytically. Moreover numerical methods devoted to such problems are not

without difficulties most of which can be traced to the latent heat condition

on the interface. The difficulty of setting up a finite difference grid in

a region whose shape is changing is commonly overcome by means of some trans-

formation and for the general method of inward solidification. Saitoh (ref. i)

has proposed a method using polar co-ordinates. This approach can be

commended in general but for particular geometries alternative co-ordinates

can be appropriate; nevertheless whatever the variables or precise nature of

the transformation we are led to a non-linear differential equation

involving the temperature and the function which defines the shape and

position of the interface.

Saitoh recommends the use of A.D.I. methods for the solution of his

equations on the grounds of ease of application and economy of computing

time. Again his method can be commended in general terms but there are

problems for which the method converges very slowly or not at all. Problems

in which the boundary conditions are relatively uniform tend to pose less

difficulties than those in which there are abrupt changes in wall temperature

or heat flux. The purpose of this paper is to propose a method of dealing

with the difficult cases, which is equally applicable to the easy cases and

which is moreover less time consuming.

The method is based on quazi-linearization of the transformed heat

conduction equation and latent heat condition at the interface and an

iterative sequence in which these are solved simultaneously. Hitherto

A.D.I. methods have been preferred but modern algorithms for solving such

large sparse systems [2-4] mean that most of the storage advantage of A.D.I.

methods are reduced and the speed of solution can be dramatically improved.

Formulation of Equations Following Saitoh the two-dimensional inward solidi-

fication of a region enclosed by a general boundary is formulated in terms of

polar co-ordinates r,_; the equation of the boundary is expressed as

r = B(_) - see fig. I. At time t = O the region is either at or above the

fusion temperature Tf, while for t > O a condition is applied at the

boundary such that the material solidifies in an inward direction. The

position of the solid/liquid interface at a general instant in time is

denoted by r = F(_,t); so that F(_,O) = E(_). The problem is that of

determining the function F(_,t) together with the temperature T(r,_,t) in

the solidified phase, F(_,t) < r < B(_), and also the temperature T*(r,_,t)

in the molten phase for problems where the initial temperature is higher
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than T f.

0

boundary
r = B ($)

--interface
r= F($,t)

solid
phase

Ca) (b)

Fig. 1. General configuration: (a) closed region, (b) open region

The temperature distributions T and T* satisfy the heat conduction

equation, thus

_T
= < V2T, F(_,t) < r < B(_) (i)

_t

and _T_ * = K, V2 T*, O < r < F(_,t), (2)
_t

where K and K* are the thermal diffusivities in the solidified and molten

phases. These are supplemented by the conditions that T = T* = Tf at the

interface, by some boundary condition on r = B(_) and by the latent heat

condition at the interface

_C

pL _-_ = (k* _? T* - k _? T).V_ C (3)

where C = r - F(_,t), L is the coefficient of latent heat, p is the density

(contraction is neglected), k and k* are the thermal conductivities.

Clearly some thought must be given to the choice of origin of the polar

co-ordinates so that it remains in the molten phase. The choice is not

always easy and may need to be found by tzial and error, indeed for some

boundary shapes there may not be a convenient origin and some splitting of

the region may be necessary. For open boundaries (Saitoh considers wedge

shaped regions) the origin is chosen at the intersection of lines across which
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there is no heat transfer (so as to obtain simple boundary conditions at the

ends of the transformed region).

The problem of integrating over the irregular domains is overcome by

introducing the non-dimensional variables

T = Ktl£ 2, r' = r/Z, _' = _I_0' F' = FI£, B' = B/Z, (4)

where Z is some representative length and _0 is the angle subtended by the

extremeties of the boundary (_0 = 2_ for a closed boundary), and then making

the further transformations

r' - F' (_',t) n* = r'
= _'' _ = B'(_') - F'(_',t) ' F'(_',t) (5)

so the solidified and molten phases are defined by O < _ < l, O < n < 1 and

O < _ < i, O < n* < 1 respectively. Saitoh considers only materials which

are initially at fusion temperature and hence there is no need to find T*,

the same will be presumed in this paper because the extra phase is a compli-

cating factor only in so far as it adds to the size of the problem - it does

not affect the convergence rate.

At the same time a dimensionless temperature @(_,n,T) is introduced.

The precise definition of @ depends on the form of the boundary condition.

When a temperature TW(_) is prescribed on the boundary (or part of the

boundary) it is convenient to put

T - T (O)
8 = W

T - T (O)
f W

(6)

whereas if a flux or radiation condition is imposed then @ is introduced by

8 = T/T . (7)
f

The numerical solution of the equation for 8(_,n,T) is effected by

deducing the solution at time T = _ knowing that at _ 1 by implicit

differencing so that eN(_,n) needs to be solved on the _nit square O < _ < i,

O < D < i. The boundary conditions on _ = O and _ = 1 are that for open

regions derivatives of e and F' with respect to _ are zero and for closed

regions 0,F' and their derivatives with respect to _ are the same at _ = O

and _ = i.

When dealing with boundaries along which the temperature or flux

conditions do not vary very much the solution of the equation for @N using

simple A.D.I. techniques is usually quite satisfactory. Even sharp corners

in the boundary do not pose problems and Saitoh succeeds in solving the

inward solidification of rectangles and wedge shaped regions. Saitoh does

however restrict himself to problems which have uniform boundary conditions

and thereby avoids what seem to be the major difficulties. To assist with

directional solidification it is common foundry practice to insert "_hills"

(which are heat sinks) or "insulating tiles" at or along strategic sections
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of the inner mould surface. Under such circumstances the variation in the
boundary condition is quite abrupt and solution of the equations is usually
more difficult. The simple A.D.I. techniques do not always converge and if
they do it is commonlyonly very slowly.

In an attempt to cope with these difficulties the effect of various
boundary conditions was considered along a plane wall. Referred to
cartesian co-ordinates the wall is defined by y = O, and the location of the
interface by y = E(x,t). Non-dimensionalizing similar to the above we put

E = x/£, _ = y/Z e(E,T), E(E,T) = E(x,t)/£

and the heat conduction equation yields

a8 q ae ae a28 2n as2 a8 i a28
_----+ +

aT E aT aT] aE2 e aE an e2 an 2

q a2e ao 2q ae a2o q ae 2 a20 , (8)
+

c aE 2 an e aE aEan e2 aE an 2

which is solved in the region $_ < _ < _+, O < n < i.

The latent heat condition (3) at n = 1 is transformed to give

__ = a_ 2) {ao )ag (1 + (9)
8 e aT aE " _ q = 1

The remaining conditions are that e = 1 when n = 1 and a boundary condition

a0
0 = g(E) or --= h(E) on q = 0 (i0)

an

or a mixture of these.

Finite Difference R_resentation The Hartree-Wommersley technique - an

extension of the split time Crank Nicholson scheme - is used for the temporal

differencing. In this the solution at time TN_ 1 is advanced to that at T N

by replacing differentials with respect to time by simple differences and all

other quantities by averaging between T N and TN_ 1 . Knowing the solution at

TN_ 1 the solution at the next time step is found by solving the following non-

linear partial differential equation for e_E,q) involving EN(E) -

eN(E,n) = 0 (E,n,T N) etc.

2 D (g 2 - EN2) ao(£_ + e_-l) d2 EN deN N-1 N

St ON + (q eN 2q +
d_2 d E 2_T )

a20 N de N a2o N deN2 a2o N

- e2 -- + 2qeN dE aEaq (I + q2 __ )
N aE2 dE an2
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2 _ @N-I
(8N-I + D _SN-I eN-i _ e2

_T 2_T _ ) eN2 - _T 8N-I 2_T N-I
_n

deN_l 2 38N_ 1 d2 EN_ 1 38N_ 1

32 8N-------_I+ 2n d--_-- 3r. q_-i 3_
+ _-i 3_ 2 d_ 2

dEN_ 1 32 deN_l 2 _28N- 1 8N- 1

- 2q eN_ 1 d_ 3_3_ + (n2 d_ + i) 2
3n

(ll)

The same technique is applied to the latent heat condition which becomes

B deN2 38

n = 1

deN_l 2 38N_ 1
_ 8 g 2+(1+--) ( )

6T N-I d_ 3N
= i,

(12)

where 8 = L/Cp(Tf - Tw(O)) is the inverse of the Stefan number.

These are discretized over the rectangle _ Z _ Z _ , O _ n _ 1 by
- +

taking m divisions in the _ direction and n in the _ direction. There are

then m(n-l) interior nodes (_, nj), (i = i, ... m; j = i, ..., n-l) at

which 8N is to be found and m_oundary nodes (_i,l) for eN.

Equation (ll) is non-linear because of the presence of @N and eN but if

e N is presumed known the equation is a linear elliptic equation for @N and

this can of course, be solved in a variety of ways. If this is solved

exactly there is still an iterative sequence in which having solved (ii) for

@N a new form of eN is deduced from (12) and thence another @N etc. The

convergence of this sequence is one of the problems for non-uniform boundary

conditions but that is secondary at the moment to the problem of finding

exact solutions of (ii). Saitoh and most other workers in the field apply

A.D.I. techniques to (ii) and include the adjustment to eN by solving (12)

in the A.D.I. iterations. This procedure involves the solution of n mxm

and m (n-l) x (n-l) tridiagonal matrices each iteration and is therefore very

simple to apply and it is easy to see why the method is generally favoured.

In many cases this is a sound choice of method but when there are sharp

temperature gradients it is less satisfactory and considerable benefits accrue

from dealing with the sparse matrix equation which can be constructed to give

the simultaneous solution of the discretized equations over the entire

rectangle. This approach turns out to be convergent when the other is not

and moreover can yield solutions more rapidly even when the A.D.I. method

does converge.
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Dramatic evidence of the power of this approach has been given by
Kershaw (ref. 2) who applied iterative methods of solving large sparse
systems to laser problems. Kershaw found that his type of approach can be
200 times faster than A.D.I. and is also applicable whenA.D.I. fails.
Moreover Kershawstates that while A.D.I. methods only apply whenthere is
five point coupling (where the (i,j) point is coupled to the (i ± l,j) and
(i,j ± i) points) the incomplete Choleski-conjugate gradient method, ICCG, is

applicable when there is nine point coupling (that is when the points (i El,

j ± I) and (i ± i, j + i) are also used in the discretization). Kershaw

also successfully applied the method to matrices with somewhat random

sparsity patterns.

In the case of solidification the difficulty can be traced to the

presence of the mixed second order derivative _2@N in (ii). The coefficient

de N _q

of this involves d_- and if this is small then A.D.I. methods can cope but

if it becomes large then such methods are no longer necessarily stable - of

course this gradient is significant when there are abrupt changes in the

boundary condition. In such situations equation (ii) can be solved for known

eN by solving the discretized forms of (ii) simultaneously by a method

utilizing the sparsity pattern in the resulting matrix of order mn - m.

(This matrix has a tridiagonal block structure and each block is tridiagonal.)

However there is then still the necessity to iterate between (ii) and (12) to

obtain compatible 8N and eN and it is in this sequence that the extra

convergence complications, mentioned earlier, can manifest themselves.

Full Quazi-linearization and simultaneous solution of all equations and

boundary conditions The most reliable way of obtaining converged solutions

of (ii) and (12) has been found to be quazi-linearization of these equations,

discretization using simple central differencesand an iterative procedure

involving the simultaneous solution of the mn linear equations. Quazi-

linearization, the name given by Bellman to the extension of Newton's method,

replaces any non-linear term by the first order Taylor expansion about the

latest approximation to any constituent part. For example the third term

in (ii) is approximated according to

_ q(_q 2 _q + eN 2 _q + eN----_ _-"_-
KeN d_ 2 _q d_ d_ d_

_ d_ N _O N

- 2_N 2 _q
d_

where the bar denotes the previous iterate at the time T

thus yields an equation of the type

Equation (ll)
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_8N _28N _28N _28N
x O +x2-Gn+x3 +x4

de N d 2 eN

+ x6 % + x7 x8 = x,9 (13)

where the coefficients Xi are dependent upon eN_l, e--N, @N-I' _N' and
equation (12) yields

de N _8 N

gl e N + g2 dE + _3(-_ ) =_4- (14)

D=I

Using central difference formulae these are discretized to give mn-m

linear equations in 8ij and £i (@ij = @N(_i,qj) and ei = eN(_i)) from (13)
and m linear equations from (14). The entire set can be written in matrix

form as

WX = Y, (15)

where X is a column vector the transpose of which is given by

X T = (811 , 821, ... 8ml, 821, ... 8m(n_l),e I , ... em)

and W is a matrix with the following block structure

W

Tll T12 O . Tlm

T21 T22 T23 0 . T2m

O T32 T33 T33 O T3m

• • . • .

O O Tm_l,m_ 2 Tm_l,m_ 1 Tm_l, m

O O D 1 D 2 D 3 Tmm /

in which each block T is a tridiagonal matrix and D is a diagonal matrix.
rs p

This particular form of W is appropriate when the temperature is speci-

fied on the entire boundary; if flux or radiation conditions are imposed the

temperature at some (or all) points on the boundary must also be determined

along with the interior values. In such cases extra elements are included
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in the vector X and W is enlarged to include linearized forms of the relevant

boundary condition. In any event a sparse set of equations can be found

which when solved gives a better approximation to the functions at time rN-

All the advantages of rapid convergence associated with Newton's method are

present and if the initial guess at any time is extrapolated from the

solution at previous times typically accuracy to six significant figures is

possible in 2 or 3 iterations.

Methods of solution of sparse systems The original computations were

performed using a set of NAG library routines (ref. 3) on an ICLI904S.

Although the matrix changes each iteration its sparsity pattern remains the

same and advantage is taken of this by using the first of the routines,

FO3AJA, to decompose W into approximate triangular matrices using a

pivotal strategy designed to compromise between maintaining sparsity and

controlling the loss of accuracy through round-off and for subsequent

iterations FO3AKA is used to find the L U decomposition using the same

pivotal strategy. The routine FO3AJA contains a parameter in such that

when searching a row or column for a pivot any element u times the largest

element is excluded. Thus decreasing u biases the algorithm towards

maintaining sparsity at the expense of the growth of errors - the value

u = 0.25 has been found to be satisfactory in test examples. After FO3AJA

or FO3AKA the routine FO4APA solves the equation WX = Y by back substitution.

Table 1 shows the typical number of non-zero elements in W for a variety

of values of m and n together with the number of non-zero elements in the

LU decomposition required to give accuracy % 10 -12 . The sizes of these

numbers indicates that the routines are an efficient way of solving this type

of equation.

TABLE 1 - NUMBER OF ELEMENTS IN LU DECOMPOSITION

m n

order number of

or W elements in W

number of elements in

decomposed form of W

21 5 105 978 1328

41 5 205 1938 2658

21 10 205 2198 2948

These figures relate to the problem of solidification near a plane wall

when a temperature distribution in the form of a step function is applied at

the wall. In such problems it is necessary to find an approximation to the

solution at a small value of T and work numerically from there. In all

these problems one-dimensional solidification from the wall was presumed to

obtain the starting solution and the number of iterations was highest in the

first few time steps thereafter. The number of iterations using A.D.I. was

at least six times the number using the sparse system for an easy problem in

which A.D.I. still converged (where the difference between wall and interface

temperatures jumps by a factor of 20) but this rose dramatically until A.D.I.

failed. Since solution of the sparse system of order mxn takes about four

times the solution of n mxm equations using A.D.I. on the face of it there
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are time savings on even an easy problem. Howeverthe coefficients in the
sparse matrix representation are more complex than those in the A.D.I.
formalization and for such a problem the methods take almost the sametotal
computing time. Howeverwhen the boundary conditions are more abrupt or
more complex there can be substantial time savings using the sparse matrix
method.

Moreover there are alternative methods of solving sparse systems of
equations which are probably superior and which would make the approach even
more appealing. My attention was recently brought to ICCGmethods for
solving such equations. The method of conjugate gradients was originally
conceived as a direct method and lay dormant for two decades until Reid
(ref. 4) proposed its use in an iterative scheme; more recently Kershaw
(ref. 2) presented a generalization of the Incomplete Choleski-Conjugate

Gradient method to arbitrary non singular sparse matrices. Unlike FO3AJA

which fixes a sparsity pattern on the LU decomposition by ignoring small

terms ICCG fixes a sparsity pattern at the outset; if the sparsity pattern

for the LU decomposition is the same as that of W the method is denoted as

ICCG(O). This reduces the arithmetic labour and if the iterates are used to

update the coefficients before each application of the incomplete Choleski

step a fast and rapidly convergent algorithm is likely.

Stimulated by the successful convergence on the geometrically simple

case of solidification adjacent to a plane wall the method has been applied

to more complex configurations. The work was originally stimulated by the

need to model the solidification of ingots in the steel industry and the need

to solve the solidification in a "coffin" shaped region with boundary

conditions representing the insulated and non-insulated parts of the mold.

In such problems there is the need to split the domain of integration

and the number of coupled equations increases and it is then that simultaneous

quasi-linearization seems to be at its most powerful.

Approximate Solutions of Solidification Problems A satisfactory approximate

model for one-dimensional solidification utilizes Pohlhausen techniques in

which a temperature profile within the solid phase is postulated and the depth

of penetration of the interface deduced by integrating the heat conduction

equation across the phase. The extension of this concept to 2-dimensional

solidification above a plane surface postulates the temperature distribution

in the form

S(x
Y + _ (16)

8(x,y,t) = g(x) + (i- g(x) -S(x,t)) E(x,t) E(x,t) L

where E(x,t), as before, gives the shape of the interface and S(x,t) is a

shape factor for the quadratic temperature profile across the solidified

phase. Applying the usual Pohlhausen technique the conduction equation and

substituting (16) into the latent heat condition yield the following coupled

equations for S(x,t) and E(x,t).
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2
1 (i + _H _H _S dg
-f 7x )(1+g-s) +2H -£f (_ -_-)

8H 2 82 H

+ 2 _--_ (i + g - 2S) + H
(S - g - i) = 2S, (17)

82H _H

H _x--_Z- (8 + l) H _t
H 82

2 (_x-_---_) (H(I - g - S/B))

+l+g+S=O. (18)

Again the Hartree-Wommersley scheme is applied to cope with the temporal

derivative and there results a pair of coupled non-linear ordinary differen-

tial equations at the time T = T N. In this instance any method which did

not solve these simultaneously leads to divergence and solution of the sparse

system obtained by quazi-linearizing was found to be the only way forward.

It transpires that the model is of limited physical interest but from a

numerical standpoint these facts reinforce the belief that solution by means

of constructing a large sparse system is worthy of consideration for any

problem in which convergence is a problem.
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SHOCK-POINT OPERATORS IN CONSERVATIVE DIFFERENCING

Czeslaw P. Kentzer

Purdue University, Lafayette IN 47907

ABSTRACT

We investigate the conditions under which a finite difference

operator, which is designed to approximate the conservative form of

the partial differential equations of fluid flow takes on a form of an

approximation to the shock jump conditions. Such an operator may be

interpreted as an analog of the Rankine-Hugoniot jump operator for

rapidly changing solutions while remaining an approximation to the

partial differential equations for smooth solutions. This interpre-

tation gives the shock speed and the shock normal as functions of the

mesh spacing independently of the solution leading to errors in shock

strength and motion. Suggestions are offered concerning modifications

of shock-point operators aimed at improving the accuracy of conservative

differencing in presence of shock waves.
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I. INTRODUCTION

The interest in the use of conservative (divergence) form of the

partial differential equations of fluid dynamics for numerical calcu-

lations of shocked flows dates back to the pioneering paper of Lax [l].

In [2] Lax has shown that an appropriately defined weak solution of

conservation law equations satisfies jump conditions derivable from the

conservation law form of the p.d.e's. The popular understanding of the

results in [l] and [2] is that, l°, any errors in fluxes cancel at cell

boundaries because the same finite difference approximations are used

as a rate of outflow at one and as a rate of inflow at the other cell

having a common boundary, and, 2°, that, somehow, the correct jump

conditions, rather than merely their appropriate form, are satisfied

at discontinuities. The purpose of this paper is to clarify the second

point and to suggest the use of known techniques for the purpose of an

improvement in the calculations of shock wave motion without taking

recourse to shock fitting.

We shall discuss, first, the general balance equations in presence

of a singular surface, and then interpret finite difference schemes as

approximations to the p.d.e's in regions when the solution is contin-

uous and, simultaneously, as approximations to the jump conditions at

surfaces of discontinuity. This interpretation will allow for an

examination of the sources of errors in presence of shock waves.
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2. GENERAL BALANCE EQUATION

Consider a fixed volume V divided into two volumes V1 and V2

separated by a moving surface S(t). Let A1 and A2 denote the portions

of the surface A of V which form parts of the boundaries of V1 and V2.

The remaining part of the boundary, common to V1 and V2, is S(t).

Then the entire boundaries of V1 and V2 are B1 : A1 + S(t) and B2 : A2 + S(t),

respectively.

Let un = Un be the velocity of S(t) along the outward normal to

S(t), n, when S(t) is considered to be a part of the boundary of VI.

The unit normal n points from V1 to V2. If ¢ is any function (property

of the fluid per unit mass), which may take different values ¢I and _2

on either side of S(t) in V1 and V2, respectively, then the rate of

increase of _ inside V = V1 + V2 plus the flux of _ across the boundary

A : A1 + A2 of V, equated to the total source of ¢ in V, is

fff ;f ff(p¢)dV + p¢B. v dA - [p¢]U dA

VI+V 2 AI+A 2 S

fff ff ff: _ (p¢)dV + pCn.v dA - [P¢Wn]dA

VI+V2 BI+B2 S

pq dV (1)

where p = mass density, q = source of C/mass, [f] = f2 - fl = jump in f

across S(t), v : fluid velocity, wn v • n - U : normal component of

fluid velocity relative to S(t).
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In presence of a discontinuity one has to consider separately

the volumes Vl and V2 with their entire boundaries Bl, B2, respectively,

or the combined volume V = Vl + V2 with the boundary A = Al + A2 of V,

subtracting in both cases the appropriate terms arising from the pre-

sence of S(t), as indicated in Eqn. (1).

If the dependent variables p, _, v are single-valued and continuous

in V + B, v "(p_v) is piecewise continuous, and the integrals over Vl,

V2 and Bl, B2 converge, one may use Gauss's Divergence Theorem to obtain

L (p_)+ v. (p_) = q (2)
Bt

valid in Vl and V2 provided that

ff :o.
S

Thus, on S(t) we must have

-UEp,]+ _-[p,;] : o , (3)

m

and the Rankine-Hugoniot type jump conditions (3) are necessary in

order that @ be conserved.

The general balance equation, allowing for the presence of a

persistent singular surface and analogous to Eqn. (1), is discussed

by Truesdell and Toupin [3], who, on p. 527 derive the Kotchine's

Theorem [4] equivalent to the jump conditions (3). The jump conditions

at a surface of discontinuity were derived also by Green and Naghdi [5]

as necessary consequences of conservation of energy and invariance

conditions under superposed rigid body motions. In summary, in order
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to define a weak solution of Eqn. (2), the boundary values of p, 9,

restricted to the hypersurface S(t) are not arbitrary and satisfy the

Rankine-Hugoniot jump conditions (3). Since the surface S(t) is not

knownin advance, and must be determined as part of the solution of the

problem, the equations (2) and (3) describe a multi-dimensional nonlinear

free boundary value problem for a system of quasi-linear hyperbolic

equations in the case of inviscid gas dynamics, and nonlinear parabolic

equations in case of viscous flows. Viscous Rankine-Hugoniot jump condi-

tions in the form of Eqn. (3) are given by Green and Naghdi, [5].
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3. FINITE DIFFERENCEAPPROXIMATIONS

In regions of space-time where the solution is continuous, the

conservative form of a system of p.d.e.'s governing fluid flow is

@u+v.f : O,
@t

where u is a vector of densities, and f is their flux tensor.

Eqn. (4) in the operator form, we have

(_t' _7).(u, f)T = O.

The jump conditions corresponding to (5) are

-U[u] + n.[f] = (-U, n)-[u, fiT= O.

Writing

(4)

(s)

(6)

We observe here that the conservation principles require that the

differential operator (@t' V), go over into the multiplication operator,

(-U, n) = space-time normal to the singular surface, operating on the

difference in the limiting values of the vector (u, f)T at the two sides

of the singular surface.

We investigate now whether a finite difference scheme, which is

assumed to be a stable and consistent approximation to Eqn. (5), goes

over into a reasonable approximation to the algebraic jump condition (6).

That is, if the finite difference approximation to the operator (@t' V)

is (Dt, D_), we ask under what conditions
X

(Dt_ D_) ÷ _(-U, n)

with _ = arbitrary constant.

First, we observe that finite difference approximations to the p.d.e.'s
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in the conservative form are linear in differences in u and f. For instance,

if

1 • n+l n
_._tUijk- Uijk ) + 2____(_fn+a fn+_i+l ,j,k- i-l,j,k )

2_ _T_ gn+B 1_._.( hn+" Y n+y+ (g +l,k- i,j-l,k ) + 2Az'"i,j,k+l- hi,j,k-I ) = 0 (7)

where fn = f(nAt,iAx,jAy,kAz) with _,B,Y = 0 or l depending on a scheme
ijk

used, approximates Eqn. (4) then, if all the differences in the above are

differences across the shock, we have

Ia-E[tu] + R.[f]: 0,

l l l
where _ = (2Ax,2Ay,2Az). The differences (jumps) across the shock should

remain finite as the mesh is refined and as INI÷ _. Therefore, we divide

(7) by the magnitude of N and introduce a unit normal

INI (_x'Ay' AZ-)' (RI: I,
where

I _ I +_I_+__!]_
A2 Ax 2 Ay 2 Az2"

Thus we obtain

_u] + n-If] = (A_' n),[u, f]T= 0 (8)

Equation (8) would be an approximation to (6) if:

(a) the points (n+l,i,j,k) and (n,i,j,k), (n+a,i+l,j,k) and (n+a,i-l,j,k),

etc., lie, as assumed, on the opposite sides of the shock,

(b) the unit vector n points in the direction of the normal to the

shock,

(c) -2A/At is equal to the shock speed, U, measured along the shock

normal. 395



Weobserve that there exists, at least, a possibility of satisfying

approximately the p.d.e.'s and the corresponding jump conditions by choosing

correctly the meshparameters, At,Ax,Ay,Az, which are at our disposal. In

general, however, the approximation to the jump conditions (8) will be in

error on the account of:

(a) not all of the finite differences in (7) being taken across the shock,

(b) a possibly incorrect orientation of the shock wave normal, n,

(c) incorrect shock speed, -2A/At.

All such errors are determined by the meshor by the numerical

schemeemployed relative to the expected position of the shock wave. In

particular, if all the differences in Eqn. (7) are taken across the shock,

then n points in the direction of the shortest distance to the convex hull

of the computational mesh. If one spatial difference is based on points

lying entirely on one side of the shock, then, in the limit as the mesh is

being refined, this spatial difference will tend to zero while the remaining

spatial differences will tend to a finite, non-zero limit. As a consequence,

the corresponding component of the unit vector _ will vanish in the limit

and the jump condition will be applied in a plane parallel to the correspond-

ing coordinate axis. If only one spatial difference is evaluated across

the shock, then Eqn. (8) takes the form of jump conditions across a shock

aligned with one coordinate plane. The worst situation occurs when at least

one spatial difference is taken across the shock, but the temporal difference

(un+l - u_
1,j,k) is not, for then the temporal difference, instead of approach-i,j,k

ing zero as t +0, remains finite giving rise to an increment in u_.
ijk on the

order of the jump in the fluxes. This phenomenon leads to the diffusion and

dispersion of the shock and was discussed, from a different point of view

though, by Lerat and Peyret [6].
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4. SHOCK POINT OPERATORS

No numerical experiments are available at this time to substantiate

the conjectures as to the possibility of satisfying the p.d.e.'s and the

jump conditions accurately by a suitable scheme based on the modification

of Eqn. (7). Below are given two suggestions with the hope that they may

be readily incorporated into some of the existing algorithms. We remark

here that the position, orientation, and speed of the shock could be

estimated at a given time level by tracking the shock. With that infor-

mation available, one should proceed with an attempt at putting Eqn. (7)

in the form of the shock jump conditions (8) considering 2A/At : -U and

as given. This could be accomplished as follows.

Suggestion (a)

There are many algorithms, both implicit or explicit, and conservative

or nonconservative, which place restrictions on spatial difference approxi-

mations depending on the characteristic speeds (eigenvalues) of a hyperbolic

system. Similar restrictions may be developed based on the location of the

shock and the sign of the components of the shock velocity, especially in

connection with the flux splitting techniques of Steger and Warming [7]

or Reklis and Thomas [8]. The derivatives of the fluxes may be split into

derivatives on one side, on the other side, and across the shock, and into

derivatives taken at two different time levels (in case of implicit schemes).

If the shock normal is known, the weighted differences of flux components

taken across the shock may be_forced to be in a correct proportion to each

other so as to satisfy Eqn. (8). The common factor of proportionality

could then be adjusted so as to give a desired speed of the shock

U : -2A/At. The differences of flux components taken only from one side
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of the shock will drop out from the jump conditions (8) in the limit.

Consequently, differentiation across the 8hook, when skillfully used,

could improve capturing of the shock waves and render them thin and

without the undesirable "overshoot" or "wiggles." Indiscriminate use of

"across the shock" differentiation leads only to a constant generation of

errors which depend on the relative position of the shock and the mesh

points.

Suggestion (b)

Reklis and Thomas [8] have developed an implicit scheme incorporating

flux vector splitting and arbitrary coordinate transformation. Local

rotation of coordinates, combined with a change in mesh aspect ratio,

could then be used to control the orientation of _ and the magnitude of

A and, consequently, also of U. It is particularly important to be able

to make A arbitrarily small for the case when the shock speed approaches

zero, for then U = -2A/_t _ 0 requires _ ÷ O. We interpret _ as the shortest

distance to the convex hull of the computational module. The condition _ ÷ 0

would dictate a distribution of computational points in planes locally

parallel and close to the shock. Data on the new shock-oriented coordinate

grid should be obtained by interpolation from the old coordinates, with due

attention paid to the domain of dependence and the estimated shock position

which determines that domain.
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5. SUt44ARY

Finite difference schemesin conservation form were interpreted as

approximations to the Rankine-Hugoniot jump conditions in situations where

shock waves are present and finite differences are taken across the shocks.

The analogy of the f.d.e.'s in conservation form to the Rankine-Hugoniot

conditions is only formal in as muchas the space-time normal, (-U, n), is

not determined as a part of the solution. The information about the

space-time normal must be supplied by shock tracking and must be madeuse

of in order that the Rankine-Hugoniot form of the conservative f.d.e.'s

approximate the shock jump conditions correctly.

The use of the solution-dependent shock point operators should be

distinguished from the straight-forward shock fitting techniques, e.g.,

as suggested by Kentzer [9], or the post-correction shock fitting method

of de Neef and Moretti [lO]. The main feature of the present method is

that the differentiation across the shock is not avoided; on the contrary,

it must be used and must be employed correctly to satisfy conservation

principles at a Shock wave.
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A MESH EMBEDDING APPROACH FOR PREDICTION

OF TRANSONIC WING/BODY/STORE FLOW FIELDS*

D. S. Thompson
General Dynamics/Fort Worth Division

SUMMARY

A transonic wing/body/store flow field prediction code has been developed utilizing
potential flow and small disturbance theories. The code was developed by extending the

Bailey/Ballhaus wing/body flow field prediction code. A mesh embedding approach was
utilized to include the store in the computational domain. An evaluation of mesh

interface boundary conditions is presented in the text. In addition, comparisons of
computed results with experimental data are also presented for two isolated stores.

INTRODUCTION

The aerodynamic design cycle of a military aircraft requires careful attention to

detailto achieve the desired aerodynamic characteristics. Itisindeed paradoxical to note

that even though these aircraftare often used in the operational environment as carriers
of a variety of weapon and tank configurations, littleconsideration is given during the

design phase to the performance degradation associated with unfavorable aircraft/store
interference effects. These same interference effects can also significantly affect

separation characteristics and make accurate delivery of a store to a target difficult.

The major reason these important interference effects are neglected during the design

phase is that no reliable methodology exists to accurately predict the effect of
aircr_aft/storeinterference on store carriage and separation. This isespeciallytrue in the

transonic flow regime. The designer must rely on costly and time-consuming experi-

mental procedures which utilizepseudo-steady wind tunnel grid techniques in conjunction

with trajectory codes to obtain the carriage and separation characteristics of an

aircraft/store configuration. These procedures are also limited with respect to the

ultimate goal of the designer - optimization.

Stahara (Reference I) has reported development of a predictive method for three-

dimensional transonic flow fieldsabout the aircraft and loading distributionson external

storeslocated in the flow field.The theoretical method, designed for rapid calculations,

*The research deseribed herein was initiatedby Dr. S. P. Shanks while participating

in the Industry Research Associate Program sponsored by the NASA Ames Research

Center and was continued by the author with partial funding under Contract NAS2-
I0779.
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relies on the classical transonic equivalence rule, which is then extended to account for

three-dimensional cross-flow effects. One modification replaces the linear two-dimen-

sional cross-flow solution with a linear three-dimensional solution obtained by panel
methods. Another correction employs a three-dimensional non-linear finite-difference

solution of the small-disturbance equations. Results presented for the Nielsen generic
store are encouraging. However, no attempt was made to simulate a realistic store with
fins.

A method for analyzing store separation characteristics has been developed by
Deslandes (Reference 2). The problem is simplified by quasi-linearization of the time

dependence in the separation dynamics, with a flow-angularity technique employed to
evaluate first-order interference effects. The method can use theoretically or experi-
mentally determined flowfield data for the interference calculations. Good correlation

with drop model tests is demonstrated for subsonic Mach number with an angle-of-attack
variation. High-transonie-Maeh-number applicability has not been demonstrated in the
literature.

Waskiewiez, DeJongh, and Cenko (Reference 3) presented a method capable of
simulating relatively complex store geometries utilizing the higher order panel method
code, PANAIR. Relatively good agreement with experimental results was obtained for
finned store geometries in close proximity to a flat plate at angle of attack for supersonic
Math numbers. However, due to linear theory limitations, the PANAIR code cannot
predict the complex flow phenomena associated with the transonic regime.

Shankar and Malmuth (Reference 4) have developed a method for analyzing
aircraft/pylon/storeconfigurations in transonic flow. The method is based on the work

done by Ballhaus, Bailey, and Frick (Reference 5) and later refined by Mason, MacKenzie,

et al (Reference 6). The modified small disturbance (MSD) equation is solved iteratively

using finitedifference techniques. The pylon and store are simulated by use of an image

point concept. The image point concept avoids excessive storage requirements and

lengthened run times due to increased complexity. However, simulation of fins was not
demonstrated. The code, with modifications, could be used to simulate horizontal and

vertical fins. Simulation of arbitraryangular orientationof fins using this method would
be-extI_em ely difficult.

As a first step towards simulation of store carriage and separation, a transonic

wing/body/store flow fieldprediction code has been developed utilizinga mesh embedding
approach similar to that of Boppe and Stern (Reference 7). The transonic flow field

surrounding a wing/body with a finned store in the near fieldisnumerically obtained using
potential flow and small disturbance theories. The method is also an extension of the

work done by Ballhaus, Bailey, and Frick (Reference 5) and Mason, MacKenzie, et al

(Reference 6) for wing/body configurations. The use of potential flow and small

disturbance theories does, of course, place limitationson the range of applicabilityof the

code, small angles of attack, etc. However, use of small disturbance theory does allow

simulation of relatively complex configurations, since the necessary flow tangency

boundary conditions are applied on a mean surface. The mesh embedding approach

eliminates the need for a single continuous grid system and allows concentration of

coordinate lines in regions where a detailed analysis of the flow field is required. The

mesh embedding approach also allows each component of the configuration to use a

computational mesh which is suited to its particular surface geometry. The
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wing/body/store code utilizes three different meshes to diseretize the computational
domain, a wing fine mesh, a store mesh, and a global crude mesh. The modified small
disturbance (MSD) potential equation for transonic flow is iteratively solved on each mesh

by successive fine, store, and crude mesh relaxation cycles using finite difference
techniques. DiHchlet or Neumann boundary conditions applied at the various mesh

interface are updated during the course of each iteration. In addition to prediction of
wing/body/store flow fields, the code also has the capability to predict the flow field
around an isolated store in transonic flow.

Computed results are presented for two isolated stores as well as results for a
wing/body/store configuration. Lifting and non-lifting results are presented for the
Nielsen store and the GBU-15. Comparisons with expaHmental data were made for
validation of the isolated store procedure. An F-16/B-61 configuration was chosen for
evaluation of mesh interface boundary condition procedures in the wing/body/store code.
Results of the boundary condition procedure comparisons are presented for all possible
combinations of DiHchlet and Neumann boundary conditions at the mesh interfaces.

COMPUTATIONAL APPROACH

The configuration considered in this analysis is a wing/body with a separated store in
'the near field as illustrated in Figure I. Both the aircraft and the store are restricted to

small deflections with respect to a uniform freestream. Analysis of the flow field
surrounding this configuration was selected as a starting point for development of a more

complex computational procedure. The proposed code will be capable of analyzing
realistic wing/body/pylon/store configurations with the store in carriage or separated
positions. In addition, the configuration illustrated in Figure I allows general evaluation
of the method without necessitating development of special procedures for strong
interference effects such as reflected shocks, etc.

Themethods used to numerically obtain the flow field due to the configuration
illustrated in Figure 1 are described in the sections that follow. Since the solution of the
modified small disturbance (MSD) potential equation for wing/body configurations in
transonic flow has been previously well documented in Reference 5 and Reference 6,
detailed descriptions will only be made of procedures which specifically pertain to the

wing/bedy/store flow field prediction code.

Embedded Mesh Scheme

Discretization of the wing/body/store flow field illustrated in Figure 1 is accom-
plished utilizing a mesh embedding approach. Figure 2 illustrates the general embedded

mesh system for the wing/body/store configuration under consideration. A planform
oriented fine mesh is employed to discretize the region of the flow field surrounding the
wing. This fine mesh is embedded in a global Cartesian crude mesh which discretizes the

entire computational domain. A cylindrical fine mesh is used to diseretize the region of
the flow field surrounding the store. Each global iteration of the solution algorithm
consists of successive fine, store, and crude mesh relaxations. Details of the transmission
of solution information between the three meshes through the appropriate mesh interface
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is contained in a later section. At present, the cylindrical store mesh is embedded only in

the crude mesh which does not allow simulation of wing/body/pylon/store configurations.
The cylindrical store mesh may be transformed to a planform oriented mesh using the
transformation of Reference 6. This is not imperative and is discussed in more detail in
the section reporting the results.

Use of an embedded mesh approach is beneficial for several reasons. Primarily, it
eliminates the necessity of having a single continuous grid system to discretize the entire
computational domain. That is, coordinate lines are concentrated only in regions where a
detailed analysis of the flow field is needed (i.e., regions of high gradients) and mesh

points are not "wastec_' providing a means of transition from regions of highly concen-
trated mesh points to sparser regions. Mesh embedding also allows the use of component
adaptive meshes or meshes which better represent the surface of the component they
surround. In the present study, the cylindrical store mesh is a component adaptive mesh

used to improve simulation of the store geometry. In addition, the flow field governing
equations can be formulated independently in each mesh system allowing more accurate
(more complex) treatment of localized regions of the flow field. Although this feature
was not exploited in the present study, it is probable that future research will include
utilization of an advanced computational procedure to obtain the store flow field.

The distinctive feature of this method is the use of an additional mesh exclusively

for the store. This does, of course, lengthen run times and increase computer storage
requirements. However, the advantages of using a cylindrical mesh in terms of

configuration simulation more than offset these disadvantages. Most significantly, use of
a cylindrical mesh eliminates the need for interpolation at the fin mean surfaces for
arbitrary angular fin orientation. Angular coordinate lines can be concentrated near fin

positions to allow resolution of gradients normal to the fin surface. In addition, the
cylindrical mesh provides a more representative mean surface on which to apply store
boundary conditions. Finally, the MSD equation in cylindrical coordinates already
contains extra terms describing spanwise (radial) flow. Therefore, only one flow equation
is necessary for arbitrary angular orientation of centerline mounted fin. This can be

contrasted to the work of Boppe and Stern (Reference 7), where a Cartesian mesh is used
and different flow equations are used for wing (x-y plane) and wingiet (x-z plane) surfaces.

Governing Equations

The MSD potential equation for transonic flow written in terms of the disturbance

velocity potential @ isgiven in conservation form by

2

+¢ -0
zz
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in the fine and crude meshes. In equation (1),M_ is the freestream Mach number, Y is

the ratio of specific heats, and x, y, and z denote the axial, spanwise, and vertical
Cartesian coordinates. The underlined terms are additions to the classical small

disturbance equation which improve resolution of swept shock waves in the x-y plane.

Since application of wing and fuselage boundary conditions has been discussed at great

length in Reference 5 and Reference 6, no mention of this procedure willbe made here

except to say that fuselage boundary conditions which have been modified by slender body
theory are applied on a prismatic boundary condition support surface (BCSS) in the fine
and crude meshes.

Transformation of the MSD equation to cylindrical coordinates is required in the
store mesh due to the cylindricaldiseretizationused in thisregion of the flow field.The
formulation used in the store mesh isgiven by

I('"J) C ÷

,, (, 10}I 

I

+  ¢ee -o

where x, r, and 9 represent the axial,radial,and angular coordinate directions respec-
tively. The underlined terms represent additions to the classical small disturbance

equation which improve resolution of swept shockwaves in the x-r plane. The linearized
finand body boundary conditions are given by

I
r Ce = F - _cose + 8sinB (3a)

_ _ X

and

Cr = R - _cose - Bcose (3b)X

respectively, where Fx is the chordwise variation of fin thickness, Rx is the axial

variation of body radius, a is the angle of attack, and 8 isthe angle of yaw. Itshould be

noted that equation (3a) and equation (3b) were derived assuming small angles of attack

and yaw and that the store body is a body of revolution. The last restrictionis not
excessive considering the geometry of most current stores.

The MSD equation now must be represented by a finitedifference approximation on

each of the three meshes. The method of Bailey and Ballhaus (Reference 5) is retained

since it represents all aspects of a steady mixed subsonic/supersonic irrotationalinviseid

flow field.The resultingsystem of difference equations is solved using a successive-line-

over-relaxation (SLOR) algorithm. It should be noted that due to the periodic nature of
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the store mesh, the matrix generated by the finite difference approximation of equation
(2) is periodically tridiagonal. The periodic tridiagonal solver of Steger (Reference 8) is
used in the store mesh solution algorithm.

Bolmdary Conditions

Store body boundary conditions are applied on the surface of a cylinder extending
from the upstream to the downstream boundary of the store mesh. This cylinder is
denoted as the boundary condition support surface (BCSS). No flow field calculations are

performed in the interior of the BCSS. Since the radius of the BCSS is based on an
average body radius, the BCSS does not coincide with the body radius at all axial stations
as illustrated in Figure 3. It is therefore necessary to modify the body slopes before
application on the BCSS. Boppe and Stern (Reference 7) utilize slender body theory to
obtain appropriate corrections for both lifting and non-lifting cases. The correction
applied to body slopes is based on the equality of source strength and is given by the ratio
rB/rBCSS, where rB is the true body radius and rBCSS is the radius of the BCSS. The
angle of attack correction is based on the equality of doublet strength and is given by the
ratio SB/SBcss , where SB is the true body area and SBCSS is the area of the BCSS.
Application of the slope and angle of attack corrections to the body boundary condition,
equation (3b), yields

(,B)¢rlBCSS "

2

[ rB I (_sin8 + 6cosfl) (4)
R.- _rI3css/

which isthe Neumann boundary condition actually applied on the BCSS. When the solution

process is complete, corrections must be applied to the velocities calculated on the

computational surface to obtain the true velocities at the body surface. Slender body

theory once again provides the necessary correction given by

where VB is the true velocity at the body surface and VBCSS isthe velocity at the BCSS.
Ahead of the body, a zero slope condition is applied on the BCSS. Downstream of the

body, equation (4)is used with R x = 0.

The fin upper and lower surface boundary conditions are applied on the appropriate

constant 8 planes which define the fin surfaces. Since planes of constant 8 are

concentrated near the angular location of each fin and most fins have small spans, no

corrections are applied to the fin boundary conditions. The Kutta condition requirement

for each fin is satisfiedby applying a jump in potential at each spanwise station on a

vortex sheet which extends from the trailing edge of each fin to the downstream

boundary. This isanalagous to the approach used by the basic wing/body code.
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Mesh Interface Bmmdary Conditions

Information is transmitted between meshes via application of boundary conditions on
the various mesh interfaces. In the basic wing/body code, information transmittal occurs

at two loeationm (1) the outer boundary of the fine mesh and (2) the wing/body surface
located in the fine mesh. Dirichlet (potential) boundary conditions interpolated from
results of the crude mesh relaxation are applied on the outer boundary of the fine mesh to
transmit information about the overall flow field to the fine mesh. Dirichlet boundary
conditions interpolated from the results of the fine mesh relaxation are applied on the
surface of the wing/body located within the fine mesh to transmit information about the

local wing disturbance to the global flow field. Neumann boundary conditions are applied
on the portion of the body which extends beyond the fine mesh. In addition, the far field
potential based on wing circulation developed by Klunker (Reference 9) is applied on the

outer boundaries with the exception of the downstream boundary where a _x = 0
condition is applied.

Information transmittal between the store and crude meshes is accomplished in an

analagous manner. However, there are two major differences between the procedures:

(I)store mesh relaxation resultsare transmitted to the crude mesh through a rectangular

prism enclosing the store denoted as the store flow fieldsupport surface (SFFSS) and (2)

Dirichlet (potential)or Neumann (velocity)boundary conditions can be applied at each of

the store/crude mesh interfaces. Figure 4 illustratesthe mesh configuration with the
,SFFSS included for clarity.

The SFFSS is the surface of a rectangular prism defined in the crude mesh. The

SFFSS is initiatedupstream of the store and extends to the downstream boundary of the

computational domain completely enclosing the store and the associated system of fin
vortex sheets. The purpose of the SFFSS is to provide a simple BCSS in the crude mesh on

which interpolated results of each store mesh relaxation can be applied as surface

boundary conditions for the crude mesh relaxation. Since no crude mesh calculations are

performed in the interior of the SFFSS, the store geometry is effectively removed from

the crude mesh relaxation allowing arbitrary store orientation within the SFFSS. It is

important to note that the front face of the SFFSS is located within store mesh. The

location and dimensions of the SFFSS defines the degree of mesh overlap which occurs

between the store and crude meshes. Atta (Reference 10) utilized a body fitted

coordinate system embedded in a crude Cartesian mesh to discretize the computational
domain surrounding a two-dimensional airfoil. The resultsof Reference I0 show that the

degree in which the store and crude meshes overlap determines, in part, the convergence

characteristics of the iteration. This topic will be discussed further in the Results
section.

Application of Dirichlet boundary conditions on the SFFSS is relatively straightfor-
ward. In the ease of Neumann boundary conditions, it is necessary to first obtain the
velocities relative to the cylindrical store mesh by differencing. These velocities are then
interpolated to points on the SFFSS. Finally, the store mesh velocities are transformed to

Cartesian velocities and the component normal to the specific SFFSS face is used as a

Neumann boundary condition during the upcoming crude mesh relaxation. The boundary
conditions, either Diriehlet or Neumann, applied on the SFFSS downstream of the store

mesh downstream boundary are obtained by setting _x = 0 (Diriehlet) or _nx = 0
(Neumann) at the downstream boundary of the store mesh and extending the result to the
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downstream boundary of the computational domain. The SFFSS boundary conditions are

updated after each store mesh relaxation.

Boundary conditions applied on the store mesh outer boundary are obtained by
interpolation from the results of the crude mesh relaxation. As before, application of

Diriehlet boundary conditions is straightforward while applieation of Neumann boundary
conditions is more eomplex. Cartesian velocities are obtained by differencing the results
of the crude mesh relaxation. These Cartesian velocities are then transformed to

eylindHcal velocities. The Neumann boundary condition applied on the front face of the
store mesh is always the velocity component normal to the surface. This is not the ease

downstream of the store mesh front face. Implementation of a planform oriented mesh
transformation of the type described in Referenee 6 neeessitates applieation of the
velocity eomponent parallel to eaeh _ line on the store mesh outer boundary as

illustrated in Figure 5. If no mesh transformation is performed, the velocity component
normal to the outer boundary is used. The boundary eonditions applied on the outer
boundary of the store mesh are updated after each crude mesh relaxation.

Store Alone Option

The wing/body/store code also has the capability to predict the transonic flow field
surrounding an isolated store at small angles of attack and yaw. The store mesh defines
the entire computational domain and no other mesh is involved in the solution of the flow
field governing equations. The store flow field is obtained in the previous manner with

the obvious exception of the boundary conditions applied on the store mesh outer
boundary. The boundary conditions applied on the store mesh outer boundary are obtained
by a linear superposition of far field potentials representing fin lift and body thickness.
The analytic expression for the far field potential due to fin lift is the expression given by
Klunker (Reference 9) for a lifting wing modified for cruciform fins of arbitrary angular
orientation. The expression for far field potential due to body thickness is given by Krupp
and Murman (Reference 11) for an axisymmetrie body. The downstream boundary

eondi_tion is obtained by setting _ x = 0 at the downstream boundary.

RESULTS

Validation of the isolated store capability was accomplished by direct comparisons
between computed results and the experimental data of Stahara and CHssalli (Reference
12) for the NieLsen generic store and Shadow (Reference 13) for the GBU-15. Compari-

sons with these data allowed an accurate assessment of the validity of the isolated store
prediction capability to be made. The F-16/B-61 configuration illustrated in Figure I was
chosen for evaluation of mesh interface boundary conditions. Unfortunately, it was not
possible to make comparisons between results predicted by the wing/body/store code and
transonic pressure data due to a lack of experimental data for configurations of this type.
Since the store mesh is embedded only in the crude mesh, it was necessary to locate the
store so that no mesh oveHap occurred between the fine and store meshes. Therefore, it

is necessary to locate the store at least one wing chord below the wing/body. No
transonic pressure data was found for a wing/body/store configuration of this type.
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Comparisons were made only between computed results for the purpose of evaluating the
effects of various combinations of boundary conditions applied at the mesh interfaces.

All computations were performed on VAX-II/780 systems. Store alone results were

computed on the General Dynamics system requiring 1.5 minutes of CPU time per
iteration. All wing/body/store results were computed on the NASA Ames Research
Center VAX system requiring 1.87 minutes of CPU time per fine/store/crude iteration.
All isolated store solutions presented in the text were stopped after 200 iterations. This
represented at least a two order of magnitude decrease from initial values in both the
maximum error and residual. Although the values of the error and residual have not been

decreased to the defined convergence levels, no significant changes in predicted forces or

pressures occur upon continuation of the solution. All computed wing/body/store results
are presented at 300 iterations for comparison purposes. It is important to note that
these results are also preliminary and not fully converged.

Isolated Store Results

Computation of the Nielsen generic store flow field was performed on a cylindrical
store mesh utilizing 118,870 (113 x 30 x 33) points. The mesh outer boundary was located
approximately 2 body lengths ahead and behind the store and had a radius of approxi-

'mately 1 body length. Although these boundaries are located relatively near the body, it
was determined that increasing the size of the computational domain beyond these
dimensions while maintaining a constant number of radial computational ceUs had no
significant effects on the predicted pressures. Good agreement was obtained between
predicted presstres and the experimental data of Reference 12 for the Nielsen generic
store at ¢x = 0 o and _ = 6o at a freestream Math number of 0.926 as illustrated in

Figure 6. However, it is disheartening to note that the predicted normal force coefficient
is significantly lower than the experimental value. In an attempt to alleviate this
problem, a far field boundary condition based on body lift was developed by modifying the
analytic expression for lifting wings given by Kiunker (Reference 9). The total far field

potential-was obtained by linear superposition of the body lift potential and the far field
potential described previously. Application of this outer boundary condition produced no
significant change in the computed presstre distributions or forces. In addition,
application of a three-dimensional extension of the two-dimensional non-reflecting far
field boundary conditions given by Kwak (Reference 14) also produced no significant
change in computed pressures or forces. Since implementation of these procedures did
not alter the predicted pressures and forces, no additional results are presented. This
problem is currently under investigation and implementation of a more accurate formula-

tion of the governing equations in the store mesh is being considered.

Validation of predicted fin pressures proved to be a difficult task primarily due to
scarcity of experimental fin pressure data. However, Reference 13 provided sufficient

data for comparison with predicted body and fin pressures. Results were computed for
the GBU-15 on a cylindrical store mesh utilizing 148,500 (150 x 30 x 33) points. The mesh
upstream and downstream boundaries were located approximately 2 body lengths from the
store. The outer boundary was located at a radius of 1.5 body lengths from the store.

Good agreement was obtained between predicted pressures and the experimental
data of Reference 13 for the GBU-15 at ¢x= 0o and a freestream Math number of 0.8 for
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both the body and the fins as illustratedby Figure 7 and Figure 8 respectively. Figure 9

and Figure l0 show the good agreement obtained between predicted and experimental

results at _= 6o. Similarly,good agreement was obtained at _= 0o and a freestream

Mach number of 0.9. Figure lI shows the good agreement obtained between predicted and

experimental body pressures at _= 6o anda freestream Math number of 0.9. However,

disagreement between predicted and experimental fin pressures became evident at these
conditions as illustratedin Figure 12. It should be noted that all isolated store cases

computed to this point did not utilizea planform oriented mesh transformation. In an

attempt to improve the fin pressures illustratedin Figure 12, the mesh transformation of

Reference 6 was employed. The use of the transformed mesh significantlyimproved the

agreement between predicted and experimental fin pressures as illustratedin Figure 13.
However, implementation of the mesh transformation seriously degraded agreement

between predicted and experimental body pressures as illustratedin Figure 14. The

degradation of body pressures is apparently caused by the deformation of the store mesh
outer boundary induced by the mesh transformation. As illustratedin Figure 15, far field

boundary conditions applied on the front face of the store mesh are obviously being

applied in a region in which they are invalid. The overall agreement with experimental

data isdecreased by use of the planform mesh transformation of Reference 6. It willbe

necessary to develop a transformation scheme which does not adversely affect the far

fieldmesh boundaries before improved resultscan be obtained for both the store and fins.

The normal force coefficients predicted for the GBU-15 were also significantly

lower than experimental values. The disagreement was not as severe as with the Nielsen

store since the GBU-15 fins produce approximately one-half of the normal force

coefficient. However, it is important to note that although the predicted force

coefficients are not in agreement with experimental values, the general pressure

distributionsare very encouraging and continued refinement of the method is expected to

improve force predictions.

Wing/Body/Store Results

All F-16/B-61 flow fieldswere computed at _wb = _ s = 5° and a freestream Mach
number of 0.8. Solutions were also obtained for an isolated F-16 and an isolated B-61 at

the same flight conditions to provide data for validation of wing/body/store code

predictions. Use of predicted isolated store results for verification of the

wing/body/store code was feasible because interference effects were expected to be
minimal due to the distance separating the aircraft and the store. Comparisons were

performed between predicted results in lieu of a direct correlation with experiemental

data due to the previously mentioned shortage of transonic pressure data for

configurations of this type. All computations were performed on a fine mesh of 37,800

(63 x 3 x 20) points,a store mesh of 61,248 (64 x 29 x 33) points and a global crude mesh

of 10,800 (30 x 18 x 20) points. The number of fieldpoints utilizedin the store mesh was

decreased significantlyfrom the number of points used for analysis of the GBU-15 and

Nielsen store configurations. The additional fieldpoints utilizedin the prior computations

were required to perform the detailed analysis necessary for correlation of predicted

pressures with experiemental data. Since a detailed analysis of the store flow field was

not required for evaluation of the mesh interface boundary conditions,the number of field

points utilized in the store mesh was decreased and the accuracy of the store mesh
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solution degraded somewhat. Isolated F-16 and B-61 solutions were obtained using the
meshes described above.

Initially,F-16/B-61 flow field solutions were diverging regardless of the type of

boundary conditions applied at the mesh interfaces. The cause of this divergence was
determined to be an improper mesh overlap arrangement. The crude mesh had been

generated such that the axial cross-section of the SFFSS was a nine-celled square with

sides 0.20 body lengths centered about the store mesh longitudinal acts. The SFFSS was

initiated0.25 body lengths upstream of the store. No particular attention had been given

to the degree of store/crude mesh overlap during generation of the mesh configuration.

Atta (Reference I0) reported the significance of the degree of mesh overlap on

accuracy and convergence characteristicsfor a two-dimensional embedded mesh confis--

uration. According to Atta, improper arrangement of mesh overlap regions can produce

inaecuracy in the solution and decrease rate of convergence. In an attempt to stabilize

the F-16/B-61 solution, a second store/crude mesh configuration was generated by
extending the optimum two-dimensional mesh overlap criteria of Atta to three-dimen-

sions. The store and crude meshes were generated such that the axial cross-section of the

SFFSS was a nine-celled square with sides of 0.5 body lengths centered about the store

mesh longitudinalaxis. The SFFSS was initiated0.25 body lengths upstream of the store.
The maximum and minimum mesh overlaps were 15% and 25% of the radius of the store

mesh outer boundary. Since the three-dimensional mesh overlap criteriawere developed

by extension of the two-dimensional criteriaof Atta, the mesh overlap criteriaused here

may not represent a three-dimensional optimum. Therefore, further study isnecessary to
determine the true optimum three-dimensional mesh overlap criteria.

F-16/B-61 results were computed for all possible combinations of mesh interface

boundary conditions utilizing the store/crude mesh configuration which satisfies the

three-dimensional mesh overlap criteria. Figure 16 shows the relativelygood agreement
between B-61 fin pressures predicted at two span stations by the wing/body/store and

isolated store procedures. This solution was obtained utilizing Dirichlet boundary

conditions-applied on both the store mesh outer boundary and the SFFSS. This
combination of mesh interface boundary conditions is denoted as the Dirichlet/Dirichlet

condition (type of boundary condition applied on store mesh outer boundary/type of

boundary condition applied on SFFSS). This notation is used hereafter. Good agreement

was also obtained for the Neumann/Neumann condition as illustratedin Figure 17. It is

interesting to note that when mesh interface boundary conditions were mixed,

Dirichlet/Neumann or Neumann/Dirichlet, significantdeviation from isolatedstore results

occurred. Figure 18 shows a significantdisagreement between pressures predicted at two

span stations by the isolated store code and wing/body/store code with the
Dirichlet/Neumann condition enforced. In addition, utilizationof the Neumann/Dirichlet

condition produced a divergent solution after only 80 fine/store/crude iterations.

Although experimental pressure data is necessary for a more complete evaluation, it

appears that the pressures predicted using the Dirichlet/Neumann condition, shown in

Figure 18, are the least promising of the F-16/B-61 results since it was not anticipated

that the interference of the parent vehicle would significantlyalter the store pressure

distributions. Since the influence of the store on the aircraft was negligible,no F-16
resultsare presented.
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Unfortunately, no definite convergence characteristics could be determined from
results presented in this paper. All solutions were stopped at 300 iterations for

comparison purposes. The only trend which could be ascertained from these resultswas

that the Diriehlet/Dirichletcondition decreased the error and residual more rapidly than

the other combinations of mesh interface boundary conditions. These results are only

preliminary and a more thorough evaluation of mesh interface boundary conditions willbe

performed in the next phase of thisstudy utilizinga wing/body/store configuration with

the store located within the wing/body fine mesh. Simulation of the complex interference

effects associated with a configuration of this type will necessitate use of the optimum

m esh interface boundary conditions.

CONCLUDING REMARKS

A numerical method is being developed utilizingpotential flow and small disturb-

ance theories for prediction of transonic wing/body/store flow fields. The code also has

the capability to predict isolated store flow fields. Use of a mesh embedding scheme to
include the store in the wing/body flow fieldallows simulation of relativelycomplex store

geometries. At arbitrary angular orientation. Good agreement is obtained between

predicted fin and body pressures and experimental data for results computed by the

isolated store procedure. However, satisfactory agreement has not yet been obtained

between predicted forces and experimental data. Direct correlation of resultspredicted

by the wing/body/store code and transonic pressure data is not possible due to a lack of

experimental data for configurations of this type. Computed results seem to indicate

store mesh outer boundary and the SFFSS should be of the same type (i.e.,

Dirichlet/Dirichlet; Neumann/Neumann). This result does need to be verified by

comparison with experimental pressure data. In addition,the degree of mesh overlap also

plays an important role in the convergence of the iteration. It isanticipated that further

development and refinement of these procedures willproduce a code capable of predicting
the flow fieldsof realisticwing/body/store configurations.
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Figure I.- Analysis of the flow field due to an aircraft with a separated store was
accomplished during this study.
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GLOBAL CRUDE MESH

GLOBAL CRUDE MESH

STORE MESH

Figwe 2.- Wing/body/store flow field is dismetized by three mesh systems.
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BOUNDARY CONDITION SUPPORT SURFACE (BCSS)

Figtre 3.- Boundary condition support strface (BCSS) does not coincide with the body
surface at all axial stations.
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GLOBAL CRUDE MESH

STORES MESH

GLOBAL CRUDE MESH

STORE MESH

Figtce 4.- Results of the store mesh relaxation are transmitted to the global flow
fieldthrough the store flow fieldsupport surface (SFFSS).
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