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WHOLE NUMBER STRAFDOWN COMPUTATIONS

ABSTRACT

An inertizl navigation system employing a gimballess inertial measurement
unit requires an analytical transformation of the vehicle co-ordinate system
into the inertial co-ordinate system, An algorithm is developed for maintaining
an up-to-date transformation matrix in a general purpose whole number computer.
A method of implementing the algorithm in the Apollo Guidance Computer (AGC)

"is described. The performance of the algorithm, the effects of f£light
profile parameters upon the accuracy of the algorithm, and the effects of
certain equipment constraints are detailed in the results of computer simulations,
Extensive cowmputer simulétions were conducted to verify the validity of the
algorithm; while conclusions about navigation computer design were drawn
from the simulation results, raw simu%ation data is included for individual
intefpretation. For compééaéive'purposes, the resﬁits of simulation of

a digital differential analyzer (DDA) are included. It is concluded that
for at least certain missions, general purpose computers can be built

which will perform the strapdown computation with sufficient accuracy

and which will not significantly detract from the other tasks required

of the general purpose computer by doing these tasks fast enough.

by J. C. Pennypacker
February, 1966
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1. INTRODUCTION

There is at the present time considerable jinterest among designers
of inertial navigation systems in the utilization of inertial measurement
units which are mounted directly to the vehicle frame; the resulting con-
figuration 1s a gimballess inertial measurement unit (GIMU), commonly referred
to as a "strapdown" system. Such a configuration requires that analytic
methods rather than the conventional physical gimbals be employed to isolate
the vehicle co-ordinate axes from the inertial co-ordinate system in which
navigation and guidance of the vehicle are performed. There are at least
two basie methods of implementing the required analytic functioms: the
more gemerally accepted approach is to use a digital differential analyzer
(DDA) , the other approach is to use a general purpose whole number computex.

'_‘_vghgvggs1rab111ty of the 1atter method bﬁngeg'gronounced 1n thOSe %yﬁrqms.’;‘_

for which a general purpose computer is required to perform functlons other
than those requlred-for navigation; in such a system, the hardware configuration
need not include an extra processor - specifically the RDA.f for navigatiomn.

The primary question in using a general purpose computer centers around
the algorithms used for updating the transformation matrix. ﬁgrnghe general
purpose computer approach to be practical, the computer must spend only a
small fraction (less than 10%) of its time in the strapdown task otherwise
performed by the DDA, The time spent by the general purpose computer is

" a function of both computer speed and the updating algorithm utilized.

The DDA algorithms are ill suited for implementation in a general purpose
computer and the question thus arises as to whether the whole number algorithms

(1

without requiring excessive computation times. While the advantages, dis-

of the class proposed by A. Hopkins will give sufficiently precise results
advantages and capabilities of the DDA ars generally understood, such insight
inte the performance of a general purpose computer operating in conjunction

with a strapdown navigation system is lacking.

1
(1) Albert Hopkins, Digital Development Report #5, Updating a Cosine Matrix

in a Whole Number Computer, MIT Instrumentation Laboratory, August 12, 1964.

7 Preced ing_ page blank



This paper presents one algorithm which could be used to perform
navigation functions on a whole number general purpose digital computer;
the results of extensive computer simulation of this algorithm are also
included. Because of the current interests of the author, the study under~
taken is oriented towards the Apollo mission; of specific interest is the
feasibility of utilizing the Apolle Guidance Computer (AGC) to perform the
navigation functions of the Lunar Excursion Module (LEM). The scope of )
this study is restricted to ome portiom only of the general mavigation
problem, that of maintaining an accurate and timely direction cosine matrix.
The vehicle containing the strapdown system is assumed to be a spacecraft
of the 1EM type; this assumption is fundamental to the characteristics

of the algorithm and gsimulations presented herein.



1¥., THE COSINE MATRIX

In order to perform the navigation and guidance computations in a
fixed co-ordinate system, it is necessary first to resolve the accelerations
meagured by the accelerometers in the spacecraft (body) co-ordinate system
into components in the fixed co-ordinate system. For a fixed co-ordinate
-system F and a body co-ordinate system B, the transformation of acceleration

_from the body system to the fixed system is given by the following equation:

[c] 4, @

13

o bl
]

Acceleration vector resolved into the fixed cor-ordinate system.
[¢] = Transformation matrix.
S e st RS S = AeEe Taration Whetor ¥esoIval 1ito THa"body co-oFdinacd “system: -

The transformation matrix is a matrix composed of the direction cosines
of the angles between the axes of the two co-ordinate systems; thus, the
elements of [C] are given by the following:
' - -
= Q..

15 % “ri * Ysj @
u( ) = a unit vector in the direction of the co~ordinate system

indicated by the subscript.

The matrix [C], which is dependent only upon the attitude of the vehicle,
must be precisely known at the time accelerations occur in order to determine

the position in inertial space of the space&raft. The analytical determination

of the C matrix is the basic difficulty encountered in the strapdown configuration.

As the vehicle rotates, the matrix [C] changes; thus in general the velocity
of the spacecraft in the fixed co-ordinate system is given by:

t
-

' -
VL (e) =./ [e(e)] Ay (t) dt (3)
0



The inertial position of the spacecraft is determined from a further integratiom
of equation (3). In order to determine an expression for the change of
[c(t)] as the vehicle rotates, let the vehicle rotate with respect to the

—

fixed co~ordinate system with an angular velocity ‘QFB (t). Then from equation (2):

d . ~ ey Y —
e Cig(t) = €y (8) = wjy » upy *+ upy © Ypy (42)
- - -

il

Uy (QFB(t) 4 qu) + 0
Evaluating the vector equation and writing in index form yields:
. — - -
Gy (e) = upy - [Rpg (B)ugy + Qg (ug, | (4b)
From equation (2) this can be rewritten as:
|-T.~:'-.n‘4.--£-.?‘x.2;-_l'-.‘-7.‘- ity Qi T o Y e 3 Mt P Y e @ e LR s 5 e P Ny .
P G e O A O Mg ) O (O Ty y (e e

Letting %, y and z represent the i, j and kth axis of the spacecraft

respectively, equation (4c) can be expressed as:

[c(e)] = [e(e)1[(e)] )
where _ . _
0 ~a_(t) be(t)
a¢e)] = @ () 0 - (t)
-a)y(t) mx(t) o] |

10



III. THE BASIC ALGORITHM

3.1 Derivation

A, Hopkins(z) has described a method of approximating the solution
to equation (5) utilizing a general purpose digital computer. Because this
"approximation provides the basis for the computer simulation, the remainder
-of this section presents the algorithm originally described by Hopkins.

Define a matrix [M(T)] which is a function of the w's, of their derivatives,
and of a sampling time interval T. The matrix [M(T)] relates the C matrix
at the end of the sampling time interval T to its value at the beginning

of the time interval. This relationship is defined thus: ~
[e(m1 = [c()1M(T)] (6)

i o KOON1E08E 08 MT) ensbles ame &0 calenlate the curxent.salie of.[0¢) ).
.by é reéuf;ive prééesé. Owing to limftéfions of éIMU instruments, ﬁowever,
[M(T)] can only be approximated. Previous approaches have emphasized the
use of digital differential analyzers (DDA's) in order to achieve maximum
precision with a small computer. Utilization of a general purpose digital
computer such as the Apollo Guidance Computer (AGC) requires a substantially
differenf approach: a large time interval T with a sophisticated approximation
to [M(T)] instead of the DDA's short interval and skeletal approximation
to [M(T)]. The fundamental question associated with large intervals T centers
around the uncertainties as to the order in which rotations occur, and the
inaccuracies which result from these uncertainties.

The data from which [M(T)] can be approximated by a spacecraft navigation
computer is a quantized representation of angle changes as detected by the
body-mounted gyros. It is here assumed that these angle changes are known
precisely; the effect of introducing imperfect gyros into the system
is described in a later section. To express [M(T)] in terms of the spacecraft
angle changes (denoted GX, Gy, ez), [e(t)] is expressed as a function of

[c(0)]. The Taylor series expansion of element Cij is:

@ Ibid.

11



. 0 ' 1
1 2 3un
c.,t -(:,,0 +tc..0 + - t G.._O + - t Ck,‘o +... F

At this time it is convenient to rewrite equation (5) in index form:

éﬂ(t) = G,y (t)cnz (£) - 013(t)wy(t)

G () = = €41 ()0 (€) + G5 () () ®)

(.33._3(1:) = Cil(t)aay(t) - €, (t)e (£)

The expressions of equation (8) can be used to replace the éijit) term of
equation (7) with undifferentiated terms. Equation 8 can also be differentiated

to give Ci.‘s in terms of Ci.'s. Further substitutions utilizing equation ¢8)

yvield expressions for the Ci.'s in terms of the Cij's alone. These .expressions

may be substituted for the C.. term of equation (7). For example:
1]

'é].:l(ty = 6, ()0 (6) + mz(t)éiz(t)_ - Ci?’(t)c.by(t) - &, (6)C,; 5(6)

B L L UL DU BEUP P .. P . -
o SRR D e e A B I R TR T S e A A el

G, (D)8_(£) - & (£)C,, (£) + ERCENOTING

- = e > . .U [ 3
TR RPN S Ay T N e T

- cLy(t)ciB(t) - mi (€81 () + @ (6D (£3C,, (8)

-6 (€ - o (] 6, (8) + [y (e (&) + @, (8] G, (e
+ [cux(t)wz(t) - (uy(t)] C;4(t) &)

Continuing in this manner, one can obtain expressions for the time derivatives
of each Cij in terms of all the Cij's. Since these expressions contain w's

and their derivatives, they will be of the general form:

dk

ok Ca3(6) = £y [0 (8) + £, o [o(e) e, () + £, s lo(e) ]e, 5 (6)

12
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Specifically, at time t = 0, equation (10a) becomes:

dk

;;:Tc Ciy 0 = fijkl[w(o)]cil(ﬂ) + fijszﬂl(o) 1o 5€0) + £; 513 [w(0} ]G, 5(0)

When equation (10b) is substituted for the differentiated terms of

equation (7), one obtains:

tk

Cij(t) =k§0 fijkl [©(0)] ;' Cil(o)

»

P tk

Rl e U ety 'r._:-.._ R RO

&=

- €4 (0) an

[e1]
+ 5L £, . (D)l
k=0. 13k3 (@] k!

Comparison with equation (6).shows that at time t = T, the elements of
[M(T)] are given by the infinite series in equatiom (11). Elimination of

the redundant subscripts in equation (11) leads to the expression:

o - '_Ek
Mij Ty = ki'o :Eijk' {w(0)] 1—{{ (12)

which is recognized as the Taylor series expansion of Mij(T) where fijk is
the k?h derivative of Mij(0)°

It has been shown that the elements of [M(T)] can be approximated by
a Taylor series whose terms are obtained from differentiation of equation (8);
a list of these terms is given in Table 1. There remains to be shown how
these terms can be expressed in terms of the spacecraft angle changes during
the time interval T. ’

Letting the change of the spacecraft angle about the ith axis be denoted
by ei’ the first step is to use the Taylor series expansion to relate the

B's to the respective w's., According to the definition of ei(T}:

13

{10b)



T
Si () =‘[‘mi (t)de

0
‘ z . t2 v
= f [a)i(o) + tmi(O) + ; cni(O) + ... Jat
0
T2 . T3 ’e
= Tmi(O) +-2- cui(O) -;-g rmi(O) + e (13)_

Tt is evident that terms of equation (13) appear also in the Taylor expansion

of some of the Mij's. For example, from equation-(13) and from Table 1:

14



S1

Order Mll(T) _ le(T) M31(T)

0 1 0 o
1 0 Taaz -Twy
2, 62 2 * *
2 - =T (w + ®) —Tz(mm + W) —Tz(aaw -w)
2 Y zZ 2 Xy Z X 2 ¥
- * - o - /I
3 3 2 - Ao 3 2 ’ .
3 - - Twa +wmo) - T (o +w oo +200) -~ T (W -~ +ton +2oo)
5 vy Z Z 6 z -1 YR "t xv 6 v Z X X Z
4 xS 1 [T} 1 4 . @ - 1 4 LI ] Y .-
&4 —T[-&a)zr.bZ,-lmu: - T [3ww +wo - T'Buw +aw + 350
28 ¥y 2% Xy ¥ X 24 X Z Z X X Z
+a>2(a)2+¢02) + 3w w «cnzcnm -wzwm + 3w o w®
z ¥ Xy Xy *Z Ry
F20 (Dw - o) -3 ww - 500 o + 5w w W +6<n2c0
Xy 2 zZy X X & vy z y 2 % vy
-2 .2 20 2. 2- 2& (1Y)
- 3(my + r.uz)] - 6w - 3wxa>z - wacuy - wy]
-{1)20.) +co]
¥ 2 Z

NOTE: wz = cnz + a.sz + m2
X v z
All »'s are evaluated at time 0, the beginning of the saﬁ?limg interval T,

i

TABLE 1. ELEMENTS OF THE ﬁATRIX (¢ ]
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Order MIZ (T) MZZtT) My (1)

0 - 0 1 0
f
1 ~To 0 7 Tw
. 2 AT X
. L. ~ 1 .
2 - Tz(wm - o) ) - -'ETZ(mz + mz) - 'I‘z(uom + w)
2 Xy z 9% x z 2 Y X x
, i
3 g . . . g o 3 2 e . .
3 =T (ww «~o +06 +2oo0) - =TT ow oW T~ + W w20 W)
6 z Z Xy ¥ X o z 2 X R 6 e X zy vz
1, .. - LI - Lo, .. - .
4 - T [3ww + waw - To[-b4w @~ G o - T [30@ +®mw + 3son
9% Xy Xy 2 XK Z z 22 Yz z Yy v 2
+ 3w - Luzcnu) + cng.'(mz + wz) - mzaa @ = 3mww
Xy Xy K z vy 2 XYYy
+ 3 ww + 5wwo . + 2 (wwm - o) - 5wt w :-ﬁaazw
vy 2 XK Z SWURZ X 2 K Z 2 X X
+ 6m2a> + 30w - 3"'{032 +cn2)] - 3w o - o’ +w ]
z 2z y = S z Xy ZX X
+mxcoz-wz] :

TABLE 1 (cont.)
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Order M13 (T)

My ()

M3 (D)

0 0
1 Tay
¥
2 .
2 =T {ww +w)
2, *2 7
3 —TB(—mr.oz-%-m +wa + 2
6 ¥ ¥y ® z
1 Lo+ .
4 -~ T[3ww +ww
24 X Z X Z

. 2
T 3w - W
X 2 X 2

* -

Jmww - 50w
yz 2 X XY

l). . L]
- bww -~ 3w w2 - a)zm
y yve Xy
+ W
yJ

G%EU%Z)

0

=Ty
X

2 -t
T (wywz - wx) -

i T
-t e AR

L
N

3 2 u’\ . .
~ T o -0 Faon + 2nn)
6 x X “ ¥y 2 zy
1 A L ;!

- T [3w®w + @b
24 ve o oy

L1

+ 3w o -wzmm"“
zZy Y 2

BN

Ju o w +5w&3,m
Xz E h. 45

.{.

=y y

.

. 2'1.‘.

+

6m2w + 3w w
x X ° =

5e
W - ]
vy X X

+

TABIE 1 (cont.)

z

%

.
’

4

1
0

1
—-T2(w2+w2)

2 7

1 3 . .
- =T (ww + ®w)

9 X % Y ¥
1 4 e .
- T[4 ® - 4 m
2 X vy

2,2 2
+
w (wx + wy)

+ 2o (ww - ww)
ZV K Y Y X

- 3(a>2 + cn2
x ¥

)]



7 . ..

By(T) = Tcuy(o) + ; my(O) + ; myco) + ...

and

T2

M (D) = Tmy(o) + ; [ (0)o, () + my(O)}

T3 .

" RO+ &, (000, (0) + 26 (), (0) - & (O ()] + . . .

Comparison shows that ey(T) approximates M13(T) with an error functiom whose

leading terms (for T < 1) are:

7 >

- 0,000, + - [ (03, (0) + 20 (0) (0} = o (), (O] (1)

IS

An improved approximation to M13(T) is obtained by expressing the first error

term of expression (14) using the product Gx(T)GZ(T). From equation (13):
‘ 3 .
2 . L] -
8,M, M = To, 0,0 + - [5,08,0) 6 Oe,O] +. .. 05

bt aTam L G otentl aewe s e e b gl e T . . - L. P Y.
. - L SR N A Bt N o L VAT G ey L L T A R O A A R B S T T i
I - . - . : 5 - ¥, 0

Utilizing Table 1, equation (13) and expression (14), one can approximate

o_(me,(T)
M13(T) by ey(T) 4+ —=mmmeeiie—  with an error function whose leading terms are
2
now:
T3 . . )
- [5,00,0) - 0 (0,0 - 20/ )]

Table 2 gives a number of functiomns of Gi which are used in the

formulation of yet’better approximations to the Mij(T)'

18



T2 - T .. T ..

e, =Tw, +- w +- w +~- o +, ., .,
* 2 6 * 25 1
1 1
. - .
9%.=T2w?+'1'3m.cb.+T(-(b.-i--cb.(b.)+...
i i 11 1 i 1
i - 4 3
- A N S T T
8.8, = Tao +-{oo +0o)+T (-o0 +-00 +-00)+...
J.j l_] 2 1_‘] J 1 4 l_'] 6 l_'] 6 J 1
-7 4

. 1 . 1 . T e
e.=/m.(t)dt=-Tm_+-Ta).--Tw.+-cu.-:-...
“ i 1 1 1

mt o 2 1 s 24
. 3 . . .

"3’"-5-'3“'9'-‘1-.9"*”‘.’5‘-‘.’5 ."]rz':"o_- T .=-".I".s LT .V-lvl-;--"";.-. ;‘..p_. s Lo ‘#'.E‘ gl,'.e‘:-\.u. e e Ee e ;.-—.':-'.-.--n }:"".: FAMCL
= = HNRE R NS (7 IS Y7 Rt i Ly € T 7/ ety g T DT Ty
-] 1] ] J1 i1 7 i]

2 4 6 6
6 . -99 ='1‘3(cn,m,-a),m_)+...
i =i -1 ji 1
1
2 3 2 4 2! 2- - L
8" = T -
ei w a;i + T (2 oo wia:i + wimi +1wi+1 4 miwi+2wi+2) + o e

NOTE: All w's are evaluated at time 0, the beginning of the sampling interval T.

2 2 2
o =@ +U)2+cb .
x v Z

e_i is the negative of the angle change in the preceding interval.

TABLE 2. AUXILIARY FUNCTIONS OF 6

19
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Tt is now convenient to define a matriz [N(®)] which approximates

IM(T)] with an error [E(T)]; that is:
()] = [N@)] + [E(T)] (16)

The number of possible forms of [N(8)] is of course unlimited and no procedure
is given here for deriving optimized approximations. Table 3 shows three

N matrices which are equivalent to Taylor expansions of [M(T)] to the first,-
second and third order terms respectively, The N matrices are written in
terms of body angles; the leading terms of the corresponding error matrices
[E¢T)] are expressed as functioms of the @'s and their derivatives. The
process of updating the W matrices of Table 3 at regularlsampling time
intervals T constitutes the basic algorithm; modifications to this basic

algorithm are discussed later.

3.2 Interpretation of Algorithm

The algorithm presented in the preceding section was eeveloped'from
a purely mathematical basis with no physical interpretation of the algorithm -
1nc1uded._ The transformatlen’?atrlg can be y;suallzed as a vector orlglnatlng_
at the center of the unit spheie éﬁd term;natlng on the surface of the tnit
sphere., Rotation of the vehicle employing the strapdown system corresponds
to tracing a path on the surface of the unit sphere. The N matrix vector,
which approximates the true transformation vector, is updated only at discrete
time intervals. Because the vector addition of small angle changes is
an ordered process, the N matrix vector which is updated based upon the algebraic
sum of angle changes during a sampling time Interval is accurate only within
some cone of error. To reduce the size of this cone of error, the position
of the N matrix vector is extrapolated not only on the basis of historical
velocity, but also on the basis of changes in velocity, This extrapolation
iz evidenced by the inclusion in the third order update formula of angle
changes over two successive sampling time intervals. The physical assumption
which is thus being made in the basic algorithm is that changes in angular
positions during successive sampling intervals caused by acceleration are

small compared to changes in angular position caused by current rotationm.

20
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Lo N () = e 1

2

=]

El(T) = M(T) - Nl(T) = 5

to
NOTE: All w's are evaluated at time 0, the beginning of the sampling interval T.

i
TABLE 3. ELEMENTS OF .[N(T)]

+ 0(T3)



2c

1
2. Ny(T) = W (T) + . exey
88
X2

0
T3 . .
2
- (2w +oa -on)
12 z x Xy

TABLE 3 (cont.)

96

8 B
Yy Z

2 2
-(9x + ey)

.(-2w2m + oo - ow)
¥y Zx X 2z

-

(szw + oW = W)
x Zy y Z

+ o(r™




£e

3. N3('I') =

E,(T) = M(T) ~ N,(T) =

N2 (T) + -

0
1 2
(200 + 86 -988 )
12 ) z X =~y ¥ -x
(6@ +68 -~88 )
y X -z Z =X
U et 12 13
- e, e e
24 21 22 '23
€31, 332 k)
w(cn +w)+2wx(yz-aazw)
2 o2 2
0w 0 + W )+cu a)d) -
Xy (Y x (
_mem +c1)(2 2)+w(a>m -
vy x Z
2 ‘2 2 .
-cuwyw +w( x)-&-w(ww -
co(a) +w)+2wy(zx-mwz)
-wzmw +m(2 2)+m(uoa> -
¥y x =z ¥y yy
2 2 2
W +my(x z)-i-w(r_uw -
-mzcnm +cu(2 2)+m(aom -
zy x5 ¥ Y
mz(m2+w2)+2m(wm -ww)
Yy = ZV XYy ¥ X
TABLE

P
(20% &

z;
K0

:
A‘-

(-20%" + 0.8
Ty

)
&
J

P
+ 0(T7)
s
"
. -'5". .
o)+ O - 0o
vy x xy
DoY)y +Fme - DO
X X X & X z
. s .
W) +ow ~ 0w
yy vk YX
o
. oF e
ww) +w - W
zz) y“’fz v E
. it .
DO+ Oda -0
X X 2:3: zZ X
. .é-:" tee
WYt od - no
z Z - Zy

3 (cont.) »'

e g8
v -X

- 90 )

~9.8_)

(-26%6_ + € ©
v Z -x

(0% + o0
X z -y

¢

- 986
X"Z)

-8 )



3.3 Error Accumulation

The accumulation of attitude error is a complicated process, and no
manageable analytic description has been developed. However, a crude upper
bound of the accumulated error can be calculated by using the assumption
that the absolute value of the error is the sum of the absolute values
of the errors at each update calculation. As an example of this calculation,

consider the error terms of the matrix INB(T)]. Since:

fem] = [6(0) 10 an
and

(D] = [8,(D)] + [E4(D)] (18)
it follows that:

[c(m)] = [c(0) ][N (2] + [C(O)[E,(T)] ; (19)

where the second term -is the error resulting from the dpproximation

formula Ng. Let this error be denoted by [D(T)], i.&:,

[c(0) J[E4(T)] (20)

[(p(T)]
Referring to Table 3 we can write:
- 5
Dil(T) =Gy e.ll(T) + €y eZl(T) + 013 esl(T) + 0(1™) 21)

where the e's are the elements of [EB(T)]. An upper bound to equation (21)
can be obtained by substituting unity for each of the Cij‘s and by replacing

the @'s in the expressions for the e's by the hagnitude of ®. This gives:

&

T . . v . .-
Dil(T)<- {w4+2w2m+m4+4w2w+2ww+m¢+4w2m+cnm]
24
or
'l‘a' 4 2° .
D, (I) <~ [30 + 100w + 4w w] (22)
il 24 E

Similarly D:’_Z(T) and DiB (T) have an upper bound identical to that of equation (22),
This upper bound gives a means of assessing the update formulas in conmection
with a part:f_cu';i..ar time interval T and mission profile, i.e., relationship
between ®, ®, @ and time. The final error of the C matrix can in principle
be evaluated by the integral: .
24



tfinal

[ {p(t,T)]at
o

where tfiﬁal is the elapsed mission time. The uncertainty of the spaceeraft

" attitude at time tfinal is in turn a function of the fimal errors in C.
Of much greater interest than the analytical error expressions derived

above are the actually observed errors resulting from the computer simulations.

3.4 Timing Considerations

The rationale behind the utilization of a general purpose whole number
computer to perform the navigation functions im a strapdown navigation system
is that such a computer must necessarily be included in the spacecraft
. q"Jperform orhex Aeqessary; pu,@gégd fgnct;ons,, Ihe a;gumgnt.ms madehthat o

if the percentage of computer time requlred to perform the navigation functlon
is sufficiently small such that the other functions are not adversely affected,
then the special purpeose digital differential analyzer (DDA) which is normally
associated with the strapdown system can be eliminated from the spacecraft.
Assuming that a whole number algorithm of updating the cosine matrix is
sufficiéntly accurate, the problem reduces to one cf comparing an estimate
of the amount of computer time required to perform the algorithm with the
amount of excess time capacity of the guidance computer,
) If the Block II AGC as it is presently conceived were required to
perform the full third order update caleulations at the rate of, say,
10 complete updates per second, then rough estimates indicate that the
AGE would be saturated performing this task alone, However, it is estimated
that the AGC could perform an economized version of the third order update
formula, NB(T)’ in less than eight milliseconds. (For a complete description

of the economized form, see Section 5.8.1 Computer Word Length, page .)

It is estimated that such an economized form would require less than
ten percent of the AGC's computﬁgg time, A rough estimate of the types
and number of instructionms required by the AGC to perform the third order

update calculations is given in Table 4.
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Number Function Performed Total Memory Cycle Times

3 Read © 1 9
3 Shift Once 12
3 Square 18
9 Cross Multiplies 54
3 Sum of Squares -6
3 0%, Terms 18
3 Multiply by 2 _ 6
30 Double Precision Adds 90
9 Adds 27
27 Multiplies 108
27 Double Preclsion Adds 108
18 Exchanges 36
APPROXIMATE TOTAL 600 MCT = 7 msec.

TABLE 4. ROUGH ESTIMATE OF INSTRUCTIONS AND TIMES REQUIRED TO PERFORM

~ THIRD-ORDER UFDATE CALCULATIONS IN AGC
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IV. DIGITAL DIFFERENTIAL ANATLYZER (DDA)

The basic approach to maintaining an updated cosine matrix using
DDA techniques is to solve equation (4¢), Using rectanmgular rule integration,

the DDA updates the transformation matrix by solving the difference equations:

IR R @3
where AEB P is that angle change of the spacecraft gbout the jth axis
2

which results in one pulse of a pulse torqued gyro.

Solution of equation (23) requires that the update cycle time of the DDA
be sufficiently short such that not more than ome AP change is observed
by an axis gyro during the update cycle; i,e., A pulses about any given

axis must be processed ome at a time and in the order observed. Examination

OF eqiiution” (23y:Tndicates that,: flncs Hdaition ot anglé changed- abouts threews: |

different axes is non- commutativg the updated transformation matrix is
dependent upon the order in which the individual elements of the matrix
are updated. This order dependency of the updating procedure of the DDA
introduces into the updated matrix an inherent inaccuracy which is a function
of the uypdating procedure and of the particular £light profile.

An analysis of various updating procedures for a DDA and of the errors

associated with each of these procedures has been conducted by R. M. Hession(B);

. the principal results and recommendations resulting from Hession's analysis

were utilized in this study as a basis for comparing the performance of a

whole number updating algorithm with the performance of a DDA, Hession
concludes that, considering the tradeoffs involved between required accuracy
and machine speed, the optimum configuration of a DDA is one designated

as Serial-~Parallel (& separately; with reversal rule). Under this organizationm,
a complete update of the transformation matrix consists of three ﬁartial
updates; the DDA must thus operate at a cycle time sufficient for the

three partial updates to be completed between successive A2 changes about

3

R. M. Hession, R-481, Analysis of a Transformation Computer Used
with g Gimballess IMU, MIT Instrumentation Laboratory, January, 1965.
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any axis. To minimize the error resulting from the or;ler in which the
updates are performed, the update order is reversed after an angular
change of 78 ig observed about any body axis.

The difference equations to be updated by a Sez_:ial-Parallel organized
DDA are shown below. To simplify the notatiom, hi ig used instead of Aei;
(.‘.ij (K + n) refers to the value of the element cij after having been updated

n times. .The difference equations are:

c;; (R+ 1) =Cyy x)

G,y R+ 1) = P x) - Ciq (KD h3

Ciq (R + 1) = G4 (K) + Ciy (X} b,

Cil K+ 2) = Cil K + 1) +C]._2 (K + 1) h3

c,, K+2)=¢, x + 1) (24a)
013 K+ 2) =ci3 K+ 1) ~ ciZ (K + 1) h1

Cil (K + 3) = cil (K +2) - Ci3 K+ 2) h2

ciz K+ 3) = c:.L2 (K + 2) +t:13 (K +2) 1:11

C;q R+ 3) =Gy (R+2)
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Upon reversal, the equations become:

=2

4 (K +.4) cil (X + 3) - Ci3 K+ 3

il 2

012 (K+4)=C12 (K+3)+Ci3 (K + 3) ‘n1

CiS K+ &) = G13 (K + 3)

Cil K + 5)=c:il (K+lp)+ci2 (R + 4) h3

ciz K+ 35) = Ci2 (XK + 4) (24b)
c13 (K+ 5) = Gi3 (K+4) - Ci2 (K + &) h1

Cil (R +6) = cil (K + 35)

C12 (K+ 6) = Ciz (K + 5) - Cil (K + 3) h3

Ci3 K +6) =¢Q (K+5)+Cil (K + 5) h2

i3

The set of equations (24) were used to describe a DDA subject to the

following mechanization rules, Each of the elements of the tranfformation
. matrix consist of two finite length computer words, ¥ and R. Only the

Y words were used in the multiplicatioms with the products added into the
appropriate R register. The lowest order "slot! of the Y word equals the
magnitude of 128, (The terminology "slot" is introduced because the value
of /8 which was utilized, 1/4 milliradian, is not representable by a negative
integral power of either 10 or of 2, Thus while in most DDA's 128 corresponds
to the lowest order bit of a binary register, the value of A8 chosen

for the simulatioms prohibits the normal use of the word "bit" for the purpases
.of this study.) The R register is restricted in magnitude to be less than

1A9 ; when the R register exceeds 1/, an overflow of 1AD is affected into

the corresponding Y register., Under the above form of mechanization, a

typical update equation from the set of equations (24) becomes:
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I".i2 K+1)= Rip (K) - Yil {X) h3
If R, (K + 1) exceeds 148, then Y12 (K + 1) is incremented by 149 and
Ri2 (E + 1) is decremented by 1/89.

In addition to the mechanization described above, a roundoff rule
was employed. Before using a Y word in a multiplication, the corresponding
R word was checked to determine the value in the R word, If R equalled
or exceeded 1/2 A9, then Y was incremented by 128 be'fore being used in
the multiplication; otherwise the value of Y was not altered. In neither
case was the value of Y modified as it appeared in the Y register.

All of the DDA results obtained during the simulations resulted from
the DDA as mechanized above where 128 = 1/4 milliradian. At any given
instant in time, the value of an element of the transformation matrix is
equal to the algebraic sum of the contents of the corresponding Y and R

registers.
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V. COMPUTER SIMULATIOW

5.1 Goals of Simulation

Extensive simulation has been performed on a Honeywell 1800 computet
to evaluate the algorithm developed in Section 3.1 and especially to
. obtain a more precise feel for the behavior of the accumulated error of
the C matrix. The simulations were performed in floating point arithmetic
with a2 mantigsa of 10 decimal digits and an exponent of 2 digits.

The simulation programs were designed essentially to:

a. Simulate rotational velocities and accelerations incurred by a

spacecraft for any specified flight profile,

b. Determine changes of spacecraft attitude anglees (8's) about

3

.eachof.the spacecraft)s axis. for yconsecutive sampling time.intervals
L. - . - - ~ TER T e e e B A AT s e e e L s P e T AT e S T e

st

of length T for the duration of the flight profile.
c. Update the third order N matrix of Table 3 at time interwvals T.

d. TNetermine the true C matrix as a function of time by utilizing

knowledge of the flight profile to solve equation (5).

e. Determine the error matrix E(t) by comparing the matrices resulting

from steps ¢ and d.

It must be emphasized that the simulations were concerned only with determining
the efficacy of the algorithms as an analytical method of maintaining the
C matrix. No effort was made to solve the navigation and guidance equations
of the simulated £light profiles, Thus this study at best represents an
effort to investigate only one of the many problems associated with the
strapdown configuration.

The final step of the study was to simulate the performance of the
DDA as represented by the set of equations (24) for certain of the profiles
and to determine the error matrix resulting from the DDA updating technique.
These simulaticns permit a comparison of the performance of the DDA with

the performance of the whole number algorithms. While results of the DDA
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simulations are included, the remainder of this report is concerned principally

with a discussion of the whole number algorithm. ¢

5.2 Determination of True C Matrix

The principal vncertainty in the results of the many simulated flight
profiles is the accuracy of the standard solutionm against which the results
are compared. Theoretically, the solution to equation (5) would provide )

the precise gtandard which is desired; in practice,. however, the approximations

introduced by the computer differential equation subroutine make the accuracy
of the scolution questionable,
The differential equation subroutine utilized in this study permits

the solution of any set of simultaneous differential equations of the form

of equation (5) provided that the highest derivative is piecewise continuous

and that the locations of the discontinuities are knowp in advance. To

relate these restrictions to the problem at hand, it is noted that the LEM,

and in fact the great majority of present day maneuverable spacecraft, is

attitude controlled by the thrusting of reaction jets. Throughout the

simzlations, the attitude jets were assumed to be capable of existing
_'2,119 29}?-29& of, two states, "on“ 9%, "oii " When turned Son!- thes;g;skp;og;geh_-
” a th£ué;‘wh1ch results in a constant angular acceleratlon' when "off" the

jets provide no angular acceleration. Because the transition between "on"

and "off" is assumed to occur instantaneously, the angular accelerations

measured by the spacecraft - and hence'indirectly'the eiéments of the matrié

[c(t)] as updated by the computer -~ are discontinuous at the time the attitude

jets are switched. Tn order to correctly evaluate equation (5) using the

differential equation subroutine the times of such digcontinuities must

be known in advance.

It has been assumed in this study that the differential equation

solution to equation (5) for each flight profile yields an accurate C matrix

against which the results of the algorithm can be compared. The accuracy

of the differential equation subroutine utilized depends upon the size of

an incremental interval of time At, during which the dependent variable

must be continuous. Te determine the validity of the differential equation

solution for a given flight profile, the subroutine was run several times

with decreasing values of the increment At; the resulting solutions were
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checked for convergence. As an example, at the termination of a particular
40 second mission, the convergence of the solutions corresponding t¢ decreasing
time increments At is depicted in Table 5.

The convergence indicated by Table 5 is typical of convergence observed
for other flight profiles and suggests that a time increment of At = .0015625 second
provides a sufficiently accurate solution to equation (5), However, it
@as discovered during the simmlations that for £light profiles exceeding
a duration of 100 secomds, the requirements imposed by the small value
of At .exceeded the single precision capabilities of the computer; it was
also observed that solutions with a time increment of .0015625 second

" required an unreasonable amount of computer time in proportion to the scope
of this study. Hence for all £light profiles the "true" C matrix was obtained
by solving the differential equation (equation (5)) with an incremental
time interval At = ,003125. The resulting C matrix can be considered accurate

= P i

R Y LR ) TP e T A Y S P PRI N S SO
=totattdeast thé sigth ddcimal phacely i wari i an THa i o e (200 fn o S e B 20

5.3 Characteristics of Simulated Flight Profiles

The flight profiles which were simulated in this study fall into two

basic categories:

1. Missions which in the most general case consist of alternate polarity
acceleration pulses applied independently to the attitude jets of

each of the three spacecraft axes.

2. Profiles which represent a typical LEM mission,

The following constraints were imposed upon the spacecraft maneuvers called

for in the simulations:

1. All angular accelerations about each axis were of constant magnitude,

3/4 radian per second per second,

2. VFor profiles of the first category, rotational velocities about
each axis were limited to magnitudes of 20° per second or less;
maneuvers in the LEM missions were limited to rotational velocities

whose magnitudes were 10° per second or less.
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(el - .00625 [Cly = L0125 =

6.5 x 107° 2.1 x 10°° -2.7 x 1077
2.3 % 10°° 6.4 x 107° -3.2 x 1077
-6.5 x 10~/ 1.4 % 1078 4.8 x 1078

[C1ae = .o03125 = [Clae = 00625 =
4.5 x 1077 -1.3 x 107/ 1.1 x 1077
1.7 x 107/ bt x 1077 -8.3 x 100
9.2 x 1072 2.0 x 107/ 1.4 x 1077

[CIa = .oo15625 = [Cac = 003125 =

W3R 1078w i o it 1B e Y el G g7
-8 ' 9

-1.2 x 107 4.2 x 1078 1.5 % 10

8

9

3.6 x 10~ -1.7 x 107 6.2 x 1077

TABIE 5. CONVERGENCE AT 40 SECONDS OF DIFFERENTIAL EQUATION SOLUTION OF

COSINE MATRIX FOR DECREASING TIME INCREMENTS, At (At MEASURED IN SECONDS)
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Characteristics of successive runs were dictated by the desire to isolate
the effects of the wvarious parameters which influence the capabilities of

the basic algorithm,

5.4 Effect of Vehicle Rotation

The characteristics of the first few simulations were designed to
..isolate the effects of vehicle rotation upon the wmatrix [E(T)] given in
Table 3, A single acceleration pulse,‘commencing at time t = 0 and of
a specified duration, was applied to the x axis attitude control jets;
subsequent to the termination of acceleration, the spacecraft was allowed
to rotate freely at 2 constant angular velocity for a duration of 200 seconds
during which time the third order N matrix of Table 3 was updated at sampling
time intervals of 0.1 second. Periodically during the 200 seconds, the
updated N matrix was compared with the true transformation matrix fc(e)]
s =(differentiak,¢quat ipy.solution) and: the lresulting-erroy smatrd e, s- %20 7% P
[E(e)] = [c(e)] - [M(t)] was determined. The magnitude of the elements
of [E(t)] represents.the degree to which the updated N matrix approximates
the M matrix of equation (6). \

The profile described above was simulated for the acceleration pulse
lasting .025 second, 0.25 second and 465625 second. (The last value
repreésents the approximate time which it would take a body under an angular
acceleration of 3/4 radian per second per second to achieve a rotationmal

_velocity of 20° per second.) The behavior of one element, €95 of the resulting
error matrix for each  of the three profiles is shown in Figure 1. It .
should be noted that there is nothing unique about the element €n3 its
behavior is simply typical of ~ but not identical to - the other elements
of the error matrix.

There are severazl interesting properties about the functions shown

in Figure 1, According to the error matrix of Table 3, it was expected

that the element e,, should be essentially a comstant for the duration

22
. T4 .
of the profile since 259 of Table 3 reduces in this case to - @ . It
24

is apparent from Figure 1 that the truncated error matrix of Table 3 does

not adequately represent the behavior of the basic algorithm; evidently
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higher order terms must be considered. The periods of oscillation of the
error functions are identical to the time it takes for the spacecraft to
rotate 360° while the peaks of the error functionm oscillations grow in a _
linear fashion which is apparently a function of the speed of rotation.
The unfortunate result is that the error peaks appear to be monotonically
increasing. From the three functions depicted, no simple relationship
between the rotational velocity and the growth of the error peaks has been
determined, One is tempted to conclude from Figure 1 that the errors
resulting from the basic algorithm are functions of the spacecraft velocity
and attitude. It should be remembered, however, that the differential
equation solution was shown to converge only to the sixth decimal place
for At = .003125; therefore, considering the magnitude of the error, one -
.might question the accuracy of these initial conclusions.
To ensure that simultaneous rotation about each of the body axes does

- mot-.adversely. affect the sperformance. ofwthe. basic ;algorithm, - £light profile:
similar to the above was simulated. This profile consisted of applying
a .025 second acceleration pulse about each of the body axes at time ¢ = 0
and then allowing the spacecraft to rotate freely for 200 seconds. The
behavior of element 259 of the resulting error matrix is shown in Figure 2,
While unquestionable conclusions camnot be drawn from one simulatiom,
nevertheless comparison of Figure 2 with Figure la indicates that simultaneous
rotation about the three body axes does not gignificantly affect the accuracy

of the basic algorithm.

5.5 The Basic Profile

From the results observed for constant rotation of the spacecraft,
it became apparent that more sophisticated maneuvers must be studied.
A flight profile was designed which consisted essentially of limit cycle
maneuvers performed about each of the body azes; because this profile was
the basis of the great majority of the simulations, it will hereafter be
referred to as the basic profile. The characteristics of the accelerations
applied about each of the body axis are shown in Figure 3. The sequence
of the pulses about the z axis permits acceleration to the maximum allowable
rotational speed of 20° per second, free rotation at this velocity for

a period of time, followed by deceleration to zero rotation zbout the
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Z axis. The vehicle is assumed to be rotating at time t = 0 about the x and
the y axes with a velocity ®, = a& = =,009375 radian per second; thus the
x and y axis limit cycle maneuvers are centered about the respective axis,

The basic algorithm was used to update the N wmatrix during simulatioms
of the above described profile for elapsed mission times of 1000 seconds.
Sampling time intervals of 0.1, 0.05, and 0.025 second were employed. A
crude graph of the behavior of one element, €310 of the error matrix ‘

[E¢e)] = [c(t)] - [N(t)] for each of the three values of the sampling )
time interval is shown in FTigure 4, Figure 5 is a more detailed presentation
of the behavior of ey for the first 200 seconds of the mission with a
sampling time interval T = 0.1 second.

Figure 4 substantiates the prediction that a reduction in size of the
sampling time interval results in a corresponding decrease in the magnitude
of the errors. According to the error matrix of Table 3, a reduction in
size of the sampling time interval by a factor of two should reduce the
error by a factor of sixteen. While it is not immediately apparent from
the functions of Figure &, comparison of corresponding raw data points
indicates that halving the sempling time interval results in a reduction
of error magnitude by a factor of onl& five., This result tends to substantiate
the earlier:canclusion.that .at. leastssomerof s,tcﬁg,-ba}sh%r.; ordereffects whicli: . an
" were omitted in the basic algbfithm and the error matrix are not truly
negligible.

There are several interesting observations which can be drawn from the
function shown in Figure 5, which is an expansion of the first 200 seconds
of the profile. The frequeney of the simusoidal type pulses, which evidently
result from high speed rotation about the z axis, is identical to that
observed in Figure lc. Since the magritude of rotatation is the same
for both cases, this is not an unexpected result; however the magnitude
of the error now indicates that the differential equation routine is not
the cause of oscillatory behavior of the error function. Where the peaks
of the error in Figure lc grow linearly, such is not the case for the basic
profile. In fact, according to Pigure 4, the magnitude of the error peaks
is well bounded. The most significant result which is apparent in Figure 5
is the difference in the order of magnitude between the errors observed
for this profile and the error function of Figure lc even though the magnitude

of body rotation is the same for both profiles. Such a discrepancy can only

be caused by one or more of the following:
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1. Simultaneous acceleration about one body axis and rotation about
the cother body axes; i.e., occurrrence of nou-synchronous accelerations

about the three body axes.

2, Occurrence of limit cycling or repetitive acceleratioms.

It should be remembered that simultaneous rotation of small magnitude
". about the three body axes did not previously appear to affect the performance
- of the basic algorithm. '

To determine the effects of the limit cycle maneuver, a profile similar
to the basic profile was simululated; in this profile, however, no accelerations
were applied to the z axis. The error function e3l(t) which results from
limit cycle mameuvers about the x and z axes ig shown in Figure 6. Although
the speed of rotation about the two axeés of the spacecraft was identical
to that of the earlier profile, the magnitude of the errors is‘nevertheless

st ) SR L0 SRAE opaeEYed (B Theune o Tpmes M nam v e
accelerations are synchronous, the error shown in Figure 6 can only be due
to the repetition of accelerations., It appears that the errors are somewhat
cunulative; however the periodicity of groups of three error pulses remains
unexplained at this time.

Further evidence thgt the performance of the basic algorithm_is
influencded by the occurrence of repetitive accelerations is presented in
Figure 7 which shows the error functiom e31(t) resulting f£rom simulation
of the z axis accelerations only of the basic profile. For the profile

"~ in which one 465625 second acceleration pulse was applied to the z axis
attitude jets followed by a 200 second period of free rotation (profile
for Figure 1lc), the error function e31(t) was identically zero. Thus
the existence of the error function shown in Figure 7 can be caused only

by the repetitive accelerations,

5.6 Non-Synchromous Accelerations

The simulations considered thus far have consisted of applying accelerations
simultaneously Eo various combinations of the spacecraft axes. To investigate
the effect of asynchronous acceleratioms, two profiles were simulated.

The profiles consisted of accelerations of alternating polarity applied
to the x, y, and z axes at multiples of 4, 5, and 7 seconds respectively;

in one profile the accelerations lasted for .(25 second while in the other
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profile the pulses were of ,465625 second duration. The error functions e31(t)
for the ,025 and the .465625 second profiles are shown in Figures 8a and

8b respectively. The functions shown in Figure 8 substantiate the previous
conclusion that the magnitude of error is dependent in part upon the speed

of rotation of the spacecraft. It is significant to note, however, that

the error shown in Figure 8b is of smaller magnitude than the corresponding
error of the basic profile, even though the profile for Figure 8b calls

for high speed rotatiom about each of the spacecraft axes while the basic
profile calls for high rotation about only the z axis. Such a result was

completely unexpected and at the time unexplained.

5.7 Extensions of the Basic Algorithm

Of particular concern to the design of the LEM navigation and guidance
system iIs the magnitude of errors resulting from seemingly non-violenq
maneuvers. Since the updated N matrix is an approximation to a matrix
of direction cosines, an error of 3 x 10-2 {see Figure &) can represent a
spacecraft attitude error of almost 2 degrees, an error which 'is unacceptable
for the LEM mission. In at attempt to redece the size of'the errors while

31mu1taneously galnlng more 1n51ght into the characterlstlcs of the bas1c

Lt e 5 Ve i T ST gt p e AL sy T, 30

aIgorlthm, several” exten51ons ‘oFf the algorltﬁm were developed and simulated

These modifications and the results of their simulation are described below.

5.7.1 Reduction of Sampling Time Interval

The error matrix of Table 3 predicts, and the error functions of
Figure 4 verify, that a reduction of the sampling time interval results
in a reduction of the error magnitude. However, if the sampling time interval
is made small enough to ensure that the updated N matrix closely approximates
the true solution, an unreasonable computational load is placed upon the
navigation computer., An attempt was made. to realize the reduction of error
magnitude by sampling attitude angle changes at relatively short time intervals
while performing update calculations only at longer time intervals. The
update calculations are of course more complex than the elements of the

¥ matrix shown in Table 3.
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Referring to Figure 9, let the long update time interval T be divided

into two shorter time intervals, each of length T/2.

o ¥

- |
0 T/2 T 3T/2 2T s5/2T

Fig. 9. Reduction of Sampling Time Interval

Within each interval T, denote the change of attitude angle about the ith body
axils during the first interval T/2 by a& and the change of angle during

the second interval T/2 by Bi; thus the total angle change, 81, equals

o, + Bi. If the N matrix of Table 3 is updated at intervals T/2 rather -

than intervals T, the N matrix at time T ;s: .
(NG, B, T)] = [N(w, T/2)][NGB, T/2)] (25)

vhere [N(x, T/2)] and [{N{B, T/2)] have the same elements as.given in Table 3
_ for [N(G T)] except that ) becomes @ and 6 respect;vely._ By sampling

P T Lty
rin, ARy

the angles o and B at tlmes T/@ the result glven 1n,equat10n (25) can' be” -
obtained by updating a new N matrix, [N'], periodically at time intervals T.

The expression for [N'] is of course:
(e B, ] = [N, T/2)1xE, T/2)] - (26)

and includes terms of the sixth order rather than the third order as given

in Table 3. (The expansion [N(x, T/2)}[N(8, T/2)] is rather tedious and,
since it is of mo real significance, is not included in this report.) Thus
the effect of updating the N matrix at shorter time intervals can be realized
by measuring the angle changes at shorter time intervals T/2 while performing
update calculations periodically at longer time intervals T.

The above procedure was simulated with the following exception: in
order to keep the computational load on the navigation computer af a reasonable
level, it was decided net to include in the elements of the N' matrix terms )
which were of the third order or greater. ‘he results of the simelation

of the N' matrix approximation are not plotted but in general the elements
p g
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of the error matrix resulting from this procedure are somewhat smaller

than those resulting from the basic N matrix approximation; however, the
reduction of the error matrix is less than one order of magnitude. Considering
‘that the computational load is higher for the N' matrix than for the N matrix,
such results are not encouraging.

From the expansion of the product [N(x, T/2)]IN(B, T/2)], it was observed
“that the leading terms of the difference ([N(x, T/2)][N(8, T/2)]) - [N, T)]
“(remembering that @ = ¢ + B) were terms typically of the fogg (Q& Bj - C% Bi)lz.
Since these terms do not represent an unreasonable amount of computation,

a logical suggestion is to include these terms in the elements of the third

order N matrix of Table 3 to determine whether or not they contribute significantly
to the rediction of error observed in Figure 4 when angle changes are sampled

at twice the update rate.‘ The results obtained from the simulationm of this

amended N matrix approximation indicate that the elements of the resulting

error matrix are sllghtly smaller than the error terms resultlng from the

g s
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N' matrixz approxlmatlon. Agaln, however, the decrease ‘in error magnitude

is less than one order of magnitude.

5.7.2 ¥ourth Order N Matrix

The error matrix shown in Table 3 results from truncating the expansion

of the N matrix elements of the third order. To verify that the updated
third order N matrix is in fact a reasonable approximation to the cosine
matrix, an N matrix was constructed whose elements include the fourth order
terms necessary to eliminate the fourth order terms of the error matrix.
The fourth order N matrix.was then used in simulated profiles to approximate
the cosine matrix. That it is unnecessary to include fourth order terms
in the W matrix was demonstrated by the fact that the resulting errors
were at least 907 as great as the errors cobserved for the third order N matrix.

The results obtained for the fourth order N matrix in turn suggest
that the necessity of including third oxder terms in the N matrix is questionable,
Profiles were simulated wherein various combinations of the third order
terms of the N matrix of Table 3 were not included in the elements of
the update matrix; in one simelation, no third order terms were included.

The results of these simulations showed that the omission of the third
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order terms of the bagic algorithm results in error functions which are

one order of magnitude greater thanm the errer functions resulting from a

full third crder N matrix. It thus appears that, at least for the flight
profiles which were simulated, an updated full third order N matrix represents
a reasonable approximation to the directioun cosine matrix with a corresponding

acceptable level of computational complexity.

5.7.3 Interrupted Sampling Time Intexrval

The derivation of the basic algovithm results from the Taylor series
expansion of the changes of spacecraft attitude angles during a specified
time Interval as given by equation (13). TFor equatiom (13) to be a valid
representation of ©, the function 6(t) and all of its time derivatives
must be continuous throughout the time interval T, However, for the method
described for implementing the basic algorithm, the requirement for continuocus
derivatives is not necessarily met., Permitting the spaéecraft attitude
control jets - and hence the body angular acceleration ~ to be in only
one of two states, on or off, introduces a discontinuity in the angular
accelerations at the time the control jets are switched. Unless these
-tdlscontznultLes occur_at the, §n1t1atlon of 2 sampllng time 1nferva1 the .
function 8(t) %as dlscontlnuoﬁs derlvatlves ani ‘the expan51;ﬁ ééﬁé&ﬁéfggﬁ.CIS)
over the sampling interval bhecomes invalid,

A necessary condition to ensure that the function ©(t) has no discontinuous
derivatives during a sampling interval is that changes in spacecraft acceleration
be made coincident in time with the beginning of a sampling time interval.
For any realistic flight profile, it is impractical to predict the exact
times when changes in acceleration will oceur; it 1s therefore impossible
to determine a priori a fixed value T for the sampling time interval which
guarantees coincidence between the sampling interval and acceleration change
for the entire mission. The obvious solution is to forece, at the time of
acceleration change, the current sampiing interval to be terminated and
the subsequent interval initiated,

Several practical methods of implementing the interruption of the
sampling interval can be suggested. If the navigation computer is also
performing the guidance functions of the spacecraft, knowledge of the

attitude jet firing is implied; otherwise an interrupt signal from the
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guidance egquipment to the navigation computer is required. In either case,
the navigation computer can terminate the current sampling time interval,
perform update calculations and inftiate the subsequent sampling time
interval; thus no discontinuous derivatives are perﬁitted to occur during

a sampling time intexrval. On the other hand, in any realistic space mission,
there are bound to be rotational accelerations of the spacecraft which

".will not be initiated or observed by the on-board computer. TFuel slosh,

- motion by the spacecraft occupants, etc., result in changes in rotational
accelerations about which the guidance computer has no knowledge. Thus
complete coincidence between sampling time intervals and changes in vehicle
accelerations cannot be simply assured, It might be noted, however, that
these sources of accelerations are not as sharp as the jets and presumably
will not introduce large additional errors. )

Although only one method of interruption was simulated, it is felt

on the basis of earlier simulations that other methods wuld yield essentxally

- 2 - - M
PTG R AT s “ahe, ._‘_'_*,., Td N ERs wma T IR SR P R, 5 L ey et hA W e e PR Sty o T v z‘""

the same rESults. Under the simulated procedure, the length of the sampllng

time interval is set at some constant value T and, in the absence of

acceleration changes; update calculations are performed periodically at

time intervals T as usual, When an acceleration change occurs at time t

during the nth sampling time interval (n = integer), the nth interval is

terminated at time t and the length of the n + 15 interval is set at af - t.

Until the next acceleration change occurs, all subsequent intervals are

of length T, (The length of the n + 1°% interval could have been set at T.)

‘Changes in spacecraft attitude angles are noted and update calculations

are performed periodically every nT seconds for the duration of the flight

profile and in addition are performed at every change of acceleration.
Although the interruption of the sampling time interval assures that

the M matrix of equation (6) can in theory be approximated by an N matrix

such as that given in Table 3, nevertheless the interruption introduces

an additional error which results from the fact that all sampling intervals

are not of the same length, To illustrate this imherent error, consider

the case where the nth sampling interval is of length T while the n kY 1°¢

interval is of length t. For the sake of notational convenience, let\time 0

represent the termination of the nth interval and the initiation of the n + ISt

interval; in other words, at time t a change in acceleration occurs resulting
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in two counsecutive sampling intervals of different lengths, The time
sequence is illugtrated in Figure 10. It is convenient now to investigate
some of the fumctions of Table 2 as they\gre calculated at the end of the

t
n + 1°° interval. TFor example:

t t 2
' ' t -
ei =‘/G.\i(t)dt =./ [wi(o) + ; asi(o) R dt
] 0
t2 . t3 .s
=t (0) + ; w, (0) + ; @0+ ... (27a)
-T -T 2
1 ] " t e
e-j ='/ mj(t)dt =‘/ [mj(o) + tmj(O) + ; oaj(O) + .. .] 3t
0 0
2 . ..
S Bt S Mo A SR @
t2 . T2 .
985 = ~tTw; (0, (0) - T ; @; (@, () + ¢ ; © (0)0, (0) + . . . (27¢)
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It . .
eie_j, -0 0, = - [a)j (0w, (0) - mi(O)mj (0)
th . .
+ ; £aﬁ€0)ﬂ&(0) - aﬁ(o)wi(o)]
th tT2 [. . ]
f 5 + ; a&(O)wi(O) - a&(o)uﬁ(o) (274)

Inspection shows that equation (27d) is idemtical to the corresponding
function given in Table 2 only when t = T, a condition which is not possible
when an interrupt occurs. Thus the interrupt inherently introduces an error
not shown in Table 3 which in this case is represented by the factor

1

-T? - r:(th=+'tT%%a-:In_generalfthe;érror is-a funetion: of:the difference -

2 : T ) :
in length between consecutive sampling time intervals,

Updating the full third order N matrix given in Table 3 with an
interrupted sampling time interval was simulated using the basic profile.
The normal sampling time interval was 0.1 second, the same value used in
the earlier simulations. The error functions e31(t) resulting from the
interrupted simulation is shown in Figure 11, The principle result to
be noticed from a comparison of Figure 11 with Figure 5 is that the error
has been reduced by three orders of magnitude, A Such significant reduction
is not limited to this profile; comparison oé the interrupted update method

with the basic algorithm for other profiles revealed similar results.
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5.8 Practical Considerations
5.8.1 Computer Word Length

A full third order update N matrix approximation evalugted ten times
a second and at every change of acceleration results in an erfor matrix
which corresponds to at least milliradian accuracy for the profiles which
were simulated and in considérably better accuracy for the LEM profile
which was simulated. To achieve such accuracy with the 15 bit word length
of the Apollo Guidance Computer, calculations would have to be performed
in double precision form. A rough estimate indicates that if the interpretive
mode were employed, the computer would be fully occupied with this job alone.
In order to reduce the time requirement levied against the AGC by the update
formula, the calculations are expressed in a more convenient form.

The variables are first scaled such that the number of double precision
additions is minimized. Terms of the N matrix in © oceupy the higher coﬁponent
of the double precisén word; terms in Gi, GiGj and 929i occupy the lower
component, The maximum value of the Si is scaled by choosing the interval T
in gecordance with the maximum angular velocity of the spacécraft, These
terms are accumulated to form the nine elements of the matrix [W~I] where
IIE"iS'the:identity“matqixr “The matrix multiplication *[G] % [N-1] 15 performéd
in single precision .wsing the upper componeunts of each matrix and the resulting
double length product is added to [C}. The lower component of [N-I] is saved
to be added to the next sampling period's [N-I]. The process is like that
of the DDA where the lower component of a double precision word is saved
and accumulated at each step. Because this form of mechanizing the computational
procedure yields results which are less acc&réte than those resulting from
precision, it will hereafter be referred to as computation of 1 1/2 precision.

The 1 1/2 precision form of computation described above was implemented

on the Honeywell 1800 with two slight variatioms.

1. The 15 bit word lemgth of the AGC was simulated as a five digit
decimal word length. Thus the accuracy of the simulated solutions
should be less than the true solutions for the described procedure,
(Because the N matrix is a matrix of cosines, the first digit of
either the binary or decimal word must have a magnitude of either
0 or 1 leaving 4 decimal digits and 14 bits to provide the precision

of the cosine.)
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2, All terms of the N matrix were accumulated in the lower component
of the double precision word but were allowed to overflow into
the higher component of the double precision word. However,
because of the floating point arithmetic employed by the simulation
computer, the higher component of the simulated double precision
word always contains five significant digits of the cosine approximation.
Thus the simulated procedure 1s accurate tothe extent that terms
of 62 and ezei do not contribute to the first five significant

, digits of the cosine approximation. The effects of the 1 1/2
computational precision will be discussed with the results of the

simulated LEM mission.

5.8.2 Q@yro Limitations

The results presented ko thls point are predicated upon the assumption

ewnrthaﬁotheﬁchanges inﬂﬁhefspacectaftsattitude gnples idering each sampling -t imets ™ %

interval are known precisely, i.e., that the gyros by which the angle changes

are measured provide a continuous. readout of angle change data teo the navigation

computer, In practice, of course, this situation is not realized., In the

case of the LEM mission, the gyros are pulse torqued gyros which require

one output pulse from the computer for each change of attitude angle 28,

a positive pulse for a net positive angle change and a negative pulse for

a net negative angle change. Because angle changes are algebraically accumulated,

_are measured with respect to a fixed reference, and can only be measured

to the nearest A9 through which the vehicle has rotated, it is possible for

the spacecraft to rotate between the angles +A8 and -0 with no pulges being

applied te the gyros. This range of angles is known as the dead band of

the gyros and introduces a memory type effect into the determination of

angle changes. A dead band of 1/2 milliradian (A = £+ 1/4 mr.) was introduced

into the simulations of all profiles; the effect of introducing imperfect

gyros was obgerved to be essentially independent of the mission profile

and is therefore discussed only with the results of the simulated LEM mission.
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5.9 LEM Profile

The fundamental purpose of the entire investigation was to determine
the p;gcticality of utilizing the N matrix given in Table 3 to maintain
spacecraft attitude during the LEM mission. The LEM mission profile which
was simulated is in fact a fairly simple approximation to an actual LEM
profile, the simplicity being a result of the author's ignoramnce of the
detailed flight profile. The approximation will, however, suffice for
the purposés of evaluating the results of the update approximation.

The sim:lated IEM mission profile consisted of maneuvering the spacecraft
about the piteh (%) axis while limit cycling the LEM about the roll and yaw
(v and 2) axes. The maneuvers performed about the pitch axis can best be

described with reference to Figure 12a and consist of the following:

1. At time t = 0, the 1EM leaves the orbiting platform with an inertial
piteh rate of 0.1°/second, allowing the IEM to retain local orientation

with the moon.

2, At t = 300 seconds, the LEM pitches 20° in preparation for approaching
the moon; this attitude is held for 150 seconds while the LEM
descends towdrds the surface, The'pitch of 20° is made at thé
maximum allowable rotation of 10°/second and maximum accelerations

of 3/4 radian/secondz.

3. At 450 seconds, the IEM pitches 60°, at which point it is oriented

with the local vertical of the moon.

4, TFor 120 seconds, the IEM hovers in a vertical attitude over the

landing spot.

5. Failing to find an acceptable landing point, the LEM aborts a
lunar touchdown, pitches 60° and 1lifts off to a rendezvous with
the orbiting platform; during this period of the mission, a pitch

rate of 0.1° is again employed to maintain local orientation.
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6, The mission terminates at t = 1000 seconds at which time rendezvous

with the orbiting command module cccurs.

7. Throughout the mission, limit cycling as shown in Figure 13b is

oceurring about the roll and yaw axes of the LEM.

As a result of knowledge gained from the earlier simulations, maintenance
of the 1LEM attitude for 1LEM profile was simulated using the basic algorithm
both with and without interrupted sampling time intervals. For each of
these methods of updating the N matrix, the following combinations of computational

precision and gyroscope performance were simulated:

. full precision, ideal gyros
. full precision, gyro readout quantized at 1/4 milliradian

. 1 1/2 precision, ideal gyros

S

. 1 1/2 precision, gyro readout quantized at 1/4 milliradian

It should be mentioned that the above combinations were also.simulated
for the profiles desecribed éarlier in this report and the results described
below were observed for all profiles. .
For the four simulations using the basic update formula, the error
functions corresponding to the 9 elements of the error matrix are showmn
in Figure 13. Only very general and almost insignificant statements can
be made about these error functions, The first such statement is that
the errors resulting from computing in 1 1/2 precision are of the same
magnitude as those resulting from the utilization of quantized gyros.
One interesting result is that the errors resulting from the combination
of computing 1 1/2 precision and of using quantized gyros are not significantly
greater than the errors caused by either of these two factors separately.
Furthermore, at least for the simulated LEM mission, the basic algorithm
utilizing full computational precision and employing ideal gyros yields
error functions which are of the same order of magnitude as the errors
resulting from the utilization of 1 1/2 precision and quantized gyros.
Figure 14 shows the 9 error functions resulting from the simulatiom
of the LEM mission using the third order N matrix with interrupted sampling
intervals, It is significant to note that the errors resulting from the

utilization of this method with full computational precision and perfect
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gyros are orders of magnitude less than errors resulting from the other
combinations of computational precision and -gyro readout. Thus the limiting
factor of the accuracy of the cosine matrix approximation for this profile
is not the update method itself but rather can be attributed to external
sources. It is again noted that the effect of 1 1/2 precision is egsentially
the same as the effect of quantized gyros and that these effected do not
appear to be cumulative,
To more readily compare the results of the basic algorithm with those

of the interrupted sampling interval update method, certain of the functions
of Figures 13 and 14 are superimposed apd presented in a common co-ordinate
system in Figure 15. TFigure 15 substantiates the major conclusion which
was evidenced earlier: elimination of discontinuities in the angular
accelerations (and the higher derivatives) results in significant improvement
in the performance of the basic algorithm.

v RS, 3, A 10 Fevea] the performance of the Dasic slgorithn oexl.
for a mission which somewhat approximates one possible LEM mission. 1In
order to delineate the relative performance between the ‘whole number algorithm
as herein implemenéed on a general purpose computer and the specialized
techniques employed by what is felt to be a better-than-average configuration
of a DDA, the performance of the DDA described in Section IV was simulated.
The nine elements of the error matrix, the difference between the true trans-
formation matrix and the transformation matrix as updated by the DDA for
the LEM profile, .are shown in Figure 16, Comparison of Figure‘16 with
Figures 13, 14 and 15 indicates that in general the elements of the trans-
formation matrix as updated by the DDA are somewhat more accurate than those

of the whole number algorithm as simulated.

5.10 Comparative Data for -the Basiec Profile

The error functions shown in Figures 13, 14, 15 and 16 present a
reasonably coqplete picture of the capabilities of the whole number algorithm
for the simulated 1EM mission. To forestall the possibility of doubt arising
about the general wvalidity of the information depicted because of the mild
characteristics of the LEM mission profile, a complete set of error functions
was obtained for the first 200 seconds of the basic profile. Of all the

migsion profiles which were simulated, this profile resulted in the largest
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magnitudes of the error functions. However, the maneuvers encountered

in the basic profile are far more extreme and violent than one would anticipate
for an actual spacecraft mission; therefore the large erroxs resulting

from this profile should not be viewed with excessive alarm.,

Figure 17 shows the 9 error functions of the basic profile resulting
from three mechanization combinations of the noninterrupted update algorithm,
Figure 18 shows the 9 error functions of the basic profile resulting from
simulation of the interrupted update procedure. Figure 19 shows the 9 error
functions of the basic profile which result from simulation of the DDA
techniques. The combined set of Figures 13 ~ 19 present a reasonably complete
picture of the absolute and relative capabilities of the whole number
algorithm derived in Section III. It is felt that they, in conjunction
with the results previously described, provide an objective basis from
which designers of data processors associated with strapdown navigation °

systems are free to draw their own conclusions.
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Vi. MATRIX ORTHOGANALLITY

The updated N matrix, regardless of how derived, is an approximation—
to the true cosine matrix { given in equatioun (1), a matrix whose elements
are the direction cosines of the angles between the axes of the body co-
ordinate system and the axes of the fixed or inertial coordinate system.
Since the two coordinate systems are each orthogonal, it follows that the
matrix C represents an orthorgonal transformation and is therefore orthogonal.
Furthermore if the C matrix is orthogonal, it follows from equation (6)
that the M matrix must also be orthogonal. The update formula givem in
Table 3 yields an N matrix which is an approximation to the M matrix; therefore
(N] should also be orthogonal.

,Cpnsider the matrix:.

[z] = WINTT |- (28)

g B G e P T R T R, Tl L N s s a8 SRR IR DO e § T T BT e AT

where [N1¥ is the transpose of [N]. If [N] is orthogonal, [Z] is the ‘
identity matrix; the variation of [Z] from the identity matrix provides
a measure of the degree of orthogonallty of [W].

It was init?ally suggested that the Z matrix might provide an evaluation
of the update formula and might further be used to "correct" the N matrix
on a réal-time basis. In practice, however, it was found that the difference
between [Z] and the identity matrix provides at best a crude indication
of the effectiveness of the update methods. Examination of the Z matrices
given in Table 6 reveals the difficulty in comstructively utilizing the
property of orthogonality to correct "the update formulas." For example,
according to Figure 15, the use of interrupted sampling tima intervals
yields consistently more accurate results than those realized from the
noninterrupted update technique; yet at the termination of the LEM missiomn,

" the Z matrix for the noninterrupted algorithm is closer to the identiy
matrix than is the Z matrix for the interrupted updating., Similarly, according
to the Z matrices d, e, and £ of Table 6 the N matrix of the noninterrupted
update method is, at the time of maximum error magnitude, less orthegonal
than the N matrix of the interrupted N matrix at the same tims. However,
at the tima of peak error magnitude, the N matrix for noninterrupted update

formulas is more orthogonal than the N matrix of the interrupted formulas

¢ Preceding page blak |



at the time of its largest error functions. Such results indicate that the

property of orthogonality caunot be constructively utilized,
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{a)

Z Matrix at End of IEM Mission Resulting from Basic Update Formula,
Perfect Gyros and Full Computational Precision.

1.0000119 - .00000012 .00000016
- .00000012 1,0000114 .00000018
.00000016 .00000018 . 1.000011

(b)

Z Matrix at End of 1EM Mission Resulting from Interrupted Update Formula,
Perfect Gyros and Full Computational Precision.

1.0000122 00000044 .00000045
. 00000044 ) 1.0000133 .00000016
.00000045 *.00000016 1.000013

(c)

Z Matrix at End- of ILEM Mission Resulting from Interrupted Update Formula,
Gyros Quantized at 1/4 Milliradian, 1 1/2 Precision.

. 99955 .000070 .000015
. | .o0007¢ - .09984 000084 - -
.000015 . 000084 .99981
1)

7 Matrix at t = 190 of Profile #1 Resulting from Basic Update Formula,
Perfect Gyros and Full Computational Precision,

.9998908 ‘ .00001186 ,00002645
,00001186 9998949 ,00002999
,00002645 .00002999 ,99997939

TABLE 6, TYPICAL Z MATRICES FOR VARIQIS PROFILES
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(e)

Z Matrix at t = 190 of Profile #1 Resulting from Interrupted Update Formula,
Perfect Gyros and Full Computational Precisiom. ’

.9998918 .00001155 ,00002580

.00001155 .9998965 .00002995,

.00002580 .00002995 - 99997979
£

Z Matrix at t = 193 of Profile #1 Resulting from Interrupted Update Formula,
Perfect Gyros and Full Computatiomal Frecisiom.

. 9998889 .00001248 .00002684
.00001248 9998943 .00003142
.00002684 .00003142 .9999778

TABLE 6 (COnto)
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CONCLUSTIONS

Extensive computer simulations have verified that the transformation
matrix required for attitude refereuce in a strapdown inertial ﬁgvigation
system can for certain missions be updated at relatively loug time intervals
with sufficient accuracy by an on-board general purpose whole number computer,
“The accuracy of the update formulas is strongly dependent upon the characteristics
"of the particular flight profile, specifically upon the spacecraft rotational
velocity, rotational acceleration, the number of times angular accelerations

are encduntered, and the times at which the accelerations occur. The third

order update formulas offer a reasonable compromise between computational
complexity and accuracy of the updated matrix; little improvement is realized

by using fourth order formulas while significant degradation résults from

second order expressions, Sampling time intervals of ‘the order of 0.1 second

+.. BL8. suffmclently small to yleld meaningfull results; smaller intervals will

(LY S ST e A - S A e Tepe - . Y a
£ v At Aty T 2 e,‘-r..‘ < A £ p..-:L el '..‘-'--.’.,ﬁ_s_&....“_'

of course yleld more accurate results but will also- place an increasing’
computational® load upon the navigation computer. Real time knowledge of
the occurrence of disﬁontinuities in the time derivatives of the angular
velocities can be used to significantly improve the performance of the basic
algorithm. A sufficient increase in computer word length such that computations
can be pérformed in single precision without excessive loss in computational
accuracy results in improvement in the accuracy of the whole number algorithm.
Similarly, an increase in precision of readout from the strapped down gyros
‘results in improved accuracy of the transformation matrix.

Relating the results of the study to the AGC Block II computer, it
appears that the Block IT computer yields results in terms of accuracy which
are barely acceptable, Second gemeration airborne computers will, however,
operatea at speeds five to ten times faster than the Block EI AGC. The increased
accuracy resulting from shorter sampling intervals thus makes a strapdown -

navigation system employing a general purpose computer very attractive.
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