General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

Sp-2232

FUNCTIONAL MODULE PLA2 (PIECEWISE LINEAR ANALYSIS - PHASE 2)

r:1.53 FUNCTIONAL MODULE PLA2 (PIECEWISE LINEAR ANALYSIS - PHASE 2)

-

4,53, 1" "MEntry Point:® PLA2

4.53.2 Purpose

To add the incremental displacement vector, the incremental load vector, and the incremental
vector of single-point forces of constraint for the current pass through the Piecewise Linear

Analysis Rigid Format DMAP loop to the current running sum of these vectors:

ug 3 = lug 2+ (aug), (1)
{P. } = {P VPHdaPh } 4 ; 2

9+ 95 95 e
{ F 5= {q. } & {Age F % 3
q91+1 qgi qgi (3)

4,53.3 DMAP Calling Sequence

PLA2 DELTAUGV,DELTAPG,DELTAQG/UGV1,PGV1,QG1/V,N,PLACAUNT $

4.,53.4 Input Data Blocks

DELTAUGV - Incremental displacement vector in Piecewise Linear Analysis - g set.
DELTAPG - Incremental Toad vector in Piecewise Linear Analysis - g set.
DELTAQG - Incremental vector of single-point forces of constraint in Piecewise

Linear Analysis - g set.

1. DELTAUGY and DELTAPG cannot be pre-purged.

2. DELTAQG may be pre-purged.

4.53.5 Qutput Data Blocks

UGV1 - Matrix of successive sums of incremental displacement vectors - g set.
PGV1 - Matrix of successive sums of incremental load vectors - g set.
QG1 - Matrix of successive sums of incremental vectors of single-point forces of

constraint - g set.

4.53-1(7/4/76)

MODULE FUNCTIONAL DESCRIPTIONS

Notes:

1. UGV1 and PGV1 cannot be purged.

2. QG1 may be purged if DELTAQG is purged.
4,53.6 Parameters

PLACBUNT - Input and output-integer - this parameter must be set to 1 outside the
Piecewise Linear Analysis Rigid Format DMAP looon. This is done using

the PARAM module rather than through the Module Properties List (MPL).

4.53.7 Method

If PLACGUNT = 1, that is, this is the first time PLA2 has been called in the Piecewise
Linear Analysis Rigid Format DMAP loop, then the DELTAUGV data block is copied onto the UGV
data block. If PLAC@UNT > 1, then PLACAUNT is used as a counter to determine how many records
(running sum displacement vectors) to skip on the file containing UGV1 so that the most recently
computed running sum displacement vector can be read into open core for the vector addition.
Once this vector is read into open core, the incremental displacement vector is read and
interpreted using subroutines INTPK and ZNTPKI, and the vector addition given in Equation 1 is

carried out element-by-element.

Equations 2 and 3 are computed using the method described in the above paragraph.
4.53.8 Subroutines
PLA2 has no auxiliary subroutines.

4.53.9 Design Requirements

Open core is defined at /PLA2X/.

4.53.10 Diagnostic Messages

User message 2127 or 2128 is output if either DELTAUGV (DELTAPG) or UGV1 (PGV1) is purged.

4.53-2

FUNCTIONAL MODULE PLA3 (PIECEWISE LINEAR ANALYSIS - PHASE 3)

5.54 FUNCTIONAL MODULE PLA3 (PIECEWISE LINEAR ANALYSIS - PHASE 3)

4.54.1 Entry Point: PLA3

4.54.2 Purpose

To compute e]ement stresses for nonlinear elements (see definition of linear elements in
section 4.52.2) for which the user has requested stress output. It also updates the ESTNL data

block so that the output data block, ESTNL1, contains up-to-date element stress information.

4.54.3 DMAP Calling Sequence

PLA3 CSTM,MPT,DIT,DELTAUGV,ESTNL ,CASECC/@NLES,ESTNL1/V,N,PLACAUNT/V,N,PLSETNG §

4.54.4 Input Data Blocks

CSTM - Coordinate System Transformation Matrices.
MPT - Material Properties Table.

DIT - Direct Input Tables.

DELTAUGV - Current incremental displacement vector.
ESTNL - Element Summary Table for Nonlinear Elements.
CASECC - Case Control Data Table.

Notes:

1. CSTM can be purged. However, if some grid point of the model is not in basic

coordinates and the CSTM is purged, a fatal error occurs.

2. A fatal error occurs if either MPT, DIT, DELTAUGV, ESTNL or CASECC is purged.

4.54.5 Qutput Data Blocks

@NLES - Nonlinear element stresses (to be processed by the Output File Processor).

ESTNLT - Element Summary Table for Nonlinear Elements - Updated.

Note: Neither output data block may be purged.
4.54.6 Parameters

PLACJUNT - Input-integer-no default value. This is the Piecewise Linear Analysis (PLA)

4.54-1

MODULE FUNCTIONAL DESCRIPTIONS

Rigid Format DMAP loop counter. It is used in this routine to find the proper
loading factors on the PLFACT bulk data card specified by the user (see
PLSETN@ below).

PLTSETNG - Input-integer-no default value. PLSETN@ is the set identification number of
some PLFACT bulk data card chosen by the user in his Case Control Deck. It is

used to find this PLFACT card in the MPT data block.

4.54,7 Method

The module driver, PLA3, is a short routine whose only function is to call subroutines
PLA31 and PLA32 which accomplish phase 1 and phase 2 of the task of the module respectively.
Subroutine PLA31 reads the incremental displacement vector into core and appends to each element
entry of the ESTNL data block the components of the incremental displacement vector corresponding
to the grid points of each element. This merged information is written on the scratch data
block ESTNLS, GIN@ file number 301. In PLA32, the ESTNLS data block is read, and the proper
element routine is called to compute element stresses which are prepared in @FP (Output File
Processor) format. Each element routine also updates incremental stress data. The ESTNL data
for each element with the updated stress information (but without the components of the displace-

ment vector) are written on ESTNLIT.

In PLA31, for TRMEM and QDMEM elements, only the three translational components of the dis-
placement vector at each grid point of the element are appended to the ESTNL entry. Other elements

for which Piecewise Linear Analysis is defined use all six components at each grid point.

In PLA32, the difference quotients y* and y, which are the previous and current (with respect
to the DMAP Toop in the PLA Rigid Format) load increment ratios, are computed as follows. Let

P

12 P2, P3, ..., be the loading factors on a PLFACT bulk data card. Define P0 = 0. Define
a; = Pi - P 1 e (1)
*
for i > 1. Then, define 5 O and
* %y
Ve s (2)
To%a

4.54-2 (8/1/72)

FUNCTIONAL MODULE PLA3 (PIECEWISE LINEAR ANALYSIS - PHASE 3)

r}or i > 1, and define

¥ e L (3)

for i > 1. These difference quotients are stored in /PLA32C/ for communication to the module's
element routines so that they can compute the estimated next strain. The details of the element
calculation are given in section 4.87. The input parameter PLAC@UNT, being the counter for the
PLA Rigid Format DMAP Toop, controls the computation of y* and y. However, the module's design
assumes (1) PLAC@UNT is set to one outside the PLA DMAP loop and (2) module PLA2, which incre-
ments PLAC@UNT by one, will be executed prior to every DMAP call to PLA3. Hence, the proper
choice for the subscript i in Equations 1, 2 and 3 is one less than the value of PLAC@UNT.

The difference PLAC@UNT-1 is stored in /PLA32C/ as IPASS.
4,54.8 Subroutines

PLA3 uses, for element routine calculations, the utility routines PRETRS, PREMAT, GMMATS and
element drivers. Communication of an appended ESTNL element entry to an element routine during
phase 2 of PLA3 is accomplished via /PLA32E/, which is 100 words in length. This fact is not
explicitly stated below.

The element drivers PSTRM, PSQDM, PSTRI1, PSTRI2, PSQAD1, and PSQAD2, use a) /PLA3ES/. which
is 300 words in length, as a communication 1ink for the element subroutines which they call; and
b) /PLA3UV/, which is 25 words in length, as a communication Tink for displacement vectors between
fhe driver and their subroutines. PLA32 will call the element drivers lTisted above (plus PSR@D
and PSBAR); the other subroutines described below (in sections 4.54.8.11 through 4.54.8.18) are

only used (directly or indirectly) by the element drivers.
4,54,8.1 Subroutine Name: PLA31

1. Entry Point: PLA31
2. Purpose: To perform phase 1 of the module's operations as described above.

3. Calling Sequence: CALL PLA31

4.54-3 (12-1-69)

MODULE FUNCTIONAL DESCRIPTIONS

r
4,.54,8.2 Subroutine Name: PLA32

1. Entry Point: PLA32
2. Purpose: To perform phase 2 of the module's operation as described above.

3. Calling Sequence: CALL PLA32
4,54,8.3 Subroutine Name: PSR@D

1. Entry Point: PSR@D

2. Purpose: To compute element stresses and to update the ESTNL entry for a R@D, C@NR@D or
TUBE element. Note that for a TUBE element, the ESTNL entry is rearranged and elementary
transformations are performed in PLA32 so that the PSR@D routine may compute element stresses

for a TUBE.

3. Calling Sequence: CALL PSR@D
4,54,8.4 Subroutine Name: PSBAR
1. Entry Point: PSBAR

2. Purpose: To compute element stresses and to update the ESTNL entry for a BAR element.

3. Calling Sequence: CALL PSBAR
4,54,8.5 Subroutine Name: PSTRM

1. Entry Point: PSTRM

2. Purpose: To calculate the material properties matrix, arrange the flow of element

stress calculations and update the ESTNL entry for the TRMEM element.

3. Calling Sequence: CALL PSTRM
4,54,8.6 Subroutine Name: PSQDM

1. Entry Point: PSQDM

2. Purpose: To calculate the material properties matrix, arrange the flow of element stress

calculations and update the ESTNL entry for the QDMEM element.

3. Calling Sequence: CALL PSQDM

4.54-4 (12-1-69)

r
4.54,

4,54,

4.54,

4,54,

4,54,

FUNCTIONAL MODULE PLA3 (PIECEWISE LINEAR ANALYSIS - PHASE 3)

8.7 Subroutine Name: PSTRIT

1. Entry Point: PSTRII

2. Purpose: To calculate the material properties matrix, arrange the flow of element stress

calculations and update the ESTNL entry for the TRIAT element.

3. Calling Sequence: CALL PSTRIT
8.8 Subroutine Name: PSTRI2

To Entry Pointt PSTRI2

2. Purpose: To calculate the material properties matrix, arrange the flow of element stress

calculations and update the ESTNL entry for the TRIA2 element.

3. Calling Sequence: CALL PSTRIZ2
8.9 Subroutine Name: PSQADI

1. Entry Pcint: PSQADI

2. Purpose: To calculate the material properties matrix, arrange the flow of element stress

calculations and update the ESTNL entry for the QUAD1 element.

3. Calling Sequence: CALL PSQADI
8.10 Subroutine Name: PSQAD2

1. Entry Point: PSAQD2

2. Purpose: To calculate the material properties matrix, arrange the flow of element stress

calculations and update the ESTNL entry for the QUAD2 element.

3. Calling Sequence: CALL PSQAD2
8.11 Subroutine Name: PSTRMI]

1. Entry Point: PSTRMI

2. Purpose: To generate element stress matrices for the TRMEM element, and the membrane

portion of TRIA1 and TRIA2 elements, and perform subcomputations for the PSQDM1 routine.

3. Calling Sequence: CALL PSTRM1 (NTYPE)

4.54-5 (12-1-69)

MODULE FUNCTIONAL DESCRIPTIONS

0

TRMEM, TRIAT, or TRIA2
1

NTYPE {
Subcomputations for the PSQDM1 subroutine

4,54,8.12 Subroutine Name: PSQDMI

1. Entry Point: PSQDMI

2. Purpose: To generate element stress matrices for the QDMEM element and the membrane

portions of QUADT and QUAD2 elements.

3. Calling Sequence: CALL PSQDMI
4.54,8.13 Subroutine Name: PSTQI

1. “Entry Point:s PSTQI

2. Purpose: To generate element stress matrices for the TRIA1, TRIA2, QUAD1, and QUAD2

elements.

3. Calling Sequence: CALL PSTQ1 (NTYPE)

1 = TRIA1

2 = TRIA2
NTYPE

3 = QUADI

4 = QUAD2

4,54.8.14 Subroutine Name: PSTRBI

1. Entry Point: PSTRBI

2. Purpose: To generate element stress matrices for subcalculations of basic bending

triangles for the plate portion of TRIAT, TRIA2, QUAD1 and QUAD2 elements.

3. Calling Sequence: CALL PSTRB1 (I@PT)

1
I9PT {
2

"

Subcalculations for PSQPLI

Subcalculations for PSTPLI
4,54,8.15 Subroutine Name: PSTPLI
1. Entry Point: PSTPLI1

2. Purpose: To generate the element stress matrices for the plate portion of TRIA1 and

4.54-6 (12-1-69)

FUNCTIONAL MODULE PLA3 (PIECEWISE LINEAR ANALYSIS - PHASE 3)

TRIA2 elements.

3. Calling Sequence: CALL PSTPLI
4,54,8.16 Subroutine Name: PSQPLT

1. Entry Point: PSQPLI
2. Purpose: To generate element stress matrices for the QUADT and QUAD2 elements.

3. Calling Sequence: PSQPLI
4,54,8.17 Subroutine Name: PSTRQ2

1. Entry Point; PSTRQ2
2. Purpose: To perform final stress computations for TRMEM and QDMEM elements.
3. Calling Sequence: CALL PSTRQ2 (NTYPE)

1 = TRMEM element
NTYPE
2 = QDMEM element

4,54,8,18 Subroutine Name: PSTQ2

=0 Entry”Point: PSFQ2

2. Purpose: To perform final stress computations for the TRIA1, TRIA2, QUAD1, and QUAD2

elements.

3. Calling Sequence: CALL PSTQ2 (NPTS)

(3 = TRIAT and TRIA2 elerments
NPTS \
4

QUADT and QUAD2 elements

4,54,9 Design Requirements

1. The module was designed so that phase 1 and phase 2 can be executed in separate overlay

segments.

2. Open core for phase 1 is defined at /PLA31X/ and for phase 2 at /PLA32X/. Open core
requirements for both phases are minimal. In phase 1, the single precision incremental
displacement vector in unpacked form must be able to be contained in open core. In phase 2,

the CSTM and MPT data blocks, tables in the DIT referenced on MATST bulk data cards, and

4.54-7 (12-1-69)

MODULE FUNCTIONAL DESCRIPTIONS

the first record (and only record since a PLA problem allows only one CASECC record) of

CASECC must be able to be contained in open core.

3. In addition to the common blocks mentioned above, PLA32 uses /PLA32S/, which is 325
words in length, as scratch storage for the module's element routines, and /S@QUT/, which

is 30 words in length, as a storage buffer for computed element stresses,

4, One scratch file is used, and all arithmetic operations are performed in single

precision.

4.54,10 Diagnostic Messages

During phase 1, the following diagnostic messages may appear. If the incremental displace-
ment vector is null, user fatal error 3005 will be given. Two system fatal "fail-safe" error
messages, 2091 and 2092, may be implemented if the ESTNL input data block was incorrectly con-

structed in PLAT or was incorrectly updated during the previous execution of the PLA3 module.

During phase 2, error messages 3001, 3002 or 3003 may occur if the proper loading factors
Pj cannot be found on the PLFACT bulk data card image in the MPT. If the ECPTDS scratch file

is not in the prescribed format, system fatal message 2091 will occur.

If the minimal core storage requirements in either phase 1 or phase 2 are not met, the

usual fatal error 3008 will occur.

4,54-8 (12-1-69)

FUNCTIONAL MODULE PLA4 (PIECEWISE LINEAR ANALYSIS - PHASE 4)

r
4,55 FUNCTIONAL MODULE PLA4 (PIECEWISE LINEAR ANALYSIS - PHASE 4)

4,55.,1 Entry Point: PLA4

4.55.2 Purpose

ngq
g9g”
Element Connection and Properties Table for Nonlinear Elements, ECPTNL, so that it contains

To generate the stiffness matrix for nonlinear elements, [K_ ~J, and to update the

up-to-date element stress information.

4,55,3 DMAP Calling Sequence

PLA4 CSTM,MPT ,ECPTNL ,GPCT,DIT,DELTAUGV/KGGNL ,ECPTNL1/V,N,PLACAUNT/V ,N,PLSETN@/
V,N,PLFACT §

4,55.4 Input Data Blocks

CSTM - Coordinate System Transformation Matrices.

MPT - Material Properties Table.

ECPTNL - Element Connection and Properties Table for Nonlinear Elements.
GPCT - Grid Point Connection Table.

DIT - Direct Input Tables.

DELTAUGV - Current incremental displacement vector.

Notes:

1. CSTM may be purged. However, if some grid point of the model is not in basic

coordinates and the CSTM has been purged, a fatal error will occur,

2. A fatal error occurs if either MPT, ECPTNL, GPCT, DIT or DELTAUGV is purged.

4,55.5 OQutput Data Blocks

KGGNL - Stiffness matrix of nonlinear elements - g set.
ECPTNLT - Element Connection and Properties Table for Nonlinear Elements - updated.

Note: Neither KGGNL or ECPTNL1 may be purged.

4,55-1

MODULE FUNCTIONAL DESCRIPTIONS
r.4.55.6 Parameters

PLAC@UNT

Input-integer-no default value. Loop counter for the Piecewise Linear
Analysis (PLA) Rigid Format DMAP loop. The module uses this parameter to find

the correct loading factors on the PLFACT bulk data card chosen by the user,

PLSETN@ Input-integer-no default value. Set identification number of a PLFACT
bulk data card chosen by the user in his Case Control Deck. The module uses

this parameter to search the MPT for this card.

PLFACT

Output-complex-no default value. The difference of loading factors to be used

during the next pass of the PLA Rigid Format DMAP Toop.

4,55.7 Method

The module driver PLA4 is a short routine whose only function is to call subroutines
PLA41 and PLA42 which accomplish phase 1 and phase 2 of the task of the module respectively.
Subroutine PLA41 reads the incremental displacement vector into core and appends to each
element entry of the ECPTNL data block the components of the incremental displacement vector
corresponding to the grid points of each element. This merged information is written on the
scratch data block ECPTS, GIN@ file number 301. In PLA42, the ECPTS data block is processed
in a fashion similar to the processing of the ECPT data block in module SMA1 (see the Module

Functional Description for SMA1, section 4.27).

In PLA41, for all elements except the BAR element, only the three translational
components of the displacement vector at each grid point of an element are appended to the

ECPTNL element entry. For a BAR element, all six components of the displacement vector at

each grid point are appended.

The logic of the processing of the scratch data block, ECPTS, in PLA42 is very similar
to that used in subroutine SMATA (of SMA1, the stiffness matrix generation module - see
the Module Functional Description for SMA1, section 4.27). The similarities are not enumerated

here, but notable differences are the following.

1. Before PREMAT is called to read into open core the MPT data block and tables from

the DIT data block referenced on MATS1 bulk data cards, the MPT is read in subroutine

4,55-2

FUNCTIONAL MODULE PLA4 (PIECEWISE LINEAR ANALYSIS - PHASE 4)

PLA42 to compute y* and y as in Equations 1, 2 and 3 in section 4.54, and the real part

of the output DMAP parameter PLFACT is set to the value of i in Equation 3 in section
4.54, The imaginary part of PLFACT is set to zero. The reason for PLFACT being complex is
that it is an input parameter to the DMAP module ADD during the next pass of the PLA

Rigid Format DMAP Toop, and ADD (see section 4.78) requires its parameters to be complex.

2. When PREMAT is called, the last argument is set negative to signal PREMAT that this

is a PLA problem and hence that special processing will be required.

3. Subsequent to the call of an element routine, the element type and the updated ECPT

entry are written onto the ECPTNL1 data block.
4,55,8 Subroutines

PLA4 uses PRETRD, PRETRS, PREMAT, INVERS, INVERD, GMMATS, and GMMATD as utility routines. The
common block /PLA42E/ is the means of communicating a) the element entry of the ECPTS from PLA42
to an element stiffness matrix generation routine and b) the ECPTS element entry with updated
stress information from the element routine back to PLA42 upon completion of element matrix
generation. This fact is not explicitly stated in the descriptions of the element routines

(e.g., PKR@D) given below.

The element drivers PKTRM, PKQDM, PKTRIT, PKTRI2, PKQAD1, and PKQAD2 use a) /PLA4ES/, which
is 300 words in length, and b) /PLA4UV/, which is 25 words in length, as communication links with
the subroutines that they call. PLA42 will call the drivers listed above which will use (directly

and indirectly) the subroutines described below in sections 4.55.8.12 through 4.55.8.22.
4,55.8.1 Subroutine Name: PLA41

1. Entry Point: PLA41
2. Purpose: See discussion above.

3. Calling Sequence: CALL PLA41
4,55.8.2 Subroutine Name: PLA42

1. Entry Point: PLA42

2. Purpose: See discussion above.

4.55-3 (12-1-69)

r

MODULE FUNCTIONAL DESCRIPTIONS

3. Calling Sequence: CALL PLA42

4,55,8.3 Subroutine Name: PLA4B

1. Entry Point: PLA4B

2. Purpose: To add a double precision 6 by 6 element stiffness matrix to the "submatrix"
corresponding to the current pivot point. This routine performs the same function as, and

is modeled after, subroutine SMAIB of module SMAT.
3. Calling Sequence: CALL PLA4B (KE,J)
KE - Row-stored double precision 6 by 6 matrix to be added to the submatrix in core - input.

J - The column index of the KGGNL matrix which corresponds to first column of the KE

matrix - integer - input.

4,55,8.4 Subroutine Name: PKR@D

1. Entry Point: PKR@D

2. Purpose: To generate the element stiffness matrix for a R@D element and to update

the ECPTNL element entry for a R@D element.

3. Calling Sequence: CALL PKR@D

4,55,.8.5 Subroutine Name: PKBAR

1. Entry Point: PKBAR

2. Purpose: To generate the element stiffness matrix for a BAR element and to update the

ECPTNL element entry for a BAR element.

3. Calling Sequence: CALL PKBAR

\ 4,55.8.6 Subroutine Name: PKTRM

1. Entry Point: PKTRM

2. Purpose: To calculate the material properties matrix, update the ECPTNL entry, and

arrange the flow of element stiffness calculations for the TRMEM element.

3. Calling Sequence: PKTRM

4.55-4 (12-1-69)

FUNCTIONAL MODULE PLA4 (PIECEWISE LINEAR ANALYSIS - PHASE 4)

'4.55.8.7 Subroutine Name: PKQDM

1. EEntry Point: PKQDM

2. Purpose: To calculate the material properties matrix, update the ECPTNL entry, and

arrange the flow of element stiffness calculations for the QDMEM element.

3. Calling Sequence: CALL PKQDM
4,55.8.8 Subroutine Name: PKTRI1

1. Entry Point: PKTRI1

2. Purpose: To calculate the material properties matrix, update the ECPTNL entry, and

arrange the flow of element stiffness calculations for the TRIAT element.

3. Calling Sequence: CALL PKTRI1
4,55,8.9 Subroutine Name: PKTRI2

1. [Entry Point: PKTRI2

2. Purpose: To calculate the material properties matrix, update the ECPTNL entry, and

arrange the flow of element stiffness calculations for the TRIA2 element.

3. Calling Sequence: CALL PKTRIZ2
4.,55.8.10 Subroutine Name: PKQADI

1. Entry Point: PKQADI

2. Purpose: To calculate the material properties matrix, update the ECPTNL entry, and

arrange the flow of element stiffness calculations for the QUADT element.

3. Calling Sequence: CALL PKQAD1
4,55.8.11 Subroutine Name: PKQAD2

1. Entry Point: PKQAD2

2. Purpose: To calculate the material properties matrix, update the ECPTNL entry, and

arrange the flow of element stiffness calculations for the QUAD2 element.

3. Calling Sequence: CALL PKQAD2

4.55-5 (12-1-69)

MODULE FUNCTIONAL DESCRIPTIONS

4,55.8.12 Subroutine Mame: PKTRMi

1. Entry Point: PKTRMI]

2. Purpose: To generate element stress matrices for the TRMEM, TRIAT and TRIA2 elements,

and perform subcomputations for the PKQDM1 routine.
3. Calling Sequence: CALL PKTRMI (NTYPE)

0

TRMEM, TRIAT or TRIA2

NTYPE {

1 = Subcomputations for the PKQDM1 routine

4,55.8.13 Subroutine Name: PKQDMI

1. Entry Point: PKQDMI1
2. Purpose: To generate element stress matrices for the QDMEM, QUAD1 and QUAD2 elements.

3. Calling Sequence: CALL PKQDMI
4.55.8.14 Subroutine Name: PKTQI

1. Entry Point: PKTQl

2. Purpose: To generate element stress matrices for the TRIAT, TRIA2, QUADT, and QUAD2

elements.

3. Calling Sequence: CALL PKTQ1 (NTYPE)

1 = TRIAI

2 = TRIA2
NTYPE

3 = QUAD]

4 = QUAD2

4,55,8.15 Subroutine Name: PKTRQ2

1. Entry Point: PKTRQ2
2. Purpose: To perform final stress computations for the TRMEM and QDMEM elements.
3. Calling Sequence: CALL PKTRQ2 (NTYPE)

1

TRMEM element
NTYPE
2

GDMEM element

4.55-6 (12-1-69)

FUNCTIONAL MODULE PLA4 (PIECEWISE LINEAR ANALYSIS - PHASE 4)

‘4.55.8.]6 Subroutine Name: PKTQ2

1o Eptry Points RKIQ2
2. Purpose: To perform final stress computations for the TRIA1, TRIA2, QUAD1, and QUAD2
elements.

3. Calling Sequence: CALL PKTQ2 (NPTS)

3 = TRIA1 or TRIA2 elements

4

NPTS {

QUADT or QUAD2 elements
4.55.8.17 Subroutine Name: PKTRMS

1. Entry Point: PKTRMS

2. Purpose: To generate the element stiffness matrix for the TRMEM element and sub-

computations for the PKQDMS routine.
3. Calling Sequence: CALL PKTRMS (NTYPE)

TRMEM

ll

Sub-computations for PKQDMS
4.55.8.18 Subroutine Name: PKQDMS

1. Entry Point: PKQDMS
2. Purpose: To generate the element stiffness matrix for the QDMEM element.

3. Calling Sequence: CALL PKQDMS
4,55.8.19 Subroutine Name: PKTRQD

1. Entry Point: PKTRQD

2. Purpose: To generate the element stiffness matrix for the TRIA1, TRIA2, QUAD1, or

QUAD2 elements.

3. Calling Sequence: CALL PKTRQD (NTYPE)

4.55-7 (12-1-69)

MODULE FUNCTIONAL DESCRIPTIONS

1 = TRIA1

2 = TRIA2
NTYPE

3 = QUADIT

4 = QUAD2

4,55,8,20 Subroutine Name: PKTRBS

4,55,

4.55.

4.55,

1. Entry Point: PKTRBS

2. Purpose: To generate the element stiffness matrix subcalculations for the PKTRPL and

PKQDPL routines.

3. Calling Sequence: CALL PKTRBS (I@PT)

1
I@APT {

Subcomputations for PKQDPL
2

Subcomputations for PKTRPL

8.21 Subroutine Name: PKTRPL

1. Entry Point: PKTRPL
2. Purpose: To generate the element stiffness matrix for the TRIA1 and TRIA2 elements.

3. Calling Sequence: CALL PKTRPL

8.22 Subroutine Name: PKQDPL

1. Entry Point: PKQDPL
2. Purpose: To generate the element stiffness matrix for the QUADT and QUAD2 elements.

3. Calling Sequence: CALL PKQDPL

9 Design Requirements

The module was designed so that phase 1 and phase 2 can be executed in separate overlay

segments.

Open core for phase 1 is defined at /PLA41X/ and for phase 2 at /PLA42X/. In phase 1 the

single precision incremental displacement vector in unpacked form must be able to be contained in

core.

4.27.

In phase 2, the open core requirements are the same as those for module SMA1 (see section

9.1) except that only four GIN@ buffers are required during the principal loop of phase 2,

4.55-8 (12-1-69)

FUNCTIONAL MODULE PLA4 (PIECEWISE LINEAR ANALYSIS - PHASE 4)

which processes the ECPTS and GPCT in a complementary manner. One GIN@ buffer is defined for

each of KGGNL, ECPTNL1, ECPTS and GPCT.

In addition to /PLA42E/, which is 100 words in length, subroutine PLA42 uses the following
common blocks: a) /PLA42D/, which is 300 double precision words in length, and is used as a
scratch storage for the module's element routines; b) /PLA425/, which is 325 single precision words
in length, and is used as scratch storage for the module element routines; and c) /PLA42C/, which
is a communication region for phase 2 of the task of the module. /PLA42C/ is defined as follows:
CPMM@N/PLA42C/NPVT ,GAMMA ,GAMMAS , IPASS , ICSTM,NCSTM, IGPCT ,NGPCT , IP@INT ,NP@INT , I6X6K,N6X6K,CSTM,MPT,
ECPTS,GPCT,DIT,KGGNL ,ECPT@, INRW,BUTRW,E@R ,NE@R ,CLSRW ,IMAX , FRBWIC ,LRPWIC ,NRAWSC ,NL INKS ,NWPRDS (40) ,

I@VRLY(40),LINK(40),NPGO

GAMMA , GAMMAS - The load increment ratios as defined in Equations 2 and 3 in
section 4,54,

IPASS - Number of the current pass through the PLA DMAP Toop.

NPVT,ICSTM,NCSTM, IGPCT,

NGPCT , IP@INT ,NP@INT, - As defined in section 4.27.9.

16X6K,N6X6K

CSTM,MPT ,ECTPS,GPCT, ; : ;

DIT,RGGNL 2 } - GINg file numbers for their corresponding data blocks.

ECPTQ - GIN@ file number for the ECTPNL1 data block.

INRW,@UTRW, ... ; : 4

IQVREY(40):LINi(40),N¢G¢ } - As defined in section 4.27.9.

The variables a) corresponding to GIN@ file numbers, b) GIN@ parameter options (e.g., INRW,
@UTRW), and c) NLINKS, I@VRLY, and NW@RDS, and NPGP are set in the block data subprogram PLA4BD.

One scratch file is used, and all operations associated with stiffness matrix calculations

are performed in double precision,

4,55.10 Diagnostic Messages

During phase 1, if the incremental displacement vector is null, user fatal error 2083 will
occur.

During phase 2, error messages 3001, 3002, or 3003 may occur if the proper loading factors
cannot be found on the PLFACT bulk data card image in the MPT. Other diagnostic messages for

phase 2 are the same as those for module SMA1 (see section 4.27.10).

4.55-9 (12-1-69)

FUNCTIONAL MODULE CASE (SIMPLIFY CASE CONTROL)

4.56 FUNCTIONAL MODULE CASE (SIMPLIFY CASE CONTROL)

4.56.1 Entry Point: CASE

4.56.2 Purpose

To remove looping considerations from later dynamics modules.

4.56.3 DMAP Calling Sequence

CASE CASECC,PSDL/CASEXX/C,N,APPRGACH/V ,N,REPEAT/V ,N,LGPP $

4.56.4 Input Data Blocks

CASECC ~ Case Control Data Table.

PSDL - Power Spectral Density List.

Note: PSDL is used only if APPRPACH = FREQRESP and Random Analysis is selected in CASECC.

4.56.5 OQutput Data Blocks

CASEXX - Case Control data table for dynemics problems.

Note: CASEXX cannot be purged.

4.56.6 Parameters

APPRPACH - Input-BCD-no default. Defines the approach to be used for looping
criteria.
BCD Value LogP
STATICS N@NE
REIGEN N@NE
DSO N@NE
DS1 N@NE
FREQRESP DIRECT INPUT MATRICES OR TRANSFER FUNCTIONS
TRANRESP L@ADS
BLKO N@NE
BLK1 N@NE
CEIGEN DIRECT INPUT MATRICES OR TRANSFER FUNCTIONS

4,56-1

MODULE FUNCTIONAL DESCRIPTIONS ‘

BCD Value La@P
PLA NONE |

REPEAT - Input and output-integer-set equal to zero outside of the DMAP loop by the PARAM ‘
module. -1 if no additional loops; + Toop count if Toops.
LagP - Output-integer-default = -1. -1 if this is not a Tooping problem, 0 if this

is a Tooping problem.

4.56.7 Method
The method of operaticn depends upon the input parameter APPRPACH.

4.56.7.1 Transient Response

If APPRPACH = TRANRESP, CASECC is skipped over REPEAT records. If REPEAT = 0, REPEAT is set
to 1. One record of CASECC is read and copied onto CASEXX. An attempt is made to read another
record. If no more records exist, REPEAT is set to -1. Also, if this is the first entry to CASE

(i.e., REPEAT = 1), L@@P is set to -1, If additional records exist, REPEAT and L@@P are set to 1.

4.56.7.2 Complex Eigenvalue Analysis

If APPRPACH = CEIGEN, REPEAT records are skipped in CASECC. If REPEAT = 0, REPEAT is set to
1. One record of CASECC is read and copied onto CASEXX. The names of the Direct Input Matrices
ard Transfer Functions sets are saved. An attempt is made to read another record. If no
more exist, REPEAT is set to -1. Also if this is the first entry (i.e., REPEAT = 1) L@@P is set
to -1. If additional records exist, their Direct Input Matrices and Transfer Functions sets are
compared to those saved. If they all agree, this record is copied onto CASEXX and the process

is repeated. If they do not agree, REPEAT is incremented by 1, L@@P is set to 1, and CASE returns.
4.56.7.3 Frequency Response

If APPRPACH = FREQRESP, the method used is the same as Complex Eigenvalue Analysis except a
test is also made for frequency set selection changes. In addition, if RANDPS cards are selected,
the selected set is read from PSDL and the unique subcase "id's" referenced are stored. Each sub-
case id copied onto CASEXX is compared to this list, and the entry is marked as found. If at the

completion of CASE unmarked entries exist, the routine terminates with message 3033.

4.56-2 (3/1/71)

FUNCTIONAL MODULE CASE (SIMPLIFY CASE CONTROL)

';.56.8. Subroutines

No auxiliary subroutines are used by CASE.

4,56.9 Design Requirements

Open core is defined at /CASC@R/.
C@MM@N/CASC@R/
CASECC

Record

List } Present only if RAND@M checks done
CASEXX buffer

PSDL buffer 3 GING buffers
CASECC buffer

4.56.10 Diagnostic Messages

If a case control record cannot be held in core, CASE will issue error message 3008.

Message 3033 may be issued by CASE as outlined above.

4.56-3

FUNCTIONAL MODULE MTRXIN (MATRIX INPUT)

4.57 FUNCTIONAL MODULE MTRXIN (MATRIX INPUT)
4571 Entry Point: MTRXIN

4.57.2 Purpose

MTRXIN has two purposes:. (1) to provide a capability for direct input matrices as may occur
in control systems in the dynamics Rigid Formats and, (2) to provide the DMAP user a capability

of converting matrices input on DMIG bulk data cards to NASTRAN matrix format.

4.57.3 DMAP Calling Sequences

1. Dynamics Rigid Formats:

K2DPP
CASEXX()BDP@QL M2DPP({)B2PP
MTRXIN ;CASECC%’ MATPﬂ¢L§’EQDYN’JFPQQngﬁiggpg’iMZPP %,)HBzPP%/V,N,LUSETD/V,N,NﬂMAT]/

V,N,N@MAT2/V,N,NOMAT3 $
2. DMAP Approach:
MTRXIN, ,MATP@@L ,EQEXIN, ,/NAMET,NAME2 ,NAME3/V,N,LUSET/V,N,N@MAT1/V,N,NOMAT2/V,N,NGMAT3 §

4.57.4 Input Data Blocks

CASECC - Case Control.

CASEXX - Case Control data table for dynamics problems.

MATP@AL - Data block containing matrices input on DMIG bulk data cards.

BDPPAL - Hydroelastic boundary matrix tables.

EQDYN - Equivalence between external numbers and internal numbers, dynamics.
TFPPPL - Transfer Function Pool.

EQEXIN - Equivalence between external numbers and internal numbers.

Notes:

1. [If CASECC is purged, the second purpose is assumed by MTRXIN.

2. EQDYN, EQEXIN, SIL and SILD may not be purged.

4.57-1 (7/4/76)

MODULE FUNCTIONAL DESCRIPTIONS

4.57.5 Qutput Data Blocks

K2DPP

Kepp |
HK2PP

M2DPP
M2PP

B2PP | _
HB2PP

NAME?2

NAME]i
NAME3

Direct input differential stiffness matrix - p set.
Direct input mass matrix - p set.

Direct input differential mass matrix - p set.

Direct input mass matrix - p set.

Direct input damping matrix - p set.

The same names that appear on the DMIG cards, i.e., the DMIG matrix called
NAME1 will be output on data block NAMET.

Note: Any output data block may be purged.

4.57.6 Parameters

LUSET. © -

LUSETD. =

NQMATi -

Input-integer-no default. Degrees of freedom in the g set. Used with EQEXIN
and SIL.

Input-integer-no default. Degrees of freedom in the p set. Used with EQDYN
and SILD.

Qutput-integer-no default. +1 if the ith
-1 otherwise.

output data block is generated,

4.57.7 DMAP Example

Assume the bulk data contain two DMIG matrices named M1 and M2 which reference grid and/or

scalar points only. The following set of DMAP instructions will generate these two matrices in

NASTRAN matrix

BEGIN
GP1
SAVE
MTRXIN,
SAVE
COND
MPYAD
MATPRN
LABEL
END

format, multiply them together and print the result.

GEOM1,GE@M2/GPL ,EQEXIN,GPDT,CSTM,BGPDT,SIL/V,N,LUSET/C,N,0/C,N,0 $
LUSET $

,MATP@@L ,EQEXIN, ,/M1,M2,/V,N,LUSET/V,N,N@M1/V,N,N@M2/C,N,0 $
N@M1,N@M2 $

EXIT,NGM1 $

M1,M2,/PRADUCT/C,N,0/C,N,1/C,N,1 $

PRODUCT, ,,.// $

EXIT $

4.57-2 (7/4/76)

FUNCTIONAL MODULE MTRXIN (MATRIX INPUT)

l.57.8 Method

The first logical record in the Case Control data block is read into core, and the names of
the requested DMIG matrices are fetched. If the Case Control data block is purged, FNAME is
called to determine the names of the DMIG matrices from the names of the output data blocks. If
the Case Control record was read, the transfer function set selection is fetched. If transfer
matrices are requested, the TFPPPL data block is opened, and the file is positioned to the
requested set. Each transfer function matrix for which a corresponding direct input matrix exists
is written on a scratch file. If no direct input matrix exists corresponding to a transfer func-
tion matrix, the transfer function matrix is written directly on the appropriate output data block.
The transfer function matrices are written in NASTRAN matrix format by decoding the row and

column numbers and calling BLDPK.

Upon completion of the writing of the transfer function matrices (if any), the second record
of EQEXIN or EQDYN is read into core. The second word of each entry is converted into a scalar
index number by dividing by 10. The MATP@@L data block is opened. The following processing

occurs:

1. The header information for the DMIG matrix is read. If an end-of-file is encountered,
step (5) is executed. If the matrix is not requested, the remainder of the record is

skipped and step (1) is repeated. Otherwise, step (2) is executed.

2. Each term in the matrix is read. The grid identification and component code are
converted to a scalar index value by performing a binary search in EQEXIN or EQDYN in
core. The scalar index forms a row position of the matrix. The row and column number
(packed in one word) and the value for the term are stored in core. If core‘storage is

exceeded, the terms are written on a scratch file.

3. When all terms have been read, converted and stored, the matrix is sorted by S@RT.

The matrix is now written in NASTRAN format by BLDPK.

4, If a transfer function is to be added to the DMIG matrix, the ADD routine is called

to accomplish the matrix addition.

5. A test is made to determine if all requested matrices have been processed. If not,

an error message is queued, and PEXIT is called. Otherwise, the module makes a normal exit.

4,57-3

MODULE FUNCTIONAL DESCRIPTIONS

5.57.9 Design Requirements

4.57.9.1 Allocation of Core Storage

Storage is required to hold the EQDYN or EQEXIN table (2 words per point in the problem) plus

five GINP buffers. Complete spill logic is provided for processing the DMIG matrices.

4.57.9.2 Environment

The module MTRXIN consists of one subroutine, MTRXIN. Calls are made to the utility routine

SPRT and matrix operation ADD. Open core is defined by /MTRXXX/. Seven scratch files are used.

4.57.10 Diagnostic Messages

The following messages may be issued by MTRXIN:
2065, 2070, 2074.

4,57-4

4.58

4.58.

4.58.

4.58.

4.58.

FUNCTIONAL MODULE GKAD (GENERAL K ASSEMBLER DIRECT)

FUNCTIONAL MODULE GKAD (GENERAL K ASSEMBLER DIRECT)

1 Entry Point: GKAD

2 Purpose

To assemble the dynamic stiffness, damping and mass matrices.

3 DMAP Calling Sequence

HUSETD HGEL f HKAA {HBAA} {HRAA} {szpp {HBZPP
GRAD {USETD }’GM’{GG }’{KAA }’ BAA §-\MAA > K4AAs\yopp }’ M2PP A oop }/

{ion. 4550 oo 1801650 1-{kon 1-{weo (a2 1/

4 Input Data Blocks

ﬂggEED Displacement set difinitions table dynamics.

GM - Multipoint constraint transformation matrix - m set.
GP - Structural matrix partitioning transformation matrix.
KAA - Partition of stiffness matrix - a set.

BAA - Partition of damping matrix - a set.

MAA - Partition of mass matrix - a set.

K4AA - Partition of structural damping matrix - a set.

K2PP - Direct input stiffness matrix - p set.

M2PP - Direct input mass matrix - p set.

B2PP - Direct input damping matrix - p set.

HGO - Heat matrix partitioning transformation matrix.

HKAA - Partition of the conductivity matrix - a set.

HBAA - Partition of the capacity matrix - a set.

HRAA - Partition of the radiation matrix - a set.

HK2PP - Direct input conductivity matrix - p set.

HB2PP - Direct input capacity matrix - p set.

4.58-1(7/4/76)

MODULE FUNCTIONAL DESCRIPTIONS

Notes: 1. USETD cannot be purged.

2. GM cannot be purged if MPCF1 > 0.
G@ cannot be purged if @MIT > 0.
KAA cannot be purged if KDEKA > 0.
BAA cannot be purged if N@BGG > O.
MAA may be purged.
K4AA cannot be purged if NPK4GG > 0.

00 N o o B W

K2PP cannot be purged if N@PK2PP > 0.

(Yo}

M2PP cannot be purged if N@M2PP > 0.
10. B2PP cannot be purged if N@B2PP > 0.

4.58.5 OQutput Data Blocks

KDD - Dynamic stiffness matrix - d set.

BDD - Dynamic damping matrix - d set.

MDD - Dynamic mass matrix - d set.

GMD - Multipoint constraint transformation matrix - dynamics.
gggD - Omitted coordinate transformation matrix - dynamics.

K2DD - Direct input stiffness matrix - d set.
M2DD - Direct input mass matrix - d set.

B2DD - Direct input damping matrix - d set.
HKDD - Dynamic conductivity matrix - d set.

HBDD - Dynamic capacity matrix - d set.

HRDD - Dynamic radiation matrix - d set.

HK2DD - Direct input conductivity matrix - d set.
HM2DD - Direct input radiation matrix - d set.
HB2DD - Direct input capacity matrix - d set.

Notes: 1. GMD cannot be purged if MPCF > 0.
GPD cannot be purged if @MIT > O.
K2DD cannot be purged if N@K2PP > 0.

S~ w N

M2DD cannot be purged if N@M2PP > O.
5. B2DD cannot be purged if N@B2PP > 0.

4.58-2 (7/4/76)

FUNCTIONAL MODULE GKAD (GENERAL K ASSEMBLER DIRECT)

4,58.6 Parameters

TYPE

APP

F@RM

W3

W4

N@K2PP

N@M2PP
N@B2PP
MPCF1

SINGLE

PMIT
N@UE
N@K4GG
N@BGG
KDEKA

M@DACC

Input-BCD-no default. If TYPE = TRANSIENT the transient equations are used;

otherwise the frequency response equations are usea.

Input-BCD-no default. If APP = FPRCE the p set = d set; otherwise p's are

reduced to d's by removing m's, s's, and o's.

Input-BCD-no default. If FARM = M@DAL, KDD and BDD are not computed. MDD is

not computed unless M@DACC = 0.
Input-real-default = 0.0. G is the coefficient of K4DD if TYPE # TRANSIENT. G/W3

is coefficient of KIDD if TYPE = TRANSIENT.

Input-real-default = 0.0. If TYPE = TRANSIENT G/W3 is the coefficient of K1DD.

If W3 = 0.0 KIDD is not used.

Input-real-default = 0.0. 1.0/W4 is the coefficient of K4DD if TYPE = TRANSIENT.
If W4 = 0.0 K4DD is not used.

Input-integer-no default. N@K2PP = 0 indicates presence of K2PP.
Input-integer-no default. N@M2PP = 0 indicates presence of M2PP.
Input-integer-no default. N@B2PP = 0 indicates presence of B2PP.
Input-integer-no default. MPCF1 = 0 indicates presence of GM.

Input-integer-no default. SINGLE = 0 indicates preserce of single-point

constraints.

Input-integer-no default. @MIT =0 indicates presence of G@.
Input-integer-no default. NPUE =0 indicates presence of extra points.
Input-integer-no cdefault. NPK4GG = 0 indicates presence of K4AA,
Input-integer-no default. N@BGG= 0 indicates presence of BAA.
Input-integer-no default. KDEKA = 0 indicates presence of MAA and KAA.

Input-integer-default = -1, M@DACC = 0 requests computation of MDD (meaningful
only if FPRM = M@DAL)

4.58-3 (7/4/76)

MODULE FUNCTIONAL DESCRIPTIONS

4.58.7 Method

If extra points are present (NﬁUEzQ) and multipoint constraints or omitted coordinates

are present (MPCF1>0 or @MIT>0), then

GM =) GMD, (1)
and

6@ =D GD. (2)

Subroutine GKAD1A performs these tasks.

If direct input matrices are present and m's, s's or o's are present, the direct input

matrices are reduced from the p set to the d set. Let [Dgp] be a direct input matrix,

2 a0 2 2
[Dpp] = [Kpp], [Mpp] or [Bpp]

1. If m's are present,

=2 « =2

D D
2 {
Pas D=y L 20 aur M (3)
pp 3B —o

b Sl

mn mm

(The e coordinates are included with the n coordinates). Then compute:
2 _ rr2 =2 d d-T w2 d4T =2 d
[05,] = [B5,] + [B5,] (651 + (651" [B5, 1 + (691" [D7 1 [651.

2. If s's are present,

2 2

A Off 1 Dfs
[fo] => =IOl O) (5)

DZ | D2

S g

where only [D%f] is saved. The e coordinates are included with the f coordinates.

4.58-4 (7/4/76)

FUNCTIONAL MODULE GKAD (GENERAL K ASSEMBLER DIRECT)

3. If o's are present, first partition [Dif]

Zh— 62
2 ddiil=Sed
EDfplismy |2 50- ' (6)
qod i ﬁoo
then:
2,1 = [0%,1+ (03,1 (63 + 161" [0 4] + (631" (3,1 [d1. (7)

Steps 1 through 3 are done for K2PP, M2PP and B2PP, using subroutines GKADIC and GKADID.
If FGRM = M@DAL and M@DACC < 0, GKAD is done. If not, the a set matrices are expanded to

the d set by adding zeros at extra points. Let [Daa] be an a set matrix. Then,

The above step is done for KAA, BAA, MAA, and K4AA and is performed in subroutine GKADIB.

Compute KDD, BDD and MDD.

1. For Frequency Response or Complex Eigenvalue Analysis (TYPE # TRAN) ,

Kyl = (1+16) [Kly] + [KGqD + 1 DKyl » (9)
[Byyl = [By,] + (850 » (10)
Myl = DMl + (M50 (11)

4.58-5 (7/4/76)

MODULE FUNCTIONAL DESCRIPTIONS

2. For Transient Analysis (TYPE = TRAN), ’

[Kygl = [k + [KG,1 s (12)
[Byq] = [BYyl + [B34] + By LKhyd + 142 (kM1 , (13)
Mgl = M1 + M1 - (14) {

If W3 or W4 is zero, the corresponding matrices are ignored. }

4.58-6 (7/4/76)

FUNCTIONAL MODULE GKAD (GENERAL K ASSEMBLER DIRECT)

4,58.8 Subroutines

GKAD uses matrix utility routines SSG2B, SSG2C, CALCV, MERGE, UPART, and MPART. Descrip-

tions for these routines can be tound in Section 3.
4.58.8.1 Subroutine Name: GKADTA

1. Entry Point: GKADIA

2. Purpose: To expand GM or G@ to d size matrices:

d
(6, : o] = [6,] (15)

3. Calling Sequence: CALL GKADIA (USETD,G@,G@D,SCR1,UE,UA,UNE)

USETD - GIN@ file number of USETD - integer - input.

G@ - GIN@ file number of G@ - integer - input.

G@D - GIN@ file number of G@D - integer - input.

SCR1 - GIN@ file number of scratch file - integer - input.
UE - Pointer to UE bit in USETD word - integer - input.
UA - Pointer to UA bit in USETD word - integer - input.
UNE - Pointer to UNE bit in USETD word - integer - input.

4,58.8.2 Subroutine Name: GKADIB

1. Entry Point: GKADIB
2. Purpose: To expand a set matrices to d set size.

3. Calling Sequence: CALL GKAD1B (USETD,KAA,MAA,BAA,K4AA,K1DD,M1DD,B1DD,K41DD,UA,

UE,UD,SCRT)
USETD - GIN@ file number of USETD - integer - input.
KAA - GINg file number of KAA - integer - input.
MAA - GIN@ file number of MAA - integer - input.
BAA - GIN@ file number of BAA - integer - input.
K4AA - GINg file number of K4AA - integer - input.

4.58-7 (7/4/76)

MODULE FUNCTIONAL DESCRIPTIONS

K1DD - GINg file number of KIDD - integer - input.

M1DD - GINg file number of MIDD - integer - input.

B1DD - GIN@ file number of BIDD - integer - input.

K41DD - GINg file number of K41DD - integer - input.

SCR1 - GINg file number of scratch file - integer - input.
UA - Pointer to UA bit in USETD word - integer - input.
UE - Pointer to UE bit in USETD word - integer - input.
ub - Pointer to UD bit in USETD word - integer - input.

4,58.8.3 Subroutine Name: GKADIC

1. Entry Point: GKADIC
2. Purpose: To initialize GKADI1D.

3. Calling Sequence: CALL GKADIC (GMD,G@D,SCR1,SCR2,SCR3,SCR4,SCR5,SCR6,USETD)
GMD,G@D,USETD are GIN@ file numbers of their respective data blocks - integer - input.

SCR1,...,SCR6 are GIN@ file numbers of six scratch files - integer - input.
4,58.8.4 Subroutine Name: GKADI1D

1. Entry Point: GKADID
2. Purpose: To reduce "2PP" matrices to "2DD" matrices.

3. Calling Sequence: CALL GKADID (K2PP,K2DD)
K2PP - GIN@ file number of input matrix - integer - input.

K2DD - GINg file number of reduced matrix - integer - input.

4.58.9 Design Requirements

Six scratch files are necessary. Open core for GKADIA and GKAD1B is defined at /GKADAT/.
Open core for GKADIC and GKADID is defined at /GKADC1/.

4,58.10 Diagnostic Messages

None

4.58-8 (7/4/76)

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

4.59 FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

4.59.1 Entry Point: CEAD

4.59.2 Purpose

To solve the equation

(MIp? + [BIp + [KD){u} = {0} (1)

for the eigenvalues p and the associated eigenvectors {u} where [M], [B] and [K] are mass,

damping and stiffness matrices respectively.

4.59.3 DMAP Calling Sequence

CEAD KbD,BDD,MDD,EED,CASECC/PHID,CLAMA,PCEIGS ,PHIDL/V,N,NFOUND §

4.59.4 Input Data Blocks

KDD - Dynamic stiffness matrix - d set.
BDD - Dynamic damping matrix - d set.
MDD - Dynamic mass matrix - d set.

EED - Eigenvalue Extraction Data.

CASECC - Case Control Data Table.

Notes:

1. EED must be present.

2. CASECC must be absent when a substructure modal reduce is being performed. In all

other cases it must be present.

3. At least one of KDD, BDD and MDD must be present.

4.59.5 OQutput Data Blocks

PHID - Complex eigenvectors in the d set.
CLAMA - Complex eigenvalue table.

@PCEIGS - Complex eigenvalue summary table.

PHIDL - Left complex eigenvectors in the d set.

4.59-1 (12/29/78)

MODULE FUNCTIONAL DESCRIPTIONS
Notes:

1. PHID, CLAMA and @CEIGS must be present.

2. PHIDL may be purged if the left-hand vectors are not desired.

4.59.6 Parameters

NFPUND - Output-integer-no default. NFPUND indicates the number of eigenvalues found.

If none were found, NFQUND is set to -1.

4.59.7 Method

The Complex Eigenvalue Analysis Module calculates the eigenvalues and eigenvectors for a
general system which may have complex terms in the mass, damping, and stiffness matrices. The
eigenvectors are scaled according to the user-requested normalization scheme. Modal masses are
not calculated since they will, in general, be complex, and their value is rather dubious. The

form of the problem solved by the Complex Eigenvalue Analysis Module is given in Equation 1.

The eigenvalues p and the eigenvectors {u} are always treated as complex. These data are
related to the ug displacements if a direct formulation is used or are related to the u, displace-

ments if a modal formulation is used. The method to be used and the necessary data are selected

by calling for one ID number in the EED data block. A set of EED data which defined either the
Determinant Method, the Inverse Power Method, the Tridiagonal Reduction Method or the Hessenburg
Method must be used. Subroutine CDETM, CFEER, CINVPR, or HESS1 is called to solve the eigenvalue
problem (see subroutine descriptions below for method details. The eigenvalues and associated

vectors are sorted by the magnitude of the imaginary part of the eigenvalue with all positives

listed ahead of all negatives. (Subroutine CEADIA).

4.59.8 Subroutines

The subroutines used by CEAD can be divided into six groups: 1) those used by CEAD; 2) those
used for the Inverse Power Method; 3) those used by the Determinant Method; 4) those used by the
Hessenburg Method; 5) those used by the Tridiagonal Reduction (FEER) Method; and 6) general utility

routines. The descriptions of the utility routines can be found in Section 3.

4.59-2 (12/29/78)

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

CEAD Determinant Hessenberq Inverse Power FEER General
CEADTA CDETM ALLMAT CDIFBS CMTIMU CFCNTL CFETMY ADD
CLVEC CDETM2 CFACTR CDIVID CN@RM CFEER1T CFE2MY CDCompP
CDETM3 CFBS@R CINFBS CN@RM1 CFEER2 CF1FBS PREL@C
CDTFBS HESST CINVPR CSQRTX CFEER3 CF2FBS
CSQRTN HESS2 CINVP1 CSuB CFEER4 CFN@R1
CSUMM MERGED CINVP2 CXTRNY CFER3D CFN@R2
CINVP3 PRTHQ CFER3S CF1@RT
CFETAD CF2@RT
CFE2AD

4.59.8.1 Subroutine Name: CEADIA

1. Entry Point: CEADIA
2. Purpose: To sort the eigenvalues and the right and left eigenvectors.

3. Calling Sequence: CALL CEADTA (LAMAI,PHII,PHIIL,LAMAQ,PHIQ,PHIPL,NFPUND,NVECT,CAPP)

LAMAI - GIN@ file number of unsorted eigenvalues - integer - input.

PHII - GIN@ file number of unsorted eigenvectors - integer - input.

PHIIL - GINg file number of unsorted left eigenvectors (Inverse Power Method only) -
integer - input.

LAMAp - GIN@ file number of data block CLAMA - integer - input.

PHIQ - GIN@ file number of data block PHID - integer - output.

PHIPL - GINP file number of data block PHIDL - integer - output.

NFQUND - Number of eigenvalues found - integer - input.

NVECT - Number of eigenvectors found - integer - input.

CAPP - Method - BCD - input.

4.59.8.2 Subroutine Name: CINVPR

1. Entry Point: CINVPR
2. Purpose: CINVPR is the main driver for the Complex Inverse Power Method of eigenvalue
extraction.

.3. Calling Sequence: CALL CINVPR (EED,METH@D,NF@UND)

CAMMPN / CINVPX / K(7),M(7),B(7),LAM(7),PHI(7),EIGSUM,SCRFIL(11),NPREG,EPS,REG(7,10) ,PHIDLI

COMMPN / CINVX / Z(1)

4.59-3 (12/29/78)

MODULE FUNCTIONAL DESCRIPTIONS

K,M,B - Input matrix control blocks for the stiffness, mass, and damping matrices
(K1, [MI, and [B].

LAM,PHI - Matrix control blocks for the output eigenvalue and eigenvector files.

EIGSUM - The output eigenvalue summary file.

SCRFIL(11) - Eleven scratch files available to Inverse Power

NOREG - Number of regions input to CINVPR.

EPS - Convergence criterion.

REG(7,10) - Storage space for up to 10 region parameters.

PHIDLI - GIND file number of unsorted left eigenvector file.

ZEr) - Open core for CINVPR.

4.59-3a (12/29/78)

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

3. Calling Sequence: CALL CINVP2
CAMM@N /CINVPX/ DUM(36),A,XX,L,U,SCR1,SCR2,SCR3,LL ,UU

COMM@N /CINVXX/DUMM(4)!SWITCH
CAMMBN /CINV2X/Z(1)

A - GIN@ file number for the input matrix.

L,U - GIN@ file number for the lower and upper triangular factors output
from CDC@MP.

SCR1,SCR2,SCR3 - Three scratch files used by CDC@MP.

LL,uu - GIN@ file numbers for alternate storage of L and U.
0, store factors on L and U.

SWITCH _)1, store factors on LL and UU.
-204, store factors on LL and UU, and recompute Tength of open core.
(Left-hand eigenvector calculations only)

Z(1) - Area of open core used by CDCOMP.

4.59-5 (12/29/78)

MODULE FUNCTIONAL DESCRIPTIONS

'-;.59.8.5 Subroutine Name: CINVP2

1. Entry Point: CINVP3

2. Purpose: To solve for a complex eigenvalue and eigenvector using the Inverse

Power Method.

3. Calling Sequence: CALL CINVF3
COMMAN /CINVPX/K(7),M(7),B(7),LAM(7) ,PHI(7) ,XXX,SCRFIL(11)
COMM@N /CINV3X/Z(1)

See section 4.59.8.2 above for details on /CINVPX/.
Z(1) - Area of open core available in CINVP3.

4, Method: The logic flow and the mathematical equations are essentially identical

to INVP3, with the following exceptions. The eigenvalues and eigenvectors are found

corresponding to the matrix equation
(A2[M] + A[B] + [K]) [e] = [0]
where the iteration equation is given by

(O20M] + A [B] + [KD) G} = =([B] + A (M) {u, 43 ~[M] {v, ;3

with
T} = == (W}
e s Tt
W} o= @+ =)
n (o)1) Cn R= i
W) = @) - Tagded,
fel = {Vn} - % a; A {ed,
and

{og}T [D\IMIGE,} + M) V) + [B] {T,)]

= (037 (21, [M] + [B]) ()}
i i !

4,59-6

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

where

@1 = Previously extracted right-~hand vector,

51 = Previously extracted Teft-hand vector,

C, = Largest element (in magnitude) of W1}, and
A1 = Previously extracted eigenvalue.

The above equations replace Equations 19 through 22 in section 4.48. The calculation of the
remaining equations remains the same except for the use of complex arithmetic. The left
eigenvector is obtained by decomposing Equation 3 with ko - A and using CDIFBS to make the

appropriate substitution using the factors from CDC@MP.
5. Design Requirements: CINVPS requires fourteen complex double precision vectors in
core plus four GIN@ buffers.

4,59.8.6 Subroutine Name: CN@RM

1. Entry Point: CN@RM

2. Purpose: To normalize successive iterated vectors such that the maximum element is

equal to unity, and to return the normalizing divisor.

3. Calling Sequence: CALL CN@RM (X,DIV)

X - Input vector to be normalized.

DIV - Divisor which was used to normalize the vector corresponding to the
argument X.

4,59.8.7 Subroutine Name: CN@RMI

1. Entry Point: CN@RMI

2. Purpose: To normalize a complex vector such that the largest magnitude of an element is

equal to one.
3. Calling Sequence: CALL CN@RM (X,N)
X = Vector to be normalized.

N - Length of the vector (complex terms).

4,59-7

MODULE FUNCTIONAL DESCRIPTIONS

4,59.8.8 Subroutine Name: CINFBS

I Entrys Bodnts. CINFBS

2. Purpose: To perform the forward-backward substitution necessary to solve an

iteration of the Inverse Power lMethod.

3. Calling Sequence: CALL CINFBS (X,Y,BUF)

COMM@N /CINFBX/L(7),U(7)

L,U - Matrix control blocks for the factors output from CDC@MP.

X - Complex double precision input vector.

Y - Complex double precision solutiori vector.

BUF - GIN@ buffer.

4, Method: CINFBS is a stripped down version of GFBS. Both vectors reside in core,
and only complex double precision arithmetic is used.

4,59.8.9 Subroutine Name: CDIFBS

1. [Entry Point: CDIEBS

2. Purpose: To perform the forward-backward substitution necessary to solve for the

left eigenvector.

3. Calling Sequence: CALL CDIFBS (X,BUF)

CPMM@N /CINVPX/DUM(41),UPRTRI ,XXX,L@WTRI

UPRTRI,L@WTRI - Files containing the upper and lower triangular factors cutput from CDC@MP.

X - The output complex double precisior left eigenvector.

BUF- GIN@ buffer used by CDIFBS.

4, Method: CDIFBS actually solves the system of equations
Al = O, (10)

where [A] has been decomposed into [A] = [L] [U]. To solve the transpose problem we have

that

4,59-8

4.59.

4.59

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

a1’ = (1w’ = pua’ oot (1)

so that

I T = . (12)

CDIFBS is a modified form of GFBS which does the forward pass on [U] anc the backward

pass cn [L]. A1l arithmetic operations are complex double precision.
8.10 Subroutine Name: CMTIMU

1. Entry Point: CMTIMU

2. Purpose: To pre-multiply a vector {y} by a matrix to obtain a vector {x}.
3. Calling Sequence: CALL CMTIMU (Y,X,FILE,BUF)

COMM@N /CINVPX/DUM(7) ,M(7)

FILE - If FILE = 0, form {x} = [M]{y}.
FILE # 0, form {x} = [A] {y}, where [A] is the matrix on FILE.

X,Y - Complex double precision vectors.

BUF - GIN@ buffer.

.8.11. Subroutine Name: CXTRNY

1. Entry Point: CXTRNY

2. Purpose: To form the inner product of two complex vectors, {x} and {y}
- =
a = {x}' {y}, (13)
where {y} denétes a vector all of whose components are the complex conjugates of {y}.

3. Calling Sequence: CALL CXTRNY (X,Y,A)

COMM@N /CINVPX/XX,N

N - Length of the vectors.
X,Y =~ Complex double precision vectors. |
A - Complex double precision value of the inner product of {x} and {y}.

4.59-9 (12-1-69)

MODULE FUNCTIONAL DESCRIPTIONS

r
4,59,.8.12 Subroutine Name: CSUB

1., JEntrey Pofnt:~ "CSUB

2. Purpose: To evaluate the vector equation

{z} = a{x} - biyl, (14)

where {x}, {y}, a and b may be complex.
3. Calling Sequence: CALL CSUB (X,Y,Z,A,B)

COMM@N /CINVPX/XXX,N

N - Length of the vectors {x} and {y}.
X,Y,Z - Complex double precision vectors.
A,B - Complex double precision scalar multipliers.

4,59.8.13 Subroutine Name: @RTH@

1. Entry Point: @RTH@
2. Purpose: To orthogonalize a vector with respect to all previously extracted vectors.
3. Calling Sequence: CALL @RTH@ (U,V,X1,X2,X3,X4,X5,NZ,BUF1,BUF2,BUF3,BUF4)

COMM@N /CINVPX/K(7),M(7),B(7),LAMBDA(7),PHI(7) ,XXX,SCRFIL(10)
C@MM@N /CINVXX/DUM(19),NR@QATS
See section 4.,59.8.2 for /CINVPX/ details.

NR@PTS - Number of eigenvectors already extracted.

u,v - Input-current vectors - Output - orthogonalized vectors.
X1,...,X5- Storage space for five complex double precision vectors.
NZ - The number of words of core available to @RTHQ.

BUF1, Four GING buffers.

BUF4

4. Method: @RTHP solves the equations

{un} {un} = ? 0-1)\1 {(I’i}i (]5)

4,59-10

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

{Vn} - {Vn} - % Ua.l)\.i {q’.i}: (]6)

where
@ TIAIMD u } + [MD v} + [B] {u }]
o; = — (17)
! {8, [2 A;[M] + [B1] (o}

and

{2;} = Previously found Teft eigenvectors.

{@i} = Previously found right eigenvectors.

A: = Previously found eigenvalues.

Note that the demoninator of equation 17 is constant with respect to the current
iterate u, and W Thus it is computed once for each vector and saved on the Teft vector

scratch file in place of the left vector.

4.59-11 (8/1/72)

4,59,

4,59

MODULE FUNCTIONAL DESCRIPTIONS

8.14 Subroutine Name: CDETM

1. Entry Point: CDETM
2. Purpose: To solve the complex eigenvalue problem by the Determinant Method.

3. Calling Sequence: CALL CDETM (METH@D,EED,M,B,K,LAMA,PHID,@CELGS,NF@UND,SCR1,SCR2,
SCR3,SCR4,SCR5,SCR6 ,SCR7 ,SCR8)

METH@D

ID of an EIGC card for the Determinant Method - integer - input.

BB, BGETES, } - GIN@ file numbers of their respective data blocks - integer - input.

M,B,K

LAMA - GIN@ file number of temporary eigenvalue storage file - integer - input.
PHID - GINg file number of temporary eigenvector storage file - integer - input.
NF@UND - Number of eigenvalues found - integer - output.

SCR1,SCR2,
- GIN@ file numbers of 8 scratch files - integer - input.

«++»5CR8

4, Method: The overall flow and theoretical considerations of the Determinant Method

are explained in section 4.88. Two refinements are made in CDETM. The first is the
handling of multiple search regions, which allows the user to control the distribution of
starting points in the complex plane. See the EIGC bulk data card description in section

2 of the User's Manual for further details. The second is the use of the EIGP card to define
poles which will be swept from the determinant as if they were previously accepted
eigenvalues. This allows the user to prevent convergence to known or already extracted

eigenvalues.

5. Design Requirements: CDETM requires two complex double precision d set vectors plus

one GIN@ buffer in core.

.8.15 Subroutine Name: CDETM2

—
.

Entry Point: CDETM2
2, Purpose: To arrange 3 starting points in order of the magnitude of the determinant.
3. Calling Sequence: CALL CDETM2(P,D,IP,PR,PI,DR,DI,IPS)

P - Three starting point values - input-complex double precision.

4.,59-12

IP

PR

PI

DR

DI

IPS

4.59.8.16

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

- Scaled determinants at P - input-complex double precision.

- Scale factors for D - input - integer.

- Real parts of the reordered starting points - output-double precision.

- Imaginary parts of the reordered starting points - output-double prgcis1on.
- Real parts of the reordered determinants - output-double precision.

- Imaginary parts of the reordered determinants - output—doub]é precision.

Scale factors of the reordered determinants - output - integer.

Subroutine Name: CSUMM

1. Entry Point: CSUMM

2. Purpose: To add two scaled complex numbers together.

3. Calling Sequence: CALL CSUMM (p1,b2,1D1,D3,D4,1D2,D5,D6,1D3)

The arguments are defined in the following equation:

%]OIDZ

(01,02) x 10*°7 + (p3,D4) = (D5,D6) x 10502, (18)

where all Di's are double precision.

4,59.8.17

I

2e

Subroutine Name: CDTFBS

Entry Point: CDTFBS

Purpose: To solve for the eigenvector given the decomposed impedance matrix.

3. Calling Sequence: CALL CDTFBS (F,EV,BUFFER(1),FU,NRAW)

EV
BUFF
FU

NR@W

Applied complex load vector - input-complex double precision.

- Eigenvector - output- complex double precision.

ER(1) GIN®G buffer.

- Matrix control block for [U] - integer - input.

Order of problem - integer - input.

4.59-13 (7/4/76)

4.59

4.59

4.59

MODULE FUNCTIONAL DESCRIPTIONS

.8.18 Subroutine Name: CDETM3

1. Entry Point: CDETM3
2. Purpose: To rescale a scaled complex number.
3. Calling Sequence: CALL CDETM3(D1,D2,ID1)

Let D1, D2, ID1 be the input values of D1, D2, ID1. On return from CDETM3

(01,02) x 1001 = (FT,52) x 10701, (20)

and
1.0 < [(D1,D2)| < 10.0 , (21)

where all Di's are double precision,

.8.19 Subroutine Name: CDIVID

1. .Entry Point: CDIVID

Purpose: To divide a complex vector by a complex number.

ro

3. Calling Sequence: CALL CDIVID (DIV,V,V1,NV)

where V is a complex D.P. vector of length NV to be divided by DIV and the answer put
i, V.

.8.20 Subroutine Name: HESSI

1. Entry Point: HESS]

2. Purpose: HESS1 is the overall driver for the upper Hessenburg method of complex eigenvalue
extraction. CEAD will call HESS1 if sufficient core exists (6N? + 8N) to use this method where
N is the order of the reduced problem. Otherwise it will select complex inverse power. If the

B matrix is not null N = 2*N.

3. Calling Sequence: CALL HESS1 (KDD,MDD,CLAMA,PHID,BCEIGS,NF@UND,NVECD,BDD,SCRT,
SCR2,SCR3,SCR4 ,SCR5,SCR6 ,SCR7 ,EED ,METHAD)

4.59-14 (7/4/76)

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

where

KDD,MDD,CLAMA,PHID,@CEIGS ,BDD,SCR1-7, and EED are the GIN@ file numbers of their
respective data blocks.
NFPUND - integer-output-NF@UND is the number of eigenvalues found.
NVECD - integer-output-NVECD is the number of eigenvalues output.
METH@D - integer-input-METH@D is the EIGC Id selected in CASECC by the CMETH@D card.
4. Method: HESS1 transforms the eigenvalue problem [P?[MDD] + P[BDD] + [KDD]] {ep} = {0} into

[k2 1 + A]{®D1} = {0} according to the following procedures:

If BDD 0
[Al = [Mopl™!' [kop]

P = ka (with positive Im)

If BDD # O
0 l -1
A £
MpD™! kDD ‘ MoD™' BDD
P o= k2
{og:} = (¢ i
0

MDD must be non-singular and a special case exists if MDD is the identity (Form = 8).

The [A] matrix is put into core and subroutine ALLMAT is called.

5. Subroutines Called: CFBSPR,MERGED,CFACT@PR,ALLMAT, and HESS2

6. Design Requirements:
1. Open core must be available at /HESS1X/

2. A1l computations are done single precision.

4.59.8.21 Subroutine Name: HESS2

1. Entry Point: HESS2

4.59-15 (7/4/76)

MODULE FUNCTIONAL DESCRIPTIONS

2. Purpose: To form an NRPW X NRPW identity matrix and a proper partitioning vector to

insert this identity matrix in a larger matrix.
3. Calling Sequence: CALL HESS2 (NR@W,IDEN,IVP)

where:
NR@W is the order of the identity matrix to be written on IDEN
IDEN - GIN@ file number of the Identity matrix

IVP - GIN@ file number of the partitioning vector, {IPV} =

1.0
} NROW

0

NROW
0
4.59.8.22 Subroutine Name: MERGED

1. Entry Point: MERGED

2. Purpose: To set up and call the matrix utility routine MERGE to perform the following

merge
<—RP——>
ATl A12
3 cp 2 =—=5 =[]
A21 A22

3. Calling Sequence:
CALL MERGED (A11,A12,A21,A22,A,RP,CP,NT,N2)

where:

A11, A12, A21, A22, A, RP, and CP are the GIN@ file numbers of their respective data
blocks. If any partition does not exist its GINP file number should be 0. A1l input
data blocks should have matrix trailers. RP or CP may be 0. N1 and N2 are the orders

of RP and CP if either is zero.

4. Method: MERGED sets up /PARMEG/ and calls MERGE. It also writes trailer on A.

5. Design Requirements: Open core exists at /MRGEDX/

4.59-16 (7/4/76)

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

4.59.8.23 Subroutine Name: CFACTR
1. Entry Point: CFACTR
2. Purpose: CFACTR will decompose a complex matrix A into its two factors LLL and ULL.
3. Calling Sequence: CALL CFACTR (A,LLL,ULL,SCR1,SCR2,SCR3,I@PT)

where:

A, LLL, ULL, SCR1, SCR2, and SCR3 are the GIN@ file numbers of their respective data

blocks.

IPPT is output according to the following table:

Decomp Method IPPT
CSSP 4
CSDP 2
CUSP 1

4. Method: The various decomposition methods are chosen based on /SYSTEM/(55) and the tailer

of A. CFACTR will write a trailer on the factors.
5. Subroutines Called: CFACTR may call SCDCMP, CSPSDC, or CDC@MP.

6. Design Requirements: Open core must be at /CFACTX/

4.59.8.24 Subroutine Name: CFBS@R
1. Entry Point: CFBS@R

2. Purpose: The purpose of CFBS@R is to solve the complex matrix equation [AJ[X] = [B] given

the factors of [A] = [LLL][ULL].

3. Calling Sequence: CALL CFBS@R (LLL,ULL,B,X,I@PT)

where:
LLL,ULL, B and X are the GIN@ file names of their respective matrices.

I@PT is an input parameter set by CFACTR (See Section 4.59.8.24).

4. Method: The trailers of [LLL], [ULL] and [B] are used to prepare for FBS. A trailer is

written on [X].

5. Subroutines Called: CXFBS or GFBS may be called based on I@PT.

6. Design Requirements: Open core at /CFBSRX/.

4.59-17 (7/4/76)

MODULE FUNCTIONAL DESCRIPTIONS

4.59.8.25 Subroutine Name: ALLMAT

1. Entry Point: ALLMAT

2. Purpose: The purpose of ALLMAT is to compute the eigenvalues (A11) and eigenvectors
(number requested) of an arbitrary complex matrix by use of the QR algorithm and the Wielandt
inverse power method for vectors. This is essentially the routine distributed via SHARE as

SDA 3441.

3. Calling Sequence: CALL ALLMAT (A,LAMBDA,H,HL,VECT,MULT,INTH,M,NCAL,I@PT1)

where:
A - is the M X M complex input matrix. On return A contains the complex eigenvectors.
LAMBDA - is a complex list of eigenvalues.
H - is a complex M X M working array.
HL - is a complex M X M working array
VECT - 1is a complex M order array
MULT - is a complex M order array

INTH and INT are real M order arrays

M - is the problem order.
NCAL - is the number of eigenvectors to compute.
IPPT1 - is not used.

4. Method: The input matrix A is reduced to an upper Hessenberg matrix, H, by a sequence

1

of elementary triangular and permutation matrices which make up a matrix P such that P™ AP = H.

The QR algorithm is made use of in ALLMAT by applying unitary similarity transformations to
-1

; . s _ s}y, as H oA . H
Hessenberg matrices, H,: H, P™AP. He = (hij) = QsHst = QstTst = T,Q, where O

is the product of plane rotations, chosen so that TS is upper triangular. This process makes

h (s) (s)

n.n-] converge to zero and therefore hnz converges to an eigenvalue of A. When convergence
3

is met (hgf%_1 negligible) the Hessenberg matrix, Hs’ is delfated (i.e., last row and
column eliminated) and ALLMAT proceeds with its leading principal submatrix (a new H])

of order one less. If hﬁi%’n_z becomes negligible, the eigenvalues of the lower right hand
matrix of order two are calculated and ALLMAT proceeds with the Teading principal matrix of

order two less. It can be shown that convergence is accelerated by judiciously subtracting

scalar matrices from the HS matrices. ALLMAT actually replaces HS by Hs - ksI such that kS

4.59-18 (7/4/76)

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

is one of the eigenvalues Pg Or g of the Tower right hand 2 x 2 matrix of HS. The choice
of pg or g is made on the basis of whether |h£z) - psl or |h£i) - qS] is a minimum. The
shift technique is applied at each iteration.

Two passes of the Wielandt inverse power method are used to calculate the eigenvectors,
Yi» of H. Very little work is required for the second pass since the necessary elementary
triangular and permutation matrices are stored in MULT and INTH (storage areas internal to
ALLMAT). Finally, the eigenvectors of A, Pyi, are calculated. The matrix P resides in INT

and the lower part of H (INT and H are internal to ALLMAT).

References: The theory and a complete description of the algorithms appear in the first
reference.

(1) J. H. Wilkinson (1965): The Algebraic Eigenvalue Problem, Oxford.

(2) A. S. Householder (1964): The Theory of Matrices in Numerical Analysis, Blaisdell.

Authors

R. E. Punderlic, J. Rinzol, Scientific Programming Department, Central Data Processing
Facility, Union Carbide Corporation, Nuclear Division, ORGDP, Oak Ridge, Tennessee.
5. Design requirements: The eigenvalues of A are not necessarily calculated in any absolute
algebraic order.

Ten iterations per eigenvalue are allowed and examples exist for which convergence will
not occur in ALLMAT (e.g., most lower triangular matrices with all equal eigenvalues; a

L component of the first row and zeros

matrix with ones on the Tower diagonal, one as the Nt
elsewhere). In the case of non-convergence, ALLMAT will return a value for NCAL less than

N and it is suggested that the user experiment with arbitrary shifts of the input matrix
(i.e., add a constant to the diagonal of A) which will sometimes eliminate the difficulty
(e.g., second example just stated).

If overflows or detrimental underflows occur, scaling A such that its largest element
is in modulus about one will probably eliminate the difficulty.

The accuracy obtaining in computing the eigenvalues of A, Ai(A), is usually related to
the spectral radius, p(A), of the matrix A or more generally to some norm of A times the norm
of its inverse. Hence the greater p(A)/minIAi| the fewer significant digits the smaller
eigenvalues may have. Accuracy also decreases as the order of the matrix increases. Close

eigenvalues are usually calculated with Tess accuracy than well separated ones. In most

cases ALLMAT has yielded roots and vectors accurate to about six significant digits.

4.59-19 (7/4/76)

MODULE FUNCTIONAL DESCRIPTIONS

4.59.8.26 Subroutine Name: CFCNTL

1. Entry Point: CFCNTL

2. Purpose: CFCNTL is the main driver for the complex version of the Tridiagonal Reduction

(FEER) method.

3. Calling Sequence: CALL CFCNTL (EED,METH@D,NF@UND)

EED - GIN@ file number for file containing EIGC information (Integer, input).
METH@D - Eigenvalue extraction method 'FEER' (Hollerith, input).
NFAUND - Accumulated number of acceptable eigensolutions (Integer, output).

COMMPN,/ FEERAA/IK(7) ,IM(7),1B(7),ILAM(7),IPHI(7),IDMPFL,ISCR(11),REG(7,10) ,MCBLT(7),MCBUT(7),

MCBVEC(7) ,MCBLMB(7)

IK,IM,IB - Matrix control blocks for the input stiffness, mass and damping matrices,
respectively.

ILAM, IPHI - Matrix control blocks for the output eigenvalue and eigenvector files.

IDMPFL - GIN@ file number for the eigenvalue summary file (integer).

ISCR - GIN@ file numbers for eleven scratch files (integer).

REG - Array of information obtained from the EIGC bulk data card and continuation
cards.

MCBLT - Lower triangular matrix, [L], control block.

MCBUT - Upper triangular matrix, [U], control block.

MCBVEC - Orthogonal vector file control block.

MCBLMB - Matrix control block for AO[M] + [B].

CPMMPN/FEERXC/LAMBDA(2) ,SYMMET ,MREDUC ,N@RD, IDIAG,EPS ,N@RTH® ,NORD2 ,NORD4 ,NORDP1 ,NSWP ,JSKIP,
N@B,IT,TEN2MT ,TENMHT ,NSTART ,QPR,JREG,NAREG,NZER@ ,TENMTT ,MIN@PN ,NUMBRT ,NUMRAN
LAMBDA - Point of interest (i.e., center of neighborhood) in the complex plane

(double precision).

SYMMET - Indicator for symmetric dynamic matrix (logical).

MREDUC - Size of the reduced problem (set internally).

N@RD - Problem size (set internally using the dimension of the stiffness matrix).
IDIAG - DIAG 12 output indicator (set internally).

EPS - The user specified (or default) desired theoretical accuracy of the eigenvalues

expressed as a percentage (double precision).

4.59-20 (12/31/77)

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

N@RTHO - Number of orthogonal vectors in present set (includes previously computed
vectors).

N@RD2 - 2 x N@RD.

N@RD4 - 4 x N@RD.

N@RDP1 - NQRD + 1.

NSWP - Vector size for sweep algorithm.

JSKIP - CFEER4 logic bypass indicator.

N@B - Indicator for absence of damping matrix [B] (logical).

IT - Number of decimal digits of accuracy, t, for the computer.

TEN2MT - 102't, where t s defined by IT; reorthogonalization accuracy criterion.

TENMHT - 10't/2, where t is defined by IT; accuracy criterion for disjoint tridiag-
onal matrix.

NSTART - Number of initial reorthogonalization attempts (for the current point of
interest).

QPR - Indicator for very detailed printout (logical).

JREG - Number (positive integer) of the current neighborhood.

N@REG - Total number of neighborhoods, or points of interest, in the complex plane,
to be processed.

NZERQ - Number of previously obtained eigenvectors.

TENMTT - 10't/3, where t is defined by IT; rigid body root criterion.

MIN@PN - Minimum open core not used by the complex FEER process, in single precision
words.

NUM@RT - Total number of reorthogonalizations of all the trial vectors employed.

NUMRAN - Total number of random starting and restart vectors used by the complex FEER
process for all neighborhoods.

COMMPN/FEERZC/Z(1)

74 - Area of open core used by CFCNTL.

4. Design Requirements: The complex Feer method requires sufficient core for three GIN@

buffers and five pairs of (complex) vectors of size NPRD (2xN@PRD when N@B=FALSE). The method

can be performed in single or double precision.

4.59-21 (12/31/77)

MODULE FUNCTIONAL DESCRIPTIONS
5. Subroutine Glossary for the complex FEER method.

CFCNTL
CFEER1
CFEER2
CFEER3
CFEER4
CFER3S,CFER3D \
CFE1AD,CFE2AQ
CFETMY, CFE2MY

> Single and double precision versions.

CF1FBS,CF2FBS
CFN@R1,CFN@R2

CF1@RT ,CF2@RT J

4.59.8.27 Subroutine Name: CFEERI

1. Entry Point: CFEERI]

2. Purpose: To set up the call to SADD to form the dynamic matrix
(61 = »2[M] + A [B] + [K]
and also the sub-factor of the dynamic matrix,
[51 = 2,[M] + [B]
3. Calling Sequence: CALL CFEERI

COMM@N/FEERAA/
CAMM@N/FEERXC/
See CFCNTL for a description of /FEERAA/ and /FEERXC/ (Section 4.59.8.26)

COMMPN/FEERZ1/Z(2)

Z - Area of open core used by CFEERT.

4. Design Requirements: CFEER1 can perform single or double precision operations.
4.59.8.28 Subroutine Name: CFEER2
1. Entry Point: CFEER2

4.59-22 (12/31/77)

4.59.

4.59.

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)
2. Purpose: To set up the call to CDCPMP to decompose the dynamic matrix
(0] = [L1[u]
3. Calling Sequence: CALL CFEER2 (IRET)

IRET - Singularity indicator (output).

COMMON/FEERAA/

CPMMZN/ FEERXC/

See CFCNTL for a description of /FEERAA/ and /FEERXC/ (Section 4.59.8.26).

COMMPN/FEERZ2/Z(2)
Z - Area of open core used by CFEER2.

8.29 Subroutine Name: CFEER3

1. Entry Point: CFEER3

2. Purpose: CFEER3 is the basic driver routine which obtains the reduced tridiagonal

matrix for the complex FEER method of eigenvalue extraction.
3. Calling Sequence: CALL CFEER3
COMMDN/FEERAA/

COMMPN/ FEERXC/
See CFCNTL for a description of /FEERAA/ and /FEERXC/ (Section 4.59.8.26).

COMMAN/FEERZ3/Z(2)
Z - Area of open core used by CFEER3.

4. Design Requirements: CFEER3 can perform single or double precision operations.
8.30 Subroutine Name: CFEER4

1. Entry Point: CFEER4

2. Purpose: CFEER4 obtains the physical eigenvalues and eigenvectors of the reduced prob-
lem (for the current point of interest) by feeding the reduced tridiagonal matrix to sub-
routine ALLMAT. In addition, CFEER4 sorts the eigenvalues according to increasing distance
from the center of interest, and determines which eigensolutions are acceptable and which are

not (according to the default or user-input accuracy criterion).

4.59-23 (12/31/77)

MODULE FUNCTIONAL DESCRIPTIONS
3. Calling Sequence: CALL CFEER4

COMMON/FEERAA/
COMMPN/ FEERXC/
See CFCNTL for a description of /FEERAA/ and /FEERXC/ (Section 4.59.8.26).

CAMMPN/FEERZ4/Z(2)
Z - Area of open core used by CFEER4.

4. Design Requirements: CFEER4 performs only single precision operations.
4.59.8.31 Subroutines CFER3S,CFER3D

1. Entry Points: CFER3S (single precision), CFER3D (double precision).
2. Purpose: To perform the tridiagonal reduction algorithm for CFEERS3.

3. Calling Sequence: CALL CFER3S(V1,ViL,V2,Vv2L,V3,V3L,V4,V4L,V5,V5L,ZB,ZC)
CALL CFER3D (same arguments as for CFER3s).

V1,VIL

V2,V2L Working space for five pairs of vectors, where a vector
V3,V3L - pair consists of a right-hand vector (e.g., V1) and a
VA, VaL left-hand vector (e.g., VIL).

V5, V5L

ZB,ZC - Working space for two GIN@ buffers

COMMPN/FEERAA/

CAMM@N/ FEERXC/

See CFCNTL for a description of /FEERAA/ and /FEERXC/ (Section 4.59.8.26).

4. Design Requirements: CFER3S and CFER3D are driven by the CFEER3 subprogram, which performs
the necessary initialization and termination process. CFEER3 invokes either CFER3S or CFER3D
according to the precision of the required input files. A1l vectors are dimensioned consis-
tent with the initial problem size (NORD2 when NOB=TRUE and NORD4 otherwise). In addition,
each left-hand vector must immediately follow its corresponding right-hand vector in core,

since this configuration results in more streamlined coding and associated quicker execution.
4.59.8.32 Subroutines CFE1AQ,CFE2AQ

1. Entry Point: CFEIA@ (single precision), CFE2AQ (double precision).

4.59-24 (12/31/77)

4.59.

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

2. Purpose: To perform the eigenmatrix multiplication operation.

CFE1AQ

. . Single and double
3. Calling Sequence: CALL CFE2AQ (TPPSE,V1,V2,V3,ZB)

precision versions

TPASE - Indicator for transpose operation (logical).
Vi - Input vector.

V2 - Output vector.

V3 - Working space for one vector.

ZB - Working space for one GIN@ buffer.

CAMMPN/ FEERAA/

CPMM@N/ FEERXC/

See CFCNTL for a description /FEERAA/ and /FEERXC/ (Section 4.59.8.26)

4. Design Requirements: A1l vectors are of dimension consistent with the ini

size (see Section 4.59.8.31).
8.33 Subroutines CFE1MY,CFE2MY

1. Entry Points: CFEIMY (single precision), CFE2MY (double precision).
2. Purpose: To perform the standard matrix-times-vector multiply function.
is

{X}

[MI{Y}

or

oy = T

:] CFETMY
3. Calling Sequence: CALL CFE2MY (TP@SE,Y,X,FILE,BUF).

4.59-25 (12/31/77)

tial problem

The operation

4.59.

4.59.

MODULE FUNCTIONAL DESCRIPTIONS

TP@SE - Indicator for transpose operation (logical).

Y - Input vector

X - Qutput vector.

FILE(7) - Input matrix control block for the required matrix (integer).
BUF - Working space for one GIN@ buffer.

4. Design Requirements: A1l vectors are of dimension consistent with the initial problem

size.
8.34 Subroutines CF1FBS,CF2FBS

1. Entry Point: CF1FBS (single precision), CF2FBS (double precision).
2. Purpose: To perform the operational inverse algorithm (forward and backward sweeps).
The operation is
{X} <« [LI[U] {x}
or
oxr o« oo

CF1FBS Single and double

3. Calling Sequence: CALL CE2FBS (TP@SE , XQUT , IPBUF) precision versions
TPPSE - Indicator for transpose operation (logical).

XPUT - Input vector, which gets transformed to the output vector.
IPBUF - Working space for one GIN@ buffer.

COMMPN/ FEERAA/

CAMMPN/ FEERXC/

See CFCNTL for a description of /FEERAA/ and /FEERXC/ (Section 4.59.8.26).

4. Design Requirments: CF1FBS and CF2FBS use the direct output of the CDC@MP subprogram.
The vector is dimensioned consistent with half of the initial problem size when the damping
matrix is present, and consistent with the initial problem size when the damping matrix is

absent.
8.35 Subroutines CFN@R1,CFN@R2

1. Entry Point: CFN@R1 (single precision), CFN@R2 (double precision).

4.59-26 (12/31/77)

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

2. Purpose: To normalize a pair of (right-hand and left-hand) complex vectors to magnitude

unity. The operation is

g = [m w12

W o= 3w

Wi o= 1m
where the bar denotes a left-hand vector.
3. Calling Sequence: CALL g;g%&; (RIGHT ,LEFT,SIZE2,@PTI@N,RI) ; gigg};gzdvggg?gﬁs
RIGHT - Input right-hand complex vector, which gets transformed to the output

right-hand vector when @PTI@PN = O.

LEFT - Input Teft-hand complex vector, which gets transformed to the output left-
hand vector when @PTI@N = 0.

SIZE2 - Length of either vector in computer words (integer).

PPTIAN - Selects the desired option, as follows:

(0) Normalize the input vectors, and output the square root of the inner

product in RI.
(1) Only output the inner product, in RI.
(2) Only output the square root of the inner product, in RI.

RI - Inner product, or square root of the inner product, or the input factors
(output; see PPTIPN).

C@OMMPN/FEERXC/
See CFCNTL for a description of /FEERCX/ (Section 4.59.8.26).

4.59.8.36 Subroutines CF1@RT,CF2@RT

1. Entry Point: CFI@RT (single precision), CF2QRT (double precision)

2. Purpose: To perform the reorthogonalization algorithm.

cALL SFIBRT (oicESS, MAXITS,TEN2MT ,NZER@, IQRTHP, VR, VL, VL, VL, V2, V2L ,ZB)

3. Calling Sequence: CF20RT
SUCESS - Output indicator for successful reorthogonalization (logical).
MAXITS - Input maximum allowed number of reorthogonalization iterations (integer).

4.59-27 (12/31/77)

MODULE FUNCTIONAL DESCRIPTIONS

TEN2MT - Convergence tolerance (input).

NZERD - Number of orthogonal vector-pairs (right and left hand) from restart and
prior neighborhoods (input).

IGRTHO - Number of orthogonal vector-pairs previously computed in the current
neighborhood (input).

VR, VL - Input (and transformed for output) right and left hand vectors, respectively,

which are to be reorthogonalized with respect to all pairs of previously com-

puted orthogonal vectors.

xézzgt - MWorking space for four vectors.

£h - Working space for one GIND buffer.
COMMPN/ FEERAA/

CAMMPN/FEERXC/

See CFCNTL for a description of /FEERAA/ and /FEERXC/ (Section 4.59.8.26).

4. Design Requirements: All vectors are dimensioned consistent with the initial problem

size (see Section 4.59.8.31). In addition, VIL must immediately follow V1 in core.
.8.37 Subroutine Name: CLVEC
1. Entry Point: CLVEC

2. Purpose: To generate the left eigenvectors for the Determinant and Hessenburg Methods

if requested. (Note: The left eigenvectors are already generated during a normal Inverse

Power approach.)

3. Calling Sequence: CALL CLVEC (LAMD,NVECT,PHIDL,IH,IBUF,IBUF1)

LAMD - GINP file number of sorted eigenvalues - integer-input.
NVECT - Number of left eigenvectors to be calculated - integer-input.
PHIDL - GIN@ file number of data block PHIDL - integer-input.

IH - Trailer for data block PHIDL - integer array-input,output.

IBUF - Open core pointer to GIN@ buffer - integer-input.
IBUF1

1

Open core pointer to GIN® buffer - integer-input.

4. - Method: For each eigenvalue, A], a dynamic matrix of the form MA? + Bxi + K is formed

- and decomposed into its upper and lower triangular components U and L. An arbitrary load

4.59-28 (12/29/78)

FUNCTIONAL MODULE CEAD (COMPLEX EIGENVALUE ANALYSIS - DISPLACEMENT)

vector F is generated and the equation UtLt¢i = F s solved for the left eigenvector di+ 5
is normalized and packed into output file PHIDL. The process is repeated for the first
NVECT eigenvalues on file LAMD. Inverse Power subroutines CINVP1, CINFP2, CDIFBS and CN@RMI

are used in performing the above operations.

4.95.9 Design Requirements

Open core is defined at /CEAD1X/ to process EED. Open core is defined at /CEAD1A/ for use

by CEADTA.

4.59.10 Diagnostic Messages

The following diagnostic messages may be generated: 3001, 3002, 3003, 3005, 3007, 3008, 3025

and 3045.

4.59-29 (12/29/78)

FUNCTIONAL MODULE VDR (VECTOR DATA RECOVERY)

4.60 FUNCTIONAL MODULE VDR (VECTOR DATA RECOVERY)

4.60.1 Entry Point: VDR

4.60.2 Purpose

VDR formats data blocks for input to the Output File Processor (@FP) and XY plot (XYPLQT)

modules to provide a capability for output of vectors in the solution set.

4.60.3 DMAP Calling Sequence

PPHID
PHID UDVC1
UDVF | [CLAMA pNLD L
" casecc] feqow | fusem) Juovr { Jeerf 0 oo PNLH / i QPNL]
CASEXX {* JHEQDYN(* JHUSETD(*) PHIH (*])TOL |’ HQPNL]
HPNLD) | pUHVCI
UHVT HTQL PUHV1
HUDVT i

TRANRESP
C.N,{ FREQRESP {/C,N, | DIRECTL N SPRT2/V,N,@UTPUT/V,N,SDR2/V,N, FMBDE $
MPDAL

CEIGN

4.60.4 Input Data Blocks

gﬁgggg ‘- Case Control Data Table.

EI0A Equivalence b ternal and internal number - Dynami
HEQDYN (~ quivalence between external and internal number - Dynamics.
USETD - Displacement set definitions table - Dynamics.

PHID

UDVF

upvT - Partition of displacement vector.

PHIH

UHVT

CLAMA - Complex eigenvalue, table.

PPF - Dynamic loads for frequency response - p set.

TOL - ’

HTﬂL% Table of output times.

XYCDB - X Y Control Data Block

PNLD

PNLH - Non-Linear Load Vector.

HPNLD

HUSETD - Temperature set definitions table - Dynamics.

HUDVT - Partition of temperature vector.

4.60-1 (7/4/76)

Notes:

MODULE FUNCTIONAL DESCRIPTIONS

CASECC, EQDYN and USETD may not be purged.

PP may be purged only if UDV is purged.

PNL and XYCDB may be purged.

4.60.5 OQutput Data Blocks

@PHID
pubVC1
pUDV1
(PPHIH
(UHVC1
PUHVT

@PNL1
H@PNL1

H@UDV1

Note:

Qutput displacement requests - Solution set.

Non-Linear Load Vector.

Output temperature requests - Solution set.

Output data blocks may be purged.

4.60.6 Parameters

The first parameter indicates a Rigid Format and must be one of the three names shown

above. The second parameter indicates a direct or modal formulation and must be one of the

two names shown above.

SPRT2

@GUTPUT

SDR2

FM@DE

Qutput-integer-no default. +1 if any SPRT2 output is requested, -1 otherwise.

Output-integer-no default. +1 if any output in the solution set is requested,
-1 otherwise.
Output-integer-no default. +1 if any requests for output in the physicai set

are found in CASECC or XYCDB, -1 otherwise.

Input-integer-no default. If a modal formulation, FM@DE = mode number of the

first mode. FMPDE is not used in a direct formulation.

4.60-2 (7/4/76)

FUNCTIONAL MODULE VDR (VECTOR DATA RECOVERY)
4.60.7 Method

4.60.7.1 General

VDR is the main control program for the module. VDRA is called to analyze the Case
Control (CASECC) and XYCDB data blocks. If any requests for solution set output are found,
VDRB is called to assemble the @PUDV1 output data block for processing by the @FP. If the
problem is a transient response problem, VDRB is called a second time to process any requests

for non-linear load output.

4.60.7.2 Analysis of the Case Control and XYCDB Data Blocks

VDRA attempts to open the XYCDB data block. If it is purged, a return is given to VDR.
Otherwise, the header record and first data record of XYCDB are skipped, and data applying to
all subcases are read from the second data record. If no such data exist, a dummy master
is created. Otherwise, the master data are reduced to a list of unique pairs. If only master
data exist, flags are set appropriately.

For each record in the Case Control data block the following processing occurs:

1. The record is read into core. If no XYCDB subcase corresponds to the Case Control

subcase, pointers are set to the master data. Otherwise, the master data and appropriate

XYCDB subcase data are merged and reduced to unique pairs.

2. For each request for solution set output in XYCDB, the corresponding request in Case
Control is examined. If no request is present in Case Control, the XYCDB request is
reduced to a set in Case Control format, and a request for the set is turned on in Case
Control. If the Case Control set is "ALL", no further action is taken. If the Case
Control request is a set, the set is merged with the XYCDB set, and the request

altered to reflect the new set (unless all points in the XYCDB set were already in the

Case Control set). A flag is set if any new requests are formed.

3. MWhen all requests for the current Case Control record have been analyzed, the

record (as modified) is written on a scratch file.

4, When all Case Control records have been read, the GIN@ file name for the Case Control
data block is switched to the scratch file (unless no modifications were made to Case

Control).

4.60-3 (7/4/76)

MODULE FUNCTIONAL DESCRIPTIONS

4.60.7.3 Preparation of Solution Set Qutput

The operations of VDRB are dependent on the Rigid Format being executed. VDRB operates

in all six of the dynamics Rigid Formats. The initial operations in VDRB proceed as follows:

1. For a direct solution, or a modal solution with extra points, the second record of EQDYN

is read into core. USETD is read into core.

2. If the problem is a direct solution, each entry in EQDYN is processed. The scalar
index value (the 2nd word of each entry) is replaced by the scalar index value in the
solution set plus a code indicating which components of the point are in the solution

set.

3. If the problem is a modal solution with extra points, the scalar index of each extra

point in EQDYN is replaced with a scalar index in the solution set. The scalar indices of

all other points are replaced with zero.

4, If the problem is a complex eigenvalue problem, a Tist of mode numbers and complex
eigenvalues is read into core from the CLAMA data block.
5. If the problem is a transient response problem, a list of times is read into core

from the TOL data block.

6. If the problem is a frequency response problem, a 1ist of frequencies is read into

core from the PP data block.

7. The header record on the input file is skipped, and various parameters are

initialized for the overall processing.

A record on the Case Control data block is read. The output request is examined. If

the output is defined in terms of a set, pointers to the set definition are computed. The

vector is unpacked in core (unless the vector is already in core in the case of velocities and

accelerations for frequency problems).

Information is assembled to write the identification record on the output data block

as follows.

1. For complex eigenvalues, the mode number and eigenvalue are picked up from the 1ist

in core.

4.60-4 (7/4/76)

FUNCTIONAL MODULE VDR (VECTOR DATA RECOVERY)

2. For frequency response, the frequency is picked up from the list in core. A
comparison with the @FREQ selection in Case Control is made. If the current frequency
is not marked for output, the remainder of the calculations for the current vector are
skipped.
3. For a transient problem, the time is picked up.
The identification record is written. Entries are written in the data record according to
the request. The modified EQDYN table in core is used to pick up points in the vector to be
output. Conversion to magnitude and phase is made if requested.

When all points in the current request have been processed, post processing occurs
depending on the problem type as follows:

1. For complex eigenvalues, a pointer is updated to the next mode number and eigenvalue.
Otherwise,

If all eigenvectors have not been processed, the steps above are repeated.

terminal processing is initiated.

2. For frequency response, if the vector just processed was a displacement vector,

the corresponding velocity vector is determined by differentiating with respect to time.

{v} = iw {u}. (1)

Similarly, if the vector just processed was a velocity vector, the corresponding

acceleration vector is formed by differentiating with respect to time:

{a} = iw {v}. (2)

If all vectors have not been processed, the steps above are repeated. Otherwise,
terminal processing is initiated.

3. For transient response, pointers are updated so that the vectors will be processed in
the order a) displacement, b) velocity, and c¢) acceleration. If all vectors have not been

processed, the steps above are repeated. Otherwise, terminal processing is initiated.

The terminal processing consists of closing all files, writing a trailer on the

output file and exiting.

4.60-5 (7/4/76)

MODULE FUNCTIONAL DESCRIPTIONS

4,60.8 Subroutines
4.60.8.1 Subroutine Name: VDR

1. Entry Point: VDR
2. Purpose: Main control program for the module.
3. Calling Sequence: CALL VDR

4.60.8.2 Subroutine Name: VDRA

1. Entry Point: VDRA
2. Purpose: To analyze the output requests in the Case Control and XYCDB data blocks.
3. Calling Sequence: CALL VDRA

4.60.8.3 Subroutine Name: VDRB

1. Entry Point: VDRB

2. Purpose: To process requests for solution set output and assemble the output

data block.
3. Calling Sequence: CALL VDRB (INFIL,BUTFL,IREQ)

INFIL - GIN@ file name of the data block containing vectors to be output in the

solution set.
\ QUTFL - GIN@ file name of the data block where solution set output will be written.

IREQ - Word position in the Case Control record where solution set output request is

defined.

4,60.9 Design Requirements

4,.60.9.1 Allocation of Core Storage

4.60-6 (7/4/76)

FUNCTIONAL MODULE VDR (VECTOR DATA RECOVERY)

The maximum storage requirements for the module are in VDRB. A general picture of core

storage is as follows:

RALST,
ICC+1
IVEC
BUF3
BUF2

BUF1

4.60.9.2 Environment

C@MM@N/VDRC@R/Z(1)

EQDYN Table

List of eigenvalues,
frequencies or times

Case Control record

Unpacked Vector

Buffer for input file

Buffer for output file

Buffer for Case
Control

2 words per entry, one entry for each
point in the problem.

1, 2 or 3 words per entry, one entry for
each eigenvalue, frequency or time.

One word for each degree of freedom in the
solution set. (two words if complex).

The Block Data program VDRBD initializes /VDRCPM/ with GINP file names, data defining

position of parameters in a Case Control record, data defining rigid formats and problem

types, and miscellaneous data.

It must be in core when VDR is executed.

The module VDR is designed to be executed as one overlay segment. Open core is defined

by /VDRCPR/. Two scratch files are used.

4.60-7 (774/76)

FUNCTIONAL MODULE FRRD (FREQUENCY RESPONSE - DISPLACEMENT APPROACH)

4.61 FUNCTIONAL MODULE FRRD (FREQUENCY RESPONSE - DISPLACEMENT APPROACH)

4.61.1 Entry Point: FRRD

4.61.2 Purpose

To solve the matrix equation
[-u2 [M] + i [8] + [KI] [X] = [P(w;)]

at a given set of frequencies w; and Toads P (which may be functions of wi)'

4.61.3 DMAP Calling Sequence

: KDD { YBDD()MDD
FRRD CASECC,USETD,DLT,FRL,GMD,GﬂD,gKHHf,gBHHf,gMHHf, PHIDH,DIT/UHV,PS,PD,PP/V,N,APP/

V,N,F@RM/V,N,LUSETD/V,N,MPCF1/V,N,SINGLE/V,N,@MIT/V,N,NONCUP/V,N,FRQSET/C,Y,DECOMPPT=1 $

4.61.4 Input Data Blocks

CASECC - Case Control Data table.

USETD - Displacement set definitions table dynamics.

DLT - Dynamic Loads Table.

FRL - Frequency Response List.

GMD - Multipoint constraint transformation matrix - dynamics.
G@D - Omitted coordinate transformation matrix - dynamics.
KDD - Modal stiffness matrix - d set.

KHH - Modal stiffness matrix - h set.

BDD - Modal damping matrix - d set.

BHH - Modal damping matrix - h set.

MDD - Modal mass matrix - d set.

MHH - Modal mass matrix - h set.

PHIDH - Transformation matrix from d set to modal coordinates.
DIT - Direct Input Tables.

Notes: 1. CASECC cannot be purged.
2. USETD cannot be purged.

w

DLT cannot be purged.

FRL cannot be purged.

5. GMD cannot be purged if MPCF1 > 0.
6. GPD cannot be purged if @MIT > O.

4.61-1 (7/4/76)

MODULE FUNCTIONAL DESCRIPTIONS

7. PHIDH cannot be purged if FPRM = M@DAL.

8. DIT cannot be purged if a load uses tables.

4.61.5 Output Data Blocks

UHV - Displacement vectors.
PS - Partition of load vector matrix giving loads in s set.
PD - Load vectors - d set.
PP - Load vectors - p set.

Notes: 1. UHVY, PD, and PP cannot be purged.
2. PS cannot be purged if SINGLE > 0.

4.61.6 Parameters

APP - Input-BCD-no default. APP should be set equal to DISP.

FPRM - Input-BCD-no default. F@PRM = MPDAL implies a modal solution should be used.

LUSETD - Input-integer-no default. LUSETD indicates length of p set.

MPCF1 - Input-integer-no default. MPCF1 > O implies multipoint constraints present.

SINGLE - Input-integer-no default. SINGLE > 0 implies single-point constraints present.
PMIT - Input-integer-no default. @MIT > O implies omitted coordinates present.

NPNCUP - Input-integer-no default. N@NCUP = -1 implies noncoupled solution if F@RM = M@DAL.
FRQSET - OQutput-integer-no default. FRQSET is the set id of the selected frequency 1ist

from CASECC.
4.61.7 Method
q4.615751 Overview of the Method

The Frequency Response module for the displacement approach assembles a frequency-dependent
load vector and solves for the steady-state, frequency response, displacement vectors. Various
load sets are defined as functions of frequency. Combinations of these sets are used with the
various specified frequencies. Load vectors for each frequency are formed and reduced to Toads on
the proper degree of freedom. The solutions for both direct formulation and coupled modal formula-
tion are identical except that different matrices are used. The solution involves a triangular
decomposition and back substitution using the type of arithmetic selected by the matrix types for

each frequency according to the following table.

4.61-2 (3/1/74)

FUNCTIONAL MODULE FRRD (FREQUENCY RESPONSE - DISPLACEMENT APPROACH)

where:

4.61

Trailer Complex Terms Decomp Method
CDC Other
SYM No RSSP RSDP
SYM Yes CSSP csop
UNSYM No RUDP RUDP
UNSYM Yes CUDP CUDP
SYM = symmetric dynamic matrix
UNSYM = unsymmetric dynamic matrix
RSSP = real symmetric single precision
RSDP = real symmetric double precision
RUDP = vreal unsymmetric double precision
CUDP = complex unsymmetric double precision
CSSP = complex symmetric single precision
CSDP = complex symmetric double precision

The solutions for the uncoupled modal formuiation are analytic equations.

.7.2 Logical Phases

1. The Toad vectors for each desired frequency are assembled from the DLT data block. The
DLPAD section of the DLT tells which load sets to use and what scale factors to use in com-
bining the load sets. The data for each load set are given in the RLPAD or TLPAD section
of the DLT. This is done in subroutine FRRDIA.

2. The total Toad vectors are partitioned and manipulated to produce Toad vectors on the

solution coordinates. This is done in subroutine FRRDIB.

3. The matrix equation for displacements is now solved for each load combination and each
frequency. The overall dynamic matrix is formed. The matrix is decomposed, and the dis-

placements are formed by back substitution using the various loads. If the formulation is
an uncoupled modal system, the displacements are calculated directly. This is done by sub-

routines FRRDIC and FRRDID or FRRDIF.

4.61-3 (12/31/77)

4.61

MODULE FUNCTIONAL DESCRIPTIONS

4. The solution vectors are then resorted into Toad-frequency order. This work is done

by subroutine FRRDIE.

.7.3 Algorithms

1. Assembly of Load Vectors:

The frequency set id is extracted from CASECC. This frequency set is placed in core
from the FRL and converted from radians to frequency. These frequencies are output into
the header of PPF for later output identification. The load id is read from CASECC, found
in DLT, and a table is constructed giving a simple id and a scale factor for each com-
ponent. The DLT data are read for each simple id, and a list of the required tables is
extracted. Core is allocated to hold as many load vectors as possible up to the number
of frequencies. If tables are present, they are initialized and evaluated for all frequencies

in core. The DLT is read, and two types of loads are constructed:

ALC(F) + iD(f)]e’ (6-2nfT) (2)

1) RLPADI P(f)

2) RLPAD2 P(F) AB(f)ei(¢(f) + 9-2nfT) (3)

where A, B, C, D, ¢, 6 and T are user input constants or tables.

TLPAAD Toads are computed as follows:

4.61-3a (12/31/77)

FUNCTIONAL MODULE FRRD (FREQUENCY RESPONSE - DISPLACEMENT APPROACH)

Case 1. TLPAD] data card, referencing a TABLED1, 2 or 3.

The P(t) is given in terms defined on the above data cards by

t—Tj-Xl
Y- is a piecewise linear table, for the (N-1) intervals (X;,X,) ... (X5 15 Xy). Then,
T 1272 N-1 N
-iwt, N-1 X, - -X.
_ 3 i+l 7
Pj(w) Aje Xziz] —— (LiYi + R1Y1+1) (1b)

where

—iw(X1+X2-x.)

e ! FEM I) (1c)

—
n

i

~Jw(XT1+X2+x.
" *in1)g)) (1d)

R. = e Z(inZ(xi+] - X

i

Ez(ie) is computed by special formulas for large and small 6, as defined in module IFT.

E2(—ie) is the conjugate of Ez(e).

Case 2. TLPAD1 with TABLED4.

N fter,-0 !
AjnZOan T X3 < t-‘[j < X4
Pj(t) = (2a)
0 Otherwise
Then,]
~ -1WT
P.(w) = Ae J(SUM) 1w
d J
-iwX4 N an :
(SUM) = e (X4-X3)ng0 ﬁ;T-En+1(1w(x4-x3)) (2c)
N-n m
~ _ [xa-x3\" (n+m)! (X3-X1
4 = (X2 > mZO nimi (X2 > An+m (2d)

4.61-3b (12/31/77)

MODULE FUNCTIONAL DESCRIPTIONS
The function En(ie) is computed as follows:

If 0 <8 <0.1, compute for n=N

S 92 9"
Re Ey(10) = 1 - riymweey * vy, oovedy ~ F o
Im Ey(I8) = o= - 6° + -
N N1 - (NFTY. .. (NF3

Stop when last term < 107,

Then, by recursion for n=N-1,N-2,...,1

. 9 .
Re En(le) 1 - T Im En+](1e)

o 5] .
Im En(le) oy I Re En+-|(16)

If 0.1< 6 < » , compute for n=0

Re Eo(ie) cos @
Im Eo(ie) = sin @

Then, by recursion for n=1,2,3,...,N

@S

Re En(ie) Im En_](ie)

DS

Im En(ie) [1 - Re En_1(ie)]

Case 3. TLPAD2 with

AJ.EBeCt cos(ZnFE+P) 0<tc< T,-T
Pj(t) =
0 Otherwise
tEt-T“‘Tj

B will be restricted to an integer > 0.

. At (T2-T])B+]
Pi(w) = Aje IRy I| gy —

4.61-3c (12/31/77)

1

(2e)

(2f)

(21)

(23)

(2k)

(22)

(3a)

FUNCTIONAL MODULE FRRD (FREQUENCY RESPONSE - DISPLACEMENT APPROACH

Ry = epowerEB+1(z) (3c)
where power = +1'P+(c+1‘21rF)(T2-T])-1'wT2
and z = -[c+12nF-iw](T2-T])
R] = same as R2 except the sign of P and F are reversed.
e 4 z° + |z] < .1
B+1 ~ (B+1)(B*2) = - zZlh <
Eg(z) = (until Tast term < 10'9) (3d)

B-1 _k
!
Efef- 1 & 2| 2 .1
z k=0 k!

If all frequencies cannot be evaluated at once, additional passes through the DLT are made

until all are evaluated. If additional subcases exist in CASECC, the above steps are

repeated for each load.

4.61-3d (12/31/77)

MODULE FUNCTIONAL DESCRIPTIONS

2. Manipulation of Load Vectors:

The vectors produced in the previous sections are related to the p set. They are

reduced by the following steps using data blocks USETD, GMD and G@D.

If MPCF1 > O:

(P} :>{—;£} ,

m

7 d4T
Pped = (P b+ 6]).

If SINGLE > O:

P
—_— fe
{Pne}._>{P—}.

s
{PS} is output on data block PS,
If PMIT > O:
o e
fe PO *
o d-T
Pyt = (P4} + [GOJ {Py1s
{P4} is output on PD.
If FGRM = M@DAL:
P} = [o,1 (P}
h dh d*
3. Solution Phase:

For a direct formulation the equation to be solved is:
[DMgg] + iw [Bygl + [Kygl Wyl = (Py(w)} .
For a coupled formulation the equations to be solved is:

[-u? [, 1+ delB,, 1 + (K10 {ud = (P ()

4.61-4 (12/31/77)

(7)

(8)

(10)

(11)

FUNCTIONAL MODULE FRRD (FREQUENCY RESPONSE - DISPLACEMENT APPROACH)

The Teft hand matrix is generated by two calls to ADD and decomposed. The normal matrix
decomposition checks are relaxed in these solutions. It is expected that the matrices will
not pass the triangular decomposition at certain frequencies. The solution will proceed,
and only a warning will be issued. The loads at the given frequency are collected from the
Toad file and fed to GFBS for a forward backward substitution solution. If the decomposi-

tion failed, a zero vector will result.

For one uncoupled modal formulation the equations to be solved are:

P'i (w)
{Ei} - e : (12)
-mw- + 1bim + ki

With zero damping the uncoupled modal formulation may produce division by small numbers.

This fact is noted and the solution proceeds.

4. Order Phase:

Except for the uncoupled modal approach it may be necessary to reorder the solutions

from a frequence / load sort to a load / frequency sort.

4.61.8 Subroutines

Utility subroutines PRETAB,TAB,CALCV,SSG2B,SSG2A,SSG2C,CDCPMP,SCDCMP,CSPSDC,CXFBS,FACT@R,

SDCPMP, DECPMP, SSG3A and GFBS are used. See subroutine descriptions, Section 3, for details.
4.61.8.1 Subroutine Name: FRRDTA

1. Entry Point: FRRDIA

2. Purpose: To assemble the user selected Tloads.

3. Calling Sequence: CALL FRRD1A (DLT,FRL,CASECC,DIT,PP,LUSETD,NFREQ,NLPAD,FRQSET,FQL)

DLT,FRL,CASECC,DIT,PP are GINP file numbers of their respective data blocks - integer -
input.

LUSETD - Length of p set - integer - input.

NFREQ - Number of frequencies in selected frequency set - integer - output.

FAL - the GIN@ file number of the output frequency list - may be purged.

4.61-5 (12/31/77)

MODULE FUNCTIONAL DESCRIPTIONS

NLBAD - Number of loads (records in CASECC) selected - integer - output.
FRQSET - Set id of selected frequency set - integer - output.

4,61.8.2 Subroutine Name: FRRD1B

1. Entry Point: FRRDIB

2. Purpose: To reduce loads from the p to the d (or h) set.

3. Calling Sequence: CALL FRRD1B (PP,USETD,GMD,G@D,MULTI,SINGLE,@MIT,M@DAL,PHIDH,
PD,PS,PH,SCR1,SCR2,SCR3,SCR4)

PP,USETD,GMD,G@D,PHIDH,PD,PS,PH are GIN@ file numbers of their respective data

blocks - integer - input.

MULTI - MULTI > 0 implies m's are present - integer - input.
SINGLE - SINGLE > O implies s's are present - integer - input.
PMIT - QMIT > 0 implies o's are present - integer - input.

M@DAL - MPDAL = M@DA implies a modal formulation - BCD - input.
SCRT,++5_ GINg file numbers of 4 scratch files - integer - input.
SCR4

4.61.8.3 Subroutine Name: FRRD1C

1. Entry Point: FRRDIC
2. Purpose: To form and decompose "left" hand side of the frequency equation.

3. Calling Sequence: CALL FRRDIC (FRL,FRQSET,MDD,BDD,KDD,I,ULL,LLL,SCRT,SCR2,SCR3,
SCR4,1G@@D)

FRL ,MDD,BDD,KDD,ULL,LLL,SCR1-4 are GIN@ file numbers of their respective data blocks -

integer - input.

FRQSET - Set id of selected frequency set - integer - output.

i - Current frequency counter - integer - input.

IG@PD - IG@ED = 1 implies a singular matrix - integer - output.
4.61.8.4 Subroutine Name: FRRD1D

1. Entry Point: FRRDID

2. Purpose: To solve for displacements given decomposition factors and loads.

4.61-6

FUNCTIONAL MODULE FRRD (FREQUENCY RESPONSE - DISPLACEMENT APPROACH)

3. Calling Sequence: CALL FRRD1D (PD,ULL,LLL,SCR1,SCR2,UDVP,I,NL@AD,IG@@D,NFREQ)

PD,ULL,LLL,UDVP,SCR1,SCR2 are GIN@ file numbers of their respective data blocks - integer -
input.

I Current frequency count - integer - input.

NLPAD - Number of loads - integer - input.
IGPPD - IGPPD = 1 implies a singular matrix - integer - input.
NFREQ - Total number of frequencies - integer - input.

4.61.8.5 Subroutine MName: FRRDIE

1. Entry Point: FRRDIE
2. Purpose: To reorder displacements if necessary.

3. Calling Sequence: CALL FRRD1E (UDVP,UDV,NL@AD,I)

UDVP - GINP file number of displacements sorted by frequency/load - integer - input.
ubpv - GIND file number of displacements sorted by load/frequency - integer - input.
NLPAD - Number of loads - integer - input.

I - Number of frequencies solved.
4.61.8.6 Subroutine Name: FRRDIF

1. Entry Point: FRRDIF
2. Purpose: To solve the uncoupled modal equations.

3. Calling Sequence: CALL FRRD1F (MHH,BHH,KHH,FRL,FRQSET ,NL@AD,NFREQ,PH,UHV)

MHH ,BHH ,KHH,FRL ,PH,UHV are GIN@ file numbers of their respective data blocks - integer -
input.

FRQSET - Selected frequency set id-integer - input.
NFREQ - Number of frequencies in FRQSET - integer - input.

NLPAD - Number of loads (subcases in current execution) - integer - input.
4.61.8.7 Subroutine Name: FACTRU

1. Entry Point: FACTRU

2. Purpose: To decompose a matrix by invoking real unsymmetric decomposition [A]=> [LLI[UL].

4.61-7 (3/1/74)

FUNCTIONAL MODULE FRRD (FREQUENCY RESPONSE - DISPLACEMENT APPROACH)

3. Calling Sequence: CALL FACTRU ($n,A,LL,UL,SCRT,SCR2,SCR3)

where A,LL,UL,SCR1,SCR2,SCR3 are the GINP file numbers of their respective data blocks.

n - statement number to return to if A is singular.

4. Design Requirements:
a) A must have a trailer
b) A trailer will be written on LL and UL

c) Open core must be available at /FCTRUX/

4.61.9 Design Requirements

Eight scratch files are used by FRRD.
Open core at /FRRDA1/ is used as follows:

4.61-7a (3/1/74)

MODULE FUNCTIONAL DESCRIPTIONS

C@MM@N/FRRDA1/

Frequency List NFREQ

ID]

Sca]e]

D ID, scale for all members of a DLBAD card

2

Sca]e2

Table ID's } NTABL
} 2* LUSETD (As many loads as will fit
} 2* LUSETD) up to all frequencies.

F (f) g NTABL

Buffer

Open core at /FRRDB1/, /FRRDC1/, /FRRDD1/ are used by the matrix routines.

Open core at /FRRDF1/ is used as follows:

C@MM@N/FRRDF1/

Frequency List NFREQ

Mi h set size

h set size

i
i

B, s h set size
|

UHV 2

—

4.61.10 Diagnostic Messages

2 GIN@ Buffers

Module FRRD may issue the following diagnostic messages:

3005, 3008 and 3045.

4.61-8

FUNCTIONAL MODULE SDR3 (STRESS DATA RECOVERY - PHASE 3 - S@RT1 TO S@RT2 PROCESSOR)

4.62 FUNCTIONAL MODULE SDR3 (STRESS DATA RECOVERY - PHASE 3 - SPRT1 to S@PRT2 PROCESSOR)

4.62.1 Entry Point: SDR3

4.62.2 Purpose

To transpose (perform SPRT2) data blocks containing data prepared for output in the form of
ELEMENT-ID-SETS or P@INT-ID-SETS versus TIME-STEP or FREQUENCY-STEP to data prepared for output
in the form of TIME-STEP-SETS or FREQUENCY-STEP~SETS versus ELEMENT-ID or P@INT-ID.

4.62.2.1 Example of S@RT1 and SPRT2 Qutput

Below is a table of @FP printed output of SDR3 input (S@RT1) and output (S@RT2) data blocks.

SDR3 Input Data Block Printed (SPRT1)

TIME = 1.0 DI SPLACGCEMENTS

POINT-ID il T2 3 R1 R2 R3
1 0.0 4.53 0.0 0.0 0.0 0.0
2 0.0 502 0.0 0.0 0.0 0.0

TIME = 2.0 DISPLACEMENTS

POINT-ID T1 2 T3 R1 R2 R3
1 0.0 4.83 0.0 0.0 0.0 0.0
2 0.0 5.53 0.0 0.0 0.0 0.0

TIME = 3.0 D IS PLAGEMENTS

POINT-ID T1 T2 s R1 R2 R3
1 0.0 6.84 0.0 0.0 0.0 0.0
2 0.0 7.96 0.0 0.0 0.0 0.0

SDR3 Output Data Block Printed (S@RT2)

POINT-ID = 1 DISPLACEMENTS

TIME Tl T2 T3 R1 R2 R3
1.0 0.0 4.53 0.0 0.0 0.0 0.0
2.0 0.0 4.83 0.0 0.0 0.0 0.0
3.0 0.0 6.84 0.0 0.0 0.0 0.0

POINT-ID = 2 DISPLACEMENTS

TIME T1 T2 13 R1 R2 R3
10 0.0 5Ll2 0.0 0.0 0.0 0.0
2.0 0.0 5.93 0.0 0.0 0.0 0.0
3.0 0.0 7.96 0.0 0.0 0.0 0.0

4.62-1

MODULE FUNCTIONAL DESCRIPTIONS

4.62.3 DMAP Calling Sequence

SDR3 INT,IN2,IN3,IN4,INS,IN6/BUTT,PUT2,BUT3,PUT4,QUTS,PUTE/ $

4.62.4 Input Data Blocks

One to six data blocks in any order desired. Input data blocks to SDR3 which are purged

are ignored.

4.62.5 Output Data Blocks

One to six data blocks in corresponding order to that of the input data blocks. If S@RT2
is to be performed, there must be an available output data block for the corresponding innut data

block (Non-Fatal Error if this condition is not met).
4.62.6 Parameters
None
4.62.7 Method
4.62.7.1 Input and Output Data Block Record Arrangements

Both the input and output data blocks of SDR3 have the following format:

4.62-2

FUNCTIONAL MODULE SDR3 (STRESS DATA RECOVERY - PHASE 3 - S@RT1 TO S@RT2 PROCESSOR)

4.62 FUNCTIONAL MODULE SDR3 (STRESS DATA RECOVERY - PHASE 3 - SPRT1 to S@RT2 PROCESSOR)

4.62.i Entry Point: SDR3

4.62.2 Purpose

To transpose (perform S@RT2) data blocks containing data prepared for output in the form of
ELEMENT-ID-SETS or P@INT-ID-SETS versus TIME-STEP or FREQUENCY-STEP to data prepared for output
in the form of TIME-STEP-SETS or FREQUENCY-STEP-SETS versus ELEMENT-ID or P@INT-ID.

4.62.2.1 Example of SPRT1 and S@PRT2 Output

Below is a table of @FP printed output of SDR3 input (S@RT1) and output (S@RT2) data blocks.

SDR3 Input Data Block Printed (S@RT1)

TIME = 1.0 DISPLACEMENTS

POINT-ID T1 i T3 R1 R2 R3
1 0.0 4,53 0.0 0.0 0.0 0.0
2 0.0 b2 0.0 0.0 0.0 0.0

TIME = 2.0 DILT,-SERels NG ERMEEENATRS

POINT-ID T1 T2 T3 R1 R2 R3
1 0.0 4.83 0.0 0.0 0.0 0.0
2 0.0 5.53 0.0 0.0 0.0 0.0

TIME = 3.0 D1 SuP LA CGEMENTES

POINT-ID 17l T2 T3 R1 R2 R3
1 0.0 6.84 0.0 0.0 0.0 0.0
2 0.0 7.96 0.0 0.0 0.0 0.0

SDR3 Output Data Block Printed (SPRT2)

POINT-ID = 1 DULES: PULTASG EN MUESNISIES

TIME 10 72 i3 R1 R2 R3
1.0 0.0 4 .53 0.0 0.0 0.0 0.0
2.0 0.0 4.83 0.0 0.0 0.0 0.0
3.0 0.0 6.84 0.0 0.0 0.0 0.0

POINT-ID = 2 D ISP L ANE: B MEERNSTESS

TIME T1 T2 T3 R1 R2 R3
%0 0.0 5l 0.0 0.0 0.0 0.0
220 0.0 5.53 0.0 0.0 0.0 0.0
3.0 0.0 7.96 0.0 0.0 0.0 0.0

4.62-1

MODULE FUNCTIONAL DESCRIPTIONS

4.62.3 DMAP Calling Sequence

SDR3 IN1,IN2,IN3,IN4,IN5,IN6/@UTT,PUT2,0UT3,PUT4,PUT5,0UT6/ $

4.62.4 Input Data Blocks

One to six data blocks in any order desired. Input data blocks to SDR3 which are purged

are ignored.

4.62.5 Output Data Blocks

One to six data blocks in corresponding order to that of the input data blocks. If SPRT2
is to be performed, there must be an available output data block for the correspondina inobut data

block (Non-Fatal Error if this condition is not met).
4.62.6 Parameters
None
4.62.7 Method
4.62.7.1 Input and Output Data Block Record Arrangements

Both the input and output data blocks of SDR3 have the following format:

4.,62-2

FUNCTIONAL MODULE SCR3 (STRESS DATA RECOVERY - PHASE 3 - S@RT1 TO S@RT2 PROCESSOR)

J Header } Record 0
/ ID } Record 1
DATA } Record 2
ID } Record 3
Group T DATA } Record 4
ID }Record N -1
DATA }Record N (an even number)
1D
DATA
Group M
ID
DATA

4.62-3

MODULE FUNCTIONAL DESCRIPTIONS

4.62.7.2 Description of a Group

1. An input (S@RT1) data block Group and an output (SPRT2) data block Group are given in the

following figures:

Theoretical Input Group

(SERT1)
ID
Data Type 1 Record pair for
DATA Data Type 1.
Entries 1 thru K,
. Base Set for
Value 1.
ID
Data Type J Record pair for
Data Type J.
DATA
Entries 1 thru Kj
One Input Group
1D
Data Type 1 Record pair for
Data Type 1.
DATA
Entries 1 thru K,
Base Set for
Value I.
ID
Data Type J Record pair for
Data Type J.
DATA
Entries 1 thru K,

4.62-4

FUNCTIONAL MODULE SDR3 (STRESS DATA RECOVERY - PHASE 3 - S@RT1 TO S@RT2 PROCESSOR)

Theoretical Output Group
(S@RT2)

ID Record

Data Type 1 Record pair for
PAINT or ELEMENT 1,

DATA Record
Entries 1 thru I

SPRT2 Collection
of Data Tyne 1.

ID Record

Data Type 1 Record pair for
POINT or ELEMENT K,

DATA Record
Entries 1 thru I

One Output Group

ID Record

Data Type J Record pair for
PPINT or ELEMENT 1

DATA Record J

Entries 1 thru I

S@RT2 Collection
of Data Type J.

ID Record

Data Type J Record pair for
P@INT or ELEMENT K

DATA Record J

Entries 1 thru I /

4.62-5

MODULE FUNCTIONAL DESCRIPTIONS

2. In the above figures each Group is independent of any other Group so far as SDR3 need

be concerned.
3. A Group is defined as a collection of successive records belonging to the same subcase.
4. An ID-Record is of a fixed size equal to 146 words.

5. A DATA-Record contains multiple Entries with each Entry being of a length in words

specified within the immediately preceding ID-Record.

6. I = The number of Values (FREQUENCIES or TIMES) present in the Groun.

7. A Base Set is a sub-Group of the Group containing data records for one particular Value.
8. J = The number of different Data Types (DISPLACEMENTS, VELOCITIES, etc.) within a Base Set.

9. Kj = The number of Entries for Data Type j.

10. Respective records of any two Base Sets within an input data block Group are of the

same size.

L
11. Respective Entries within respective DATA Records of all Base Sets of an input data

block Group begin with the same ELEMENT-ID or P@INT-ID.

12. Most input data blocks will contain only one Group having but one Data Type. There is

normally more than one Base Set within any Group.

13. A pictoral representation of a SPRT1 to SPRT2 process is given on the next page using

the following data:

Values = 3 time steps (1.0, 2.0, 3.0)
1 - Displacements (3 Entries/Value - points 5, 8 and 9)

Data Types = {2 - Velocities (2 Entries/Value - points 3 and 4)
3 - Accelerations (2 Entries/Value - points 1 and 4)

4.62-6

FUNCTIONAL MODULE SDR3 (STRESS DATA RECOVERY - PHASE 3 - S@RT1 TO S@RT2 PROCESSOR)

Recor
DATA
ecord
Base
Set

Base
Set

|
|
|
|

Set

Input Data Block

SPRT1 Group

DISPLACEMENTS
= 1.0

Pt. 5 Entry

Pt BUENELY.

PtenOSENtYY

VELOCITIES
= 1.0

PELIS Enbry

Pt. 4 Entry

ACCELERATIONS
=1.0

Pl s EnGrY.

~ Pt. 4 Entry

DISPLACEMENTS
= 2.0

PE. 5 _Entry

~Pt. 8 Entry

Pt. 9 Entry

VELOCITIES
= 2.0

L RERT3UENRY

SPRT1 to S@RT2
Process

Output Data Block

SPRT2 Group

Pt. 4 Entry

ACCELERATIONS
= 2.0

Pt. T Entry

Pt. 4 Entry

DISPLACEMENTS
= 3.0

IR EOREN B

Pt. 8 Entry

PEgaEntyy

VELOCITIES
= 3.0

Pt 3LEntry

Pt. 4 Entry

ACCELERATIONS
= 3.0

Pt. T Entry

Pt. 4 Entry

4.62-7

DISPLACEMENTS ID
Pt:ab Record
£ SRR UDIRERERY
t = 7.0 Entry }Rgﬁxd
t = 3.0 Entry
DISPLACEMENTS
Pt 8
t =1.0 Entry
t = 2.0 " Entry
ti= 30 BEERER
DISPLACEMENTS
Pt. 9
t = T.0 Entry
t =2.0 Entry
to= 3.0 SEptey
VELOCITIES
Pt a3
t = L0 T ERCRY
t =250 ST Enbry
t = 3.0 Entry
VELOCITTIES
Pt. 4
t =T1.0 Entry
t = 2.0 Entry
t = 3.0 ! Entry
ACCELERATIONS
Pt
= L EENERY
= 2,00 RENtrY.
t = 3.0 Entry
ACCELERATIONS
Pt. 4
£ =150 i=Entny
& =020/ 8Entry
t =810 TEntry

MODULE FUNCTIONAL DESCRIPTIONS

4,62.7.3 Physical Data Processing (S@RT1 to S@RT2)

A11 emphasis is placed on the Group, and thus in performing SPRT2 a Group pointer always

points to the first record of the current Group being processed.

Each Group is processed and completed successively until all Groups have been processed.

th h

For each Group a loop of J passes is executed. During the j~' pass of this loop, the jt

Data
Type (note 4.62.7.2) present of the Base Sets will be collected and transposed. The transpose
consists of determining how many Entries are present for the current Data Type and then dividing
the available core into that many Regions. The Entries of each DATA record for the jth Data Type
are distributed in Entry order, one each, to the Regions. At the time each Entry is distributed
to a Region, the Entry's first word (P@INT-ID or ELEMENT-ID) is replaced by the Value (FREQUENCY
or TIME) in the ID-Record associated with the DATA-Record from which the Entry has come. At the
conclusion of each pass of this loop, output to the data block can proceed. For each Region an
ID-Record is written. This ID-Record is a copy of the input data block ID-Record in the first
Base Set for the jth Data Type, having had the Value (FREQUENCY or TIME) replaced with the P@INT-

ID or ELEMENT-ID of the respective Region. The filled portion of the Region is then output as the
DATA-Record.

4.62.7.4 Spill Logic

If during the Entry distribution the Regions can hold no more Entries, spill to scratch files

is performed. A Layer of records is written, one record for each Region, each time spill is

required.
Scratch 1 Seratchieze s s e Scratch N
Region 1 Region 2 Region N
Region N+1
Layer =
Region K-2

Region K-1 Region K

e by e

4.62-8

FUNCTIONAL MODULE SDR3 (STRESS DATA RECOVERY - PHASE 3 - S@RT1 TO SPRT2 PROCESSOR)

At the output stage, if spill tc the scratch files has occurred, the Regions in the scratch

files are output before the in-core Regions.
4.62.8 Subroutines
4,62.8.1 Subroutine Name: SDR3A

1. Entry Point: SDR3A
2. Purpose: To perform all S@RT2 operations when called by the driver routine SDR3.
3. Calling Sequence: CALL SDR3A (@FPFIL)

@FPFIL - An array of six words, one for each input data block, each of which is set
to zero before the CALL and then reset by SDR3A with a traceback positive

integer in the event an error for its respective data block occurred.

4.62.9 Design Reguirements

1. The design requires that the largest DATA-Record fit in core. If a problem is outputting
so many ELEMENT-ID or P@INT-ID Entries for a particular FREQUENCY or TIME that core is

insufficient, then more subcases in conjunction with output request sets are recommended.

2. C@MM@N/SDR3ZZ/Z(1)
This common block defines open core for the SDR3 module.

3. SDR3 will open all its scratch files (8).

4.62.10 Diagnostic Messages

A1l errors within SDR3 are considered non-fatal-User Warning type errors. Any error
resulting in termination of the SPRT2 process results in the setting of an SDR3 traceback number,
an appropriate message, and a call to the @FP (Output File Processor) which in turn will output
the data block in SPRT1 format. If @FP is unable to output the data block it in turn will call

the TABPRT routine, and the data block will be printed.

4.62-9 (8/1/72)

FUNCTIONAL MODULE XYTRAN (XY - OUTPUT DATA TRANSLATOR)

4.63 FUNCTIONAL MODULE XYTRAN (XY - OUTPUT DATA TRANSLATOR)

4.63.1 Entry Point: XYTRAN

To read the first record of the XYCDB data block (prepared by subroutine IFP1XY of Executive
module IFP1); to set xy-output parameters from the serial specifications of this record; to inter-
pret the user curve requests; to locate in the XYTRAN input data blocks (2 thru 6) the data sets
containing the requested curve data; to prepare summary and xy-coordinate data for the requested
curves and output them to the system output printer and punch units; and to prepare xy-coordinate
data and output them to the XYTRAN output data block for direct plotting by the XYPL@T module of

those curve requests specified to be plotted.

4.63.3 DMAP Calling Sequences

4.63.3.1 Static Analysis (Rigid Format 1)

1. Stress data recovery output.

XYTRAN XYCDB,@PG2,0QG2,PUGV2,PES2,PEF2/XYPLTT/C,N,TRAN/C,N,PSET/V,N,PFILE/V,N,CARDNg $
4.63.3.2 Transient Response - Direct Formulation. (Rigid Format 9)

1. Vector data recovery output.

XYTRAN XYCDB,@UDVC2,,,,/XYPLTFA/C,N,FREQ/C,N,DSET/V,N,PFILE/V,N,CARDN® $

2. Stress data recovery output.

XYTRAN XYCDB,@PPC2,PQPC2,PUPVC2,PESC2,PEFC2/XYPLTF/C,N,FREQ/C,N,PSET/V,N,PFILE/V,N,CARDND $

3. Random response output.

4.63.3.3 Transient Response - Direct Formulation. (Rigid Format 9)

1. Vector data recovery output.
XYTRAN XYCDB,@UDV2,@PNL2,,,/XYPLTTA/C,N,TRAN/C,N,DSET/V,N,PFILE/V,N,CARDNG $
2. Stress data recovery output.

XYTRAN XYCDB,@PP2,8QP2,pUPV2,PES2,PEF2/XYPLTT/C,N,TRAN/C,N,PSET/V,N,PFILE/V,N,CARDND $

4.63.3.4 Frequency Response ~ Modal Formulation. (Rigid Format 11)

1. Vector data recovery output.

XYTRAN XYCDB,@UHVC2,,,,/XYPLTFA/C,N,FREQ/C,N,HSET/V,N,PFILE/V,N,CARDN® $

4.63-1 (7/4/76)

4.63.

4.63.

4.63.

4.63.

MODULE FUNCTIONAL DESCRIPTIONS

2. Stress data recovery output.

XYTRAN XYCDB,QPPCZiﬁQPCZ,QUPVCZ,GESCZ,GEFCZ / XYPLTF / C,N,FREQ / C,N,PSET / V,N,PFILE /
V,N,CARDN®

3. Random Response output
XYTRAN XYCDB,PSDF,AUT@,,, / XYPLTR / C,N,RAND / C,N,PSET / V,N,PFILE / V,N,CARDN® $
3.5 Transient Response - Modal Formulation (Rigid Format 12)

1. Vector data recovery output.

XYTRAN XYCDB,QUHV2,@PNL2,,, / XYPLTTA / C,N,TRAN / C,N,HSET / V,N,PFILE / V,N,CARDND $

3.6 Aerodynamic - Modal Flutter Analysis (Rigid Format 10)
1. VG curve output.

XYTRAN XYCBD,@VG,,,, / XYPLTCE / C,N,VG / C,N,PSET / V,N,PFILE / V,N,CARDN® $

3.7 Heat - Transient Analysis
1. XYTRAN XYCDB ,H@PP2,HPQP2,HPUPV2, ,HPEF2/HXYPLTT/C,N,TRAN/C,N,PSET/V,N,PFILE/V,N,CARDN® $

4 Input Data Blocks

XYCDB - XY O<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>