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SUMMARY 

A Bragg X-ray spectrometer equipped with a volume-sensitive Geiger 
counter and Soller s l i t s  and employing f i l t e r e d  molybdenum K a  radia- 
t i o n  was used t o  obtain a se t  of diffracted intensi ty  curves as a Punc- 
t i o n  of angle fo r  supercooled water. Diffracted intensi ty  curves i n  
the temperature region of 21° t o  -16O C were obtained. The minimum 
between the two main diffract ion peaks deepened continuously with 
lowering temperature, indicating a gradual change i n  the in te rna l  
structure of the water. No discontinuity i n  t h i s  trend was noted a t  
the melting point.  The in terna l  structure of supercooled water was 
concluded t o  become progressively more ice- l ike as the temperature 
is  lowered. 

I NTRODUC TI 0 N 

Recent investigations of the  spontaneous freezing temperatures 
of supercooled water droplets within the s ize  range of droplets found 
i n  the atmosphere i n  icing clouds indicate the poss ib i l i ty  tha t  two 
different  mechanisms may i n i t i a t e  crystal l izat ion:  (1) Heterogeneous 
nucleation (nucleation in i t i a t ed  by foreign material  such as undissolved 
par t ic les )  appears t o  be predominant i n  the lesser  supercooled tempera- 
ture  range and may explain the s t a t i s t i c a l  dependence of the freezing 
temperature on dzoplet s ize  indicated i n  laboratory experiments on 
droplets supported by a surface (references 1 and 2 ) ,  (2) Laboratory 
investigations of droplet clouds and sublimation i n  the neighborhood 
of -38O t o  -42O C indicate a very high nucleation r a t e  a t  these tempera- 
tures  (references 3 t o  5) which indicates the poss ib i l i ty  of homogeneous 
nucleation by groups of atoms or molecules of water i t s e l f .  

Several explanations of homogeneous nucleation which suggest tha t  
the in te rna l  s t ructure of the supercooled water may be responsible 
fo r  the formation of the homogeneous nucleus or embryo have been proposed 



2 NACA 'I% 2532 

(references 6 and 7 ) .  The questions tha t  a re  raised thereby are: 

(1) Is the  s t ructure of supercooled water different  from tha t  of 
water above the  melting point ? 

(2) I s  there a variation of the structure of supercooled water 
with temperature ? 

(3) Is the structure of supercooled water more ice- l ike than t h a t  
of water above the melting point ? 

The c rys t a l  structure of ice  has been studied by many investigators 
using X-ray d i f f rac t ion  techniques, and an accurate knowledge of the 
positions of the oxygen atoms i n  the  l a t t i c e  has been established 
(references 8 t o  12). Because of weak coherent X-ray scat ter ing by 
hydrogen a-homs, the exact posit ion of the  hydrogen atoms i n  the  c rys ta l  
l a t t i c e  was not known with comparable certainty.  Recent neutron- 
diffract ion studies of ice,  however, have now located the posit ion of 
the hydrogen centers with reasonable cer tainty (reference 13). 

The diffract ion of X-rays by l iquid water a t  temperatures above 
o0 C, has a l so  been thoroughly investigated (references 11 and 14 t o  
17). The general structure of water i s  now well  known. Typical of 
most liquids, there i s  a lack of long range order of the atoms, but a 
short range order does exis t .  The s t ructure of water is  essent ia l ly  
tetrahedral,  t ha t  is, each oxygen atom i s  te trahedral ly  surrounded by 
four oxygen atoms with one hydrogen atom located on the center l i ne  
of each pa i r  of oxygen atoms. I n  ice  this arrangement exten@ through- 
out the crystal ,  whereas i n  l iquid water, where the nolecules are  not 
strongly bound but can readi ly move about, only an average loca l  order 
ex is t s .  This condition was described i n  reference 17 by the term 
"broken-down ice  structure", t h a t  i s ,  each molecule i s  on the  average 
bound tetrahedral ly  t o  approximately four neighboring molecules as i n  
ice. These bonds are  not permanent but a re  continually broken and 
reformed so t h a t  a t  any instant  a molecule i s  bound t o  less  than four 
neighboring molecules and has other neighbors a t  a continuous variety of 
distances. This " f i l l i n g  in" accounts f o r  the greater density of water. 
There i s  good qual i ta t ive agreement among the many investigators t h a t  
t h i s  in te rna l  arrangement or degree of order i s  temperature dependent; 
t ha t  i s ,  a s  the temperature of water i s  lowered the s t ructure appears 
t o  become more ice -like. As  ear ly  a s  1933, Bernal and Fowler ( refer-  
ence 11) c lass i f ied  the structure of water below 4' C a s  ice-tridymite 
l ike.  It was suggested " th is  arrangement might be expected t o  be 
common i n  supercooled water". 

Inasmuch as experimental X-ray diffract ion data on supercooled 
water were not available, an experiment t o  extend the data in to  the 
supercooled region was undertaken a t  the NACA Lewis laboratory as a 
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par t  of an investigation of the fundamental properties ,of supercoole3 
water droplets found i n  ic ing clouds. 

Because supercooled water probably cannot be circulated i n  a 
system employing a j e t  (references 15 t o  17) without c rys ta l l iz ing  and 
because the probabili ty of accidental  seeding (such a s  by a f r o s t  
pa r t i c l e  from above the air-water interface) increases with time, a 
method must be used which combines a sui table  support fo r  the  l iquid 
and high X-ray in tens i ty  t o  reduce exposure time. The method chosen 
fo r  t h i s  investigation i s  essent ia l ly  t h a t  used i n  the pioneer invest i -  
gations of l iquids by Stewart and Morrow (reference 18). with the ioni -  
zation c-er replaced by a volume-sensitive Geiger counter. 

APPARATTJS AND PROCEDURE 

A Bragg X-ray spectrometer equipped with a Geiger counter and 
Sol ler  s l i ts  was employed using f i l t e r e d  rnolfldenum Ka radiat ion 
( f igs .  1 and 2) .  A zirconium oxide f i l t e r  was used a t  the Geiger tube 
entrance. Each Sol ler  s l i t  system consisted of nine channels 0.017 
inch wide by Q.365 inch high with lead spacers 0.005 inch thick. A 

3- Sol ler  s l i t  l8 inches long was mounted between the X-ray tube and the  
1 s q l e  and a similar one 2- inches long was mounted between the sample 2 

and the Geiger counter. The X-ray tube current was held constant by 
an external current controller t h a t  automatically adjusted the f i l a -  
ment current t o  compensate f o r  any changes i n  tube current. 

The water sample (1 t o  2 cc) was i n  a cyl indrical  glass  tube 
(0.66-cm diam) which was blown with a thin-walled central  section f o r  the 
transmission of the radiation. The greater wall  thickness a t  top and 
bottom f a c i l i t a t e d  mounting and reduced breakage. The sample was 
rotated a t  10 rpm by a synchronous motor t o  reduce the e f f ec t  of 
i r r egu la r i t i e s  t h a t  might be present i n  the glass tube. The temperature 
of the  sample was measured by an iron-constantan thermocouple encased 
i n  a 1116-inch diameter s ta in less  s t e e l  tube placed just  above the 
region exposed t o  the  X-ray beam and was recorded by a self-balancing 
potentiometer. The thermocouple tube a lso  acted as a gentle s t i r r e r .  
A double-walled container with entrance and e x i t  s l o t s  fo r  the X-ray 
beam was f i l l e d  with a low-temperature mixture of alcohol, water, and 
dry i ce  and placed around the  water samgle, which was thereby cooled 
by radiation. The bath was kept a t  the proper slush point by adding 
dry  ice .  In addition t o  the simplicity of t h i s  method, there were 
several desirable features:  (1) the  r a t e  of cooling was low, which 

C was an advantage when supercooling samples of t h i s  size,  (2) the e n t i r e  
sample tube, except a t  beam entrance and ex i t  openings, was surrounded 

, by a constant temperature wall, and (3) the bath walls were colder 
-a than the  sample, which kept the glass  tube f r e e  of moisture and f r o s t  
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deposits on the outer surface since the f ros t  formed on the metal sleeve V 
rather than on the glass s q l e  tube. Because the sample tube was rotated, 
the rather large, recessed X-ray exit  opening i n  the bath walls for  the 
scattered radiation did not produce prohibitive temperature inhomogenei- 
t ies .  The temperature was readily held t o  the desired value within 
a . 5 '  C and in  some runs within 9 .2 '  C. All water used i n  the experi- 
ment was t r i p l e  dist i l led.  Specimens of th i s  purity were readily super- 
cooled t o  -80 C and usually could be held a t  temperatures i n  th i s  range 
for  4 t o  6 hours without diff iculty although occasional specimens crys- 1v NJ 

ta l l ized much sooner, probably because of ice crystals fa l l ing into the tp u1 
water from regions above the air-water interfaee. Difficulty was encoun- 
tered, however, i n  keeping saqples a t  temperatures below -8' C by t h i s  
method for  a sufficiently long period t o  permit obtaining a complete 
diffraction picture of the region of interest.  A single complete run 
(approximately 3 hrs) was obtained with the tmmple at -16' C using a 
freshly blown tube and the t r ip le-dis t i l led  water. 

Data runs were made by obtaining the number of counts in a 1-minute 
interval a t  each goniometer setting. Readipgs were taken a t  114' inter- 
vals i n  the region containing the two main diffraction peaks, 11' t o  21°, -. 
and a t  112' or lo intervals for  the res t  of the region from 0' t o  90'. 
The 1-minute counting period was a compromise between the desirability 
of short data run times from the standpoint of avoiding accidental 4 

crystallization and the need for long counting times for  counter s ta t is -  
t i c a l  accuracy. Inasmuch a s  the counting rates within the angular 
region of interest were between 450 and 2500 counts per minute, the 
counting losses due t o  the recovery time of the counter were small and 
therefore were neglected. In order t o  obtain reasonable s t a t i s t i c a l  
accuracy, several runs (8 t o  15) were made a t  each temperature and the 
f i na l  curves presented represent average values. Successive runs were 
made i n  opposite angular directions t o  minimize the effect of any time 
dependent changes i n  intensity of the X-ray source. 

Several corrections t o  the curves of diffracted intensity as a 
function of angle were necessary. The f i r s t  correction eliminated the 
effect of scattering by the glass tube. For t h i s  purpose a diffuse 
diffracted intensity curve (average of several runs) for  the empty 
glass tube was obtained and corrected for  absorption by the water 
sample (reference 19). This corrected glass-diffracted intensity curve 
was then subtracted from the curve obtained for the water and glass. 
The diffracted intensity curve was then corrected fo r  self-absorption 
by the supercooled water sample (reference 20) . Finally, the diffrac- 
ted intensity curve was corrected for  the reduction i n  measured inten- 
s i ty  due t o  polarization (reference 20). 
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RESULTS AND DISCUSSION 

The average diffracted in tens i ty  curves, ranging from 21' t o  -8' C, 
corrected f o r  absorption, polarization, and scat ter ing by the glass 
container, a re  shown i n  f igure 3. A diffracted in tens i ty  curve f o r  a 
single data run a t  -160 C i s  indicated i n  the same f igure by a dashed 
l i n e j  i n  addition, the  positions and re la t ive  in tens i t ies  of the two 
most intense d i f f rac t ion  peaks f o r  i ce  (reference 8) a re  shown. The 
curves a t  21' and 4' C were obtained f o r  d i rec t  comparison with the 
supercooled data and are  i n  good agreement with previously published 
data i n  t h i s  temperature region although the resolution of the two 
prominent peaks i s  somewhat infer ior .  This sacr i f ice  in resolving 
power was necessary i n  order t o  keep the time required f o r  the  super- 
cooled data runs t o  a minimum and thus reduce the probabili ty of 
accidental  c rys ta l l iza t ion  of the water sample. 

There a re  three interest ing features  of this s e t  of diffracted 
in tens i ty  curves ( f ig .  3) : ( 1) The most prominent peak shows a 
small but  continuous s h i f t  toward smaller scat ter ing angles as  the 6 .. temperature i s  lowered, The peak s h i f t s  from 13' 15' a t  21 C t o  
l Z O  40' a t  -8O C. (2) The second diffract ion peak shows no tendency 
t o  s h i f t  angular posit ion with temperature but remains a t  a scat ter ing 
angle of approximately 18' 20 ' throughout the temperature range inves- 
t igated. (3) The most s t r iking feature of the  s e t  of diffracted inten- 
s i t y  curves i s  the gradual deepening of the  minimum between the two main 
peaks as the temperature i s  lowered in to  the supercooled range; tha t  i s ,  
the second peak becomes more sharply resolved. T h i s  i s  a continuation 
of the trend found by other investigators a t  temperatures above the 
melting point and is  an indication tha t  the  in te rna l  s t ructure of the 
water i s  apparently changing i n  a gradual and continuous manner as  the 
degree of supercooling i s  increased. No discontinuity i n  t h i s  trend 
occurs a t  the melting point. Analysis of diffract ion curves above the 
melting point by previous investigators (references 11 and 17) indicate 
tha t  the  increase i n  resolution of t h i s  second peak as  the ternperatme 
i s  lowered i s  due t o  a more ice- l ike in te rna l  structure of the  water 
sample. Theref ore, a reasonable conclusion that can be drawn, f o r  the 
temperature range investigated, is  t h a t  the supercooled water is  becom- 
ing progressively more ice-like i n  structure as the temperature i s  
lowered. This trend i s  consistent with the density change with tempera- 
tu re  of supercooled water reported i n  reference 21and shown i n  f igure 4. 
The density of water decreases throughout the supercooled range indica- 
ted  i n  the figure.  This decrease could only be explained by a gradual 
change i n  the in te rna l  arrangement of the water molecules toward a 
less  closely packed structure.  

tr 
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CALCULATION OF SPONTAPaEOUS FREEZLNG T E m T U R E  

FROM DIFFRACTION DATA 

Various theories of the mechanism of the i n i t i a t i o n  of crystal l iza-  
t i on  of supercooled water by homogeneous nucleation involve assumptions 
tha t  the in te rna l  structure of supercooled water becomes local ly  more 
ordered, or more ice-like, as the temperature i s  lowered; that is, 
groups of molecules form ordered aggregates or  microcrystals which 
can a c t  as  freezing nuclei. Whether or not these aggregates can 
i n i t i a t e  c rys ta l l iza t ion  depends on the i r  structure,  t h e i r  effect ive 
size, and the temperature of the supercooled water. Inasmuch as  the 
X-ray d i f f rac t ion  data of t h i s  report  indicate tha t  the in te rna l  
s t ructure of supercooled water apparently becomes prpgressively more 
ice- l ike as  the  temperature i s  lowered, qual i ta t ive support is  len t  
t o  the suggestions appearing i n  .the l i t e ra tu re  ( fo r  example reference 7) 
t ha t  the spontaneous freezing temperature can be calculated theoret i -  
ca l ly  from the Thomson equation presented i n  reference 22. The 
temperature T r ,  a t  which an isomorphic pa r t i c l e  of equivalent radius 
r can i n i t i a t e  freezing, as  given by the Thomson re la t ion  is 

where 

TM melting point of substance (273' K f o r  water) 

a i n t e r f ac ia l  surface energy between l iquid and so l id  (computed by 
an approximate re la t ion  suggested by Vol,mer i n  reference 22, 
p. 1811 t o  be 10.5 ergs/cm2 f o r  water) 

M molecular weight (18 f o r  water) 

Q molecular heat of fusion (1440 cal/mole = 6.03 X lo1' ergs/mole 
f o r  water) 

p density of so l id  phase (0.92 g/cm3 f o r  water) 

I n  ice, each molecule i s  surrounded by four other molecules a t  a 
r ad ia l  distance of 2.76 A with a second s e t  of neighbors a t  a r ad ia l  
distance of 4 ,5lA.  I n  reference 7, the radius of t h i s  second sphere of 
coordination f o r  ice  i s  assumed t o  be the effect ive radius of the 
homogeneous nucleus and the spontaneous freezing temperature of super- 
cooled water is  calculated from the Thomson equation t o  be: 
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This calculated spontaneous freezing teaperatwe agrees well  with the 
experimental r e su l t s  of references 3 and 4. 

In order f o r  the Thomson equation t o  be valid, the  pa r t i c l e  
acting as  nucleus must be t r u l y  isomorphic because no term tha t  takes 
in to  account the  work of nucleus formation i s  included. If it is 
assumed tha t  the microcrystals present i n  supercooled water have a 
l a t t i c e  s t ructure ident ica l  with t h a t  of ice  a t  the spontaneous 
freezing temperature, these microcrystals a r e  t r u l y  isomorphic nuclei 
and the equation can be applied direct ly .  This calculation therefore 
depends on the assumption t h a t  the 4.51 A sphere of coordination found 
i n  the  ice  l a t t i c e  i s  a l so  present i n  supercooled water. In refer -  
ence 17, the r a d i a l  dis t r ibut ion curves calculated f o r  molecules about 
a given molecule fo r  water a t  1.5O C show a marked concentration of 
neighbors a t  a distance of about 4.5 A. Thus, i f  ice- l ike micro- 
crystals  of about 4.5 A radius were present i n  supercooled water a t  
approximately -41' C, they would i n i t i a t e  c rys ta l l iza t ion  a t  t h i s  
temperature as  no work of nucleus formation would be needed and t h e i r  
radius would be of suff ic ient  s i ze  t o  permit growth. 

The X-ray d i f f rac t ion  data of t h i s  report  lend qual i ta t ive support 
t o  the  theory of nucleation presented; however, too much reliance can- 
not be placed on a calculation of t h i s  type fo r  the following 
reasons : 

(1) There i s  s t i l l  a question as t o  whether freezing of water 
droplets or d i r ec t  sublimation occurs i n  clouds a t  temperatures i n  the 
region from -38' t o  -42' C 

(2) Heterogeneous nucleation (such a s  t h a t  due t o  ions from 
dissolved sa l t s ,  reference 23) may be act ive even i n  t h i s  temperature 
region (see reference 5) 

(3) I n  reference 24 it i s  reported that water has been supercooled 
t o  -72' C (although as yet not duplicated by others) 

(4) The liquid-solid in t e r f ac ia l  surface energy i s  not known pre- 
c i se ly  

(5) The X-ray diffract ion data of t h i s  report  extend only as low 
as -16' C. 

SUMMARY OF rnSULTS 

Diffracted in tens i ty  curves using f i l t e r e d  molybdenum Ka 
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radiat ion representing the average of several runs were obtained i n  the I *' 
temperature range 21' t o  -8O C. A diffracted in tens i ty  curve f o r  a 
single run a t  -16' C was a l so  obtained. The important features of the  
s e t  of diffracted in tens i ty  curves are: (1) the most prominent peak 
shif ted from a scat ter ing angle of 130 15' a t  210 C t o  120 40' a t  
-80 C, (2) the second diffract ion peak remained a t  an approximately f ixed 
angle of 18' 20' throughout the temperature range investigated, (3) the 
minimum between the two main peaks deepened continuously as  the tempera- 
ture  was  lowered, resul t ing in be t t e r  resolution of the  two peaks as 
the temperature was lowered. 

It is  concluded t h a t  the changes i n  the diffracted in tens i ty  curves 
a re  an indication of changes i n  the  in te rna l  s t ructure of the  super- 
cooled water, which apparently becomes progressively more ice-like i n  
s t ructure as  the temperature i s  lowered. 
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Figure 1. - Schematic diagram of d i f f r a c t i o n  apparatus. 



Figure 2. - Bath an& slit arrangement. 
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Figure 3 .  - Diffracted i n t e n s i t y  curves of water and supercooled water between 2iG 
and -16' C corrected fo r  absorpt ion and polar izat ion;  wavelength approximately 
0.71 aniistrorns. 
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Figure 4. - Density of supercooled water. ( ~ a t a  from reference 21.)  




