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Evaluation of the rotating uiulticylinder method for the measurement 
of droplet-size distribution, volume-median droplet size, and. liquid-
water content in clouds showed that small uncertainties in the basic 
data eliminate the distinction between different cloud droplet-size 
distributions and are a source of large errors in the determination of 
the droplet size. Calculations of the trajectories of cloud droplets 
in an incompressible-air flow field around a cylinder were performed on 
a mechanical analog constructed for the study of the trajectories of 
droplets around aerodynamic bodies. Many data points were carefully 
calculated in order to determine precisely the rate of droplet impinge-
ment on the surface of a right circular cylinder. 

Matching curves for obtaining droplet-size distribution, volume-
median droplet size, and liquid-water content from flight data were 
computed from the results of the droplet-trajectory calculations. An 
evaluation is presented of the rotating multicylinder method for the 
measurement of droplet-size distribution, volume-median droplet size, 
and liquid-water content in clouds. Because of the insensitivity of 
the multicylinder method to changes in conditions in clouds, and the 
inaccuracies in obtaining flight data, errors as large as 70 percent 
in the determination of the volume-median droplet size are possible if 
the flight speed is 200 miles per hour and the actual volume-median 
droplet diameter in the cloud is 3Ornicrons. 

INTRODUCTION 

As part of a comprehensive aircraft ice-protection research program, 
the NACA has undertaken an investigation of the impingement of water 
droplets on aerodynamic bodies. Previous investigators have calculated
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the water-droplet trajectories for right circular cylinders (references 1 
to 5) and. for airfoils (references 6 to 8). The trajectory results on 
airfoils have been applied to the design of equipment for the protection 
of aircraft components against ice formation. The calculations of water-
droplet impingement on cylinders have occasionally been used for the 
same purpose but are most useful in connection with flight instruments 
used in the study of droplet size and distributions in icing clouds. 

A commonly used technique for measuring the liquid-water content 
and droplet-size distribution in icing clouds is described in reference 9 
as the rotating multicylinder method. Several right circular cylinders 
of different diameters are exposed from an airplane in flight to the 
supercooled droplets in a cloud, as shown in figure 1. An assembled set 
of rotating inulticylinders is shown in figure 2. In the usual procedure 
for obtaining the cloud-droplet data, the multicylinders are extended 
through the airplane fuselage during the exposure run and then are 
retracted for disassembling and weighing. It is assumed that all those 
supercooled droplets that strike the cylinders freeze completely on the 
cylinders. The liquid-water content and droplet-size distribution are 
determined by a comparison of the measured weight of ice collected on 
each of the cylinders with the droplet-impingement results obtained from 
calculated water-droplet trajectories for the same cylinders. 

The mechanical operation of the rotating multicylindei method is 
reliable, because it lacks technical complexity and is adaptable to 
flight use. The meteorological data obtained with the multicylinder 
method have been the only data available in the design of ice-protection 
equipment for aircraft. An important disadvantage of the method lies 
in its insensitivity in discriminating among the different droplet-size 
distributions. 

Trajectories of droplets in a compressible-air flow field around a 
cylinder were calculated (reference 4) in order to evaluate the effect 
of the compressibility of air on the trajectories of cloud droplets. 
Trajectories in an incompressible flow field were also calculated during 
the investigation reported in reference 4 for comparison with those 
obtained in a compressible-air flow field. Some difference was found 
between the trajectories in the incompressible flow field and the results 
presented in references 1 to 3, in which the trajectories were also cal-
culated for an incompressible flow field around a cylinder. Also, a 
considerable difference was found to exist among the references cited. 
Because of the differences in the existing literature, a recalculation 
of the trajectories in an incompressible flow field around a cylinder 
was undertaken at the NACA Lewis laboratory.



NACA TN 2904
	

3 

In reference 1 the forces acting on the water droplet were calcu -
lated from Stokes law for slow translatory motion of a small sphere in 
an incompressible viscous fluid. The forces acting on the water droplet 
were calculated more precisely in reference 3 by the use of the experi-
mentally determined drag coefficient for a sphere in terms of the 
Reynolds number. The calculations for the trajectories were performed 
in reference 1 by a step-by-step integration of the second-order non-
linear differential equations that describe the motion of the droplets 
around a cylinder. The calculations presented in reference 3 were made 
more accurately with the use of a differential analyzer. 

The method used in reference 3 for calculating the water-droplet 
trajectories has been used for calculating the data presented herein. 
Many more data points were carefully calculated for the results pre-
sented herein than were calculated for the data in reference 3, in order 
to determine more precisely the rate of impingement of droplets on the 
surface of the cylinder. Accuracy was emphasized in all the calcula-
tions, because the sensitivity of the rotating multicylinder method in 
its application does not permit wide tolerances in . the theoretical data. 
Curves were established over a wide range of 'the variables in order to 
determine whether the impingement on cylinders follows rules that might 
be available for extension in future studies to other aerodynamic bodies. 

SYMBOLS 

The following symbols are used in this report: 

a	 droplet radius, ft (3.048X105 microns) 

CD drag coefficient for droplets in air, dimensionless 

D drag force, lb 

d.	 droplet diameter, microns (3.28X10 6 ft) 

E	 collection efficiency based on cylinder radius, dimensionless 

2 Pwa2U 
K	 inertia parameter,	

L	
dimensionless 

L	 cylinder radius, ft 

Re local Reynolds number with respect to droplet, 2apav/ .L , dimensionless 

Re0 free-stream Reynolds number with respect to droplet, 2apaU/.i, 
dimensionless 

t	 time, sec
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U	 free-stream velocity, ft/sec 

u	 local air velocity, ratio of the actual local air velocity to the 
free-stream velocity, dimensionless 

v	 local droplet velocity, ratio of the actual droplet velocity to the 
free-stream velocity, dimensionless 

v	 local vector difference between velocity of droplet and velocity of 
air, ft/sec 

W	 rate of water collection per unit span of cylinder, 
slugs/(sec)(ft span) 

local rate of water impingement, slugs/(sec)(sq ft) 

w	 liquid-water content in the atmosphere, slugs/cu ft 

x,y rectangular coordinates, ratio of actual distance to cylinder radius 
L, dimensionless 

3	 local impingement efficiency, dy0/de, dimensionless 

e	 impingement angle on cylinder, deg or radians as noted 

i	 viscosity of air, slugs/(ft)(sec) 

p	 density, slugs/cu ft 

,	 time scale, tu/L, dimensionless 

Re02 l8pa2LU 
K	

, dimensionless. 

Subscripts: 

a	 air 

in maximum 

o volume median 

w	 water 

x	 horizontal component 

y	 vertical component
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(1)	 weighted 

0	 free-stream condition 

Prime superscript applied where velocity terms are in ft/sec 

ANALYSIS 

Derivation of Equations of Motion 

As a cylinder moves through a cloud, the amount o' water inter-
cepted by the cylinder is dependent on the inertia of the cloud droplets. 
In order to obtain the extent of impingement and the rate of droplet 
impingement per unit area on a cylinder, the cloud-droplet trajectories 
with respect to the cylinder must be determined. The differential equa-
tions that describe the droplet motion have been stated in reference 3 
and. are derived in the following paragraphs. 

From the conventional forms of the equations for the drag force 
of a body in a fluid

	

1	 22 
D=CDpa7ta V 

and. for Reynolds number

2apv 
Re = 

there is obtained

CDRe 
D= 

for a sphere having a relative velocity v with respect to the fluid. 
The equation of motion of a water droplet in terms of its x-component 
in a rectangular coordinate system is 

dv	 CDRe 
-it a	

=	 it ai.t (u ' - Vt) 

x x 

	

(2 a2pw u dv' L	 CDRe (u - v) 

	

.L LJdtu2	 24	 U
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where the velocity terms with the prime superscript have the dimensions 
of feet per second. In dimensionless terms the equation of motion for 
the x-coinponent becomes

dv - CDRe i 
24	 (ux-vx)	

(1) 

and. for the y-component becomes 

dvYCDRel 
dT - 24	

(uy - vy)	 (2) 

where

- 2 _____ (3) 

The Reynolds number Re can be obtained conveniently in terms of the 
free-stream Reynolds number

2apaU 
Re0 =	 (4) 

such that

()

Re 2 =(ux_ vx) 2 +(uy_vy) 2	 (5) 

The term CDRe/24 containing the coefficient of drag for the drop-
lets, required in equations (1) and (2), may be obtained from tables in 
references 3 or 6. The values presented in references 3 or 6 were 
obtained from experimental wind-tunnel data on the drag forces on spheres, 
presented in reference 10. As the relative motion between the droplets 
and air approaches zero as a limiting value, the value of CDRe/24 
approaches unity as the limiting value, and Stokes' law for the drag 
forces acting on the water droplets applies. 

The air velocity components (reference II) for a cylinder in a 
uniform, potential, and incompressible flow in two dimensions and with-
out circulation are

= + y2-X2 
u	 1	

(x2 +y2)2 

= - (x2 + y2)2	

(6) 
2xy
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Equations (1) to (6) are written in dimensionless form in order to 
maintain the number of calculations at a minimum and to simplify the 
presentation of the results. The equations apply to the motion of drop-
lets in a plane perpendicular to the axis of the cylinder, which is 
located at the origin of the rectangular coordinate system, as shown in 
figure 3. At an lafinite distance ahead of the cylinder, the uniform 
air flow carrying the cloud droplets is assumed to be approaching the 
cylinder from the negative x-direction and. parallel to the x-axis. 
All the distances appearing in the equations and in the figures are 
ratios to the cylinder radius L, which is assumed to be the unit of 
distance. The velocities appear as fractional parts of the free-stream 
velocity U. Time is expressed in terms of the cylinder radius and free-
stream velocity, such that

tu 
T L 

In this manner the unit of time is the time required for a droplet to 
travel a distance L at velocity U. The Reynolds number is expressed 
with respect to the droplet radius. 

The differential equations (1) and (2) state that the motion of a 
droplet is governed by the drag forces imposed on the droplet by the 
relative motion between the droplet and the air moving along the stream-
lines around the cylinder. The droplet momentum tends to keep the drop-
let moving in a straight path, while the drag forces tend to force the 
droplet to follow the streamlines. For very small droplets and slow 
speed, the momentum of the droplets parallel to the direction of the 
free-stream motion is small, and the drag forces are large enough that 
little deviation from the streamlines occurs; whereas, for large droplets 
or high speed, the momentum is large enough to cause the droplets to 
deviate from the streamlines. In accordance with the statement of equa-
tions (1) and. (2) and the definition of the parameter K in equation (3), 
the trajectories depend on the size of the cylinder, the radius of the 
droplet, the airspeed and the air viscosity as first-order variables. 

The more important assumptions that have been necessary in order to 
solve the problems are: 

(1) At a large distance ahead of the cylinder (free-stream condi-
tions) the droplets move with the same velocity as the air. 

(2) The droplets are always spherical and do not change in size. 

(3) No ravitationa1 force acts on the droplets.
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Method of Calculation 

The differential equations of motion (equations (1) and (2)) are 
difficult to solve by ordinary means because the actual values of the 
velocity components of the droplet relative to the air and the term con-
taming the coefficient of drag are not known until the trajectory is 
traced. These values are determined as the trajectory of a droplet is 
developed, because their magnitude depends on the position of the drop-
let in the f low field. Simultaneous solutions for the two equations 
of motion were obtained with the use of a mechanical analog based on the 
principle of a differential analyzer. A description of this analog and 
the method of solition for the droplet trajectories are presented in 
appendix A. The answers were obtained in the form of plots of the drop-
let trajectories with respect to the cylinder, as shown in figure 4. The 
second quadrant section of the cylinder is outlined. The ordinate scale 
was expanded approximately four times the abscissa scale with appropriate 
gearing in the analog (appendix A) in an effort to obtain the maximum 
accuracy in the determination of the points of impingement of the drop-
lets on the cylinder surface. 	 - 

Before the integration of the equations of motion could be performed 
with the analog, the velocity of the droplets at the start of the inte-
gration had to be determined. As has been postulated in the assumptions, 
at an infinite distance ahead of the cylinder, all the droplets have 
vertical and horizontal components of velocity that are the same as those 
of the free-stream air. At finite distances ahead of the cylinder, the 
droplets have velocity components and positions varying between those 
pertaining to the undisturbed free stream and those pertaining to the 
air streamlines. A study of the air streamlines showed that only a 
gradual deviation of the air streamlines from the free-stream velocity 
takes place up to approximately 5 radii ahead of the cylinder center 
line. A large rate of change of air motion takes place between x = -5 
and the cylinder surface. The equations of motion (equations (1) and (2)) 
were linearized by an approximation and solved between x = - and 
x = -5 by the method presented in reference 3 and discussed herein in 
appendix B. The trajectories of the droplets impinging on the cylinder 
are shown in figure 4 plotted from x = -5 to the point of impingement 
on the cylinder surface. The analog starting conditions at x = -5, as 
calculated by the linearized equations, were estimated to be as accurate 
as the expected accuracy of the analog (appendix B). 

The trajectories shown in figure 4 are representative of operating 
conditions which result in values of K = 4 and Re0 = 63.246 (equa-
tions (3)and (4)). The topmost trajectory (A) is tangent to the cylin-
der and determines the maximum extent of impingement of droplets for the 
conditions given for figure 4. All droplets having trajectories below 
this tangent trajectory strike the cylinder; whereas, all droplets having 
trajectories above this line will miss the cylinder.
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The impingement of droplets on the third quadrant of the cylinder 
(fig. 3) is identical to the impingement on the second quadrant, except 
that the trajectories are mirror images of the trajectories shown in 
figure 4. The amount of water impinging on the cylinder is the total 
water in those droplets bounded by the second-quadrant tangent trajectory 
and the third-quadrant tangent trajectory. If the cloud of droplets is 
assumed to be uniform at a large distance ahead of the cylinder (free-
stream conditions), the water intercepted by the cylinder per unit time 
is the water contained in a volume of cloud of unit depth and length but 
with a width that has twice the value of Q,m' the ordinate at infinity 
of the tangent trajectory. 

For the conditions of K and Re0 applicable to the trajectories 
shown in figure 4, the tangent trajectory (A) also determines the cylin-
der collection efficiency, which is defined as the ratio of the actual 
water in the droplets intercepted by the cylinder to the total water in 
the volume swept out of its path by the cylinder. For a cloud composed 
of droplets all uniform in size the collection efficiency is equal to 

in magnitude, because in the trajectory calculations the ordinate 
0,m is given as a ratio to the cylinder radius. 

The tangent trajectories were computed in order to obtain the water 
intercepted by the cylinder and the cylinder collection efficiency. The 
trajectories intermediate between the x-axis and the tangent trajectory 
were computed in order to obtain the distribution of the water on the 
cylinder surface. The tangent trajectories also determine the angle of 
maximum extent of impingement. The angle of maximum extent of impinge-
ment is denoted by em (fig. 4), and the angle of impingement of the 
intermediate trajectories is denoted by e. The accuracy in determining 
em was approximately ±1.5°. 

Trajectories for droplets with low inertia hovered along the surface 
of the cylinder over large circumferential distances. The crowding 
together of the trajectories near the cylinder for very low values of K 
did not permit the k.1.5° accuracy to be maintained for values of K < 1 
with the same scale factors shown in figure 4. For values of K < 1 the 
scale factors of the cylinder were increased such that the trajectories 
were plotted with respect to a cylinder 40 inches in diameter. For these 
low values of K the ordinate scale was not distorted. with respect to 
the abscissa scale. A small section of the cylinder surface with the 
trajectories of droplets impinging on it is shown in figure 5. Although 
only the portion of the trajectories from x = -2 up to the cylinder 
surface is shown in figure 5, the trajectories were calculated by the 
machine: from x = -5 and the starting conditions at x = -5 were 
obtained as explained in appendix B. An attempt was made to increase 
the ease in locating the point of tangency by calculating a trajectory 
slightly below the tangent trajectory and. running the trajectory through
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the cylinder (trajectories B, fig. 5). The trajectory near the tangent 
trajectory defined the tangency by cutting the cylinder at two definite 
points, such as a secant line. This method of determining the tangent 
is accurate only if trajectory B is very near the tangent trajectory. 
The increase in scale factor permitted an accuracy of £1.50 to be 
obtained for em for K = 0.5, and O for K = 0.25. 

Method of Presenting Data 

Series of trajectories, such as those shown in figure 4, computed 
for several combinations of values of K and Re 0, permit the evaluation 
of area, rate, and distribution of water-droplet impingement on cylinders. 
The data are presented herein in terms of dimensionless parameters in 
order to generalize the-presentation of the data and to gain in flexi-
bility in the application of the data to experimental and analytical 
studies. Examples involving dimensions and flight conditions are used 
herein whenever the examples are aids in clarifying the presentation of 
the data. Typical values of dimensions and flight conditions are used 
in most of the examples given; however, because of the nature of the 
dimensionless parameters, a large number of combinations of values 
of the variables, such as free-stream velocity, cylinder size, droplet 
size, and others (equations (3) and (4)), would apply to the particular 
value of the dimensionless parameter illustrated by the example. A 
system of equations for the evaluation of dimensionless parameters in 
terms of variables with units commonly employed in aeronautics is pre-
sented in appendix C. 

The results are often presented herein as functions of the param-
eter K. The parameter K has been termed the inertia parameter, 
because its magnitude directly reflects the external force required on 
a droplet. to cause a deviation from the original line of motion of the 
droplet. A dimensionless parameter .P, defjned as 

- Re02 l8pa2LU 

w 

was adopted in reference 3 for the presentation of the data and is also 
employed herein. The parameter	 is valuable in that q is not a 
function of droplet size. The parameter 	 is an important concept in 
the interpretation of icing-cloud measurements in which the droplet size 
is not measured directly and is an unknown which must be calculated 
(appendix D). In the interpretation of icing-cloud measurements in which 
cylinders of different diameters are exposed to the supercooled droplets 
from an airplane in flight, cp may be considered to be a function of alti-
tude through its dependence on air density a and viscosity .i for each 
cylinder size and a given flight speed.
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The magnitude of p is a measure of the deviation from Stokes t law 
for the forces acting on the water droplets. Stokest law was derived 
for slow translatory motion of a small sphere in an incompressible 
viscous fluid and applies precisely in the limiting value of p = 0, 
when the free-stream Reynolds number is zero or the droplet motion rela-
tive to the cylinder approaches zero as the limit (equation (7)). 

RESULTS MID DISCUSSION 

Collection efficiency. - The collection efficiency as a function of 
the inertia parameter K and the parameter 	 is presented in figure 6. 
For the conditions in which a cylinder is moving through a cloud of drop-
lets that are all uniform in size, the total rate of water interception 
per foot span of the cylinder is 

Wm = 2EmLTJw	 (8) 

The collection efficiency increases with increasing values of K. The 
primary variables in the inertia parameter K (equation (3)) are the 
droplet size, the free-stream velocity, and the cylinder size. The 
range of variation of water density or air viscosity over the range of 
temperature changes in the ordinary atmosphere from sea level to 
30,000 feet is small compared with the range of variation possible with 
the other variables in equation (3). 

The collection efficiency increases with increasing droplet size 
and free-stream velocity, because an increase in the free-stream momentum 
of the droplet with respect to a cylinder increases the forces necessary 
to force the droplet around the cylinder. An increase in the cylinder 
size decreases the collection efficiency, because the large cylinders 
cause the air streamlines to start moving around the cylinder a greater 
actual distance (not in terms of ratio to cylinder radius) ahead of the 
cylinder than the small cylinders. The greater distance ahead of the 
cylinder in which the streamlines are moving around the large cylinder 
permits the air drag forces to act on the droplets for a long time t 
in seconds, thus causing a smaller portion of the droplets that are in 
the path of the cylinder to impinge on the cylinder. 

For the conditions in which Stokes t law applies for the drag force 
(cp= 0), the values of figure 6 for collection efficiency are very nearly 
the same as those presented in reference 3. The results of figure 6 and 
reference 3 are both lower than those presented in references 1 and 2, 
again for p = 0. The calculations for the work presented in refer-
ences 1 and 2 were not made with differential analyzers, nor were the 
conditions at the start of the trajectories determined by the method 
presented in appendix B. The differences may result from either the
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method of calculation or the assumptions at the starting conditions. 
The calculations of reference 2 included only values of K less than 2. 
The results of figure 6 differ somewhat with those of reference 3. For 
p = 10,000, the results of figure 6 are higher than those in reference 3 
by 0, 8, 7, 2, and 0 percent for K = 1, 4, 16, 36, and. 256, respectively. 
The calculated points shown in figure 6 are presented in table I. Cor-
responding points obtained from curves given in reference 3 are also 
given in table I for comparison. No calculations were made in refer-
ences 1 and 2 for values of p other than zero. Although a few calcu-
lations were made in reference 5 for p = 16,000, the results are not 
comparable with either the results presented herein or in reference 3, 
because the starting conditions and method of computation were not the 
same.

The expanded ordinate sôale used with the analog permitted the cal-
culations presented herein for the collection efficiency to be read 
accurately within ±0.002 unit for values of Em between 0.20 and 1.00. 

The accuracy in obtaining Em for values of K = 0.5 and 0.25 was 
±0.003 and ±0.004, respectively, because the accuracy in the determina-
tion of the tangent trajectory was not as good for the low values of K, 
as was stated in a previous section. The values shown in figure 6 for 
K = 0.5 and 0.25 are averages of two or more check calculations. 

Maximum angle of impingement. - The maximum angle of impingement is 
given in figure 7 as a function of K and (p. The maximum angle of 
impingement, in. radians, increases with increasing values of the inertia 
parameter. The shapes of the curves in figure 7 are similar to those in 
figure 6 on the collection efficiency. As was discussed in the section 
titled Method of Calculation, the accuracy in determining em was ±1.5° 

for conditions in which K = 0.5. The curves of figure 7 were faired 
through averages of readings by several observers of the original 
trajectory plots. In the low values of K (K< 1) two or often more 
than two check analog calculations were made. A comparison of the angle 
of impingement given by the curves of figure 7 with the results of 
reference 3 is made in table I. 

Tangential-velocity components. - The tangential-velocity components 
of both the air and those droplets that are tangent to the surface of the 
cylinder are presented in figure 8 in the form of a velocity hodograph. 
The vertical and horizontal components of the air velocity at the surface 
of the cylinder can be found from the outermost velocity hodograph. The 
graduations denote the angle 0 measured clockwise on the cylinder from 
the -x ordinate to the +y ordinate (fig. 3). The velocity components 
of those droplets that impinge tangentially to the cylinder (trajectory A, 
fig. 4) can be found from the hodograph enclosed by the air hodograph. 
A line passing through the 0,0 ordinates of the hodograph and a given 
position angle 0 on the air hodograph will give the velocity direction 
of both the air and the droplets at that point on the cylinder, because
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both the air and. the droplet velocities are tangent to the cylinder. The 
values of the inertia parameter K that correspond to the calculated 
points are shown at each point. Apparently, the velocity components for 
all droplets, regardless of the combination of cp and K, can be repre-
sented. by one curve. This relation between V y and v was also noted 
for airfoils in reference 7. 

The method for obtaining the vertical and horizontal component 

velocities of both the air and the droplets is illustrated for the exam-

pie involving a cylinder l inches in diameter moving with a free-stream 

velocity of 125 miles per hour at 10,000 feet NACA standard altitude 
conditions through a cloud composed of uniform droplets 20 microns in 
diameter. For these conditions K = 3.6 and cp = 1000. The maximum 
angle of impingement, which corresponds to the poin,t on the cylinder 
where these droplets impinge tangentially, is found in figure 7 to be 
1.172 radians or 67°. The vertical component of droplet velocity vy 
at the point of tangency on the cylinder is 0.41 and the horizontal 
component v is 0.96, both values being given in figure 8 as ratios 
to the free-stream . velocity. The air velocity components uy and u 
are 0.72 and 1.69, respectively, times the free-stream velocity. 

At the cylinder angle em of 90°, all the horizontal droplet veloc-
ities must be unity, which is the free-stream velocity, because only the 
droplets with infinite inertia will be tangent to the 90° point on the 
cylinder. 

Impingement of intermediate trajectories.. - The starting ordinate 
y0 at infinity of any trajectory, including the trajectories between 
the tangent trajectory and the x-axis such as shown in figure 4, can be 
found in figure 9 for any given angle of impingement on the cylinder. 
The starting and ending positions of the trajectories are shown in fig-
ure 9 for the five different values of cp studied. For each value 
of , curves for several values of K are presented. The choice of 
the particular values of K, shown in each figure, was governed by the 
gearing available for the analog. 

The amount of water impinging between any two given points on a 
cylinder moving through a uniform cloud can be found from the results 
given in figure 9. For example, if the amount of water impinging between 
the x-axis and a point e = 450 = 0.785 radian must be known for a 

l .-inch cylinder moving with a free-stream velocity of 130 miles per hour 

through a cloud composed of 20-micron droplets, the value of y 0 to be 
used in the relation

W = UwLy0	 (9)
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can be found in figure 9(c) for p = 1000 and K = 4. The value of Y0 
is found to be 0.53 and is the value used in equation (9). The amount 
of water impinging between two points, where one of the points is not 
on the x-axis, is found by using the relation 

	

W =UwL (y0,2 - y0 , 1)	 (9a) 

The angle e is given in radians in figure 9 becauseradians permit a 
convenient conversion of the data of figure 9 in the determination of 
local rates of water impingement discussed in a subsequent section. 

An analysis of the data points shown in figure 9 reveals that all 
the points fell on sine curves, with amplitude and period depending on 
the values of K and p studied. The reason for this behavior is not 
apparent from a study of the equations of motion (equations (1) and (2)), 
which are very nonlinear and do not permit a formal solution. However, 
this behavior of the data can be used advantageously in that curves of 
y0 as a function of e for values of p and K in addition to those 
curves given in figure 9 are possible with the aid of the expression 

= Em sin (
	 )	

(10) 

The following examples illustrate the use of equation (10). If the 
curve of y0 as a function of e for	 = 100 and K = 2 is desired 
(shown in fig. 9(b) without calculated points), the amplitude and period 
that determine the termi 1nus of the desired curve are obtained from fig-
ures 6 and. 7, respectively. The value of yo = Em = 0.493 is found 
in figure 6, and the value of em = 1.092 is found in figure 7. These 
values of TO,m and em are the terminus values and a measure of the 
amplitude and period, respectively, of the desired sine curve for 
p = 100 and K = 2. Other points along the desired curve are obtained 
by solving equation (10) over a range of values of e from 0 to e. 

If a knowledge is required of the amount of water impinging between 
e = 40° =0.698 radian and e = 500 = 0.873 radian on a cylinder for 
which the operating conditions were K = 6 and P = 3000, the value of 
(y0,2 - y01) required in equation (9a) is found by the interpolation 

of the curves presented in figures 6 and 7. The value of 0,m = Em 
is found from figure 6 to be 0.66. The value of em is found from 
figure 7 to be 1.255. The values of elem required for use with equa-
tion (10) are 0.698/1.255 = 0.556 and 0.873/1.255 = 0.696 for the
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two points of interest on the cylinder. The value of (y0 2 - 0 ) 
, 

for use in equation (9a) is 

0.66 [sin ( 0.696) -	 ( 0.556)] = 0.080 

The dashed lines in figure 9 are the loci of the termini of the 
sine curves. These dashed lines are cross plots of the curves given in 
figures 6 and 7. The accuracy in determining the dashed lines is the 
same as the accuracy for figures 6 and 7. The accuracy in obtaining the 
intermediate points was usually much better, because the points where 
the intermediate trajectories intercepted the cylinder were much better 
defined than were those of the tangent trajectories (figs. 4 and 5). 
The tolerances are approximately ±0.001 for y0 and ±0.012 radian for 9. 

Local rate of droplet impingement. - The local rate of water impinge-
ment per unit of area on the cylinder surface located at a given angle e' 
can be determined from the relation 

dy0 

	

= Uw	 = Uwt3 

provided e is measured in radians. The magnitude of the term dy0/d9 

is the fractional part of the maximum water that could impinge on a local 
area of the cylinder, if all the trajectories were parallel to each other 
and the cylinder surface were projected into a plane perpendicular to the 
trajectories. A value of

dy0
= 13 = 1 

indicates that the intensity of impingement on a local area of the 
cylinder is the maximum poss ible for the liquid-water content present 
in the cloud. For a uniform cloud composed of droplets all of the same 
size the value of 13 is obtained from the slope of the curves of y0 

as a function of 9 presented in figure 9. Curves of 13 that corres-
pond to the data of figure 9 are presented in figure 10. The rate of 
droplet impingement is highest at the stagnation point (6 = 0). 

Curves of 13 as a function of 6 in addition to those curves 
given in figure 10 can be found from the relation 

	

Em	 (	 \ 13cos

(U)
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where e is measured in radians. This relation applies on the assump-
tion that the curves in figure 9 are sine curves for which the amplitude 
is characterized by y0 m and the period by °m• The values of 

O,in = Em and em are'obtained from figures 6 and 7, respectively. 

EVAUJAT ION OF ROTATING M[JLTICYLINDER METHOD 

An important application of droplet-trajectory data with respect to 
cylinders has been in the measurement of droplet size in icing clouds. 
Several cylinders of different diameters are exposed from an airplane in 
flight to the supercooled droplets in the icing cloud (fig. 1). It is 
assumed that all the supercooled droplets that strike the cylinders 
freeze completely onto the cylinders. The liquid-water content and. 
droplet-size distribution in the cloud are determined by a comparison 
of the measured weight of ice collected on each of the cylinders with 
the amount of droplet impingement obtained from the calculated water-
droplet trajectories for cylinders of the same size and for the same 
flight atmospheric conditions. This technique of analyzing icing ôlouds 
is described in references 3 and 9 and in appendix D. 

Droplet-size distribution patterns. - The data presented in figures 4 
through 10 apply directly only to ólouds composed of droplets all of 
which are uniform in size. In a cloud in the earth's atmosphere, the 
water droplets are often not of uniform size. For a cylinder exposed 
in a cloud with a given droplet-size distribution pattern, the trajectory 
data in the figures cited are used to compute other curves that are 
applicable to the distribution pattern under consideration. 

Five different droplet-size distribution patterns have been defined 
in reference 3 for convenience in the classification of clouds. The-
table of distribution patterns, reproduced herein as table II, was 
adopted to cover some of the range encountered in nature. Although the 
five distributions given in table II are not the only probable patterns 
existing in clouds, these five distributions are used herein to evaluate 
the sensitivity and the accuracy that can be expected from the rotating 
multicylinder method. The method of evaluation applied to these patterns 
can be used for a similar study of other droplet-size distribution 
patterns. The droplet.-size ratios given in table II are the average 
radius of the droplets in each group to the radius a0 of the volume-

median droplet size. (The amount of water in all the droplets of a 
diameter greater than the volume-median droplet diameter is equal to 
the amount of water in all the droplets of smaller diameter. Volume-
median droplet diameter is often referred to as "mean-effective drop 
diameter." The subscript o refers to the volume-median condition.) 
The different distribution patterns have been labeled with the first 
five letters of the alphabet. A cloud with an A distribution is com-
posed of droplets which are all uniform in size. In a cloud with a
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B distribution, 30 percent of the water is contained in the droplets 
having the volume-median droplet diameter, 20 percent of the water is 
contained in droplets with a diameter 0.84 as large as the volume-median 
droplet diameter, and another 20 percent of the water is contained in 
droplets with a diameter 1.17 times as large as the volume-median drop-
let diameter. The remaining water is distributed as follows: 10 percent 
in droplets with a diameter 0.72 as large as the volume-median diameter, 
10 percent in droplets 1.32 times as large as the volume-median diam -
eter, 5 percent in droplets 0.56 as large, and 5 percent in droplets 
1.49 times as large as the volume-median diameter. A similar inter-
pretation applies to the other distributions listed in table II. 

Over-all weighted collection efficiency. - In a cloud composed of 
droplets of many different sizes, a cylinder of a given diameter will 
collect some droplets of every size; however, the collection efficiency 
with the smaller droplets will be less than with the larger droplets. 
For any assumed droplet-size distribution in the cloud, such as distri-
bution B in table II, an over-all weighted collection efficiency for a 
cylinder can be calculated from the results of figure 6 by adding 
together the weighted collection efficiencies that are appropriate to 
each droplet-size group in the B distribution. For example, 30 percent 
of the water in all the droplets in the cloud is assumed to be processed 
by the cylinder at the collection efficiency pertaining to the volume-
median droplet; 20 percent of the water in all the droplets in the cloud 
is assumed to be processed by the cylinder at the lower collection eff i-
ciency that applies to droplets with diameters 0.84 as large as the 
volume-median droplet diameter, and so forth. The over-all weighted 
collection efficiency for each cylinder in the set of cylinders exposed 
from the airplane can be calculated for the assumed distribution. A 
different curve of over-all weighted collection efficiency as a function 
of cylinder diameter will exist for each assumed droplet-size distribu-
t ion.

Comparison curves. - The droplet-size distribution prevailing in a 
cloud at the time of measurement can be found by comparing the shape of 
a curve of cylinder diameter as a function of the measured ice accumulated 
per unit area in flight on each cylinder (fig. 11) with the shape of the 
calculated curves of cylinder diameter as a function of over-all weighted 
collection efficiency. Sets of calculated curves for comparison are 
shom in figure 12 for the droplet-size distributions A through E of 
table II. The detailed method of calculation of these curves, which 
differs slightly from that presented in reference 3, is discussed in 
appendix D. The ordinate in figure 12 is the reciprocal of the inertia 
parameter (1/K) 0 as applied to the volume-median droplet size, and the 
abscissa is the over-all weighted collection efficiency E,. The amount 
of ice accumulated per unit of cylinder area is directly proportional to 
the over-all weighted collection efficiency. The comparison is valid 
provided that the actual droplet-size distribution prevailing in the 
cloud during the cylinder exposure was one of the assumed distributions 
for which comparison curves are available.
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The term (1/K) 0 , rather than the diameter of the cylinders in a 
set of cylinders, is used for the ordinate, because (1/K) 0 is directly 
proportional to the cylinder diameter through the relation 

(1/K)0E •	
U
	 (12) 

The direct proportionality between (1/K) 0 and L applies to the data 
obtained during one run, because all the different sized cylinders in 
the set of cylinders are exposed to the same air viscosity, free-stream 
velocity, water density, and volume-median droplet diameters in the 
cloud. The use of (1/K) 0 as ordinate permits the use of the curves 
in figure 12 for a large number of combinations of different flight 
conditions. 

In the preceding explanation of a method for obtaining the droplet-
size distribution in the cloud, it was tacitly assumed that another 
method was also available for obtaining the volume-median droplet size. 
A method has been devised which takes into consideration the volume-
median droplet size by combining the parameter cp and the inertia 
parameter K into another parameter 

(K)0 
(2PaU)2	

(Re0) 02	 (13) 

The only unknown quantity in this parameter is the volume-median droplet 
size a0 . In order to cover the more probable conditions of airplane 
speed, air viscosity and density, and volume-median droplet size, values 
of (Kcp) 0 ranging from 0 to 10,000 were chosen for the calculations and 
are presented in figure 12. After the flight data involving cylinder 
size and ice collected (fig. U) are matched to one of the curves in 
figure 12, the value of -(1/K) 0 in figure 12 corresponding to a cylinder 
with radius L of unity is noted when figures 12 and U are super-
imposed. The volume-median droplet size is computed from equation (12) 
for the particular (1/K) 0 obtained from figure 12 and the known flight 
conditions. A more detailed procedure for obtaining the droplet-size 
distribution and the volume-median droplet size is discussed in appen-
dix D. 

The liquid-water content is obtained by extrapolating the icing 
rate measured by the set of cylinders to an infinitely small cylinder 
with unity collection efficiency. This procedure, as described in 
appendix D, determines the ice collected by a cylinder that collects 
all the water in its path.
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Matching flight data. - A manner for plotting flight results involv-
ing the cylinder diameter as a function of the ice accumulated on each 
cylinder in grams per second per square inch of frontal area is illus-
trated in figure 11. The data plotted in figure 11 for the four cylin-

ders used in flight (diameters of 3, l, , and in.) are shown in 

figure 13 matched to some of the curves taken from figure 12. The method. 
used for matching the data is described in appendix D. In order to 
simplify the iflustration, only portions of the best fitting curves of 
figure 12 are shown superimposed on the data in figure 13. The ordi-
nates of figure 12 are not shown, except that the value of (1/K) 0 where 
L = 1 is given on each of the curves taken from figure 12. 

A practical difficulty arises in matching the flight data with the 
curves of figure 12. The difficulty is caused by the scattering of the 
measured data due to errors in the measurements, by the difference 
between the assumed theoretical distributions on which the curves of 
figure 12 are based and the conditions actually prevailing in the nat-
ural cloud during the time the cylinders were exposed, and by the inher-
ent extreme insensitivity of the rotating multicylinder method to 
differences in droplet-size distributions even if the preceding diff i-
culties were not present. The possible errors in measurement include 
those caused by errors in measuring flight speed, exposure time, and air 
temperature, differences between the exposure time of the large cylinder 
and the small cylinder due to the time required to extend and retract 
the set, losses in the accumulated icewhile disassembling the cylinders 
prior to weighing, failure of droplets to freeze on the cylinders, and. 
errors in weighing. Another error that determines the accuracy of the 
final answer is the expected. error in the calculation of over-all 
weighted. collection efficiency plotted in figure 12. This error has 
been determined to be as large as 2 percent (appendix D). Experience 
in obtaining flight data has shown that the accrued. error from all 
sources can be maintained below ±10 percent but seldom can be expected 
to be less than ±5 percent. 

The hypothetical data points of figure 11 were chosen to fit pre-
cisely the curve for the B distribution given in figure 12(e) (volume-
median droplet diameter for the data of fig. U was assumed to be 
20 microns). If the data were flight data taken in a cloud in which the 
droplet sizes were defined by a B distribution and the volume-median 
droplet size were 20 microns, the data would probably not fit the 
B distribution of figure 12(e) precisely, but each point would deviate 
by an amount which depended on the accrued error related to the care in 
measuring. The braces in figure U indicate the range of a 5-percent 
error, and the brackets indicate the range of a ±10-percent error. In 
the analysis of the flight data, the magnitude of the accrued error will 
affect the answers obtained and will determine the sensitivity of the 
multicylinder method.
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Expected errors in analysis of flight data. - An attempt is made 
herein to evaluate the sensitivity of the multicylinder method when 
errors of known magnitude are present in the flight data. The expected 
error in the calculation of over-all weighted coLLection efficiency 
plotted in figure 12 could be shown graphically in terms of the width 
of the lines used to plot the curves of figure 12. When the calculated 
curves of figure 12 are superposed on the flight data of figure 11 for 
comparison, the error in calculating over-all collection efficiency can 
be added to the error in measuring and both errors included in the range 
indicated by the braces (or brackets) and termed an accrued error. 

Three sections of different curves taken from figure 12(e) are 
shown in figure 13 to come within the ±5-percent range of accrued errors. 
The following is an illustrative example in the interpretation of the 
material presented in figure 13: If measurements were made simultaneously 
by a large number of careful observers who kept the accrued error within 
±5 percent at a true airspeed of 200 miles per hour in a cloud in which 
the volume-median droplet size was actually 20 microns in diameter and 
the droplet-size distribution was defined by the B distribution of 
table II, the final answers reported by the observers would vary from 
17 to 25 microns for the diameter of the volume-median droplet and from 
an A distribution to an E distribution. 

The type of analysis described with the use of figure 13 was made 
to cover a range of true flight speed up to 400 miles per hour and to 
cover actual volume-median droplet sizes up to 30 microns in diameter. 

11	 1. 
A set of four cylinders with diameters of 3, l i., , and . inches was 

assumed for the analysis. The other secondary variables assumed were 
an altitude of 10,000 feet and air viscosity of 3.436X10 7 slugs per 
foot-second. The errors that can be expected in the final answers of 
the volume-median droplet size for accrued eirors of ±5 and £10 percent 
(including the expected error in the calculations for the theoretical 
data of fig. (12)) are shown in figures 14(a) and 14(b), respectively. 
The ordinate is the error possible in reporting the actual volume-median 
droplet size in a cloud. An upper and lower limit are shown in the fig-
ures. Usually, it is possible to have a larger magnitude of error in 
reporting the size too large than the magnitude of error in reporting 
the size too small. For example, in a cloud in which the droplet size 
was actually 30 microns in diameter and the true airspeed was 200 mIles 
per hour (accrued error = ±5 percent, fig. 14(a)), the answer reported 
would be within the limits of 25 and 40 microns. The lower limit error 
is approximately 18 percent, and the upper limit error is approximately 
35 percent. 

Doubling the sizes of the cylinders has the same effect on error as 

halving the flight speed. If a set of cylinders of 6-, 2k-, 1-, and
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_inch diameter were used at a flight speed of 200 miles per hour, the 

expected error can be found from the curves of figure 14 for a flight 
speed of 100 miles per hour. The expected. error in the final results 
increases rapidly with increasing droplet sizes and flight speeds. The 
value of the multicylinder method in clouds consisting of volume-median 
droplet sizes above 30 microns in diameter is questionable, if the air-
plane speed cannot be maintained below 100 miles per hour. 

The accuracy in the determination of the droplet-size distribution 
is very much subject to personal discrimination as well as to errors in 
measurements. The same measured data resolved by different observers 
often result in large differences in the typing of the distributions. 
If 5-percent accrued error in measurements is assumed, the insensitivity 
of the multicylinder method does not permit an A distribution to be 
distinguished from an E distribution with data taken at flight speeds 
above 150 miles per hour. 

Careful determinations of liquid-water content are usually not in 
error by more than 5 percent, provided the size of the smallest cylinder 
is 1/8 inch in diameter or less and the measuring errors are less than 
4 percent. The error in determining liquid-water content is usually 
1 percent larger than the total errors in the measurements, because the 
curves of figure 12 are accurate only within .1 percent at low values 
of (1/K)0. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics


Cleveland, Ohio, September 5, 1952
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APPEND DC A 

SPJvIPLE MACHINE SETUP FOR CALCULATING WATER-DROPLET TRAJECTORIES 

• Principle of operation. - The water-droplet trajectories were com-
puted on a mechanical analog which was fundamentally a differential 
analyzer constructed for solving the equations of motion (equations (1) 
and (2)). Although the operational theory and technique of preparing a 
problem for solution on a mechanical differential analyzer have been 
reported (references 12 to 14), the principles of operation of the 
mechanical analogy are reviewed herein, and a machine setup together 
with all the pertinent computations involved for a representative tra-
jectory are presented. 

The mechanical analog, shown in figure 15, consists of a number of 
computing units interconnected by a system of shafts and gears. Each 
unit performs mechanically one of the operations involved in the solu-
tion of the differential equations, such as integration and algebraic' 
addition. The computational process of the analog is purely kinematic 
and not dynamic; any interruption in the solution or change of rate of 
solution by the operator does not affect the final result. The machine 
can evaluate only particular numerical solutions of particular equa-
tions in which all coefficients have numerical values and for which' 
numerical initial conditions are known. A formal solution cannot be 
obtained from the machine. 

The principal unit of a differential analyzer is the integrator, 
six of which are on the analog shown in figure 15. When an expression 
is integrated on a differential analyzer, the integrating unit provides 
a continuously variable rate of change of the variables and derivatives, 
thereby preserving the essential feature of the calculus. Thus, if the 
magnitude of the independent variable T were measured by the number 
of revolutions of a driving shaft arranged to drive a second shaft 
through a coupling gear ratio N, a rotation dT of the driving shaft 
will result in a rotation NdT of the driven shaft. If the coupling 
ratio changes while the driving shaft is rotating, the total rotation 
y of the driven shaft is

y =fNdT 

A continuously variable coupling ratio 'that can pass through zero 
and provide for positive and negative signs is achieved with a modified 
Kelvin disk integrator, shown in figure 16. The rotation of the hori-
zontal disk, the axis of which is fixed, is transferred to the roller 
through a pair of balls. The coupling ratio between the disk and the 
roller may be changed by varying the position of the balls across the 
diameter of the disk. If the point of contact between the balls and
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the disk is a distance 	 from the center of the disk and if the disk 


rotates an amount dT, the roller will rotate through . dT turns, 

where N is the radius of the roller. In the integrators used on the 
analog, the distance	 is varied by means of a lead screw that dis-




places the ball carriage across the diameter of the disk. 

For convenience, all quantities are expressed in terms of shaft 
rotations. The expression for the rotation of the roller previously 

derived as	 J'id'r is rewritten in terms of the rotation of the shaft 

that drives the disk, the lead screw shaft that displaces the ball 
carriage, and the integrator roller. Th number of turns 	 of the 
integrand shaft required to produce a linear displacement ii of the 
ball carriage is equal to i1/p, where p is the effective pitch of the 
lead screw. The radius of the roller, the pitch of the lead screw, 
and other gear ratios permanently installed in the integrator to facil-
itate the driving of the lead screw are collected together in a term 
referred to as the integrator constant F. The expression for the rota-

tion of the roller becomes rJ'aT. 

Large torques cannot be transmitted through the integrator without 
slippage between disk, balls, and roller. Very low torques are imposed 
on the integrators. The torque required to drive the gear trains, 
shafts, and other computing elements in the mechanical circuit beyond 
the integrator is obtained from a torque amplifier placed in the circuit 
immediately after the integrator. 

Algebraic additions are performed by mechanical gear differentials, 
which operate in principle similarly to the differentials used to drive 
the rear wheels on conventional automobiles. The purpose of the differ-
entials used in the analog is to combine two rotating inputs into one 
rotating output, which for the analog differentials is one-half the 
algebraic sum of the inputs. A high-precision spur-gear differential 
with practically instantaneous response is used in the analog. 

Sample computation of gearing required. - The problem of constrain-
ing the basic computing elements (integrators, differentials, and input 
intelligence) to solve the differential equations (equations (1) and 
(2)) is approached in three steps. The first step is the preparation 
of' a pictorial diagram showing how the various computing units are inter-
connected, without regard to scale factor. A pictorial diagram for the 
solution of equation (1) is shown in figure 17. A similar diagram is 
used to solve equation (2). In order to adapt the equations of motion 
to a convenient form for the analog, equation (i) is rewritten as
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dx 1 =	 dT	 (Al) 

where

CDRe	 (	 dx' and o	 ux-) 24 

The second step is the introduction of appropriate gear ratios into 
the pictorial diagram to provide proper scale factors between each com-
puting element. These gear ratios are introduced as ratios 
n1 , n2 , . . . n to each integrand shaft of the integrators and to the 
inputs and outputs of each differential. The purpose of the gear ratios 
is to ensure that the ranges of the derivative functions introduced as 
integrand quantities to the integrators do not exceed the meähanical 
translation limits of the bail carriage and to provide equal scale fac-
tors far quantities being added in a single differential adding unit. 
A schematic diagram that aids In evaluating the gear ratios is shown 
in figure 18. 

The constant coefficients preceding each variable quantity in fig-
ure 18 represent the number of revolutions a particular shaft must make 
to represent one unit of that particular quantity. For example, shaft 
number 1 has a coefficient Ani and the variable is 11X, which may be 
Interpreted as An1 revolutions of shaft number 1 representing one unit 
of u. 

The coefficients' A, B, and C are scale factors for the sources of 
intelligence fed to the machine. The input chart, from which the intel-
ligence required by the machine for the local air velocity u is fed 
to the machine by an operator, was drawn to a size such that 96 revol-
utions of the input-chart lead screw represent one unit, of u; there-
fore, A = 96. The coefficient B was chosen to equal 128 revolutions 
of the Independent-variable drive motor to repr.esent one unit of time. 
The coefficient C was chosen to equal 8 because of convenience in using 
available gearing. The resultant quantities, shown in the two columns 
at the extreme right of figure 18, are evaluated from the equations of 
constraint to be presented. 

In order that .the variables ux and dx/dT be added algebraicly 
in the differential, the number of revolutions of the u input shaft 
(shaft 1, fIg. 18) per unit of u must equal the number of revolutions 
of the dx/dT shaft (shaft 2) per unit of dx/dT at the input to the 
differential. This equality suggests a need for the gear ratio n4 
between shafts 2 and 8. 

Equation (Al) may be written in terms of the constant coefficients 
shown in figure 18 suáh that
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An1 dx - ABC - i .nln2n3n6 J'i7a dr 

dx BC =	 n2n3ri4n6	 dr	 (A2) 

This expression is obtained from figure 18 by equating the motion of 
shaft 8 with the motion of shaft 7 after the motion of shaft 7 has passed 
through the gear ratio n 6 . From a conparison o! equation (A2) with 
equation (Al)

1 - BC =	 n2n3n4n6	 (A3) 

In order to assure that the integrand of integrator I (fig. 18) 
does not exceed the limit of translation of the ball carriage, 

An1n2 

2	 0x,m l92	 (A4) 

because the integrand lead screw can make 192 revolutions within the 
mechanical limits. Two other equations of constraint can be obtained 
by applying the same constraint to the integrand of integrators II and 
III, respectively:	 -

Cn3 Vm <48	 (A5) 

and

Ann 1 5 (dx' 
n4	

)m < 192	 (A6) 

The input chart from which the u intelligence is fed to the 
machine is wrapped around one of the two input drums, as shown in fig-
ure 15. The x-coordinate of this chart is laid off' around the circuin-
ference of the drum. The x-displacement of the droplet from the start-
ing point (5 radii ahead of the center of the cylinder) must not exceed 
one revolution of the drum. The equation that defines this constraint 
is

AB r15i7
x	 <1	 (A7) n4 range - 

The maximum and minimum \ralues of all the variables appearing in 
equations (A3)to (A7).mustbe known or intelligently estimated. For 
the example presented herein, the following excursions of the variables 
were assumed:

9
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0<x<5 

0 <u . 2 

0<<2 
- dT -

(A8) 
0axl 

1< v <6 

K4 

The results presented in figure 9 cover a range of values of K 
from 0.25 to 320. Several machine setups were required to solve that 
large range of variation in K. For this example, the range of K is 
limited from 1/2 to 4. The changes in K are made by changing the 
gear ratio n6 . In order to cover the range of values of K assigned 
to this machine setup without requiring inconveniently large gear ratios 
for n6 , a value of K = 1 is assigned to equation (A3) when n6 = 1. 
With these values of K and n 6 , equation (A3) reduces to 

	

n2n3n4BC = 512	 (A9) 

The gear ratio n7 can be obtained from the simultaneous solution 
of equations (A6) and (A7). The ratio chosen was 

1	 (1 (3\;2'	 .	 . 
= 2250 =	

because this ratio was easily formed with the 


available change gears. The input and output chart scales were such 

	

that five units of x were equal to	 revolutions of the drums. 

The ratio n3 = 1 is obtained from equation (A5). The relation 

nnn
	

(Alo) 

Is obtained from expressions (A6) and (A9). From this relation and 
equation (A4),

1 
n5 = 

which required (from expression CAb)) that n1n2 = 4. The gear ratios 
"1 = 4 and n2 = 1 are taken as such by choice because of ease1in 
applying these ratios in the machine. From equation (A9), n 4 = -.
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A similar computational procedure is done for equation (2). The 
gear trains for the solutions of equation (i) and (2) are combined in 
a plan view, as shown in figure 19, in which the computed gear ratios 
are shown in position. The plan view of figure 19, which is the third 
step, is very similar to the actual machine setup (fig. 15) and is used 
to assemble the final setup. 

The values of u and u ,. are fed to the machine continuously 
by the operators from the two end input drums shown in figure 15. The 
droplet trajectories (fig. 4) are plotted by the machine on the center 
drum on a sheet 'of acetate in order to minimize errors caused by 
changes in humidity and temperature during the calculations. The 
y-ordinate is scaled to four times the x-ordinate in order to gain 
accuracy in reading the y and e values. The values of CDRe/24 
are varied continuously during the computation of the trajectories 
and are determined with the use of equation (5) and tables in refer-
ences 3 or 6. The values of ( u - v ) and (uk. - Vy) are obtained 
from counters on the machine during the calculations.
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APPENDIX B 

STARTING CONDITIONS OF TRAJECTORIES AT LARGE VALUES OF -x 

For practical reasons the integration of the differential equations 
of motion (equations (1) and (2)) cannot be started with the NACA analog 
from an infinite distance ahead of the cylinder. The equations are 
therefore linearized by an approximation up to a convenient distance 
ahead of the cylinder. The method of linearizing the equations is pre-
sented in reference 3 and results in the following expressions: 

=	
- M() 

1 - M(3)y0 
______ - 

) yO 
Ly=

(2Yo) (1 - 2yO)2 

2 
(l-y0) y0 

+	 4 x 

M(f3) =	 + 32eE1(-) 

x 
K 

The symbols for these expressions are the same as those used in refer-
ence 3. The exponential integral E 1 (-) is tabulated in pages 1 
through 9 of reference 15. The y-ordinate of the droplet is found by 
adding y to y0. 

For the studies of the trajectories discussed herein, the integra-
tion of equations (i) and (2) with the NACA analog was always started 
at x = -5. The accuracy of the preceding linearized starting equa-
tions was checked by integrating equations (1) and (2) for K = 32, 16, 
and 4 with the NACA analog from x = -50 to x = -5. The difference 
in results was withinthe expected accuracy of the analog. The pre-
ceding linearized starting equations were found to be invalid for values 
of K less than 0.5. For values of K less than 0.5, the equations 
gave values of Vy greater than the corresponding values of uy and 
values of v smaller than the corresponding values of u. For values 
of K less than 0.5, the starting conditions at x = -5 were assumed 
to be the same as those conditions prevailing for the air streamlines. 
This assumption is valid, because the droplet inertias are very small.
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APPENDIX C 

CONVERSION OF PRACTICAL FLIG}P UNITS INTO DIMENSIONLESS


PARAMETERS K, cp, AND Re0 

The following relations are presented to aid in the interpretation 
of free-stream velocity (airplane speed), cylinder diameter, air vis-
cosity, air and water density, and droplet diameter in terms of the 
dimensionless parameters K, cp, and Re0 used in this report: 

K = 4.088xlO	
()	

(Cl) 

(dp U'\ 

	

Re0 = 4.813XlO6.	
a )
	

(C2) 

d = l.564xl05	 .(C3) 

p2DU 

	

= 0.567 a
	

(C4) 

	

/	 '2
Idp U\ 
KcP = 2.3l6xlO-	

a	
(c5) 

p = 0.0412 1. 
a	 Ta 

Wm = 2.745XlO 2 EmDUw	 (C7) 

	

W = 0.3294 Uw	 (C8) 

w=3466	 (c9) 

where 

D	 cylinder diameter, in. 

d	 droplet diameter, microns 

Em	 collection efficiency (fig. 6), dimensionless 

K	 inertia parameter, dimensionless

(ce)
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Mm	 ice accumulation for cylinder with 	 = 1.0, g/(sq in.)(sec) 

p	 absolute atmospheric pressure, in. Hg 

Re0 free-stream Reynolds number with respect to droplet 

Ta	 air temperature, °R 

U	 true flight speed, mph 

rate of water interception, lb/(hr)(ft span) 

local rate of water interception, lb/(hr)(sq ft) 

w	 liquid-water content, g/cu m 

f3	 local impingement efficiency, dimensionless 

air viscosity, slugs/(ft)(sec) 

air density, slugs/cu ft 

altitude parameter, dimensionless 

(The density of water was assumed to be 62.46 lb/cu ft; and the acceler-
ation due to gravity, 32.17 ft/sec2.)
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APFEI'DIX D 

METHOD OF CALCULATING CURVES OF (1/K) 0 AGAINST E FOR DIFFERENT 

ASSUMED DROPLET-SIZE DISTRIBUTIONS AI'D USE OF CURVES 

IN ROTATING MULTICYLII'IDER METHOD 

In the rotating multicylinder method of measuring droplet-size 
distributions and liquid-water content in a cloud, several cylinders of 
different diameters are exposed simultaneously from an airplane in 
flight to the supercooled droplets in the cloud. -During the exposure 
time all the cylinders are subjected to the same conditions of flight 
speed U, air viscosity i, air density a' water density p, and 
cloud droplet sizes and number approaching the cylinders from the 
undisturbed cloud. The variable among the cylinders is the cylinder 
size L and, consequently, the collection efficiency of each cylinder. 
An increase in L will decrease K (equation (3)) for any given 
droplet size a and thereby decrease the collection efficiency of the 
cylinder for that particular droplet size (fig. 6). Each successively 
larger cylinder in the exposed set of cylinders will collect a smaller 
percentage of the droplets of any one given size. The KP parameter 
defined by equation (13) is constant, because it does not contain L. 

In a cloud composed of droplets of many different sizes, a cylinder 
of a given diameter will collect some droplets of every size; however, 
the collection efficiency for the smaller droplets will be less than 
for the larger droplets. For any assumed droplet-size distribution in 
the cloud, such as distribution B in table II, an over-all collection 
efficiency for a cylinder can be calculated from the results of fig-
ure 6 by adding together the weighted collection efficiencies that are 
appropriate to each droplet-size group in the B distribution. 

The procedure for obtaining the over-all weighted collection effi-
ciency (fig. 12) is explained with the use of a sample calculation for 
the B distribution of table II and an assumed (Kcp) 0 of 200 (equa-
tion (13)). The over-all weighted collection efficIency of one cylin-. 
der in a groupof cylinders is given as the final result in table III. 
As a basis for beginning the computation, a value of 1/K = 4.0 is 
assigned to those droplets in the volume-median group size. (This par-
ticular value of 1/K is chosen arbitrarily and will define one point 
on the curves of (1/K) against E for (KcP) 0 = 200 of fig-
ure 12(b). A value of he collection efficiency for K = 1/4.0 is 
found in figure 6 and is given in the fifth column of table III. The 
required value of cp is obtained from the original assumption that 
(Kcp) 0 = 200; therefore, P = 800 for (1/K) = 4.0. The weighted
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collection efficiency is found by taking the product of the percentage 
water in each size group (column 3) and the collection efficiency of 
column 5. The weighted collection efficiency is recorded in column 6. 
The effect bf the variation of the group size on 1/K is obtained by 
dividing the value of 1/K assigned to the volume-median droplet size 
(1/K = 4.0 in this example) by (a/a 0 ) 2 , because the droplet radius 
appears to the second power in equation (3). The change in K with 
the change in droplet size is recorded in column 4. A value for the 
collection efficiency is found from figure 6 for each value of K in 
column 4. The value of ) remains the same as for the volume-median 
droplet size (cp = soo) because the droplet size does not enter into 
the definition of	 (equation (7)). 

The, weighted collection efficiency is again the product of the 
'values in column 3 and the collection efficiency of column 5. The sum 
of the individual weighted collection efficiencies of column 6 is the 
over-all weighted collection efficiency. The sum at the bottom of 
column 6 in , table 111(a), in combination with the assigned value of 
(1/K) 0 to the volume-median droplet size, defines one point on the 
B-distribution curve of figure 12(b)'. 

In order to obtain another point for the B-distribution curve of 
figure 12(b), a different value is assigned to 1/K for the volume-
median droplet size; for example, in table 111(b) (1/K) 0 = 1.0 as 
compared with (1/K) = 4.0 . in table 111(a). The lowering of the value 
of (1/K) 0 has the same effect as decreasing the cylinder size L 
when the physical dimensions of the volume-median droplet size, air-
plane speed,. water density, and air viscosity are maintained constant 
(equation (3)), as is actually the physical condition when a set of 
different-sized.cylinders are flown simultaneously through a cloud. 
The procedure fOr computing the values in columns 4, 5, and 6 is the 
same as was described for table 111(a). The only exception is that 
the value.of' q is now changed to' 200 in order , -to maintain 
(Kq) 0 = 200 for (1/K) 0 = 1.0. The value of cp is maintained. at 200 
during the calculations for table 111(b)'. 

The calculations of reference 3 apparently are different from those 
described herein, in that in the calculations of reference 3, cp appears 
to have been allowed to vary to conform with maintaining KcP constant 
during the' calculations for the weighted collection efficiency. The 
value of Cp cannot be permitted to vary during the calculations 'of the 
over-all weighted collection efficiency, because airplane speed, cylin-
der size, air density, air viscosity, and water density are not variables 
during that phase of the calculations. 

The over-all weighted collection efficiencies, which are the sums 
at the bottom of column 6 in table III, are tabulated in table IV for
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the values required to draw the curves of figure 12. The values of 
table IV are subject to a tolerance error caused by the limit of accur-
acy in obtaining the collection efficiencies from the trajectories com-
puted with the analog. The expected error in determining the collection 
efficiency for droplets with low inertia was much greater than for 
those with large inertia. The expected root mean square error of the 
over-all weighted collection efficiencies of table IV, based on the 
expectation of individual random errors, was determined from the follow-
ing expression: 

L\H ='(O.o5)2(Aa)2+(O.1O)2(b)2+(Q.2O)2(Ac)2+(Q.3O)2(Ad)2+(O.2O)(e)2+(O.1Q)2(M)2+(O.O5)2(Ag)2 

where La, b, and so forth are actual errors in determining the respec-
tive collection efficiency. The expected root mean square error in 
the curves of figure 12 has been determined to be somewhat less than 
1 percent for values of E near 1.0 and approximately 2 percent for 
values of	 near 0.01. 

The droplet-size distribution and volume-median droplet size in a 
cloud are determined by comparing the measured values obtained from a 
set of rotating multicylinders with curves of figure 1.. On log-log 
paper of the same scale factor as that in figure 12, the measured 
weight of ice accumulated per unit of projected cylinder area is plotted 
as the abscissa and the cylinder diameter is plotted as the ordinate 
(fig. 11). The curve of figurel2 that best fits the data of figure 11 
is found by superimposing the data of figure 11 on the curves of fig-
ure 12 and shifting the two sheets, one with respect to the other, hor-
izontally and vertically (not rotated). The horizontal and vertical 
shifting is permitted, provided the plots are on log-log paper, because 
E and the amount of ice per unit projected cylinder area are propor-
tional and because (1/K) 0 is proportional to the cylinder diameter 
2L. The matching of the curves must also fulfil the condition that 
equations (3) and (13) must be satisfied simultaneously. The value of 
(1/K) 0 in figure 12 corresponding to a cylinder with radius L of 
unity is noted while figures 12 and 11 are superimposed. For these 
values of (1/K) 0 and L, a value of a0 can be found from equa-
tion (3), because w'	 and U are known flight measurements. The 
calculated value of a0 is used to determine the value of (Kp)0 
from equation (13). If the value of (K cP) 0 determined by this method 
does not correspond with the (Kp) 0 sheet of figure 12 used for the 
matching, a different match must be found on a different (Kcp) 0 curve 
sheet. A method for approximating and interpolating is described in 
reference 9.
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After the curve that best fits the data has been found, the droplet-
size distribution of the cloud is found by noting the letter on the 
curve in figure 12. The volume-median droplet size is that value which 
satisfies equations (3) and (13) simultaneously. The liquid-water con-
tent of the cloud is determined by noting the value of ice accumulation 
where the ordinate E = 1.0 crosses the abscissa of figure 11 while 
figures 12 and 11 are superimposed. This procedure has the effect of 
extrapolating the icing rate measured by the set of cylinders to an 
infinitely small cylinder with unity collection efficiency. The value 
of ice accumulation Mm of the abscissa where E = 1.0 is substituted 
in the following relation:

w = 3466 

where I& is in grams per square inch per second and U is in miles 
per hour in order to obtain w in grams per cubic meter. 
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TABLE I - CONPARISON WITH RESULTS OF REFERENCE 3 

cp K Re0 Em em Vx 

NACA Lang- NACA Lang- NACA Lang- NACA Lang-
muir muir muir muir 

0 0.25 0 0.051 0.042 0.330-0.151 0.438
.50 ---0---- .205 .186 .716 0.688 .573 0.523 .658 0.635 

1 ---0---- .380 .380 .980 .991 .817 .827 .547 .542 
4. ---0---- .741 .722 1.379 1.365 1.039 1.008 .198 .211 

16 ---0---- .920 .909 1.518 1.517 1.018 1.002 .054 .055 
40 ---0---- .957 .962 1.538 1.546 1.014 .036 
320 ---0---- .995 .997 1.557 1.567 1.005

-

-

.016

-

- 

100 0.50 7.071 0.157 0.127 0.601 0.565 0.445

--

0.650

- 

1 10 .309 .296 .865 .857 .717 .915 .612 .793 
4 20 .680 .639 1.291 1.253 1.022 .993 .295 .326 

40 63.246 .924 .928 1.522 1.504 1.018

-

-.050

-

1,000 0.50 22.361 0.116 0.090 0.504 0.483 0.329 0.596

- 

1 31.623 .250 .228 .760 .719 .617 .650 
4 63.246 .616 .568 1.20 1.147 .980 .382 
16 126.49 .830 .806 1.445 1.391 1.036

-

-

-

.133

- 
- 
- 

- 

10,000 0.50 70.711 0.070 0.053 0.385 0.384 0.195

-

0.482- 
100 .157 .156 .595 .597 .441 0.494 .650 0.725 

4 200 .480 .441 1.060 .997 .890 .877 .500 .567 
16 400 .755 .710 1.345 1.286 1.035 1.039 

-

.239 .304 

50,000 0.5 158.114 0.038 0.035 0.267 0.314 0.085 0.310 
1 223.607 .105 .097 .45 .494 .266 .549 
4 447.214 .378 .340 .916 .873 .762

-

.584

- 

16 894.427 .682 .615 1.258 1.169 1.009

-
-

.327

- 
- 

______ 320 4000 .940 .912 1.515 1.470 1.020
-
-.058

- 
-
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TABLE II - FIVE ASSUMED DISTRIBUTIONS OF DROPLET SIZE


(REFERENCE 3) 

Total liquid a/a0 
water in each Distributions 
size group

A B C D E (percent) 

5 1.00 0.56 0.42 0.31 0.23 
10 1.00 .72 .61 .52 .44 
20 1.00 .84 .77 .71 .65 
30 1.00 1.00 1.00 1.00 1.00 
20 1.00 1.17 1.26 1.37 1.48 
10 1.00 1.32 1.51 1.74 2.00 
5 1.00 1.49 1.81 2.22 2.71

The size is expressed as. the ratio of the average drop radius in 
each group to the volume-median drop radius a0. 

Example of interpretation: 30 percent of the liquid-water content 
of any cloud is contained in droplets which have a radius a 0 . Inthe 
case of the B distribution, 20 percent of the liquid-water content is 
contained in droplets which have a radius smaller than the volume-median 
radius a0. by a ratio a/a0 = 0.84 and another 20 percent in droplets 
which have a radius larger than a0 by a ratio a/a0 = 1.17. A similar 

interpretation applies to the remaining values. 
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TABLE III - SAMPLE CALCULATIONS FOR E FOR 

DISTRThUTION B MID (K) 0 = 200 

(a) (1/K) 0 for volume-median droplet size


assigned value of 4.0; = 800 

Group a/a0 Percent K Em E 
water in 
each size 
group ______ ______ ______ ______ 

1
_____ 
0.56 5 0.079 

2 .72 10 .130 
3 .84 20 .177 0.003 0.0006 
4 1.00 30 .250 .027 .0081 
5 1.17 20 .343 .065 .0130 
6 1.32 10 .435 .100 .0100 
7 1.49 5 .555 .140 .0070 

= E = 0.0387 

(b) (1/K)0 for volume-median droplet size 

assigned value of 1.0; q = 200 

Group a/a Percent watei K Em E 
0 in each size 

group 

1 0.56 5 0.314 0.068 0.0034 
2 .72 10 .518 .158 .0158 
3 .84 20 .706 .225 .0450 
4 1.00 30 1.000 .301 .0903 
5 1.17 20 1.370 .384 .0768 
6 1.32 10 1.740 .444 .0444 
7 1.49 5 2.270 .515 .0258

= E = 0.302 
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TABLE IV - VALUES OF WEIGITED COLLECTION EFFICIENCY E, FOR


DROPLET-SIZE DISIBUTIONS A, B, C, D, AND E 

1/K) 0 _________________________ 

(Kcp)0 = 0

_________________________ 

(Kq')0 = 200 _____ 

A B C, D E A B C D E 

4 0.051 0.069 0.085 0.107 0.126 0.027 0.039 0.050 0.066 0.083 
2 .205 .204 .211 .225 .241 .135 .138 .146 .165 .182 
1 .380 .374 .373 .379 .384 .298 .302 .306 .315 .319 

.5 .566 .555 .549 .542 .536 .493 .486 .482 .480 .477 

.2 .789 .768 .750 .732 .713 .761 .740 .721 .703 .686 

.1 .885 .870 .854 .836 .815 .874 .859 .846 .826 .805 

.05 .932 .925 .918 .898 .885 .925 .919 .910 .901 .878 

.02 .963 .961 .957 .951 .940 .960 .959 .955 .948 .938 

.01 .978 .976 .977 .972 .965 .976 .975 .976 .971 .963 

( Kcp) 0 = 1000 (Kcp)0 = 3000 ____ 

4

______ 

0.019 0.029 0.038 0.050 0.065 0.013 0.020 0.027 0.039 0.048 
2 .109 .109 .122 .138 .154 .085 .090 .100 .111 .130 
1 .251 .252 .259 .271 .283 .218 .225 .235 .244 .251 

.5 .460 .452 .423 .447 .447 .409 .416 .410 .415 .413 

.2 .714 .697 .677 .661 .643 .687 .668 .652 .641 .623 

.1 .830 .816 .800 .783 .763 .815 .797 .785 .766 .746 

.05 .908 .899 .892 .876 .862 .884 .878 .867 .855 .839 

.02 .953 .953 .949 .943 .933 .945 .940 .938 .921 .918 

.01 .971 .972 .973 .967 .962 .968 .966 .970 .964 .954 

____ _____	 (Kcp) 0 = 10,000

4	 0.008 0.013 0.017 0.023 0.034 
2	 .057 .060 .072 .083 .092 
1	 .157 .163 .172 .188 .202 

	

.5	 .350 .356 .357 .362 .368 

	

.2	 .645 .630 .615 .599 .591 

	

.1	 .778 .764 .748 .731 .713 

	

.05	 .865 .857 .849 .830 .816 

	

.02	 .920 .920 .918 .909 .899 

	

.01	 .952 .950 .955 .946 .939 
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cD.2787 

FIgure 1. - Potating multicylinder set extended tbrougt top of airplane fuselage.
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Figure 2. - Assembled set of rotating multicylindere.
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Ice accumulation, g/(sq in.)(sec) 

Figure 11. - Ice accumulation on set of 
cylinders. Speed, 200 miles per hour; air 
viscosity, 3.436Xl0 7 slugs per foot-second; 
altitnde, 10,000 feet.
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Figure 12. - Over-all weighted collection efficiency plotted against 
reciprocal of inertia parameter for volume-median droplet size for 
five cloud-droplet-size distributions.
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Figure 12. - Continued. Over-all weighted collection efficiency plotted againBt 
reciprocal of inertia parameter for volume-median dxoplet size for five cloud-
droplet-size distributions.
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Figure 12. - Continued. Over-all weighted collection efficiency plotted against reciprocal of 
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(d) (K) 0, 3,000. 

Figure 12. - Continued. Over-all weighted collection efficiency plotted against recIprocal of 
inertia parameter for volume-median droplet size for five cloud-droplet-size distributions.
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Figure 12. - Concluded. Over-all weighted collection efficiency plotted against reciprocal of inertia 

parameter for volume-median droplet size for five cloud-droplet-size distributions.



NACA TN 2904 

- Distri- 
bution 

-

Value of 
(i/ic) 0	 for 

which	 , 

0.165 
.210 
.250

Volume- 
median 
droplet 
diam. 

25 
20 
17

Error 
(percent) 

12.9 
0 

13.3

Liquid- - 
water 
content 
(g/cum). 

0.52 
.55 
.57 

- - 

- - 

\ A 
B 
E 

- - - -

II 

__________

I 

- - - - ______________ ________ _Distribution_ - - - - 

I	 ii	 I

64

'C 

e 

6 

4 

3 

'-I 

a) 

a)
i.c 

'-4

a 
a) 

-1 
H 

0

.4 

.3 

. 

.1 
.004 006 .008 .01	 .02	 .03	 .04	 .06 

Ice accumulation, g/(sq in.)(sec) 
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curves of figure 12(e). (KP) 0, 10,000. Braces indicate range 

of ±5-percent error; brackets indicate range of ±10-percent error. 
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Vohu-dian droplet diameter, d0, microns 

(a) Allowed error in aaurent, *5 percent. 

Figure 14. - Expected errors in determination of voltme-median droplet 

size. 
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Figure 14. - Concluded. Expected errors in determination of 

volume-median droplet size. 
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