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SUMMARY 

The presence of radomes and instruments that are sensitive to water 
films or ice formations in the nose section of all-weather aircraft and 
missiles necessitates a knowledge of the droplet impingement character-
istics of bodies of revolution. Because it is possible to approximate 
many of these bodies with an ellipsoid of revolution, droplet trajec-
tories about an ellipsoid of revolution with a fineness ratio of 5 were 
computed for incompressible axisymmetric air flow. From the computed 
droplet trajectories, the following impingement characteristics of the 
ellipsoid surface were obtained and are presented in terms of dimension-
less parameters: (1) total rate of water impingement, (2) extent of 
droplet impingement zone, (3) distribution of impinging water, and (4) 
local rate of water impingement. 

INTRODUCTION 

All-weather aircraft and missiles frequently have instruments 
located in the nose section of the fuselage that are sensitive to im-
pinging atmospheric water droplets and ice accretion. For example, it 
has been found that the operation of an aircraft radar system located 
in a nose or wing radome is affected by a layer of ice or water dis-
tributed over the radome surface. Therefore, it is necessary to evalu-
ate, for given flight conditions, the expected distribution of various 
sizes of impinging water droplets over the nose section of the aircraft 
or missile. In addition, problems such as those encountered in the per-
formance of external armament during flight in icing conditions require 
the evaluation of droplet impingement on bodies of revolution in order 
to determine where ice will form. 

Although a large variety of body shapes are used for radomes, rocket 
pods, and bombs, the impingement calculations may be made for a body 
selected to approximate a large group of these practical shapes. A pro-
late ellipsoid of revolution is a good approximation for many of these 
bodies, and it has the additional advantage of a flow field that is 
known exactly for incompressible, nonviscous flow.
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The trajectories of atmospheric water droplts about a prolate 
ellipsoid of revolution with a fineness ratio of 5 moving at subsonic 
velocities were calculated with the aid of a differential analyzer at 
the NACA Lewis laboratory. From the computed trajectories, the rate, 
distribution, and surfac,e extent of impinging water were obtained and 
are summarized in terms of dimensionless parameters in this report. 

SYMBOLS 

The following symbols are used in this report: 

A	 semimajor axis 

a	 droplet radius, ft 

B	 semiminor axis 

CD	 drag coefficient for droplets, dimensionless 

d	 droplet diameter, microns 

dmed	 volume-median droplet diameter, microns 

Em	 collection efficiency, dimensionless 

2pwa2U 
K	 inertia parameter, 9L	

dimensionless 

Kmed	 inertia parameter based on volume-median droplet diameter, 
dimensionless 

L	 major axis of ellipse, ft 

Re	 local Reynolds number with respect to droplet, 2apav/1, 
dimensionless 

Re0	 free-stream Reynolds number with respect to droplet, 2apaU/t.I, 
-	 dimensionless 

ReO,med free-stream Reynolds number based on volume-median droplet 
diameter, dimensionless 

r,z	 cylindrical coordinates, ratio to major axis, dimensionless 

r0	 starting ordinate at z = -coof droplet trajectory, ratio to 
major axis dimensionless 

r0 tan starting ordinate at z = - of droplet trajectory tangent to 
ellipsoid surface, ratio to major axis, dimensionless
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S	 distance along surface of ellipsoid from forward stagnation 
point to point of droplet impingement, ratio to major axis, 
dimensionless 

SM	
limit of impingement zone, ratio to major axis, dimensionless 

t	 time, sec 

U	 free-stream velocity, ft/sec; or flight speed, mph, when indi-
cated 

u	 local air velocity, ratio to free-stream velocity 

v	 local droplet velocity, ratio to free-stream velocity 

v	 magnitude of local vector difference between velocity of drop-
let and velocity of air, ft/sec 

W	 rate of impingement of water, lb/hr 

Wm	 total rate of impingement of water on surface of ellipsoid,: 
lb/hr 

W	 local rate of impingement of water, lb/(hr)(sq ft) 

w	 liquid-water content in cloud, g/cu m 

1/4 focal distance of ellipsoid 

local impingement efficiency, dimensionless 

c	 eccentricity of ellipse defined by a meridian section of 
ellipsoid of revolution 

prolate-elliptic coordinates 

viscosity of air, slugs/(ft)(sec) 

Pa	 density of air, slugs/cu ft 

PW	
density of water, slugs/cu ft 

T	 time scale, tu/L, dimensionless 

Subscripts: 

r	 radial component 

z	 axial component
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ANALYSIS 

The flow field around an ellipsoid of revolution in a stream moving 
in the direction of its major axis is axisymmetric. Therefore, the 
droplet impingement on the elliptical sections of all meridian planes 
is the same. Thus, the droplet impingement distribution on an ellipsoid 
of revolution can be obtained from trajectories in the z,r plane (fig. 
1). The coordinates z and r are dimensionless and expressed as ratio 
of actual distance to major axis length L. The dimensionless equations 
of motion of the droplet trajectories are of the same form as those 
derived in reference 1 and can be written 

dv - CDRe 1 
- 24 K (uz - vz)	 (la) 

dvr CDRe 1 
- 24 K (ur - vr)	 (lb) 

where

2 pa2U
(2) 

and r = tU/L, and all velocities are in the form of ratio of local 
velocity to free-stream velocity U. 

The Reynolds number Re can be obtained conveniently in terms of 
the free-stream Reynolds number 

Re0 = 2apU/jL
	

(3) 

from the relation

/Re \ 2 
tiE;) = (uz- vz) 2 +(ur- vr) 2	 (4) 

The coefficient of drag CD Is a function of Reynolds number. The 
values of CD corresponding to various values of Reynolds number are 
obtained from experimental drag data (ref. 2). 

The air velocity components for incompressible nonviscous flow 
about a prolate ellipsoid of revolution are obtained from the exact 
solution of Laplace's equation In prolate-elliptic coordinates (fig. 2)
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given by Lamb (ref. 3). The details for obtaining the velocity com-
ponents in the z,r plane from Lamb's potential function in prolate-
elliptic coordinates are given in appendix A. The z and r com-
ponents of the air velocity field can be expressed in the form 

uz = - c [! in 
(J11+ J + c \ 1 / 1 + -- 1 + 1	 (5) £	 vi	 € +i-) - (	 411;r,)J 

and

Ur = - Cr (
- ) 2 +r2	

c	

(6) 

where

4X	 + )2 + r2 

41 VZ 	 + r2 

=	 -1/2 
C —

 

	

li (ti-c\	 1 
2€ " \1_c) l_E2 

-The constant C is the eccentricity of the ellipse defined by the 
meridian section of the ellipsoid of revolution. For an ellipse with 

fineness ratio of 5, C = 40.9. Equations (5) and (6) were solved for 
several hundred points in the flow field with the use of electronic cal-
culating machines employing punched cards. The values of the air veloc-
ity components u and Ur as functions of r and z are given in 
figure 3. Figure 3(a) gives UZ as a function of z for constant 
values of r, while figure 3(b) gives ur as a function of r for 
constant z. 

Assumptions that are necessary to the solution of the problem are: 

(1) At a large distance ahead of the ellipsoid (free-stream condi-
tions), the droplets do not move with respect to the air.
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(2) No gravitational force acts on the droplets. 

(3) The droplets are always spherical and do not change in size. 

The first two assumptions are valid for droplets smaller than 
drizzle or rain drops. The assumptions are usually also valid for fall-
ing rain drops, because the airplane velocity is usually much greater 
than the drop velocity caused by gravitational force. Preliminary cal-
culations have shown that the third assumption is valid for the order 
of accuracy usually required in the design of equipment for the pro-
tection of aircraft.

METHOD OF SOLUTION 

The differential equations of motion (1) are difficult to solve, 
because the values of the velocity components and the term containing 
the coefficient of drag depend on the position of the drop at each in-
stant and, therefore, are not known until the trajectory is traced. The 
values of these quantities must be fed into the equation as the tra-
jectory of a droplet is developed. This was accomplished by using a 
mechanical differential analyzer constructed at the NACA Lewis labora-
tory for this purpose <ref . 1). The answers were obtained in the form 
of plots of droplet trajectories with respect to the ellipsoid. A 
typical group of droplet trajectories is shown in figure 4. From the 
droplet-trajectory plots were obtained the impingement characteristics 
of interest discussed in subsequent sections. 

The equations of motion (1) were solved for various values of the 
parameter 1/K between 0.1 and 90. For each value of the parameter 
1/K, a series of trajectories was computed for each of several values 
of free-stream Reynolds number Re 0 : 01 128, 512, 1024, 4096, and 8192. 

In order that these dimensionless parameters have more physical signifi-
cance in the following discussions, some typical combinations of K and 
Re0 are presented in table I in terms of. the length and the velocity 
of the ellipsoid, the droplet size, and the flight pressure altitude and 
temperature. 

Before the integration of the equations of motion to obtain the 
trajectories could be performed with the differential analyzer, the 
initial velocity of the droplets had to be determined at the point se-
lected as the starting position. In addition, since the starting posi-
tion must be selected at a finite distance ahead of the ellipsoid, it 
was necessary to make a correction to this starting ordinate in order 
to obtain the corresponding starting ordinate r0 at z = -. Pre-
liminary tests showed that, from z = - to z = -2, the trajectories 
and streamlines were essentially coincident. Furthermore, between 
z = -2 and z = -1, the magnitude of the change in the air velocity
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components with change in r was negligibly small (fig. 3) compared 
with unity on the air velocity scale used in solving the equations. 
Consequently, the changes in the droplet velocity and the ordinate r 
along a given trajectory between z = -2 and z = -1 were essentially 
independent of the starting r value or of the value of Re0. There-

fore, a trajectory was run between z = -2 and z -1 for each value 
of 1/K in order to obtain the correct starting conditions at z = -1. 
By this method it was possible to solve the trajectories starting at 
z = -1 so that, within the accuracy of the machine, this would be 
equivalent to starting the trajectory at an infinite distance ahead of 
the ellipsoid. 

In order to minimize errors due to changes in the length of the 
paper used on the air velocity input drums caused by humidity and tem-
perature variations, the component velocities of the flow field shown 
in figure 3 were plotted on 20- by 30-inch sheets of glass tracing 
cloth. A fine grid was laid out on the tracing cloth with a plotting 
machine constructed for this purpose. The droplet trajectories (fig. 4) 
were plotted by the differential analyzer on sheets of acetate in order 
to minimize scale changes and damage due to handling. The r-ordinate 
of the trajectory plots was scaled to 4 times the z-ordinate in an 
effort to improve the accuracy of determining the point of droplet im-
pingement on the ellipsoid surface. With this distorted scale, the 
trajectories were plotted with respect to an ellipsoid section with a 
major axis of 30 inches and a minor axis of 24 inches. The accuracy 
with which the various droplet impingement characteristics could be 
obtained is discussed in the following section. 

RESULTS AND DISCUSSION 

A series of droplet trajectories about the, ellipsoid of revolution 
with a fineness ratio of 5 at zero angle of attack was computed for the 
various combinations of the dimensionless parameters K and Re0. 

These data are summarized in figure 5 1 where the starting ordinate r0 

of each trajectory is given as a function of the point of impingement 
on the surface S. (S is the distance measured along the surface from 
the forward stagnation point to the point of impingement; the relation 
between S and z and r is given in appendix B.) The dashed lines 
in figure 5 are the loci of the termini of the constant K curves. 
These loci were found to be the same, within the order of accuracy of 
the computations, for all values of Re0, as can be seen by comparing 

figures 5(a) to (f). The dot-dashed curves among the constant K curves 
for Re0 = 4096 and Re0 = 8192 (figs. 5(e) and (f)) were obtained by 
interpolation. From the data presented in this figure, the rate, the 
area, and the distribution of water-droplet impingement on the surface 
of the ellipsoid can be determined for given values of Re0 and K.
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Total Rate of Impingement of Water 

In. flight through clouds composed of droplets of uniform size, the 
total amount of water in droplet form impinging on the ellipsoid is 
determined by the amount of water contained in the volume within the 
surface formed by the tangent trajectories (fig. l. Therefore, the 
total rate of impingement of water (lb/hr) can be determined from the 
relation

Wm = 0.33tr,tanwL2U	 (7) 

where 0.33 is a conversion factor, the flight speed U is in miles per 
hour, the liquid-water content w is in grams per cubic meter, and L 
is in feet. When constants are combined, 

Wm = 1.04r2,tanwL2U
	

(8) 

In this equation, rtan is a measure of the efficiency of catch, be- 

cause it is proportional to the collection efficiency ( Em = 100r,tan), 

defined as the ratio of the actual amount of water intercepted by the 
ellipsoid to the total amount of water in droplet form contained in the 
volume swept out by the ellipsoid. 

The value of rO, tan for a given combination of Re 0 and K can 

be obtained from figure 5 by determining the value of r0 which corre-
sponds to the maximum S for the constant K curve of interest. The 
values of r0,tan fall on the dashed termini curves of figure 5. In 
order to facilitate intero1ation and extrapolation, the data are re-
plotted In the form of r 0,tan as a function of K for constant Re 

2 in figure 6. Examination of figure 6 shows that r,-	 increases with 

increasing K but decreases with increasing Re0. 

The accuracy of the determination of r0,tan is very much dependent 

on the shape of the tangent trajectory in the vicinity of the surface of 
the ellipsoid. For example, for the combination of 1/K = 1 and 
Re0 = 4096 shown in figure 4, the shape of the tangent trajectory and its 

neighboring trajectories is such that a small increase of the order of 
0.0007 in r 1-, above the true value of r,- an will result in a trajec- 

tory that definitely misses the ellipsoid. A similar slight decrease in 
the value of will result in a trajectory that unmistakably impinges 

on the surface. The tangent trajectory is, therefore, relatively easy
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to determine for this case; and rO,tan can, therefore, be determined 
to an accuracy of the order of ±0.0003. However, for a combination of 
1/K and Re0 that results in small values of r0,tan, such as shown 
in figure 4 for 1/K = 30 and Re = 512, the crowding together of the 
trajectories near the ellipsoid and the tendency of the trajectories to 
have the same shape as the ellipsoid surface result in a possible ques-
tion as to the true value of rO,tan. Trajectories with r 0 as much 

as 30 percent smaller than the true value of rO,tan may appear to be 
tangent. Therefore, in order to avoid selecting a trajectory that is 
not the tangent when determining r0,tan, the value of ro was in-
creased by small increments until a trajectory definitely missed the 
ellipsoid. Thus, an upper limit to the region of possible tangency was 
established and used as a guide when selecting the tangent trajectory. 
With this method for determining the tangent trajectory, the accuracy 
of rO,tan in this Reo and K region is within *0.0007 for values 
of rO,tan >0.01. For reported values of rO,tan <0.01, the accuracy 

in determining the tangent trajectory is somewhat indefinite, but appears 
to be within *0.001. 

The effect of body size on the value of r2 ,tan for selected cloud O 
droplet size and flight conditions is illustrated in figure 7. The cal-
culated values given in figure 7 for ellipsoids with a fineness ratio 
of 5 and major axis lengths between 3 and 300 feet are for flight at 50, 
100, 300, or 500 miles per hour through uniform clouds composed of drop-
lets of 10, 20, or 50 microns in diameter at pressure altitudes of 5000, 
15,000, or 25,000 feet and temperatures (most probable icing temperature 
given in ref. 4) of 200, 10, and -250 F, respectively. For example, 
consider a 40-foot-long ellipsoid with a fineness ratio of 5 traveling 
at 500 miles per hour with zero angle of attack at a pressure altitude 
of 15,000 feet through a uniform cloud composed of droplets. of 20 microns 
in diameter. From figure 7(b), r2 .,tan is 0.000114. If the liquid- 


O 
water content of the cloud is assumed to be 0.1 grain per cubic meter, 
then (from eq. (8)) the total rate of impingement of water Wm is 9.5 

pounds per hour.

Extent of Droplet Impingement Zone 

The extent of the droplet impingement zone on the surface of the 
ellipsoid, is obtained from the tangent trajectories. The point of tan- 
gency determines the rearward limit of the impingement zone. The limit 
of impingement 8m for a particular Re 0 and K condition can be 

determined from the maximum S value of the constant K curve of



10	 NACA TN 3099 

interest in figure 5. Again, to facilitate interpolation, the data are 
replotted in the form of 3m as a function of K for constant Re0 

values in figure 8. The data of this figure indicate that S. in-
creases with increasing K but decreases with increasing Re0. 

Because of the difficulty of determining the exact point of tan-
gency on the surface of the ellipsoid of each tangent trajectory, the 
accuracy of determining Sm is of the order of ±0.005. The accuracy 
of determining the value of S for the intermediate points of impinge-
ment given in figure 5 was much higher, because the points at which the 
intermediate trajectories terminated on the ellipsoid surface were much 
better defined. 

The effect of body size on the value of Sm for selected cloud 

droplet and flight conditions is illustrated in figure 9. For example, 
consider a 20-foot-long ellipsoid with a fineness ratio of 5 traveling 
300. miles per hour at zero angle of attack at a 50007foot pressure 
altitude through a uniform cloud composed of 50-micron droplets. From 
figure 9(a), Sm is 0.109; that is, the impingement zone extends 2.18 
feet rearward (measured along the surface) from the forward stagnation 
point.

Distribution of Impinging Water Along Ellipsoid Surface 

The amount of water, impinging on the ellipsoid surface within any 
ring of width S 2 - S1 can be determined if the starting ordinates r0 

are known for the droplets that impinge at S 1 andS2 . These data 

can be obtained from figure 5. 

The amount of water (lb/hr) impinging within the ring of width 
- l is given by the relation 

W	 1.04(r ,2 - r2 
,1 )wL

2 J	 (9) 

Local Rate of Impingement of Water 

The local rate of impingement of water in droplet form 
(lb/(hr)(sq ft)) on the surface of the ellipsoid can be determined from 
the expression

r0 dr0 
W=0.33Uw——=0.33Uw13	 (io'
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where 0 is the local impingement efficiency. The values of P as a 
function of S for combinations of Re0 and K are presented in fig-
ure 10. These curves were obtained by multiplying the slope of the 
curves in figure 5 by the corresponding ratio r 0/r at each point. The 

dot-dashed curves included for Re0 = 4096 and Re0 = 8192 were obtained 

from the corresponding interpolated curves of figure 5. Because the 
slopes of the r against S curves (fig. 5) in the region use  

S = 0 and S = 0.01 are difficult to determine, the exact values of 
between S = 0 and S = 0.01 are not known. The values of 3 presented 
in this region between S = 0 and S = 0.01 are estimated to be accurate 
within *0.05. 

IMPINGEMENT IN CLOUDS OF NONUNIFORM DROPLET SIZE 

The data presented in figures 5 to 10 would apply directly only to 
flights in clouds composed of droplets that are all uniform in size. 
The droplets in a cloud, however, may have a range of sizes. Theoreti-
cal calculations (ref. 5) and experience in the NACA Lewis icing re-
search tunnel on bodies of revolution have shown that the amount of ice 
collected when a distribution of droplet sizes is present in the tunnel 
is considerably greater than that which would be obtained if only drop-
lets of the volume-median size were present. Therefore, if the cloud 
droplet-size distribution is known or can be estimated., then the data 
must be accordingly modified. (or weighted. ) before the rate, the extent, 
and the distribution of droplet impingement on the ellipsoid are 
calculated.. 

For a nonuniform. cloud, the total rate of impingement of water on 
the ellipsoid can be determined from equation (8) by using the weighted 
value of r2	 that corresponds to the droplet-size distribution O.tan 
present in the cloud. The weighted value of r O,tan 

2	
can be obtained 

by plotting r	 for each droplet size (based on values of K and 
Otan 

ReO corresponding to each droplet diam.) as a function of the cumula-

tive volume (in percent) of water corresponding to each droplet size 
and integrating the resultant curve. For example, consider the cloud 
droplet-size distribution shown in figure 11. Suppose that the volume-
median droplet size is 20 microns, the velocity is 200 . miles per hour, 
the ellipsoid length is 10 feet, the pressure altitude is 5000 feet, and 
the temperature is 200 F. For these conditions, the value of Re0,med 

is 117.6 and of Kmed is 0.03898. The values of Re 0 and K corre-

sponding to other droplet sizes in the distribution are obtained by 
multiplying ReO med by d./dmed. and Kmed. by (d/dmed) 2 and are used
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to obtain r2 ,,tan (fig. 6) for each droplet size. The values of 

for this example are plotted as a function of cumulative volume 

'(in percent in figure 12. Integration of this curve gives a weighted 

value of r 0,tan equal to 0.000425; whereas, the value based on the 

volume-median droplet size is 0.00031 (fig. 6). 

The local rate of impingement of water at any point for a distribu-
tion of droplet sizes can be obtained in the same manner. The extent 
of the droplet impingement zone should be determined from the values of 

K and Re0 calculated for the largest droplets present in sufficient 

number to represent a significant portion of the total water present 

in the cloud.

CONCLUDING REMARKS 

The scale factors used in the differential analyzer to solve the 
equations for the range of conditions presented in figures 5 to 10 and 
the near-parallelism of the trajectories to the surface at large values 
of 1/K made it impossible to obtain sufficient accuracy to present 
detailed data, such as the rate of local impingement of water, at points 
along the surface of the ellipsoid, for values of 1/K > 90 for Re 0 = 0 

and 1/K > 30 for Re0 > 128. From table I it can be seen that, for 

bodies as large as the fuselage of cargo or passenger airplanes, these 
conditions are not uncommon. Examination of figures 5 and 10 shows, 
however, that the extent (usually Sm < 0.03) and rate of local impinge-

ment are small in this Re0 and K region. Therefore, in this region 
a knowledge of the extent of the impingement zone and the total rate of 
impingement of water as calculated from the data of figures 8 and 61 
respectively, is sufficient for most applications. 

Because the droplet trajectories about the ellipsoid were calcu-
lated for incompressible fluid flow, a question as to their applicability 
at the higher subsonic velocities may arise. In reference 6 it was 
shown that the effect of compressibi li ty up to the flight critical Mach 
number on the trajectories about a cylinder was negligible. In view of 
the results obtained for the cylinder and of the high flight critical 
Mach number (greater than 0.9) for the ellipsoid, the ellipsoid impinge-
ment results should be applicable for most engineering uses throughout 

the subsonic region. 

The data of this report apply directly only to ellipsoids of revo-
lution with a fineness ratio of 5. Therefore, consideration must be 
given to the degree of geometric and aerodynamic similarity before
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applying the data to bodies of revolution with other shapes. In some 
cases, where the body is of different shape, it may be possible to match 
its nose section physically with the nose section of an ellipsoid (fine-
ness ratio, 5) of selected length. If, in such a case, the contribution 
of the afterbody to the air-flow field in the vicinity of the nose of 
the body is small (as. it often is), then the impingement data for the 
matching portion of the surface of the ellipsoid can be used for deter-
mining the impingement characteristics of the nose region of the body. 
In other cases, where the body shape differs from that of an ellipsoid 
but the fineness ratio is the same, the air-flow field may be similar 
enough that an estimate of the total catch can be obtained from the 
ellipsoid data. In this case, no details of the surface distribution 
of impinging water could be obtained. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 


Cleveland, Ohio, November 20, 1953
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APPENDIX A 

CALCULATION OF VELOCITY FIELD ABOUT AN ELLIPSOID OF REVOLUTION 

The incompressible nonviscous velocity field for axisymmetric flow 
about an ellipsoid of revolution can be obtained as follows: 

Consider a prolate-elliptic coordinate system in the z,r plane 
(fig. 1) defined by

2m 
z =cosh cos

() 

r = -r sinh Sin T 

where

Q<<	 and O<<2it 

The coordinates z and r are dimensionless and are expressed as 
a ratio to the major axis of the ellipsoid of revolution of interest. 
Examination of equation (Al) shows that t = constant and r = constant 
represent confocal ellipses and hyperbolas, respectively, with a dimen-
sionless semifocal distance of 2a/L. 

Let

= cosh 

and

p. = cos T 

Then

2m 
Z = -r 

= 	2	

:}	

(A2) 

r 

and
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where

i<Xoo and -1< .L .5+1 

and X = constant and ji constant also represent confocal ellipses 
and hyperbolas, respectively (fig. 2). The major axis of each ellipse 
is along the z-axis. 

The velocity potential expressed. in 	 coordinates can be ob-
tained from zonal surface harmonics (refs. 3 1 7, and 8) and expressed 
in the following dimensionless form: 

UT 	 (
1	 2.+1	 \ L(A3)


	

2	 X-1 1 - L 

where 0 1 has the usual dimensions of velocity potential. 

For an ellipsoid defined by the surface 	 constant In a fluid 

moving with a free-stream velocity of U in the direction of the z-axis 
of the ellipsoid, the constant C is given by 

2a 
L

= 	
(A4) 

 1  
____ - in 

The coordinates X and p. can be expressed in terms of z,r coordinates 
as follows:

r2 + 2
(z ^+ 2 +	 (z - ^2

 (A5) 

and

21 

F(z	
(A6) 

2m4a,i 
where C =	 =	 s the eccentricity of the ellipse defined. by LF2

= constant. If the surface coordinates of the ellipse of eccentricity 
C are substituted in (A5), it is found that 

1 
= i
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Then equation (A3) can be expressed in the form 

=Ci(Xin-1) -XL 

where

=	 -1/2	 (A7) 

(11\
-n 	

) - 

In addition, equations (A2) take the form 

Z = 

and

r =	 /2 - 1 ,ii - 

The 7\ and p. velocity components are obtained from the relations 

-1	 2/?\2_1 I	 ti	 X+l	 __	 1 
u = -	

= € f2p.2	 - ?2p.2 L	

in	
- 2_i) - 

and

2F 
1c (12 ln7\+i ) Up.	 -	 = €

	 _p.2 i = € 	 L

(A8)

(A9)
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The z and r velocity components in the z,r coordinate system 
are obtained from equations (A8) and (A9) as follows: 

_ 	

u =	 +	
X2_2 

+ 
FX2 

	

(in ?+l

	 2 ) 

and

(Alo) 

___ f1 	 I2\ Cr i.t (_1" 
Ur = U	 + U	 =	

-	
=	 ) 

2_2 2_1) 

(All) 

The velocity components UZ and Ur can be written as a function 
of z and r by substituting equations (A5) and (A6) into equations 
(AlO) and (All):

( N̂ 
l\1 

+-€) 
and

1 
Ur - Cr (a	 z2+ r2 

where	

J(z +	
+ r2 

,
 F(

Z- )2 
+ r2 2 

and C is given in equation (A7).

(5)

(6)



18
	 NACA TN 3099 

The solution of equations (5) and (6) at several hundred points in 
the flow field for an ellipsoid of revolution with a fineness ratio of 

5 (c = [6) was accomplished with the use of electronic calculating 

machines employing punched cards. The values of u and Ur as func-
tions of r and z are given in figure 3. Figure 3(a) gives u as 
a function of z for constant values of r, and figure 3(b) gives ur 

as a function of r for constant z.
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APPENDIX B 

RELATION BETWEEN DISTANCE ALONG SURFACE OF ELLIPSE AND z AND r 

The length of arc of an ellipse cannot be reduced to an elementary 
function of z and r, but rather belongs to the class of functions 
known as elliptic integrals. The length of arc S as a function of 
z and r is obtained (by the method of ref. 9) as follows: 

The equation for an ellipse in the z,r plane can be written 
parametrically in terms of 0 as follows: 

z = A sin 0
(Bl) 

r=B cos. 0	 J 
where A and B are, respectively, the semimajor and semiminor axes 
of the ellipse (fig. 1). 

Then 

= dz2 + dr2 = [A2 cos 20 + B2 sin2O] dO 2 = [A2 - (A2-B2 ) sin20] dO2 

and

S0 = A 	 j - 2 sin20 dO	 (B2) 

dA2B2 
where € -
	

A	
denotes the eccentricity. 

This function is of the form 

E(k,0) fo " ^1 - k2 sin2O dO	 (B3) 

where

0< k< 1 

which is known as the Elliptic Integral of the Second Kind in Legenth'ets 
form. Tabulated values of this function are available (ref. 10).
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For the purposes of this report, the distance along the surface 
measured from the nose of the body (z = -0.5 and r = 0) is desired, 

or,

S = A (
	

1 - k2 sin2O de -
	

41 - k2 sin26 ue)	 4) 

where

A = 0.5 

and

k2 = 2 = 0.96 

The relation between S and z computed from equation (B4) is 
shown in figure 13. The relation between S and r is given by the 
1/K = 0 curve of figure 5, inasmuch as r = r 0 for infinitely large 

values of K.
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