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SUMMARY

The presence of radomes and instruments that are sensitive to water
films or ice formations in the nose section of all-weather aircraft and
missiles necessitates a knowledge of the droplet impingement character-
istics of bodies of revolution. Because it is possible to approximate
many of these bodies with an ellipsoid of revolution, droplet trajec-
tories about an ellipsoid of revolution with a fineness ratio of 5 were
computed for incompressible axisymmetric air flow. From the computed
droplet trajectories, the following impingement characteristics of the
ellipsoid surface were obtained and are presented in terms of dimension-
less parameters: (1) total rate of water impingement, (2) extent of
droplet impingement zone, (3) distribution of impinging water, and (4)
local rate of water impingement. )

INTRODUCTION

All-weather aircraft and missiles frequently have instruments
located in the nose section of the fuselage that are sensitive to im-~
pinging atmospheric water droplets and ice accretion. For example, it
has been found that the operation of an aircraft radar system located
in a nose or wing radome is affected by a layer of ice or water dis-
tributed over the radome surface. Therefore, it is necessary to evalu-
ate, for given flight conditions, the expected distribution of various
sizes of impinging water droplets over the nose section of the aircraft
or missile. In addition, problems such as those encountered in the per-
formance of external armament during flight in icing conditions require
the evaluation of droplet impingement on bodies of revolution in order
to determine where ice will form.

Although a large variety of body shapes are used for radomes, rocket
pods, and bombs, the impingement calculations may be made for a body
selected to approximate a large group of these practical shapes. A pro-
late ellipsoid of revolution is a good approximation for many of these
bodies, and it has the additional advantage of a flow field that is
known exactly for incompressible, nonviscous flow.
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The trajectories of atmospheric water droplets about a prolate
ellipsoid of revolution with a fineness ratio of 5 moving at subsonic
velocities were calculated with the aid of a differential analyzer at
the NACA Lewis laboratory. From the computed trajectories, the rate,
distribution, and surface extent of impinging water were obtained and
are summarized in terms of dimensionless parameters in this report.

SYMBOLS

The following symbols are used in this report:

Kmed

Re
Rep

Rep,med

To

To,tan

semimajor axis
droplet radius, ft
semiminor axis
drag coefficient for droplets, dimensionless
droplet diameter, microns |
volume-median droplet diameter, microns
colleétion efficiency, dimensionless
2pwall

inertia parameter, —§Ef_—’ dimensionless

inertia parameter based on volume-median droplet diameter,
dimensionless

ma jor axis of ellipse, ft

local Reynolds numbef with respect to droplet, ZapaV/u,
dimensionless

free-stream Reynolds number with respect to droplet,.Zaan/u,
dimensionless

free-stream Reynolds number based on volume-median droplet
dismeter, dimensionless

cylindrical coordinates, ratio to major axis, dimensionless

starting ordinate at z = - of droplet trajectory, ratio to
major axis, dimensionless _

starting ordinate at z = -» of droplet trajectory tangent to
ellipsoid surface, ratio to major axis, dimensionless
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S distance along surface of ellipsoid from forward stagnation
point to point of droplet impingement, ratio to major axis,
dimensionless

Snm limit of impingement zone, ratio to major axis, diménsionless

t fime, sec | A

U free-stream veiocity, ft/sec; or flight speed, mph, ﬁhen indi-
cated _

u local air velocity, ratio tovfree-streém velocity

v local droplet velocity, ratio to free-stream velocity

v magnitude of local Vectér difference between velocity of drop-
let and velocity of air, ft/sec

W rate of impingemenf of water, lb/hr

Wn total rate of impingement of water on surface of elligsoid,:
1b/hr

Wp local rate of impingement of watér, 1b/ (hr)(sq ft)

wl - liquid-water content in cloud, gfcu m

a 1/4 focal distance of ellipsoid |

B local impiﬁgement effiéiency, diﬁensionless

€ eccentricity of ellipse defined by a meridian section of
ellipsoid of revolution -

A prolate-elliptic coordinates

m viscosity of air, slugs/(ft)(sec)

Pg, density of air, slugs/cu ft

o, density of watef, slugs/cu ft

T time scale, tU/L, dimensionless

Subscripts:

r radial comﬁonent

z axial component



4 NACA TN 3099

ANALYSTS

The flow field around an ellipsoid of revolution in a stream moving
in the direction of its major axis is axisymmetric. Therefore, the
droplet impingement on the elliptical sections of all meridian planes
is the same. Thus, the droplet impingement distribution on an ellipsoid
of revolution can be obtained from trajectories in the z,r plane (fig.
1). The coordinates 2z and r are dimensionless and expressed as ratio
of actual distance to major axis length L. The dimensionless equations
of motion of the droplet trajectories are of the same form as those
derived in reference 1 and can be written

dVZ CpRe 4
T =z g Uz - V2 (12)
dv CpRe
r 1
T = 2 g (M - vr) (10)
where
2
acyJ
K= 2 i , (2)
9 uL -

and T = tU/L, and all velocities are in the form of ratio of local
velocity to free-stream velocity U.

The Reynolds number Re can be obtained conveniently in terms of
the free-stream Reynolds number

Reg = 2ap.Ufp | (3)
from the relation
2
€ — 2 2
(Feg) = (a - %+ (- v )

The coeffieient of drag Cp is a function of Reynolds number. The
values of Cp corresponding to various values of Reynolds number are
obtained from experimental drag data (ref. 2).

The air velocity components for incompressible nonviscous flow
about a prolate ellipsoid of revolution are obtained from the exact
solution of Laplace's equation in prolate-elliptic coordinates (fig. 2)
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given by Lamb (ref. 3). The details for obtaining the velocity com-
ponents in the z,r plane from Lamb's potential function in prolate-
elliptic coordinates are given in appendix A. The 2z and r com-
ponents of the air velocity field can be expressed in the form

oo @Y Eg) o

and

- £ 1.1 —_
Ur = zcr<»l§ ﬁ)zz+rz+4gr_€; (&)

where

mz‘/<z+§)2+r2
WE‘/(Z-.%)Z-G-I‘Z

= - 1/2
1 1+€ 1
— In{=—) «a —
e E)
The constant € 1s the eccentricity of the ellipse defined by the
meridian section of the ellipsoid of revolution. For an ellipse with
fineness ratio of 5, € = 40.96. Equations (5) and (6) were solved for

several hundred points in the flow field with the use of electronic cal-
culating machines employing punched cards. The values of the air veloc-
ity components u, and u, as functions of r and 2z are given in

figure 3. Figure 3(a) gives u, as a function of z for constant
values of r, while figure 3(b) gives u, as a function of r for
constant z.

Q
Il

Assumptions that are necessary to the solution of the problem are:

(1) At a large distance ahead of the ellipsoid (free- stream condi-
tions), the droplets do not move with respect to the air.
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(2) No gravitational force acts on the droplets.
(3) The droplets are always spherical and do not change in size.

The first two assumptions are valid for droplets smaller than
drizzle or rain drops. The assumptions are usually also valid for fall-
ing rain drops, because the airplane velocity is usually much greater
than the drop velocity caused by gravitational force. Preliminary cal-
culetions have shown that the third assumption is valid for the order
of accuracy usually required in the design of equipment for the pro-
tection of aircraft.

METHOD OF SOLUTION

The differential equations of motion (1) are difficult to solve,
because the values of the velocity components and the term containing
the coefficient of drag depend on the position of the drop at each in-
stant and, therefore, are not known until the trajectory is traced. The
values of these quantities must be fed into the equation as the tra-
jectory of a droplet is developed. This was accomplished by using a
mechanical differential analyzer constructed at the NACA Lewis labora-
tory for this purpose (ref. 1). The answers were obtained in the form
of plots of droplet trajectories with respect to the ellipsoid. A
typical group of droplet trajectories is shown in figure 4. From the
droplet-trajectory plots were obtained the impingement characteristics
of interest discussed in subsequent sections.

The equations of motion (1) were solved for various values of the
parameter 1/K between 0.1 and 90. TFor each value of the parameter
1/K, a series of trajectories was computed for each of several values
of free-stream Reynolds number Rey: O, 128, 512, 1024, 4096, and 8192.

In order that these dimensionless parameters have more physical signifi-
cance in the following discussions, some typical combinations of K and
Reg are presented in table I in terms of. the length and the velocity

of the ellipsoid, the droplet size, and the flight pressure altitude and
temperature. -

Before the integration of the equations of motion to obtain the
trajectories could be performed with the differential analyzer, the
initial velocity of the droplets had to be determined at the point se-
lected as the starting position. In addition, since the starting posi-
tion must be selected at a finite distance ahead of the ellipsoid, it
was necessary to make a correction to this starting ordinate in order
to obtain the corresponding starting ordinate r at z = -, Pre-
liminary tests showed that, from z = -®» to 2z = -2, the trajectories
and streamlines were essentially coincident. Furthermore, between
z = -2 and z = -1, the magnitude of the change in the air velocity



NACA TN 3099 ‘ 7

components with change in r was negligibly small (fig. 3) compared
with unity on the air velocity scale used in solving the equations.
Consequently, the changes in the droplet velocity and the ordinate r

along a given trajectory between z = -2 and z = -1 were essentially
independent of the starting r value or of the value of Reg. There-
fore, a trajectory was run between 3z = -2 and z = -1 for each value

of l/K in order to obtain the correct starting conditions at z = -1.
By this method it was possible to solve the trajectories starting at

z = -1 so that, within the accuracy of the machine, this would be
equivalent to starting the trajectory at an infinite distance ahead of
the ellipsoid.

In order to minimize errors due to changes in the length of the
paper used on the air velocity input drums caused by humidity and tem-
perature variations, the component velocities of the flow field shown
in figure 3 were plotted on 20- by 30-inch sheets of glass tracing
cloth. A fine grid was laid out on the tracing cloth with a plotting
machine constructed for this purpose. The droplet trajectories (fig. 4)
were plotted by the differential analyzer on sheets of acetate in order
to minimize scale changes and damage due to handling. The r-ordinate
of the trajectory plots was scaled to 4 times the z-ordinate in an
effort to improve the accuracy of determining the point of droplet im-
pingement on the ellipsoid surface. With this distorted scale, the
trajectories were plotted with respect to an ellipsoid section with a
major axis of 30 inches and a minor axis of 24 inches. The accuracy
with which the various droplet impingement characteristics could be
obtained is discussed in the following section.

RESULTS AND DISCUSSION

A series of droplet trajectories about the ellipsoid of revolution
with a fineness ratio of 5 at zero angle of attack was computed for the
various combinations of the dimensionless parameters K and Reg.

These data are summarized in figure 5, where the starting ordinate rg

of each trajectory is given as a function of the point of impingement
on the surface S. jS is the distance measured along the surface from
the forward stagnation point to the point of impingement; the relation
between S and z and r is given in appendix B.) The dashed lines
in figure 5 are the loci of the termini of the constant K curves.
These loci were found to be the same, within the order of accuracy of
the computations, for all values of Reo, as can be seen by comparing

rigures 5(a) to (f). The dot-dashed curves among the constant K curves
for Rep = 4096 and Rep = 8192 (figs. 5(e) and (f)) were obtained by
interpolation. From the data presented in this figure, the rate, the
area, and the distribution of water-droplet impingement on the surface

of the ellipsoid can be determined for given values of Rep and K.
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Total Rate of Impingement of Water

In flight through clouds composed of droplets of uniform size, the
total amount of water in droplet form impinging on the ellipsoid is
determined by the amount of water contained in the volume within the
surface formed by the tangent trajectories (fig. 1). Therefore, the
total rate of impingement of water (1b/hr) can be determined from the
relation

- 2 2
Wy = 0.331r( o WLU (7)

where 0.33 is a conversion factor, the flight speed U 1is in miles per
hour, the liquid-water content w 1s in grams per cubic meter, and L
is in feet. When constants are combined,

- 2 2
Wy = 1.0478 4o WLAU , ()

In this equation, rg,tan is a measure of the efficiency of catch, be-

cause it is proportional to the collection efficiency (B, = lOOrg tan),
J

defined as the ratio of the actual amount of water intercepted by the

ellipsoid to the total amount of water in droplet form contained in the
volume swept out by the ellipsoid.

The value of ro,tan for a given combination of Rep and K can

be obtained from figure 5 by determining the value of rg which corre-
sponds to the maximum S for the constant K curve of interest. The
values of rg tan fall on the dashed termini curves of figure 5. 1In
order to facilitate interpolation and extrapolation, the data are re-

plotted in the form of r as a function of K for constant Re
0,tan . 0

in figure 6. Examination of figure 6 shows that rg tan increases with
. 2 .

increasing K but decreases with increasing Regy.

The accuracy of the determination of 0, tan is very much dependent

on the shape of the tangent trajectory in the vicinity of the surface of
the ellipsoid. For example, for the combination of 1/K = 1 and
Reg = 4096 shown in figure 4, the shape of the tangent trajectory and its

neighboring trajectories is such that a small increase of the order of
0.0007 in Ty above the true value of ro,tan will result in a trajec-

tory that defipitely misses the ellipsoid. A similar slight decrease in
the value of r, will result in a trajectory that unmistakably impinges

on the surface. The tangent trajectory is, therefore, relatively easy
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to determine for this case; and rQ,tan Can, therefore, be determined
to an accuracy of the order of +0.0003. However, for a combination of
l/K and Rep that results in small values of roQ,tan, such as shown

in figure 4 for l/K = 30 and Reg = 512, the crowding together of the
trajectories near the ellipsoid and the tendency of the trajectories to
have the same shape as the ellipsoid surface result in a possible ques-
tion as to the true value of To,tan" Trajectories with rgy as much

as 30 percent smaller than the true value of rqg tan may appear to be
tangent. Therefore, in order to avoild selecting a trajectory that is
not the tangent when determining rQ,tan, the value of rp was in-
creased by small increments until a trajectory definitely missed the
ellipsoid. Thus, an upper limit to the region of possible tangency was
established and used as a guide when selecting the tangent trajectory.
With this method for determining the tangent trajectory, the accuracy
of TrQ,tan in this Rep and K region is within +0.0007 for values

of T0,tan > 0.01. For reported values of r0,tan < 0.01, the accuracy

in determining the tangent trajectory is somewhat indefinite, but appears
to be within +0.001.

The effect of body size on the value of r%,tan for selected cloud

droplet size and flight conditions is illustrated in figure 7. The cal-
culated values given in figure 7 for ellipsoids with a fineness ratio

of 5 and major axis lengths between 3 and 300 feet are for flight at 50,
100, 300, or 500 miles per hour through uniform clouds composed of drop-
lets of 10, 20, or 50 microns in diameter at pressure altitudes of 5000,
15,000, or 25,000 feet and temperatures (most probable icing temperature
given in ref. 4) of 20°, 19, and -25° F, respectively. For example,
consider a 40-foot-long ellipsoid with a fineness ratio of 5 traveling
at 500 miles per hour with zero angle of attack at a pressure altitude
of 15,000 feet through a uniform cloud composed of droplets of 20 microns
in diameter. From figure 7(b), rg,tan is 0.000114. If the liquid-

water content of the cloud is assumed to be 0.1 gram per cubic meter,
then (from eq. (8)) the total rate of impingement of water Wy is 9.5

péunds per hour.

Extent of Droplet Impingement Zone

The extent of the droplet impingement zone on the surface of the
ellipsoid is obtained from the tangent trajectories. The point of tan-
gency determines the rearward limit of the impingement zone. The limit
of impingement S, for a particular Rey and K condition can be

determined from the maximum S value of the constant K curve of
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interest in figure 5. Aéain, to facilitate interpolation, the data are -
replotted in the form of Sy as a function of X for constant Reo
values in figure 8. The data of this figure indicate that 8; in-
creases with increasing X but decreases with increasing Reg.

Because of the difficulty of determining the exact point of tan-
gency on the surface of the ellipsoid of each tangent trajectory, the
accuracy of determining S, is of the order of +0.005. The accuracy

of determining the value of S for the intermediate points of impinge-
ment given in figure 5 was much higher, because the points at which the
intermediate trajectories terminated on the ellipsoid surface were much
better defined.

The effect of body size on the value of Sp for selected cloud

droplet and flight conditions is illustrated in figure 9. For example,
consider a 20-foot-long ellipsoid with a fineness ratio of 5 traveling
300.miles per hour at zero angle of attack at a 5000-foot pressure
altitude through a uniform cloud composed of 50-micron droplets. From
figure 9(a Sp 1is 0.109; that is, the impingement zone extends 2.18

feet rearward (measured along the surface) from the forward stagnation
point.

Distributiop of Impinging Water Along Ellipsoid Surface

The amount of water impingihg on the ellipsoid surface within any
ring of width S, - S can be determined if the starting ordinates rg

are known for the droplets that impinge at S; and S,. These data
can be obtained from figure 5. : S

The amount of water (Ib/hr 1mp1ng1ng within the ring of width
So = 87 is given by the relation

- 2 _ 2 .
W= 1.04(1'0’2 rO,l)WLZU (9)

Local Rate of Impingement of Water

The local rate of impingement of water in droplet form
(1b/(hr)(sq ft)) on the surface of the ellipsoid can be determlned from
the expression

r dro

0
Wg = 0. 330w — =3 = = 0.33Uwp (10)
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where B 1is the local impingement efficiency. The values of B as a
function of S for combinations of Reg and K are presented in fig-
ure 10. These curves were obtained by multiplying the slope of the
curves in figure 5 by the corresponding ratio ro/r at each point. The

dot-dashed curves included for Rep = 4096 and Reg = 8192 were obtained

from the corresponding interpolated curves of figure 5. Because the
slopes of the rp against S curves (fig. 5) in the region between

S =0 and S = 0.0l are difficult to determine, the exact values of B
between S = O and S = 0.0l are not known. The values of [ presented
in this region between S = O and S = 0.0l are estimated to be accurate
within £0,05. :

IMPINGEMENT IN CLOUDS OF NONUNIFORM DROPLET SIZE

The data presented in figures 5 to 10 would apply directly only to
flights in clouds composed of droplets that are all uniform in size.
The droplets in a cloud, however, may have a range of sizes. Theoreti-
cal calculations (ref. 5) and experience in the NACA Lewls icing re-
search tunnel on bodies of revolution have shown that the amount of ice
collected when a distribution of droplet sizes 1s present in the tunnel
is considerably greater than that which would be obtained if only drop-
lets of the volume-median size were present. Therefore, if the cloud
droplet-size distribution is known or can be estimated, then the data
must be accordingly modified (or welghted) before the rate, the extent,
and the distribution of droplet impingement on the ellipsoid are
calculated. -

For a nonuniform cloud, the total rate of impingement of water on
the ellipsoid can be determined from equation (8) by using the weighted

value of rg tan that corresponds to the droplet-size distribution
, ;
2

present in the cloud. The weighted value of To. tan
2
by plotting rg tan for each droplet size (based on values of K and
, s _

can be obtained

Rey corresponding to each droplet diaﬁ.) as a function of the cumula-

tive volume (in'percent) of water corresponding to each droplet size
and integrating the resultant curve. For example, consider the cloud
droplet-size distribution shown in figure 11l. Suppose that the volume-
medisan droplet size is 20 micromns, the velocity is 200 miles per hour,
the ellipsoid length is 10 feet, the pressure altitude is 5000 feet, and
the temperature is 20° F. For these conditions, the value of Reo,med

is 117.6 and of Kpeq is 0.03898. The values of Rez and K corre-

sponding to other droplet sizes in the distribution are obtained by
miltiplying Reg peq bY d/dpeq. and Kpeg by (8/dpeq)® apd are used
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to obtain rg,tan (fig. 6) for each droplet size. The values of

rg,tan for this example are plotted as a function of cumulative volume

(in percent) in figure 12. Integration of this curve gives a weighted

value of 5. tan equal to 0.000425; whereas, the value based on the
J

volume-median droplet size is 0.00031 (fig. 6).

The local rate of impingement of water at any point for a distribu-
tion of droplet sizes can be obtained in the same manner. The extent
of the droplet impingement zone should be determined from the values of
K and Reg calculated for the largest droplets present in sufficient

number to represent a significant portion of the total water present
in the cloud.

CONCLUDING REMARKS

The scale factors used in the differential analyzer to solve the
equations for the range of conditions presented in figures 5 to 10 and
the near-parallelism of the trajectories to the surface at large values
of l/K made it impossible to obtain sufficient accuracy to present
detailed data, such as the rate of local impingement of water, at points
along the surface of the ellipsoid, for values of l/K > 90 for Reg = 0

and l/K > 30 for Re, > 128. From table I it can be seen that, for

bodies as large as the fuselage of cargo or passenger airplanes, these
conditions are not uncommon. Examination of figures 5 and 10 shows,
however, that the extent (usually Sp < 0.03) and rate of local impinge-
ment are small in this Reg and K region. Therefore, in this region
a knowledge of the extent of the impingement zone and the total rate of
impingement of water as calculated from the data of figures 8 and 6,
respectively, is sufficient for most applications.

Because the droplet trajectories about the ellipsoid were calcu-
lated for incompressible fluid flow, a question as to their applicability
at the higher subsonic velocities may arise. In reference 6 it was
shown thet the effect of compressibility up to the flight critical Mach
number on the trajectories about a cylinder was negligible. In view of
the results obtained for the cylinder and of the high flight critical
Mach number (greater than 0.9) for the ellipsoid, the ellipsoid impinge-
ment results should be applicable for most engineering uses throughout
the subsonic region.

The data of this report apply directly only to ellipsoids of revo-
lution with a fineness ratio of 5. Therefore, consideration must be
given to the degree of geometric and aerodynamic similarity before
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applying the data to bodies of revolution with other shapes. In some
cases, where the body is of different shape, it may be possible to match
its nose section physically with the nose section of an ellipsoid (fine-
ness ratio, 5) of selected length. If, in such a case, the contribution
of the afterbody to the air-flow field in the vicinity of the nose of
the body is small (as it often is), then the impingement data for the
matching portion of the surface of the ellipsoid can be used for deter-
mining the impingement characteristics of the nose region of the body.
In other cases, where the body shape differs from that of an ellipsoid
but the fineness ratio is the same, the air-flow field may be similar
enough that an estimate of the total catch can be obtained from the
ellipsoid data. In this case, no details of the surface distribution

of impinging water could be obtained. .

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, November 20, 1953
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APPENDIX A

CALCULATION OF VELOCITY FIELD ABOUT AN ELLIPSOID OF REVOLUTION

The incompressible nonviscous velocity field for axisymmetric flow
about an ellipsoid of revolution can be obtained as follows:

Consider a prolate-elliptic coordinate system in the z,r plane
(fig. 1) defined by

z = %%»cosh € cos 7
(A1)
r = %% sinh € sin 7

where
0gf{<® and 0 <am

The coordinates z and r are dimensionless and are expressed as
a ratio to the major axis of the ellipsoid of revolution of interest.
Examination of equation (Al) shows that { = constant and 7 = constant
represent confocal ellipses and hyperbolas, respectively, with a dimen-
sionless semifocal distance of 2a/L.

Let
A = cosh g
and
L = cos T
Then
L
and 3 (A2)

— o e
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where

1<A< o and -1 pg+l
and )\ = constant and p = constant also represent confocal ellipses
and hyperbolas, respectively (fig. 2). The major axis of each ellipse
is along the z-axis.

The velocity potential expressed in Ayu coordinates can be ob-
tained from zonal surface harmonics (refs. 3, 7, and 8) and expressed
in the following dimensionless form:

¢ = o = Cu <% Aln

L

A+l _ _ 2
UL

ST = Au ' (a3)

where Q' has the usual dimensions of velocity potential.

For an ellipsoid defined by the surface AO = constant in a fluid

moving with a free-stream velocity of U in the direction of the z-axis
of the ellipsoid, the constant C 1is given by

L
C = (s
__>:2_ - ;L. ln )\.._Q.+—l )
Ag-1 B Aol

The coordinates A and u can be ekpressed in terms of z,r coordinates

as follows:
\2 \2
?\:% <z+%/‘i +r2+&-§2— + ré (A5)

and
2 2
1 €
H=€4/<z+%>+rz—/\/(z—§>+rz (A6)
here € = 2o _ 4 is the eccentricity of the ellipse defined b
wher = i7§ =7 y ) pse ined by
AO = constant. If the surface coordinates of the ellipse of eccentricity
¢ are substituted in (A5), it is found that
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v

Then equation (A3) can be expressed in the form
A1 €
@ < Alnr-:L)-E)\u
where
- - 1/2 ‘
C—Lln(ité T (a7)
2€ l-€ 1-62

In addition, equations (A2) take the form

Z=£>\
5 K
and
€
=§/\/7\2—1/\/1-u2
The A and u velocity components are obtained from the relations
R - B S SO e S P <l1n7\+l ) g,
A 35, ] ;\z_pzy‘ € 22_2 M T a2y 2
2 fa2-1
(n8)
and
od -1 2 [ M1 €
u = - - -——=—— }\l l —x
M oS eﬁ/ A1 ° > 2
4] E }\2— -
2 l-u ‘



NACA TN 3099 ' 17

The z and r velocity components in the z,r coordinate system
are obtained from equations (A8) and (A9) as follows:

%de az dp.
U, = u)\ _g\s.—--F uu
A Ae-p2

C A1 2\ '
-‘E<ln3\-_1'>\2_ z>+l (#10)
and
or or
- = u oA aA +u B_u_ du _ A 1-pé _ 7\2-1 2 Crp 1
r = Y\ T35, kTasL T AN B E 7\2 2 \n2_1
(A11)

The velocity components uz and uy can be written as a function
of z and r by substituting equations (AS5) and (A6) into equations
(A10) and (All):

uz=-c[£1n(da£§_;®i)-%(i+¢)]+; g

€ "+ N - € ﬁ rJﬁ
and
€ 1 1 1
ur=—-2-Cr<———-> _ . (6)
| WA 2y 2 s AT - &
where

and C 1is given in equation (A7).

’
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The solution of equations (5) and (6) at several hundred points in
the flow field for an ellipsoid of revolution with a fineness ratio of
5 (e = 40.96) was accomplished with the use of electronic calculating
machines employing punched cards. The values of u, and u, as func-
tions of r and z are given in figure 3. TFigure 3(a) gives u, as
s function of z for constant values of r, and figure 3(b) gives ur
as a function of r for constant z.
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APPENDIX B

RELATION BETWEEN DISTANCE ALONG SURFACE OF ELLIPSE AND z AND r

The length of arc of an ellipse cannot be reduced to an elementary
function of z and r, but rather belongs to the class of functions
known as elliptic integrals. The length of arc S as a function of
z and r is obtained (by the method of ref. 9) as follows:

The equation for an ellipse in the z,r plane can be written

parametrically in terms of 8 as follows:

z = A sin 6
(B1)
r =B cos.6

where A and B are, respectively, the semimajor and semiminor axes
of the ellipse (fig. 1).

Then

as? = az2 + dr? = [A‘Z cos?9 + B2 sinze] e = [Az - (a2-B2) sinze] 462

and
0 2 2
Se=AJ; n/;L-e sin“0 4o (B2)
NA2-B2
where ¢ = T denotes the eccentricity.
This function is of the form
6
E(k,0) =J; AL - ¥2 sin20 a0 (B3)
where

O k<1

which is known as the Elliptic Integral of the Second Kind in Legendre's
form. Tabulated values of this function are available (ref. 10).
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For the purposes of this report, the distance along the surface
rmeasured from the nose of the body (z = -0.5 and r = 0) is desired,
or,

/2 : 6
S=A<j; l«l-kzsh@9d6-~£ Jf-kzsn@ed>, (B4)

where
A = 0.5
and
k2 = ¢2 = 0.96

The relation between S and 2z computed from equation (B4) is
shown in figure 13. The relation between S and r is given by the
l/K = 0 curve of figure 5, inasmuch as T = rg for infinitely large
values of K. ’
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Figure 1. - Coordinate system for droplet trajectory calculations about an ellipsoid of revolution
of fineness ratio 5.
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Figure 4. - Trajectories of droplets with respect to ellipsoid.
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Figure 9. - Continued.
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Figure 9. - Concluded.
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