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SUMMARY 

The t r a j ec to r i e s  of w a t e r  droplets i n  the  air flowing past  an NACA 
The amount 6511004 a i r f o i l  a t  a n  angle of attack of Oo w e r e  determined. 

of water i n  droplet  form impinging on t h e  a i r f o i l ,  t he  area of droplet  
impingement, and the  rate of droplet impingement per u n i t  area on t h e  
a i r f o i l  surface were calculated from t h e  t r a j ec to r i e s  and presented t o  
cover a large range of f l i g h t  and atmospheric conditions. These im-  
pingement charac te r i s t ics  are compared b r i e f l y  with those previously 
reported f o r  the  same a i r f o i l  at  angles of a t tack of 4' and 8'. 

INTRODUCTION 

The da ta  presented herein are a continuation of t he  study reported 
i n  references 1 and 2 on t h e  impingement of cloud droplets on a low-drag, 
t h i n  a i r f o i l .  The a i r f o i l  studied i n  both the  references c i t ed  and i n  
t h i s  report i s  a 4-percent-thick symmetrical NACA 65A004 a i r f o i l .  I n  
references 1 and 2 t he  impingement character is t ics  of t he  a i r f o i l  w e r e  
reported with the  a i r f o i l  set at angles of a t tack o f  4' and 8O,  respec- 
t ively;  whereas, t he  data herein apply f o r  an angle of a t tack of Oo. 
The range of  angle of a t tack studied i n  t h e  three reports  permits t he  
evaluation OF the  impingement character is t ics  f o r  most f l i g h t  plans of 
interceptor,  f ighter ,  and other high-speed aircraft. 

The t r a j ec to r i e s  of atmospheric w a t e r  droplets about an NACA 65A004 
a i r f o i l  at Oo angle of a t tack  a t  subsonic veloci t ies  were calculated 
with t h e  aid of a d i f f e r e n t i a l  analyzer at  t h e  NACA Lewis  laboratory. 
From the  computed t ra jec tor ies ,  the rate, dis t r ibut ion,  and surface ex- 
t e n t  of impinging water w e r e  obtained and summarized i n  t h i s  report. 
The r e su l t s  are applicable unaer the  following conditions: chord lengths 
from 2 t o  20 fee t ;  a l t i tudes  from 1000 t o  35,000 feet; airplane speeds 
from 150 m i l e s  per hour t o  the  f l i g h t  c r i t i c a l  Mach number; and droplet  
diameters from 5 t o  100 microns. 
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SYMBOLS 

d 

K 

L 

Re0 

S 

U 

U 

W 

Wm 

wP 

W 

X, Y 

P 

w 

P a  

The following symbols are  used i n  t h i s  report: 

droplet diameter, microns (micron = 3.28X10’6 f t )  

i n e r t i a  parameter, 1. 7O4X10-l2 dimensionless (density of 
ric’ 

w a t e r ,  1.94 slugs/cu f t ,  included i n  constant) 

a i r f o i l  chord length, f t  

free-stream Reynolds number with respect t o  droplet, 4. 813X10’6 
dPaU - , dimensionless 

I.r 

distance on surface of a i r f o i l  measured from leading-edge chord 
point, r a t i o  t o  chord length 

f l i g h t  speed, mph 

loca l  air  velocity, r a t i o  t o  free-stream velocity 

r a t e  of water impingement per un i t  span of a i r f o i l ,  ~b / (h . r ) ( f t  
span) 

rate of t o t a l  water impingement per un i t  span of a i r fo i l ,  lb / (hr)  
( f t  span) 

loca l  rate of water impingement, ~ / ( h r ) ( s q  f t ]  

liquid-water content i n  cloud, g/cu m 

rectangular coordinates, r a t i o  t o  chord length 

dYO loca l  impingement efficiency, - aimensionless d s ’  

viscosity of air, s lugs / ( f t )  (sec) 

density of air, slugs/cu f t  

N 
0, co 
M 

Subscripts : 

I lower a i r f o i l  surf ace 
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S a i r f o i l  surface 

u upper a i r f o i l  surface 

0 f ree  stream 

RESULTS AND DISCUSSION 

In order t o  obtain the  extent of impingement and the r a t e  of drop- 
l e t  impingement per un i t  area on the a i r f o i l ,  the cloud-droplet t r a j ec -  
t o r i e s  with respect t o  the a i r f o i l  were determined. The method f o r  cal-  
culating the  droplet t ra jec tor ies  is described i n  reference 3. A 
solution of the d i f f e ren t i a l  equations t h a t  describe the  droplet motion 
w a s  obtained with the use of the mechanical analog (described i n  ref. 4)  
based on t h e  principle of a d i f f e ren t i a l  analyzer. The air-flow f i e l d  
around the a i r f o i l  w a s  obtained as discussed i n  references 2 and 3. The 
values of t he  surface veloci t ies  f o r  the 65A004 a i r fo i l ,  which are r e -  
quired i n  the  flow-f i e l d  determination, were calculated by the Douglas 
Aircraft  Corporation f o r  the Lewis  laboratory (see f i g .  1). Although 
the droplet t ra jec tor ies  were calculated f o r  an incompressible flow 
field, the  r e su l t s  of the calculations can be applied up t o  the f l i g h t  
c r i t i c a l  Mach number (ref. 5). 

The geometric chord l i n e  of the a i r f o i l  is  oriented at an angle of 
Oo with the  x-axis of the  rectangular coordinate system, and the  leading 
edge i s  placed at  the or igin of the coordinates, as shown i n  f igure 2. 
The a i r f o i l  orientation presented i n  references 1 and 2 i s  retained here- 
in, except f o r  the magnitude of the angle of attack. A t  an i n f i n i t e  dis-  
tance ahead of the a i r f o i l ,  the  uniform air  flow carrying the  cloud 
droplets i s  assumed t o  be approaching the  a i r f o i l  f r d m  t h e  negative 
x-direction and para.llel t o  the x-axis. All distances are  given as 
dimensionless ra t ios ,  because they are  r a t i o s  of t he  respective ac tua l  
distance t o  the a i r f o i l  chord length L. 

Rate of Total Water Interception 

The rate of t o t a l  water interception, i n  pounds per hour per foot  
of wing span, i s  determined by the tangent droplet t ra jec tor ies  ( f ig .  2 ) ,  
by the speed of the a i r c ra f t ,  and by the  liquid-water content i n  the  
cloud. 
s i ze  i n  the  cloud, are  the  principal variables t h a t  a f f ec t  the spacing 
between the  two tangent t ra jec tor ies .  
the  a i r f o i l  is  proportional t o  the spacing 

The f l i g h t  speed and s ize  of t he  a i r fo i l ,  as well  as the droplet 

The amount of water tha t  s t r ikes  
yo,u - yo,z, and the rate of 



t o t a l  w a t e r  interception per  un i t  span of t h e  a i r f o i l  on t h a t  portion 
of the  a i r f o i l  surface bounded by the  upper and lower tangent t r a j ec -  
t o r i e s  can be calculated from the  r e l a t ion  

we given i n  figure 3 i n  terms of t he  re -  0,u - yo,2 The va,lues of y 

ciprocal of t h e  i n e r t i a  parameter 1/K and the free-stream Reynolds 
nuniber Reo. The i n e r t i a  parameter K is  a measure of t h e  droplet 
size,  the  f l i g h t  speed and s i ze  of t he  a i r f o i l ,  and t h e  viscosity of 
t h e  air through the  r e l a t ion  

The density of w a t e r  and the  acceleration of gravity, which are ex- 
pressed as p a r t  of the  conversion factor ,  are 62.4 pounds per cubic foot 
and 32.17 feet per second per second, respectively. The free-stream 
Reynolds number i s  defined with respect t o  the  droplet  as 

Reo = 4.813x10"6 - 'PaU 
P (3) 

A graphical procedure f o r  determining values of t he  dimensionless pasam- 
eters K and Reo i n  terms of airplane speed, chord length, a l t i tude ,  
and droplet s i z e  i s  presented i n  appendix B of reference 3. 

The var ia t ion of t o t a l  rate of w a t e r  interception with a i r f o i l  speed 
is  summarized f o r  an a l t i t u d e  of 20,000 feet i n  f igure  4, i n  which t h e  
ordinate W d w  
a i r f o i l  per u n i t  liquid-water content (g/cu m) i n  t h e  cloud. Several 
chord lengths ranging i n  value from 2 t o  20 f e e t  are considered. The 
values i n  figure 4 are  f o r  f l i g h t  through clouds composed of uniform 
droplets 15, 20, 30, and 40 microns i n  diameter. The values of W d w  
given i n  figure 4 are based on the  most probable ic ing  temperature as a 
f ine t ion  of a l t i t ude  presented i n  figure 15 of reference 3. 
probable ic ing  temperature w a s  obtained from approximately 300 ic ing  
observations i n  f l i gh t s . )  
of 10,000 feet w i l l  change t h e  r a t e  of water impingement by approximately 
7 percent. The droplet s i z e  and the liquid-water content of clouds are 
seldom known with suf f ic ien t  accuracy (ref.  4)  t o  permit the  r a t e  of 
water impingement t o  be calculated within 10 percent; therefore, within 
prac t ica l  limits of application, the r e s u l t s  of figure 4 can be used 
over a wide range of a l t i t udes  (approx. jJ0,OOO f t ,  see r e f .  3 ) ,  

i s  the  t o t a l  r a t e  of water impingement per f o o t  span of 

(The most 

As shown i n  reference 3, a change i n  a l t i t ude  
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The ef fec t  of wing taper  can also be obtained from figure 4, pro- 
vided tha t  f o r  each section of span considered the taper  is  small enough 
tha t  two-dimensional flow over the section is  approximated, as is  men- 
tioned i n  reference 3. 

Extent of Impingement 

The l i m i t  of impingement i s  determined by the point of tangency on 
the a i r f o i l  surface of t he  two tangent t ra jec tor ies .  The reasward l i m -  
i t s  of impingement on the  upper and lower surface are shown i n  f igure 5. 
Because the a i r f o i l  i s  symmetrical at an angle of a t tack of Oo, the  l i m -  
it of impingement on the  lower surface is  equal t o  t h a t  on the upper 
surface. The distances S, and. SI are  measured on the a i r f o i l  sur- 
face from t h e  point of intersect ion of the geometric chord l i n e  with the  
leading edge (f ig .  2)  i n  terms of the chord length. The l i m i t s  of i m -  
pingement are given i n  figure 5 i n  terms of the reciprocal of the i n e r t i a  
parameter and free-stream Reynolds number. 

Uncertainties i n  the  location of the  tangency point, and therefore 
i n  the magnitude of the l i m i t  of impingement, were discussed i n  re fer -  
ences 1 and 2 f o r  the a i r f o i l  placed at angles of attack of 4' and 8 O ,  

respectively. 
as reported i n  the  two references cited, because, generally, the tangent 
t ra jec tor ies  do not approach the a i r f o i l  surface as gradually at Oo as 
the lower surface i s  approached at e i ther  4 O  or 8'. Also, Oo angle o f  
at tack permitted the use of a much larger  scale factor  i n  the y-ordinate 
of the calculating machine; thus, the point of tangency became more 
certain,  The uncertainty i n  the location o f  the point of tangency i s  
estimated t o  be l e s s  than st3 percent fo r  the  a i r f o i l  reported herein, 

The uncertainties at Oo angle of a t tack a re  not as large 

The surface limits are .summasized i n  figure 6 f o r  the same speeds, 
chord lengths, droplet sizes, and a l t i tude  given i n  figure 4. 

Impingement Distribution on Surface 

Trajectory s t a r t i ng  ordinate as f'unction of point of impact. - The 
manner i n  which water i s  dis t r ibuted on the surface of an a i r f o i l  can be 
obtained if  the  s t a r t i ng  point of a droplet t ra jec tory  i s  known with 
respect t o  the point of impingement on the  surface. 
nate yo at in f in i ty  of any impinging trajectory,  including t r a j ec to r i e s  
bounded by the  upper and lower tangent t ra jec tor ies  (fig.  2), can be found 
i n  figure 7 with respect t o  the  point of impingement on the surface. The 
values f o r  t he  s ta r t ing  and ending positions of the t ra jec tor ies  are shown 
i n  figure 7 f o r  four values of free-stream Reynolds number. For each 
value of Reo, curves fo r  several values of 1 /K  are  given. 

The s ta r t ing  ordi-  
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A t  an angle of attack of Oo the a i r f o i l  and the  impingement are 
symmetrical with respect t o  the  chord l i n e  (also x-axis) e For t h i s  
reason, the  data are presented i n  f igure 7 f o r  the upper surface only, 
whereas i n  references 1 and 2 the corresponding data at 4' and %', . 
respectively, are presented f o r  both the  upper and lower surfaces. 
values of yo 

are  the same as one-half t he  values given i n  figure 3. The tangent- 
t ra jec tory  values, which were used f o r  figures 3 and 5, f a l l  on the  
dashed termini curves of f igure  7. 

The 
obtained from the  end points of each curve i n  f igure  7 

\ 

The amount of water impinging between any two given points on the  
a i r f o i l  surface my be found by applying the  r e su l t s  of f igure 7 i n  the  
following relat ion:  

Local r a t e  of droplet impingement. - The local  r a t e  of d.roplet i m -  
pingement per un i t  area of a i r f o i l  surface can be determined from the  
expression 

wp = 0.33Uw dY0 - - 0.33TJwp 

which i s  re la ted  t o  equation (4). The values of  t h e  loca l  impingement 
efficiency f3 as a function of the a i r f o i l  distance S are given i n  
figure 8. These values were  obtained from the slopes of t he  curves i n  
f igure 7. 

As i s  discussed i n  reference 1, the values of fl (fig.  8) are very 
sensit ive t o  the  shape of t he  yo against S curves ( f ig .  7 ) .  Because 
of the geometry of the sharp-nosed NACA 65A004 a i r f o i l  and the manner 
i n  which the  t r a j ec to r i e s  approach the  a i r f o i l  surface, s m a l l  e r rors  i n  
the  calculated t ra jec tor ies  result i n  considerable error  i n  the slopes 
of the curves of figure 7. The possible error  i n  the  values of j3, due 
t o  computational procedxre, f o r  surface positions other than near the 
stagnation point, i s  estimated i n  reference 1 t o  be somewhat l e s s  than 
a 0  percent f o r  the values reported therein.  
niques i n  the  computational procedure, t he  values of f3 given i n  f igure 
8 herein are i n  error by somewhat less than fz percent f o r  surface posi- 
t ions  other than within 1 percent of t he  surface distance where the  peak 
values of j3 occur. Since the  t o t a l  water impinging is  d i rec t ly  re la ted  
t o  

Because of improved tech- 
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a check on the  computational accuracy of the  values of j3 
w a s  a l s o  obtained by comparing the area under each j3 curve with the 
values of y 

within &l percent of the corresponding values for  t o t a l  water 
interception. 

i n  figure 8 

given i n  figure 3. The area values checked 0,u - Y0,Z 

The maximum values of $ at the stagnation point (S = 0) are very 
uncertain. A t  Oo angle of a t tack the maximum values of f3 can be ex- 
pected t o  be high (approx. equal t o  1) fo r  a th in  sharp-nosed a i r f o i l  
such as the 65A004 studied. The area check used i n  f igure 8 also indi-  
cates high values f o r  f3 a t  S = 0. 

6' 

Variation of Impingement with Angle of Attack 

The ef fec t  of varying the  angle of attack from 0' t o  8' on impinge- 
ment can be found by comparing the r e su l t s  of references 1 and 2 with 
the  present study. Because a complete comparison t h a t  covers a wide 
range of f l i g h t  and atmospheric conditions i s  beyond the  scope of t h i s  
report, the  following l imited comparison is  made f o r  a set of conditions 
tha t  occur ra ther  frequently. However, the choice of only a few sets of 
conditions f o r  comparison i s  dangerous, because the r e l a t ive  importance 
of the different  factors involved may change with other conditions not 
discussed. 

The comparisons i n  t h i s  section at different  angles of attack f o r  
the  NACA 65A004 a i r f o i l  are a l l  made f o r  conditions established at  300 
miles per hour, a chord length of 9.4 feet, and an a l t i t ude  of 10,000 
fee t .  Tbe comparisons are made for  three droplet diameters, 80, 25, and 
8 microns, which r e su l t  i n  values of of 1, 10, and 100, respec- 
t ively . l / K  

Rate of t o t a l  water impingement. - The variation of the difference 
with ' y0,u - y0,v  between the  upper and lower tangent t ra jec tor ies  

change i n  angle of attack i s  shown i n  figure 9. The rate of t o t a l  water 
impingement, which i s  proportional t o  y 

with increase i n  angle of attack, especially for  the large droplet. 
the  s m a l l  droplets (8 microns), the area of  impingement remains on the  
rounded portion of the leading edge while the  a i r f o i l  angle of a t tack i s  
changed from 0' t o  4'. The influence of changes i n  the  air-flow f i e l d  
on the t r a j ec to r i e s  tha t  impinge i s  not appreciable with changes i n  angle 
between 0' and 4O, because the  impinging t ra jec tor ies  a re  confined t o  a 
region near t he  stagnation l i n e  for  those angles. Along the  stagnation 
l i n e  the ver t ica l  components of air velocity are not large between Oo 
and 4'. 
droplet iner t ia ,  the  influence of the air-flow f i e l d  on the  t ra jec tor ies  

increases rapidly 0,u - Y0,Z' 
With 

With the  large droplets (80 microns), because of the larger  
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i n  changing the  a i r f o i l  from Oo t o  4O is  even l e s s  than with the small 
but  the  a i r f o i l  shape and the  amount of area presented t o  the  

impinging t ra jec tor ies  are considerably different,  because the impinge- 
ment occurs much fa r ther  back on the a i r f o i l .  

Between 4O and 8 O  the  influence of change i n  flow f i e l d  on the  
t r a j ec to r i e s  of smll droplets is  probably of the same order of import- 
ance as the  change of physical geometry. Even fo r  s m a l l  droplets the  
impingement no longer occurs principally around the leading edge when 
the a i r f o i l  is raised t o  angles greater than 4'. The combined influ- 
ences of change i n  air-flow f i e l d  and physical geometry on the t r a j ec -  
t o r i e s  t h a t  impinge r e su l t  i n  a greater increasing slope of the curve 
( in  f ig .  9 )  for small droplets when angle of attack i s  increasing between 
4 O  and 8O. 
increases with increasing angles of a t tack between 4' and 8'; however, 

I because of the  higher i n e r t i a  of the droplets and because of the large 
i n i t i a l  slope of the curve, t h e  increase i n  slope is  not as large as fo r  
t he  s m a l l  droplets. 

The slope of t he  curve fo r  large droplets (80 microns) a l so  

Extent of impingement. - Because of the  shape of t h e  65A004 a i r f o i l  
(principally, because the  a i r f o i l  i s  t h i n  and the maxim thickness 
occurs n e w  the  midpoint), t he  impingement on the  upper surface i s  of 
consequence only at very small angles of attack. As was discussed i n  
reference 2, t h e  extent of irnpingement on the  upper surface i s  very s m a l l  
f o r  both 4' and 8'. A t  4' angle of attack, % i s  always l e s s  than 0.02 
f o r  values of 1 / K > 1 ;  and, at 8 O  angle of attack, S, 
than 0.01 f o r  values of 
as i s  seen i n  f igure 5, ranges from 0.26 t o  0,004 f o r  

i s  always l e s s  

I c l / K < l O O .  
1 /K  =- 1. A t  0' angle of attack, S, = S 2  and, 

The lower-surface l i m i t  i s  summarized i n  figure 10 fo r  the same 
f l i g h t  m d  atmospheric conditions given i n  figure 9. The change i n  shape 
of the curves as the droplet s i z e  is increased is  explained i n  the  follow- 
ing manner: As  the  angle of attack of the th in  a i r f o i l  i s  increased, the 
a i r f o i l  presents i t s e l f  t o  t h e  droplets i n  the cloud ahead more as a f la t  
p l a t e  without thickness than as a streamlined 4-percent-thick a i r f o i l .  
Thus, the e f f ec t  of a convex lower surface on impingement is  minimized 
as the angle of attack i s  increased. 
the  impingement extends t o  the  t r a i l i n g  edge ( S 2  = 1) f o r  all values of 
K and Reo at  a l l  angles other than zero. When the  convexity of the  
lower surface of the  a i r f o i l  is no longer an important geometrical factor  
i n  determining the  l imit ,  the  impingement extends t o  the  t r a i l i n g  edge 
(Sz 1) f o r  all sizes  of droplets. 
it is  very sensi t ive t o  the  a i r f o i l  shape on the surface loca l i t y  where 
the  l i m i t  occurs. If, for example, the  l i m i t  for  the  8-micron droplet 
occurs at  S 2  = 0.04 at  4 O  angle of attack, a very small change i n  shape 
(or r a t e  of change of curvature) of the  a i r f o i l  surface i n  tha t  neighbor- 
hood w i l l  change the  l i m i t  considerably. A t  the same angle of attack the 

For a f la t  p l a t e  of zero thickness, 

For s m a l l  angles of attack the  l i m -  
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l i m i t  f o r  t he  80-micron droplets i s  0-53,  
of the  a i r f o i l  i n  the neighborhood of 
shape i n  the  neighborhood of S l  = 0-04, along with the  difference i n  
angle of approach of the t ra jec tor ies  t o  the  surface at the two posi- 
tions, accounts fo r  the difference i n  the  shape of the  two curves. 

The difference i n  the shape 
S2 = 0.53 compared with the  

The preceding discussion on the difference i n  the  shape of t he  
three curves i n  figure 10 m a y  be summarized as follows: 
impingement i s  very sensi t ive t o  the physical geometry tha t  the a i r f o i l  
presents t o  the  impinging t ra jector ies ,  as well as t o  the  pat tern of the 
air streamlines around the a i r f o i l .  For t h i s  reason, limits of impinge- 
ment determined f o r  one a i r f o i l  shape should be used f o r  another a i r f o i l  
shape only with extreme caution. 

The l i m i t  of 
w m 
co N 

Local rate of droplet impingement. - The m a x i m u m  loca l  r a t e  of i m -  

The manner of dis t r ibut ion varies considerably with angle of attack. 
pingement occurs very nearly at S = 0 fo r  all angles of attack up t o  
8 O .  
A t  0' the water is  evenly divided on the  upper and lower surface. A t  
4' the amount of w a t e r  impinging on the  upper surface i s  a very s m a l l  
portion of  the  to t a l ,  and at 8' the amount i s  n i l .  
protective systems, the  upper surface protection should be designed f o r  
low angles of attack and the  lower surface protection f o r  the  higher 
angles of a t tack encountered. 
of local  impingement w e  near the leading edge. 

cu 

B I n  the  design of ice- I 

A t  a l l  angles of attack, the  higher r a t e s  

CONCLUDING REMARKS 

The calculated data presented herein apply d i rec t ly  t o  f l i gh t s  i n  
clouds composed of droplets t ha t  are all uniform i n  s i ze  and t o  nonswept 
wings of high aspect ra t io .  
pingement of droplets fo r  f l i gh t s  i n  nonuniform clouds i s  presented i n  
reference 4. A method for  extending the  impingement calculations f o r  
nonswept wings t o  svept wings is presented i n  reference 6. As i s  d is -  
cussed i n  reference 5, the  impingement r e su l t s  should be applicable f o r  
most engineering uses throughout the subsonic. region, because the sub- 
sonic compressibility of air does not a f fec t  the droplet t ra jec tor ies  
appr ec iably . 

A detailed procedure for  weighting the  i m -  

Lewis  Flight Propulsion Laboratory 
National Advisory Committee f o r  Aeronautics 

Cleveland, Ohio, September 23, 1955 
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( e )  Droplet size, 30 microns. (d) Droplet size, 40 microns. 

Figure 4. - Concluded. Total rate of water impingement on 65A004 airfoil. Angle of attack, 0'; 
altitude, 20,000 feet; most probable icing temperature, - 11' F. 
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(c)  Droplet s ize ,  30 microns. (a) Droplet size,  40 microns. 

Figure 6. - Concluded. L i m i t  of impingement on upper or lower surface of 65A004 a i r f o i l .  
Altitude, 20,000 fee t ;  angle of attack, Oo; most probable ic ing temperature, -1l0 F. 



NACA TN 3586 19 



20 NACA TN 3586 
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Figure 7.  - Continued. Trajectory s t a r t i ng  ordinates as function of point of impingement on surface of 
658004 a i r f o i l .  Angle of a t tack ,  0'. 
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(d)  Free-stream Reynolds number, 1024. 

Figure 7. - Concluded. Trajectory start ing ordinates as function of point of impingement on surface of 
658004 a i r f o i l .  Angle of attack, 0'. 
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(a) Free-stream Reynolds number, 16. 

Figure 8. - Local Impingement efficiency of NACA 65A004 airfoil. Angle of attack, Oo. 
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( b )  Free-stream Reynolds number, 64. 

Figure 8 .  - Continued. Local impingement efficiency of NACA 65A004 a i r f o i l .  Angle of attack, 0'. 
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( d )  Free-stream Reynolds number, 1024 

Figure 8. - Concluded. Local impingement e f f i c i e n c y  of NACA 65A004 a i r f o i l .  Angle of a t t a c k ,  0'. 
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0 2 4 6 
Angle of attack, deg 

Figure 9. - Difference between tangent 
trajectories as function of angle of 
attack. Flight speed, 300 mph; chord 
length, 9.4 feet; altitude, 10,000 
feet, 
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Figure 10. - Lower-surface impingement a8 function 
of angle of attack. 
chord length, 9.4 feet; a l t i tude ,  10,000 f e e t .  

Flight speed, 300 mph; 

NACA - Langley Field, vd 


