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I. INTRODUCTION

Solving airfoil flow problems numerically with minimal number of
grid points, or maximizing the accuracy of flow solutions with a fixed

number of grid points, has become very important since more practical

numerical solutions to three-dimensional airfoil flow problems are being

explored, For the purpose of increasing accuracy of flow solutions,

grid clustering techniques have been proposed [1,2]. These techniques
were used until recently without simultaneous or iterative interaction

with the flow solution, but rather the user arbitrarily guessed where

fine grids might be needed and then decided how to cluster grid lines.

As an advanced way of clustering grids, the solution-adaptive grid
concept was lately proposed [3,4] and shown to be effective in

increasing the accuracy of numerical solution to the transonic full

potential equation for airfoil flow problems. In the approach of Holst

and Brown [4],othe grid distribution along an airfoil was adapted to the
initial flow solution. Then, grid systems in the flow field were

obtained by the elliptic-type grid generation equations devised by

Steger and Sorenson [2]. One drawback with this approach is that, while

clustering grids along the airfoil is easy, maintaining the same degree
of clustering inside the flow field is not. This is because the

Steger-Sorenson iterative scheme becomes very slow to converge or even

unstable when strong clustering is extended to an area far from the
airfoil.

This report decribes a new method of adaptive grid generation for
the transonic full potential equation. The present approach requires
four steps of computation:

Step i: Generation of initial grids

Step 2:•Solution of full potential equation on the initial grids
Step 3: Generation of solution-adaptive grids

Step 4: Solution of full potential equation on the adaptive grids

•Supported under NASA-Ames University Consortium Joint Research Interchange
NCA2-OR565-901.
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The solution-adaptive grid generation method proposed in this

report has some similarity to the Hoist,Brown method when grids are
adapted along the airfoil surface, but it determines grids inside the

flow field systematically without solving the elliptic grid generation

equation. The present approach not only saves computing time but has an
advantage that strong clustering along the airfoil surface as well as
inside the flow field is very easy.

Although the present method is applicable to clustering grids in
the _-direction (tangent to airfoil surface) as well as in the

n-direction (normal to airfoil surface), we forcus our attention in this
report only to that in the _-direction.

2. TRANSONIC FULL POTENTIAL EQUATION

The full potential equation for air flow around an airfoil is given
by

(P_x)x + (p_y)y = 0 (2.1)

p = [ i - ( _x2 + ly2 )(y-l)/(y+l) ]i/(y-l) (2.2)

where p is the density nondimensionalized with stagnation density;

_x= u and _v=eV_hare velocity components, which are nondimensio-nalized by critical sound speed; 7 is the specific heat ratio of
air; x and y are Cartesian coordinates.

The boundary condition for i along the airfoil surface is given by
_/_n = 0 where _/_n is the derivative normal to the surface.

In order to apply efficiently the iterative numerical solution

techniques such as SOR (successive-over-relaxation) or ADI (alternating-
direction-implicit) to solving elliptic partial differential

equations, Eq.(2.l) is transformed from the physical domain (x,y) to a
computational domain (_,_), so the grid lines on the computational
domain are rectangular and uniformly spaced in both directions.

The full potential equation on the computational domain is

(pU/J)_ + (pV/J)n = 0 (2.3)

where

U = All _ + A2_ h

V = A2# _ + A3_n

_x2 2 2
A1 = + _y2 , A2 = Sxnx + _y_y ' A3 = _x + ny

J = _x_ - _y_x

p = [l-(Ui_ + VCn)(y-l)/(y+l)]i/(y-l)
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Finite difference equations for Eq,(2.3) are written and solved

iteratively by using the AF2 iteration scheme detailed in reference [5].

The TAIR (Transonic Airfoil analysis) computer code is used for this purpose.

3. GENERATION OF INITIAL GRIDS

Grid generation in Step 1 (initial grids) is performed by solving
the elliptic equations originally proposed by Thompson and et al. [I],

and revised later by Steger and Sorenson [2]. The alternating-

_: direction-implicit method has been successfully applied here to solving

elliptic grid generation equations with grid spacing control. The

initial grids may be generated by the hyperbolic grid generation

equations [6], but this approach is left open for further study.

3.1 Elliptic Grid Generation Equation and Iterative Scheme

Thegrid generation equation with spacing control may be written in
the form

Ax_ + Bx_n + Cxnn + Ex_ + Fx n = 0
(3.1)

Ay_ + BY_n + Cynn + Ey_ + Fy n = 0

where

2 2

= + YnA xn

B = - 2(x_x n + y_y_ )

2 2

C = x$ + y_

E = j2exp[-Cn(nmax-_)]Pl(_) (3.2a)

F = j2exp[-Cn(nmax-n)]Ql(_ ) (3.2b)

J = x_y n - xny _

In the above equations, cn is a user-specified constant; PI(_)
and QI(_) are given by

PI(_) = J-l(y_R 1 - YnR2)In=n
max

; QI(_ ) = j-l(_ y_R 1 + x_R2) l_=_max

where

RI = J-2(Ax_ - 2Bx_n + Cxn_)In= n
max

R2 = _ J-2(Ay_ - 2By_n + CYnn) l_=_max
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The difference form of Eq.(3.1) may be written as

Lx = (A_ + B6_ +C_nn + E_ + F6n)x = 0
• (3.3)

= + C6nn + E6 + F6n)y = 0Ly (A_ + B6_

where _ff and 6f are second order and first order difference
operators, respectively. L in the above equations represents the entire
difference operator after the first equality sign.

3.2 Iterative Scheme

The alternating-direction-implicit (ADI) iterative scheme using
residuals may be written as

Mv = - mLx (t-l) (3.4a)

Mw = - _Ly (t-l) (3.4b)

where

v = x(t) - x(t-l)

w = y(t) _ y(t-l)

and where t is the iteration number, m is a relaxation parameter and M
is an iterative operator that is chosen to be similar to L. As M

becomes closer to L, the iterative scheme becomes more implicit, so the
convergence rate increases. Here, we choose M as

M = (_ + C6nn + F6n)(e + A6_ + E6_)!_ (3.5)

where e is an acceleration parameter varied at each iteration. Since

difference operators in _ and n are separated, each of Eq.(3.4) can be
solved in two steps:

z = _ (_ + A6_ + E_ )-I RHS

v or w = (_ + C6nn + F_ n )-Iz (3.6)

where RHS represents the right side of Eq.(3.4a) or Eq.(3.4b). In order

to increase stability of iteration, either forward differencing or
backward differencing, whichever increases the diagonal terms of the

tridiagonal matrices, is selected for _ and _n at each grid.
%

The values of Pl(_) and Ql(_) are recalculated after each
iteration by using the most updated values of x and y. However, large

changes of P1 and Q; in any two consecutive iterations cause
instability in the iterative scheme of mesh generation. In order to

prevent such large changes, using underrelaxation for P1 and Q1
is necessary.
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4. ADAPTIVE GRID RELOCATION METHOD

4.1 Algorithm

Assume that an initial grid system is given, on which the initial
solution of the full potential equation is obtained. The word

•adaptive • indicates that a new improved grid system is generated

adapting to the initial solution. The new grid system is obtained by
relocating the initial grids along each _ line without changing the
shape of the _ lines.

Let us pay attention to the grids on the airfoil surface (a

line). Denote s=s(_) as the circumference on the _ line between _ and

_=i (reference point) on the initial grid system (see Fig.l). The

circumference between grid i and i=l (reference grid) may be denoted as

s==s(_.). Now, we move grid i to a new location on the same

line at circumference s.l =s(_-'),1 where _' is the value
of _ for the i-th grid after moving on the Initial computational domain.

Relocation of all the grids except the reference grid is achieved if

one-to-one correspondence between _ and _• is specified by a functional
relation as

= T(_') or equivalently _'=T-I(_) (4.1)

In the above equation, T(_ •) is a monotonic function of _', given by

T($ •) = A[_ •- 1 + *(_")d_"] + 1 (4.2)
J1

where _ is the grid density function described in the next paragraph,
and A is a normalization constant determined by the condition,

r(_ •) = _maxmax = _max

The grid density function _ is determined by solving

- d2_(_')/d_ "2 + o_(_ •) = f[_P/_•l + g[k; (4.4)

In the above equation, o is a parameter to adjust the propagation of the
effect of grid spacing control along the _ line: f is the parameter that
emphasizes the effect of the fluid density gradient: k is the curvature

of the airfoil surface and g is to control the effect of the airfoil

surface curvature on grid density.

In principle, the above algorithm may be applied to each _ line
independently. However, we determine T(_') using 0(_',q) along the

airfoil surface first, and then use the same T(_ •) for all the _ lines.

The values of $i for new grids along the j-th n line may be denoted
by $. .'. Since grids are relocated along the initial n lines, the
valu_Jof x and y for the new grids are found from the relations,

• = x(_i " nj)xi,J ,J ,

' = Y(_i " Nj)Yi ,J ,J ,
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by using interpoZations, where x=x(:_,,_)andy=y(_) are__he
tfansformat:ion'between'_he physlca_6_a_n'_ndi:;the inltlalc_pu_ienal
d?omain. Interpolations:are necessa_rM,he_ausex(_n)_ and y(_,n_ _

known_only on,the initial grids:, (_:,n]:),

4.2 Schema,ticl_lustration .....

In order to:explainthe grid relocatlon_igomithmproee_ur_emore
q'uelita£ively,suppose in Eq,(4.4)_g=O an& _/8_ behavesas a d_elta

functionat _, for illustrationpurpose,as shown in Fig.2-A. The
solutionof .(4.4)with a set of specified_ and f is illustratedby
a solid line in Fig, 2-B.

By introducing_ thus determinedinto Eq.(4.2),T(_") with A=I
becomesCurve-a' in Fig. 2-C. After normalization,T(_') becomes,
Curve-a in the same figure. Curves-b and c are obtainedby changing _ zand f &s follows:

Curve-b : only f is decreased

Curve-c : o and f areboth increased

With a decrease in f, _ will become smaller by a factor. The

curve-b of T(_') in Fig. 2"C becomes closer to a stralght_llne which is

the case when f=g=0. With a simultaneous increase in both o and f, the

dis_trlbutio_ of _ becomes more sharply peaked about _o"

Cansequently, a very sharp increase in T(_ _')occurs around _o as
illustrated by Curve_c in Fig. 2-C.

Althou_h the quali_ativeeffect of altering o and f are explained
by considering a delta-funCtion-like distribution in _p/8_', the

distribution of _0/_" inactual problems is a _ontinuous function with
a large change across a shock.

5. NUMERICALSTUDY

The effect of applying the proposedadaptivegridgeneration is
Investlgatedby consideringa liftlngflowOf_the:NACA 0012 airfollwith
the followingparameters:

At_ae_ angle _°degre e

M.. 0.75
N_m_er of grid points 99X%5(coarse grid)

The grid systems with 99x25 grid points with or_with0ut solution ........._ .... -.
adapting will 5e referred _o as "coarse grid'.

As the referende flow solution to which the present numerical

results are _o be compared, _he same flow problem was run on a fine grid
system (245 grids in,the _-direction and 56 grids in the _-directi0n) .................
The pressure coefficient distribution for the reference calculation is
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plotted with a plain black llne in every figure for the pressure
coefficient distribution calculated with the coarse grids. The lift,
drag and moment coefficients calculated with the reference finegrid
system are CL ffi 0.5997, CD ffi 0.0190, G_ ffi -0°0268, respectively°

Figure 3 shows the initial grids generated in Step 1 and the CP
(pressure coefficient) distribution obtained from Step 2o In Fig. 3-A,
only the inner 14 _ lines are shown for brevity and a better resolution
of grid points along the airfoil surface. The line with diamonds in
Fig. 3-B is the result of the present calculation. The diamonds show
the location of grids. The graph is stretched toward both leading and
trailing edges. The large disagreement in the pressure coefficient

distribution at the shock from the reference CP distribution is typical
when grids are coarse across a shock.

Figure 4-A is the result of adaptive grids generated in Step 3 with
f=10, 0=0.5. Denser grids at the leading edge are caused by large values
of _p/_ at the leading edge. A strong clustering occurs also at the
shock. In Fig. 4-B, the pressure coefficient distribution obtained
using the adaptive grids in Fig. 4-A is compared with the reference
pressure coefficient. The agreement in the CP distribution at the shock
is excellent.

Figure 5-A shows the same results as Fig. 4 except with f=lO and
o=0.1. Clustering at the leading edge and at the shock is stronger than
in Fig. 4-A. Figure 5-B shows that the agreement of CP distribution at
the shock is good. However, the disagreement in CP inside the

supersonic bubble, and after the shock, is larger than in Fig. 4-B. The
reason is attributed to coaser grids in the _-dlrectlon in other areas
than the leading edge and the shock.

Figure 6 shows the same results as Fig. 4 except with fffilO and
o=1.5. With a larger value of o, the effects of clustering grids become
more localized. However, when o only is increased with f unchanged as
in this ease, the overall clustering effect becomes weaker. This is the
reason why the results of Figs. 6-A and 6-B both fall in between those
of Fig. 3 and Fig. 4.

In Fig. 7, clustering at the leading edge is supressed so grid
lines only around the shock are strongly clustered. Agreement in the
shock with the reference case is excellent._The change of CP across the
shock is even sharper than the reference CP distribution.

Figure 8-A shows the adaptive grid system in which the number of
grids along the upper alrfoil surface is artificially increased while

.o that in the lower surface is drastically decreased. This increase of
grids above alrfoll is done by artificially changing the value of _p/_
in Eq.(4.4). In spite of finer grids in the supersonic region than the
previous cases, agreement in the CP distribution, particularly across
the shock, is worse. However, the shape of the CP distribution in the
supersonic bubble ls more similar to the reference case than any
other case. The agreement in the shape is due to the fine grids in the
_-direction, but disagreement in values is attributed to coarseness of
grids in the n-direction. This observation suggests importance of
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improVing grid configuration in the leading edge region or importane@ of
improvingthe accuracyofthe d£ff_rence_equationid the same area._ The
disagreement of the caldulated,CP dlStr:ibuti_n from the reference

distribution in the trailing edge area is due to coarse grids. This trailing
edge coarseness Could also cause a small error in the circulation_aa@,_e_fo_e .-
be partly responsible,for the error i:n_he sh0ck.............................p0sitlon_...._..............

The differenceequationsused for the supersonicregionare
essentiallythe flrst-order-accuateupwind 4ifferencescheme. In order

.... to maintain the upwind differencescheme,TAIR had assumed that the flow

in the supersonicregion is in the positivedirectionof _ if _>_half
or in the negativedirectionof _ if _<_half,where _half=_max/2.
Until adaptivegrids were applied, this a_g_rithm did n_t cause any
problem, because _h=if was locatedin the vicinity of the leadingedge
any way, and malnta£_d enough distancefrom the boundary of supersonic

regions. However,when adaptivegrids are used, _half may move into
a supersonicregion,particularlywhen-gridsare S_£ongly clusteredon
one side of airfoil where a supersonicregion appears, If this happens,
the upwind differencescheme is violatedand an instabilityof iteration
is resulted. In order to torrectlyapply the upwind differencescheme,
_half was redefinedas the Valoe of _ at the leading e4ge on the
agap£ivegrids. Figure 9 Shows the CP distributioncalculatedby TAIR
before_redefining_hal£ using an adaptive grid system with very strong
clustering,where the dP distributionbehaves er@aticailyin the
supersonicregion because the upwind differencescheme was Violated.

6, CONCLUSIONS

A new efficient method of generating adaptive grids for the

transonic full potential equation iS presented. With the present
method, adapting grids to high curvature surfaces, sh0cks, and Wherever

high flow acceleration or deceleration occurs is easy. SifiCe the

adaptingprocedureneeds the solutionOf a one'dime_Slonalboundary
Value problem only once, the present method consumes a very small

fraction of the computational cost requlred to generate a new grid

system by the standard grid generation m'e_od, The additionai adVadtage
df the present me_hod is that an accurate initial guess for the

i£erative solution on the new adaptive grid can be easily obtained from
the initial flow solution by using the sa_e interpol_tio_ procedure as
used for grid relocation,so computing_.imefor t_e flow solutionon the
adaptivegrids cad be SSbstantlallysaved also_

The flow solutionon the adaptlvegrids show that accuracy in the
pressure coefficientdistributionacros_ the ShoCk is Substantially
imp@ovedwith grid clUsterlng. The CP distributionin the supersonic
bubble is more sensitiveto the grid spacinginthe _-direc_ionthan in
the subsonicflow region. It is also affected by the grid spacing in
the n-directionparticularlyin the leadingedge area where flow
accelerationis extremelyhigh.

. ,.

While optimaldistributionof grids along the airfoil surfaceis
important,better grid Clusteringin the q-directionaround the leading
edge seems to be vital to furtherimprovementof accuracy in the flow
solution..

_"_'_; -8-
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Fig. 2. A simple exampleusing the presentgrid-pointrelocationalgorithm.
A) Densitygradientforcingfunction. B) Resultinggrid densityfunction.
C) Resultingclusteredarc-lengthdistributionon the airfoilsurface.
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