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1. INTRODUCTION

Solving airfoil flow problems numerically with minimal number of
grid points, or maximizing the accuracy of flow solutions with a fixed
number of grid points, has become very important since more practical
numerical solutions to three~dimensional airfoil flow problems are being
explored. For the purpose of increasing accuracy of flow solutions,
grid clustering techniques have been proposed [1,2]. These techniques
were used until recently without simultaneous or iterative interaction
with the flow solution, but rather the user arbitrarily guessed where
fine grids might be needed and then decided how to cluster grid lines.

As an advanced way of clustering grids, the solution-adaptive grid
concept was lately proposed [3,4] and shown to be effective in
increasing the accuracy of numerical solution to the transonic full
potential equation for airfoil flow problems. In the approach of Holst
and Brown [4], the grid distribution along an airfoil was adapted to the
initial flow solution. Then, grid systems in the flow field were
obtained by the elliptic-type grid generation equations devised by
Steger and Sorenson [2]. One drawback with this approach is that, while
clustering grids along the airfoil is easy, maintaining the same degree
of clustering inside the flow field is not. This is because the
Steger—-Sorenson iterative scheme becomes very slow to converge or even
unstable when strong clustering is extended to an area far from the
airfoil.

This report decribes a new method of adaptive grid generatién for
the transonic full potential equation. The present approach requires
four steps of computation:

Step l: Generation of initial grids

Step 2: Solution of full potential equation on the initial grids
Step 3: Generation of solution-adaptive grids ,
Step 4: Solution of full potential equation on the adaptive grids

*Supported under NASA-Ames University Consortium Joint Research Interchange
NCA2~0R565-901.
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The solution-adaptive grid generation method proposed in this
report has some similarity to the Holst-Brown method when grids are
adapted along the airfoil surface, but it determines grids inside the
flow field systematically without solving the elliptic grid generation
equation. The present approach not only saves computing time but has an
advantage that strong clustering along the airfoil surface as well as
inside the flow field is very easy.

Although the present method is applicable to.clustering grids in
the £-direction (tangent to airfoil surface) as well as in the
n-direction (normal to airfoil surface), we forcus our attention in this
report only to that in the &-direction.

2. TRANSONIC FULL POTENTIAL EQUATION

The full potential equation for air flow around an airfoil is given
by

(o), + (og )y = 0 | | (2.1)
= l1= o+ o201/ 1/ G7D (2.2)

where p is the density nondimensionalized with stagnation density;
¢x= u and ¢ = v are velocity components, which are nondimensio~
nalized by fhe critical sound speed; Yy is the specific heat ratio of
air; x and y are Cartesian coordinates.

The boundary condition for ¢ along the airfoil surface is given by
3¢/3n = 0 where 9/3n is the derivative normal to the surface.

In order to apply efficiently the iterative numerical solution
techniques such as SOR (successive-over-relaxation) or ADI (alternating-
direction-implicit) to solving elliptic partial differential
equations, Eq.(2.1) is transformed from the physical domain (x,y) to a
computational domain (£,n), so the grid lines on the computational
domain are rectangular and uniformly spaced in both directions.

The full potential equation on the computational domain is

(pU/J)g + (pV/J), =0 (2.3)
where
U’= Al¢€ + A2¢n
Vo= Ao+ Agey
A = gxz + gyz »o Ay TEm e, Ay < nxz + ny2
N -

©
|

= [1=(0g + V3 ) -1/ ()] O
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Finite difference equations for Eq.(2.3) are written and solved
iteratively by using the AF2 iteration scheme detailed in reference [5].
The TAIR (Transonic Airfoil analysis) computer code is used for this purpose.

3. GENERATION OF INITIAL GRIDS

Grid generation in Step 1 (initial grids) is performed by solving
the elliptic equations originally proposed by Thompson and et al. [1],
and revised later by Steger and Sorenson [2]. The alternating-
direction-implicit method has been successfully applied here to solving
elliptic grid generation equations with grid spacing control. The
initial grids may be generated by the hyperbolic grid generation
equations [6], but this approach is left open for further study.

3.1 Elliptic Grid Generation Equation and Iterative Scheme

The grid generation equation with spacing control may be written in
the form

AXgg + Bxgn + ann + Exg + Fxn =0 G
Ay&& * By&n * Cynn * Eyi * Fyn =0
where
A = xnz N ynz
B = - 20xx, + yeyy )
C=xg oty
E = Jzexp[-cn(nmax—n)]Pl(E) (3.2a)
P = 3Pexpl-c_(n__ -m)1q, (&) (3.2b)

J = Xeyy T Xy

In the above equations, c, is a user—-specified constant; Pl(g)
and Ql(g) are given by

-1
P (&) =J "(yRy = y R __
1 | 71 n2’'n Mhax
Q. (&) = J (= y,R, + x.R))| __
1 g1 €727 'n N ax
where
- -2
Ry =~-1J (Axiﬁ = 2Bxgy + ann)ln=nmax
- - 172 -
Ry == (A7€£ 2By + Cy”“)|”=”max




The difference form of Eq.(3.1) may be written as

0

.Lx = (AS -+ B 4 + 8.+ :
% (A8 o B, + 08 By 4TS )x

Ly = (Asgg + Bégn + Cann + Eﬁg + an)y

where § f and 6. are second order and first order difference
operators, respectively. L in the above equations represents the entire

C(3.3)
0

difference operator after the first equality sign.

3.2 Iterative Scheme

The alternating-direction-implicit (ADI)_iterative scheme using
residuals may be written as : o : :

M = = (8D A T (3.4a)
M = - QLy(f‘l) : (3.4b)
where -
| v = x(8) o L(t=1)
w = y(t) - y(t—l)

and where t is the iteration number, w is a relaxation parameter and M
is an iterative operator that is chosen to be similar to L. As M
becomes closer to L, the iterative scheme becomes more implicit, so the
convergence rate increases. Here, we choose M as

M= (a+ CGn + FGn)(a + Aﬁgg + Eég)/a (3.5)

n

where « is an acceleration parameter varied at each iteration. Since
difference operators in £ and n are separated, each of Eq.(3.4) can be
solved in two steps: :

z = o (a+ Asgg + E8¢ y~1 rus

-1
= (a+ C
v oor w (o Gnn + F§n ) ‘z

(3.6)

where RHS represents the right side of Eq.(3.4a) or Eq.(3.4b). In order
to increase stability of iteration, either forward differencing or
backward differencing, whichever increases the diagonal terms of the
tridiagonal matrices, is selected for Gg and Sn at each grid.

The values of P,(E) and Q,(£) are recalculated after each
iteration by using the most upéated values of x and y. However, large
changes of Pl and Q, in any two consecutive iterations cause
instability in the iterative scheme of mesh generation. In order to
prevent such large changes, using underrelaxation for Pl and Q1
is necessary. C ' '




"4, ADAPTIVE GRID RELOCATION METHOD
4.1 Algorithm

Assume that an initial grid system is given, on which the initial
solution of the full potential equation is obtained. The word
‘adaptive’ indicates that a new improved grid system is generated
adapting to the initial solution. The new grid system is obtained by
relocating the initial grids along each § line without changing the
shape of the & lines.

Let us pay attention to the grids on the airfoil surface (a

€ line). Denote s=s(£) as the circumference on the £ line between £ and
E=1 (reference point) on the initial grid system (see Fig.l). The
circumference between grid i and i=l (reference grid) may be denoted as

s(g ). Now, we move grid i to a new locatlon on the same
g line at clrcumference S. ~s(g ), where £.° is the value
of & for the i-th grid after moving on the initial computational domain.
Relocation of all the grids except the reference grid is achieved if

one-to-one correspondence between § and &’ is specified by a functional
relation as

= T(§’) or equivalently =11 (€) A (4.1)

In the above equation, T(£’) is a monotonic function of &’, given by

1

T(E') = A[E'- 1 + J Y(E")dE"] + 1 - (4.2)
1

where ¥ is the grid density function described in the next paragraph,
and A is a normalization constant determined by the condition,

T(g ')=€ =€ ’

max max max

The grid density function ¥ is determined by solving
- a%y(6")/aE" % + oy(E’) = £19p/08"| + gIk| | (444)

In the above equation, ¢ is a parameter to adjust the propagation of the
effect of grid spacing control along the & line: f is the parameter that
emphasizes the effect of the fluid" density gradient: k is the curvature
of the airfoil surface and g is to control the effect of the airfoil
surface curvature on grid density.

In principle, the above algorithm may be applied to each £ line
independently. However, we determine T(§’) using p(&°,n) along the

airfoil surface first, and then use the same T(£’) for all the £ lines.
The values of £, for new grids along the j~th n line may be denoted

by E j" Since grids are relocated along the initial n lines, the
valugdJdof x and y for the new grids are found from the relations,

X(Ei,j"nj)

b
[

1,3

Yi,j' = y(Ei’j',nj)




by using interpolations, where x=x(&,n) and y=y(E,n) are the
‘transformation between the physical domai
domain. Interpolations are necessary. because x(g,n) and y(g,n) are -
known only on the initial grids, Ciffnyyy ‘

R

4.2 Schematic Tllustration

In order toweXplain‘theagridgrelaqatiqn.algqntthm-prdceduﬁe‘more
qualitatively, suppose in Eq.(4.4) g=0 and‘ap[agf’behaves»as‘avdelta
function at Eo, for illustration purpose, as shown in Fig.2~A. The
solution of Eq.(4.4) with a set of specified o and f is illustrated by
a solid line in Fig. 2-B. : '

By iﬁtroducing Y thus determined into Eq.(4.2), T(E") with A=l

becomes Curve-a’ in Fig. 2-C. After normalization, T(E’) becomes. ...~ .

Curve-a in the same figure. Curves-b.and c are obtained by changing ‘o
and f as follows:. 4 .

Curve-b : only f is decreased
Curve-c ¢ 0 and f are'both increased

With a decrease in f, Y will become smaller by a factor. The
curve-b of T(£’) in Fig. 2=C becomes closer to a straight line which is
the case when f=g=0, With a simultaneous fncrease in both o and f, the

distribution of y becoiies more sharply peaked about & ,
Consequently, a very sharp increase in T(E") occurs around §o as
‘1llustrated. by Curve=c in Fig. 2-C. ‘ ' B

Although the qualitative effect of altering 0 and f are explained
by considering a delta-function-like distribution: in 3p/3E", the
distribution of 3p/9¢’ in actual problems is a continuous function with
a large change across a shock.

5. NUMERICAL STUDY

- The effect of applying the proposed adaptive grid generation is
investigated by considering a lifting flow of the NACA 0012 airfoil with

-the following parameters:

Attack angle 2%degree
M, af o 0,75 .
Niffer of grid points 99%25(coarse grid)

‘The grid systems with 99%25 grid points with or. without: solution . .. o o0l

~adapting will be referred to as ‘coarse grid’.-

As the referende flow solution to which the present numerical

results are to be compared, the same flow problem was run on a fine grid

system (245 grids in;the.gﬁdirection and 56 grids in the p~direction), "
The pressure coefficient distribution for the reference calculation is

“and ‘the initial com aﬁidnal“

......




plotted with a plain black line in every figure for the pressure
coefficient distribution calculated with the coarse grids. The 1lift,
drag and moment coefficients calculated with the reference fine grid
system are CL = 0.5997, CD = 0.0190, CM = -0.0268, respectively.

Figure 3 shows the initial grids generated in Step 1 and the CP
(pressure coefficient) distribution obtained from Step 2. 1Imn Fig. 3-A,
only the inner 14 £ lines are shown for brevity and a better resolution
of grid points along the airfoil surface. The line with diamonds in
Fig. 3-B is the result of the present calculation. The diamonds show
the location of grids. The graph is stretched toward both leading and
trailing edges. The large disagreement in the pressure coefficient
distribution at the shock from the reference CP distribution is typical
when grids are coarse across a shock. o ' '

Figure 4-A is the result of adaptive grids generated in Step 3 with
f=10, 0=0.5. Denser grids at the leading edge are caused by large values
of 3p/3% at the leading edge. A strong clustering occurs also at the ’
shock. In Fig. 4-B, the pressure coefficient distribution obtained
using the adaptive grids in Fig. 4-A is compared with the reference -
pressure coefficient. The agreement in the CP distribution at the shock
is excellent. : ' '

'Figure 5-A shows the same results as Fig. 4 except with f=10 and
0=0.1, Clustering at the leading edge and at the shock is stronger  than
in Fig. 4~A. Figure 5-B shows that the agreement of CP distribution at
the shock is good. However, the disagreement in CP inside the
supersonic bubble, and after the shock, is larger than in Fig. 4-B. The
reason is attributed to coaser grids in the &-direction in other areas
than the leading edge and the shock. '

Figure 6 shows the same results as Fig. 4 except with £f=10 and
0=1.5. With a larger value of 0, the effects of clustering,grids‘beqome
more localized. 'However, when o only is increased with f unchanged as '
in this case, the overall clustering effect becomes weaker. This is the
reason why the results of Figs. 6-A and 6-B both fall in between those
of Fige. 3 and Fig. 4. '

In Fig. 7, clustering at the leading edge is supressed so grid
lines only around the shock are strongly clustered. Agreement in the
shock with the reference case is excellent. The change of CP across the
shock is even sharper than the reference CP distribution. '

Figure 8~A shows the adaptive grid system in which the number of .
grids along the upper airfoil surface is artificially increased while
that in the lower surface is drastically decreased. This increase of
grids above airfoil is done by artificially changing the value of ap/ 3t
in Eq.(4.4). 1In spite of finer grids in the supersonic region than the
previous cases, agreement in the CP distribution, particularly across
the shock, is worse. However, the shape of the CP distribution in the
supersonic bubble is more similar to the reference case than any
other case. The agreement in the shape is due to the fine grids in the
E-direction, but disagreement in values is attributed to coarseness of
grids in the n-direction. This observation suggests importance of
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imptroving grid configuration ifi the leading edge region or importance of
improving the accuracy of the difference”equition in the same area.  The
disagreement of the calculated. CP distribution from the reference '
distribution in the.trailing edge-atea is due to coarse grids. This trailing

be partly responsible for the error in ‘the shock position:™

edge coarseness could also ‘cause a small error in ‘the circulation -and therdfore -~ 7"

The difference equations used for the supersonic region are
essentially the first-order-accuate upwind difference schemes In order
to maintain the upwind difference scheme, TAIR had assumed that the flow
in the supersonic region is in the positive direction of g if E28pa1E
or in the negative direction of & if &<&, 1§ Where Ehalf=5max/2.

Until adaptive grids were applied, this,gfgorithmidid not cause any
problem, because Eh 1f was located in the vicinity of the leading edge
any way, and maintaified enough distance from the boundary of supersonic
regions. However, when adaptive grids are used, £ alf may move into

a supersonic region, particularly when grids are sgrongly clustered on

-one side of airfoil where a supersonie region appears.: If this happens,
- ‘the upwind difference scheme is violated and an instability of iteration

is resulted.s In order to &orrectly apply the upwind difference scheme,
Epalg was redefined as the value of £ at the leading edgé on the .
a&apgive grids. Figure 9 shows the CP distribution calculated by TAIR.
before redefiding & alf, using an adaptive grid system with very strong - -
clustering, where tge éP’disttibutiqn behaves erratically in the
supersonic region because the upwind differénce scheme was violated:

6. CONCLUSIONS

A new efficient method of generating adaptive grids for the
transonic full potential equation is presented. With the present
method, adapting grids to high curvature surfaces,; shocks; and wherever
high flow accelération or deceleration occuts is easy: Sifice the
adapting procedure needs the solution of a one-dimensional boundary
value problém only once, the presént method consumes a very small .
fraction of the computational cost required to generate a new grid . .
system by the standard grid generation method: The additional advantage
of the presént method is that an accurate initial guess for the
iterative solution on the new adaptive grid can be easily obtained from
the initial flow solution by using the same interpoldtion procedure as

adaptive grids cail be substantially saved alsos

‘used for grid relscation; so computing time for the flow solution on the

The flow solution on the adaptive gfids show that accuracy in the
pressure coefficient digtribution across the shock is substantially .
imptoved with grid clustering: The CP distribution in the supersonic
bubble is more senmsitive to the grid spacing in the g-direction than in
the subsonic flow region. It is also affected by the grid spacing in
the n-direction particularly in the leading edge area where flow
acceleration is extremely high. :

While optimal distribution of grids along the airfoil surface is
important, better grid clustering in the n-direction. around the leading
edge seems to be vital to further improvement of accuracy in the flow
solutien. ' '
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Reference grid

A)

e

A £7=1 Reference grid

e £, Grid i before velocation

g/ Grid i after relocation

Fig. 1. Schematic of grid point re]ocatmn algomthm A) Detail around the '
airfoil. B) Detail along an n-grid 11ne , : -
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Fig. 2. A simple example using the present grid-point relocation algorithm.
A) Density gradient forcing function. B) Resulting grid density function.
C) Resulting clustered arc-length distribution on the airfoil surface.
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