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Theory Symposium held October 27 and 28, 1981, at Goddard Space Flight
Center. For the sake of completeness, abstracts are included of those
talks for which summaries were unavailable at press time. Papers included
in this document are presented as received from the authors with little
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A COMPARATIVE STUDY OF THE HARRIS-PRIESTER,
JACCHIA-ROBERTS, AND MSIS ATMOSPHERIC DENSITY
MODELS IN THE CONTEXT OF SATELLITE ORBIT

| DETERMINATION*

R. E. Shanklin, Jr., T. Lee, M. K. Mallick, R. A. Kuseski,
and J. O. Cappellari, Jr.

Computer Sciences'Corporation‘
ABSTRACT

Extensive comparisons of the Harris-Priester, Jacchia-
Roberts, and MSIS (Mass Spectrometer/Incoherent Scatter)
atmospheric density models as used in satellite orbit deter-
mination are summarized. The quantities compared include
Bayesian weighted least squares differential correction sta-

tistics and orbit solution consistency and accuracy.

*Thls work was supported by the Operations Analysis Section,
Operational Orbit Support Branch, Goddard Space Flight
Center, National Aercnautics and Space Administration,
under Contract NAS 5-24300. ‘



SECTION 1 - INTRODUCTION

Atmoépheric drag is a significant perturbatidn of Earth sat-
‘ellite orbits with perigee heights of less than 1000 kilom-
eters. The acceleration of a spherical satellite due to
atmospheric drag is given by the equation '

—

Adrag

Bl 0O
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where o) atmoSpheric density at the position of the satel-

.. lite '
V = satellite velocity relative to the atmosphere
A = satellite reference cross-sectional area
CD =;satellite drag coefficient
m = satellite mass

Therefore, calculation of the drag acceleration requires
knowledge of the atmospheric density as a function of posi-
tion and time.

This paper présents the results of a comparative study of
three different global atmospheric density models in. the
context of orbit determination. The three models compared
are the Harris-Priester (H~P) model,'the Jacchia-Roberts
(J-R) model, and the Mass Spectrometer/Incoherent Scatter
(MSIS) model.

The Harris-Priester model is based on theoretical tempera-
ture profile solutions of the heat conduction equation under
hydrostatic equilibrium conditions. 'The model assumes two
heat sourcés: solar extreme ultraviolet (EUV) heating and
an artificial heat source that produces the diurnal varia-
tion deduced from satellite drag calculations. In the mod-
ified Harris-Priester model used-fof this study, the EUV



heating level is selected by choosing among 10 different
altitude-density profile tables representing 10 different
levels‘éf solér flux, and the diurnal variation is modeled
by a correction calculated using a power of a' cosine
(References 1 and 2).

The Jacchia-Roberts model is based on empirical temperature
~profiles scaled by an upper boundary exospheric temperature
(T,) . Analytic density‘calculation is accomplished through
integration of thermodynamic equations. The modeling in-
cludes corrections for EUV heating, solar particle flux
(so-called geomagnetic) heating, semiannual variations, sea- '
sonal variations, and the diurnal variation (References 2 | »
and 3). ' ’

The MSIS model is based on fitting spherical surface har-
monic expansions to match the angqular dependence exhibited
by mass spectrometer and incoherent scatter measurements.
The MSIS formulation includes sections that model EUV heat-
ing, solar particle flux heating, annual variations, semian-
nual variations, diurnal veriations, semidiurnal variations,
terdiurnal variations, and departures from diffusiVe equi- |
librium. MSIS modeling has been implemented in a special
GTDS load module. Dr. Hedin and his associates at the
Goddard Space Flight Center, who developed the model (Ref-
erence 4), contributed advice and some of their program sub—
routlnes durlng the GTDS implementation.

Table 1 shows sample density profiles'for the three atmos-
pheric models with two different solar EUV levels and one
geomagnetic actiVity IeVel. Figure 1 shows the Jacchia-
Roberts and MSIS densities, relative to the Harris-Priester
density, as a funetion of altitude, The figure shows max-
imum ratios as high as 2.0 but, as is apparent from the
table,'the three profiles are quite similar in overall shabe.



TABLE 1. ATMOSPHERIC DENSITIES COMPUTED USING HARRISPRIESTER,
_JACCHIA-ROBERTS, AND MSIS MODELS ’

DENSITY (kg/km>)
ALTYTUDE HARRIS-PRIESTER JACCHIA-ROBERTS . MSIS
o Fi07=1250 F10.7 = 1500 107 :;gf ;“-)'7 i :;g:: ;10'7 ) :;gf ;10'7 : :22:2
_ 107 = 135 10.7 1077 10.7

150 208E +1 206 E+1 A93E +1 210E +1 203E +1 204E +1
200 224E 0 256E 0 228E 0 270E 0 274 0 313E 0
250 459 E — 1 583 E 1 559 E — 1 J21E -1 636 E —1 802E —1
300 A20E —1 A78E—1 ATTE -1 249E —1 ABTE -1 255E — 1
350 A425E—2 631E -2 637E -2 977E -2 633E —2 926 E —2
400 AB6 E —2 207E—2 246 E -2 M3E-2 236 E — 2 368E -2

450 521E-3 879E -3  835E-3 ASTE -2 780 E —3 S A31E-2
500 218E—-3 392E-3 353E—3 724E -3 324E -3 582E —3
550 963E -4 182E—3 155 E -3 344E -3 139E-3 266 E -3
600 AS1E—4 851E—4 706 E—4 169E —3 B19E 4 125E -3
650 227E—4 AS1E—4 339E —4 851E—4 285E —4 600E —4 .
700 112E-4 217E-4 A54E—4 394E -4 120E -4  250E -4
750 691E—56 A27E—4 878E -5 219E -4 623E—5 134E—4
800 A64E—5 804E—5 S48E — 5 128E -4 352E -5 728E -5
850 316E-5 A62E—5 34BE -5 J37E -5 200E ~5 378E -5
900 245E—5 301E~5 258E -5 500E — 5 A37E—5 236E—5
950 198E~5 201E—5 201E—5 361E—5 102E —5 1AS8E —5
1000 163 E—5 A41E—5 AS6E —5 262E -5 761E -6 107E—5

8226/81

NOTES: 1. Kp=3.3 FOR JACCHIA-ROBERTS DENSITY AND Ap = 33 FOR MSIS DENSITY ARE USED.

2. THESE PROFILES ARE FOR AUGUST 30, 1978, AT A LATITUDE OF 46° N, AN EAST LONGITUDE OF 205°,
AND A LOCAL SOLAR TIME OF 1:40 P.M.
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'SECTION 2 - COMPARATIVE STUDY STRUCTURE

All the results presented in Section 3 of this paper are
based on Goddard Trajectory Determination System (GTDS)
Bayesian weighted léast squares differential correctidn so-
lutions. Nine different series of six GTDS Differential
Correction (DC) Program runs were made for each of the three
atmospheric models. Three different satellites, with per-
igee heights between 310 and 560 kilometers, were studied;
cher orbital parameters for theée}satellites are given in:
Table 2. The nine series of orbit determination arcs are
listed in Table 3.

Each series contains six 30—hour—arc solutions. The solu-
tions are used to generate 30-hour ephemerides that overlap
adjacent ephemerides by 6 hours. The ephemerides are then’
compared in order to determine the maximum position differ-
ences (in the orbital reference frame) during the overlap
_periods; The 162 DC Program solutions produce 135 maximum
overlap position differences. These differences are used to
evaluate the consistency and accuracy obtained when each of
the three atmospheric models  is used.

Each differential correction solution is made up of seven
numbers: three position coordinates, three velocity coor-
dinates, and the drag variation parameter'(pl), which is
a scaling factor in the drag acceleration equation, i.e.,

b

m

—

VAdrag -

N ™

A p(l + pl) vV

This scaling factor is applied during generétion of the
ephemeris that uses the diffe;ential correction solution.



TABLE 2. SATELLITE ORBITAL ELEMENTS

: PERIGEE . APOGEE
SATELLITE DATE HEIGHT HEIGHT ’N(CdLe'Nr‘:;rs',ON
- {kilometers) (kilometers) g .
AE-3 AUEUST 1, 1978 331 341 68
MAGSAT OCTOBER 31, 1979 352 561 97
MARCH 1, 1980 323 4n 97
SAGE FEBRUARY 19, 1979 560 655 55
‘TABLE 3. COMPARATIVE STUDY SERIES
SERIES
NUMBER SATELLITE TIMESPAN
1 AUGUST 1—8, 1978
2 AE-3 AUGUST 14—19, 1978
3 SEPTEMBER 2—8, 1978
4 OCTOBER 31—NOVEMBER 5, 1979
5 DECEMBER 1—6, 1979
6 MAGSAT JANUARY 1-8, 1980
7 FEBRUARY 186, 1980
8 MARCH 1—6, 1980
-
g
9 SAGE FEBRUARY 19~—25, 1979 5
(2]
Q

8347/81



Spacecraft attitude is not considered, since a spherical
model is employed. Furthermore, no aerodynamic forces
(e.g., lift) other than drag are modeled. The spherical
approximation is crude for all three satellites, and it is
possible that other aerodynamic forces are nonnegligible.
However, it is reasonable to expect that both assumptions
have a negligible effect on the results of this study}
because the results are obtained by applying each of the

" three atmospheric models to the same arcs with the same ob-
servation sets. Simply stated, unmodeied aerodynamic forces
~should perturb the-solutions for all three atmospheric
models in a similar manner. |



SECTION 3 - COMPARATIVE STUDY RESULTS

This sectlon summarizes the results of this comparative
study of atmospheric density models in the context of
short-arc (30-hour) orbit determination. A detailed, run-
by-run presentation of these results is available in Ref-
erence 5. Two cautionary remarks are appropriate.

First, these results should‘not be interpreted as a compar -
ison of atmospheric models; conclusions about the relative
merits of the models must be limited to this highly spe-
cialized context--short -arc orbit determination in which an
average drag scaling factor is solved for.

Second, any series of orbit determination and ephemerls com-
parison runs may contain a few sporadic large overlap dif-
ferences and a few differential corrections with large RMS
residuals. Some of the runs included in this study show
such large differences and/or high RMSs.

The average weighted RMSs and the average maximum position
differences for the three AE-3 series are given in Table 4.
The averages over all three series are also given, along
with the rahges of the EUV heating index.(FlO°7) and the
solar particle flux index (K ) The averages show that

the Jacchia-Roberts overlap dlfferences are about 11.5 per -
cent (24 meters) smaller than the Harris-Priester averages
and that the MSIS averages are about 19 percent (38 meters)
larger than the Harris- Prlester averages. The 62 -meter dif-
ference between the Jacchla -Roberts and ‘MSIS averages cannot
be considered elther large or 51gn1f1cant.

The same information is given for Magsat in Table 5. This
study includes five series of arcs. The Magsat results show
that both the Jacchia-Roberts and MSIS average differences
are about 9 percent larger than the Harris-Priester average

1-9
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TABLE 4.

COMPARATIVE ATMOSPHERIC DENSITY MODEL STUDY RESULTS
FOR AE-3 (AUGUST AND SEPTEMBER 1978)

HARRIS-PRIESTER MODEL | JACCHIA-ROBERTS MODEL MSIS MODEL
RANGEOF F, o | : —
SERIES RANGE OF | svemaGe | MAXIMUM | i epage | MAXIMUM | ,yepace MAXIMUM
_22 2 K weisHTeD | POSITION | weichrep | (POSITION 3 weIGHTED POSITION
10722 watt/(m? -Hz) P VG DIFFERENCE oMS DIFFERENCE ohs DIFFERENCE
_ : _ {meters) {meters) {meters)
AUGUST 1-6 106.0-117.6 0-6 4.9 191 5.2 175 8.4 265
AUGUST 14-19 115.6-134.9 0-6 .73 225 78 217 85 324
SEPTEMBER 2-8 159.8-181.1 0-6 7.3 209 " ga 163 7.2 164
AVERAGES - - 6.5 208 7.2 184 8.0 251

8226/81



TABLE 5. COMPARATIVE ATMOSPHERIC DENSITY MODEL STUDY RESULTS FOR MAGSAT
(NOVEMBER AND DECEMBER 1979; JANUARY, FEBRUARY, AND MARCH 1980)

IT-T

RANGE HARRIS - PRIESTER RESULTS JACCHIA- ROBERTS RESULTS MSIS RESULTS
i RANGE
PERIOD v%li\‘ IA&N OF Kp MAXIMUM MAXIMUM MAXIMUM
.22 201 VARIATION WEIGHTED POSITION WEIGHTED POSITION WEIGHTED POSITION
107 <€ watts m~ 2 Heo 1) RMS DIFFERENCE RMS DIFFERENCE RMS DIFFERENCE
{meters) : {meters) (meters)

OCT.31 NOV.5,1979 2075-214.9 0-4 8.3 204 7.8 176 80 190
DEC.1-6,1979 162.2..223 4 0-4 124 204 s 175 128 255
JAN.1 6, 1980 188.9- 2124 1-5 9.4 213 95 166 1.3 288
FEB. 1- 6, 1980 2126-231.7 0-4 12.7 326 125 298 138 313
MAR.1 6, 1980 170.2 -176.7 0-3 98 161 3.4 396 10.0 169
AVERAGES - 106 222 109 242 112 243

8226/81



differences. As in the case of AE-3, the Magsat results
demonstrate that the three atmospheric density models are
comparable in the context of this study. '

The average RMSs and overlap position differences for the
series of SAGE arcs are given in Table 6. - Both the RMSs and
the overlap differences agree to within 3 peréent; all three
atmospheric models produce essentially equivalent errors.

TABLE 6. COMPARATIVE ATMOSPHERIC DENSITY MODEL STUDY RESULTS
FOR SAGE (FEBRUARY 19-25, 1979)

. AVERAGE
ATMOSEHERIC AVERAGE ~ MAXIMUM
NS WEIGHTED POSITION
oo RMS DIFFERENCE
{meters)
HARRIS—PRIESTER 10.9 108
JACCHIA—ROBERTS 1.2 114
: -
Q
MSIS 11.0 112 3
N
o

NOTE: DURING THIS PERIOD, Fqq 7 VARIED FROM 196.0 TO
237.7 X 10~22 WATTS METER—2 HERTZ ™', AND Kp
VARIED FROM 1 TO 7.

1-12



SECTION 4 - CONCLUSION

The results presented in this paper support the conclusion
that, for satellites above 300 kilometérs, the Harris-
Priester, Jacchia-Roberts, and MSIS atmospheric density
models all produce roughly similar density profiles and es-
sentially comparable orbit determination tesulté when the
drag variation parameter is solved for and orbit quality is
- measured by adjacent arc overlap comparisons., It is impos-
sible to predict which of the’three models will produce the
best fit or best predictions for any given orbit determina-
tion arc. However, for some.problem arcs, switching atmos-
pheric models may result in marked solution improvements.'
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A GENERAL METHOD FOR COMPUTING THE TOTAL SOLAR

RADIATION FORCE ON COMPLEX SPACECRAFT STRUCTURES

F. K. Chan
 Scientific Analysts and Consultants, Inc.

L1} Heathfield Road, Rockville, Md. 20853
ABSTRACT

A general approach has been developed for computing
the force due to solar radiation on an 6bject of afbitrary shape.
This method’cifcumvents many of the existing difficulties in
.computational logic pfesently.encountered in the direct analytical
or numerical evaluation of the appropriate surface integral. It may
be applied to complex spacecraft structures for computing the total
fofce arising fr§m either specular or diffuse reflection or even

from non~Lambertian reflection and re-radiation.



SECTION 1 - INTRODUCTION

The problem of computing the total force or total torque
on a spacecraft due to solar radiation is, in general, very difficult.
Mathematically, it requires the evaluation of a sufface integral
over only the illuminated region of the surface. Even if the illu=-
minated région is known by some other means, thé evaluation of
the surface integrél can still be very difficult analytically
in the case of complex spacecraft Structures. Moreover, if the
illuminated region is not known a priori, the difficulties are
compoundedAby having to determine self-shadowing. For non~-convex
objects, it is not trivially governed by a condition s.uch as
cos B = 0 where ‘6 is the angle between the sun vector and the out-
ward vector normal to the surface. In fact, the logic in the present
methods becomes extremely complicated and is also not fool-proéf.
Additional difficulties are introduced by choosing a set of points
(vertices) oh the surface to form a network in approximating it; |
this inadvertentlyvleads fo book-keeping problems associated with
selecting appr0priate.sets of points for computing surface elements;
| This paper presents a general meﬁhod for performing the
computations without encountering thé difficulties described above.
It does not attempt to evaluate the surface integral directly as
it presents itself as dbne in the usual methods, but considers.
the same problem from a slightly different point of view which

leads to the same results.

2-2



SECTION 2 - ANALYSIS

Consider an arbitrarily_shaped object'as illustrated in Figure 1.1,

Y
>

A
w

0 |
(&‘ /Jo;nfs toward r;da(cr)

Figuré 1s1 = I1llustration of an Arbitrarily Shaped Object
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- For convenience, let us use the following notation:

= unit vector along a specified direction
= any unit vector orthogonal to G, i.e., G J 9 = 0

= third unit vector forming orthogonal triad, i.e., Q = G X Q

£> 4> £>

o
n

origin of coordinate system

= any point On,objectﬁs'surface

21 L

= vector from O to P
P'= projection of P onto (v,w)-plane
T'= projection of T onto (v,w)=-plane
(x,¥,2) = reference Qrthbgonal system for describing object's
surface.

In the pfesent analysis, it is advantageous to choose T to be opposite
in direction to the incident solar radiaﬂion. (Altefnétiveiy, it can.
also be chosen to be in the samevdirectioﬁ})

The vectors.ﬁ and'? are'knéwn in the (x,y,z) system.
In general, if V is any vector, then it ﬁay be more explicitly
writtén in the (x,y,z)-space as'G(X,y’Z)-and has components Vx’ Vy’ Vz'

That is, we implicitly mean
Y] v A “UA A . ' .
. ,‘
Veun™ Ve® + Yy + V3% (1)
In view of the definition of the vector 9, we may choose

vz = 0, Then, it may be shown that the other two components are given by

u
v = i 7 ' 2
* Ve + wy) | (r2)
U, Vs '
vy = - Z" (1:3)
/



From the definition of'?, we obtain

A A A A |
WoE —uy Uy X+ u Uy o+ (“"v-?" uyvx) 3 (1)
_ - -
~ Therefore, any vector V can be transformed to V ,
. (x,¥,2) - (u,v,w)
by the equation
. = 1 oy ' 18)
V(“:V}'w’) ("‘r?/ 3) . (
where the transformation matrix T is given by
re . -
Uy u, “g
T = vy v 0 (ré)
W, wy wry
Then, using equation (1.6), the vector ;%x:y=z) is transformed
: sJ :
and we obtain
A = gyt Nyky ot Ayl e
Ay = NV +. /LV V? 7 ' (1 8)
Consequehtly, the projection vector T' is simply given by
A m N, T 4+ A W (1 10)

The component ru of the vector T is particularly important because,

for a complex spacecraft structure, it can be used to yield the surface

element which is directly exposed to solar radiation. This can be seen

2~5



as follows: For any given point on the (v,w)-plane (i.e., for any
given vector ?'), the point on the spacecraft which is not shadowed

is the one which has the maximum value of T independent of where

£he origin of the (u,v,w) coordinate system is chosen. (It would be
the minimum value of Ty if the vector U had been chosen to be in

the same directibn as tﬁe incident solar radiation.) To fih.d the
illuminated surface of the spacecraft, we proceed by dividing

the (v,w)-plane into cells of é.rea.AvAw with cell centers (vi,wj). :
At these cell centers, the illuminated surface element is the one
which has the maximum value of L In this way, the logic of deter-
mining self—shadowing is extremely simple as compared to other methods
which encounter considerable difficﬁlty conceptually and computationally'.‘
Thus, given a vector T' = (O,vi?wj), the vector T = ([ru.}max’vi’wj)
corresponding to the illuminated point is determi_ned. It is then
transformed to the (x,y,z)-space by‘ the equation

-~ = _T.T 7t

n (1)
(% y4,3) §

(u,v, w)

At this point T » the unit vector n normal to the surface
(x5¥,2) : (x,¥,2)
is then obtained by _
' v
A L= —-—E— (riz)
4y, 3) IV§‘ . . _

wheref(x,y,z) = 0 denotes the equation of the surface in a region

containing T. For convenience, the direction of ® is chosen such that
A A ‘
new 2 0 | (1-13)

This choice of direction automatically makes n the outward unit normal



if the surface element belongs to a closed surface. Moreover,
it establishes a direction for @ in the case of a surface for which
an outward unit normal is meaningless (such as a finite planar surface).
The vector ﬁ(x v,z) is then transformed to the (u,v,w)-space using
. PO

the equation

A ' ' '

n = T ')? : (/' /4')

(v, w) (% 4,3)
The cell (vi,wj) whose area is Av/Aw corresponds to

" a surface elemerit whose area is denoted by AA. It is evident that

we have . : ' ‘ 4
AA = ‘—A—Z—é:f" = ﬂ"AW (/'/5)
(R-2) L

Therefore, the force A‘i?“ exerted on this surface element is givén by
N N
AF = p AA (/"’6)

where 'f; is the solar radiation pressuré vector acting on the surface
element. Under very general conditions of surface reflection and

re-radiation, it can be shown that this pressure vector has the form
- S e é A v A '
p = - < C/ w + (C’zc"°9+ C3)7L [/‘17)

where S is the solar radiation flux per unit area normal to the flux,
¢ is the velocity of light, and @is the angle between the sun vector

and the normal to the surface element, i.e.,
’ A A '
Rl = new - (118)

The coefficients 01‘, 02 and C'3 may change with time due to aging of

227



of the surface material by some complex process.

- For the case of specular reflection and dlffuse (Lambertlan)

reflection, the Ck's are given by ¢ )

(O
\

! (”*/) | (119)

C. = 24 . (¢ 20)
¢, = % %, | (,/':zv/)

where k1 = the fréction of incident radiation reflected specularly
ké = the fraction of incident radiation reflected diffusely
by a Lambertian surface.

It is to be noﬁed that in equations (1.19) - (1.21), it is not -
implicitly assumed that the surface 15 radiating the entire energy
incident on it, i.e., 1t is not necessary that we require the
condition ki‘+ k2 = 1 in order to obtain these equations.

‘For the case of specular reflection and non-Lambertian

(2)

reflection and re-radiation , & little consideration will reveal

that the Ck's are given by
‘Cl = (/—/A)”) (7:22)
C, = 2pT I (1-23)

' T (Bie - Byey) |
C. = Y(I- : - (1124
3 Bf [ (/ /5) + (<, + eé) (1 )‘)J )

where ¥ = the fraction of incident radiation reflected (specularly
and otherwise)

A = the fraction of reflected radiation that is specular
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Bf’~Bb = non-Lambertian coefficients'fdr front and back
surfaces respectively

€ps € = emission values for front. and back surfacés.
respectively.

In passing, it may be noted that we have the relations
A, = AY | - (ras)
/éz-.-: Y(/"/&) oo (/r26)
Moreover, it may be remarked that the form of equation (1.17) is
valid for the more general non-Lambertian reflection and re-radiation
which have a period of 7 in the azimuthal variable. In other words,
Lambertién reflection means that the intensity I of the reflection
is given by

I - I, c0f . (1+27)

Then, the case of non-Lambertian reflection and re-radiation expressed
by equation (1.2L) would correspond to an intensity which is indepen-

dent of the azimuthal variable ¢ and is of the form
I =1 £(8) | (1:28)
where implicitly we exclude the case of Lambert's law, i.e.,

F6)# o (r:a9)

The even more general case means that we can have reflection and

_re-radiatibn for which the intensity is of the form

I=1I,f,¢) . (7:30)
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£l6,4) = f(m $+ )  (ran)

where

Finally, to compute thé total force ¥ due to solar radiation,

we obtain from equations (1.15) = (1.19) the following expressions

it s £ [ Coner Gn] (32
V’»&J’o : .
-A'vAw—-Z [(C n“_-fC’)?t,,.] (1:33)

0)‘

Fur = —Avsz—Z[(fn re) ] (o

I “§

Fu

1

il

- Fy

It is also trivial to compute the total torque M on the spacecraft

by using the equations
- - =
AM = A X AF (1:35)
no= 2 (AxAF} | (r3¢)
45

but this will not be done here.



SECTION 3 - DISCUSSION

It is obvious that the methpd just discussed does noﬁ
encounter logic pfoblems in determining self-shadowing. Moreover,
because the points {vi,wj}vare first chosen on the projection plane,
| it circumvents the difficulties in book-keeping experienced in
the other method of choosing vertices on the surféce'of the object.
Furthermore, it does not require excessive core for storing the
vertex data such as coordinates, area of surface element, normal
vector, solar incidence angle, etc. This advantage becomes evident
by evaluatlng the expressions in equatlons (1.32) - (1. 3&) using
three aqcumulators (one for each force component), not having to
store the set of points {Yi’wj} . Finally, if greater accﬁraéy is
desired, it suffices only to choose smaller values Avﬁﬁw*, multiply
the previous result by the factor (ﬁ%%ffégi) s and then perform
computatibns only for the additional points newly introduced into
the set ivi,wj}. This advantage cannot be realized in the other
method of choosing vertices on the surface of the object. In that
case, in going to a refined model with additional veftices, it is

necessary to perform the entire computations starting from the

beginning each time.
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SECTION L - CONCLUSION

From the foregoing discussion, it may be ¢on¢luded‘that

the present method has the following advantages:

1. It does not experience logic problems in determining

self-shadowing.
2. It does not encounter the book-keeping problemé ariSing

| in the case of choosing'vertices on the surface of the
object.

3, It does not require excessive core for storing vertex
data.,

L. It can utilize previously obtained results in going to

" progressively more refined models.

REFERENCES

(1) Eliasberg, P. E., "Introduction to the Theory of Flight of
Artificial Earth Satellites,"_Moscoﬁ (1965). Translation,
Jerusalem (1967).

(2) Wright, J., "Solar Sail Force Model," Jet Propulsion Laboratory

Interoffice Memorandum 312/77.3-201 (28 March 1977).

2-12



SOLAR RADIATION FORCE MODELING FOR TDRS ORBIT
DETERMINATION*

‘Taesul Lee, Michael J.bLucas, and Robert E. Shanklin, Jr.

Computer Sciences Corporation
ABSTRACT

The relative orbit determination accuracies reshlting from
several TDRS models used for solar radiation force calcula-
tions are evaluated. These models include spherical, single-
plate, and restricted two-plate models. The plate models

can be adjusted in both area and reflectivity through dif-
ferential correction. The restricted two-plate model has an
Earth-pointing plate and.a solar plate; the orientation of
the solar plate is restricted to rotation about an axis per-
pendicular to the satellite's orbital plane.

Simulated TDRS observations are generated from an ephemeris
obtained using a 69-component TDRS model. These observa-
tions are procéssed by least squares differential correction
in order to find optimized parameters for the spherical,
single-plate, and multi-plate models. The solutions for the
parameters and the state vector are then used to generate
ephemerides that are compared with the 69-component ephem-
eris to estimate the expected orbit determination accuracies

~achievable with the various TDRS modeis.

*This work was supported by the Operatlons Analy51s Section,
Operational Orbit Support Branch, Goddard Space Flight
Center, National Aeronautics and Space Admlnlstratlon, under
Contract NAS 5-24300. :



SECTION 1 - INTRODUCTION'

A study of the solar radiation pressure. (SRP) effect on
orbit determination for a Tracking and Data Relay Satellite
(TDRS} has been carried out using simulated data.b The TDRS
System consists of three geosynchronousVsatellitésf-TDRS
East, TDRS West, and TDRS Spare--and one common ground
tracking facility. These satellites will be placed in
circular, nearly equatorial orbits at a height of 36,000 kil-
ometers above the surface of the Earth. The study is de-.
'signed to determine whether a complex SRP model for a TDRS
can be satisfactorily.réplaced'by a simpler SRP model, such
as a constant-effective-area model or a two-plate hodel. In
éddition,'differentAtracking station configurations are used
to investigate the possible dependence of the results on the
tracking station geometry. | |

A similar study carried out by Chan et al. (Referénce 1)
used a 69-component TDRS SRP model and a two-plate model
with four adjustable parameters. The adjustable parameters
were determined by using a least squares procedure to mini-
mize the position differences between two ephemerides, one
obtained uSing-the 69-component model and one obtained using
the two-plate model.

Another investigation related to the present study was
carried out by Shanklin et al. (Reference 2) in which a
constant-effective-atea_SRP model and a two-plate model were
compared'usingvreal ATS-6 S-Band tracking data. This study,
however, was somewhat incomplete due to the limited avail-
ability of ATS-6 tracking data. The current study is an
extension of that work énd follows the same approach as that
used in Reference 1 ih constructing the TDRS SRP models.

The current study, however, uses simulated bilateration and
' 8-Band tracking data in the differential correction prbcess
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instead of position differences between the two ephemerides
as used by Chan. '

The study plan is as follows. First, a 69- -component SRP
model of a TDRS, which is available in the Research and De -
~velopment version of the Goddard Trajectory Determlnatlon
System (RDGTDS), is used to compute a truth ephemeris, which
is subsequently used to generate various types of simulated
-observations'using‘the.Mission Data Generation System
(MDGS). The MDGS produces raw data in a 75~-byte format, and
the Generalized Data Handler (GDH) converts these raw data
into the 60-byte format for the Goddard Trajectory Determi-
nation System (GTDS). Second,.these 31mulated data are used
in regular GTDS Differential Correctlon (DC) Program runs to
find optimized SRP parameters for the constant—effective-
area model and for the two-plate model. The constant-
effective-area model contains one adjustable parameter, and
the two-plate model contains fqur adjustable parameters.

Any combination of the four parameters of the two-plate
model can be solved for in a glven DC Program run. Third,
ephemerides are generated using the final elements and SRP
parameters obtained from the DC Program runs, and these eph-
emerides are then eompared with the_original_truth ephemeris.

Brief descriptions of the TDRS solar radiation pressure
models are given in Section 2 and generation of the simu-

- lated data is discussed in Section 3. The results of var-
ious DC Program runs and ephemeris comparisons are presented
in Section 4, and the.eonclusions are summarized in Sec-
tion 5. '



SECTION 2 - DESCRIPTION OF MODELS

The 69-component model is composed of 69 distinctive parts.
The componentsvwith telatively large areas are the two solar:
panels, whose normals make minimum angles with the saﬁellite—
sun line; the antennas; the antenna feeds; and the top, bot-

tom, and six sides of the main bbdy (see Reference 1 for
details). ‘ | ‘

The simplest SRP model used to approximate the 69-component
model is the constant-effective-area model. In this model,
the area for the SRP calculation is assumed to be constant
and always normal to the satellite-Sun line. The force due
to the solar radiation pressure (Reference 3) is given by

'fSRP = -vaP (L +n) Usun (2-1)
where v = eclipse factor

a = constant area

P = solar radiation preSsure'on a perfectly absorb-
ing surface at the position of the satellite

n

—

ugyp = unit vector along the satellite-Sun lirne

surface reflectivity

"The solar radiation pressureuis‘inversely proportional to
the square of the distance from the Sun, and the eclipse
factor, v, equals zero if the satellite is in the Earth's
shadow and equals'one if it is not. The right-hand side of
Equation (2-1) represehts the sum of two parté: the part
due to the absorption of the solar radiation, which is pro-
portional to (1 - n), and the part due to the reflected
radiation, which is proportional to 2n, This model is
currently available in GTDS.

The second model used to approximate the 69-c0mponent_mddel
is a two-plate model, which has an Earth-pointing plate and
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a solar plate. The solar plate is hinged along an axis
normal to the“satellite's orbital plane and is always ro-
tated about that axis so as to maximize the amount of sun-
light falling on the plate. The force due to the solar
radiation pressure for the two-plate model is given by the
sum of four terms: '

fgrp = "3P[2agnglug, . * RI(ug . * R)
toag(l = ng) lug y * R ug o
+ 2a_n_|q, R
s''s\“sun s 's
+toag(l - Ng) (Ugyn ° Ns)-uSun]
where a = reférence area

P = solar radiation pressure on a perfectly absorb-
ing surface at the position of the satellite

plate
ag = scale factor for the area of the solar plate
ng = reflectivity of the Earth-pointing plate
ng = reflectivity of the solar plate
Ugyn = unit vector along the satellite-Sun line
R = unit position vector of the satellite
Ng = unit vector normal to the sunny side of the
solar plate :
In Equation (2-2), the first term is due to the reflection
by the Earth-pointing plate) the second term is due to the
absotption by the Earth—pointing plate, the third term is
due to the reflection by the solar plate, and the fourth
term is due to the absorption by the solar plate. The two

area scale factors, a, and a_, and the two reflectivities,

_ E ~ 'S _
g and ngs are adjustable parameters. 1In a given DC Program

scale factor for the area of the Earth-pointing



run, any combination or all of these four parameters can be

solved for. Instead of q oy and'ns, an alternative

g’ "’ %s
set of four parameters, gl, 52, £3,,and £4, may also be de-

fined (and solved for):

£ = ogNg
52 = aE(l - nE)
g3 = c‘snsb



SECTION 3 - GENERATION OF SIMULATED DATA

Tracking data for this study were generated using a satel-
.lite ephemeris tape obtained from a special RDGTDS Program
- load module that contains a 69-component TDRS model for SRP
evaluation. This ephemeris tape was used by the MDGS Pro-
gram to genérate a second tape of raw range and'Dopplerbsim—
ulated data. This simulated data tape was used by the GDH
Program to generate tracklng data in a format approprlate
for use in the GTDS two-plate load module. Two types of
tracking data were generated in this manner:  Applications
Technology Satellite Rahging'(ATSR) bilateration data and
Unified S-Band (USB) two-way»data. |

3.1 ATSR BILATERATION DATA

ATSR bllateratlon data were generated using the ground
station at Wthe Sands, New Mexico, as the ATSR tracker and
the ground stations at Mojave, California; Rosman, North
Carolina; Madrid, Spain; QUltO, Ecuador; and Santiago, _
Chile, as the ATSR ground transponders. Figure 1 shows the
positions of Lhese six sites in relation to'the expected sub-
satellite point for the relay satellite.

Using these five tracker/ground transponder pairs, tracking
data with the following characteristics were produced:

) 'Frequency: 5600 MHz (C-Band)

° Primaryvfrequency offset: 5.8875 MHz

° Transponder délay:‘ 0.0 km

¢  Tracking mode: satellite-to-ground phase#locked
transponder o

0 Major range tone/miaor range tone: 100 kHz/8 Hz



FIGURE 1. SITE LOCATIONS AND EXPECTED SUB-SATELLITE POINT

MOJAVE, ROSMAN, 40 e
CALIFORNIA (AVE) NORTH CAROLINA (ROS) MADRID,
P ° SPAIN (MAD)
'y
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204
10+
QUITO, :
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. . { A . * \ . ( ) ; LONGITUDE
- 1 i 1 i 1 i 1 t 1 (degrees)
240 250 260 270 280 290 300 320 330 340 350 360
_104 EXPECTED
SUB-SATELLITE
POINT
— 20—
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CHILE (AGO) 3
°

— 40—

LATITUDE

(degrees)

8347/81



e Uplink pilot frequency/downlink pilot frequency:
6150 MHz/4150 MHz '

) Doppler count mode: nondestruct

Data were produced at a rate of six observations per minute
- for the first 25 minutes of each hour, starting at 0.0 hours
on October 2, 1980, and ending at 0.0 hours on October 3,
1980. Each tracker/ground transponder pair was enabled for
‘tracking over the discrete time interval shown in Table 1.
No obServation'corrections were applied and no observation

nolse was applied.

3.2 USB TWO-WAY DATA

USB two-way data (for which the receiving and transmitting
sites are the same) were generated using the ground stations
at Mojave, Rosman, Madrid, Quito, and Santiago. Tracking

data with the following characteristics were produced:

Y Transmit frequency: 2106 MHz.
° Transponder delay: 0.0 km
) Ranging equipment: Spaceflight Tracking and Data

Network (STDN) Ranging Equipment (SRE)
® Major range tone: 20 kHz

Data were produced for the first 25 minutes of each hour,
over the same time period, at the same rate, and with the
same corrections that were used for the ATSR bilateration
daté. Each ground station was enabled for'tracking over the
discrete time‘interval shown in Table 2.



TABLE 1. TRACKING INTERVALS FOR ATSR TRACKER/
GROUND TRANSPONDER PAIRS

TRACKER/GROUND
TRANSPONDER PAIR

MINUTES OF THE HOUR DURING
WHICH THE PAIR IS ENABLED

WHITE SANDS/ROSMAN
WHITE SANDS/MOJAVE |
WHITE SANDS/QUITO
‘WHITE SANDS/MADRID

WHITE SANDS/SANTIAGO

00 TO 05
05TO 10 -
10TO 15
156 TO 20

20 TO 25

TABLE 2. TRACKING INTERVALS FOR USB GROUND STATIONS

GROUND MINUTEé OF THE HOUR DURING
STATION WHICH GROUND STATION IS ENABLED
ROSMAN | 00 T.O 05
MOJAVE 05 TO 10
QuUITO 10 TO ‘15
MADRID 15 TO 20
SANTlAGO 20T0 25

3

10
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SECTION 4 - DIFFERENTIAL CORRECTION SOLUTIONS AND
' EPHEMERIS COMPARISON RESULTS

Differential correction solutions were obtained using dif-
ferent SRP models, different types of simulated observa-
tions, and different traéking station configuratiOns.

4.1 "RESULTS OBTAINED USING BILATERATION DATA AND TWO GROUND
TRANSPONDERS

The results bf DC Program solutions Obtaiﬁed using bilatera-
tion range and Doppler data and five different combinations
of solve-for parameters in the two-plate model are presented
in Tables 3 and 4. The simulated biléteration data used

were obtained ‘using the TDRSS gronnd station at White Sands
and two ground transponders at Rosman, North Carolina, and
Mojave, Califbrnia.» The five different SRP options used were

. Constant-effective-area model with CR solved for
Two-plate model with ao_ and Og solved for
Two-plate model with gl and 52 solved for

Two-plate model with 53 and 54 solved for

Two-plate model with £+ &, and §3 solved for

The third option, in which gi and £2 are solved for, is

.equivalent to solving for a, and Np the scale factor and

reflectivity of the Earth-pginting plate, respectively.
Similarly, the fourth option is equivalent to solving for ag
and ng- In this particular set of DC Program runs, the
values of the SRP parameters in the two-plate model that

were not solved for were set equal to zero. Thus, the third
and fourth options discuésed above actually represent single-

plate models rather than two-plate models.

An identical set of a priori elements} obtained from the
truth ephemeris of the 69-component SRP model, was used for
all of the options. It is seen from Tables 3 and 4 that the
option of using the Earth-pointing plate alone gives the
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TABLE 3. DIFFERENCES BETWEEN THE FINAL AND A PRIORI ELEMENTS
(FINAL MINUS A PRIORI)

RUN CONFIGURATION
CHANGES
IN CONSTANT TWO-PLATE MODEL | TWO-PLATE MODEL | TWO-PLATE MODEL | TWO-PLATE MODEL
ELEMENTS | EFFECTIVE AREA af AND ag £1 AND £ £3 AND £, £, £, AND £3
' SOLVED FOR SOLVED FOR ~ SOLVED FOR SOLVED FOR SOLVED FOR
AX {meters) —5.81 ~3.42 : 2416 ‘ —1.62 ~2.63
AY (meters) --12.62 —9.57 —18.43 —8.59 —17.61
42 (meters) —24.80 16.07 ~109.73 ~38.56 11.17
AX (cm/sec) 0.052 0036 0250 0.008 0.029
aY {cm/sec) —0.041 ~0.024 —0.221 04005 0025
4% (cm/sec) —0.418 ~0.138 0.243 --0.141 - 0.084

NOTES: 1. THE SAME SET OF A PRIORI ELEMENTS WAS USED FOR ALL DC PROGRAM RUNS.
2. THE QUANTITIES ag AND ag DENOTE SCALE FACTORS FOR THE AREAS OF THE EARTH-POINTING PLATE AND THE SOLAR
PLATE, RESPECTIVELY. THE PARAMETERS £, £, £3. AND 4 ARE DEFINED AS FOLLOWS: & = agng, £ = og (1-9g). &3 = agyg,
£4 = ag (1-1g), WHERE ng AND ng DENOTE THE REFLECTIVITY OF THE EARTH POINTING PLATE AND THE SOLAR PLATE,

~ RESPECTIVELY.
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TABLE 4. DC PROGRAM STATISTICS AND SRP PARAMETERS SOLVED FOR

RUN CONFIGURATION
 PARAMETERS  CONSTANT TWO-PLATE TWO-PLATE TWO-PLATE TWO-PLATE
EFFeT e T MODEL MODEL MODEL MODEL
' ' SOLVED FOR af AND ag £1 AND ¢ £3 AND 4 £1. £2, AND 3
SOLVED FOR | SOLVED FOR | SOLVED FOR SOL'VED FOR
WEIGHTED RMS 0.0568 0.0346 0.3238 0.0546 0.0329
STANDARD DEVIATION _
RANGE (meters) 0.514 0.584 2.206 0.481 0.593
DOPPLER (millihertz) 0.914 0.473 5.416 0.898 0.431
SRP PARAMETERS Cr = 1.38 aE = 0.281 B =197 | g3 - 19482 £ = 0.175
SOLVED FOR ag = §:219 £y = 0.551 £4 = —37.588 £ = 0.146
' £3 = 0.602

8316/81



poorest results, whereas the other options all give compar-

" able results. Similar conclusions are supoorted by Fig- .
ures 2 and 3,th1ch represent 24-hour ephemeris comparlson
results between the original 69—component ephemeris and the
ephemerides obtained using the DC Program solutions for dif-
ferent SRP options. The results obtained using'the second
optlon, in which ap and a, were solved for, are not shown
because they are very similar to the results obtalned u51ng
the fourth option. Only the along -track and cross-track po-
sition differences are shown in Figures 2 and 3, because the
radial position differences were much smaller than the along—

track or cross-track position differences.

The single-plate option using the Earth-pointing plate alone
gives the worst position errors. The single-plate option
using the solar plate alone gives significantly better re-
sults. 1In fact, the option using the solar plate alone
gives the smallest along-track position differences of all

the different options used.

There are two. features worth mentioning. First, there is no
significant difference between the constant-effective-area
model and the more complex two-plate model options. Second,
in all cases studied, there are quite sizable cross-track
position differences, equal to or larger than the along-

track differences.

In order to examlne the influence of the tracking geometry
on the orbit determlnatlon results, a different pair of
ground transponders (Rosman and Santiago) was used for the
same series of DC Program solutions discussed above. Ephem-
eris compatison results obtained using these differential
correction solutions were then compared with the correspond-
ing results obtained using the pair of ground transponders

at Rosman and MOJave, the only significant difference between
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FIGURE 2. ALONG-TRACK POSITION DIFFERENCES FROM 24-HOUR EPHEMERIS
- COMPARISON RESULTS
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the two sets of results was in the cross-track position dif-
‘ferences. The maximum cross-track position differences ob-
tained using the Rosman and Santiago g;ound transponders
were found to be less than 10 meters, whereas the corre-
sponding differences obtained using the Rosman and Mojave
ground transponders were larger than 20 meters.

4.2 RESULTS OBTAINED USING S- BAND RANGE DATA AND TWO GROUND
‘ TRACKING STATIONS

Differential correction solutions for a 24-hour TDRS arc
were obtained using S-Band range data and two different
tracking station configurations. 1In the first set of solu-
tions, the two ground stations at Rosman and Mojave were
used, and in the second set of solutions, the two stations
at Rosman and Santiago were used. The results of 24-hour
ephemeris comparisons are summarized in Figures 4 and 5. It
is seen from Figures 4 and 5 that the results obtained using
S-Band range data are generally worse than the corresponding
results obtained using bilateration data. The along-track
position differences shown in Figure 4 indicate that the
‘Rosman/Mojave configuration gives somewhat better results
than does the Rosman/Santiago configuration. 1In the case of
the cross-track position differences shown in Figure 5, the
situation is reversed; the Rosman/Santiago confiquration
gives somewhat better results than does the Rosman/Mojave
configuration. |

4.3 RESULTS OBTAINED USING MORE THAN TWO GROUND TRACKING
STATIONS

The same 24-hour TDRS arc studied in Sections 4.1 and 4.2
was used in a set of DC Program runs using more than two
ground tracking facilities. In the case of bilateration
data, three ground transponders, located at Mojave, Santiago,
and Madrid, and five ground transponders, located at Mojave,
Santiago, Madrid,‘Rosman} and Quito, were used. Ephemeris
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comparison results»bbtained using the three ground trans-

- ponders were similar to the results obtained using the five
ground transponders. Typical along-track, cross-track, and
radial position differences were 6.0, 1.0, and 1.0 meters,
respectively. No significant difference was found among the
different models used for the solar radiation pressure com-
putation as long as the initial state vector and the solar

radiation pressure parameters were solved for.

'similér analysés were car:ied out using more than two S-Band
tracking stations. Two sets of differential correction so-
ldtions were obtained using three tracking stations at
Mojave, Madrid, and Santiago and four tracking stations at
Mojave, Rosman, Madrid, and Santiago. Ephemeris comparison
results obtained using these differential correction solu-
tions are summarized in Tables 5 and 6. There is no essen-
tial différence between the results obtained using three
tracking stations and the results obtained using four track-
ing stations. These results show a significant improvement
over the corresponding results obtained using only two
S-Band tracking stations. Cross-track position differences
were reduced by almost a factor of 10 and along—tfack dif-~
ferences. were also substantially redqced. However, none of-
the results obtained using S-Band tracking data were as good
as the corresponding results obtained using bilateration
data..
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TABLE 5. CROSS-TRACK AND ALONG-TRACK POSITION DIFFERENCES OBTAINED
USING THREE USB GROUND STATIONS (MAD, AVE, AGO)

EPHEMERIDES COMPARED

MAXIMUM CROSS-TRACK
DIFFERENCE (meters)

MAXIMUM ALONG-TRACK
DIFFERENCE (meters).

. CONSTANT-EFFECTIVE-AREA vs 63-COMPONENT

TWO-PLATE (ag AND «g SOLVED FOR) vs 69-COMPONENT
SINGLE SOLAR PLATE (£3 AND £, SOLVED FOR) vs 69-COMPONENT

TWO-PLATE (&4, &, £3, AND &4 SOLVED FOR) vs 69-COMPONENT

3.1
2.8
71

65

24.6
235
22

20.2

i
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TABLE 6. CROSS-TRACK AND ALONG-TRACK POSITION DIFFERENCES OBTAINED
USING FOUR USB GROUND STATIONS (MAD, AVE, AGO, ROS) :

EPHEMERIDES COMPARED

MAXIMUM CROSS-TRACK
DIFFERENCE (meters)

MAXIMUM ALONG-TRACK
DIFFERENCE (meters)

CONSTANT-EFFECTIVE- AREA vs 69-COMPONENT

TWO-PLATE (‘“E AND «g SOLVED FOR) vs 63-COMPONENT

SINGLE SOLAR PLATE (3 AND {4 SOLVED FOR} vs 69-COMPONENT

TWO-PLATE (£4, £, £3, AND &4 SOLVED FOR) vs GS-COMPONENT

33
3.2
44

4.2

26.2
25.9
267

25.0

8347/81



SECTION 5 - CONCLUSIONS

a study.of scolar radiation pressure (SRP) as it affects TDRS
orbits was performed using simulated bilateration data, sim-
ulated direct two-way data, and various ground station con-
figurations. Orbit'dete:mination results obtained using
constant-effective-area and two-plate SRP modeling were com-
pared with each other and with an ephemeris obtained using a
69-component TDRS SRP model. The conclusion of this study
can be summarized as follows: '

[ ) The constant-effective-area solar radiation pres-
sure model and the two-plate model give essentially
the same quality results when both the state and
the SRP parameters areISOlved for. The maximum
position differences between the 69-component model
truth ephemeris and an ephemeris determined using
solved-for elements and SRP parameters can be re-
duced to less than 10 meters if proper bilateration
tracking configurations are used in solving for the.

elements and the SRP parameters.

©  When using only two ground tracking facilities, the
Rosman/Santiago,cdmbination gives smaller cross-
track position errors than does.the Rosman/Mojave
combination.

o Results obtained using three ground tracking facil-
ities (located in a triangular configuration) are
significantly better than the corresponding results

obtained using two ground tracking facilities.

0 Results obtained using more than three ground

tracking facilities are of essentially the same
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gquality as the results obtained using three ground.
tracking facilities.

Bilateration data appear to give better orbit de-
termination results than S-Band tracking data.
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PRECISION ORBIT COMPUTATIONS FOR AN OPERATIONAL ENVIRONMENT

C. E. Doll, Goddard Space Flight Center
David F. Eggert, Computer Science Corporation
Richard L. Smith, Computer Science Corporation

ABSTRACT

Analyses have been performed at the Goddard Space Flight Center (GSFC) to
establish the operational procedures that would be-required to provide pre-
cision orbit computations to meet current and future operational requirements
set forth by different NASA projects. Taking advantage of the improvements

to the earth's gravitétion field and tracking station coordinates, an orbifal
computational consistency of the order of 5 meters were achieved for total
position.differences between orbital solutions for the Seasat and GEOS-3.

The main source of error in these solutions has been in the mathematical models
ﬁhat are required to generate these results, i.e., gravitation, athospheric
drag, etc. Different earth's gravitation fields and tracking coordinafes have

been analyzed and evaluated in obtaining these computational results.

Comparisons and evaluations of the Seasat resﬁlts have been obtained in terms
of different solution types such as the Doppler only, Laser only, Doppler and
Laser, etc. Other investigation using the Seasat data haye been made in

order to determine their effect on the computational results at this partic-

ular level of consistency.
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INTRODUCTION

It is expected that in the next few years that NASA missions will require
additional computational:precisiOn in determining spacecraft position in
order to support both project and scienfific requirementéf' In order for the
Goddard Space Flight Cenfer tQ support these NASA missiop in a precision
orbit computétions environment both methods and techniques for computations

and opefational procedures must be established. -

The definitive orbit computations requirements for the Seasat mission'Were

the most accurate in terms of consistency between orbital solutions that had
beenvperformed at the GSFC for any given mission prior.to its léunch in June
1978 by thé Operétions Support Computing Division (OSCD). The computationé
requirements set forth by the Seasat.Project was to maintain a maximum devi-
ation of 65 meters between orbital solutions for the mission lifetime. With
these project requirements, the OSCD established the qompﬁtational techniques,
the operational procedures and the tracking data distribution in order to ful-

fill these commitments.

Due to the amount gnd~distribution of USB/SRE and Laser tracking data required
to support définitive orbit computations and precision orbit computatiéns for
the Seasat'mission; fhe 0SCD has taken the initiative to determine what 1¢vel
of consisteﬁcy between orbital solutions can be reached for an operational

eﬂvironment. The results of these investigations for the Seasat and GEOS-IIIL

missions are based on the mathematical models and station geodetics that have
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Introduction (continued)

been established at GSFC by the Geodynamics Branch. The computational pro—
~ cedures and observational tracking data distributions have been established

through the analyses which have been performed for each of the satellites.

The information in this particular report is presented in three different
areas, the method for precision orbit computations, Seasat precision com-

putations and GEOS-III precision orbit computations.

A



METHODS FOR PRECISION COMPUTATIONS

Orbit Determination Procedure

The computations of the precision orbits for both Seasat and GEQOS-III Qere
performed at the GSFC on the 360 computer complex using the Goddard Tra-
jectory Determination System (GIDS). GIDS has the capability to pérform
orbit determinations and generate spacecraft ephemeris data in the form of
position and velocity to différent levels of conéistency based on force
model represeﬁtations, station geodetics and tracking data distfibﬁtions.
The orbital solutions obtained for Seasat and GEOS-III from GTDS used
Cowell's ﬁethod 6f integration for thg equations of motion and the vari-
ational equations and a least squares adjustment technique for the improve—
ment of orbital parameters. The earth's gravity field, the solar gravita-
tional perturbations, the lunar gravitational perturbations-and the solid
earth tidal perturbations are modeled for these ofbital computations., In
addition, The nonconservative forces of solar radiation pressure and atmos-
pheric drag have been modeled. It should be~sta£ed that the JPL planetary
ephemeris DE-96 was adopted for thése computations along with the BIH polar

motion and the UT1l and A.l corrections.

The Seasat and GEOS-III spacecraft were modeled in the GTDS as specularly
reflecting spheres. In the precision orbit computations for Seasat a drag

coefficient for each data arc was solved for.

In addition, an analysis was performed to determine the best integration step
size for the equations of motion and the variational equations and in obtain-
ing orbital solutions which are consistent in terms of numerical processes.
The integraton step size which was established for Seasat and GEOS-III was

45 seconds.



Physical Parameters, Environmental Parameters and Tracking Station Geodetics
For Precision Orbit Determination '

In obtaining the orbital solutions for the Seasat and GEOS-III in the pre-
cision orbit computations environment different sets of physical and environ-
mental parameters and station geodetics were used and evaluated. .One of the
fundamental capabilities that exist in GIDS is its capabilitybto make use of
different size gravitational models along with other parameters, which is
essential in an operational envifénment. In this investigation the three
earth(s gravitational fields which were used and evaluated were the GEM 9,

GEM 10B, and the PGS 1040. These three gravitational fields were determined

at the GSFC using observational tracking data from both NASA and non-NASA
stations and global gravimefric data while making use of the researcﬁ and
‘development orbit computations system GEODYN. When a specific gfavitational
field is ﬁsed'for orbit computations then the earth's gravitational constant
(GM), the mean equatorial radius of the earth (ag) and the earth's inverse
flattening factor (1/f) must be properly specified. These particular parameters
for each of the fhree gravitational fields are listed in Table 1. The orBital
and physical parameters that were used in this investigation are listed in
Table 2. »It should be understood that in the computations for the noncon-
servative forces of drag and solar radiation that both spacecrafts were assumed

to have a spherical shape, although this is usually an extreme idealization.

Through the analysis and evaluations which have been performed in this invest-

igation for precision orbit computations, it has become apparent that good
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(Physical Parameters, etc., continued)

or precise station geodetics are vefy essential in obtaining specific levels

of consistency between‘orbital solutions. The evaluations which have performed
indicates that the quality of station geodetics are not as important at the 20
to 40 meter level of consistency between orbital solutions as they are at the

5 to 15 meter levél of consistency between solutions. Therefore, the station
\éeodetics which have been used for the precision orbit cqmputations for both
Seasat and GEOS-III are the coordinates which have been derived by J. Marsh

of the GSFC which are givén in Table 3. It should be pointed out that
selected code ietters are assigned to specific stations in order to reﬁresent
that station on the tracking data distribution figures that are presehted in

Figures 1 through 3.
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SEASAT PRECISION ORBIT COMPUTATION

Observational Tracking Data for Seasat

The observational tracking data used for precision orbit computations for
Seasat were a combination of USB/SRE range rate data from STDN and Laser data
from STDN and SAO. The USB/SRE range rate data prov1ded the strong global
coverage both in terms of geographical distribution and in time. The Laser
observational tracking data provided strength in terms of accdracy for the

precision orbit computations.

- An analyses of both the USB/SRE range rate date and the Laser data in terms
of distribution and time provided two specific time intervals, September 19
through September 26, 1978 and August 8,'1978 through August 15, 1978 over
which the precision orbit computations were performed. The amount of obser-
vational tracking data during these two particular time intervals contained
approximately 20 passes of USB/SRE data and 12 passes of Laser data for each
typical twenty—fqur hour interval. Figures 1 and 2 give the station and

data distribution for the September 1978 period and the August 1978 period.

Orbital Analyses for Seasat

In determining the consistency between orbital solutions to the 1 to 5 meter
level for the Seasat spacecraft, a number of gravitational field models,
station geodetics and integration step size were evaluated. Through these
evaluations with the use of GTDS, it has been established that the PGS-1040
gravitational field and the station geodetics, which have been designated Marsh
IT, ﬁave given the best results in terms of consistency between orbital solu-

tions. The PGS-1040 gravitational field and the Marsh II station geodetics
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(OrBital Analysis for Seasat - continued)

have been determined at GSFC through the use of GEODYN. It should be pointed
out that in the determination of the PGS-1040 gravity field that both Laser

and USB/SRE observational tracking data from the Seasat spacecraft were used.

The length of the observational data arc was thirty hoursvfor the orbital
solutions which were determined for this investigation.  In order to aeter~
mine the consistency between successive orbital solutions for the Seasat
spacecraft a six~hour intervai was established as the time.frame.overewhich
the consistency was to be determined. The maximum difference in a given
six-hour overlap interval between two successive orbital solutions in terms
of spacecraft position is the measure of consistency which has been deter-

mined by this process.

The orbital solutions for the Seasat spacecraft using only the USB Doppler
tracking and the additional techniques for computations in the September

and August 1978 time frames are given in Tables 4 and 8. Information per-—
tainingvto the individual solutions are given in these tables including the
rho one solve-for parameter, which is equivalent to a density correction for
each of the Seasat orbital solutions. In addition, fhe maxinum discon-
tinuties between successive solutions for each specific six—heur overlap
interval are presented in terms of radial, cross track and along track dif-
ferences. The results‘of'this analysis indicate that using the Doppler only
that an average 10-meter level of consistency for the September 1978 time
frame. can be obtained while for the August 1978 time frame only a 13-meter
level of consistency was.obtained. These results indicate that the 5-meter
level of consistency between the orbital solutions is difficult to obtain
using only USB Doppler date. ‘An assessment of these results would indicate

that there should be no problem with the number of tracking passes in the

4-11



Orbital Analyses for Seasat (continued)

individual solutions although the distribution of passes within the solutions
could cause problems. It is felt that thevmathematical modeling or the com-—
putational procedufes should not cause problems in achieving the 5-meter level

of consistency.

The next set of orbital solutions for Seasat were coﬁputed based on Laser
trécking data only and the results of these computations are given in Tables
5 and 9. Information pertaining to these computations for the individual
solutions are given in these tables including the rho one solve-for parameters.
The maximum discontinuities between successive orbital solutions for each
spécific six-hour overlap interval ére présented. The results of this analy-
sis indicate that using the Laser tracking data by itself that an average

4.4 meter level of consistency can be obtained for the Septémber 1978 time
frame while for the August 1978 time frame only an 8.8-meter level of
consistency was obtained. These results indicate the 5-meter level of con-
sistency between individual solutions can be obtained when using only Laser
tracking data for certain time frames during the Seasat satellite lifetime.
Again, an assessment bf these results would indicate that since the mathe-
matical modeling and the computational procedures are the same then the
differences in the August and September 1978 time ffames has to be in an-
other area. The only other area where differences can be attributed has to
be in the Laser tracking data, in other words the distribution of the data

or the quality of data.
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Orbital Analyses for Seasat (continued)

Another set of orbital solutions for Seasat:were determined based on Laser
and USB Doppler tracking data and the_results of these computations are
given in Tables 6 and 10. The information pertaining to these computations
are given in these tables, including the rho one solve-for parameters. The
maximum discontinuities between successive orbital solutions for each speci-
fié six-hour overlap interval are also presented in these tables. The
results of this analysis indicate that using bothvthe‘Laéer and USB}Doﬁpler
tracking data that an average 3.6-meter level of consistency was obtained
for the September 1978 time frame while for the August 197é-time frame

only a 7.4-meter level of consistency was obtained. ' These results indicéte
that making use of the combination of Laser and USB Doppler tracking data
gives a little better overall consistency between successive solutions than
when using the Laser observations only. Since the mathematiéal modeling
~and the computational procedures were the same then the slight improvements
comes from the stfength of more comprehensive‘distfibution of observational

tracking data throughout the individual orbital solutions.

Further analyéis was performed to determine the affect of having equal number
of observations per pass for boﬁh the Lasef and USB Doppler trackiqg data in
determining each orbital soiutions and the level of consistency for the
September 1978 time frame. The results of these individual orbit computations
are given in Tables 6 and 7 along with the rho one solve-for parameters. The
maximum discontinuities between successive orbital solutions for each six-hour
overlap interval are also presented in these tables. The results of this
analysis indicate that making use of the observational tracking data in this
manner and uéing the same mathematical modeling and coﬁputational procedures
an average of 4.1 meter level of consistency was obtained. This result of

4o1-meter level of consistency obtained in this process and the other average
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Orbital Analyses for Seasat (continued)

values of 3.7- and 4.4-meter levels of consistency obtained when using Laser
and USB Doppler data in another process of observations selection and usiﬁg
Laser data by itself are bésically the same. 1In other words, at this
particular level of consistency it is difficult to indicate in terms of an

average value, which are the better results.
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GEOS-III PRECISION ORBIT COMPUTATIONS

Observational Tracking Data for GEOS-III

GEOS-IIT orbital solutions were calculated fof avperiod extending from
February 23, 1976, to March 2, 1976. The available unified S-band range

and range-rate data is shown in Figure 3. Only the range-rate data were used
for the»soiutions described here. Unlike fhe tracking data diétribution

for Seasat, the GEOS—III tracking data distribution is not uniform,vhaving
intense tracking about once a day, andvvery little tracking at other times.,
On the average, there is available slightly less than one pass of tracking

per orbital revolution.

Orbital Analysis for GEOS-III

Orbital solﬁtiops for GEOS-III were calculated using GTDS and the Goddafd
Earth Model 10B (GEM1OB) gravity model. This gravity model is based, in part,
on GEOS-3 altimetry data. Since the altitude of GEOS-III is about 50 kilo-
_meters greater than that of Seasat, the orbital effects of atmosphere drag
are significantiy smaller. Unlike Segsat, estimation of the drag parameter
does not sppear to affect thé accuracy of differential correction solutions.
The GEOS-III solutions were calculated by solving only for the spacecraft

state vector at epoch.

The GEOS-III solutions were 30 hours in length, each solution overlapping
neighboring solutions by six hours. Because ephemeris comparisons in the

solution overlap intervals are used for orbital accuracy estimates and because
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Orbital Analysis for GEOS-III (continued)

of the strongly periodic characteristic of the tracking schedule, it might be
expected that the overlap comparisons could be affected by the placement of
the overlap interval felative to the periods of intense tracking. If the
overlap intervals coincidéd with the intense tracking periods it might be
expected that the ephemeris differences would be lower than if the.overlap

intervals were located in periods of little tracking.

In order to examine this possible effect, the solution intervals were placed
in time two different ways. In the first scheme, the epochs of each 30-hour
solution were located at 15D on successive days. This procedure puts the
periods of intense tracking into the six-hour solution overlap intervals,
aﬁd éach soluton has strong tracking at its start and end, but little in
between. The seéond scheme placed the epochs at oh on successive days. This
placed the intense‘tracking in the middle of each solution, with very little

in the overlap intervals.

GEOS-III orbital solutions, along with the'ephemeris ovérlap comparisons that
were calculated using these two approaches are summarized in Tables 11 and 12.
In these tables, the tracking observations for_each solution are separated
into two categories (indicated by the diagonal line) Because of slightly
different tracker types; this is not relevant for this study. The orbital
fits, as indicated by the weighted RMS, (the assigned range—rafe standard
deviation was 2.0 centimeters per second) were about the same,boverall, for
the OD and 15" solutions. Similarly, the standard déviations of the solution

residuals were about one centimeter per second for each set of solutions.
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Orbital Analysis for GEOS-III - continued

The ephemeris overlap differences for both sets of solutions are also quite
similar. The maximum total differences average about 7 meters for both the

ol and 15" solutions. Also the maximum cross-track differences average about

6 meters for both sets of solutions. On the other hand, the radial and along-
track differences for the two‘sets_of solutions are'distinct, For the 150
solutibns, the maximum radial differences and the maximum along-track differ-
ences average to 0.5 and 2.4 meters, respectively. For the OR solutions, the
correéponding averages are i.O and 4.9 meters. Thus, the placement of the
intense tracking at the end of the solution intervals, rather than the middles,

reduced the along-track and radial differences by about a factor of two.

This reduction in along-track and radial differences, and presumably, a
corresponding redugtion in along-track and rédial orbit error may be explained
as follows. It is well known that radial and along-track orbit displacements
are coupled together in. the equations of motion; thus it is ﬁatural that
changes in along-track and radial orbit error should be correlated. Placement
of the intense tracking at the ends of é solution interval causes the orbit
solution to better average out along-track and radial force modeling errors,
leading to smaller peak radial and along-track orbit errors than if ﬁhe
tracking data was concentrated in the middle of each solutidn, leaving both

ends of a solution "floating".
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COMPARISONS OF VARIOUS SETS OF TRACKING STATION COORDINATES

The GEOS-III solutions described in the previous section were calculated
using tracking station coordinates derifed by J. Marsh of GSFC. Corres—
ponding GEOS-III orbital solufions were calculated using three other sets
of tracking station coordinates. These three sets are NASA Spacecraft

.Tracking and Data Network coordinates (STDN), GEM9 coordinates, and World

Geodetic System (Geoceiver) WGS(G) coordinates.

The STDN coordinates are those used for GSFC operational orbit determination
(Reférence A). The GEM9 coordinates were derived as a part of the GEM9

and GEM10 gravity models (Reference B). The WGS(G) coordinates for the NASA
S—-band trackiné stations were specially derived for this study. These

station coordinates were based upon coordinates of nearby geoceivers.

GEOS-IIT orbital solutioné using the STDN, GEM9, and WGS(G) station coordin-
ates are summarized in Tables 13, 14, and 15 respectively. These solutions
were calculated using the same GTDS input parameters, except for station
coordinates as the solutions in Table B (15h epoghs). Thus, comparisons
among the results in these four tableé are a direct comparison of the effect
of various sets of tracking station coordinates. (The value of the semi-

ma jor axis of the earth, used for evaluation of the gravity force was
slightly different for the solutions calculated using Marsh coordinates.
Subsequently, tests showed the effect of this change negligible for these

comparisons.)
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Comparisons of Various Sets of Tracking Station Coordinates (continued)

None of the three additional sets of station coordinates performed as well in
these solutions as the Marsh coordinates. 1In the order of increasing weighted
RMS residuals and increasing overlap differences, these three sets of coor-
dinates are ordered as follows: WGS(G), GEM9, and STDN. In the case of the
STDN coordinates, the maximum radial differences average to 4.2 meters, while
the total differences average to 21 meters. These results‘afe cénsistent

with the position differences of the GEOS-III tracking stations in the Marsh

and STDN coordinates, which are typically 15 to 25 meters.
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CONCLUSIONS

The results of this study have shown that orbital consistency at the five-
meter level can be obtained for Seasat and GEOS-~III using the operational
Goddard Trajectory Determination System. The attainment of this orbitai
consistency level requires the use of the most precise gravity models and
trécking station coordinates that are currently available. For Seasat,

the use of Laser range traéking data was found to increase the level of
orbital consistency when used alone.or in combination with the unified S-
band range-rate tracking data. For GEOS-III, the use of the unified S—-band
tracking data alone produced orbital consistency of the order of five

meters.
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Table 1 Physical, Geophysical, and Astronomical
Parameters Used

QUANTITY VALUE
UNIVERSAL CONSTANT OF GRAVITATION (G). 6.673 x 10723 kv 52k ™!
ASTRONOMICAL UNIT 1.495978930 x 108 KM
SOLAR MOMENTUM FLUX DENSITY 45N KM™2
EARTH GRAVITATIONAL CONSTANT (GM) 3.9860064 x 10% kKM® 572 (GEM 9)

3572 (Gem108)

3.9860062 x 10° kKM 572 (PGS 1040)

3.9860064 x 10° KM

EARTH MEAN EQUATORIAL RADIUS (a,) 6378.140 KM (GEM 9)
* 6378.139 KM (GEM108)
6378.140 KM {PGS 1040)

EARTH INVERSE FLATTENING FACTOR (1/f) 298.250 (GEM 9)
298.257 (GEM108B)
298.257 (PGS 1040)

SPEED OF LIGHT (c) 2.997925 x 10° KM s~
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- TABLE 2. Orbital and Spacecraft Parameters for the Spacecraft Studied

l
NOMINAL ORBIT CHARACTERISTICS | SPACECRAFT CHARACTERISTICS

1

e e e e e e ] e ——

SPACECRAFT | I CROSS-SECTIONAL
| ALTITUDE -(km)|INCLINATION (deg)| MASS (kg) AREA (m2)
GEOS-3 825 to 855 115.0 345.909 1.4365
SEASAT-1 | 770 to 800 108.0 2220.8 25.31

I
|
I I
| |
I I
| I
I I
I |
I I
I |
I |
| I
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I
|
l
I
|
I
|
|
l
|
|
|
I

422



Table 3. Marsh II Tracking Station Coordinates

STATION GEQDETIC GEQDETIC ”%S%?;?SVE cope
ACN3 ~7%57'17".289 345°40'22".186 534.33 A
AGO3 -33°09'03".946 289°20°00".558 717.59 B
BDA3 32921'04" 533 29592031325 -30.10 c
ETCA 38%59'54".171 283°09'28"".749 12.35 D
GDS3 35°20'31".789 243°07'35".311 919.69 G
GDS8 35920'29.495 243%07'34".792 925.69 H
GWM3 13918'38'°.243 144%44'12".465 133.05 I
HAW3 22°07'34".681 '200920'05".231 1148.56 J
MADS 40°27'19" 553 355%49'53".216 819.66 K
MIL3 28°30'29".250 279°18'23".625 ~38.24 L
ORR3 -35%37°40".410 148°57'25" 169 934.39 N
auis —-0937'18".967 281°925'10".404 3578.86 o}
ULA3 64°58'19.233 212929"13".235 333.90 Q
MAD3 40°27'22".248 355°49'49".163 816.80 R
MILA 28°30'29".318 279°18'25".474 —42.40 s
AREL —1692756".708 288930°24".533 2475.99 “a
BDAL -32°2113".767 295°20'37".890 -36.87 h
GTKL 21°27°37".770 288952'04".972 3236 c
HOPL. 31%41°03".201 249%07'18".798 2334.76 d
KooL 52°10'42".215 52 4835”055 75.0 e
NATL -5%55'40"".145 324%50'07".165 22.70 f
ORRL ~35°37'29".741 148%7°17".133 932.45 g
RAML 28°13'40".630 279°23'39".244 -37.24 h
SNDL 32°36'02".628 243°09°32".737 975.00 i
STAL 39%01'13".359 283°%10'19".751 47.00 j

8223/81

aR'EFEFQENCE SPHEROID: SEMIMAJOR AXIS, 6378.155 km. INVERSE FLATTENING FACTOR, 298.255.

4-23
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TABLE 4

SATELLITE AND TIME PERIOD _SEASAT - September 1978 :
MAJOR RUN CHARACTERIsTIcs APProximately 30 Second Data Rate for Both Laser and USB Doppler

: - dosk = s
Geopotential Model PGS-1040 _ Drag Parameters Cp=2.1 Editing Parameters 3 Sigma
Lunar/Solar Gravitation YES Atmospheric Density Modeﬁ' P. 9 F#ISO Other USB—Doppler 9 Earth Tides
Solar Radiation Parameter CR:L 3 Solve-For Parameters State and Rho one Polar h,{[Otlon’ Marsh I1
Geodetics¥**%
Observations Residual Maxnnum (.:OMPARE Solve-For Parameters
Range Range-Rate Statistics . Position (Ilil)fferences and Other Information
Arc Arc No. -
Start Length of Standard ] ‘ Run
Time (rs) tS‘t;; No. No No. Nd wtd Deviations D
1 Avail- °. 1 Avail- y : Range- . Cross- | Along-
able Used able Used | RMS R(z;;l)ge . Radial Track | Track Total RHO
(cm/sec) - ONE PASSEB
780919 30 7% _ 403 | 345 .83 1.68 . -.65} 20%
: 0.9411.76 | 4.66 [12.28
780920 30 9 371 3251 .99 1.98 - 67 17
1.01j11.59 | 2.15 {11.67
780921 30 9 366 310 ] .96 1.93 =53 20
780922 | 30| 10 513 | 426 | .82 1.64 [2+2043.041 7,601 8,374 ) 25
. 1.54] 3.21| 7.62 | 7.70
780923 30 9 444 3921 .82 1.65 . ~.21 21
AVER [10.00

*Number pf StTtions and [Passes - Laser/USB Doppler

*%*Computafion kased,on PGS—-104pD: Grgvitatiional|Constant
GM = 39B600. ‘:/qpoz; Equatorigl Radius Ri= 1140 kg
and Invprse Flattdning Coefficient = 298.257[

$**E1lipsofd Patametdrs for Marsh II |Geodeftics:
Equatoryal R3dius [K.=b3/8.15p km gnd Inverse|[flattening
coefficjent=298.235
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TABLE 5

SATELLITE AND TIME PERIOD SEASAT ~ September 1978

MAJOR RUN CHARACTERISTicS APProximately 30 Second Data Rate for Both Laser and USB Doppler

. - * =9 1.
Geopotential Model PGS—1040% Drag Parameters Cp=2.1 Editing Parameters
Lunar/Solar Gravitation___ YES Atmospheric Density Mode#«P. , F#150 Other Laser Range, Earth
Solar Radiation Parameter CR—1* 2 Solve-For Parameters.__otate and Rho one Tides, rPolar Motion, Marsh II
. Geodetics*%%
Observations Residual ) Max%n'mm‘(.?OMPARE Solve-For Parameters
Range R ange—R ate Statistics Posﬁwn(?:)fferences aud Other Information
No.
Qﬁﬁt I::;th of ' Standard Run
Time (ors) ts‘f;.s No. | oo No. | oo Wtd Deviations D
1 Avail- ° | Avail- ’ ' Range- .7 | Cross- | Along-
able Used able Used | RMS Rg;l)ge Rate Radial Track | Track Total RHO
, (cm/sec) "~ ONE PASSEBS
780919 30| 6% 69| 66 0.16/ 1.48 -.56 15%
- ) ’ v 0.81} 0.83] 3.41 | 3.45
780920 30| 8 79| 77 0.17| 1.67 : -.63 12
) 0.28) 2.16] 1.28 | 2.39
780921 30| 6 89| 85 0.17[ 1.60 ' -.49 14
1.98| 1.52| 7.39 | 7.43
780922 30| 8 791 77 0.12f 1.03 i =55 17
0.80) 3,731} 3,09 ! 4,50
780923 30 5 64| 64 0.12] 1.15 —.11 10
: AVER 4.44
*Number pf Stationg and |Passep - Laser/USB Doppler
**Computaftion pased [on P3S~104D: Gr?vitational Constant

GM = 3%600. h2 _km /qpozl Fqu rial Radiys Rl =6378
and Invprse Flattdning Coefchienﬁ = 298.257

***Ellipéoid Parametdrs for Margh II|Geoddtics:

Equatorfial Radius [R;=6378.155 km and Inverse flattening

coefficlient=098.255
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TABLE 6

SATELLITE AND TIME PERIop SCASAT =  September 1978 .
MAJOR RUN CHARACTERISTIcS APProximately 30 Second Data Rate for Both Laser and USB Doppler

- *% = .
Geopotential Model PGS 1040 Drag Parameters CD 2' 1 Editing Parameters 3 Slgma

Lunar/Solar Gravitation YES Atmospheric Density Mode}{' P., F#150 Other Laser Range and USE-Doppler, Earth
Cr=1.5 State and Rho one Tides, Polar Motion, Marsh II
Solar Radiation Parameter Solve-For Parameters___. . CeodeTics ™
Observations Residual Max?n.lum ?OMPARE Solve-For Parameters
Range ’ Range-Rate Statistics Position (Ilzl)fferences and Other Information
Arc Arc No. ——
Start Length of Standard _ : Run
Time (rs) Sta- No. N No. No. | Wtd Deviations . : D
tions | Ayail- O 1 Avail- o : Range- . Cross- | Along-
able | US| aple | USsed | RMS | Ramge | o o | Radial | pjek | Track | TO! | RHO
‘ ) em/sec) ONE PASSES
780919 1 30 6/74 69 |66 403 345 11,10 1.52| 1.92 : -0.6/4 15/20
' ' 0.67 | 0.40 | 2.22 2,25
780920 30 8/9 79 [ 75 371 325 | 1.15) 1.50} 2.06 -0.71 12/17
: : 0.93}12.02 | 3.25 [3.80
780921 30 6/9 89 | 83 366 310 {1.16] 1.34] 2.08 -0.49 14/20
1.69] 0.91 | 3.95 [4.00
780922 30 8/1q 79 |77 513 427 10.99| 1.10| 1.84 -0.14 17/25
0.66 | 2.72 [ 4.18 |4.69 v
780923 30 5/9 64 | 63 444 392 10.96| 1.11| 1.84 ~-0. 20 10/21
AVER 3.68
*Number ¢f Stdtions| and Passeg — Laser/UBB Doppler '
*%*Computagion Bhased _pn PGP-104(Q: Gravitational |[Constdnt

GM = 12 _km spcz Equdtorial Radfius RI=63781140 kg

and Invérse Hlatteping Coeffilcient] = 29B.257

b3

**E]11lipsoild Panameteks for Margh II |Geodetics
Equatorial Rgdius Ro=63}8.153 km apnd Inyerse |flattening
coefficient=498,258
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TABLE 7

SATELLITE AND TIME PERIOD SEASAT —- September 1978
NMJORRUNCHARACTERmesAPPrOXimately Equal Laser and USB Doppler Observations Per Pass

Geopotential Model PGS—1040%* ‘ brag Parameters CD=2' 1 A Editing Parameters 3 Sigma
Lunar/Solar Gravitation_ YES Atmospheric Density Model Be P« s F#150 %h%r Laser Range and USB-Doppler, Earth
Solar Radiation Parameter Cr=1.5 Solve—For Parameters State and Rho one 11 es, Po%z:u:' Motion, Marsh II
Geodetricohi*
Observations Residual Bgi:%?:mD?f(f)MPARE . Solve-For Parameters
Range Range-Rate Statistics b “(m) erences and Other Information
Arc Arc No.
Start Length s:f ' ' Standard Run
Time (brs) 3= | No. No. Deviations v . , D
tions | Avail- No. Avail- No. wed. R - . Cross- | Along-
able | USed | pje | Used | RMS R(a;;:)ge I:z;g: Radial | . ° Traci Total | RHO
(cm/sec) ONE PAS SES
780919 | 30 |6/7*| 318 | 305 |403 344 | 1.02{ 0.94}2.01 - -.61 15/20
0.43| 0.95| 1.54 | 1.59
780920 30 |8/9 230 | 224 | 371 324 | 1.15] 1.26(2.05 - 71 12/17
0.641 2.59 | 2.57 | 3.15
780921 30 [6/9 305 | 280 | 366 310§ 1.19] 1.25!2.10 -.54 14/20
1.704{ 0.93 .10} 7.11
780922 30 [8/10f 360 | 338 | 513 427 1 1.01} - 0.90|1.90 2 ! -.12 17/25
0.55] 3.11| 2.70 | 3.87 -
780923 30 |5/9 | 200 | 198 | 444 392§ 1.00| 1.02}1.91 -.17 110/21
IAVER 4.05
*Number bf Stationd and {Passes — Laser/USB Doppler
*%*Computation pased lon PGS-1040: Gravitatlional|Constant

and Invprse Flattdning |[Coeff = 298.257[

M - 398600.62 1 _/ce,,z, Equ igl Radius R[=63781140
jcien

*%E]11lipsolfid Patametdrs for Margh II|Geodgtics:

Equatorfial Radius |R,=6378.15b km and Inverse flattening
coefficfient=p98.235
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TABLE 8

SATELLITE AND TIME PERIOD SEASAT -  August

1978

MAJOR RUN CHARACTERISTICS Approximately 30 Second Data Rate for USB Doppler

Geopoteﬁtial Model PGS-1040%* Drag Parameters Cp=2.1

Editing Parameters

3 Sigma

Lu_nar/So]_ar Gravitation_ YES Atmospheric Density Model H. P.J F#ISO Other USB-DODpler, Earth TideS
. ; Cr=1.5 State and Rho one Polar Motion, Marsh II
Solar Radiation Parameter Solve-For Parameters :
: Geodetics®*%
Observations Residual Max?n'mm (_:OMPARE Solve-For Parameters
Range Range-Rate Statistics Position (llx)ll)fferences and Other Information
No
Arc Arc ‘
Start Iength of Sta.nd?rd Run
Time (brs) tsiza:s ANo‘.1 No. ANo..l No. Wtd. Deviations . Al D
vail- vail- Range- . TrOoSS~— ong- .
able Used able Used | RMS | Range Rate Radial Track | Track Total RHO
) | em/sec) ONE PASSE
780808 30 | 10% 470 | 400 .88 1.76 4 -.89 22%
_ 0.93| 4.89| 9.78 {10.90
780809 30 10 538 429 | .82 1.65 -.90 26
: 2.88] 3.16 | 9.92 [10.20
780810 30 8 366 317 | .55 1.11 -o11 17
1.41} 6.64 (10.20 11.90
780811 30 8 335 276 | .80 1,61 -.10 16
780812 30 317 | 2691 .83 |1.66 [al3414.2020.20 P1.404 ., 14
AVER 13.60
*Number pf StTtions and [Passeg — Lgser/USB Doppler
*%*Computation asedqon PGS-1040: Gravitafional Constant
GM = 39R600 ‘lsecg rigl Radiius R#;gglg_
and Inverse Flattening Coeff;cient = 298.257 :

¥**Ellipsofd Paiameters for Mar#h I1 |Geodeftics:
Equatorfal i RE_=_§ 78,1558 km dnd TgLer_s,p__ f]atténn’ng

coefficlent=298.295




TABLE 9

SATELLITE AND TIME PERIOD SEASAT -  August 1978
MAJOR RUN CHARACTERISTIcsAPProximately 30 Second Data Rate for Laser

62-%

Geopotential Model PGS-1040%% Drag Parameters p=2.1 Editing Parameters 3 Sigma
Lunar/Solar Gravitation YES Atmospheric Density Model H.P., F#150 %th T Laser Range, . Earth
Cr=l.5 : State and Rho omne 13es, Polar Motion, Marsh II
Solar Radiation Parameter Solve-For Parameters i CoodetiTahik
Observations Residual Max?n.lum C_:OMPARE Solve-For Parameters
Statistics Position Differences and Other Information
Range Range-Rate (m)
Are Arc No. - - i
Start Length of Standard ‘ Run
. Sta- Deviations ) D
Time (hrs) " No. No No. N
tions | Ayail- | Avail- 0- wid. Range- . Cross- | Along- : ]
able Used able Used | RMS | Range Rate Radial Track | Track Total RHO .
) | em/sec) . ONE PASSES
780808 30 | 6% 135 87 2,05| 1.85 -.81 11=*
- - - ; 1.33 2092 i 6.78 7. 19 i
780809 30 6 152 1130 ' 2,03} 2.03 -.64 15
: 0.57 | 3.34 | 6.58| 7.13
780810 30 5 108 | 105 1.56| 1.56 -.77 9
. 1.43 | 3.74 {10.20[10.80 _
780811 30 5 142 1105 2.42| 2.40 —e75 | 9
. 2.1 3.82 [ 10. 10.30
780812 30 4 105 61 1.99§ 1.95 3 8 30 -.72 7
AVER 8.85

*Number ¢f Stdtions! and Passesd - Laser/USB Doppler

*%*Computation Based _pn PGE-104(: Gravitatfonal |Constant
__GM = 398600.62 km3Ysec?] Equdrariall Radfus R|=6378.140

and Inverse HKlatteping foefficient] = 298.257

*%*El1ipsold Panameteks r Mardh II1 (Geodetics:

fo
Equatorial Radius Ro=63y8.153 km and Inyerse |flattening
coefficient=398.25H




oe-v

TABLE 10

SATELLITE AND TIME PERIOD _SEASAT - August 1978
MAJOR RUN CHARACTERISTIcS APProximately 30 Second Data for Both Laser and USB Doppler

Geopotential Model PGS-1040%* Drag Parameters Cp=2.1 Editing Parameters 3 Sigma
YES . . . H.P., F#150 Laser Range and USB-Doppler, Earth
Lunar/Solar Gravitati Atmosph Density Model 4 ?
Amar/so'ar Sraviiation Cr=1.5 oS ey e State and Rho one (%Tﬁés, Polar Motion, Marsh Ii
Solar Radiation Parameter . Solve-For Parameters ool R e X 0
Observations Residual Max%n.mm (,:OMPARE Solve-For Parameters
Range Range-Rate Statistics Position (Ilzll)fferences and Other Information
Arc Arc No. ‘ ’
Start  |ILength s‘t’f Sta_mi?rd . Run
Time trs) | 7 a= No. No No. N Wtd Deviations _ D
tions | Ayai)- ‘| Avail-| SO : Range- . Cross- | Along-
able - Used able Used {- RMS R(:::,;;e Rato Radial Track | Track Total RHO I
(cm/sec) ONE PASSEB
780808 30 | 6/10% 135 83 | 470 400| 1.07{ 1.40{1.87 -.82 11/22f
1.53]| 0.911} 8.78 | 8.85
780809 30 |6/10} 152 | 122 | 538 4291 1.02f{ 1.37{1.78 -.83 ~|15/26
- 0.66| 1.70| 2.90 | 3.36
780810 30 | 5/8 108 [ 102 | 366 317 1.01] 1.48|1.61 -.89 9/17
- 1.36| 4.67 | 3.87 | 5.93 ’
780811 30 [5/8 142 | 103 | 335 276 | 1.45 2.2511.99 : -.82 9/16
2.30} 2.91]11.25 11.26
780812 30 |4/7 105 60 | 317 2691 1.15| 1.79(1.87 -.74 7/14
v AVER 7.35
*Number pf Stationd and |[Passes — Laser/USB Doppler
*%Computakion based Jon PES-104D: Gravitatlional|Constant

GM = 39B600.62 knl/sec?, Fquatoridl Radiys R|=6378,140 k
and Invprse Flattdning [Coefficient = 298.257

!

T**Ellipsoid Patametdrs folr Marsh II|Geodeltics:
Equatoriial dius R.=6378.15p km and Tnverseiflattening

coefficlient=£98.235
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TABLE 11

SATELLITE AND TIME PERIOD GEOS-IIT
MAJOR RUN CHARACTERISTICS Approximately 30 Second Data Rate for USB Doppler

Geopotential Model GEM 10B **

February and March 1976

Drag Parameters

Cp=3.09

Editing Parameters

3 Sigma

Lunar/Solar Gravitation YES Atmospheric Density Model H.P., F#75 Other USB—D(?ppler, Earth Tides -
Cr=1.45 State Vector Polar Motion, Marsh IT Geodetics#*¥**
Solar Radiation Parameter Solve~-For Parameters
Observations Residual Max?n‘lum (_:OMPARE Solve-For Parameters
Range Range-Rate Statistics P°S‘t‘°n(:1‘)ffere"°es and Other Information -
Arc Arc No. .
Start I_ength S:f Standard Run
Time (urs) > a- No. : No. Deviations D
tions | Ayai)- Uliz.d Avail- é\; Z’ 4 glf/lds R Range-| po a1 | Cross- | Along- Total i
able able (:ll)ge Rate Track | Track ota PASSES
(cm/sec)
760223 30 | 5% 53(147 40/95| .67 .9/1.5 15%]
- 1.0 1.4 4,7 4,8
760224 30 5 41/79 34/59 | .47 .8/1.0 9
1.0 | 8.0 4.5 4.1
760225 30 5 65/181 34/125 .50 1.0/1.0 19
760226 30 4 347172 28/123 .63 1.5/.2 Q.7 2.4 2.2 2.8 15
0.6 1.9 2.9 3.2
760227 30 4 51167 44/13% .69 1.0/.5 16
' _ ' 0.5 8.5 3.7 8.9
760228 30 5 237115 44/92 | ,53 1.3/.9 \ 13
1.5 110.8 9.8 4.6
760229 30 5 39/109 30/81 |:.61 1.4/1.2 2 12
1.0 | 6.2 4,4 7.4
760301 30 4 116 85 o 45 49 10
1.5 8.5 6.9 0.4
760302 30 5 20/88 8/72 | .52 «6f1.1 10
AVER 7.6
*Number pf Stationg and [Passe$ for |USB Doppler
**Computafion based jon GEM 10Bf GM 4 308600.64]kn3/sdc2,
Re=6378L139 ¥tm and 1/f &= 1/298.257
**E1lipsojd Pafametelrs for Marsh II |[Geodefics: Re=6378.155 lkm
and 1/f|=1/298,2595
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TABLE 12

SATELLITE AND TIME PERIOD GEOS—=II1 February and March 1976
MAJOR RUN CHARACTERISTICS APProximately 30 Second Data Rate for USB Doppler

Géopotential Model GEM 10B ** Drag Parameters Cp=3.09 Editirie Parameters 3 Sigma
H.P., F#/5 %5B-Doppler, Earth Tides
Lunar/Solar Gravitatlon.eowt 45—  Atmospheric Density Modehrya—yarror——  P8¥arMottom, Marsh IT Geoderivsk**
. *
Solar Radiation Parameter Solve-For Parameters
Observations Residual Max?n.)um (,:OMPARE Solve-For Parameters
Range Range-Rate Statistics Position (rlil)fferences and cher Informatiox.l
Arc Arc No.
Start  |Length| o DSta}lfi?rd Run
Time @rs) | P71 No. | o No. | o wid eviations D
t - . i . . - -
Epoch at 1088 | Avail Used Avail-| yooq | RMS Range | Ra%8€| Radial Cross=| Along= | 1.4
able - able Rate Track | Track
15 hrs, (m) :
(om/sec) DASCSES
760223 30 5% 69/159 35/121} .55 048/1.2 | 17%
71 1.1 |10.8 3.5 (1.2
760224 30 5 944187 38/138 .51 140/1.0 21
0.4 5.2 1.2 5.4
760225 30 5 671263 46/193 .60 142/1.2 25
Oo 3 203 ].o 2 2. 5 !
760226 30 4 654251 31/200 .65 141/1.4 ) 23
0.1 6.0 1.1 6.0
760227 30 4 794193 §7/163] .63 1J1/1.3 21
) * 7. '1 Ld 2
760228 30 5 69/203 30/158] .65 147/1.2 0.3 7 3 § 21
L] L d .1 .
760229 “30 5 134154 11/110] .61 049/1.2 -1 > - 2.9 6 1.4 _ 14
0.3 | 2.9 2.2 3.5
760301 30 4 134 114 .57 1.1 _ 12
v 0.2 5.2 0.9 5.3
760302 . 30 5 324134 |8/105 .72 048/1.5 15
AVER 6.7
*Number ¢f Stdtions| and Passeg for |{USB Dppplen
**Computation Based pn GEM 10B{ GM 5 3986(D0.64 km>/sdc?,
| R_=6378{139 Um and| 1/f f 1/248,257
#*x*%E11ipsold Pagametefs for Margh II (Geodefics: |Rg=6378.155 ko
and 1/f{= 1/298,25
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TABLE 13

SATELLITE AND TIME PERIOD _GEQS—]T11 February and March 1976
MAJOR RUN CHARACTERISTICS APProximately 30 Second Data Rate for USB Doppler

2

Geopotential Model CEM 108 ** Drag Parameters Cp=3.09 Editing Parameters 3 Sigma
Lunar,/Solar Gravitati YES Atmospheric Density Mod LH.P., F#75 N USB-Doppler, Earth Tides
tmar/solar Gravitation CR=I.45 ospheric Density Modestate vector PB8Yax Motion, STDN Geodetics¥¥%
Solar Radiation Parameter Solve-For Parameters
Observations Residual Maxin']um ?OMPARE Solve-For Parameters
’ Range Range-Rate Statistics Posm.on (Ilzl)fferences and Other Information
Arc Arc No.
Start Length °f Sta.nd.ard Run
Time. [ (hrs) tsizi-s No. No. No.. No. Wt Deviations v D
Epoch at [:1‘:1::1-_ Used ‘Z‘;‘I;l'_ Used | RMS | Range R;;ie' Radial g:zf; ‘;\lr‘;‘i‘ Total
15 hrs. ™ em/sec) PASSES$
760223 30 5% 69/159 55/123| 1.88 3{1/4.0 17%
. 5.3 (31.9 [11.4 B3.4
760224 30 5 94f187 38/123} 1.08 240/2.2 . 21
_ 10.4 |21.1 K1.9 §2.0
760225 30| 5 67[263 46/186] 1.64 3§2/3.1 25
1.6 ]15.0 | 3.7 [5.3
760226 30 4 65/251 §31/196| 1.90 344/3.5 23
: . . <3 7.5
760227 30 4 79{193 42/157} 1.48 3{2/3.6 3 O- 3a1 z 21
3.2 3.6 10.9 11.2
760228 30 5 69203 48/153] 1.59 347/2.9 21
3.5 4.5 [14.0 17,2
760229 30 5 13(154 11/108} 1.50 045/3.0 14
.2 129.9 16,2 B3.2
760301 30 4 |34 115 { 1.21 2.4 2 2 8 12
, 1.5 | 9.2 3.2 9.5
760302 | 30 5 ' 324134 1{8/98 [ 1.08 148/2.1 15
AVER PR1.2
*Number ¢f Stqtions| and Passeg for |USB Dppplex
**Computaftion Hased bn GEM 10B{ GM = 3986D0.64 km>/sdcZ,
EE=5328 138 KWm andl 1/f & 1/298,257
1pso] ardameteys for STDN Geodeticst Re=6378.139 km
and 1/f|= 1/298.25F
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TABLE 14

SATELLITE AND TIME PERIOD GEQS—I1T

February and March 1976

M[AJORRUNCHARACTERISTICSApproximately 30 Second Data Rate for USB Doppler

GEM 10B ** Cp=3.09

Geopotential Model Drag Parameters

Editing Parameters

3 Sigma

Lunar/Solar Gravitation YES i Atmospheric Density Model H.P., F#75 Other USB-Doppler, Earth Tides
Cr=1.45 State Vector Polar Motion, GEM 9 Geodetics#*%*
Solar Radiation Parameter Solve-For Parameters
Observations Residual Max%n:xum (_:OMPARE Solve-For Parameters
Range - Range-Rate Statistics Posnlon(I]?:)fferences and Other Information
Arc Arc | No-
start  |Length| Of Standard Run
Time (rs) S.t'a- No. No. No. No. Wed Deviations ' D
Epoch at tions ' | Avail- Used Avail- Used RMé Range Range- | pogial Cross- | Along- Total
15 hrs. able able (m) Rate | Track | Track
(om/sec) PAS SE%
760223 30 5% 69/159 35/122) .75 142/1.4 ‘ 17%
_ - 2.4 17.0 9.4 [19.0
760224 30 5 944187 98/138} .71 145/1.4 21
760225 30 | 5 67/263 42/194| .78 14/1.5 Pt 7o 3 1 1.6 25
0.5 0. 1.5 1.5
760226 30 4 654251 §1/202| .94 242/1.7 23
0. 3.4 2.8 be b
760227 30 4 794193 43/163] .77 240/1.3 2 21
: - 1.2 1.2 5.1 5.2
1760228 30 5 694203 47/151] .94 246/1.6 21
2.7 |18.8 10.5 21.0
760229 30 5 13/154 11/103} .74 0.9/1.3 14
2.6 (12.8 10.3 16.0
760301 30 4 34 105 .84 1.7 12
‘ . v 1.1 5.2 4.5 6.4
760302 30 - 5 324134 |8/104] .89 141/1.8 15
AVER 1.8
*Number ¢f Stdtions| and Passeg for {USB Dpppler
**Computation Hased pbn GEM 10B{ GM = 3986{0.64 km3/sdc2,
R_=6378 ]39'ﬁm andl 1/£ = 1/298 257
#*%EJ1ipsold Parlameters foyx GEM (9 Geodetic§: Ro36378. 139 km
and 1/fl= 1/298.25
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TABLE 15

SATELLITE AND TIME PERIOD _GEOS-III __ February and March 1976
MAJOR RUN CHARACTERisSTIcs APProximately 30 Second Data Rate for USB Doppler

* = =
Geopotential Model GEM 10B * Drag Parameters €p=3.09 7 Editing Parameteri 3 Sigma
YES . . H.P., F#75 USB-Doppler, Earth Tides
L Solar Gravitati 2 i
unar/Solar Gravitation Cr=1.45 Atmospheric Density MOdeIState Vector ?g‘far Motion, WGS Geodetics®*¥%
Solar Radiation Parameter Solve-For Parameters.
Observations Residual Max%rflum (_:OMPARE Solve-For Parameters
Range- Range-Rate Statistics Position (z‘)fferences and Other Information
Arc Arc No.
Start Length S?:Z Standard Run
Time (hrs) e No. No. Deviations D
Epoch at Hons | Avail- Ub::d Avail- [i(:ad ;;Vltqu' Range | R208e™| Ragia) | CTOSS- | Along- | .
15 hrs. able able (m)g Rate |. Track | Track g [PASSES
(cm/sec)
760223 30 5% ‘ 69f159 $5/117 .43 .8/0.9 _ _ 17%
, ' 1.2 ]20.8 6.5 Rl.4
760224 30 5 94187 %8/138 .75 1{2/1.5 21
§ 0.4 4,7 1.8 5.0 -
760225 30 5 671263 46/194 .85 1{7/1.6 : 25
1.2 8.0 3.6 8.2
760226 30 4 65{251 31/199 .77 1{5/1.5 23
0.7 9.2 2.8 9.5
760227 30 4 79/193 47/163 .78 1{6/1.4 21
) 0.5 6.0 3.3 6.7
760228 30 5 69f203 31/158 .76 1{9/1.2 21
) 1. 13.4 7.4 4,
760229 30 5 13154 11/110 .84 044/1.5 U 3 8 14
' 1.7 6.1 5.6 7.7
760301 30 4 134 114 §{ .55 1.1 12
' 0.6 [12.6 2,0 12.6
760302 30 5 32/134 |8/105 .68 046/1.4 15
AVER [10.7
*Number ¢of StTtions and Passef for (USB Doppler
**Computafion based jon GEM 10B} GM = 3986/00.64|km3/sgc2,
—R~=6378 and—tiE 12985257 -
1**Ellipsojd Payameters fol WGS|Geoddtics:| R.=6878.139 km
and I/f[= 17/298.235
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TECHNIQUES FOR INCREASING THE EFFICIENCY OF EARTH GRAVITVY

CALCULATIONS FOR PRECISION ORBIT DETERMINATION*

Richard L. Smith
Anatoly S. Lyubomirsky

Computer Sciences Corporation -

ABSTRACT

Two techniques for increasing the efficiency of Earth grav-
ity calculations are analyzed. The first is a representa-
tion using Chebyshev expansions in three-dimensional cells.
Mathematical formulas are given for converting the standard
spherical harmonic representation (e.q., GEM10B 36 x 36) to
the Chebyshev representation. The error in the truncated
Chebyshev representation was measured as a function of cell
size and degree‘of truncation. For example, with a sixth
degree Chebyshev expansion, the maximum gravity error is
about lO_loé for a 36 x 36 parent_repreéentation in a cell
extending 5 degrees in both latitude andvlongitude and ha&-
ing a thickness of 600 kilometers. Computer storage re-
quirements and relative CPU time requirements are‘presented.
The Chebyshev gravity representation can provide a signif-
icant reduction in CPU time in precision otbit célculations,
but at the cost of a large amount of direct-accesé storage

space, which is required for a global model.

The second technique employs a temporary'file'for storing

the compohents of the nonspherical gravity force. 1In

*This work was supported by the Operations Analysis Section,
Operational Orbit Support Branch, Goddard Space Flight
Center, National Aeronautics and Space Administration, under
Contract NAS 5-24300.



differential correction orbit solutions it is often unneces-
sary to repeat computations for most of the gravity terms
during subsequent iterations for which the satellite's posi- .
tion changes only slightly. By saving a direct-access file
of gravitational forces and partial derivatives it is pos-
sible to reduce CPU time without significantly affecting
orbit accuracy. The gravity file is updated whenever the
position tolerance is exceeded. The Goddard Trajectory De-
termination System was temporarily modified to test this
technique, and the results of the test are presented.

1. INTRODUCTION

As the orbit determination accuracy for Earth-orbiting
spacecraft is improved through the use of increasingly more
accurate Earth gravity models, the computer time require-
ments increase rapidly. Using the customary global spheri-
cal harmonic expansion, the amount of computation time
increases approximately as the square of the maximum degree
and order of the expansion. For currently available gravity
models, for example, the Goddard Earth Model 10B (GEM10B),
most of the computation for an orbit solution is devoted to
evaluations of the gravity force. Clearly, less time-
consuming methods of gravity evaluation are required, par-
ticularly if precise gravity models are needed for future
operational orbit determination. The need for faster meth-
ods 1s enhanced by the fact that the utilization of more
precise gravity models requires the use of correspondingly
smaller step sizes for numerical integration of the space-

- craft equations of motion.

Table 1 shows the amounts of computer time (GSFC IBM
$-360/75) currently required for orbit solutions calculated
using the Goddard Trajectory Determination System (GTDS).
In order to isolate the dependence of the computer time on
the specified value of the maximum degree and order in the
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Table 1. GTDS Computer Time Usage for Varicus Sizes of
the Spherical Harmonic Gravity Expansion

SPACECRAFT: SEASAT-1

NUMERICAL INTEGRATOR: COWELL FIXED STEP, 12TH ORDER
FORCE MODEL: ‘ :

GRAVITY: SOLAR, LUNAR, GEM9

DRAG, WITH HARRIS-PRIESTER ATMOSPHERE
SOLAR RADIATION FORCE

MEAN OF 1950.0 SYSTEM FOR INTEGRATION

* e o

EPOCH: 18h ONJULY 10,1978 ARC LENGTH: 30 HOURS
EPOCH — ARC LENGTH: 18h ON JULY 10, 1978 — 30 HOURS
OBSERVATIONS: 391 DOPPLER USB, 100 LASER RANGE

IBM §-360/76 COMPUTER TIME USAGE (MIN)

SIZE OF EARTH
GRAVITY MODEL 90-SECOND STEP SIZE 45-SECOND STEP SIZE

CPU 1/0 CPU /0

EPHEM PROGRAM

4x4 0.888 0.241 1.544 0.239
8x8 - 1.007 0.241 1.613 0.239
21 x 21 1.280 0.252 2.306 0.249
36 x 36 (GEM10B) 3.210 _ 0.329 5.058 0.330

DC PROGRAM'

4x4 . 7.448 1.804 11.015 1.725
8x8 8.322 1.805 12.081 1.727
21 x 21 10.419 1.817 15.482 1.739 ;i
36 x 36 (GEM108B) 'b 20.577 1.938 35.952 1.855 %

1Sl)( ITERATIONS AND CONVERGENCE



spherical harmonic expansion, all other input parameters for
these solutions were identical. Computer times for both GTDS
Ephemeris Generation (EPHEM) and GTDS Differential Correction

(DC) Program runs are shown in this table.

Two methods for efficiency improvement are examined in this
paper.b Section 2 outlines a gravity representation using
Chebyshev polynomials rather than sphe:ical harmdnics. Sec~-
tion 3 considers a procedure for making use‘of previousiy
computed values of the gravity force during the later itera-
tions of differential correction orbit solutions. This
procedure, unlike the Chebyshev representation, is not gen-
erally applicable to orbit prediction. Section 4 assesses
the merit of these two methods and indicates directions for
future work.

2. REPRESENTATION OF THE EARTH'S GRAVITY FIELD
USING CHEBYSHEV POLYNOMIALS

2.1 OUTLINE OF THE METHOD

In order to accurately represent the Earth's gravity using
Chebyshev polynomials, the region of interest is pattitiohed
into cellé, and for each cell the gravity force components
are expressed as a series of Chebyshev polynomials. The
numerical values of the'expansion'coefficients for a given
cell are, in general, different from those of any other
cell. With a suitable selection of the cell dimensions, the
- convergence of the Chebyshev series 1is sufficiently faSt
that the computational effort for its‘evaluation is signifi-
cantly less than the effort required to evaluate the stand-
ard spherical harmonic expansion. In exchange for the
reduction in computational effort, however, the Chebyshev
representation requires a large data set‘containing the ex-

pansion coefficients for all of the cells.



The evaluation of. the gravity force in GTDS 1is accomplished

with the following standard spherical harmonic expansion:

~ Mnax n D ' _
1 : m .
Fr = -g E (n + l)_(?) E Pn (sin ¢)
- (1)
n=0 m=0 :

o [T m _.
(Cn cOsS mA f sn sin mk)

- Ln [r_n+l . _ m .
rs 2 (T B e men s o]
n=0 m=0

. [~ _ mo_ .
(Cn COsS mA + S, sin mk)

P

"max on
_ 9 : 1 m o
A = Cos % 2;% (;) 2: m P (sin ¢)

m m _. -
(Sn cCOoS mA - Cn sin mk)

where = radial distance_in Farth radii {a)
= geocentric latitude

geocentric longitude

33 > o R
I

= Legendre function of degree n and order m

Nhax = maximum degree of the spherical harmonic expan-
. sion for the Earth's gravity field

g = GM/(ar)z, where G is the universal constant of
gravitation, M is the Earth's mass, a is the
Earth's radius; and r is defined above

C., S_ = nonnormalized spherical harmonic expansion co-

efficients for the geopotential field model con-
sidered



. The Chebyshev expansions used in . this paper also vield the
radial, latitudinal, and longitudinal gravity components; Fr[
F¢, Fk. The Chebyshev expansions are applied only to that part
of the gravity force described by spherical harmonic terms

of degree greater than 4. Terms of degree less than or equal

to 4 are still evaluated using spherical harmonics.

In each cell, independent position variables, x, y, and z,
are designated. These variables are related to r, ¢, and A
by means of the following equations:

1 _1 AX (lxl < 1) (4)
r r -
(o]
sin ¢ = sin ¢_ + Cy (161 < 45°%, 1yl < 1) (5)
cos ¢ = cos ¢o + Cy (1ol > 450, lyl < 1) (6)
cos A = cos A, + Dz (1x - 90°%1 <45°, 1z1 < 1) (7)

The cell origin is (r AO) and the physical size of a

OI ¢ol
cell is controlled by the three parameters A, C, and D. The
position variables x, y,»ahd z describe displacements, rela-
tive to the cell origin, in the radial, latitudinal, and
longitudinal directions, respectively. The locus of points
such that x = +1 or x = -1 describes spherical surfaces '
bounding the top and bottom of.a cell. The locus of points
such that y = +1 defines cones of constant latitude boundiﬁg
the north and south sides, and the locus of points such that
x = +1 describes longitudinal planés bounding the cell on
the east and west sides. This choice of independent vari-

ables leads to cell crowding near the poles, but allows a



fast and efficient procedure for calculation of the Chebvshev

expansion coefficients.

As indicated by Equations (5) and (6), the latitdde~like
variable, y, is defined differently for the polar and equa-
torial regions. This difference is necessary to avoid slow
convergence of the Chebyshev expansions close to the poles
and close to the equator. This slow convergence problem also
exists for X = 0 or A = 7 using the definition given for z

by Equation (7). However, it is only necessary to apply a
longitude shift when the problem occurs (by suitably adjust-

ing the CR's and sfi's) and thus avoid a double definition.

The expansion of each factor of a typical spherical harmonic

1
n+1
r

cos

m ,
Pn (sin ¢) sin mA

into a series of Chebyshev polynomials follows the equations
(for each celly

1 | 2 - sio |
e = —_— X, T.(X) (8)
n m ni i
r \ :
1=0 .
m . | :;: 2 - CSjo 4m
Pn (sin ¢) = — Ynj Tj(y) (9)
j=0 - ‘
o)
2 - 8§
- z : ko (1)
COS mMA = [ = } A mk Tk(z) (10)
k=0 '



2 2 -5 | D
_ - X0 (2) '
-3 [E ] 2 m

- k=0

The Chebyshev polynomials, Ti' are functions of x, y, or z and
satisfy the recurrence relation

Ti+l(xy = 2% T, (x) - T;_;(x) S (12)
where the subscript indicates the degree of the polynomial.
In several cases, the Chebyshev expansions indicated by Equa-
tions (8) through (ll) are finite, not infinite, as a result’
of the definitions of x, y, and z. The X's, ¥Y's and Z's are
the Chebyshev éxpansion coefficients and their valueé'depend
o ¢o’ Xo’ A, C, and D, in addltlon
to the order and degree of the spherical harmonic.

on the cell parameters r

The X's, Y¥'s, and Z's are combined in the following way,

according to Equations (1) through (3), to form the three
' (1)

subscripted Chebyshev expansion coefficients, e.g., Cijk’

used for the calculation of the force components:

max n

‘ _ Z (1) m, (2)
C-- = Q (n + 1) Xy 2{: Yﬁj (cgzmk * Sn?mk ) (13)
. =O :
"max n
(2) _ m+l { .m_ (1) (2)
Cilk = © X1 Yo (cnzmk + 8 ka ) (14)
n=4 m=0
Mhax n '
(3) _ 2 : m (1) m (2»
Cijk =0 Xni mYnj (Cn ok T Snlmk (15)
n=4 m=0
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max n : _
(4) _ : Z m m, (1) m (2)})
n=4 m=0
(2 = S§,.) (2 = 8..) (2 - 8,..)
Q = 01 3 01 0k (17)
L

The three gravity force components are then calculated in
the following way:

I J K
(1) :
-g :E: :E: :E: Cijk Ti(x)Tj(y)Tk(z) (18)
i=0 j=0 k=0
I J K . : .
' - (2) (3) .
F¢ = g :E: ’ :E: (cijk - tan ¢ Cijk) Ti(x)Tj(y)Tk(z) (19)
i=0 j=0 k=0 '

These three equations represent the calculation of gravity
as it might be performed in an orbit determination program,

using precalculated coefficients.

The formulation used in this paper required four types of
three-subscripted Chebyshev expansion coefficients. With
additional work, it should be possible to also expand the
function

tan ¢ PQ (sin ¢)



in a Chebyshev series, leading to a formulation using only
three types of coefficients. This additional complication

was omitted for the present for simplicity.

As indicated by Equations (8) through (16) the three-

subsCripted coefficients depend on the gravity model coeffi-
cients, Cﬁ and SS, the cell location, and‘the cell dimensions.
The combined set of three-subscripted coefficients for all
cells constitutes a Chebyshev representation for the given

gravity model.

'The'calculation‘of‘the Chebyshev coefficients for the spher-
ical harmonic factors, that is, the calculation of the X's,
v's, and 2's, can be easily accomplished using recurrence

relations. These recurrence relations are as follows:

_Recurrencé relations for the radial Chebyshev coefficients:

A 1 ’ .
= + Xn,i-l) + < ) S (n >0, all 1) (21)

n,i

(22)

Recurrence relations for the longitudinal Chebyshev coeffi-

cients:
(1)  _ (1) (1) | (1)
Zm+l,k = D (Zm,k-l *Zn,kel] T 2608 Ag Zpx
(23)
_ o, (1)
Zm—l,k (all m, all k)

-10

(O1}



- (2) R (2) (2) (2)
2p+l,k = P (Zm,k—l * Zm,k+l) T2 cos Ay Ty
' (24)
- 2(2) {all m, all k)
m-1,k : !
.Recurrence relations for the latitudinal Chebyshev coeffi-
cients (161 < 45°):
m - _2n + 1 c (,m m
Yr1+].,j " n-m+ 1 2 (Yn,j-l Yn,j+l)
2n + 1 . m
fn “m+ 1 o0 ¢O Yn,j (2_5)
n +m .
" -m+T Yn-1,5 (all j, n >m > 0)
Yo .= (2n - 1) (2n - 3)|- c? (yn-2 + 072
n,j - : Z n-2,j-2 n-2,3+2
o ‘ n-2 n-2
- C sin ¢, (Yn-Z,j-l + Yn-—2,j+l) (26)

. 2 _



Recurrence relations for the latitudinal Chebyshev coeffi-
cients (l1o! > 45°%): '

. - : (2n + 3) ‘ _ (n 4+ m)(n + m - 1) I
n+2,i (n + 1 - m)(n + 2 - m) ( (2n - 1) n-2,1
+ {-' (2n + 1) (C cos ¢o)} (YQ{Hl + Yrg’i_,l>
+ |- (2n + 1) C—Z—](ym + Y0
4 [\"n;i+2 n,i-2 (27)
+ |- (n +1 -m(n+ 1 + m
A (2n + 3) ’
2 c?
+ (2n + 1) sin ¢g - (2n + 1) 5
(n + m) (n. - m) ; .
(Zn - 1) ]Yfrnl,i§ fall t, n:2.m 2 0)
n+1 _ n C n
Yhel,i = (2n+ 1) {COS %0 ¥n,i ¥ 2 (Yn,i+l
o (28)
+ Ygri"JJ (all i, n 3'0)

The derivation of these recurrence relations is omitted
here; some detail is given in Reference 1. It should be
noted that, élthough the same symbol is used in each case,
the Y's of Equations (25) and (26) are defined differently
than the Y's of Equations (27) and (28). There should be no
confusion since Equations (25) and'(26) are intended only
for the equatorial region, while Equations (27) and (28)
apply to the polar regions.

2.2 ERROR MEASUREMENTS FOR THE CHEBYSHEV REPRESENTATION

‘This section addresses the question of how closely a
Chebyshev gravity representation matches the gravity field
defined by the parent spherical harmonic representation. 1In

‘order to study the Chebyshev expansion error, a computer

8-12



program was written to numerically evaluate the error for
any selected cell. The program first constructs the
'Chebyshev expansion coefficients for the given spherical
harmonic expansion, using the recurrence relations given in

Section 2.1. These Chebyshev expansion coefficients are

functions of the Cﬁ's and Sg's; the cell parameters Lyr @

and Ao; and A, C, and D. Then, for a selected maximum
degree, the three gravity force components, Fr’ F,and F

: o) A
generated by the Chebyshev expansions (Equations.(lB) '

ol

through (20)) are numerically compared with the corresponding
force components calcuiated from the spherical harmonic ex-
pansion (Equations (1) through (3)), using a minimum degree
of 4. This comparison is made'at many points uhiformly
distributed throughout the given cell, and the maximum dif-
ference between the two representations provides a measure

of the Chebyshev expansion error. All of the error measure-
ments in this paper apply to Chebyshev representations based
upon the GEM1OB 36 x 36 gravity model. ’ '

Figures 1 and 2 show the numerically computed error as a
function of the cell size parameter A. For simplicity, the
latitude size parameter C, and the longitude size param~
eter D, remained equal to A as A was varied. Figures. 1l and
2 show the error for cells at reference heights of 967 kilo-
meters and 255 kilometers, respectively. On each figure, a

log is indicated. Order of

reference error level at 10~
magnitude estimates place the resultant orbit error at less
than 0.1 meters for a 5-day orbit propogation subject to a
high-frequency gravity error haVing this amplitude. The‘
maximum degrees for each of the Chebyshev components were
equal to one another and are indicated for each gfoup of
curves in the figure. FOr‘example, in Figuré 1, the upper
| group of curves represents the error in the three-force com-
ponents as a function of A for a 3 x 3 x 3 Chebyshev expan-

sion.
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CHEBYSHEV EXPANSION ERROR (IN UNITS OF g)

10

10

-12

10—-14

10—-18

— . DEGREE 3

; GEM108B 36 x 36
r, =7347 KILOMETERS

b, =20 DEGREES
Y i rxl F}\ :\0 =70 DEGREES

DEGREE 6

Ar =169 KILOMETERS

AA=1.22 DEGREES

X LA X
....0"'. ”"c..'..v

| 1 gl | ! [IE SR A

A¢=1.22 DEGREES .

0.001 0.002 0.01 © 002 0.1

CELL SIZE PARAMETER A (A=C=D)

Figure 1. Numerical Measurement of Chebyshev Gravity

Representation Error as a Function of Cell
Size and Expansion Degrees (Height of Cell
Center = 967 Kilometers)
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CHEBYSHEV EXPANSION ERROR {(IN UNITS OF g}

10 -

GEM10B 36 x 36 e
*

commmme— :
Fr r, =6635 KILOMETERS 4
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®0s000cvsccee FA .\°=7D DEGREES y

—
o.o“'"'.". O‘..‘..‘ .'.'."'cc.c ¢
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Figure 2.

CELL SIZE PARANMETER A (A =C=D)

Numerical Measurement of Chebyshev Gravity
Representation Error as a Function of Cell
Size and Expansion Degrees (Height of Cell
Center = 255 Kilometers)
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mach of the error curves in Figures 1 and 2 has a range, for
intermediate values of A, where the”curve'is nearly a
straight line. 1In this range, the slope of this straight
line, on a log-log scale, is one greater than the maximum
degree of the Chebyshév expansion; i.e., the error varies as
the cell size to the K +1 power, where K is the
N max max ,
maximum Chebyshev degree. (This rule does not seem to be

accurate for the larger values of K ) For larger

max*
values of A, the curves bend away from the straight line.
For very small values of A, a numerical noise level is

reached and the error reaches a lower limit--about lO-lBg

17

for Figure 1 and 3 x 107 'g for Figure 2.

Figures 3 and 4 show the numerical'error as a function of
latitude for a 5° x 5° cell, using a 6 x 6 x 6 poly-

nomial degree expansion., ~The cell thicknéss was chosen to
be small, at a value of 12.8 kilometers, to eliminate the
effects of radial variation on the error. The results in
Figure 3 were obtained using the equatorial zone formulation
(Equations (5), (25), and (26)) and those in Figure 4 were
obtained using the polar zone formulation (Equations (6),
(27), and (28)). The former diverges near the poles and the
latter diverges near the equator, so that a global Chebyshev
gravity model must be based upon a combination of these two
formulations. In.Figures 3 and 4, the maximum error in each
cell is plotted at the cell center, so that cells centered
at 2.5 degrees latitude extend to the equator and cells cen-
tered at 87.5 degrees extend to within 0.001 degrees of the.
pole. ' '

The slight rise in error near the pole in Figure 4 occurs at
error sampling points that are 0.75 degrees from the pole.
This slight rise is presumably due to factors of cos-l¢ and
an associated loss of precision in the calculation of F¢,
and FA (Equations (2) and (3)).
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CHEBYSHEV EXPANSION ERROR (IN UNITS OF g)
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CHEBYSHEV EXPANSION ERROR {IN UNITS OF g}
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Outside of the latitude regions in which divergence of the
Chebyshev expansions is approached, it is clear from Fig-
ures 3 and 4 that a uniform level ef error is obtained using
cells of constant latitudinal and longitudinal dimensions.
The solid angle of these cells is much smaller near the
poles than near the eQuator; leading to an unpleasant crowd-
ing of cells near the poles in a global Chebyshev model.

2.3 ESTIMATED CHARACTERISTICS OF A GLOBAL CHERYSHEV GRAVITY

REPRESENTATION

The use of the Chebyshev representation for precise satel-
lite orbit determination requires a large, direct-access
data set that contains the three-subscripted Chebyshev coef-
ficients for a distribution of cells covering the entire
spatial region of interest. The orbit determination program
would retain in main memory the coefficients for a small
number of cells and would updatebthis working storage as
necessary, drawing from the large, direct-access data set.
In this section the general characteristics of a sample

global Chebyshev representation are estimated.

Table 2 provides data for estimating the speed of the
Chebyshev representation, relative to the spherical harmonic
representation. For each representation, the table shows
the number of machine multiplication or'division operations
required to evaluate the three force components at a single
spatial point. The numbers given assume efficient coding.,
The maximum degree used in the Chebyshev representation,
Kmax,’is assumed to be chosen to be the same for all three
indices in the expansions. Comparing the 36 x 36 spherical
harmonic representation with the 6 x 6 x 6 Chebyshev repre-
sentation, the latter,requiree about 75 percent less time
for force evaluation (1,736 operations versus 6,933 opera-
tions). '



able 2.

Number of Computer Multiplication or Division
Operations Needed for Gravity Force Evalua-
tion in the Chebyshev and Spherical Harmonic
Gravity Force Representations ’

CHEBYSHEV REPRESENTATION

MAXIMUM DEGREE

NUMBER (N1)
OF MULTIPLICATIONS
OR DIVISIONS*

S 0oy G W

1

332
640
1,098
1,736
3,669
6,685

*N7 = 5(Kmax + 113 + 3Kmax

SPHERICAL HARMONIC REPRESENTATION
MAXIMUM D)EGREE OF MNUULI\%"EI;F"ESéE%)IONS
\Nmax OR DIVISIONS**

4 116

8 409

16 1,473

21 2,463

30 4,875

36 6,933 §
” o

48 12,129 3

+*Np = 5n%ax + 130max — 15



Since the number of operations in the Chebvshev representa-

tion increases as the third power of K while the num-

max’
ber of operations in the spherical harmonic representation
increases as only the square of the maximum degree, it is
desirable to choose as Small a value as possible for Kmax
in order to achieve a computation time advantage. In order
to simultaneously meet accuracy requirements, it is then

necessary to properly adjust the cell dimensions.

The characteristics of the ChebyShev model presented in Fig-
ure 5 were based upon Table 2 and the results of Sec-

tion 2.2. This sample model covers the range of many NASA
low-altitude spacecraft; an additional layer could be added
 to extend the model to higher altitudes. The estimate of
the total number of three-subscripted Chebyshev coefficients
assumes that only three types were necessafy. Although the
formulation presented in Section 2.1 employed four types of
these coefficients, it is expected that there would be no
difficulty in modifying the formulation to require only
thfee types. |

From Figure 5, it is clear that the computation time advan-
tage of the Chebyshev representation is accompanied by the
need for a large, but not unreasonable, amount of direct-

access storage.

3. FILE RETRIEVAL FOR GRAVITY FORCE EVALUATION

3.1 FILE RETRIEVAL METHOD

In standard GTDS Differential Correction orbit solutions,

the full force model is reevaluated during every iteration.
Except for the first and second iterations, corrections to
the orbital position are generally so small that the change
in position has a negligible effect on the numerical values
of most of the spherical harmonic terms in the gravity model.
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e ACCURACY: 10~ 0 FOR GEM10B 36 x 36
o MAXIMUM DEGREE OF EXPANSION: 6 x 6 x 6

e NUMBER OF CHEBYSHEV
COEFFICIENTS FOR EACH CELL: 3 x (7 x7x7)=1029

e CELL SIZE: Ah = 607 KILOMETERS (A =0.04)
A 5 DEGREES
AX 5 DEGREES

It

e CELL DISTRIBUTION: SINGLE LAYER (rO = 6954 KILOMETERS)
YT 284 KILOMETERS

fvax ~ 891 KILOMETERS
e NUMBER OF CELLS: 36 x 72 = 2592

e NUMBER OF CHEBYSHEV
COEEFICIENTS IN STORAGE: 2592 x 1029 = 2.7 MILLION

e CPU TIME FOR GRAVITY EVALUATION
(RELATIVE TO SPHERICAL HARMONICS): 0.25

8339/81

Figure 5. Characteristics of a Sample Chebyshev
Gravity Model



Rough estimates have indicated that, for a l-day orbit, a
10-meter error in the argument of the portion of the gravity
force that does not include the monopole and quadrupole

terms leads to orbital position errors that are well below
0.01 meter. These estimates suggest that considerable compu-
tation time could be saved, particularly for a 36 x 36 grav-
ity model, if a file of gravity values was saved for use

during the later iterations.

The method of gravity evaluation tested is shown in Figure 6.
This figure is a flowchart representing the GTDS subroutine
that evaluates the gravity force, F(N x N), for a given in-
put position. A test is first made to determine whether a
gravity file value exists for the given integration point.
(This method is valid only for fixed~step numerical integra-
tion.) If the file value exists, then the position associ-
ated with the file is compared with the input position. If
the difference is less than a prescribed tolerance, ¢,

then the file value is accepted. The file value describes
that part of the gravity force represented by spherical har-
monic terms of degree greater than four. This value is ad-
ded to the 4 x 4 force calculated for the ihput position,
F(4 x 4), to produce the total gravity force F(N x N).

If the file gravity value does not exist, or if the position
deviation IAr! is greater than the specified tolerance, g,
then the file is not used. Instead F(N x N), F(4 x 4), and
F(FILE) are calculéted, F(FILE) is stored for later use, and
F(N x N) is returned by the subroutine. The resultant orbit
precision df this method is controlled by the specified
value of €.

Not shown in Figure 6 is the treatment for partial deriva-
tives of the gravity force with respect to position. These
are stored, retrieved, and calculated in a manner parallel

to that of the force components themselves.
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~ START '
GRAVITY
EVALUATION

v
COI(V!PUT)'E:
F{NxN ) RETRIEVE
. _F(ax4) F(FILE)
F(FILE) =

FINxXN) — F(4x4)

v v
COMPUTE:
STORE F(FILE) Eiax_

F(FILE) + F(4x4}

END

8339/81

Figure 6. Method for Gravity Force Evaluation Using
File Retrieval



3.2 FILE RETRIEVAL RESULTS

in order to test the file retrieval method, two GTDS differ-
ential correction orbit solutidns, 12 hours in length, were
calculated using a 36 x 36 Earth gravity model and. using
Unified S-Band and laser tracking data. One solution was
calculated in the standard way, and the other used ﬁhe file
retrieval method. For the latter solution, the position
tolerance, ¢, was specified to be 500 meters. Each sold-
tion required four iterations to converge, and each differ-
ential correction solution was followed by 1l2-hour ephemeris
generation, using the converged orbital elements. The a
priori elements for the two solutions were identical, dif-
fering from the converged elements by about 80 meters.

A direct comparison between the ephemerides of the two solu-
tions is shown in Figure 7. The position difference between
the two solutions is plotted over the solution time inter-
val. Examination of the intermediate results showed that
for the first hour, the gravity file was built, but never
subsequently updated since the 500-meter tolerance was never
- exceeded. On the other hand, for the following 11 hours,
the gravity file wés built during the first itération, and
since the 500-meter tolerance was exceeded during the second
iteration (because the first-iteration orbit error progres-
sively.worsenedvwith-time; and this first-iteration orbit
was the basis for the first-iteration file) the file was
automatically updated, using positions generally accurate to
5 meters. The last two iterations were calculated with no
further updates to the file. This file update'history ex-
plains the sharp drop in orbit error over the first half
hour in Figure 12--from 42 millimeters to the S-millimeter
level.

It is clear from this file update history that the file re-
trieval method reduces the number of standard gravity force
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Figﬁre 7. Orbit Error Resulting From Use of'Gravity File With Position

Tolerance Specified at 500 Meters



evaluations by more than a factor of two without substantial
orbit precision loss, The CPU times. for the two solutions
were 1.23 minutes and 0.69 minutes (IBM S-360/95) for the
standard and file retrieval solutions, respectively. These
CPU times do not accurately show the full potential computa-
tion time reduction of the file retrieval method because,
for simplicity, these test calculations did not incorporate
file usage into the numerical integration starting algo-
rithms.

4, CONCLUSIONS

The results presented in this paper show that the Chebyshev
representation should provide substantial computation time

: savings for orbit determination using precise Earth gravity
models, although its disadvantage is the requirement for a
large file of pre-calculated Chebyshev coefficients. Tests
of this representation in actual orbit calculations need yet
to be performed.

Two areas for possible improvement for the Chebyshev repre-
sentation are evident. First, truncation of terms in the
three-dimensional expansion should be explored. Rather than
summing over terms such that i, j, and k range from 0 to

K it may be possible to sum over terms such that

’
imixj + k ranges from 0 to K __. This type of summation
reduction could save a factor of approximately three in both
execution time and in direct-access storage. The second
improvement would be to extend the formulation so that
Cartesian components of the gravity force are directly cal-
culated, rather than spherical components. This would re-
quire the derivation of additional recurrence reiations for

evaluation of the Chebyshev coefficients.

The file retrieval method for gravity evaluation has been

shown to be an effective method for reducing computation
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time without sacrificing orbit accuracy. Combined with the
Chebyshev representation, it could almost eliminate computa-
tion time problems in orbit determination using currently

availéble, precise gravity models.
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AN ANALYSIS OF SIMULTANEOUS SATELLITE VISIBILITY

TIME SPANS FOR TWO EARTH OBSERVATION STATIONS

F. K. Chan
Phoenix Corporation

1700 01d Meadow Road, Mclean, Va. 22102
ABSTRACT

Analysis was performed to estimate the statistical
visibility time spans of earth orbiting satellites as seen
simultaneously by a ground station and a ship. The analysis
covers topics such as time average population, average population
times and also the percentage visibility times for a given
number of satellites. These results are useful for specific
communications satellite applications. Numerical results are

obtained for various configurations of ground station and ship.



SECTION 1 - INTRODUCTION

This report is concernéd with the analysis of the number and also

the time of satellites mutually observed by both a ground station and a
ship. Unlike the relatively simple case of a single observation sta-
tion for which the region of observation is the volume bounded by a
- cone, the present more’ complicated case has a region of observation de-
termined by the intersection of two cones. This region has a volume
determiﬁed'only by the separation distance between the grbuﬁd'station
and the ship; but it also has a directional property determined by the
relative position of the ship with respect to the ground station.
Because the analysis becomes extremely complex, it is necessary to make

certain simplifying assumptions.

The first assumption is that the satellites presently orbiting the
earth may be broadly classified into a few categories. This simplifica-
‘tion is supported by the fact that(l) since 1977 approximately 635 sat-

ellites have been launched and these may be characterized as in Table 1.1.

Table 1.1
Average Average Average
Class Period Inclination Altitude Number
I 100 min. - 80° 800 km 440
II 12 hr. 60° 20,000 km 106
III 24  hr. 0° 36,000 km ' 57

v Others ’ 32

Thus, instead of having to deal with the volume of the region of observa-
ﬁion, the analysis deals with the areas at the various altitudes. 1In
this analysis, only Class I and II satéllites are considered. Class III
satellites are considered separately because they are geosynchronous.

Class IV satellites are irregular and will not be considered at all.

(1) NASA, Satellite Situation Report, Volume 21, Number 1,
February 28, 1981.
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The second assumption is that within each of the two categories con-
sidered, the satellites have circular’orbits which are uniformly distrib-
uted in terms of equatorial crossing and, moreover, the satellites are

also uniformly distributed along the orbital arcs.

Section 2 deals with the derivation of the number density of sate-
1lites in this statistical distribution. Section 3 deals with the deter-
mination 6f the common region of observation of both the ground station
and the ship. Section 4 is concerned with the computation of the time
average population of satellites within the mutual region of observation.
Section 5 briefly discusses the computation of the average population
times of these satellites in the same region. Section 6 summarizes the

results of this study for Class I and II satellites.

- Readers who are strictly interested in the numerical results may

go directly to Section 6 and omit the intervening sections which deal

with the mathematical analysis.
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SECTION 2 - STATISTICAL DESCRIPTION OF ORBITING SATELLITES

2.1 Distribution Function

Considér a statistical description of a system of N satellites as
previously described in which the circular orbits are uniformly distributed
in terms of equatorial crossing and the satellites are uniformly dis-
tributed along the orbital arc. Consider Figure 2:1 which illustrates
a given orbit with inclination i. Let O be the latitude, ¢ be the right
ascension measured from the equatorial crossing, and o be the orbital arc

measured also from the equatorial crossing.

Figure 2.1

Consider Figure 2.2 which illustrates the area element dAO at the equator

Figure 2.2
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It is obvious that dAo is given by

14

2 o .
da_ = r”ag do_ (2.1)

where r is the radius of the orbit. Let fo denote the density of the satel-
lites at .the equator. Then, the number dN of satellites contained in dAo

is"given by

dN = £ dA_ - (2.2)

As these satellites move to latitude 6 and right ascension ¢» the corre-
sponding area dA is then given by '

2 -
dA = r” cos® d¢de _ (2.3)
and the density f is then obtained from

dN = f dA _ - (2.4)

Substitution of Equations (2.1) - (2.3) into (2.4) yields
f0d¢d deo

f=-- (2.5)
cosO d¢de

However, from Figure 2.1, we obtain the following spherical trigonometric

formula

sin6® = sin i sin o ' ‘ (2.6)

so that at latitude ¢ we have

cosf® d6 = sin i coso do ‘ (2.7)
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and at the equator we have

deo = gin 1 doo (2.8)

Moreover, it is easily verified that we also have

dp = d¢ (2.9)

do = doo (2.10)

Substitution of Equations (2.7) -~ (2.10) into (2.5) yields

f = | (2.11)
COS O

which states that the density is inversely proportional to the cosine of

the arc length.

Next, we obtain the equatorial density fo as follows:

6 max 2m ,
"N = ‘ f r2 cosg d¢ dg
6 min o
) omax
2 .
= 2nr s f cosBdb
Omin
/2
2 L.
= 27r f sin i cosogdo
_1712
w/2 '
2 ..
= 27y fo sin i dg
-n/2
= 2ﬂ2 r2 fo sin 1 _ (2.12)

in which Equations (2.7) and (2.11) have been uséd.
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Substitution of Equation (2.12) into (2.11) yields

N
f = . , (2.13)

22 . .
21°r” sin i cos ¢

which expresses the density in terms of the total number, the radius, the

inclination and the orbital arc. However, it is more convenient to obtain
an expression in terms of latitude than orbital arc. This is accomplished

as follows: Using the identity

2
cos g = 1 - sin2 o} (2.14)

and also Equation (2.6), we obtain

sin i cos o = /?sinz i- sin26) (2.15)

so that Equation (2.13) becomes

N

‘e 2 2 ~ 2 2 (2.16)
217 v V(sin“i = sin“9)

2.2 Angular Separation

The system of N satellites under discussion is considered to be uni-
formly distributed in terms of equatorial crossing and also along the or=
bital arc. It is easily verified that the angular separations bétween the

satellites are given by

A = 5——;— (2.17)
2T
Ao = v ) (2.18)
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'SECTION 3 - REGION OF OBSERVATION

3.1 Geocentric Conical Angle

Consider a ground station G on the earth's surface. Let B denote
the conical observation angle at the earth's surface, « the conical
angle subtended at the earth's center, L the mean radius of the earth,

h the satellite's altitude, and a the conical distance as illustrated

in Figure 3.1.

Figure 3.1
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The geocentricl conical angle o may be obtained as follows: For the trian'gle

OGH, we have the sine formula

(r. +h) sin a _
a = e . (3.1)
sin (1 - B) ' '
and the cosine formula
2 2 2 '
= + - + h )
a L (Fe h) Zre (re ) cos o (3.2)
Substitution of Equation (3.1) into (3.2) and use of the identity
sin2 a =.1- cos2 o ‘ (3.3)
yield the following quadratic equation for cos a
r 2 r \? 2 2 : Cy
cos o - 2 e sin” B cosa + e sin'8 - cos Bf= 0 (3.4)
r +h r +h
e e
2
re sin28
‘ 3.5
r + h ( )

It may be verified that the physically acceptable solution is the one which
yields the smaller angle &, i.e., the one with the positive sign in Equation
The other solution yields the larger angle o which results in a cone

(3.5).
going into the earth, which is thus rejected.

Boundaries of Intersection Region

3.2
Consider Figure 3.2 which illustrates a ground station G and a ship
Let C be

S, and also the region of observation Q@ common to both of them.

the central point of the great circular arc GS, and y the angle GOC.
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Figure 3.2

For simplicity, let G be on the equator and let S be at latitude GS

and longitude ws with respect to G, as illustrated in Figure 3.3.

Figure 3.3
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Then, from spherical trignometry, the arc length 2y between G and S is

given by

cos 2 y = cos 8 cos y | (3.6)

and the inclination Kk of S with respect to G is given by
sin O, = sin g sin 2y ‘ . (3.7)
Next, consider Figure 3.4 which illustrates the boundaries R and L

“of the intersection region Q. It is to be noted that these boundaries

are not arcs of great circles, but are arcs of small circles.

/
P, ™ Omin

Figure 3.4
In order to obtain expreésioné for the boundaries R and L, it is conven-

ient to consider the arc GS as the equator in an oblique coordinate

system. First, consider the curve R.
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Let ¢’ be the latitude and §" be the longitude of a point with respect
to G. Then, from spherical trigonométry, the equation of the curve R is

given by

cosa = cosf' coéw" (3.8)

However, if w'»denotes the longitude measured from C, then we have
p'o= 9 4y ' (3.9)

and Equation (3.8) becomes:
cosa = cos 6' cos (y" + y) | (3.10)

which is the equation for the boundary R in the oblique geographical system
having C as the origin of latitude and longitude. Similarly, the equation

for the boundary L is given by
cosa = cos 8' cos (' - y) (3.11)

The points of intersection of the curves R and L are given by

P1 (W' =0, 6' = 0"max ) and P2 (y' =0, 8' = 8'min ) where

cos ¥

o -1
8 max = ©O8 (_O_L) (3.12)

8' . = -9’ ' :
min max (3.13)
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3.3 ‘Regular to Oblique Geographic Transformation

Let ¥ = (x,y,z) denote the coordirates of a peint in the regular
geographic system, and Y= x', y',’z') denote the corresponding coordinates
of the same point in the oblique geographic system. Figure 3.5 illustrates

the angular rotations to accomplish the necessary coordinate transformation.

Figure 3.5

Let A denote the transformation matrix from T to T', i.e.,

-

= Ar _ . (3.14)

=
r

Then, it is well-known that A is given by

c c s s s
™ <"y K
A = - 5 c c c c (3.15)
v ¥ <Y Y K |
0 -8 c
K K



where the symbols s and c respectively denote the sine and cosipe func-
tions of the argument which appears as the subscript. Next, it is also
noted that r and r' may be respectively expressed in terms of their

latitude and longitude as follows:

y =r Cesw | »(3.16)
z =T s,
x' = rce;cw'
y' = rce;sw' (3.17)
z' = S,y

Thus, Equations (3.14) - (3.17) may now be used to express the oblique
latitude and longitude in terms of the regular ones. The final results are

. given by

- s c,s, +c s (3.18)
0 K K

»
It

+ s s

tan (' + v) = 8% T 5% (3.19)

c.c

6 v

3.4 Oblique to Regular Geographic Transformation

Next, to obtain the regular latitude and longitude in terms of the

oblique ones, we proceed as follows: We note that

T =ATr ; | (3.20)

where A~ denotes the transpose matrix of A.
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Then, proceeding as before but now using'Equatiqhs\(3.20) and (3.15) -

(3.17), we obtain

Sg = SY S Gy cw, + cY S, pe{ sw, + c. Sgt (3.21)
Cc C S - ‘
tan y = K 0 "W +y) T %% (35
o St + )
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SECTION 4 - TIME AVERAGE POPULATION

4i1 Exact Folmulation -

Let NQ denote the number of satellites (time average'populatibn)

within the common domain of observation Q. It is obviously given by

N, ='ﬁ £ df o (4.1)

where the density f is given by Equation (2.16) and the element of area

dQ is given by

o = r2 cos6 dy d6 (4.2)

It appears that the above integral may be trivially expressed in terms of

the regular latitude 6 and longitude ¥ as follows:

6 max wR(e)f

N = N cos8 dy d6 - (4.3)
? 2 2 /( inzi - sinze)‘
6 min wL(e) Toras '

where w (6) denotes the expression obtained by solving for ¥ in terms of ©
us1ng the equatlon for the R curve given by Equations (3.10), (3.18), and
(3.19), and 51m1larly for w (8) in terms of the L curve. Not only is this
process difficult, but it is noted that the integral on the RHS: of Equa-
tion (4.3) may not even be valid or, worse yet, amenable to numerical eval-
uation even in principle. This point becomes evident by combining Figures
3.3 and 3.4. It is possible that the location of the ship S with respect

to the-ground‘station G can give rise to the case where, in performing the

6-16



integration with respect to ¢, the process does not take place from the L
curve to the R curve énd, furthermore, in performing the ihtegration with
~respect to §, the process also_does ﬁot take place from 6min to 6 max .
* This difficulty can be circumvented by writing the elément of area dQ

as follows

dQ = r2 cos®' dy' de’ ‘ . (4.4)

so that the integral becomes

1] 1 1]
0'max - ] R(G 2 |
N, = N _cos®' dy' de’
2n2/~ (sin2 i - sin26)

6'min A GRD

e g
: cosO"' dy' de' ’ (4.5)

= 272 i j.[%iz - (s.s Cg1Cy + c s g év, + ¢ se,)2

in which Equation (3.21) has been used. It is to be noted the Y¥' integra-
tion will always procéed‘from the L curve to the R curve, and the 8'

integration will always proceed from €' min to 6' max.

4.2 Approximate Formulation

An approximate formulation may be obtained by going back to the original

Equation (4.1) which may be used to yield the following

W= f @ , - (4.6)



where

Q =ﬁ £ cos6' dy' de'

2 8.'max _ . -1 '
= 4y /O : cosf'’ cos (—2—%:—%,) -y ] de" (4.7)

in which Equations (3.10) and (3.12) have been used. This integral may be
evaluated numerically once the relative position of the ship S is speci-

fied. The average value of f to be used may be obtained by averagihg the
4 values at the mid-points on the axes of symmetry of Q. These, in turn,
may be obtained by averaging the values at the center C and those at the

extremities Pi illustrated in Figure 3.4. Thrus, we may write

ave

oo
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SECTION 5 - AVERAGE POPULATION TIMES

5.1 Exact Formulation

First consider Figure 2.1, for which we may write the following spher-~

ical trigonometric formulas

sin ® = sin i sin o (5.1)

cos ¢ = cos 0 cos ¢ ' (5.2)

where the relevant quantities have already been previously defined in
Section 2. Next, consider Figure 5.1 which illustrates the ground station
at G, when the satellite crosses the equator at Nl. Subsequently, when

the satellite has moved to latitude 6, the rotation of the earth has taken

the ground station to the point G.

\\—¢—-—“’;

¢

Figure 5.1

Then, it is obvious that the following relation holds for both direct

(i < m/2) and retrogade (i > m/2) orbits

(5.3)

where

Wz . (5.4)
P
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p = longitude of satellite crossing measured from ground station

right ascension of satellite measured from equatorial crossing

¢ =
‘ Y = longitude of satellite measured from ground station
o = orbital arc of satellite measured from equatorial crossing
w - ratio of satellite orbital period P to earth rotational period Pe

Substitution of Equation (5.3) intdv(5.2) yields
coso = cosf cos (Y + wo - u) (5.5)

Equations (5.1) and (5.5) express the latitude and longitude in terms

of the orbital ‘arc. Symbolically, we may write

[¢>]
]
D

(o; 1) (5.6)
v =y (o3 i, u) (5.7) .

In turn, these equations may be substituted into Equations (3.18) and
(3.19) to yield expressions for the oblique latitude 8' and longitude

- ¢' in terms of orbital arc o. Thus, we have

8' (o; i, u, K, Y) (5.8)

i

e'

8' (8, ¥; ¥, Y)

' (o3 1, w, K, Y) - (5.9)

"
]

b o8, v; o<, Y)
which constitute 2 equations in the 3 unknowns 8', ¥' and 0. If we wish
to determine the point of intersection with the R curve bounding one side
of the common region of observation 7, we also have Equation (3.10) which
is

cos 1 = cos &' cos (' + v) ' (5.10)

Substitution of Equations (5.8) and (5:9) into (5.10) yields a com-

'plicated equation for ¢ which may then be solved numerically to obtain
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the value 0 = OR corresponding to the intersection point. Next, to
obtain the point of intersection with the L curve, we have Equation

(3.11) which is really Equation (5.10) with Y replaced by -7y . Thus,
the same process may be used to obtain the value 0==0L corresponding

to the intersection point. Thus, the population time T of the satellite

within the region § is exactly given by

=2 6 - 5 | (5.11)

Let M. denote the value of W which corresponds to the orbit passing
through the central point C. The above process is first performed with
a value M=U, *+A¢  where A9, is a random number in the range 0< A¢ < A

where A¢ is given by Equation (2.17) which is

(5.12)

The process is then repeated with values (u+nA¢ ) where n = 1, *2,...
until no more orbits intersect the region 2 . After this, the entire
above process is then repeated with other random values of A¢ The
average population times are then obtained by averaging the results of

all these processes.

5.2 Approximate Formulation

Consider Figure 5.2 which illustrates the spherical triangle formed
by the equator, the meridian and the arc length of the central point C
measured from the ground station G. This spherical triangle is fixed on

the rotating earth.

Figure 5.2
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Then, we have the following spherical trigonometric formulas

sin® = sink siny (5.13)
cosy = cos® cosy (5.14)
siny sinx = siny (5.15)

which may be used to compute the latitude and longitude of C and also

the angle A the arc GC makes with the meridian through c.

Next, consider Figure 5.3_which illustrates the spherical triangle
formed by the equator, the meridian and the orbital arc of a satellite
just passing through the point C. This spherical triangle is fixed on the

celestial sphere, which is inertial.

Figure 5.3

Then, we have the following spherical trigonometric formulas

siné = sini sino (5.16)
cosd = cosf cos: (5.17)
sinc sing = sin¢ vv (5.18)

which may be used to compute the orbital arc, the right ascension and

also the angle ¢ the arc NC makes with the meridian through C.
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However, because of the earth's rotation, the satellite's ground
track does not really make an angle ¢ with the meridian through C.
Rather, it is deflected through an angle & which is, in general,
given by
wcosb cost ' (5.19)

tan § =
1l - wcos i

where w is defined by Equation (5.4). (It may be verified that this de-
flection causes direct orbits to be more inclined and retrog;ade orbits
to be iess inclined as viewed by their ground tracks.) Thus, the angle
between the satellite ground track and the meridian at point C is given
by (z-£), as shown in Figure 5.3. Next, consider Figure 5.4 which illu-

strates the inclination 1 of the orbital arc with the oblique equator

Longitude

7
Latitude
Figure 5.4
Hence, it is seen that we have
n=Ax-¢+¢§ for ascending orbits

(5.20)

n=2Xx+¢ -~ &~ w for descending orbits

It may also be verified that these equations are algebraically valid for

both direct and retrograde orbits..
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Next, consider Figure 5.5 which illustrates the case of a satellite
just passing through the point D whigh is displaced by Ay from the central
point C. This corresponds to an orbit whose equator crossing is displaced

by A¢ from the point N.

Figure 5.5

Then, using spherical trigonometric formulas, it may be shown that Ay

is related to A¢ by the following equation

tan.i sin (y - ¢ + 4¢)
tan (y + Ay) = (5.21)

tan i cos « cos (¢ — ¢+ Ap) - sin x

Thus, by replacing Y with (Y+Ay ), Equations (5.13) - (5.20) may be used
to compute the inclination N of the new orbital arc with the oblique equa-
tor. It may be verified that Equation (5.21) is also algebraically valid
for both the cases of i > K and 1 < K. Moreovef, it is ‘also valid for

both direct and retrograde orbits. Furthermore, it is valid for arbitrary
finite differences A¢ and Ay , but considerable care must be exercised

when taking the inverse tangent to obtain (y + Ay) in the correct quadrant

corresponding to the increment A¢d .
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Up to this point, no approximations have been made. It is now assumed
that ‘the satellite's ground track is an arc of a great circle lying within
the region  and making an angle n with the oblique equator GS. Figure

" 5.6 illustrates the cases of orbital arcs passing through the points C and D.

0

Figure 5.6

Now, it is possible to write the following two approximate relations for

the orbit passing through the central point C -

sin 6' = sinn sin o I (5.22)

]

cos 8' cos 8' cos yp' (5.23)

where 0' is the arc length measured from the oblique equatorial crossing.
These two equations are the crude analogs of Equations (5.8) and (5.9) of
the exact case. If we wish to determine the point of intersection with

the R curve, we also have Equation (3.10) which is

cosa = cos 68' cos (P' + v). (5.24)
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However, instead of substituting Equations (5.22) and (5.23) into (5.24)
to yield a complicated equation for ¢', it turms out to be the case
that an algebraic equation can be obtained involving sin 8'. This is

accomplished as follows: From Equations (5.22) and (5.23), the following

auxiliary equation is obtained

; , _ tan 8' ‘
sin y' = ———— (5.25)
tan n

Equation (5.24) is then written as

cosa = cos 0' (cos P' cosy =~ sin ¢' sin Y)
= cos ¢' cosy - cos O' tan 8' siny
tan n
. . 2 S
= cosY 1T - sin” 8'}  sin 8' siny
. 2
sin” n tan n

or equivalently

. 2 . 2
cos y/(sin“n - sin” 6') = sinn cosa + cosn siny sin 6'. (5.26)

By squaring both sides of this equation, it is obvious that a quadratic

equation is obtained involving sin 6'. After much simplification, it may

be shown that we have

sin 8' _ - cosa siny cosn & cosy /_(sinza - sin2Y sinzn ) (5.27)

sin n (1 - sinzY Sinzn )

A little consideration will reveal that for the intersection point with

the R curve, it is necessary to retain only the positive sign in the above

equation. Thus, this expression corresponds to the value at 8' = G'R.
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However, from Equation (5.22), it is seen that the value GR' is

given by
. | PR |
sin® g~ sinn sin q R (5.28)
Consequently, we have
. 1 . ‘ /—.2 .2 ,2
sin o,' = - cosa siny cosn + cosy Y(sin"o - sin"y sin"n)  (5.29)

R
2
(1 - sin"y sinzn)

Next, to obtain the intersection point with the L curve, we have

Equation (3.,11) which is really Equation (5.24) with y replaced by -v.

! can be shown to

Thus, the same process may be used to obtain oy, which

be given by retaining the negativg sign in Equation (5.27). Consequently,

we have the following result

, . 2
sin.cL' = coso siny cosn -cosyV?éln o - sinzy sinzn) (5.30)

(1 - sinzy sinzn)

which states that OL' = - OR' as expected (only for the case of the
orbit passing through the central point C). Thus, the population time

1 of the satellite within the region Q is approximately given by

P (o' -0 ") © (5.31)
2m

which is the crude analog of Equation (5.11).

Next, to obtain the intersection point between the R curve and
the orbit passing through the point D, a little consideration will re-

veal that it suffices to replace y by (y + Ay) and also use the
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corresponding value of n and then repeat the process above for computing
OR' as given by Equation (5.29). However, to obtainm the intersection

point between the L curve and the orbit passing through D, a little more
caution is now necessary. It now suffices to .replace Y by (-y + Ay) and
also use the corresponding value of n and then repeat the process above

for computing 0,' but now retain the negative sign. This result yielding

R

the value of OL' is no, longer trivialiy the negative of GRi as for the

special case of C.

The abové process is first performed with a random value A% in the

range 0 < A¢o < A¢p where A¢ is given by Equation (2.17) which is

27 ‘ (5.32)

The process is then repeated with values (A¢o + nA¢) where n =.il,_i2,;..
until no more orbits intersect the region Q. After this, the entire above
process is then repeated with other random values of A¢o. The average
population times are then obtained by averaging the results of all these

processes.

Finally, it must be mentioned that in order to insure that the coer-
rect segment of the R circle (see Figure 5.6) is identified to yield the
desired intersection point as given by the general analog of Equation
(5.29), a little consideration will reveal that we must have n in the
range -n/2 < n < w/2. Thus, if n is outside this range, we must accordingly
add to or subtraét m from n. Similarly, the same procedure applies to
insure the identification of the correct segment of the L circle to yield
the desired intersection point as given by the general analog of Equation
(5.30). Furthermore, considerable thought will reveal that this assign-
ment of the n range not only correctly gives the desired intersection
points for orbits crossing the oblique equator within the observation re-
gioﬁ 2, but also for the case of equatofial crossings outside it for a
range of Ay exceeding /2 measured from the central point C. The rea-
sons for this are not apparent and, at first sight, it.would seem that
this assignment of n values outside the region Q leads to incorrect an-

swers. But this is not so because of the manner in which the inverse
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trigonometric functions are assigned their principal values. Thus,
Equations (5.29) and (5.30) contain many subtle features in logic which
automatically combine to yield, in mutual accord, the correct intersection
points regardless of the equatorial crossing. In particular, additional
consideration will reveal that it is only necessary to consider equatorial
crossings such that the orbits intersect the oblique meridian through the

central point C at an oblique latitude 6' not greater than 8% given by

0% = min{ [n|, cos ! [cOS% (5.33)
cosy
This corresponds to a range Ay* given by
Ay* = gin T [Lam 8% , (5.34)
can | nl
so that
cosa
Ay* = min ¢ /2, sin! [ tan [cos"l cosy ] (5.35)
tan nl
or equivalently
Ay* = min /2, 'sin_l /! coszy - cosza (5.36)
2 - 2 ) 2 2
cos y - cos a + cos a tan n

It is not difficult to see that if an orbit intersects the oblique
equator outside the range Ay* and also eventually intersects the observa-
tion region 2, then this orbit would already have been counted as lying

within the acceptable range on the other side of the central point.
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SECTION 6 - RESULTS FOR ORBITING SATELLITES

6-1 Average Population Time Computations

Computations were performed, except for minor modifications, according
to the method discussed in Section 5.2 to obtain the average population
times for Class I and II satellites. The representative values of para-

meters used are shown in Table 6.1.

Table 6.1
Quantity Class I Class II
Period P (minutes) ' 100.9 717.9
Inclination i (degrees) 74.0 - 63.9
Altitude h (km) 800 - 20,178.5
Number N | 400 100

The value of B, the conical observation angle at the earth's surface, is
taken to be 80° for both the ground station and the ship. The ground sta-
tion is taken to be at the origin of longitude and latitude while the ship
is taken to be at various values of longitude ws and latitude es only in the
first quadrant. It may be verified that for locations of the ship in the
other quadrants, the corresponding results may be obtained by taking mirror

reflections about the primary axes. .
After the avefage population times Tt have been obtained, the results
were divided by the characteristic time T defined by

T =2 (6.1)

AN
to obtain the number of satellites visible‘to both the ground station and
the ship. (T is the time for a satellite to travel the intra-satellite
distance 40 where Ac is given by Equation (2.18).) The relevant results
for Class I and II satellites are respectively summarized in Figures 6.1
and 6.2, each of which was obtained by averaging the results using § given

by Equation (5.49) and those using & = 0.
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Note:

(1) Numbers in the boxes denote
the number of satellites vi-
sible for the percent of time

2. 30% indicated.
4 17% :

(2) Numbers below the boxes de-
note the relative longitude
and the absolute latitude of
the ship.

(0,30)

2 84% 1 437

4 58 2 26%

6 2% 3 21%

(0,20) (10, 20)

4 100% 1 97% .

6 397 4 ok s
10 12% 3 65% o

b 462 4 3%

(0,10) (10,10) (20,10)

: oo 4 100% 2 100%

6 90% o o 2 32%
8 56% 6 64% b 63z 4 8;
10 21% 8 1 6 1%

(0,9) (10,0) (20,0) (30,0)

Figure 6.1 - Results for 100 Minute Orbiting Satellites
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Note: (1) Numbers in the boxes denote

6 100%
8  37%
12 58%
14 50%
(0,80)
12 100%
14 75%
16 23%
18  15%
22 3%
(0,60)
14 100%
18 607
20 51%
22 34%
24 12%
26 7%
(0,40)
16 100%
18 97%
20 75%
24 54%
26 16%
28 5%
(0,20)
20 100%
22 88z
24 637%
26 56%
28 39%
30 29%
32 14y
(0,0)

Figure 6.2 -

Z 1825 the number of satellites vi-
7 88% sible for the percent of time
9 . 579 indicated.
10 32% .
11 . 25; (2) Numbers below the boxes denote
12 7% the relative longitude and the
) absolute latitude of the ship.
(40,80)
2 100%
3 85%
4 78%
5 74%
6 607
(40,60)
3 100% 2 100%
4 93% 3 90%
5 76% 4 83%
6 49% 5 68%
7 23% 6 56%
8 19% 7 247
9 5% 8 19%
(40,40) (80,40)
8 100z 5 100%
10 93Z 6  81%
12 717 7 20
13 242 10 15%
14 3%
(40,20) (80, 20)
14 100% 6 1007
16 667% 8 58% .
18 56% 10 19% ,
20 217% 12 11% A
24 8% 14 6%
26 2%
(40,0) - (80,0)

(120,0) 6-32

Results for 12 Hour Orbiting Satellites



6.2 Time Average Population Computations

For the special case of‘the ship at the origin of longitude and lati-
tude, the time average population NQ may be computed by Equation (4.3).
Numerical integration yields a value of about 28.487% for NQ/N for Class II
satellites. That is, on the average, 28.48 satellites are mutually visible

to the ground station and the ship when they are together.

As a comparison, it may be shown that the ratio of the area of common
visibility @ to the area of the zonal belt A covered by the satellite

orbits is given by

Fe)

- [1 - sin (n/2 - o)) (6.2)

2 sin i

>

when the ground station and ship are together. Hence, for Class II satel-
lites, we obtain a value of about 22.47% for Q/A. As expected, this value
is smaller than that for NQ/N because the density f increases with latitude
and hence contributes toward giving a higher value of NQ in the numerical

integration.

The other comparison is made with the results displayed in the (0,0)
box of Figure 6.2 which are seen to yield a smaller value than that for
NQ/N' This is -also to b% expected because the approximation made in Sec—
tion 5.2 assumed that the satellite orbits are arcs of great circles within
the region Q and hence yields a smaller value of the average population

time T than that obtained by considering the actual satellite ground track.
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DISTORTION~FREE MAPPING OF VISSR IMAGERY

DATA FROM GEOSYNCHRONOUS SATELLITES

F. K. Chan
‘Scientific Anaiysts and Consultants, Inc.

411} Heathfield Road, Rockville, Md, 20853
ABSTRACT

Analysis has been performed for mapping VISSR imagery
data so as to eliminate all geometrical distortions. The formula-
tion is rigorous and includes all misalignment angles of the VISSR,
the sun sensor and the instantaneous spin axis with the satellite's
body axis. It also includes the effects due to the motion of the
satellite's suborbital point. All the mapping equations for dis-
tortion removal are reduced to simplest forms, and all the algorithms
are optimized as much as possible.

An approach is then formulated for implementing these
algorithms for in-line operational use. It covers the computations
involved in determining benchmarks, the interpolation methodology
for filling in the points interspaced between benchmarks, and the
correction procedure for computing the radiometric values at the
center of the pixel in the distortion-free image. It is also concerned
with the time requirements, data storage, and output data accuracy.
With the present microprocessor technology, it is concluded that this
in-line distortion removal is possible in real-time processing of
infra~red but not visible VISSR imagery data.

This work was supported by NOAA Contract Nos: 01-8-MO1-186)
and NA-79KAC-00026



SECTION 1 - INTRODUGTION

Tn the Visible and Infra-red Spin Scan Radiometer (VISSR)
data obtainedvfrom thevpresent geosynchronous satellites, distortions
are observed in the images of the earth. As illustrated in Figure 1.1
which is exaggerated for clarity, these image deformations appear
as vertical compression and expansion of the image, non-vertical
alignment of the North and South Poles, and multi-representation of

some points or omission of other points.

Figure 1.1  Exaggerated VISSR Image of Earth
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These distor'tions, may well be explained by considering
Figure 1.2 which illustrates the same‘scan-lines:on the projection
plane of the earth. Again, for clarity, these scan-lines- are depicted
to be non-parallel and unevenly spaced to a degree more so than the

realistic cases.

Multi-represented

Omitted

Figure 1.2  Projection Plane Image of Earth
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_ If one were to relate these two images, one would find,
for ‘.example, that a triangular figure in thé ‘projection plane
image bécomes distorted into a curved figﬁre in the VISSR image,
This is illﬁstrated in Figurev 1.3 -which isvobtained by super-

imposing a triangle on Figure 1.2 and then mapping it onto Figure 1.1.

Projection Plane Image

VISSR Image

Figure 1,3 Distortion of Image
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- The general causes forithese image.deformations may be
broadiy classified és follows: . | |
1. Orbit not circular and equatorial _
2, Spin axis not perpendiCular to'orbitai piqne
3. Misalignment of the VISSR, the sun sensor, and the
instantaneous spin axis with the satellite's body axis
hg Biases due to varying sun size and varying sun élevation
effect on threshold of the sun sensor triggering.
To remove these distortions, it is necessary to include all the
above factors in the formulatioﬁ of the mappiﬁg equations. However,
it is feasible to considef only the first three. The corresponding
equations have been derived in Reference 1 in which it was convenieﬁt‘
to introduce the following coordinate systéms:

The Inertial System: This is well-known.and is defined such that

the kI-axis is in the direction of the vernal equinbx, the zI-axis

is perpendicular to the équatorial plane (in the direction of the

A A
North Pole), and the yI-axis is given by‘?I =27 X Xpo

The Body System: This system is defined such that the zB-axis is

along the longitudinal axis of the satellite, the xB-axis is the
intérsection line between the VISSR stepping plane and the plane

. . ' L A A A
perpendicular to the zpmaxis, and the yB-axis_ls given by Yg " 2g X Xge

The VISSR System: This system is defined such that the xv-axis is

in the direction of the mid-scan, the zv-axisvis perpendicular to the.
xv-axis and lies in the VISSR stepping plane, and the yv-axis is

A A A
given by Yy = 2y X Xy

The Sun Sensor System: This system is defined such that the xU-axis
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is in the direction of the bisector of the angle fanned out by the
sun sensor, the zU~axis_is'perpendicular to the xU-axis'and lies in
the .sun sensor fan plane, and the yU-axis is given by'§h -'gh x'QU.

The Spin System: Let ?s denote‘the unit spin axis vector around

which the satellite is instantaneously rotating. Let T' denote the
poéition vector of the satellite. Then, the ys-axis‘énd the xs-axis

are respectively defined by

P Ci)
2; = g; ".g; (r2)

The Auxiliary System: In this system, illustrated in Figure 1.k,

the unit base vectors are defined by the following equations:

QA = - 2, (/‘3)
A A A |
Ya = 33X %a4 (r4)
A . A N . i
30 T Xa K Y, | (15).
. .
31 R
., P )_Satellite
A
A
xA
0 _ _ gA
Earth ' _ 3:
%

Figure 1.4 - The Auxiliary System
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The Normalized System: Consider a system, referred to as the normalized

system, as illustrated in Figure {.5. The origin R of this system is
defined at a point'? on the earth's equatorial plane and fixed in the
earth's rotating system. The satellite P at point ?', however, is not
necessarily on the earth's equatorial plane or fixed in the earvth's
rotating system. In this normalized system, the unit base vectors

are defined by the following equations:

7/C\N = "//t B | v (r4)
?N = %I : (l‘?)
A
gN = gN X X, (1 8)
N
3r
A
0 ’ — 4
Earth = _ L 3“
$' e* Z
* - P
o %\“ ~ Satellite
A AN d
/7\‘& N - 1
R
QN Normalized
Oﬁg;n

Figure 1.5 - The Normalized System
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- In the present study, the results obtained in Referéncé 1
are used to formulate algofithms for mapping the data coming out of
the Synchronous Data Buffer (SDB) so as to obtain a distortion-free
imagery. Moreover, this rectified imagery also has the desirable
o featurevthat it‘is referred fo a normalized satellite position which
is therefore the samé for all imageries. Thus, if the distoftion-free
mapping is performed in-line during data proceséing, the transmitted
VISSR data will provide a uniformly compatible data base for all
users in their scienﬂific wérk. Furthermore, it will also facilitate
in the future development'of a composite data base for:different
kinds of data obtained from Qarious satellites.

Mapping of the data m#y be further optimized the use of
interpolation with the aid of appropriately chosen behchmarks.'
Section 2 deals with the computation of these benchmarks, while
Section 3 éovers the interpolation methodology for filling in the
pointsvinterapaced between benchmarks. Section L is concerned with
the correction prbcedure for computing the radiometric vaiues at the
center of the piiel in the distortion-free image. Section 5 discusses
the time réquirements, data storage and output data accuracy.

Section 6 summarizes the results of this study.
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SECTION 2 - BENCHMARK COMPUTATIONS

- This séction deals with the'coméutatiéh of benchmark
locations in the normalized distortion-free coordinéte system. If
discusses the relevant input parameters, computational equations,
number of compuatiohél oéerations, and the requisite partiai derivaf'

tives.,

2.1 Input Parameters

The relevant iﬁput parameters are listed below;
N, = scan number
N =Asample number
M, = mid-scan.number
M€s= mid-sample number
An = sc‘a.n. angglar width
Ag = sample angular width

4% = scan éngular bias (line bias)



r!' = orbital position of Batellite
& = right ascension of spin axis

d = declination of spin axis

&L.

= normalized position of satellite
a = earth's semi-major axis
"¢ = earth's semi-minor axis

For convenience, two parameters dependent on tne above are defined

as follows:

Vav
3
1"
|>
5
~
RN
N—r



.2.2 Computational Equations

The following equatiohs for computing benchmark coordinates‘

have been extracted from Reference 1. They have been simplified and

are listed below in 'the proper sequence for usage. The exact definttions’

of cursory intermediate variables may be obtained from the origihal

répqrt.
(Hy - K, ) &y (1)
(M5, = M, ) 43 | (2:2)
75 = 7Z 1t 'SZ"S _ _ : (,?'.3).
- : ‘A A A
T s s B T e g T Sy 3 (24)

_ -/
‘é: [/-(/z 35)"']-

(2.5)

~

(2.¢)

L s 47T

7=



Al A
/L’zs

)

—

)

(L), = #2%(5n%)
(723) = *[(ﬁ )~ (A43)(%5)]
B o @)
o= |Gl @), 4@), (),
Tl (), ?sa (7o),
@&~=f -f
(7;,)AN = c,,s’b,_?
B
( ), —#(T),, 4 T (T ), )
= '(7;,),,,, ’(7,7>,, L (7,
E,)AN 0 ;L/' ‘ J

(2:7)
| (2-8)

(2:9)

(a:10)

[2«//)’ .
(2:12)

(2.13)

G



A A

A A .
T wCh e o sk G
/\__46[ A/A)A. ;\L/] | .

RN LIS B
s T P X % (2:17)
Xse Xy ¥ %z 3 * ¥
— A A A A AA ('2‘/?)
st | B4 o K |
A A A A A A
| X531 J*3r 30 3r
A
Uy = 7;1 35_ B (009)
/]  + 2(1(3)1 (2. 20)

/

A =
.ég = ;;I f 2} | -+ €;(>L;4&f (kg.Zr (2“2/)
C = '

-/

ot ry* 2
A r * 8(/23)1 -4 (2:22)

L. —8-/(8-4Ac)

(2,23
y )
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«, =T T, ds o (2.24)

(A=A € C )2 = AIC,S ‘s, 3
| o PP/ Xy T N G g P T N S By (2:25)

0 = B+ U, - (22¢)

-Ii% — k:x (}Q )N
(?;.)N

(2.27)

;r* = ﬁ<* <}2{)f{

—L o 2.28

o )
_ ?x N -

I% awa % are the coordinates in the normalized distortion-free

system. At this stage, for the sake of greater accuracy in sub-

sequent computations, it is preferable not to digitize them.



2.3 Computational Operations

For each benchmark, it may be verified that the comput-

ations in equations (2.1) = (2.28) may be achieved by performing:

| 51 additions
22 divisions
11k multiplications

Ly divisions

11 trigonometric function evaluations

2 square root evaluations

Assuming that the following times are required:

Operation

Addition

Subtraction

Multiplication

Division

Trigonometric function evaluation

Square root evaluation

Time (micro-éeconds)
1.5 |
1.5
6
11
50
50

it is seen that about 1487 microseconds are required for each bench-

mark computation.
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2.l Partial Derivatives

For convenience, it is desirable to choose the set of

benchmarks so that they form a rectangular grid in the (N§ , Nﬂ)
: ' . A

-space as illustrated in Figure 2.1,

N |
T4 R e | .S

p e _ " * Q
;Nfs

Figure 2,1 - Benchmarks in (N

$s

s N

1) - Space

Then, it is obvious that the partial derivatives of I and J"

with respect to N§

and Nn may be approximated by
s V B

| 5 T* 1 | (1.*)a _ (I*),o

2Ngs NQJ P ,(Nfs )Q - (Nfs )P
27°) | L (e - (T
9N§-s N,)JP (Ngs)Q - ('Ngs),

(2:29)

IR

(.?.30')
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l

| [ (E—I: . () - ) (231)

9N’I Nes—p (AT’z)R - (N?)P | .
2 T . (T, - (T%
2y f"fs P (Nv)k - (Ny)

R

(z.32)

For each benchmark, the four associated partial derivatives
require 6 subtractions and L divisions. These overations consume

about 53 microseconds.

- These partial derivatives are used later in the method of

interpolétion for mapping points interspaced betweeen the benchmarks.,



SECTION 3 - INTERPOLATION COMPUTATIONS

This section is concerned with the mapping of points
which do not coincide with the chosen set of benchmarks. It
discusses the input data, interpolation methodology, and number of

computational operations.

3.1 Inout Data
' The input data consists of the coordinates (I¥, J¥) and

their féur‘associated partial derivatives for each benchmark. This

information has already been obtained in Section 2.

3.2 Interpolation Methodology

Suppose there are m interspaced points between the hori-
zontal benchmarks, and n interspaced points between the vertical
benchmarks. ‘Figure.3.1v illustrates a basic unit comprising bench-
marks (deﬁotedvby solid circles) and interspaced points (denoted by
open circles),‘ Thus, there afe (m + 1)(n + 1) points altogether

in a basic unit.
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Figure 3.1 = Benchmarks for Interpolation
It is noted that the I coordinaté of the point T directly
below P is given by | '
»
, (z") = (z%), + Az (3)
| T G -
But ATY «~ (QN AN,[ (3:2)
B | N?s f ' ‘
= | | | (3'3
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Therefore, it follows that

(I*)T

A similar equation holds for any point and the point directly:

below it.

(1), +

mapoed by the following iterative algorithm:

Let 7

x '(i*)P

o* = (J*>P

Then, perform the following computations

o .
I =
L+ Zl
| 2
J* = J
&+ £

Similarly, it is noted that the T

),
[aﬁ

point U directly to the right of P is given by

@)

@i ¢ AT*
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coordinate of the

Hence, the n interspaced points between P and R may be

>n e

(3 4')

(3+5)

(3:¢)

( 3»7)

(3:¢)

(3:7)



But AT« ) ] AN§ - (30)
Es N,l S |

and AN,fs = + / | ()

Therefore, it follows that

) (I + [( ]P G

Again, a similar equation holds for any p01nt and the point directly
to the Bight of it. Hence, the m(n + 1) interspaced points between
the columns PR and QS may be mappea by the following iterative

algorithm:

Let ' ' ' _
r, = I, (3:13)
)
£=01,2, ... n
% % |
Jo,z = 7T, (3149)

Then, perform the following computations

I[’;H),g: [(i/l:),v,l]‘, | . (3./5)

*‘0)/,2/ ""‘ n

Tamem Teet G, e

After these computations, it is now D°rmlsslb1e to dlgltlze I and J

| to obtain the rounded integer values I and J.
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3.3 Comoutation Operations

For each_interépaced point, it is seen that the comput-
ations in equations’(B.?)_and (3.8) or those in equations (3.15)
and (3.16) requireAZ’addifions. Assuming a time of 1.5 micrpseF
conds for each operation-, +herefore about 3 microseconds are required
to map each point by interpolation. Allqwance is also to be make for
converting two real numbers to integer values for each point. This
will probably increase the time requirement by a factor of 2 so

that about 6 microseconds.are required for each point.
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SECTION bk = RADIOMETRIC COMPUTATIONS

This sections considers the methodology of correcting the
radiometric values so as to refléct a more realistic value.at the
center of the pixel in the distortion-free image. It discusses the
input data, correctidn ﬁethodology, and number df computational

operations.
L.1 Input Data

For -each point, the input data consists of the following
and may be obtained either from the SDB output data stream or has

.already been obtained in Section 3:

scan number

=
]

Nf;

sample number

R(N_ , N_ ) = radiometric value of N th scan and N{ th
' s

§° 01 1

sample

) = radiometric value of N, th scan and

R(qg{ - 1,N,l - "
(N, = 1)th sample
Es v
R(¥, , N_ =1) = raidometric value of (N_~ 1)th scan
71 | | 1
" and N, th sample
T
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¥ interpolated horizontal coordinate ‘of (Ng s N,i)
. $

L]
L}

in distortion-~free system

J¥ = interpolated vertical coordinate of (Ng. s Nn )
s

in distortion~free system

=
L}

rounded integer value of I

rounded integer value of J*

[
]

Lh.2 Correction Methodology

The radiometric value R(I, J) may be obtained from the

value R(I* J*) by using the Taylor's series expansion'

R(1 1) - R (% I)+(3R) (II)-f—( )(J’J’*)
(+1)

The partial derivatives (,?;;) (a J‘*‘ m?.y be written as
f&
2R ) - (_?E. ) ("’Nss> ) ( ) (#2)
9I* / yx WNgs /y \21F (al 2I* |
1 .
2R 9N : v
) - () (28, - () (), o
| I ‘. 55N7 * | Vi s, e |
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Th tial derivati (‘LR ) d ——9'2> b
 The parti erivatives “an ~ may be approxi-

mated'by _ ‘ §

%), e (8), = A R

9A}}fsbN ANES »
o8 AR\, Y
i, = (50 ), = Rlo) = RO 1-1). s

The four remaining partial derivatives on the RHS of equations (L.2)

and (L.3) may be obtained as follows: Let A and B be matrices defined

by

(o).

(9N.,1>.
» gI* .T*

7=25

ONeg

2T*

)

(=

33'* I* J

)

oI
Ny

27
?N,z

)

I&

)

$s

Nfs 2

(+:¢)

«7)



Then, from the theory of mathematical transformations, we have
= '
A= 8 (#8)

which explicitly yields

My ) o 2T ) R
(91: C \Ny Ik, |

aNss) L ( 91'* T

7, e
— = T -~ i
ZN) o | 9I*> N
/) B Sy N
27} I* | 9/\%5 N~7 » (4 /2).

where 91‘" 9_)"* 93’* 21* o
E y g0, 2l N,
The partial derivative.s appearing on t‘he RHS of equations {(L.9) =
(4.13, may be obtained from equatibns (2.29) - (2.32), valid for a

basic unit defined by benchmarks.
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L.3 Computationhal Operations

For each point, it is seen that the cémputations in
 equations (h.1, = (4.5) require 4 additions, 6 subtractions and

6 multiplications. Assuming a time of 1.5 micrése_conds for each
addition or subtraction , and 6 microseconds for each multiplication,
therefore about 51 miéroseconds are required to correct the radio-

. metric value for each point.
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SECTION 5 - DISCUSSION

~ This section discusses relevant topics such as benchmark
spacing, time requirements for mapping IR data, real and non-real time
computations, data storage and buffering, input and output data ae-

curacy, and computational accuracy requirements.

5.1 Benchmark Spacing

The IR samples have angular widths of about 0.010 x 0.005°

at the satellite position. This corresponds to a resolution of about
b x2 milesbat the sub-satellite position on the earth's surface. In
general, this resolution and the non-linearity of the mapping equations
deterﬁine the requisite spacing of the benchmarks to be used for inter-
polation. The analytical approach to obtain this spacing ihvolves
comparétively complex mathematical analysivs. Alternatively, it is

aiso possible to obtain this walue by_actuélly performing the mapping

| munerically. At this stage, it is felt that the interpolaﬁion require-
ments can be met by éhoosing the IR benchmarks to be spaced 50 samples
horizontally and 25 samplés vertically. That ié, it probably suffices
to choose m = 50 and n = 25 in Section 3. In‘the full IR imagery,
there are 1822 scans each containiﬁg 3822.samples. Consequently,‘about

5,600 benchmarks will be required.
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5.2 Time Requirements

In Section 2, the computation of each benchmark and its
associated partial derivatives requires about 1540 microseconds.
Hence, a set of 5600 benchmarks requires about 8,62l,000 microseconds

&~ 8,6 seconds.

In Section 3; the mapping of each sample by interpolation
réquires about 6 microseconds. Therefore, an IR imagery of about
T x 106 samples requires ébout L2 seconds. However, if the enﬁire
IR ihagery is‘not to be mapped, then cropping out the edges will
- probably reduce time by a factor of 2/3 to yieid a requirement of about

28 .seconds.,

In Section U, the correction of radiometric value at
the center of the pixel in the distortion-free image requires about
51 microseconds for each sample. Therefore, an IR imagery of about
7 x 106 samples requires about 357 seconds, vCropping ﬁill probably

reduce this to about 238 seconds.

Consequently, about 399 seconds or 6.7 mlnutes will be
needed to map the entire IR 1magery comprising of coordlnates and
radiometric values of the samples. This time requirement drops to

about L.l minutes if cropping is introduced.
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If it is desired to mapvthe visible imagery containing
1/2 x i/2 mile samples, then the above times are increased by a
factor of 32, Therefore, about 21L minutes will be required to map
the entire imagery cdmprising of coordinates and radiometric values.

- If the edges are cropped out, then about 143 minutes will be needed.

5.3 Real and Non-Real Time Computations

From the discgssion above, it is seen that it is possible
to perform all the mapping Computatidns in real~time in the case of
IR imagery, and ﬁot possible in the case of visible imagery. Howevef,
in the latter case, the crucial point is whether the radiometric
corrections are really necessary. If not, then the time requirements
drops to 22.l4 minutes for the entire imagery, and 14.9 minutes for

the cropped imagery. Consequently, visible data-mapping becomes feas-

ivple in real-time.

Because the benchmark computation time is so small, it
is desirable to perform the benchmark computations in real-time so
that the relevant parameters may be easily extraéted in-line from

the data-stream comihg out of the SDB.
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5.4 Data Storage and Buffering

Because the imagery obtained from the SDB output data is
distorted, it is necessary to store this data in a buffer before ﬁhe
distprtion-free mapping can be verformed. The buffer size may bé
estimated by allowing for a maximum 30 offset in the épin éxis. Since
the satellite is about 6.6 earth radii away, it may bé verified that
~about 100 IR scan~lines (382,200 samples) to be buffered at a time.
This will be suffiéient to output a horizontal distortion~free line
from end to end. In the case of visible daté, the corresponding
buffer will contain aBout 800 visible scan-lines (12,230,400 samples).
If a realistic situation, the abowe numbers will probably be reduced

by a factor of 3.

5.5 Inout and Output Data Accuracy

The data coming out of the SDB will be used as input
into the distortion-free mapping software system. The accuracy.of

this data may be roughly classified as perfect, normal or bad.

Perfect data corresponds to data haVing errors of less

than one pixel (i. e. *+ 2 km at the subsatellite point for IR data).

The error in the output data from the diStortion-free mapping is
therefore determined by the pixel reéolution of the benchmérks, the

interpolation accuracy of interspaced points, and the correction accur-
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acy of the radiometric values. Becéuse the second and third factors
depend on the benchmark-spacing, which in turn depends on the pixel
resoiution, therefore it is estimated that the error bound of the

output data is about one pixel (i.e., * L km for IR data).

Normal daﬁa'correspondsito data having errors of about
one or two pixels. The mapplng error is determlned by the benchmark
accuracy corresponding to normal 1nput error, the interpolation
accuracy>of interspaced points, and thg correction accuracy of the
radiomatric values. In this éase,'the error bound of the output

data is- about two pixels.

Bad data corresponds to data having errors of about L or
more pixels. The mapping error is determined mainly_by the benchmark
accuracy corresponding to these bad input errors. In this case, the

error of the output data is probably about 5 or more pixels.

5.6 Computational Accuracy Requirements

It is desirable to investigate into the use of 16-bit

words in the distortion-free computations.

Because of the complexity of the benchmark computations
in equations (2.1) - (2.28), it is quite evident that sutficient
accuracy will not be obtained by performing single~precision

computations using 16-bit words.
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However, for the partial deri"aﬁives comnutations in
equaiions (2.29) - (2.32), the interpolation of interspaced points
- computaions in equations (3.7) - (3.8) and (3.15) = (3.16), and the
radiometric correction cohpuiations in equatibns (ho1) - \h-S)}
:it_is ?ossibie'bo achieve the desired accuracy using single-precision
computations involving'16-bit words. In this case, perhaps the best

way to represent real numbers is as follows:

1 bit for sign of number
11 bits for range of number’,(‘211 -1 =20L7 )

1 bit for sign of exponent

7))

3 bits for range of exponent ( 23 -1
An alternative choice is as follows:

1 bit for sign of number
12 bits for range of number ( 212 _ g - L09s5 )
1 bit for sign of exponent

2 bits for range of exponent (22 -1 =3)

This second choice may not be as desirable because of the small

range of the eiponent.
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SECTION 6 - CONCLUSION

From the preceding discussion, it is seen that it is

possible to map in real-time the entire IR imagery comprising of

coordinates and radiometric values of the samples. However, it is

possible to map in real-time the entire visible imagery comprising of

only the coordinates of the samples. This conclusion is based heavily

on the assumption that it takes 1.5 microseconds for each addition or .

subtraction, and 6 microseconds for each multiplication.

IR and visible imagery mapping:

Benchmarks

Sample
Coordinates

Radiometric
Values

Total

Entire VIS

_ Entiré-IR Cropped IR
8.6 sec. 5.7 sec. .6 min.
L2 sec. 28 sec. 22.h min.
357 sec. 238 sec. 190.4 min.
6.8 min. 4.5 min. 217.4 min.

The'f61lowing table summarizes the time requirements for

Crooped VIS

3.1 min.

14.9 min.

126.9 min.

“t4h .9 min.



The following table summarizes the expected accuracy of

the distortion-free mapping (DFM) algorithms:

Input Data Output Data
from SDB from DEM
Perfect | . 1 pixel
Normal v 2 pixels'
Bad 5 or more pixels
REFERENCES |

(1) Chan, F. K., "Distortion-Free Mapping of VISSR Imagery Data
from Geosynchronous Satellites", Scientific Analysts and

Coﬁsultants, Inc. Report. (1978).
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Computational Aspects of Geometric
Correction Data Generation in the

Landsat-D imagery Processing.*

I. Levine
General Electric, Space Division

4701 Forbes Blvd.,.Lanham, MD 20706

ABSTRACT

A method is presented for systematic and geodetic correction data calculation.
It is based on presentation of image distortions as a sum of nominal distortioms
and linear effects caused by variation of the spacecraft position and attitude
variables from their nominals. The method may be used for both MSS and TM image
data and it is incorporated into the processing by means of mostly offline
calculations. Modeling shows that the maximal errors of the method are of the
order of 5m at the worst point in a frame; the standard deviations of the average
errors less than .8m.

INTRODUCTION

The geometric correction of the Landsat~type imagery typically proceeds in

two steps. The first, called the Systematic Correction, removes internal distortions
imported in the raw image data by the sensor mechanism, spacecraft motion, inaccurate
sensor pointing, earth's rotation, etc. These partly corrected images still contain
distortions due to uncertainties in spacecraft position and orientation. The second
step, Geodetic Correction, removes these residual distortions using refined values

of the attitude and ephemeris estimates. The refined attitude and ephemeris are
obtained by filtering of image dislocations at Control Points.

Application of the geometric cortection requires the generation of the Correction
Data - Systematic (SCD) or Geodetic (GCD), depending upon the processing step.
This data is developed on a rectangular grid in input (pixel, scan line) coordinates
and- express the relationship between the input and output map coordlnates, w1th1n '
a standard World Reference System (WRS) frame.

The central part of the SCD/GCD generation is the computation of the coordinates of
the intersection of the sensor's line-of-sight vector, with the Earth's surface
(lookpoint coordinates). The lookpoint coordinates must then be converted to
geodetic coordinates followed by mapping into user's map projection. There are two
user's map projections: Space Oblique Mercator (SOM) and either Universe Transverse
Mercator (UTM) or Polar Stereographic (PS).

* Work performed under National Aeronautlcs and Space Admlnistratlon
Contract No. NAS. 5-25300.
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Finally, the data, computed for integer values of pixels and lines, is inter-
polated to integer values of output map coordinates. The grid spacing is chosen
so that the data, together with properly defined interpolation techniques, represent
the output coordinates to the desired precision everywhere in the frame.

It should be noted that all the calculations are performed twice at each grid
point, once for each SCD and GCD. They consume a significant amount of the processing
time, which needs to be minimized. At the same time, there are no essential.
differences between SCD and GCD. Both establish a pointwise transformation, which
may be written generically as

iﬁ = F(pixel,line,p),

where‘i = (Xml’ X ) are map coordinates of a grid point and E'is a vector of
varlables character1z1ng the spacecraft motion, attitude pointing, sensor's
mechanism, etc.

Letting p = 5n + 8§, the sum of nominal values of the variables and the deviation
from the nominals, in the first approximation

Xm = Xm ‘+ u s, (1)

where i%? are the nominal map coordinates and p is the matrix of the partial
derivatives (PD)

3Xm

38

Thus, SCD and GCD may be represented as a sum of the nominal correction data and
pointwise adjustments.

This has significant advantages:

1) It provides .a uniform approach to the SCD and GCD computations, considering
each as one transformation, and

2) Because the nominal spacecraft motion is known for every WRS frame, the nominal
coordinates and the partial derivatives may be computed and stored in a Data Base.

The implementation of such an approach depends a great deal on both the choice
of an output map projection and § An analytic form of mapping not only has to
allow derivation of the coeff1c1ents %, but it should also afford rapid and precise
online inversion to geodetic coordinates, from which the final map projection can
be generated. In addition, it is desirable to have the nominal coordinates and the
partial derivatives, as far as possible, insensitive to global position of the
frame. Thus, although out technique may be applied to most standard map projections
(such as UTM or PS), a special intermediate projection, Local Space Oblique Mercator
(LSOM), has been employed. The LSOM is the Mercator projection for the sphere, with
local 'equator' along the nominal spacecraft inertial velocity at the frame center.
In that projection X and p are longitude~undependent and thus, can be stored only
for one path. A natiral choice of variables § is the along-track, cross—-track and
radial deviations in spacecraft position, together with deviations in the attitude
angles. The nominal spacecraft motion within a frame is assumed to be in a perfect
circular orbit passing through the frame center.
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NOTATIONS

ap = (aplaaPZ’-°°sapK) -

Il =l -

o1

|
1

i
1

ae |
I

Fhi
1

el
{

vector (Kx1 matrix)
the Euclidean ﬁorm of Ep
transposed matrics A

spacecraft position vector in earth-
centered earth-fixed coordinates

spacecraft position vector in nominal
spacecraft coordinates

output map coordinates
pointing vector in body coordinates

pointing vector in local vertical
spacecraft coordinates

pointing'vector in earth-centered fixed

coordinates '

coordinates of a lookpoint on the earth
surface

distance from spacecraft to earth
lookpoint ,

u "G'lv;l - mnormalized lookpoint vector.

local earth radius at WRS frame center
earth rotation. rate

earth equatorial and polar radii



ROTl(W)

ROT,, (¥)

ROT 4 ()

1 0
0 cosy
0 siny

cosy
-0
-siny .

cosy
siny
0

0
1
0

deviation in the pitch
deviation in the roll
deviation in the yaw

along track angular deviation

cross track angular deviation

relative departure in the radial direction
time deviation

(231) matrix of the partial derivatives
of Xm with respect to Gk.

uo= (ul,uz,---,u7)

0

—siny
-cosy

siny
0
cosy

-siny O
cosy O

0

1

84

the 'equivalént' pitch and roll
spacecraft orbital rate
geodetic longitude

geocentric latitude

geodetic latitude



i

v
0 0 0
T'=lo o -1
0 1 0
0 o- 1
T, =| 0 0 0
2 1.1 o0 o0
0 -1 0
T. =11 .0 0
3 lo o o

I - the three dimensional identity matrix

The upper index n indicates the nominal value of a vector.

T - active scan time
act

T ‘- mirror turnaround time
“round _

THE NOMINAL SCD

Coordinate Transformations

The local (1nstantaneous) spacecraft coordinates are described in terms of
the unit vectors (g N3 ,g ), where I, points towards the Earth center, the &
vector is along the orgltal angular momentum, and 52—>E X €, is roughly along
the velocity direction. The local spacecraft coordinatés at the WRS center is
called the nominal spacecraft coordinates. The matrix A transforms a vector X in

earth-centered inertial coordinates to the vector X in nominal spacecraft
coordinates:

X, = AX » (2)

The inertial to earth-centered earth-fixed coordinate transformatlon is
defined as

X =EX,, (3)
where E=E . ROT,(Qt).
The matrix Eo gives the time—indepéndent component of the transformation,
ROT,(Rt) describes the rotation about.the earth axis at the rate §. We assume .that

=70 at the frame center. The corresponding nominal spacecraft to earth fixed
coordinate transformation may be written as

X = ETATX ‘ = PTX" , (W)

where P = AE,
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, -n . . . ,
The unit vector g , given in body (sensor) coordinates, is transformed to local
spacecraft coordinates as

-n :

g = ROT3(—-Gy) * ROT, (-0 ) * ROT(—QP) g _ ‘(‘5)
where Qy, Gr, Op are the yaw, roll, and pitch.
In the nominal spacecraft coordinates, ésmay be expressed as

gs = ROT,(Y)8&

where ¥ is the angle in the orbit plane between the spacecraft and the frame center.
In the nominal spacecraft motion cos Y = - Xg3/ Xs\ , siny = XSZ/“XS“ ,
and thus, the matrix ROTl( Y) is known completely. o

A vector X_ = (X ,, X ,) in LSOM coordinates is defined as
m ml’> “m2 ‘

_ R 1 + sin B
Xml T2 In "1 - sin B . 7
XmZ = Ro

where R is the earth local radius at the frame center. The local polar angles,
o and B, are given by '

Wl = 5136'
W, = cosB » sino _ : (8)
W3 = —cosB . cosO
where -1 _
W= | ul] Au ' - (9)

and u = (ul,u 3u3)vare earth fixed coordinates of the corresponding point on the

ground. 2



Generation of the nominal SCD

The nominal coordinates, Xp, are computed on a grid, consisting of 2nj+l
fictitious scan lines, each line containing 2n+1 points. Because the TM scans in
two directions, it requires two sets of the nominal coordinates, for forward and
backward scans. The computations may be fulfilled in the following order.

1. Generate the time of (i,j) point

€y - -“2?_&%?&@ (tm1-D) + 5255 (onym1) + o1
Here
Tscene = (Tact + Tround) © Wgean = KP
where T is the active scan time, T is the turnaround time, N is the
actual ﬁﬁmber of scans, and Kl = 1 fory MSS and 2 for TM. can
The parameter T = Tscene for backward scans of the TM aﬁd zero otherwise.

2. Generate 2n,+1 unit line-of-sight vectors g" in body coordinates. An actual
mirror velocity profile, together with constant sensor's misalignments may be employed.

3. Compute the spacecraft position vector ig and the matrix P at tij'
4, Compute és according to (6).
5. TransformiS and és in earth fixed coordinates, obtaining the vectors X and f,
respectively.
6. Determine the lookpoint coordinates, u = (ul,uz,u3), and h from the equations
u=x+hf ' - (10)
2 2 -2 2 -2
(ul + uz) a, +u, b =1 , : (11)
7. Transform u into LSOM.coordinates using (9), (8), and (7).

It is convenient to have all distances in units of the nominal orbit radius.

THE PARTIAL DERIVATIVES

Position and Pointing Vectors

Let X be a nominal spacecraft position vector at time t 0’ §, and 65 be the
angular along—track and cross-track deviations in spacecraft p051t10n, aind §, be

a relative deviation in the radial direction. Then the actual spacecraft position
vector, XS, may be obtained by rotating Xn through 64 and 65. This is followed by
‘stretchlng accordlng to the ratio 1 - 66 :

i.xs(1-66)

Xy = ROT,(8;) + ROT, (8,)



Similarly, if 61,52, and §, are deviations in the pitch, roll, and yaw, the actual
(unit) pointing vector g should be written as ’

- , -n
| g,= ROT2 (65) . ROT1(56)gS y
where.éz is defined by (5) and (6) as
-n _ N _ _ '. v _ -n
gs = ROTI(Y) R0T3( SB)ROTZ( 62) ROTl( 51) g

Let t = té + 6, . Remembering that P = P(to) = AE  ° R0T3(Qto)’ we can write
T Lo ‘ .
P” at time t as

T

T _ _ T,T _ o ,
P (t) = ROT3 ( Q(to+67))Eo A ROT3( 967)

T 4 T
| ROT, (-0t JE A" = ROT,(-028)P

and the actual position and pointing vectors in earth fixed coordinates as

X

T g o
ROT , (-26 ) P"ROT, (§5) ROT ( 64)Xs(1—66)

Hh
=

T .

= R0T3(—967)P R0T2(65)R0T1(a4)R0T1(y).
, o . Ca

ROT3(—63) ROTZ(—62) ROTl(—Gl)g

The linear terms of the Taylor series expansions of X and f in the viéinity of
61 =0 (1i=1,2,...,7) give

3 = pL : P P
X = P (L + Ty8,+T,8 ~8 0T 8)%_
- ' . 3
- T ) :
E=" [}+T1ROT1(y)64+T2ROT1(y)&S-ROTl(y) ;E:: T 84~

: i=1

LI . -n
Q ROTl(Y)Gi] 8
Here we used the fact that

5 -
oY

ROTi(w)w=0 = Ti



Introducing = PTROTl(Y)én and

X = PTiz s we finally have

T _ Tn T B T _ oy

X=X"+P (T164+T265 Q?3§7)PX X,66

T=f"4pt (T 18,158 -0T 36 )PE = | (12)

- 2RO, (1) (S 1,808
i=1

The Partial Derlvatlves of Lookp01nt Coordlnates

Henceforth, we will use a prime to denote the matrix of PD w1th respect to $
computed at the nominal point. From (10) it follows that

M % =l = ¥4 nft + nlE (13)
Intrbducing e = e, = 1 and ey = aebe—1 , Eq.(11) may be rewritten as
3

o
He N
~~
>
+
=3
+h
S’
N

or,
2 2 2
h2( Z fiei) + 2h( Z fiXiei) + E Xi e, =

Differentiating the last expression as a inplicit_function of h gives

1 _ _ Z (x% + hfl)(x+ + hfi)e1g

}:f.(x, +.hf.) e?'
1 1 1 1
3T wefxithed

zz:fiuiei

and, after substitution h1 in (13), we have

| R | 1'1§ z 2
u = Co ‘;(Xi + hfy) Uy f e - f (X + hf, )u eli}

i#k

{

(i,k = 1’293)

where ‘ Co = - E'»fiuie%
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. . . -1
Using the matrix notations, u  may be expressed as

1 —1 - : .
u = CX + hfl), (14)

where C is a 3x3 matrix with the elements

_ 2 -1
Ckk =1 + kakekco
_ 2 -1 ,
ij = ujfkejCO (15)

Transformation to LSOM Coordinates

To transform the lookpoint coordinates, u, to the LSOM coordinates, they
i YV o= o -y —1
must be represented in the normalized form V = u “11“ .

Differentiation of V Yields

1 1 —2 1, a=y -1 . . . o
Vk = (Uk - Uk i o1 E UiUi) ffull - and introducing the matrix B with

the elements

2 =2
By = 17U 1T - (16)

V" may be written as
- =1 - =1 _ -
7= T Tt st = T BC(X™ + hEl) (17)
The next step is transformation of V to W and then to iﬁ. From (9) and (17)
it follows that
-1 :
7= )l aBcE + nEh). - (18)

From (7) and (8) it follows that

LRe1n At W1

X1 T LW,
(19)
sz = Rearctan (-wz/w3)

and therefore,

1 2.-1 1
Xm1 —,R(l—Wl) w1

1 2 1 1
X0 = R(I—Wl)(W2W3 - w3w2).
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Introducing the matrix
0 W W : : » (20)

and using (18), we have

X = RO T =
R'Ilﬁl|"l(1—w§)"l DABC(X. + hEb) (21)

T? obtajn the final result, we must substitude an explicit express1on for
X + hf", which follows immedlately from (12):

—hPROT LG T g k= 1,2,3
: plr P + hEY = P'T. PT" k= 4,5
1 1 T3 k-3
Xk + hfk = -
X" k=6
-n —
-aT,U k=7

Description of the Algorithm

Calculation of the partial derivatives is performed 51mu1taneously w1th the
LSOM coordinate generation in the following order.

1. Compute matrices C,B, and D, given by (15), (16), and (20).
2. .Compute matrices

J =

R
ol (=W )
J = gpt

(o]
-1

3. Compute vector Z = Pu

4, Form five vectors

[
1

_h r_ n
1 =7 (05 X 98y-X 48, X 985+ 385)

o
l

9 2 (g3 ,gl z,glx )

J3 - %'(g2r3g1X33’ g1 52)
3, = (0,-24,2,)
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[
|
7~
N
w
R
=)
-
|
N
—
N

5
I, = (Uz,—Ul,o)
He?e r = ‘ii;\\ .
5. 'Cémpute
we = Jo Iy (k = 1,2,...,5)
ﬁ6 = - Jx"
Wy = 039,

Here uk_is the 2x1 matrix of the partial derivatives with respect to &k and thus,

H= ('lil,}lza U3:U4:115’U'6,}l7)-

Note, that SCD/GCD calculations require only the first six pair of the.PD. The
partial derivatives with respect to time,u,, will be used only to generate the
backward scan grid for Thematic Mapper.

The nominal SCD and PD are computed in double precision and stored in single
precision. Because the PD are changing very slowly over a frame, they may be
computed .on a sparse grid followed by linear interpolation onto a finer grid.
For instance, implementation of our technique for MSS requires calculation of PD
on a 3x5 grid. :

THE NOMINAL COORDINATES AND THE PARTIAL DERIVATIVES
'FOR BACKWARD SCANS OF TM

It should be remembered that application of the developed technique to
Thematic Mapper data requires two sets of the nominal SCD and PD - for forward and
backward scans. But actually only one set must be obtained by the direct lookpoint
calculation: LSOM coordinates for, say, forward scans may be easily converted to
LSOM coordinates for backward scans. Our calculations show also that, for sensor's
misalignments less than .10, the derivatives are practically same for both grids;
for bigger misalignment the second set of the derivatives can be obtained by the
linear interpolation of the first onme.

Let X (tl) and X (tz) be LSOM coordinates for adjacent forward and backward
scans at time ty and" 2 respectively. Note, that for the TM :
st =t, -t, $27T
‘ £ 1a

2 1 ot = ,132205 sec

+ Troundv

S0, we will neglect changes in the attitude angles during §t.
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Considering AXm = X (t,)-X (t.) as a function of changes in the spacecraft position,
sensor pointing, and e%fec@s of the earth rotation, we may represent it as

—

AT Xm ' - Xm A Xm =
AX = () Qst+ (=) _ 6 + (=9, 0_+
m 64 t, s 61 ?l p sztl r

X ‘ A A
200 -
+ ARERL (u,, Q  + u )et + “19p + 1, 0

1 -1 £

A A . , : .
Here O and 6 are fictitious pitch and roll angles, reflecting a difference in
" sensorPs poinging at t; and ty, and Qg is the average orbital rate during &t.

Here we Will denote the nominal pointing vector én at moments of time t; and tg
as P_and q, respectively. The angle between their projections onto the
(52,53) plane, (0,,,P,) and (0,9,,9,), can be written as
| A P29y * P35
cos 9 =

5 2%, 7 %
By + P ay + q3)

or, choosing the appropriate sign,
AL A P34y = Pyay
6 “sin 6_ = 5L 5

P Pa-eD g

1
73

. A . ‘ _— -
Analogously, Qr may be expressed as the angle between projections of P and q onto
the (81,53) plane:

P - P

193 391
2.5 2.5

A A
9 ¥sing =
Tr T

For zero sensor's misalignments

A e 2P, P,
P (1-p2)"
1
A
0 =0
r

CONVERSION TO BASIC MAP PROJECTIONS

It should be remembered, that completely corrected imagery eventually must be
presented in two basic map projections, SOM and either UTM or PS. To generate
correction data in a basic map projection, it is required to invert LSOM coordinates
to geodetic latitude and longitude and then perform the standard mapping into
desirable projection.-
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Noting, that the normalized look'point vector,'v, can be expressed through the
geocentric latitude, ¢, and the longitude, ) as

<
il

1 cos\ cos¢

sinA cos¢

<l
It

sing s

<
I

A
and, employing well known formula for the geodetic latitude ¥

N -
tan ¢ = ai beztan $

one can obtain

-1
21 )

arctan [% b -2 V (1- Vg) .]

A arctan (V.V

¢

For a given'fm,'v is computed by the inverted formulae (10) and (9).

NUMERICAL RESULTS
The Accuracy of the Method

To evaluate the methods accuracy, differences between LSOM coordinates, computed

~directly on points of a grid, and those, corrected according to Eq.(l), were
calculated for various spacecraft position and attitude deviations. It is convenient
to characterize the upper level of errors by the maximal along—track (AT) and
cross-track (CT) errors, which coorespond to the errors at the worst points of a
frame (possible different for AT and CT errors). It should be noticed, that the
maximal errors always appear near the corner points and similar for TM and MSS.

They are linearly dependent upon magnitude of deviations and practically 1ndependent
upon WRS latitude. '

The actual position and attitude departures for Landsat-D are expected to be

01° (¢). for the pitch, roll, and yaw and less than 5km in the along and cross track
directions. The radial departure is determined chiefly by the orblt fluctuatlons
and it will not exceed 9.5km.- Modeling shows, that for § = .03°

54 = & = 5km, and § = 9.5km, the corresponding maximal éT ana AT errors have the
order of 5m (CT = 4. 97 m, AT = 5.03m for MSS and CT = 4.97m, AT = 5. 07m for TM).

The inversion from LSOM to geodetic coordinates produces insignificant additional
. errors, therby preserving the same order of errors in UTM and PS projections.

For TM, the forward to backward scan conversion results in CT and AT errors

less than 03m for zero sensor's misalignments; for extremely large mlsallgnments
of the order of 5 the maximal CT errors increase up to .5m. :
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Currently the SCD/GCD generation accuracy for Landsat-D are defined in terms
of the average mean-squared errors (lm for TM and 1.5m for MSS). Table 1 represents
the 90% maximal errors and the standard deviations of the average errors for Thematic
Mapper, obtained by stochastic modeling, Here the attitude angles were normally
distributed with zero means and ¢ = .01°. Two cases of radial deviations were
considered: a constant equal to 9.5 km, and a more plausible value from a uniform
distribution (-9.5, 9.5) km. Because the errors do not depend significantly upon
distribution of the cross and along track deviations, the latter were kept constant
at 5 km,400 samples were used to establish results for each case. The table
also represents a case when PD were computed on a 3x7 grid and then interpolated to
a finer grid. The nominal SCD and PD for backward scans were recomputed from the
data for forward scans. Note, that in all cases the standard deviations of the
average errors are less 1 m and thus, the nominal SCD and PD, precomputed for mean
orbit radius at the frame center, provide the geometric correction with the required
accuracy. . : ' '

Timing

On the VAX, the direct lookpoint calculations take about 11 msec per grid
point, interpolation of PD - 1 msec, the nominal SCD to SCD/GCD correction- less
than .5 msec, and inversion from LSOM to geodetic coordinates - 1.l msec per point.
Application of our technique for MSS requires interpolation PD to a finer grid,
two corrections in LSOM coordinates, and inversion to geodetic coordinates;
altogether it takes about 3.1 msec per point. The direct on-line SCD and GCD
calculation takes about 22 msec per point.

It should be noted, that mapping to the SOM requires about 15 msec per point,
which is considered excessive for on-line processing. This time may be significantly
reduced if we take into consideration the fact that the LSOM closely approximates
true SOM distances between points within each frame. The errors of the approximation
are relatively small (less than 5m) and sufficiently regular to permit linear
interpolation LSOM to SOM coordinates. It may be done by using a 9x9 grid of
corrections, precomputed and stored in the Data Base (Ref. 1).

CONCLUSTONS

The SCD/GCD calculation technique is based on presentation of image
distortions as a sum of nominal distortions and linear effects, caused by variation
of the spacecraft position and attitude variables . from their nominals. The
implementation requires generation and storage of the nominal SCD and twelve (for
MSS), or fourteen (for TM) matrices of PD for each distinct latitude of WRS, along
one path. The maximal errors of the method do not exceed 5.1lm at the worst point
of a frame. The standard deviations of the average errors are less than 1lm.

The speed of the processing and the accuracy that is achieved by this technique
makes it an elegant solution.in the production environment.
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Tdﬂei.

The 907 maximal errors and the standard deviations of the average errors for
constant and uniformally distributed radial deviationms.

-

Distribution interpolation Forward scans Backward écans
gf Fhe'radlal of PD 907% max STD 90% max STD
eviation errors (m) (m) errors (m) (m)
cr | AT {cr | ar cr | ar lcr | ar
no 2.764 2.37} .61 .49 2.781 2.36 ] .6l .49
constant : :
yes 3.09] 2.691] .63 | .67 3.111 2,70} .70 | .72
no 1.31] 1.78} .29 .32 1.33] 1.78 | .58 | .58
uniform
yes ’ 2,194 1L.411F .42 | .35 2.19) 1.40 | .53 .48
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‘The MSS Control Point Location Error Filter

for Landsat-D.*

I. Levine

General Electric Company Space Division

4701 Forbes Blvd., Lanham, MD 20801

- ABSTRACT

The theory and results of modeling for the MSS Control Point Locationm Error
Filter are presented. The filter produces the maximum-likelihood estimates for
average values of the spacecraft position and attitude errors during a single
scene, The quality of the filter performance is characterized by the maximal
cross and along-track residual errors for which probability distributions can
be calculated analytically for a ‘given pattern of control points. The filter
with an automatic selection of the best set of estimates provides geodetic cor-
rection at 90% of pixels with residual errors less than 40m for four or more
control points and the mean-squared measurement errors of the order of 20-25m.
The same accuracy can be preserved for eight or more control points and measure-
ment errors of 30-35m.

INTRODUCTION

The ground control points (CP), whose locations are measured on systematically
corrected imagery and whose true coordinates are known from maps, give highly
precise information on image displacements at each of the CP's. The differences
between true and measured locations provide the input to a filter, which produces
refined estimates of the spacecraft ephemeris and attitude errors. Then these
estimates are used for geodetic correction.

The MSS filter theory, represented in Section I, is based on

1) presentation of image distortions, expressed in Local Space Oblique Mercator
coordinates, as a linear function of dev1at10ns in spacecraft attitudes and
position (Ref.l), and

2) recognition of the fact, that MSS processing is limited to a single scene with
no more than 20 CP's. It is unlikely that any filter can assess the true time
dependence in the deviations during a single scene.. But we still believe that
in ‘some cases the MSS filter will be able to produce an reliable estimate of
average rates. L '

* Work performed under National Aeronautics and Space Administration Contract
No. NAS5-25300.
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- An accuracy of these estimates is discussed in Section 2. The covariance
analysis of the estimate errors shows that image distortions caused by the roll
‘and cross-track deviations are so similar that their origins can be determined
only by near perfect measurements. Thus, the filter is unable to produce an
.reliable estimate of both deviations. At the same time, the filter can provide an
‘equivalent estimate for either variable, say, roll, which compensates distortions
due to both sources. Analogously, for the pitch and along-track deviations.

The analysis of covariances shows also, that initial uncertainties in rates may
be reduced only for the equivalent roll + cross-track and pitch + along-track
rates if there are more than 15 CP's and the mean—squared measurement errors are
of the order of 10-15m. So, in cases of few CP's, that is of interest to us,
only four estimates should be taken into consideration: for the yaw, radial and
equivalent pitch and roll deviations.. ‘

Section 3 introduces three global characteristics of filter performance: the
maximal cross and along-track residual errors, together with combined error in -
distance. These characteristics can be obtained analytically and they establish
upper levels of errors for any given configuration of CP's. The final formulae
for probability distributions are presenteds more details may be found in Ref.2.
It is known that pattern, which CP's form on imagery, have a strong effect on
filter performance. Examples, given in Section 4, show that one of the most im-
portant simple characteristics of CP's distribution is the maximal cross-track
separation, which has been defined as the maximum of the cross-track distances
between every pair of CP's.

The examples demonstrate also, that for every pattern of CP's, measurement
errors, and initial uncertainties in deviations, there is an optimal set of
estimates, minimizing the residual errors. An approximate algorithm, providing
the automatic selection of such a set, is described in Section 5. Results of
modeling indicate that the MSS filter with the automatic selection provides the
90% average errors less than .5 pixel (40m) for 4 or more CP's and the mean-
squared measurement errors of the order of 20-25m, or for 8 or more CP's and
measurement errors of 30-35m.

I. THE MSS FILTER EQUATIONS

Ref. '[1] shows that the local SOM coordlnates of a frame point, X = (XI’XZ)’
may be.represented as :

where ig is true coordinates of the point, § (6 yeees 8,) is a vector of the

spacecraft position and attitude dev1at10ns, and u is a_(2x%) matrix of the partial
derivatives (PD), computed at the same point. Now let 7 = (Z 22 ) be the coordinates
of a CP obtained from a map. We will assume that

Z=X +E, - (2)

where § =(£1, Ez) is a vector of Gaussian measurement errors with zero expec-
tation values and the covariance matrix R.
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From (1) and (2), it follows that the measured at a CP displacement,

X=X-Z=uw-F, | ®
is also normally distributed‘with
E(AX) = E(u8) - E(E) =
cov(di) = E(EET) =
Thus, the conditional probability density_for'ZX can be written as
= (AX/§) = const-exp [-5(Z§ + ug)TR-l(AE + “65]

Let us assume that § is constant during a scene. Then a joint density of
displacements at N control point is
P(Z§1;5§2,. AX'/8) = const 'IT exp(~-% (AX
; k=1
keyT =1~k ke
-u8)" R “(AX - us)) ,
where upper index k indicates AX and u associated with the k-th CP.

A
It is known, that the maximum likelihood estimate of s (we will denote it as §)
is a solution of equation

vL (§) =0 , _ (4)
where N ,
—_ ) b -l JE i — T =1 —] _
I® =wnp=-% 2 Gx - T IE - ), (5)
k=1
and differential operator V ié defined in Appendix.
It is known also that ‘
N 3 .
E@) =6 : . (6)

and in our case (Gaussian conditional’density) the covariance matrix of § is
’ A— A =T — _T.-1 B »
cov(8) = E((8-8)(§- 8) ) = - (VL(§)Vv") (7)
Note from here the summation index k will be omitted. Eq. (4) and (5) yield.

- %Zv(ax-«,us) (TAi-'a)?

5 2wl KLAR -8 ) = | ' (8)
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A o
and thus, the solution § can be written as

A -1 . v o

§ = M Yo , 9)
where
' -1

Mo— Zu R w

wT _l___

Y= J W R X
Noting . that

VLVT=—ZuTR'lu=—M

o
we also have from (7) that

1

cov(8) = MO (10)

Now let £1s &y be independent with the dispersions 0%, 0;-. In that case

R = 0% 0
2
0 02
and (9) and (10) yield
A _ v
S=wly - (11)
' cov('g) = 02 M_1 s (12)

where M, Y are matrices with elements

2 ' .
- v o . .
™ z‘(uli upy t ; Moq Mog ) (13)
02 .
2
= °1 14)
v T Z (uy; 8%+ =5 1y, AX)) (
(6] .
. _ 2 .
, S A -1 . -1 -1
Elements of the matrix M ~ will be denoted as mij , 1.e. M. = (mij)'

A i : .
Once 8§ is determined, it can be used for geoﬂetic correction. With geodetically
corrected coordinates of a point being X + ué-, the residual error at the point,

£ = (el, 82), can be written as
— —_— A — — — —
e =X+ ué _.XO'= X + u@— (X + us) =
A_ .
- wED , (15
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Thus, € is normally distributed with zero mean and the covariance matrix

‘cov(E) = E {u(g—E) fu(§;§)J'T}:= ,
IR F(COIC N R " | - (16)

Eq (16) defines local two-dimensional distribution of the residual errors at a
given frame point. It can be used also for detection of 'outliers', i.e. bad
measurements at CP's. From (3) it follows, that after geodetic correction, the
measured displacement at the k-th CP's, €, » can be expressed as

— A — A —

As a sum of two independent Gaussian variables, € also is Gaussian with zero
mean and the covariance matrix. ' :

cov(Ek) = Gi U Mt wWerR=0Q | (17
The two-dimensional probability density for Ek is represented by the countour
ellipses

@(E) = ET Q—l e = const = XZ

Tt is well-known, that the probability that the 'poiht' e. is inside the countour
ellipse is xz(kz),“so the k—th CP should be treated as an outlier if

- 2 ’ '
@(ek) > A7,

where kz corresponds to a chosen confidence level. For instance, Az = 9,21 for
the 99% confidence level. : '

_ All derived above formulae can be easily generalized to include the case when
§ is a slow-changing function of time. Introducing the average deviations and rates
during a scene, ' ' ' '
o =(al,a2,... az) and B = (81,82,... 82),
we can approximate the deviation at time t as
5§ = a + Bt o (18)
Now the displacement at the k-th CP at time tk is
ﬁk=uk(- -k -
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and the maximum likelihood function of &, B can be written as
L= e ok k- =k -l
L@,B) = <% D (A% - p@E + BtH) R
' k=1 _ '

& ke~ = kT
(AX" = p (o - Bt )) .
From the above, one can obtain that the estimates of o and B (denoted as & andﬁ)

are given by

A

o -1 Y ' o .
AB = Ml YV , ) (19)
where Y is given by (14) and components of Y' are
' 02 : .
y; = Z (4 AX, + ol Moy | AX)t (20)
The matrix M1 consists of four submatrices
MM
M = ?
;1 M’ M

where M is defined by (13) and elements of M' and M", m;j and m;; , are

2

v ( 41 21

myy = Z SPLEE o2 Hoq Hoy)t | (21)
SR ( N o1 2 - '

Mg E ity o2 Hog Moyt | (22)

' A —_ A _
We have also that E(a) =a , R(B) =B -, and

2 -1

AA : . .
cov(a,B) = oy M1 : R (23)
I . y I 3 . A A A |
Introducing the estimate of deviation at time t, § = o + Bt, we have that

A A A
E(§) = E(a) +t * E(B) =a + Bt =86

: A
and. the covariance matrix of § is
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cov(® = E((A-3)B - )0 + 2 t B -a) (B -B)D) +

+t2 B((B-B)(B-8)D=

e

=C+2tc’ +t%c ", _ (24)
where C, C‘ and ¢'' are the fx& submatrices of ME
)
1 cC cC
M]_ = ! (D] . ) (25)
C C '

Further it will be considered that the filter can estimate, at the most, the .
along-track (AT), cross-track (CT), and radial (RAD) position deviations and
rates, together with deviations and rates in the pitch (P), roll (R) and yaw (Y).
‘ Gl and 02 will correspond to the cross—track and along-track measurements.

TI., COVARIANCE ANALYSIS

The covariance matrices, cov(g) and cov (3,6), completely characterize an
accuracy of estimates, which can be achieved by the filter for a given configuration
of CP's and the mean-squared measurement errors 0, and 0,. It is well~known,
that a pattern, which CP's form on imagery, has a strong €ffect on filter performance,
. especially for a small number of CP's. At the same time, our calculations show
- that for N 2 10 elements of the covariance matrices insignificantly depend upon a
distribution of CP's. For 0”0 _ghe standard deviation of the estimates are
approximately proportional té © ﬁ %, At the present time, o, and o, are not expected
to be less than 10 and 12m, respectively; the MSS filter will be processing up to
20 CP's per scene. C

Table I shows the standard deviations of 3 computed for o, = 10, o, = 12m and
50 (randomly located in a frame) CP's. Comparison of the standard deviitions with
initial uncertainties in the spacecraft position and orientation, given in Table 2,
demonstrates complete inefficiency of the filter in that case. The reason is simple:
PD with respect to the R and CT deviations, as well as PD with respect to P and AT,
are almost linearly dependent. As a result, the matrix M is nearly singular, and
thus Eq. (9) can not give a reliable value of 3. In other words, distortions, caused
by the R and CT (or P and AT) deviations, are so similar that the difference would be
revealed only in near perfect imagery by near perfect measurements,

It prompts not to estimate CT and AP deviations at all, considering the cor-
responding image distoritons as a result of additional fictitious deviations in R
and P, respectively. Thus, the filter should be treated as a source of appropriate
geodetic corrections, rathexr than true estimates. '

The covariance analysis for time-=dependent deviations shows that the filter
is unable to produce reliable estimates of the Y and RAD rates even for N = 50: .
the standard deviations of the estimates are 4-5 times as much as their initial
uncertainties. o
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At the same time, the filter provides mediocre estimates for combined R + CT
and P + AT rates when N = 15 - 20 and o,, 0, are of the order of 10-15m. Table 3
shows such an example for N = 20, ¢, = 10, and o, = 12m., Note, that initial
‘uncertainties in the R + CT and P + AT rates are .83 and .82 urad/sec (these values
have been computed by data from Table 2).

Despite the fact, that in some favorable conditions the filter can cope with
these rates, such a case will not be considered below. Being interested chiefly
in the case of few CP's we will take into account only estimates of the P,R,Y and
RAD deviations. '

III. THE MAXIMAL RESIDUAL ERRORS

The current requirements to geéometric correction accuracy are specified in
terms of .5 pixel 90% of the time. Accordingly, we will evaluate the filter
performance by the 90% guantile of probability distribution, computed for the
residual errors which were observed at points of some, say 15x15, grid for randomly
distributed deviations, measurement errors, and possibly, CP's locations. Three
types of the 90% errors may be introduced on two-dimensional grids: for the CT and
AT components of the residuals errors and for the total residual displacements

g = (e + 32)2 The last characteristic will be referred to as DIST.

It should be noted, that actually all these characteristics can be obtalned
only by stochastic modeling. At the same time there are two additional global
characteristics, which can be computed relatively simply: probability distributions
of the maximal CT and AT errors. These distributions describe errors at the
worst frame points and thus establish the upper level of pOSSlble errors for given
CP's.

A

. Let us introduce the error in the j-th estimate, A, = 6, -6,. Now,
Eq, (l5) may be rewritten as J J J

LD Micths
= u,. A, .
2 Z_ H23 73 (3 = 1,2,3,4)

It is known that all PD increase towards the corner points of a frame, The CT and

AT errors also reach maximal magnitudes at a corner point [IX , although it is

never known beforehand at what specific point. At the corner points only four PD,

namely, U,qsH,,5H,,, and #.,, have significant values., Moreover, with an error
212122723 i

less than™.1%Z,"théy may be replaced with their maximum values, u, (retaining, of

course, correct sign). Thus, at the corner points 13

™
|

”~ m ‘m :
f1 T Mg BT Mg by

a M m
€y ¥y A1t ¥p3 8y

Noting that u and u s PD with‘respect to Y and RAD,‘héve opposite signs at the
ends of every Scan liné, we always can find a corner point, where u A and'u

" have the same sign (analogously, for u, A and Wy ). Being indi%%erent to 31gns
of €1 and € 9s W finally have that the maximal (ags fute) CT and AT errors, Y1 and
Y,» are _ '
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(ST RPN I R VACA

| (26)
(T ACTR T B R PPRPY

Here we have omitted the superscript m.

Fortunately, A,, A, and A,, A, are practically independent and thus these expressions
may be used separately to derive corresponding distribution and moments (Ref.2).

The following are the final formulae for mean value and variance of Yi:

v.fz . '
: 2, ,.2 2 '
Var(yi) = (1 - 1r.) (Sl + 82) +
4
+ -E S1 82 ( p »areccos(r) + r - 1) , (28) -
where -
1
r=(1- 02)/2
82 = 02 m—1
1 1 M2 ™22 , _
2 _ 2 -1 \ for i =1
S = 9y Miy My
m—l
p = S 24
’\/m—l T
V™22 7 Mus J

-1 N

2. 22
1 1 Y21 11
2 _ 2 2 -1
Sy = 9y ¥Hp3 733 ) for i = 2
. LY
O S
My * 33 >

The probability distribution of Y; can be written as

A 21/2 : A
Pr(y <A) = —22 exp(- 25 x
. 1 S “/2 Zsl _
1 ‘ 0 :

(F@G@+p  t-n-t) +FB@m-p - t-n-0)~-17dt,
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~ where n=_1 , B=_A ,
82 Sl'r
F(u) = exp(~ t3/2) dt,

1
Var

and S S,, p are given by (29).

1’ 72
For a given value of error, A, the corresponding probability can be easily
computed by means of standard subroutines, Modeling has shown an excellent coincidence
of theoretical and empirical values of E(y,) and Var(y,). Smirnov's Test also
demonstrates sufficient coincidence of thedretical and empirical distributions.

Eq. (26) may be used also for evaluation of the maximal residual error in
dlstance, which we define as
/
= - 2
o (Yl Yz)
We could not derive an exact distribution for dm. But we have noticed that emplrlcal
distribution of d2 are 51m1]ar to Gamma-distribution with the same means and variances.

Because E (d ) and Var ( dm) can be obtained analytically, we have decided to
approximate distribution of dé by Gamma-distribution, which is written here as

A

Pr(A) = bai(a) g‘ g?dléxp(— D du
where
a- BT | o (30)
Var(di )
. Er_éﬁ_) | | | (31)
~<E(dm )

Because, Y 1 and Y, are practically independent,
2 2 2
E(d ) = E(y]) + E(y) _ (32).
C .2 2 2
Var(dm) = Var(yl) + Var(yz). ‘ ‘ (33)

In Ref,2 it is shown that

E(Yi) = sf + sg + 48152 (p arccos (r) + r) » ' (34)»
T ’ )
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and

2 2 2.2 2.3
Var(y]) = 2(8] +83)" + 24818,0  +
32 2 2
+ = (zl +8,)8,8,(r + p arccos(r))
___QZ;%L_ﬁz (r+0p arccos-(_r))_2 | (35)

Here 82, 82 and p are given by (29). ,Eq. (30)-(35) yield a and b, which are used
to compute”a probability Pr(A) = Pr(A”) for any A by means of a standard subroutine
for Gamma-distribution. Smirnov's Test shows sufficient coincidence of the »
approximations and empirical distributions for d_; differences between values of
errors for corresponding probabilities are less than 5-7%.

IV. EXAMPLES

Table 4 presents means, the standard deviations, and the 90% errors for the
maximal CT and AT errors, together with the 90% errors in distance (DIST). These
data have been obtained by modeling (M) and analytically (T) for 0, = 0, = 10m
and initial uncertainties given in Table 2 (except example 9, wheré AT = 185m,

CT = 35m, RAD = 65m, P = R = 120 wrad, and Y = 35 urad).

From 300 to 600 samples have been used to establish results for each case. The
examples correspond to five selected configurations of CP's, depicted in Fig.l.
Table 5 describes the examples and shows the mean-squared errors of estimates.
Examples 1-3 and 7-8 illustrate the fact that for given configuration of CP's,
measurement errors, and initial uncertainties, there is an optimal set of =stimates,
which provides minimum errors. For distribution A, that set includes P and R for
distribution C it includes P,R, and Y. Examples 8 and 9 demonstrate also that

such a set depends upon initial errors in deviations.

As we already know, the partial derivatives . ,, Wi Moy and y,, represent
the main effects of the position and attitude deviations on Image disEortions.
At the same time, there is significant distinction between 1 ,, u,, and Higs Hogt
when the former are almost constant in a frame, the second incfFeasé their
magnitudes along every scan line. Thus, up to the second order effects, P and R
estimates do not depend upon position of CP's in a scene. Roughly speaking, they
depend upon average CT and AT displacements at all CP's. On the contrary, to
detect effects of the Y and RAD deviations, we should observe differences of these
displacements, so the bigger the CT distances between CP's, the bigger differences
in corresponding ”14 and pz , and the higher an accuracy of the Y and RAD estimates.
Thus, a simple but 1mportang characteristic of CP's distribution is the maximal
cross—-track separation, H, which we define as the maximum of cross—track distances
between every pair of CP's. '

Example 1 shows that for small cross—track separations (H=29.7 km) the Y and
RAD estimates are absolutely insufficient (457 wrad and 292 m) and, as a result,
the residual errors are large even for very modest measurement errors. On the
other hand, even smaller number of CP's may lead to better results if they are
'nicely' separated (example 4 for N = 2 and H = 169 km). Comparasion of examples
4 and 5 shows that an along-track shift of CP's does not affect significantly an
accuracy of results if cros—track positions are preserved. In addition, example 6
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suggests that a shift of CP's as a whole in the cross-track direction towards to
the frame bounds increases errors. It implies that it is always desirable to
have CP's placed symmetrically along the track.

Analyzing results of modeling, we have noted that the 90% CT and AT errors
can be approximated as

v; = E(y) + 1.5 \{Var(yi) ' (36)

where E(y,) and Var(y,) are given by (27) and (28). We have no explanation of
that fact, but it was verified on a large number of cases which have shown that
an error of such an approximation usually does not exceed 57%.

V. AUTOMATIC SELECTION OF ESTIMATES

As it has been shown, for every pattern of CP's, measurement errors and
initial uncertainties, there is an optimal set of estimates which reduces the
residual errors. Consequently, the filter's performance can be improved if it
will automatically select an appropriate set of estimates. Our approximate
algorithm of selection is based on the fact that 7y, and v, are practically
independent, and, bigger maximal errors almost always lead to bigger average errors.
In our specific case, the a priori known uncertainties in P + AT and R + CT are
always bigger than errors of corresponding estimates (at least, for mean-squared
measurement errors less than 40m). Thus, these estimates always ought to be
included in an optimal set. Now, all we need is to compute Yy, twice, with and
without the use of the RAD estimate. In the second case, the standard deviation
of the RAD estimate must be replaced with the initial mean-squared error. Analogously

Y2 should be computed twice to determine when the Y estimates ought to be employed.

Table 6 presents the 90% CT, AT, and DIST errors, computed on a 15x15 grid
as a function of © for various number of CP's.* Results for each case
have been establisﬁed by 300-500 randomly generated sets of CP, measurement errors
and deviations. CP's were generated so that the distances between every pair of
them were not less than 75 km for N<€ 4, 50 km for N = 5,6 and 25 km for N= 7.
Additional restriction forbad generation of CP's on the frame borders. The 90%
DIST errors also depicted in Fig.2.

As one can see, the filter provides geodetic correction with the 907% errors
less than 40m if 0. % 20m and N = 4. For o, = 30 m only 8 or more CP's can
guarantee that accliracy. Note these results do not include errors due to neglected
uncertainties in rates. These additional errors, accumulated during 15 sec (i.e.
with respect to the frame center) can be evaluated as 8.6 m (0) in either direction.
Being relatively small, they do not affect significantly the total errors.

It should be pointed out, that the automatic selection only slightly reduces
the average residual errors. At the same time, it essentially moderates errors
in relatively rare cases of extremely bad distributions of CP's.

* Note, that the CT and AT errors are Gaussian and thus may be described also by
the corresponding standard deviations.
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APPENDIX

a - 2 x 1 matrix (vector)

~T -
a = (al,az,...,az) - transposed vector a

E(a) - mathematical expectation of a

cov(a) = E((a - E(a)) (a - E(E))T) - covariance matrix of a
Var(b) - wvariance of b;
_ 3 3 9 - . .
Vs (G5, 5 s eee 52) symbolic differential
861 862 352

operator defined for U = (ul,uz,...,uz) as.

5 3

! ) Y

- 53 3%
ool - 1 1
YLy
35 350

5 )

If A is a & x £ matrix,

viE Tas)vT = 2a
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Table 1

Mean-squared errors in estimates

(N = 50, o, = 10, o, = 12)
P R Y AT CT RAD
urad urad prad m m m
_ 2591 34 375 | 2059 299 20
L . - - e +
Table 2
Initial uncertainties in deviations and rates (lo)
P,R,Y ] AT CT RAD z
deviations | 350 prad 550m 110m 37m
rates .81 urad/sec i .16m/sec .065m/sec .65m/sec
Table 3
Mean-squared errors in estimates.
(N = 20, o = 10m, g, = 12m)
‘ deviations _ e rates
R + CT P + AT i Y : RAD R + CT P + AT
urad prad \ urad | m urad/sec urad/sec
3.3 4.0 [ 52.2 31.1 .5 .6
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Table 4

The 90% maximal CT, AT, and DIST errors (in meters)
Example !
error : : ] ;
| r ’ ' !
L2 3 0 4 5 06 7 8 1 9
A | | :
M 38,3 9.4 - 9.7 12.6:13.3 ,57,1 , 11.0 5.5 .10.9_
e g 42:6;13-3 g
T _;38.1:8.6  8.6;12.2.12.2 55.6 ,11.0 5,3 11.0 ?
M 126.0 ;4.6 4.8 6.6 6.7 40.3 | 6,1 3,2 5,7 |
.Yl STD S . . : : PR P
T 126.8 4.6 4.6 6.6 6.6 41.6 ; 6.1 3.2 6.1
M i72.9 16.0 15,7 21,5 22.4 113,8 :19.4 10.0 18.5
T i75.9 | 14.8 14,8 21.2 21.2 ,115.0 19.3 9.6 19,3 ;
: : _ T "
M 145.8 42,7 30.0 12.9 12.2 . 64.5 {11.8 11.2 7.3 .
mean d e s e i .A._If.......___._,ﬁ. oo . . { ! ey . PR . - :
T 42,1 :42.0 30.7 12.3 12.2 : 61.0 1 10.9-10.9 6,5 |
. . ..,:!._,_.._. , - . . e e . ’ ! .i
M [30.3 :30.7 20.4 6.7 6.5 444 6,0 6,2 3,5 |
T {29.9/29.9 2.0 6.6 6.6 45,7 . 6.1 6,1 3.6
(AT) e - —— 1 - . . PRT—. . . H v N . N -
907 M 188,01 85.9 59.0 22.0 21.0 124.5 20.0 19.6 12.0
T 184.3184.2 57.9 21.2 21.1 1126.7 : 19.3 18.9 11.3
g : " f 1
M ]110.0| 86.4 60.2 27.3 27.8 '154.8  24.6:20.6 20.3
(DIST) T 105.5| 85.5/ 61.2¢ 26.5 28.95156.7 1 26.2] 21,5 22,1
. A . s N
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Description of Examples in Table 4.

Table 5

mean-squared errors in estimates
distribu-
tion
Example . H P R Y RAD
(S . o
(See Figl) (km) | (yrad)j (prad) |(urad) (m)
1 A 29.7 14 13 457 292
2 A 29.7 14 8 457 -
....... SUUUIS SR I
3 A 29.7 8 8 - -
4 } B 169.0 10 10 87 63
5 C 160.4 ' 10 10 | 88 63
6 D 129.5 ' 47 42 46l 298 |
7 E 2.9 7 7 . 93 66
o E o 112.9 1 7 7 93 -
: i { e
,,,,, ,. ¢ .i - - ? -
9 E 112.9 7 7 - 66
CT
o———.
[ J [
[ 4 ®
i ® .
[ ) o
AT
A B C E

Figure 1. Control Point Distributions
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Table 6
The 90% CT, AT, and DIST errors (in meters) as a function of N and oy
(02 = 1,2 01 ).

o 10m = ZQm o = 30m 0 =40m
N " :
CT AT DIST| CT AT DIST CT : AT DIST{ CT AT DIST !
1 {19.0|51.5[53.1 | 33.4] 59.9| 65.7 ] 49.5] 73.3{ 81.6] 68.1] 87.4| 104.
2 13.4 | 31.5433.0 | 24. 47.0] 49.7{ 34.9 57.4) 63.0] 49.0| 65.1 74.4?
3 |10.8]20.6{22.1 | 19.8| 38.8| 40.8 28.4. 47.5| 52.0| 38.2] 58.5/ 65.3
4 110.0] 16.5[18.3 | 17.6| 31.1| 33.7! 25.0{ 45.9| 49.4| 33.9! 51.2| 57.3
| g
5 9.5} 14.4{16.2 16. 29.9{ 32.4, 23.4; 43.4] 46.4 32.5§ 49.8) 55.1.

' i : " '

6 9.01 13.8(14.9 ! 14, 26.6{ 28.6. 20.8: 39.6| 42.5! 28.3| 49.2| 53.3
8 9.0{ 12.9114.4 | 13.6| 23.5| 25.3( 18.5/ 35.1| 37.4| 24.7| 43.0l 47.1
10 8.3{ 11.0y13.0{ 12. 22.5] 24.1 17.8? 30.6{ 33.3! 22.1} 42.3! 45.2
15 7.8] 8.8} 9.9 9. 16.3] 18.1y 14.2f 24.4] 26.5] 16.9| 33.4] 35.2
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Figure 2.

907 errors in distance as a function of measurement errors (02 = 1.201).
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"ONBOARD UTILIZATION OF GROUND CONTROL POINTS FOR IMAGE CORRECTION"

J. Lowrie (Martin Marietta Corporation)

ABSTRACT

Future remote sensing missions require real-time knowledge of the sensor
boresight in earth fixed coordinates for calculation of image distortion co-
efficients and control of a pointing mount for acquisition of off-nadir data.
An analysis of inertial navigation systems reveals an inability of these
systems to adequately solve for the sensor boresight position due to dynamic

misalignments between the sensor coordinate frame and the gyro coordinate frame.

A conceptual navigation system consisting of a GPS receiver, two NASA standard
star trackers, a NASA standard gyro package, and a landmark tracker is presented.
The Tandmark tracking algorithms.have been developed and analyzed, and results
show that the position of the landmark can be determined to within two tenths
of the sensor resolution. The navigation system has been simulated, and a
thorough error analysis has been performed. Results indicate that this combin-
ation of sensors can continuously solve for sensor boresight position in earth

fixed coordinates to within 15 meters.
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"Effective Covariance Deweighting for Precision Estimation"

by C. E. Velez, V. L. Tate,
Computer Technology Associates

Abstract

The Air Force's Sunnyvale Satellite Test Center has had a
continuing need for near real-time high precision orbit estimates
derived from S-Band tracking in the presence of severe atmospheric
and geopotential modeling errors. Techniques based on sequential
estimation using dynamically derived time-correlated process
noise models have been developed and successfully shown to improve
state and state covariance predictability for these cases. This
paper will present the overall approach to sequential estimation
currently planned for the upcoming data system upgrade to the
current Sunnyvale system. In addition, test-bed results
utilizing actual data taken for a medium altitude (e.g. 300 nmi)
orbiter will be shown indicating the nature and magnitude of the

improved performance resulting from the proposed estimator.
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Spin-Axis Attitude Estimation and Magnetometer
Bias Determination for the AMPTE Mission*

ReH. Thompsont

Naval Electronic Systems Command
Washington, D.C. 20360

G.F. Nea]§

Computer Sciences Corporation
Silver Spring, Maryland 20910

¥k
M.D. Shuster

Business and Technological Systems, Inc.
Seabrook, Maryland 20706

Abstract

Algorithms are developed for the determination of magnetometer

biases and spin-axis attitude for the AMPTE mission. Numerical examples

of the performance of the algorithm are given.

¥ Presented at the Flight Mechanics/Estimation Theory Symposium, NASA
Goddard Space Flight Center, Greenbelt, Maryland, October 27-28, 1981.

y Physicist, Electronic Special Warfare and Space Division
§ technical Staff, System Sciences Division "

* .

* Staff Scientist, Research and Development Division
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I - Introduction

This paper describes methods for determining spin-axis attitude
(i.e., the direction in space of the spacecraft spin axis) and
magnetometer biases which are being investigated for ground support of
the Active Magnetospheric Particle Tracer Explorer (AMPTE) mission.

The AMPTE mission will consist of two spacecraft.1 The first is the
Ion Release Module (IRM), provided by the Federal Republic of Germany,
which will be placed in a highly elliptical orbit with apogee at
approximately 19 Earth radii in order to release Tithium tracer ions
outside the magnetosphere. This spacecraft will be spin stabilized at a
rate of 30 rpm. The second spacecraft is the Charge Composition Explorer
(CCE), which will detect the tracer ions inside the magnetosphere at
altitudes of from 300 km to 7.5 Earth radii. The CCE will be spin
stabilized at 10 rpm.

Estimation of spin-axis attitude for both AMPTE spacecraft will be
based on the measurements of the geomagnetic field and the projection of
the Sun l1ine on the spacecraft spin-axis, which we take nominally to be
the symmetry axistiA of the spacecraft bus.

For the purpose of this study, the attitude sensors are assumed to
consist of a three-axis magnetometer and a Sun sensor which measures the
angle between the Sun line and iA' For simplicity it is assumed
likewise that one axis of the magnetometer is along lA' The other

two axes of the magnetometer define XA and_ZA.

The measured quantities are taken to be

Moo= magnetic field vector in body coordinates
cos B = §;XA, where S is the unit vector directed from

the spacecraft to the Sun (B is the "Sun angle").
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Attitude determination activities fall into two areas:

. Determination of spin-axis attitude

. Determination of the magnetometer biases

Because the orbit-apogee distance for these two spacecraft is so
great, accurate geomagnetic field data for attitude estimation is
available only for the segment of the orbit near perigee. This is due to
the poor accuracy of the magnetic-field model at such high altitudes
resulting from both the small magnitude of the geomagnetic field as well
as from fluctuations in the field caused by extraterrestrial phenohena.
However, because of the large spacecraft angular momenta, it can be
assumed for both spacecraft that the spin-axis attitude at apogee will
not differ markedly from that at perigee of the same orbit.

Algorithms for spin-axis attitude and magnetometer bias
determination are now being investigated. These are:

. attitude-independent estimation of three-axis

magnetometer biases and

. estimation of spin-axis attitude from measurements

of the Sun and geomagnetit field angle.
Each of these algorithms are batch estimators utilizing a long segment of
magnetometer and Sun data. The algorithms are developed in succeeding

sections and then tested using simulated AMPTE data.

[T - Magnetometer BRias Determination

The attitude of the spacecraft is usually not known before the
magnetometer biases must be determined. Here an algorithm is developed
which determines the magnetometer bias vector by minimizing a loss -
function which is independent of the attitude.
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The quantities used throughout this section are defined as follows:

Hj(i) = jth component of the model'maghetic field in the
geocentric inertial (GCI) system at time i

Mj(i) = jth magnetometer reading at time i

Bj - jth component of the magnetometer bias vector, which

is taken to be independent of the spacecraft
position

For the ith point, an error (i) is defined by the following equation:
(1)
The objective of this equation is to minimize the quantity 6(i) by

adjusting the bias vector B to its optimal value. Thus, the loss
function to be minimized is given by '

a(1)] ()| G

Nt~z

L(B) =

i=1

where w(i) is the weight associated with the ith data point. The weights
are assumed to be normalized to unity, that is,

N
Z w(i) =1 | (3)

Determining the minimum value of L(B) first requires that its
derivatives with respect to the components of the bias vector be set
equal to zero:

W =0 m=1,2,3 (4)
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where

L _ 4 '? w(i) |[u(i)|% - B - mi)|?] (B - M (i) (5)
3B i=1 Lw ' ) 'w/' w | m~ m\! ‘
Combining Eqs. (3-5) leads to the following results:
3 ‘ |
g 5B = o + F (B) (6a)
k=1
“or in matrix form,
GB=pb+F(B) ~ (6b)
where
=5 (<|ul?> - <|¥ >) -2 <M M> (7a)
Gk mk |»~| h |- ' - m K
_ 2 2
o = <([8]” - 1]y ()
2
Fa(B) = [B]® <B, - M - 2 B-<i>B (7c)
The bracket denotes the weighted average
N _
CA> = ) w(i)A(i) (8)
i=] ,

dmk js the Kronecker delta defined as unity when m=k and zero
otherwise.

Eq. (6) can be solved directly to obtain the best value for the bias
vector B. |



General Description of the Iterative Solution

Eqg. (6) is nonlinear in B and must be solved iteratively. The
zero-th order (trial) solution to Eq. (6), is obtained by dropping the
nonlinear terms in comparison to the linear terms. This approximation is
valid only when the bias is small in comparison with the actual magnetic
field. This point is not critical, as the iteration scheme constructs an
accurate solution even when the trial solution is not close to the true
solution, This will be discussed in more detail in the treatment of the
numerical example.

The trial solution is given by

1

where G~ inverse of the matrix G

i

Q}O) trial solution

1}

This solution may be iterated as

The iteration continues until
83 . g(-1)
- < € 11
NG (1)
k
where € = some arbitrarily small value depending on the accuracy

desired.
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Numerical Examples

The AMPTE engineering data simulator? was used to generate biased
magnetometer data for the purpose of investigating the convergence
properties of the iterative solution. Two cases were considered:

B/H €1
and
B/H» 1

The first case considered was B/H € 1; in this case, 200 data points
were used in the calculation. Data at the perigee point, at which the
magnetic field attains its maximum value, was included. The magnetic
field can be resolved into a component along the AMPTE spin axis, His and
a component perpendicular to the spin axis, Hl‘ The maximum or perigee
values for these components are HTAX
HTAX = 90 mG., The input biases were chosen to be 5 mG, 10 mG, and 15 mG

along the x, y, and z axes, respectively. The results of the bias

= 240 milligauss (mG) and

determination calculation are shown in Table 1 taken from Reference 3.

Rapid convergence and very high accuracy is obtained. The trial solution
0)
gl

needed to be itérated to obtain satisfactory results. Investigation of

(iteration 0) initially was not accurate in the y component and

the case in which B » H used a subset of the data used in the first
test. Here, 100 data points well outside the perigee region were used.
For this test, HTAX = 5 mG and HTAX = 2 mG. As before, the input biases
are 5 mG, 10 mG, and 15 mG. These results® are presented in Table 2., In
this case, convergence is very slow and incomplete. Improved convergence
cannot necessarily be obtained by using standard Newton-Raphson

techniques.
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ITERATION LOSS
0 54621.0 5.00288 12.0278 15.0213
1 5153.0 4.98344 9.38109 14.9473
2 370.0 5.00481 10.1647 15.0152
3 29.0 4.99870 9.95352 14.9959
4 2.0 . 5.00037 10.0128 15.0012
5 0.2 4.99990 9.99635 14.9997
6 0.01 5.00003 10.0009 15.0001
Table 1
Bias Determination Calculation for B/H <1
ITERATION LOSS ’
NUMBER FUNCTION 8, (mG) 8, (mG) 8, (mG)
0 24100.0 18 238 5.3
10 1460.0 3.7 5.5 1.0
20 501.0 4.1 6.1 12.4
30 240.0 4.4 6.3 13.1
40 1330 a5 65 13.6
50 81.0 4.6 6.6 13.9
Table 2

Bias Determination Calculation for B/H > 1
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IIT - Spin-Axis Attitude Determination

Once the magnetometer biases have been chosen properly, data from
the Sun sensor and the magnetometers may be used to determine the
spin-axis attitude. It is assumed that the spin axis is not varying over

the data interval examined.

The spin axis is denoted by\é. The data are

B(i) = measured Sun angle at time i 1‘=1,...,NS
M(i) = measured magnetic field at time i, T=lyaeasNy
Lg(i) = (true) Sun vector in GCI at time i, 1'=1,...,NS

measured from the spacecraft to the sun
H(i) = (true) geomagnetic field at time i, 1'=1,...,NM

Note that there will be no requirement of simultaneous Sun-sensor and
magnetometer data.

The spin-axis (attitude) vector, éﬁ is subject to the following
constraint: '

3ca =1 | o (12)

The spin«axis vector is chosen to minimize the following 1oss
function:

NS .
L(a) = %-.21 we(1) a-S(i) - cos B(i)'2 (13)
1=
NM
+ %- ) wy(1) |8-ﬂ(1) - cos n(i)l --% A asa
=1 - 22
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where

A = Lagrange multiplier chosen to satisfy the constraint
equation '

w(i) = weight assigned to the jth magnetic field
measurement

wy(j) = weight assigned to the jth magnetic field
measurement

The quantity n is the angle between the geomagnetic field and the
spacecraft spin axis given by

n = cos'l(My/LMI)‘ (14)

The weights are normalized to unity

N
ws(i) + .z wM(i) =1 (15)

53 - O (16)
m

s oS > . .
7= L osi) (@8(0) - cos 8(1)) (1)
(17)
Ny
) wy () (é‘ﬁ(1) -cos n(i)) M (i) - Aa_.
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The solution to Eq. (16) may now be written as:
(A, -A8 Ja, =b (18)

where

A = <SS + <M MO (19a)

mk S

bm = <cos B Sm> + <cos n Mm> (19b)

S M

and the brackets denote weighted averages over the magnetometer and Sun
data. That is,

Eq. (18) may be written in matrix notation as
(A-A1)a=b (21)

where I is the unit matrix.

Attitude Solution

A general solution to Egs. (18) and (19) is constructed in this
section. The solution to these equations leads to the spin axis attitude
in the Geocentric Inertial (GCI) coordinate system. Again an iterative
procedure is developed to construct a numerical solution to the
equations. An approximate solution to the problem is to take A = 0,
i.e., to relax the constraint that a be normalized to unity. Given this
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approximation, Eq. (18) may be solved to obtain

at% =t p | (22)

Note that this vector is not normalized. In practice this solution will
be very close to having unit norm since even with A =0, éais overdeter-
mined in general by Eq. (18). Thus, normalizing g‘o)
very good approximation for\é (see Ref, 4). An exact numerical solution

will Tead to a

is generated by solving for X iteratively starting with a trial solution
A =0 and 3(0) given by Eq. (22).
Define the function f(A) by

f(A) = a(r)-a(r) -1 (23)

Given the numerical value of a(A), the Newton-Raphson method is used to

determine A. Differentiating Eq. (23) gives

of 2a

=t = 22 ° ¥ (24a)
and
%“af = (A - M)'l a - (24b)

The Newton-Raphson scheme gives

W3) -1 rp-h)

%{(x(j-l)) (252)
a2 a @ty (25b)
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Numerical Example

The spacecraft orbit in this example is of the AMPTE type, and the
Sun and magnetometer data used covered the perigee point. The data is
perfect (uncorrupted by random error) as generated by the AMPTE
simulator. The "true" value of the right ascension, @, and declination,
§, were chosen to be |

R
i

159.67 deg o v (26a)

[+
1]

0.0 deg ‘ (26b)

The zero-order result as given by Eq. (22) was

Q
n

159.55 deg - (27a)

0.073 deg ' (27b)

(o)
1}

in very good agreement. After ten iterations, the values changed only
slightly, as expected, namely '

159.76 deg o (28a)

Q
I

O
|

= 0.062 deg ' (28b)

IV - Conclusions

Efficient and reliable algorithms have been deve1oped for spin-axis
attitude and magnetometer bias determination for the AMPTE spacecraft.
Using simulated numerical data it was demonstrated ‘that the methods work
well for AMPTE mission parameters. The present work does not address
problems associated with noise, data rate,vsensor misalignments and etc.
These problems were investigated in references (3) and (5).
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A MATHEMATICAL MODEL OF LANDSAT-D ATTITUDE DYNAMICS

WITH INTERNAL MOTION

S. D. Oh, G. W. Abshire, and J. M. Buckley

Computer Sciences Corporation, Silver Spring, MD

ABSTRACT

An algorithm to model the effects of internal motion by the
solar array and the high-gain antenna on the attitude of the
Landsat-D spacecraft is presented here. The relative torque
and angular momenta arising from the internal motions are
assumed to be attitude-independent but are considered to be
a source of attitude perturbations. The equation of motion
for the three-body problem is derived and then compared with
the one-body case. The effect of the internal motion on the
control of the spacecraft is shown in a computer study of
the problem.

1. INTRODUCTION

The paper presents algorithms for modeling the effects of
internally'moving parts on the attitude of the Landsat-D
(LSD) spacecraft. The internal motions considered here in-
clude the rotations of the solar array to follow the Sun and
the gimballed high-géin antenna to communicate with the
Tracking and Data Relay Satellite (TDRS) (Reference 1). The
LSD system is treated as a rigid three-body system for de-
scribing the equation of motion. Modeling the disturbance
torques produced by moving appendages is very important for
missions such as Landsat-D, which require accurate knowledge

of the attitude and precise control of the spacecraft.

The relative torques and angular momenta arising from the
internal motions are considered as attitude-independent
variables and as a source of attitude perturbations. The
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external disturbance torques and the angular momenta caused
by the internal motions are generated in a profile program
(called PROFILE) on an IBM S/360-95 computer, where null
attitudes are assumed and are transmitted to a truth model

on a DEC PDP-11/70 computer that simulates the effects on
the attitude.

' In this discussion, nonstandard rotations such as a 45-de-
gree slew of the solar array to avoid interference with the
antenna and the switching motion of the antenna from one
TDRS to another are neglected. 1In addition to the rota-
tional motions of the solar array and the antenna, the LSD
spacecraft contains moving parts such as the thematic mapper
and multispectral scanner (Reference 2) . However, these
motions are disregarded here because the motions are oscil-
latory with a high frequency (=7 Hertz) and because they

generate zero average angular momenta.

Section 2 discusses the mathematical derivations of the
equation of motion and pertinent terms such as the moment of
inertia (MOI) tensor and the center of mass (CM). When pos-
sible, these terms are compared with the form for the one-
body system used by the Multimission Modular Spacecraft
(MMS) /Solar Maximum Mission (SMM) spacecraft. Section 3
provides simulation results to compare the three-body and
one-body cases. Conclusibns resulting from the study are
presented in Section 4. '

2. ANALYTICAL CONSIDERATIONS

This section presents the mathematical modeling to describe
the dynamic effects of the moving parts on the motion of the
spacecraft. The equation of motion for the LSD mission 1is
referenced at the CM of the entire system but is represented
in a coordinate system that is fixed in the main vehicle.
‘The CM of the entire system is calculated as a function of
time. The MOI tensors for the moving parts are reevaluated
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with respect to a set of time-independent axes parallel to a
set in the main vehicle. Also calculated are the angular
velocity of the appendages and the perturbation in the ex-
ternal torques due to the changing positions of the append-
ages. A comparison with the one-body problem is made.

2.1 COORDINATE SYSTEMS AND TRANSFORMATIONS MATRICES

The system under consideration, shown'in Figure 1, consists
of the main carrier &ehicle; designated as body Bo,_and
n(=2) moving bodies Bj (=1, n). Several coordinate sys-
tems are convenient for discussing the relative motions.
These are as follows:

° Geocentric Inertial Coordinate System (GCI) (Refer-
ence 3)
° Orbit-Defined Coordinate System (OCS) where X.

(roll) is nearly along the spacecraft velocity vec-
tor, Y (pitch) is along the orbit normal vector,
and Z (yaw) is along the nadir vector

e Spacecraft-Fixed Coordinate System (BCS), which is
fixed in the main vehicle B,

° Coordinate Systems fixed in moving parts such as in
the solar array (SACS) or in the high-gain antenna
(ANTCS)
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GE POINT OF Bj

CM OF\THE SYSTEM

\ 4
<>

8331/81

FaN
X
NOTE: Q. = the CM of B,

?&M = the CM of the entire system
EJ = the CM of Bj from Toy
Xj = the hinge point of Bj
3} = the angular velocity of Bj in inertial space
ﬁ} = the angular velocity of B. relative to the main

body BO (wj = wy * w%)

Figure 1. Partitioning of the Satellite Into Main Body
and Moving Parts
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The transformation matrices (TRMA) to be used in this paper

are defined as follows:

1. TRMA from GCI to OCS : (0]
A A a
(RI X VI) X RI
Y
|R; x 9
[0] = |-—=-—————- (2-1)
o D
_RI X VI
Pl A\
IRI x vI|
Pay
R .

where ﬁI and GI denote the spacecraft position relative to
the Earth and velocity unit vectors in the GCI frame, re-

spectively.

2. Attitude direction cosine matrix from the QOCS to
the BCS : [A]. 1In the PROFILE Program [A] is given by the
identity matrix because null attitudes are assumed. In the

truth model, it is represented as

1 y -P
(a] = |~y 1 r ' (2-2)
P -r 1

using the small angle approximation, which is sufficient and
valid, since only small perturbations are assumed; r, p, and
y denote roll, pitch, and yaw angles in radian units, re-

spectively.
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3. TRMA from BCS to SACS : [C(SA)

rotates around the ?-akis and isidrivenvto follow the Sun.

]. The solar array

Thus, its orientation is determined from the Sunline angle a

cos a 0. -sin o

[c(SA)y = (o], = | 0 1 0 o (2-3)
' sin oo .0 cos o
‘ . ) A T A. . .
Given the Sun unit vector, S = (Sx' Sy’ Sz) , in the BCS,

the rotation angle a is given by

. .
& = tan™t (§5> (2-4)
z

pbecause the Sun vector is perpendicular to the X-axis of the
SACS. '

4, TRMA from BCS to ANTCS : .[C(ANT)

has two gimbals with the inner gimbal angle, =Py repre-

]. The antenna

senting the elevation angle and the outer gimbal angle,
9y representing the azimuth angle. The orientation of

the antenna is determined from the gimbal angles

(ANT), _ '
= ], (o
V% z
;os 9, cos 92 sin g, cos g, -sin g, (2-5)
= -sin g, cos g; 0
cos‘gl sin g, sin g; sin g, cos g,

The unit vector pointing from the spacecraft to TDRS is re-

P )T in the BCS.

al LN
presented by 2 where‘P = (PX, Py' z
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The gimbal angles are thus given by

-1 ' :
9, = tan (Py/Px) _ : (2~6a)
and

g, = —sin"t p (2-6Db)

since 91+ 9, should align the antenna boresight (the X-axis
. in ANTCS) with the normalized pointing vector ?. (@ can be
obtained from the spacecraft and TDRS ephemerides.)

2.2 ANGULAR VELOCITY OF MOVING PARTS

The angular velocity of the moving parts is used to calcu-
late the internal angular momentum of the spacecraft for use
in the equation of motion. It is easily seen from Equa-
tion (2-3) that the angular velocity of the solar array is
as follows: '

— do A .
' = == -
“sa T at ¥ (2-7a)
The time derivative of the rotation angle o can be com-
puted numerically
da _ a(t) - a(t - At) _
dt At (2-70)
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Using Equation (2-5) the angular velocity of the high-gain
antenna 1is '

sin 9, dgz
g 3 dt
o = _Ei Z o+ _32 [ v = d
ANT ~ dt gt %1 ) Y =Y cos 9, 92 (2-8a)
: dt
dgl
dt
where
dg. g.(t) - g.(t - At)
i_7i i (2-8b)
dt . At

For SMM, the angular velocity of the moving parts was not
calculated.

2.3 CENTER OF MASS

For LSD, the CM of appendage Bj in the BCS is given by

T, (t) = [C‘j)(u]T Ty - Xo) + X (2-9)
] J0 J ]

where E%O represents the CM of Bj at the initial time (;i?
Figure 1). The rotation (or hinge) point is denoted by X,
and 5}0 - i} represents the CM of Bj from the hinge pointJ
at the initial time. Then, at any later time, the CM will
be represented by the first term of the right-hand side of
Equation (2-9). The CM of each appendage changes as a
function of time because the high-gain antenna rotates to

track the TDRS, and the solar arréy rotates to track the
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Sun. Consequently, the CM of the system, changes 1in

Fom
time and is represented by

n n

?EM(t) = :z: M, 5}(t) :E: M, (2-10a)

r=0 r=0

and the position of the CM of each appendage with respect to
the CM of the system is

. (t) = Q.(t) -

j 3 rCM(t) (2-10b)

For SMM, the CM of the system was fixed in time in the BCS.

2.4 MOMENT OF INERTIA TENSOR OF THE SYSTEM

The MOI of the system, [I, ], relative to axes parallel to

T

the BCS axes passing through r is expressed by

CM

. n
_ | = L2
(Tp(8)]yn = D /dmr PRI R o

r=0

- olap(e) + oo 0y (@ (e) + pr]m$
where E} is the position vector of the mass dmr of body
Br relative to the CM of'Br and the subscripts 1 and m
represent the 1 and m components of the vector or tensor.

Note that because‘&} is time-dependent, [ is also de-

IT]lm
pendent on time; in the remainder of this paper, the ex-

plicit time-dependence will be dropped.
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The above equation can.be written as
: n : : )
_ 2. _ ~(r)] | 1oy
[IT]lm - :z: }Mr [qrélm @)y (qr)m} +'[; lms (2-12)

r=0 S

since

_[?(r)] is the MOI tensor of B, represented in the BCS frame
but relative to.the CM of B :

Ty = (@ T () o) (2-13)

where [I(r)] is the MOI of Br represented in the coordinate
system fixed in Br' Equation Y{2-12) can be simply reexpressed
by _ _

L |
- (r) | 214
(1) = Yo ) (2-14)

with

SE2) D 7¢-2') BNV I JO l. -
[J }lmv-v{l ]lm * Mr lqrélm (qr)l (qr)m b (2-13)

For the one-body problem, as represented by SMM, I is de-
fined to be a constant in time.

2.5 EXTERNAL TORQUES

Two external torques are discussed: the gravity gradient
torque and the ‘aerodynamic torque. The solar radiation
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torque is similar to

external torques are

The gravity gradient

~m

GG = ~H

Z

where u is the Earth

14 2

1014 m3/sec?).

r=0

R is

the aerodynamic torque, and the other

not sensitive to the three-body problem.

torque, N can bevcomputed by

GG’

-~

N R + o, + a}m
‘ ' [R + o +'ﬁ}j

gravitational constant (=3.986005 x
the spacecraft position vector from the

—

Earth. Considering that. IRI1>> IS} + Bl Ny, is simply,

A».n
o :ﬂ
Nee T 13 :z:
=0
n
R I
=0
= 2% R
R
=0
= ig'ﬁ X [I
Rv

The expression

except for the

GG

A SA . B A ~(r) /\)_
r qr X R(qr R) + R x [ ] R$
' (2-17)
X [J(r)] R
] R

for the one-body system has the 'same form
replacement of [IT]’by the'cohstant (1].

To simplify the calculation of the solar radiation.and aero-

dynamic torques, the LSD spacecraft is modeled as an as-

sembly of a cylinder for the main vehicle, flat plates for

the solaf array panels, and a sphere for the antenna. Only.

the aerodynamic torque is discussed here because the modi-

fications to the center of pressure (CP) are common in solar

radiation and aerodynamic torques.
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The aerodynamic torque, Naero’ is
8
N =--1c¢ o v? Z A, « C(@.. . x @) 4aa (2-18)
aero 27D i cp,i i
i=1

Here, ¥ denotes the spacecraft velocity unit vector, ﬁi

denotes the normal unit vector for the ith surface, ?i:p i
r

Lem!

the atmospheric density, and CD denotes the drag coeffi-

denotes the CP of the ith surface from p denotes

cient. The normal vectors, ﬁi, for the solar array and

antenna surfaces are dependent on time by

a (i)]T N )
n, = [C nvio (2-19)

where ﬁio represents the initial normal vector for the ith

surface. G, for the solar array and antenna are com-

cp,i
puted by
Tep,i Qcp,i T e (2-20)
with
= . '<i)}T = R iy
3 - [c (Cp 10 - &) *+ % (2-21)

cp,i

More consideration is required to specify [C(l)] for the
solar array surfaces that are canted. The transformation

matrix from BCS to these surfaces, [C(l)], is given by

€y = e®¥y e, (2-22)

with the canted angle ec.
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For the one-body case of SMM, n, and‘ﬁép j are constants,
. 14

2.6 EQUATION OF MOTION

The equation of motion for the LSD spacecraft is written in
the form

= F(¥(t), t) (2-23)

where ¥ = (q, T, T q, (W =1, 2, 3, 4) denotes the
Euler symmetric parameters representing a rotation from the
GCI to'the spacecraft-fixed coordinate frame, f& is the
total angular momentum of the spacecraft, and 1., is the

W
wheel momentum.

e

The body angular momentum of the main vehicle, LB’
given by the total spacecraft angular momentum minus the sum

is

of the wheel momentum, payload momentum,'fk, and the angu-

lar momentum, caused by the internal motions

Linge
T =T -T. -T -7 (2-24)

-

LB depends on the angular velocity of the main vehicle,
ﬂ%, and E}NT depends on the angular velocity of moving
parts,‘ﬁ%. To formulate these mathemaﬁ}cally, the
angular momentum of the total systenm, LT' ignoring wheel

and payload momenta, is considered

0
=)
+
o

L}
w2
.+.
©
~
»x
t
»
N
[oF
3
=

— (2-25)
- z

-2 ng Tx v T @ W)y
r=0
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With some computation, L; can be shown as

n
- _ - Z { o (r) (£); —= | )
Lp = [IT] Wy + ([J ] + [K ] w£$ (2-26)
r=0 _
where
(r) _ (e . = _ % - = |
(K Yim = M (qr (Tem X Syn (Tem xr)l qm§
Thus, the body rate of the main carrier is simply
T o= (1) T, - (2-27)
Wy = tiq B ‘
and“"INT caused by the internal motion, is
- ‘ I |
- _ 2 : (r) (r) — .
. LINT = I[J ] + [K ] wr$ _ (2 23)
' . r=1 ’
The time derivatives of the Euler symmetric parameter,
q,, can be obtained as '
dg
_GH - —]:- - -
3t 5 [Q(wo)]pv q, (2-29)
with
0 Wy -W wy
-w 0 w W
1= 3 1 2
@l =1 , - 0 " (2-30)
1 3 ,
- Wy W, Wy W,
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The time derivative of the total angulaf momentum of the

spacecraft is given by the Euler equation as

[oN

T _ - -
gt = Nexe T Lp X W, : (2-31)

is given by

For SMM, the'body angular momenta,'fé,

Lg = Ly - Ly - Ty (2-32)

with ‘the payload‘momentum_fﬁ.- The spacecraft body rate,
W, is determined by

1 1. :
w=fw,}= [T] LB .(2f33)
Y3
where [I]_l is the inverse of the spaceéraft MOI tensor.
The time derivatives of the Euler symmetric parameters,
qu, can be obtained as '
dq
_u 1 | | -
It 5 @1, a,. | (2-34)

The time derivatives of the total angular momentum of the

spacecraft are given by the Euler equation as

d—h
- = N + L. x W ' , ; (2-35)

14-15



3. SIMULATION RESULTS

A computer study of the effect of the three-body problem on
the motion of the spacecraft has been made using the general
equations derived here. Since the spaéecraft is subject to
noticeable external torques, a control law that provides
compensatory torques was necessary to keep the spacecraft
near null attitude. The one-body case, using the same con-
‘trol law, was also studied.

The roll, pitch, and yaw of the spacecraft main carrier for
both cases is shown in Figures 2 through 4. The results of
the three-body case are represented by the "X" pcints and
the results of the one-body case are shown as open circles.
Note that both cases are subject to the same control law.
This control law attempts to make the pitch, roll, and yaw
zero and to bring the spacecraft rate to null. This control
law is the same one (Reference 4) that Landsat-D will use
during its acquisition phases. The torque applied to each

reaction wheel is as follows:

for the roll axis,

Tr = Kr(krAr + wr) {3-1a)

for the pitch axis,

= ' -1b
T, = K, [k (8p + B) + w] (3-1b)

and for the yaw axis,

T =K.  [w, -k k. w.] (3-1c)

where Ar and Ap are the roll and pitch attitude errors as

determined by an Earth sensor; Kr' Kp, K., kr’ k ky, and k

y p’
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are constants; B is a bias to compensate for the orbital ro-
tation; and W wp, and wy are the angular velocity along
the roll, pitch, and yaw data. Because of the values used for
kr’ kp' and ky' the control law is much more sensitive to
the spacecraft rate than to the attitude error.

Most of the structure seen in the plots is a result of the
control law. However, since the control law is the same,
the differences in the plots are a result of the three-body
problem. Note in Figure 2 that after 4.5 minutes the con-
trol law has the roll rate to zero for the one-body problem
but not the three-body problem. Likewise, after 2.5 min-

utes, the pitch rate of the one-body problem is under con-
trol.

4. CONCLUSIONS

The conversion of the rigid one-body problem to the three-
body problem has added another dimension to the study of
dynamics. Although the exact perturbations in motion are
obscured by the control law used, the effects are still im-

portant in control of the spacecraft.

The algorithms used in this paper can be applied to other
spacecraft such as the Space Telescope to study important
low-frequency effects, as in this paper, and also higher
frequency effects that will cause jitter.

14-20



REFERENCES

General Electric, Landsat-D Flight Software Requirements
Specification, December 1979

--, Landsat-D Jitter Review, May 1980

Computer Sciences Corporation, CSC/SD-79/6080, Solar
Maximum Mission (SMM) Truth Model Attitude Simulator
Algorithm Description and Operating Guide, F. E. Baginski

and R. E. Galasso, June 1979

General Electric, PIR-1D50-LSD-714, Earth Acquisition
and Pointing with the Earth Sensor ASsembly, R. Wolfgang,

October 1980






SPACECRAFT ATTITUDE POINTING PERFORMANCE DURING ORBIT
ADJUST AS A FUNCTION OF COMPENSATOR ORDER

S. Basuthakur, R. Duelfer, A, Peckjian and T. Stick
General Electric Company
Space Systems Division-
Control Systems Engineering Department
Building 100, Room U7025
P. 0. Box - 8555
Philadelphia, PA 19101

15-1



SPACECRAFT ATTITUDE POINTING PERFORMANCE DURING ORBIT
ADJUST AS A FUNCTION OF COMPENSATOR ORDER

For many communication satellite missions; it is required that the
control system performance during velocity adjust mode does not degrade
appreciably from the nominal pointing requirement. During velocity adjust,
many factors contribute to the development of disturbance torques that exceed
the capacity of the reaction wheels. This necessitates the use of thrusters
to provide the control torques. The spacecraft weight constraints force the
use of off-pulsing techniques. While off-pulsing the orbit adjust thrusters
may eliminate propellant penalties, it also introduces additional disturbances.
The thruster plume impingement torques increase dramatically when the bal-
ancing effect of both thrusters firing is lost.

In order to meet the attitude pointing error requirements under a set of
constraints outlined above, a steady'state’compensator of specified order is
proposed to estimate the required duty cycle needed to balance the disturbance
torque. The compensator order has been increased gradually to demonstrate the
improvement in pointing accuracy. The basic mathematical model of the flexi-
ble spacecraft and sensor used to characterize the performance of the compen-

sator can be described as follows:

5(e) = (02 + 90)H - 280y T(t) - WP, W(L) (1)
H(t) = Td - TC (2)
8,(e)= - 1 8, (c) + 1 6(t) (3)
Tl Tl
9,(t)= -1
2 Tzez(t) + % el(c) (4)
2
W(e) = z(x) (5)
T(t) = -2£05(t) - w p(t) + BoH(t) (6)
i‘d = 0 (7)
y(t) = 8,(t) + v{t) (8)
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T., T. = Sensor time constant

1° "2

Td = disturbance torque

TC = control torque

8 = gpacecraft attitude

el = sensor output after first break

62 = sensor output after second break

H = the spacecraft momentum

¢l = gpacecraft rigid body admittance = (Inertia)_l/2

¢2 = gtructural admittance at first symmetric (pitch) or
asymmetric (roll/yaw) frequency

£ = gtructural damping

w = structural frequency

g = modal deflection

] = integral of modal deflection

y = noise corrupted sensor measurement

\Y = measurement noise

G = sensor gain

The continuous model of the estimator has been represented as
z=Fz+hy (9)

u = —ng (10)

where matrices F, h define the compensator structure and g is the feedback
gain. The vectors z and u define the compensator state and the control

respectively.
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The problem presented in this paper involves éstimating the distur-
bance torque '1‘d using a compensator of specified order as represented in
equations (9) - (10). As a baseline, the compensator is assumed to be a
third order to estimate the rigid body position, the momentum and the dis-
turbance torque. The compensator order is gradually increased to estimate
the sensor states and the fléxible mddes; Having spécified the dimension
of the compensator, the matrices F, h and g have been chosen'td minimize

the performance criterion involving quadratic function

T e L
A et e
QZX QZ '?" .

The performance criterion for this problem has been chosen as

J =Lim E(L)
-y

where E (*) denotes expection.

The attitude pointing performance has been documented as a function of
the dimension of the compensator., The analysis thus provides a trade-off

between increased pointing accuracy and increased complexity in on-board

software,
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Abstract

Computationally effibient algorithms are presented for determining
single-axis attitude from the measurement of arc lengths and dihedral
angles. The dependence of these algorithms on the solution of trigono-
metric equations has been much reduced, Both single-time and batch.
estimators are presented along with the covariance analysis of each

algofithm.
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I. Introduction

Since nearly every spacecraft is spinning during part of its
life--in particular, at the time of orbit injection--spin-axis attitude*
estimation is an important segment of almost every mission support
operation. Indeed, for spin-stabilized spacecraft there is often no need
(or desire) to determine the complete three-axis attitude at every
point and, in fact, when accuracy requirements for the spin-axis attitude
dictate that many measurements taken at different times be processed
simultaneously, the computation of a three-axis attitude may not even be
possible,

Very often, three-axis attitude information is definitive data
required chiefly by mission scientists and generally processed anytime
from several days to several months after the receipt of telemetry. The
need for efficient three-axis attitude estimation algorithms in those
cases is determined by the definitive data rate. When three-axis
attitude information is required in real-time for the purpose of attitude
control, this is usually provided on-board by three-axis gyros (e.g. SMM)
or on the ground by the spin axis and a third angle, which can be
obtained by monitoring some other sensor reading such as IR scanner pitch
(e.g. AEM, Magsat).

Spin-axis attitudes by contrast are usually required not only as
definitive data but also by the ground support system in near real-time
for the purpose of monitoring spacecraft performance and determining
large scale attitude maneuvers. Thus, the efficiency of a spin-axis
attitude estimation algorithm becomes a factor in the safety and daily
operation of the spacecraft.

*
Since the single-axis attitude of interest is invariably the spin-axis

attitude these terms will be used almost interchangeably throughout this
work.
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While a number of highly-efficient algorithms exist for three-axis

! the computation of spin-axis attitude? is by

attitude estimation,
comparison very clumsy. This is largely because the computation of
three-axis attitude uses complete vector measurements in general and can
take advantage of the linear properties of Euclidean three-space. The
computation of spin-axis attitude, on the other hand, must rely on
incomplete vector information (the measurement of arc lengths and
dihedral angles) to determine a quantity (the spin-axis) which is
restricted to the surface of a sphere. Thus, while three-axis attitude
computations need only execute simple matrix operations, the computation
of spin-axis attitude is beset with the burden of solving complex
relations from spherical trigonometry.

Since spin-axis attitude is usually not computed frequently, the
need for efficient algorithms is not immediate, at Teast not for ground
support systems. The determination of the spin-axis attitude from batch
measurements of arc 1engths and dihedral angles has become highly
standardized and reliable® and there is no obvious need to replace th1s
software in normal ground support operat1ons.

The need for more efficient algorithms lies in two areas: 1) the
eventual implementation of spin-axis attitude computation in onboard
microprocessor-based attitude determination systems; and 2) the computa-
tion of spin-axis attitude accuracies, which imposes a far greater
computational burden than computing just the attitude due to the greater
number of terms and because the computation of the attitude covariance
involves implicitly the computation of derivatives of the attitude.

The 1arge computational burden imposed by the need to solve
spherical trigonometric equations in the computation of spin-axis
attitude covariances is evident in the work of Wertz and Chen,z’l"6

the most complete and careful work to date. The difficulties which are
encountered in this approach are of two kinds: 1) the complexity of the
trigonometric relations, themselves, and 2) the fact that for certain

16-3



cases the representation of the quantities being.calcu1ated becomes
indeterminant while the quantities themselves are well defined. This
last difficulty is simply a manifestation of the fact that the
representation of rotations by Euler angles is sometimes ambiguous and is
overcome in the same way, namely, by changing the representation.

The need for computing spin-axis attitude covariance matrices is
two-fold. - Firstly, it is necessary to be able to assess the accuraéy of -
‘a spin-axis attitude computation during the spacecraft mission,

Secondly, it is important to be able to predict spin-axis attitude

_ accuracies for mission planning, particularly in the determination of
launch windows. For an example of launch window computations using the
geometrical approach see Chen.’ |

The purpose of the present work is to develop algorithms for
computing spin-axis attitude and the associated covariance matrix without
- relying as heavily as do current methods on the solution of trigonometric
equations. A completely vectorial approach is, of course, not possible
owing to the nature of the measurements themselves. However, in large
degree many of the trigonometric equations can be abandoned with the
result that the spin-axis attitude and, particu]ab1y, the covariance
matrix can be computed more efficiently. '

The types of measurements studied here are of two kinds:

measurements of arc length, which will always be the angle

between the observed direction and the spin axis.

measurements of dihedral angles, i.e., the angle between two

planes, where the 1ine of intersection is assumed to be the
spin axis.®

Dihedral angles, in gehera], are measured by observing two crossing
times in the spacecraft and multiplying by the angular velocity. Arc
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lengths may be measured in a variety of ways, for example, by direct
sighting (as of the Sun or a star) or by measuring the component of a
vector along the spin axis (e.g., the magnetic field vector). The
measurement of the nadir angle is hybrid in that an arc length (the nadir
angle) is determined from the measurement of a dihedral angle (the Earth
width), It is the measurement of the nadir angle which is the source of
most of the computational complexity.

Estimation algorithms may be classified either as deterministic
(usually single-frame, i.e., single-time) algorithms, in which a minimal
sdbset of the available data is chosen to compute the spin-axis attitude,
or as optimal (batch) algorithms, in which a larger quantity of data is
used from which one computes a "best" result. Three cases are treated in

this report
1) A deterministic estimator using two arc-length measurements,

2) A deterministic estimator using the measurements of two arc
Tengths and the included dihedral angle. (Since in this
case the spin-axis attitude is,over-determined the question
of optimality is also discussed.) |

3) An optimal batch estimator utilizing any number of
measurements of dihedral angles and arc lengths,

In each case the covariance analysis is presented in detail.

In the appendix the measurement of the nadir angle is presented. It
is at this point thét‘trigonometric relations cannot be avoided, at least
in so far as measuring instruments (horizon scanners) are presently
constructed. The treatment is similar to that of Wertz and his
collaborators (Ref. 2) but a method is given for avoiding sign
ambiguities. '
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The treatment of single-axis attitude estimation presented here
complements that of Wertz., The advantage of Wertz's treatment is that
the variances along two great circles of the celestrial sphere
intersecting at the direction of the spin axis and the dihedral angle
between these two circles (the correlation angle) is given fairly
directly. Much less direct is determining the covariance of the
spin-axis vector in inertial space. This part of the calculation falls
out simply in the present formalism.

The results presented here are quite simple although they do not
seem to be generally known. An important result, which is demonstrated
here, is that little accuracy is lost by relaxing the constraint in the
optimization that the spin-axis vector be a unit vector and then
unitizing post hoc. This is responsible for a great deal of
simplification of the methods presented here, especially for batch
estimation,

II. Single-Frame Spin-Axis Estimation from
the Measurement of Two Arc Lengths

Consider the simplest case in which the measured quantities are B,
the Sun angle (the angle between the spin axis and the Sun vector), and
n, the nadir angle (the direction between the spin axis and the nadir
vector). The case where one of these measurements is replaced by the
magnetic field angle is analogous.

Let § denote the Sun unit vector, E the nadir vector, and § the spin
axis. Then

:§':’l.= cos B = cg (1a)
Een=cosn= cp (1b)
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The direction of the spin-axis can then be determined simply by using a
method that has been published recently by Grubin,9 though it has been in

use since the beginning of the space program and probably has been known
for several hundred years.

If S and £ are not parallel, then it is always possible to write

n=af+af+a §xE (2)

The problem is now to determine the coefficients dgs 8ps Aye

From Eqs. (1) and the normalization condition we have

Cg = :’.‘..:S. = ag + aE( ':E.) (3a)
cp = k= aS@-ﬁ) +a (3b)
1 =000 = a§ + ag + 2agap(S°E) + aﬁlé. ><£|2 (3¢)
which have the solution

ag = ——— [cg - cg(3:8)] (4a)

IS~ E|
ag = —L— [cp - cg(8:E)] (ab)

g

1 Y- 2 s 2 2,-1/2

= W |3 = E|° - (e5 - 2egep(§eB) + 1V (4c)

16-7



Note that there are two possible solutions for n. ~These are shown
geometrica]]y_in Figure 1.

It will be conveniént to define the following quantities

az| S c=| S (5)
ac Cp '
- T
| 1 &b
U= '-T—Jt—f' (6)
IS<E° | g

where the tilde below the letter denotes a two-dimensional’vector or a
2x2 matrix.

Eqs. (4) can now be written

a=Uc | (7a)
Wt ere” )

The covariance analysis is now straightforward. Define the three-
vector ' ' |

& | | | (8)
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Then the covariance matrix of the measurements is given by

P, = <8¢ 8> | (9)

~ where the bracket denotes the expectation value and 6c is the error in c.
~ The covariance matrix of the spin-axis direction in the non-orthogonal
coordinate system is

P. = <Sa 6aT> : - (10)

a W -

and in an orthogonal coordinate system v

P = <6n Sp> (11)

"~

Substitution of Eqs. (7) in Eq. (10) gives readily

'
Moy -
Py=|——m—— | (12)
. |
Vs
with
M= <sasal>=up uf (13a)
SRLY | (130)
S=blMb | (13c)
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The orthogonal representation of the covariance matrix is then obtained

as

p=TP,T _ (1)
with

T=[3iE:3xE (15)

where the right member of Eq. (13) denotes a matrix Tabeled by its column
vectors,

It is easy to verify that
Pn=0 (16)
as required by the condition that‘ﬁ be a unit vector.
A further representation can be obtained by writing
]
|
M i

i
Pa = B -_tf—l
0"

\

[{en)]

T T

—— 1B
0

=B MB (17)
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where

B=|———t—— (18)

Equations (17) and (14) may now be combined to give

2 2 T
P=1) 1 Mis X Xs (19)
i=1 j=1
where
FREE RN (202)
o =E+ b (3x B (20b)
Eq. (16) is again satisfied since
X \n=0 i=1,2 (21)

IIT. Single-Frame Spin-Axis Estimation from the Measurement
of Two Arc Lengths and the Included Dihedral Angle

The ambiguity in determining the spin-axis observed in the previous
section is removed if the included dihedral angle is also measured. The
dihedral angle v is defined as the angle between the (S,n) and (E,n)
planes and is easily shown to be given by

o (8 = E)

/ (1-(§_-ﬁ)§)(1-(£-:n.)§>

sin ¢ = (22a)
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(S-F) - (3:n)(En)

Y = . - 22b
T aEna-EnD #2)
tan ¥ = —————4ﬁ£1§Lf-£Q———- (22c)

($-E) - (8-8)(E:n)
The geometry is depicted in Figure 2.

To determine the spin axis attitude it will be convenient to define

Ch =-J(1-c§)(1~c§) sin ¢ (23)

and
&=l | | (24)

The vectordzis now determined by four equations

cg = a,S + aE(§_-§_) N (25a)
Cg = as(§1§) *+ap (25b)
ey = |3 % £ s " (25¢)
NTIRTE N .
- a2 2 13 x g2
1= a5+ ag + 2agap(S°E) + ay |§x£| (25d)
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The three components of g are now overdetermined. The most convenient
solution is obtained by solving the first three equations, which are
linear, leading to

a=Uc (26)
where
1 (3B o]
v —L—  [-&hH 0 (27)
SxE
"‘ I 0 0 1

The spin-axis n given by this a, however, is not properly normalized
since the measurements are not exact. A properly normalized spin-axis
vector is then obtained by simply normalizing the solution

n =g/|a| (28)

The covariance matrix of a is given simply by

P =1U PC U (29)

(30)

similarly to Eq. (14). The covariance matrix of the properly normalized
spin-axis vector is recovered simply as

P=—=QP,Q (31)

il
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where

Q=1-54d (32)

[ =2

It is well to ask how good is the approximation of ignoring the
normalization condition and then normalizing the solution post hoc.
Instead of this seemingly brutal approach one can find the best solution
to Eqs. (25abc) subject to the constraint of Eq. (25d), i.e., one seeks
to minimize the Toss function

L(a) = (c-A0)" Pt (c-Pa) (33)
subject to the constaint
éTA£=1 (34)

where

T N 0 (35)

The solution is straightforward and yields

. |
dopt = (A=2P) " g | (36)

where X is the Lagrange multiplier for the constraint and from Eq. (34)
is the root of the equation

oS =1 (37)

which yields the smallest value of the loss function.
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Equation (36) may be rewritten

-1

where a is given by Eq. (26). Since‘_gopt is expected to be close to a,

it follows that APCU must be small. An approximate solution for‘gopt can
be obtained by expanding Eqs. (37) and (38) in APCC and solving. This

yields
: T
»s 1 l'ﬁ A.g
Bopt ~ 2" 7 Tl vV )
c

Now

<1-3"Aa> = Tr(P.U) (40a)

T

<(1-2'A2)% =4 a'p a (40b)

C-u

so that the additional root mean square (rms) error in a when optimality
is not taken into account is of the same order of magnitude as the rms
error in the cosine measurements. However, the source of this additional

error, as shown by Eqs. (40) is the error in the normalization. Hence
this error will be greatly reduced when the unit vector is normalized.

IV. Batch Estimation
The value of avoiding trigonometric expressions becomes more obvious

in dealing with batch estimation. The cbmputational advantage of the
present approach over the geometrical approach3 is substantial.
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For batch estimation the non-orthogonal basis cannot be used since
only the Sun vector is constant (and then only for relatively short data
spans). The present treatment focuses on the case where the measurements
consist of two arc lengths and the included dihedral angle. The
extension to other cases is straightforward. |

Let cs(i), cE(i), cN(i) be a series of measurements of the Sun
projection, the nadir projection, and the Sun-nadir dihedral angle,
respectively. Then the best solution for the spin-axis is obtained by
minimizing o

LN Y
L(n) izl { °§ |C5 n §i|
BT
+o§ ICE 51“51'
ey B £);[% } (a1)
N

subject to the constraint

(42)

§3°
§=.>
]
—

In order to decrease the number of subscripts in the expressions it has
been assumed that each data type is available at each time and that each
measurement type has a single characteristic error. Except for a
proliferation of subscripts the expressions which follow are not changed

when this assumption is removed.
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The minimization of Eq. (41) subject to the constraint is
straightforward and leads to

f=many | (43)
where
N 1 ~ AT 1 A AT 1 A A A A T
M= 1 588+ 55k +5 @x5;G Dy} (44a)
i=l o o] o
S E N
N 1 ~ . " 1 . A 1 . A A
J - .21 5 Egi) & + 5 cp(i) By + 5 cy(1) (3 xB) ) (asb)
1= g [0} g

S E N
and A is the root of

T 1

v V=1 45
.,.(M—_”')?w (45)

which Teads to the smallest value of Eq. (41).

As in the previous section it can be expected that the constraint
can be ignored (A=0) and the solution be approximated by

o =1/|n| (46)
where
-1
n=M Y (47)
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This approximation has been tested for one spacecraftlo and been observed

to be quite good. The covariance of n is given by

_w-l
P, =M (48)
and the covariance of the normalized solution is given again by
P=—tx QP Q (49)
LI -

V. Measurement Errors

The computation of the spin-axis covariance matrix requires as
input a model for the covariance matrix of the cosine measurements.
Expressions are derived here for computing these for the case of Sun and
Nadir measurements. The treatment when one of these measured quantities
is the magnetic field is treated in the same way.

Sun Measurements

The quantity measured is usually the Sun angle, B. Hence,

Scg = -singds - (50)

Nadir Measurements

If the spacecraft has angular velocity w, then the Earth width is
‘given by

Q = w(to-tl) ' (51)

where tI and to are the in- and out-triggering times, respectively, of
the Earth scan (for a momentum-wheel mounted scanner, w will be the
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angular velocity of the momentum wheel).

Then, using the results from the appendix

§ é
CE cosn

acosn

Bcosz

Q
Sécos vl

sinn Q
- §
Toty - cotn °%% 7

sinn

. Q
coty - cotn (sin 70 (Gto - 6tI) (52)

-2
"2

where v is the scan-cone half angle.

Dihedral Angle Measurements

The dihedral angle ¥ is determined from the time interval from the
Sun crossing to the mid-point of the horizon scan

v = ultg -lz(to Lt (53)

Thus, (8,2,¥) or (B,n,p) is a set of statistically independent
variables. The "dihedral cosine" Cy» however, is given by

cy = sinB sinn siny (54)
hence

Scy = cy[cots &8 + cotn én + coty &v] (55)

From Egs. (50-55) the covariance matrix Pc can easily be calculated.
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To a large degree, much of the trigonometric complexity which has
been removed from the attitude solution has simply been shifted to the
computation of a derived measurement covariance matrix. There is,
however, a substantial gain because the covariance matrix need not be
computed to the same degree of accuracy as the spin-axis attitude
itself. Hence, a great deal of computational approximation is possible,
such as approximation of the trigonometric functions by simple rational
functions.

Appendix - Measurement of the Nadir Angle

Because the Earth is an extended body the nadir vector is not
measured directly but determined from measurements of the Earth width.
Earth widths are measured by a horizon scanner, which effectively is a
sensor mounted on a rotating cone (of half-cone angle y) about the
spacecraft spin axis, which detects the crossings of the Earth horizon on
the scan cone., The Earth has an effective angular radius of p, which is
a function of altitude and (for a non-spherical Earth) latitude. The
Earth width is the dihedral angle between the in- and out~crossings (HI
and HO) the horizon by the scanner and is denoted by ©. These quantities
are related by the spherical law of cosines?

€osp = cOSY cosn + siny sinn cos(2/2) (A-1)
The geometry is depicted in Figure 3.
Eq. (A-1) may be solved to give

cosp cosY * sinp cos(2/2) JAcosZo
A

cosn =

(A-2)
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where

2

A = cos? + sin?y 0052(9/2) (A-3)

The sign ambiguity may be eliminated if another measurement is
present, say that of the Sun angle, 8, and the Sun-Earth dihedral angle,
Y. Let & be the arc length from the Sun direction to the mid scan point

cos& = cosB cosSY + sinB'sinY cosy (A-4)

Then it is possible to show that the underdetermined sign in Eq. (A-2)
must be the same as that of

(cosB - cosy) (E*S - cosg)

Alternatively, one may consider simultaneously Sun and horizon
measurements. This leads to three simultaneous equations

cosB cosn + sinB sinn cosp = -8 | (A-5a)
cosY cosn + siny sinn cos(9/2)7= cosp (A-5b)
cos?n + sin?n =1 (A-5c)

Equation (A-2) was obtained by solving Egs. (A-5b) and (A-5c)
simultaneously. One could just as easily solve Eqs. (A-5a) and (A-5b)
for cosn and sinn, The result will not necessarily satisfy Eq. (A-5c)
but the two equations have the advantage of being linear. The solutions
can then be renormalized to satisfy Eq. (A-5c).

This approach of ignoring the proper normalization for the
trigonometric functions has another advantage in that a simultaneous
solution to Egs. (A-5b) and (A-5c) may not exist in certain extreme cases
because the measurements are not exact. By solving Eqs.  (A-5a) and
(A-5b) a solution will always exist. '
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There 15, however, one clear disadvantage. If Eq. (A-2) is used then
B, n, and ¥ will be statistica]]y independent. If, however, the linear
equations are solved, n will be correlated with 8 and ¥, Thus, the
simplicity gained in computing cosn is counterbalanced by greater
complexity in computing theﬂmeasurement covariance matrix Pc.

Figure 1

Single-Axis Attitude from Two
Arc-Length Measurements
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Figure 2
Single-Axis Attitude from Measurements
of Two Arc Lengths and One Dihedral Angle . A
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Figure 3

Geometry for Nadir-Angle Determination

16-24



2.

4.

5.

6.

7e

8.

9.

References

Shuster, M.D., and Oh, S.D., "Three-Axis Attitude Determination from

Vector Observations," Journal of Guidance and Control, vol. 4,
n0. 1, ppo 70"77, Jan.-FEb., 1981.

Wertz, J.R. (ed.), "Spacecraft Attitude Determination and Control"
(Chapters 10 and 11), D. Reidel Publishing Co,, Dordecht, the
Netherlands 1981.

Werking, R.D., "A Generalized Téchnique for Using Cones and Dihedral
Angles in Attitude Determination," NASA X-581-73-292, September 1973.

Wertz, J.R., and Chen, L.C., "Geometrical Procedures for the Analysis
of Spacecraft Attitude and Bias Determinability," Paper No.
AAS75-047, AAS/AIAA Astrodynamics Specialist Conference, Nassau,
Bahamas, July 28-30, 1975. |

ibid, "Geometrical Limitations on Attitude Determination for Spinning
Spacecraft," J. Spacecraft, vol. 13, pp. 564-571, 1966.

Chen, L.C., and Wertz, J.R., "Single-Axis Attitude Determination
Accuracy," AAS/AIAA Astrodynamics Conference, Grand Teton Nat. Park,
Wyoming, Sept. 7-9, 1977.

Chen, L.C., Attitude Determination Accuracy Constraints on the SIRIOQ
Launch Window, Computer Sciences Corporation, CSC/TM-76/6210,

September 1976.

Wertz, J.R., "Spherical Geometry," in Wertz, J.R., (ed.) Spacecraft
Attitude Determination and Control (Appendix A), D. Reidel Publishing

Company, Dordecht, the Netherlands, 1978.

Grubin, C., "Simple Algorithm for Intersecting Two Conical Surfaces,"
J. Spacecraft, Vol 14, pp. 251-252, 1977.




10. Thompson, R.H., Neal, G.F., and Shuster, M.D., "Spin-Axis Attitude
Estimation and Sensor Bias Determination for AMPTE," Flight
Mechanics/Estimation Theory Symposium, NASA Goddard Space Flight
Center, Greenbelt, Maryland, October 27-28, 1981.

16-26









