
NASA-CP-2205 19820002191

NASA ConferencePublication2205

SixthAnnual

FlightMechanics/Estimation
Theory Symposium
October198.1

i!
I

Eugene Lefferts, Editor ':'-;'_,Ji__

Goddard Space Flight Center I_/!)!/0'_i '1!i)_:1_

L/J,N(:_Lj-,_,i ,_:..::,u,m.,_:.'

' , fVASAJ
rf, \lVht-,r.),V .

, ,,, ,'li?(_rtVl.,/._

Proceedings of a Symposium

held at Goddard Space Flight Center

Greenbelt, Maryland,

October 27-28, 1981

N/ A





SIXTH ANNUAL

FLIGHT MECHANICS/ESTIMATION

THEORYSYMPOSIUM

OCTOBER1981

EUGENELEFFERTS,EDITOR

GODDARDSPACEFLIGHT CENTER

PROCEEDINGOF A SYMPOSIUM
HELDAT GODDARDSPACEFLIGHT CENTER
GREENBELT,MARYLAND
OCTOBER27-28, 1981





FOREWARD

The papers presentedhere have been derivedprimarilyfrom speakers'
summariesof talks presentedat the Six Annual FlightMechanics/Estimation
TheorySymposiumheld October27 and 28, 1981, at GoddardSpace Flight
Center. For the sake of completeness,abstractsare includedof those
talks for which summarieswere unavailableat press time. Papers included
in this documentare presentedas receivedfrom the authorswith little
or no editing.
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A COMPARATIVE STUDY OF THE HARRIS-PRIESTER,

JACCHIA-ROBERTS, AND MSIS ATMOSPHERIC DENSITY

MODELS IN THE CONTEXT OF SATELLITE ORBIT

DETERMINATION*

R. E. Shanklin, Jr., T. Lee, M. K. Mallick, R. A. Kuseski,

and J. O. Cappellari, Jr.

Computer Sciences Corporation

ABSTRACT

Extensive comparlsons of the Harris-Priester, Jacchia-

Roberts, and MSIS (Mass Spectrometer/Incoherent Scatter)

atmospheric density models as used in satellite orbit deter-

mination are summarized. The quantities compared include

Bayesian weighted least squares differential correction sta-

tistics and orbit solution consistency and accuracy.

*This work was supported by the Operations Analysis Section,
Operational Orbit Support Branch, Goddard Space Flight
Center, National Aeronautics and Space Administration,
under Contract NAS 5-24300.
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SECTION i - INTRODUCTION

Atmospheric drag is a significant perturbation of Earth sat-

ellite orbits with perigee heights of less than i000 kilom-

eters. The acceleration of a spherical satellite due to

atmospheric drag is given by the equation

i
Adrag 2 m

where D = atmospheric density at the position of the satel-
lite

V = satellite velocity relative to the atmosphere

A = satellite reference cross-sectional area

C D = satellite drag coefficient
m = satellite mass

Therefore, calculation of the drag acceleration requires

knowledge of the atmospheric density as a function of posi-

tion and time.

This paper presents the results of a comparative study of

three different global atmospheric density models in the

context of orbit determination. The three models compared

are the Harris-Priester (H-P) model, the Jacchia-Roberts

(J-R) model, and the Mass Spectrometer!Incoherent Scatter

(MSIS) model.

The Harris-Priester model is based on theoretical tempera-

ture profile solutions of the heat conduction equation under

hydrostatic equilibrium conditions. The model assumes two

heat sources: solar extreme ultraviolet (EUV) heating and

an artificial heat source that produces the diurnal varia-

tion deduced from satellite drag calculations. In the mod-

ified Harrls-Priester model used for this study, the EUV
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heating level is selected by choosing among i0 different

altitude-density profile tables representing i0 different

levels of solar flux, and the diurnal variation is modeled

by a correction calculated using a power of a cosine

(References 1 and 2).

The Jacchia-Roberts model is based on empirical temperature

profiles scaled by an upper boundary exospheric temperature

(T). Analytic density calculation is accomplished through

integration of thermodynamic equations. The modeling in-

cludes corrections for EUV heating, solar particle flux

(so-called geomagnetic) heating, semiannual variations, sea-

sonal variations, and the diurnal variation (References 2

and 3).

The MSIS model is based on fitting spherical surface har-

monic expansions to match the angular dependence exhibited

by mass spectrometer and incoherent scatter measurements.

The MSIS formulation includes sections that model EUV heat-

ing, solar particle flux heating, annual variations, semian-

nual variations, diurnal variations, semidiurnal variations,

terdiurnal variations, and departures from diffusive equi-

librium. MSIS modeling has been implemented in a special

GTDS load module. Dr. Hedin and his associates at the

Goddard Space Flight Center, who developed the model {Ref-

erence 4), contributed advice and some of their program sub-

routines during the GTDS implementation.

Table 1 shows sample density profiles for the three atmos-

pheric models with two different solar EUV levels and one

geomagnetic activity level. Figure 1 shows the Jacchia-

Roberts and MSIS densities, relative to the Harris-Priester

density, as a function of altitude. The figure shows max-

imum ratios as high as 2.0 but, as is apparent from the

table, the three profiles are quite similar in overall shape.
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TABLE 1. ATMOSPHERIC DENSITIES COMPUTED USING HARRIS_°RIESTER,
JACCHIA-ROBERTS, AND MSlS MODELS

DENSITY (kg/km 3)

ALTITUDE HARRIS°PRIESTER JACCHIA-ROBERTS MSIS

(kin) F10.7 = 116.2 F10.7 = 140.0 F10.7 = 116.2 F10.7 = 140.0
F10.7 = 125.0 F10.7 = 150.0 --

F10.7 = 135.1 F10.7 = 165.3 F10.7 = 135.1 F10.7 = 165.3

150 .205 E + 1 .206 E + 1 .193 E + 1 .210 E + 1 .203 E + 1 .204 E + 1

200 .224E 0 .255E 0 .228E 0 .270E 0 ;274E 0 .313E 0

250 .459 E - 1 .583 E -- 1 .559 E -- 1 .721 E - 1 .636 E -- 1 .802 E - 1

300 .129 E - 1 .178 E -- 1 .177 E -- 1 .249 E - 1 .187 E- 1 .255 E -- 1

350 A25 E -- 2 .631 E -- 2 .637 E - 2 .977 E - 2 .633 E -- 2 .926 E -- 2

400 .155 E -2 .247 E -- 2 .246 E -- 2 .4i3 E -- 2 .236 E -- 2 .368 E - 2

450 .521 E -- 3 .879 E -- 3 .835 E -- 3 .157 E -- 2 .780 E -- 3 .131 E - 2

500 .218 E -- 3 .392 E -- 3 .353 E -- 3 .724 E - 3 .324 E - 3 .582 E - 3

550 .963 E - 4 .182 E -- 3 .155 E - 3 .344 E- 3 .139 E 3 .266 E - 3

600 .451 E - 4 .851 E -- 4 .706 E - 4 .169 E - 3 .619 E --4 .125 E -- 3

650 .227 E - 4 .451 E -- 4 .339 E - 4 .851 E - 4 .285 E -- 4 .600 E -- 4

700 .112E-4 .217 E--4 .154E--4 .394E-4 .120E-4 .259E-4

750 .691 E - 5 .127 E --4 .878 E - 5 .219 E -4 .623 E -5 .134 E -4

800 .464 E - 5 .804 E --5 .548 E - 5 .128 E -4 .352 E -5 .728 E -5

850 .316 E -- 5 .462 E -- 5 .348 E - 5 .737 E - 5 .200 E - 5 .378 E - 5

900 .245 E 5 .301 E -- 5 .258 E -- 5 .500 E - 5 .137 E 5 .236 E - 5

950 .198 E-- 5 .201 E-- 5 .201 E - 5 .361 E - 5 .102 E - 5 .158 E - 5

1000 .163E 5 .141 E--5 .155E--5 .262E-5 .761E--6 .107 E-5
co

NOTES: 1. Kp = 3.3 FOR JACCHIA-ROBERTS DENSITY AND Ap = 33 FOR MSIS DENSITY ARE USED.

2. THESE PROFILES ARE FOR AUGUST 30, 1978, AT A LATITUDE OF 46 ° N, AN EAST LONGITUDE OF 205 °,
AND A LOCAL SOLAR TIME OF 1:40 P.M.
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SECTION 2 - COMPARATIVE STUDY STRUCTURE

All the results presented in Section 3 of this paper are

based on Goddard Tra3ectory Determination System (GTDS)

Bayeslan weighted least squares differential correction so-

lutions. Nine different series of six GTDS Differential

Correction (DC) Program runs were made for each of the three

atmospheric models. Three different satellites, with per-

igee heights between 310 and 560 kilometers, were studied;

other orbital parameters for these satellites are given in

Table 2. The nine series of orbit determination arcs are

listed in Table 3.

Each series contains six 30-hour-arc solutions. The solu-

tions are used to generate 30-hour ephemerides that overlap

adjacent ephemerides by 6 hours. The ephemerides are then

compared in order to determine the maximum position differ-

ences (in the orbital reference frame) during the overlap

periods. The 162 DC Program solutions produce 135 maximum

overlap position differences. These differences are used to

evaluate the consistency and accuracy obtained when each of

the three atmospheric models isused.

Each differential correction solution is made up of seven

numbers: three position coordinates, three velocity coor-

dinates, and the drag variation parameter (pl), which is
a scaling factor in the drag acceleration equation, i.e.,

-_d - i CD --_-_rag 2 m A pll + 01) IVl V

This scaling factor is applied during generation of the

ephemeris that uses the differential correction solution.
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TABLE 2. SATELLITE ORBITAL ELEMENTS

PERIGEE APOGEE INCLINAT)ONSATELLITE DATE HEIGHT HEIGHT
• (kilometers) (kilometers) (degrees)

AE-3 AUGUST1,1978 _1 341
MAGSATOCTOBER,1,•1979352 581 97

MARCH1,19_0 _2_ 471 97

SAGE FEBRUARY 19, 1979 560 655 " 55
o3

TABLE 3. COMPARATIVE STUDY SERIES

SERIES
NUMBER SATELLITE TIMESPAN

1 AUGUST 1-6, 1978

2 AE-3 AUGUST 14--19, 1978

3 SEPTEMBER2--8, 1978

4 OCTOBER31--NOVEMBER 5, 1979

5 DECEMBER1--6, 1979

6 MAGSAT JANUARY 1--6, 1980

7 FEBRUARY 1-6_ 1980

8 MARCH 1--6, 1980

9 SAGE FEBRUARY19--25, 1979
co
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Spacecraft attitude is not considered, since a spherical

model is employed. Furthermore, no aerodynamic forces

(e.g., lift) other than drag are modeled. The spherical

approximation is crude for all three satellites, and it is

possible that other aerodynamic forces are nonnegligible.

However, it is reasonable to expect that both assumptions

have a negligible effect on the results of this study,

because the results are obtained by applying each of the

three atmospheric models to the same arcs with the same ob-

servation sets. Simply stated, unmodeled aerodynamic forces

should perturb the solutions for all three atmospheric

models in a similar manner.
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SECTION 3 - COMPARATIVE STUDY RESULTS

This section summarizes the results of this comparative

study of atmospheric density models In the context of

short-arc (30-hour) orbit determination. A detailed, run-

by-run presentation of these results is available in Ref-

erence 5. Two cautionary remarks are appropriate.

First, these results should not be interpreted as a compar-

ison of atmospheric models; conclusions about the relative

merits of the models must be limited to this highly spe-

cialized context--short-arc orbit determination in which an

average drag scaling factor is solved for.

Second, any series of orbit determination and ephemeris com-

parison runs may contain a few sporadic large overlap dif-

ferences and a few differential corrections with large RMS

residuals. Some of the runs included in this study show

such large differences and/or high RMSs.

The average weighted RMSs and the average maximum position

differences for the three AE-3 series are glven in Table 4.

The averages over all three series are also given, along

with the ranges of the EUV heating index (FI0.7) and the

solar particle flux index (Kp). The averages show that

the Jacchia-Roberts overlap differences are about 11.5 per-

cent (24 meters) smaller than the Harris-Priester averages

and that the MSIS averages are about 19 percent (38 meters)

larger than the Harris-Priester averages. The 62-meter dif-

ference between the Jacchia-Roberts and MSIS averages cannot

be considered either large or significant.

The same information is given for Magsat in Table 5. This

study includes five series of arcs. The Magsat results show

that both the Jacchia-Roberts and MSIS average differences

are about 9 percent larger than the Harris-Priester average
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TABLE 4. COMPARATIVE ATMOSPHERIC DENSITY MODEL STUDY RESULTS
FOR AE-3 (AUGUST AND SEPTEMBER 1978)

HARRIS-PRI ESTER MODEL JACCHIA-ROBERTS MODEL MSIS MODEL

RANGE OF F10'7 RANGI_ OF MAXIMUM MAXIMUM MAXIMUMSERIES AVERAGE AVERAGE AVERAGE

I'_ (1 ) Kp POSITION POSITION POSITION
I 0 -22 watt/(m 2 -Hz) WEIGHTED WEIGHTED WEIGHTEDDIFFERENCE DIFFERENCE DIFFERENCE

i._= RMS (meters) RMS (meters) RMS (meters)C)

AUGUST 1-6 106.0-117.6 0-6 4.9 191 5.2 175 8.4 265

AUGUST 14-19 115.6-134.9 0-6 7.3 225 7.8 217 8.5 324

SEPTEMBER 2-8 159.8-181.1 0-6 7.3 209 8.4 163 7.2 164

AVERAGES - - 6.5 208 7.2 184 8.0 251
co



TABLE 5. COMPARATIVE ATMOSPHERIC DENSITY MODEL STUDY RESULTS FOR MAGSAT
(NOVEMBER AND DECEMBER 1979; JANUARY, FEBRUARY, AND MARCH 1980)

RANGE HARRIS PRIESTER RESULTS JACCHIA- ROBEHTS RESULTS MSIS RESULTS

OF F10.7 RANGE
PE HIO(_) VARIATION OF Kp MAXIMUM MAXIMUM MAXIMUM

(t0 " 22 watts m 2 Hz 1) VARIATION WEIGHTED POSITION WEIGHTED POSITION WEIGHTED POSITIONRMS DIFFERENCE RMS " DIFFERENCE RMS DIFFERENCE
(meters) (meters) (m_=urs)

t-'
I OCT. 31 NOV. 5, 1979 207.5-214.9 0.- 4 8.3 204 7.8 1 16 8.0 190

DEC. 1 -6, 1979 152.2- 223.4 0 -4 12.4 204 11.5 175 12.8 25b

JAN. 1 6, 19_0 181:1.9 212.4 1--.5 9.4 213 9.5 166 11.3 28S

FEB. 1 - 6, 1980 212,6 _ 231.7 0-4 12.7 326 12.5 298 13.8 313

MAR. 1 E, 1980 170.2 -176.7 O. 3 9.8 .161 13.4 396 10.0 159

AVEHAGES " - 30.6 222 10.9 242 11.2 243
i I "=



differences. As zn the case of AE-3, the Magsat results

demonstrate that the three atmospheric density models are

comparable in the context of this study.

The average RMSs and overlap position differences for the

serzes of SAGE arcs are given in Table 6. Both the RMSs and

the overlap differences agree to within 3 percent; all three

atmospheric models produce essentially equivalent errors.

TABLE 6. COMPARATIVE ATMOSPHERIC DENSITY MODEL STUDY RESULTS
FOR SAGE (FEBRUARY 19-25, 1979)

AVERAGE
ATMOSPHERIC AVERAGE MAXIMUMDENSITY

MODEL WEIGHTED POSITION
USED RMS DIFFERENCE

(meters}

HARR IS--PR I ESTER 10.9 108

JACCHIA--ROBERTS 11.2 ! 14

• g
MSIS 11.0 112

o0

NOTE: DURING THIS PERIOD, F10.7 VARIED FROM196.0 TO

237.7 X 10-22WATTS METER -2 HERTZ -1 AND Kp
VARIED FROM 1 TO 7.
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SECTION 4 - CONCLUSION

The results presented in this paper support the conclusion

that, for satellites above 300 kilometers, the Harris-

Priester, Jacchia-Roberts, and MSIS atmospheric density

models all produce roughly similar density profiles and es-

sentially comparable orbit determination results when the

drag variation parameter is solved for and orbit quality is

measured by adjacent arc overlap comparisons. It is impos-

sible to predict which of the three models will produce the

best fit or best predictions for any given orbit determina-

tion arc. However, for some problem arcs, switching atmos-

pheric models may result in marked solution improvements.
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A GENERAL METHOD FOR COMPUTING THE TOTAL SOLAR

RADIATION FORCE ON COMPLEX SPACECRAFT STRUCTURES

F. K. Chan

Scientific Analysts and Consultants, Inc.

4114 Heathfield Road, Rockville, Md. 20853

ABSTRACT

A general approach has been developed for computing

the force due to solar radiation on an object of arbitrary shape.

This method circumvents many of the existing difficulties in

computational logic presently encountered in the direct analytical

or numerical evaluation of the appropriate surface integral. It may

be applied to complex spacecraft structures for computing the total

force arising from either specular or diffuse reflection or even

from non-Lambertian reflection and re-radiation.
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SECTION I - INTRODUCTION

The problem of computing the total force or total torque

on a spacecraft due to solar radiation is, in general, very difficult.

Mathematically, itrequires the evaluation of a surface integral

over only the illuminated region of the surface. Even if the illu-

minated region is known by some other means, the evaluation of

the surface integral can still be very difficult analytically

in the case of complexspacecraft structures. Moreover, if the

illuminated region is not known a priori, the difficulties are

compounded by having to determine self-shadowing. For non-convex

objects, it is not trivially governed by a condition such as

cos e_O where e is the angle between the sun vector and the out-

ward vector normal to the surface. In fact, the logic in the present

methods becomes extremely complicated and is also not fool-proof.

Additional difficulties are introduced by choosing a set of points

(vertices) on the surface to form a network in approximating it;

this inadvertently leads to book-keeping problems associated with

selecting appropriate sets of points for computing surface elements.

This paper presents a general method for performing the

computations without encountering the difficulties described above.

It does not attempt to evaluate the surface integral directly as

it presents itself as done in the usual methods, but considers

the same problem from a slightly different point of view which

leads to the same results.
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SECTION 2 - ANALYSIS

Consider an arbitrarily shaped object as illustrated in Figure 1.1.

f

(# t.o;_,t,_..d ..,,.t.,)

Figure 1.1 - Illustration of an Arbitrarily Shaped Object
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For convenience, let us use the following notation:

^
u = unit vector along a specified direction

^ A A A
v = any unit Vector orthogonal to u, i.e., u • v = 0

w = third unit vector forming orthogonal triad, i.e., w = u x v

0 = origin of coordinate system

P = any point On object's surface

r = vector from 0 to P

P'= projection of P onto (v,w)-plane

_'= projection of_onto (v,w)-plane

(x,y,z) = reference orthogonal system for describing object's

surface.

^
In the present analysis, it is advantageous to choose u to be opposite

in direction to the incident solar radiation. (Alternatively, it can

also be chosen to be in the same direction.)

A
The vectors u and r are known in the (x,y,z) system.

In general, if V is any vector, then it may be more explicitly

written in the (x,y,z)-space as V_x,y,z_J and has components Vx, _V' Vz.

That is, we implicitly mean

In view of the definition of the vector v, we may choose

v = O. Then, it may be shown that the other two components are given byg



From the definition of w, we obtain

Therefore, any vector V(x,y,z) can be transformed to V(u,v,w)

by the equation

Vc.,_,.._= T Vc_,_'_) 0"_)

where the transformation matrix T is given by

T = r= _ o (,,,€)

,.,&

Then, using equation (1.6), the vector r(x,y,z) is transformed

and we obtain

Consequently, the projection vectorS' is simply given by

The component r of the vector r is particularly important because,u

for a complex spacecraft structure, it can be used to yield the surface

element which is directly exposed to solar radiation. This can be seen
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as follows: For any given point on the (v,w)-plane (i.e., for any

given vector _' ), the point on the spacecraft which is not shadowed

is the one which has the maximum value of ru, independent of where

the origin of the (u,v,w) coordinate system is chosen. (It would be

the minimum value of r if the vector _ had been chosen to be in
u

the same direction as the incident solar radiation. ) To find the

illuminated surface of the spacecraft, we proceed by dividing

the (v,w)-plane into cells of area _v_w with cell centers (vi,wj).

At these cell centers, the illuminated surface element is the one

which has the maximum value of r . In this way, the logic of deter-
U

mining self-shadowing is extremely simple as compared to other methods

which encounter considerable difficulty conceptually and computationally.

Thus, given a vector _' = (0,vi,wj), the vector _ _ ([ru]max,Vi,Wj)

corresponding to the illuminated point is determined. It is then

transformed to the (x,y,z)-space by the equation

= "T"r (/,H)

n(x,y,z ) normal to the surfaceAt this point r(x,y,z), the unit vector A

is then obtained by

- (/,1.0

where _(x,y,z) = 0 denotes the equation of the surface in a region

"_ n is chosen such thatcontaining r. For convenience, the direction of ^

A A

>i0 (11 )

This choice of direction automatically makes _ the outward unit normal
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if the surface element belongs to a closed surface. Moreover,

.

it establishes a direction for n In the case of a surface for which

an outward unit normal is meaningless (such as a finite planar surface).
A

The vector n(x,y,z ) is then transformed to the (u,v,w)-space using

the equation

The cell (vi,wj) whose area is _v_w corresponds to

a surface element whose area is denoted by _A. It is evident that

we have

_A = = (/,_s)

Therefore, the force_F exerted on this surface element is given by

ziF = p AA (/,1_,)
°

where p xs the solar radiation pressure vector acting on the surface

element. Under very general conditions of surface reflection and

re-radiation, it can be shown that this pressure vector has the form

Lc, s. c,) o,,7)
where S is the solar radiation flux per unit area normal to the flux,

c is the velocity of light, and _is the angle between the sun vector

and the normal to the surface element, i.e.,

A
o_# -- n._ CI'/_')

The coefficients CI, C2 and C3 may change with time due to aging of
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of the surface material by some complex process.

For the case of specular reflection and diffuse (I_mbertian)

reflection, the Ck'S are given by (I)

where kI - the fraction of incident radiation reflected specularly

k2 = the fraction of incident radiation reflected diffusely

by a Lambertian surface.

It is to be noted that in equations (1.19) - (1.21), it is not

implicitly assumed that the surface is radiating the entire energy

incident on it, i.e., it is not necessary that we require the

condition kI + k2 - I in order to obtain these equations.

For the case of specular reflection and non-Lambertian

reflection and re-radiation (2), a little consideration will reveal

that the Ck'S are given by

c, = (/- I

= afr 0. 3)

where Y - the fraction of incident radiation reflected (specularly

and otherwise)

- the fraction of reflected radiation that is specular
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Bf, _ = non-Lambertian coefficients for front and back

surfaces respectively

ef, eb = emission values for front and back surfaces

respectively.

In passing, it may be noted that we have the relations

4_= _(/-77 Ct,2_)

Moreover, it may be remarked that the form of equation (1.17) is

valid for the more general non-Lambertien reflection and re-radiation

which have a period of 7fin the azimuthal variable. In other words,

Lambertian reflection means that the intensity I of the reflection

is given by

Then, the case of non-Lambertian reflection and re-radiation expressed

by equation (1.22) would correspond to an intensity which is indepen-

dent of the azimuthal variable _ and is of the form

where implicitly we exclude the case of Lambert's law, i.e.,

/(_) # _ _ C,',._q)

The even more general case means that we can have reflection and

re-radiation for which the intensity is of the form

I = Io j:(o_.) 0,3o)
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Finally, to compute the total force F due to solar radiation,

we obtain from equations (I.15) - (I.19) the following expressions

It is also trivial to compute the total torque M on the spacecraft

by using the equations

4/4 = ,n. x _ F CI'3s')

but this will not be done here.
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SECTION 3 - DISCUSSION

It is obvious that the method just discussed does not

encounter logic problems in determining self-shadowing. Moreover,

because the points _vi,wj_ are first chosen on the projection plane,

it circumvents the difficulties in book-keeping experienced in

the other method of choosing vertices on the surface of the object.

Furthermore, it does not require excessive core for storing the

vertex data such as coordinates, area of surface element, normal

vector, solar incidence angle, etc. This advantage becomes evident

by evaluating the expressions in equations (1.32) - (1.32) using

three accumulators (one for each force component), not having to

store the set of points {vi,wjl . Finally, if greater accuracy is

desired, it suffices only to choose smaller values _v*_w*, multiply

the previous result by the factor (_v*_w*)Av A w , and then perform

computations only for the additional points newly introduced into

the set Iv.,w I. This advantage cannot be realized in the other
] j

method of choosing vertices on the surface of the object. In that

case, in going to a refined model with additional vertices, it is

necessary to perform the entire computations starting from the

beginning each time.
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SECTION4 - CONCLUSION

From the foregoing discussion, it may be concluded that

the present method has the following advantages:

I. It does not experience logic problems in determining

self-shadowing.

2. It does not encounter the book-keeping problems arising

in the case of choosing vertices on the surface of the

object.

3. It does not require excessive core for storing vertex

data.

4. It can utilize previously0btained results in going to

progressively more refined models.
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SOLAR RADIATION FORCE MODELING FOR TDRS ORBIT
DETERMINATION*

Taesul Lee, Michael J. Lucas, and Robert E. Shanklin, Jr.

Computer Sciences Corporation

ABSTRACT

The relative orbit determination accuracles resulting from

several TDRS models used for solar radiation force calcula-

tions are evaluated. These models include spherical, single-

plate, and restricted two-plate models. The plate models

can be adjusted in both area and reflectivity through dif-

ferential correction. The restricted two-plate model has an

Earth-pointing plate and a solar plate; the orientation of

the solar plate is restricted to rotation about an axis per-

pendicular to the satellite's orbital plane.

Simulated TDRS observations are generated from an ephemeris

obtained using a 69-component TDRS model. These observa-

tions are processed by least squares differential correction

in order to find optimized parameters for the spherical,

single-plate, and multi-plate models. The solutions for the

parameters and the state vector are then used to generate

ephemerides that are compared with the 69-component ephem-

eris to estimate the expected orbit determination accuracies

achievable with the various TDRS models.

*This work was supported by the Operations Analysis Section,
Operational Orbit Support Branch, Goddard Space Flight
Center, National Aeronautics and Space Administration, under
Contract NAS 5-24300.
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SECTION 1 - INTRODUCTION

A study of the solar radiation pressure (SRP) effect on

orbit determination for a Tracking and Data Relay Satellite

(TDRS) has been carried out using simulated data. The TDRS

System consists of three geosynchronous satellites--TDRS

East, TDRS West, and TDRS Spare--and one common ground

tracking facility. These satellites will be placed in

circular, nearly equatorial orbits at a height of 36,000 kil-

ometers above the surface of the Earth. The study is de-

signed to determine whether a complex SRP model for a TDRS

can be satisfactorily replaced by a simpler SRP model, such

as a constant-effectlve-area model or a two-plate model. In

addition, different tracking station configuratlons are used

to investigate the possible dependence of the results on the

tracking station geometry.

A similar study carried out by Chan et al. (Reference i)

used a 69-Component TDRS SRP model and a two-plate model

with four adjustable parameters. The adjustable parameters

were determined by using a least squares procedure to mini-

mize the position differences between two ephemerides, one

obtained using the 69-component model and one obtained using

the two-plate model.

Another investigation related to the present study was

carried out by Shanklin etal. (Reference 2) in which a

constant-effective-area SRP model and a two-plate model were

compared using real ATS-6 S-Band tracking data. This study,

however, was somewhat incomplete due to the limited avail-

ability of ATS-6 tracking data. The current study is an

extenslon of that work and follows the same approach as that

used in Reference 1 in constructing the TDRS SRP models.

The current study, however, uses simulated bilateration and

S-Band tracking data in the differential correction process
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instead of position differences between the two ephemerides
as used by Chan.

The study plan is as follows. First, a 69-component SRP

model of a TDRS, which is available in the Research and De-

velopment version of the Goddard Trajectory Determination

System (RDGTDS), is used to compute a truth ephemeris, which

is subsequently used to generate various types of simulated

observations uslng the Mission Data Generation System

(MDGS). The MDGS produces raw data in a 75-byte format, and

the Generalized Data Handler (GDH) converts these raw data

into the 60-byte format for the Goddard Trajectory Determi-

nation System (GTDS). Second, these simulated data are used

in regular GTDS Differential Correction (DC) Program runs to

find optimized SRP parameters for the constant-effective-

area model and for the two-plate model. The constant-

effective-area model contains one ad3ustable parameter, and

the two-plate model contains four adjustable parameters.

Any combination of the four parameters of the two-plate

model can be solved for In a given DC Program run. Third,

epnemerides are generated using the final elements and SRP

parameters obtained from the DC Program runs, and these eph-

emerides are then compared with the original truth ephemeris.

Brief descriptions of the TDRS solar radiation pressure

models are given in Section 2 and generation of the simu-

lated data is discussed in Section 3. The results of var-

ious DC Program runs and ephemeris comparisons are presented

in Section 4, and the conclusions are summarized in Sec-
tion 5.
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SECTION 2 - DESCRIPTION OF MODELS

The 69-component model is composed of 69 distinctive parts.

The components with relatively large areas are the two solar

panels, whose normals make minimum angles with the satellite-

Sun line; the antennas; the antenna feeds; and the top, bot-

tom, and six sides of the main body (see Reference 1 for

details).

The slmplest SRP model used to approximate the 69-component

model is the constant-effective-area model. In thls model,

the area for the SRP calculation is assumed to be constant

and always normal to the satellite-Sun line. The force due

to the solar radiation pressure (Reference 3) is given by

fSRP = -_) a P (i + T]) Usu n 12-i)

where m = eclipse factor

a = constant area

p = solar radiation pressure on a perfectly absorb-
ing surface at the position of the satellite

= surface reflectivity

-_Sun = unit vector along the satellite-Sun line

The solar radiation pressure is inversely proportional to

the square of the distance from the Sun, and the eclipse

factor, 9, equals zero if the satellite is in the Earth's

shadow ana equals one if it is not. The right-hand side of

Equation (2-1) represents the sum of two parts: the part

due to the absorption of the solar radiation, which is pro-

portional to (i - _), and the part due to the reflected

radiation, which is proportional to 2n, This model is

currently available in GTDS.

The second model used to approximate the 69-component model

is a two-plate model, which has an Earth-pointing plate and
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a solar plate. The solar plate Is hinged along an axis

normal to the satellite's orbital plane and is always ro-

tated about that axis so as to maximize the amount of sun-

light falling on the plate. The force due to the solar

radiation pressure for the two-plate model is given by the

sum of four terms:

[2 EnE.....• R I(u • R) RRP = -aP lUsu n Sun

+ eE(l - nE) lUsu n • RI Usu n

(2-2)

+ 2esn s • N s N s

+ _s(l - _s) (Usu n • Ns) Usu n]

where a = reference area

P = solar radiation pressure on a perfectly absorb-
ing surface at the position of the satellite

eE = scale factor for the area of the Earth-pointing
plate

as = scale factor for the area of the solar plate

_E = reflectivity of the Earth-pointing plate

ns = reflectivity of the solar plate

USu n = unit vector along the satellite-Sun line

R = unit position vector of the satellite

N s = unit vector normal to the sunny side of the
solar plate

In Equation (2-2), the first term is due to the reflection

by the Earth-pointing plate, the second term is due to the

absorption by the Earth-pointing plate, the third term is

due to the reflection by the solar plate, and the fourth

term is due to the absorption by the solar plate. The two

area scale factors, _E and as, and the two reflectivities,

nE and qs' are adjustable parameters. In a given DC Program
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run, any combination or all of these four parameters can be

solved for. Instead of eE' HE' as, and _s' an alternative

set of four parameters, _i' _2' _3' and _4' may also be de-

fined (and solwed for) :

_i = eE_E

_2 = C_E(I- r]E)

_3 = es_s

_4 = es(l - _s)

3-6



SECTION 3 - GENERATION OF SIMULATED DATA

Tracking data for this study were generated using a satel-

lite ephemeris tape obtained from a special RDGTDS Program

load module that contains a 69-component TDRS model for SRP

evaluation. This ephemeris tape was used by the MDGS Pro-

gram to generate a second tape of raw range and Doppler sim-

ulated data. This simulated data tape was used by the GDH

Program to generate tracking data in a format appropriate

for use in the GTDS two-plate load module. Two types of

tracking data were generated in this manner: Applications

Technology Satellite Ranging (ATSR) bilateration data and

Unified S-Band (USB) two-way data.

3.1 ATSR BILATERATION DATA

ATSR bilateration data were generated using the ground

station at White sands, New Mexico, as the ATSR tracker and

the ground stations at Mo3ave, California; Rosman, North

Carolina; Madrid, Spain; Quito, Ecuador; and Santiago,

Chile, as the ATSR ground transponders. Figure 1 shows the

positions of these slx sites in relation to the expected sub-

satellite point for the relay satellite.

Using these five tracker/ground transponder pairs, tracking

data with the following characteristics were produced:

o Frequency: 5600 MHz (C-Band)

o Primary frequency offset: 5.8875 MHz

• Transponder delay: 0.0 km

• Tracking mode: satellite-to-ground phase-locked

transponder

• Major range tone/minor range tone: i00 kHz/8 Hz
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• Uplink pilot frequency/downlink pilot frequency:

6150 MHz/4150 MHz

• Doppler count mode: nondestruct

Data were produced at a rate of six observations per minute

for the first 25 minutes of each hour, starting at 0.0 hours

on October 2, 1980, and ending at 0.0 hours on October 3,

1980. Each tracker/ground transponder pair was enabled for

tracking over the discrete tlme interval shown in Table i.

No observation corrections were applied and no observation

noise was applied.

3.2 USB TWO-WAY DATA

USB two-way data (for which the receiving and transmitting

sites are the same) were generated using the ground stations

at Mojave, Rosman, Madrid, Quito, and Santiago. Tracking

data with the following characteristics were produced:

• Transmit frequency: 2106 MHz

• Transponder delay: 0.0 km

• Ranging equipment: Spaceflight Tracking and Data

Network (STDN) Ranging Equipment (SRE)

• Major range tone: 20 kHz

Data were produced for the first 25 minutes of each hour,

over the same time period, at the same rate, and with the

same corrections that were used for the ATSR bilateration

data. Each ground station was enabled for tracking over the

dlscrete time interval shown in Table 2.
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TABLE 1. TRACKING INTERVALS FOR ATSR TRACKER/
GROUND TRANSPONDER PAIRS

TRACKER/GROUND MINUTES OF THE HOUR DURING
TRANSPONDER PAIR WHICH THE PAIR tS ENABLED

WHITE SANDS/ROSMAN 00TO 05

WHITE SANDS/MOJAVE 05TO 10 .

WHITE SANDS/QUITO 10TO 15

WHITE SANDS/MADRID 15TO 20

• _

WHITE SANDS/SANTIAGO 20 TO 25 ,_
co

TABLE 2, TRACKING INTERVALS FOR USB GROUND STATIONS

GROUND MINUTES OF THE HOUR DURING
STATION WHICH GROUND STATION IS ENABLED

ROSMAN 00TO 05

MOJAVE 05TO 10

QUITO 10TO 15

MADRID 15TO 20

SANTIAGO 20 TO 25
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SECTION 4 - DIFFERENTIAL CORRECTION SOLUTIONS AND
EPHEMERIS COMPARISON RESULTS

Differential correction solutions were obtained using dif-

feren_ SRP models, different types of simulated observa-

tions, and different tracking station configurations.

4.1 RESULTS OBTAINED USING BILATERATION DATA AND TWO GROUND
TRANSPONDERS

The results of DC Program solutions obtained using bilatera-

tion range and Doppler data and five different combinations

of solve-for parameters in the two-plate mode! are presented

in Tables 3 and 4. The simulated bilateration data used

were obtained using the TDRSS ground station at White Sands

and two ground transponders at Rosman, North Carolina, and

Mo3ave, California. The five different SRP optlons used were

• Constant-effective-area model with C solved for
R

• Two-plate model with _E and _s solved for

• Two-plate model with _i and _2 solved for

• Two-plate model with E3 and _4 solved for

• Two-plate model with El, _2' and E3 solved for

The third option, in which E1 and _2 are solved for, is

equivalent to solving for eE and hE, the scale factor and

reflectivity of the Earth-pointing plate, respectively.

Similarly, the fourth option is equivalent to solving for es

and _s" In this particular set of DC Program runs, the

values of the SRP parameters in the two-plate model that

were not solved for were set equal to zero. Thus, the third

and fourth options discussed above actually represent single-

plate models rather than two-plate models.

An identical set of a priori elements, obtained from the

truth ephemeris of the 69-component SRP model, was used for

all of the options. It is seen from Tables 3 and 4 that the

option of using the Earth-pointing plate alone gives the
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TABLE 3. DIFFERENCES BETWEEN THE FINAL ANDAPRIORI ELEMENTS
(FINAL MINUS A PRIORI)

RUN CONFIGURATION
CHANGES

IN CONSTANT TWO-PLATE MODEL TWO-PLATE MODEL TWO-PLATE MODEL TWO-PLATE MODEL
ELEMENTS EFFECTIVE AREA _E AND a S _1 AND _2 _3 AND _4 _-1,_2, AND _3

SOLVED FOR SOLVED FOR SOLVED FOR SOLVED FOR SOLVED FOR

_X (meters) 5.81 3.42 --24.16 -- 1.62 --2.63

bY (meters) - 12.62 --9.57 -- 18.43 8.59 --7.61
I

I_ _. (meters) --24.80 16.07 -- 109.73 - 38.56 11.17
Fo

(cm/sec) 0.052 0.036 0.250 0.008 0.029

_' (cm/sec) 0.041 =-0.024 0.221 0.005 --0.025 _o
_D

z_. (cm/sec) 0.118 0.138 0.243 --0.141 - 0.084

NOTES: 1. THE SAME SET OF A PRIORI ELEMENTS WAS USED FOR ALL DC PROGRAM RUNS.

2. THE QUANTITIES _xE AND _S DENOTE SCALE FACTORS FOR THE AREAS OF THE EARTH-POINTING PLATE AND THE SOLAR

PLATE, RESPECTIVELY. THE PARAMETERS 41, _2, 43, AND _4 ARE DEFINED AS FOLLOWS: _;1 = _EllE' _2 = _E (1 -_IE), _3 = _$7/S'

_4 = (xS (1- itS), WHERE _E AND 7/S DENOTE THE REFLECTIVITY OF THE EARTH-POINTING PLATE AND THE SOLARPLATE,
RESPECTIVELY.



TABLE 4. DC PROGRAM STATISTICS AND SRP PARAMETERS SOLVED FOR

RUN CONFIGURATION

PARAMETERS CONSTANT TWO-PLATE TWO-PLATE TWO-PLATE TWO-PLATE
EFFECTIVE AREA MODEL MODEL MODEL MODEL

_E AND _S _1 AND _2 _3 AND__4_ _1, _2, AND _3
L_ SOLVED FOR SOLVED FOR SOLVED FOR SOLVED I-OH SOLVED FOR
I

L_ WEIGHTED RMS 0.0558 0,0346 0.3238 0.0546 0.0329

STANDARD DEVIATION

RANGE (meters) 0.5i4 0.584 2.206 0.481 0.593

DOPPLER (miUihertz) 0.914 0.473 5.416 0.898 0.431

SRP PARAMETERS CR = 1.38 _E = 0.281 _1 = 1.971 _3 = 19.482 _1 = 0.175

SOLVED FOR '_S = _219 _2 0.551 _4 = 37.588 _2 = 0.146
_o

_3 = 0.602
I I =3



poorest results, whereas the other options all give compar-

able resul%s. Similar conclusions are supported by Fig-

ures 2 and 3, which represent 24-hour ephemeris comparison

results between the original 69-component ephemeris and the

ephemerides obtained using the DC Program solutions for dif-

ferent SRP options. The results obtained using the second

option, in which eE and es were solved for, are not shown

because they are very similar to the results obtained using

the fourth option. Only the along-track and cross-track po-

sition differences are shown in Figures 2 and 3, because the

radial position differences were much smaller than the along-

track or cross-track position differences.

The single-plate option using the Earth-pointing plate alone

gives the worst position errors. The single-plate option

using the solar plate alone gives significantly better re-

sults. In fact, the option using the solar plate alone

glves the smallest along-track position differences of all

the different optlons used.

There are two features worth mentioning. First, there is no

significant difference between the constant,effective-area

model and the more complex two-plate model options. Second,

in all cases studied, there are quite sizable cross-track

posltion differences, equal to or larger than the along-

track differences.

In order to examine the influence of the tracking geometry

on the orbit determination results, a different pair of

ground transponders (Rosman and Santiago) was used for the

same series of DC Program solutions dlscussed above. Ephem-

eris comparison results obtained uslng these differential

correction solutions were then compared with the correspond-

ing results obtained using the pair of ground transponders

at Rosman and Mojave; the only significant difference between
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the two sets of results was in the cross-track position dif-

ferences. The maxlmum cross-track position differences ob-

tained using the Rosman and Santiago ground transponders

were found to be less than i0 meters, whereas the corre-

sponding differences obtained using the Rosman and Mojave

ground transponders were larger than 20 meters.

4.2 RESULTS OBTAINED USING S-BAND RANGE DATA AND TWO GROUND
TRACKING STATIONS

Differential correction solutions for a 24-hour TDRS arc

were obtained using S-Band range data and two different

tracking station configurations. In the first set of solu-

tions, the two ground stations at Rosman and Mojave were

used, and in the second set of solutions, the two stations

at Rosman and Santiago were used. The results of 24-hour

ephemeris comparisons are summarized in Figures 4 and 5. It

is seen from Figures 4 and 5 that the results obtained using

S-Band range data are generally worse than the corresponding

results obtained uslng bilateration data. The along-track

position differences shown in Figure 4 indicate that the

Rosman/Mo]ave configuration gives somewhat better results

than does the Rosman/Santiago configuration. In the case of

the cross-track position differences shown in Figure 5, the

situation is reversed; the Rosman/Santiago configuration

gives somewhat better results than does the Rosman/Mojave

configuration.

4.3 RESULTS OBTAINED USING MORE THAN TWO GROUND TRACKING
STATIONS

The same 24-hour TDRS arc studied in Sections 4.1 and 4.2

was used in a set of DC Program runs using more than two

ground tracking facilities. In the case of bilateration

data, three ground transponders, located at Mojave, Santiago,

and Madrid, and five ground transponders, located at Mojave,

Santiago, Madrid, Rosman, and Quito, were used. Ephemeris
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comparison results obtained using the three ground trans-

ponders were similar to the results obtained using the five

ground transponders. Typical along-track, cross-track, and

radial position differences were 6.0, 1.0, and 1.0 meters,

respectively. No significant difference was found among the

different models used for the solar radiation pressure com-

putation as long as the initial state vector and the solar

radiation pressure parameters were solved for.

Similar analyses were carried out using more than two S-Band

tracking stations. Two sets of differential correction so-

lutions were obtained using three tracking stations at

Mojave, Madrid, and Santiago and four tracking stations at

Mojave, Rosman, Madrid, and Santiago. Ephemeris comparison

results obtained using these differential correction solu-

tions are summarized in Tables 5 and 6. There is no essen-

tial difference between the results obtained using three

tracking stations and the results obtained using four track-

ing stations. These results show a significant improvement

over the corresponding results obtained using only two

S-Band tracking stations. Cross-track position differences

were reduced by almost a factor of i0 and along-track dif-

ferences were also substantially reduced. However, none of

the results obtained using S-Band tracking data were as good

as the corresponding results obtained using bilateration

data.
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TABLE 5. CROSS-TRACK AND ALONG-TRACK POSITION DIFFERENCES OBTAINED
USING THREE USB GROUND STATIONS (MAD, AVE, AGO)

EPHEMERIDES COMPARED MAXIMUM CROSS-TRACK ' MAXIMUM ALONG-TRACKDIFFERENCE (meters) DIFFERENCE (meters)
L_
I

r_ CONSTANT-EFFECTIVE-AREA vs 69-COMPONENT 3.1 24.6

TWO-PLATE (cuE AND _xS SOLVED FOR) vs 69-COMPONENT 2.8 23.5

SINGLE SOLAR PLATE ([3 AND 44 SOLVED FoR) vs 69-COMPONENT 7.1 22.2

TWO-PLATE 1_1' _2' _3' AND 44 SOLVED FOR) vs 69-COMPONENT 6.5 20.2



TABLE 6. CROSS-TRACK AND ALONG-TRACK POSITION DIFFERENCES OBTAINED
USING FOUR USB GROUND STATIONS (MAD, AVE, AGO, ROS)

MAXIMUM CROSS-TRACK MAXIMUM ALONG-TRACK
EPHEMERIDES COMPARED DIFFERENCE (meters) DIFFERENCE (meters)

L_
I CONSTANT-EFFECTIVE-AREA vs 69-COMPONENT 3,3 26:2['o

k3

TWO-PLATE (_XEAND _=SSOLVED FOR) vs 69-COMPONENT 3.2 25.9

SINGLE SOLAR PLATE (_3 AND _4 SOLVED FOR) vs 69-COMPONENT 4.4 26.7

TWO-PLATE ([1' _2' [3' AND _4 SOLVED FOR) vs 69-COMPONENT 4.2 25.0 ,_



SECTION 5 - CONCLUSIONS

A study of solar radiation pressure (SRP) as it affects TDRS

orbits was performed using simulated bilateration data, sim-

ulated direct two-way data, and varlous ground station con-

figurations. Orbit determination results obtained using

constant-effective-area and two-plate SRP modeling were com-

pared with each other and with an ephemeris obtained using a

69"component TDRS SRP model. The conclusion of this study

can be summarized as follows:

• The constant-effective-area solar radiation pres-

sure model and the two-plate model give essentially

the same quality results when both the state and

the SRP parameters are solved for. The maximum

position differences between the 69-component model

truth ephemeris and an ephemeris determined using

solved-for elements and SRP parameters can be re-

duced to less than i0 meters if proper bilateration

tracking configurations are used in solving for the

elements and the SRP parameters.

® When using only two ground tracking facilities, the

Rosman/Santiago combination gives smaller cross-

track position errors than does the Rosman/Mojave

combination.

• Results obtained using three ground trackina facil-

ities (located in a triangular configuration) are

significantly better than the corresponding results

obtained using two ground tracking facilities.

• Results obtained using more than three ground

tracking facilities are of essentially the same
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PRECISION ORBIT COMPUTATIONS FOR AN OPERATIONAL ENVIRONMENT

Co E. Doll, Goddard Space Flight Center

David F. Eggert, Computer Science Corporation

Richard L. Smith, Computer Science Corporation

ABSTRACT

Analyses have been performed at the Goddard Space Flight Center (GSFC) to

establish the operational procedures that would be required to provide pre-

cision orbit computations to meet current and future operational requirements

set forth by different NASA projects. Taking advantage of the improvements

to the earth's gravitation field and tracking station coordinates, an orbital

computational consistency of the order of 5 meters were achieved for total

position differences between orbital solutions for the Seasat and GEOS-3.

The main source of error in these solutions has been in the mathematical models

that are required to generate these results, i.e., gravitation, atmospheric

drag, etc. Different earth's gravitation fields and tracking coordinates have

been analyzed and evaluated in obtaining these computational results.

Comparisons and evaluations of the Seasat results have been obtained in terms

of different solution types such as the Doppler only, Laser only, Doppler and

Laser, etc. Other investigation using the Seasat data have been made in

order to determine their effect on the computational results at this partic-

ular level of consistency.
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INTRODUCTION

It is expected that in the next few years that NASA missions will require

additional computational precision in determining spacecraft position in

order to support both project and scientific requirements. In order for the

Goddard Space Flight Center to support these NASA mission in a precision

orbit computations environment both methods and techniques for computations

and operational procedures must be established.

The definitive orbit computations requirements for the Seasat mission were

the most accurate in terms of consistency between orbital solutions that had

been performed at the GSFC for any given mission prior to its launch in June

1978 by the Operations Support Computing Division (OSCD). The computations

requirements set forth by the Seasat Project was to maintain a maximum devi-

ation of 65 meters between orbital solutions for the mission lifetime. With

these project requirements, the OSCD established the computational techniques,

the operational procedures and the tracking data distribution in order to ful-

fill these commitments.

Due to the amount and distribution of USB/SRE and Laser tracking data required

to support definitive orbit computations and precision orbit computations for

the Seasat mission, the OSCD has taken the initiative to determine what level

of consistency between orbital solutions can be reached for an operational

environment. The results of these investigations for the Seasat and GEOS-III

missions are based on the mathematical models and station geodetics that have
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Introduction (continued)

been established at GSFC by the Geodynamics Branch. The computational pro-

cedures and observational tracking data distributions have been established

through the analyses which have been performed for each of the satellites.

The information in this particular report is presented in three different

areas, the method for precision orbit computations, Seasat precision com-

putations and GEOS-III precision orbit computations.
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METHODS FOR PRECISION COMPUTATIONS

Orbit Determination Procedure

The computations of the precision orbits for both Seasat and GEOS-III were

performed at the GSFC on the 360 computer complex using the Goddard Tra-

jectory Determination System (GTDS). GTDS has the capability to perform

orbit determinations and generate spacecraft ephemeris data in the form of

position and velocity to different levels of consistency based on force

model representations, station geodetics and tracking data distributions.

The orbital solutions obtained for Seasat and GEOS-III from GTDS used

Cowell's method of integration for the equations of motion and the vari-

ational equations and a least squares adjustment technique for the improve-

ment of orbital parameters. The earth's gravity field, the solar gravita-

tional perturbations, the lunar gravitational perturbations and the solid

earth tidal perturbations are modeled for these orbital computations. In

addition, The nonconservative forces of solar radiation pressure and atmos-

pheric drag have been modeled. It should bestated that the JPL planetary

ephemeris DE-96 was adopted for these computations along with the BIH polar

motion and the UTI and A.I corrections.

The Seasat and GEOS-III spacecraft were modeled in the GTDS as specularly

reflecting spheres. In the precision orbit computations for Seasat a drag

coefficient for each data arc was solved for.

In addition, an analysis was performed to determine the best integration step

size for the equations of motion and the variational equations and in obtain-

ing orbital solutions which are consistent in terms of numerical processes.

The integraton step size which was established for Seasat and GEOS-III was

45 seconds.
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Physical Parameters, Environmental Parameters and Tracking Station Geodetics
For Precision Orbit Determination

In obtaining the orbital solutions for the Seasat and GEOS-III in the pre-

cision orbit computations environment different sets of physical and environ-

mental parameters and station geodetics were used and evaluated. One of the

fundamental capabilities that exist in GTDS is its capability to make use of

different size gravitational models along with other parameters, which is

essential in an operational environment. In this investigation the three

earth's gravitational fields which were used and evaluated were the GEM 9,

GEM 10B, and the PGS 1040. These three gravitational fields were determined

at the GSFC using observational tracking data from both NASA and non-NASA

stations and global gravimetric data while making use of the research and

development orbit computations system GEODYN. When a specific gravitational

field is used for orbit computations then the earth's gravitational constant

(GM), the mean equatorial radius of the earth (ae) and the earth's inverse

flattening factor (l/f) must be properly specified. These particular parameters

for each of the three gravitational fields are listed in Table i. The orbital

and physical parameters that were used in this investigation are listed in

Table 2. It should be understood that in the computations for the noncon-

servative forces of drag and solar radiation that both spacecrafts were assumed

to have a spherical shape, although this is usually an extreme idealization.

Through the analYsis and evaluations which have been performed in this invest-

igation for precision orbit computations, it has become apparent that good
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(Physical Parameters, etc., continued)

or precise station geodetics are very essential in obtaining specific levels

of consistency between orbital solutions. The evaluations which have performed

indicates that the quality of station geodetics are not as important at the 20

to 40 meter level of consistency between orbital solutions as they are at the

5 to 15 meter level of consistency between solutions. Therefore, the station

geodetics which have been used for the precision orbit computations for both

Seasat and GEOS-III are the coordinates which have been derived by J. Marsh

of the GSFC which are given in Table 3. It should be pointed out that

selected code letters are assigned to specific stations in order to represent

that station on the tracking data distribution figures that are presented in

Figures i through 3.
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SEASAT PRECISION ORBIT COMPUTATION

Observational Tracking Data for Seasat

The observational tracking data used for precision orbit computations for

Seasat were a combination of USB/SRE range rate data from STDN and Laser data

from STDN and SAO. The USB!SRE range rate data provided the strong global

coverage both in terms of geographical distribution and in time. The Laser

observational tracking data provided strength in terms of accuracy for the

precision orbit computations.

An analyses of both the USB/SRE range rate data and the Laser data in terms

of distribution and time provided two specific time intervals, September 19

through September 26, 1978 and August 8, 1978 through August 15, 1978 over

which the precision orbit computations were performed. The amount of obser-

vational tracking data during these two particular time intervals contained

approximately 20 passes of USB/SRE data and 12 passes of Laser data for each

typical twenty-four hour interval. Figures 1 and 2 give the station and

data distribution for the September 1978 period and the August 1978 period.

Orbital Analyses for Seasat

In determining the consistency between orbital solutions to the 1 to 5 meter

level for the Seasat spacecraft, a number of gravitational field models,

station geodetics and integration step size were evaluated. Through these

evaluations with the use of GTDS, it has been established that the PGS-1040

gravitational field and the station geodetics, which have been designated Marsh

II, have given the best results in terms of consistency between orbital solu-

tions. The PGS-1040 gravitational field and the Marsh II station geodetics
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(Orbital Analysis for Seasat - continued)

have been determined at GSFC through the use of GEODYN. It should be pointed

out that in the determination of the PGS-I040 gravity field that both Laser

and USB/SRE observational tracking data from the Seasat spacecraft were used.

The length of the observational data arc was thirty hours for the orbital

solutions which were determined for this investigation. In order to deter-

mine the consistency between successive orbital solutions for the Seasat

spacecraft a six-hour interval was established as the time frame over which

the consistency was to be determined. The maximum difference in a given

six-hour overlap interval between two successive orbital solutions in terms

of spacecraft position is the measure of consistency which has been deter-

mined by this process.

The orbital solutions for the Seasat spacecraft using only the USB Doppler

tracking and the additional techniques for computations in the September

and August 1978 time frames are given in Tables 4 and 8. Information per-

taining to the individual solutions are given in these tables including the

rho one solve-for parameter, which is equivalent to a density correction for

each of the Seasat orbital solutions. In addition, the maximum discon-

tinuties between successive solutions for each specific six-hour overlap

interval are presented in terms of radial, cross track and along track dif-

ferences. The results of this analysis indicate that using the Doppler only

that an average 10-meter level of consistency for the September 1978 time

frame can be obtained while for the August 1978 time frame only a 13-meter

level of consistency was obtained. These results indicate that the 5-meter

level of consistency between the orbital solutions is difficult to obtain

using only USB Doppler data. An assessment of these results would indicate

that there should be no problem with the number of tracking passes in the
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Orbital Analyses for Seasat (continued)

individual solutions although the distribution of passes within the solutions

could cause problems. It is felt that the mathematical modeling or the com-

putational procedures should not cause problems in achieving the 5-meter level

of consistency.

The next set of orbital solutions for Seasat were computed based on Laser

tracking data only and the results of these computations are given in Tables

5 and 9. Information pertaining to these computations for the individual

solutions are given in these tables including the rho one solve-for parameters.

The maximum discontinuities between successive orbital solutions for each

specific six-hour overlap interval are presented. The results of this analy-

sis indicate that using the Laser tracking data by itself that an average

4.4 meter level of consistency can be obtained for the September 1978 time

frame while for the August 1978 time frame only an 8.8-meter level of

consistency was obtained. These results indicate the 5-meter level of con-

sistency between individual solutions can be obtained when using only Laser

tracking data for certain time frames during the Seasat satellite lifetime.

Again, an assessment of these results would indicate that since the mathe-

matical modeling and the computational procedures are the same then the

differences in the August and September 1978 time frames has to be in an-

other area. The only other area where differences can be attributed has to

be in the Laser tracking data, in other words the distribution of the data

or the quality of data.
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Orbital Analyses for Seasat (continued)

Another set of orbital solutions for Seasat were determined based on Laser

and USB Doppler tracking data and the results of these computations are

given in Tables 6 and i0. The information pertaining to these computations

are given in these tables, including the rho one solve-for parameters. The

maximum discontinuities between successive orbital solutions for each speci-

fic six-hour overlap interval are also presented in these tables. The

results of this analysis indicate that using both the Laser and USB Doppler

tracking data that an average 3.6-meter level of consistency was obtained

for the September 1978 time frame while for the August 1978 time frame

only a 7.4-meter level of consistency was obtained. These results indicate

that making use of the combination of Laser and USB Doppler tracking data

gives a little better overall consistency between successive solutions than

when using the Laser observations only. Since the mathematical modeling

and the computational procedures were the same then the slight improvements

comes from the strength of more comprehensive distribution of observational

tracking data throughout the individual orbital solutions.

Further analysis was performed to determine the affect of having equal number

of observations per pass for both the Laser and USB Doppler tracking data in

determining each orbital solutions and the level of consistency for the

September 1978 time frame. The results of these individual orbit computations

are given in Tables 6 and 7 along with the rho one solve-for parameters. The

maximum discontinuities between successive orbital solutions for each six-hour

overlap interval are also presented in these tables. The results of this

analysis indicate that making use of the observational tracking data in this

manner and using the same mathematical modeling and computational procedures

an average of 4.1 meter level of consistency was obtained. This result of

4.l-meter level of consistency obtained in this process and the other average
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Orbital Analyses for Seasat (continued)

values of 3.7- and 4.4-meter levels of consistency obtained when using Laser

and USB Doppler data in another process of observations selection and using

Laser data by itself are basically the same. In other words, at this

particular level of consistency it is difficult to indicate in terms of an

average value, which are the better results.
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GEOS-III PRECISION ORBIT COMPUTATIONS

Observational Tracking Data for GEOS-III

GEOS-III orbital solutions were calculated for a period extending from

February 23, 1976, to March 2, 1976. The available unified S-band range

and range-rate data is shown in Figure 3. Only the range-rate data were used

for the solutions described here. Unlike the tracking data distribution

for Seasat, the GEOS-III tracking data distribution is not uniform, having

intense tracking about once a day, and very little tracking at other times.

On the average, there is available slightly less than one pass of tracking

per orbital revolution.

Orbital Analysis for GEOS-III

Orbital solutions for GEOS-III were calculated using GTDS and the Goddard

Earth Model 10B (GEMIOB) gravity model. This gravity model is based, in part,

on GEOS-3 altimetry data. Since the altitude of GEOS-III is about 50 kilo-

meters greater than that of Seasat, the orbital effects of atmosphere drag

are significantly smaller. Unlike Seasat, estimation of the drag parameter

does not sppear to affect the accuracy of differential correction solutions.

The GEOS-III solutions were calculated by solving only for the spacecraft

state vector at epoch.

The GEOS-III solutions were 30 hours in length, each solution overlapping

neighboring solutions by six hours. Because ephemeris comparisons in the

solution overlap intervals are used for orbital accuracy estimates and because
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Orbital Analysis for GEOS-III (continued)

of the strongly periodic characteristic of the tracking schedule, it might be

expected that the overlap comparisons could be affected by the placement of

the overlap interval relative to the periods of intense tracking. If the

overlap intervals coincided with the intense tracking periods it might be

expected that the ephemeris differences would be lower than if the overlap

intervals were located in periods of little tracking.

In order to examine this possible effect, the solution intervals were placed

in time two different ways. In the first scheme, the epochs of each 30-hour

solution were located at 15h on successive days. This procedure puts the

periods of intense tracking into the six-hour solution overlap intervals,

and each soluton has strong tracking at its start and end, but little in

between. The second scheme placed the epochs at Oh on successive days. This

placed the intense tracking in the middle of each solution, with very little

in the overlap intervals.

GEOS-III orbital solutions, along with the ephemeris overlap comparisons that

were calculated using these two approaches are summarized in Tables ii and 12.

In these tables, the tracking observations for each solution are separated

into two categories (indicated by the diagonal line) because of slightly

different tracker types; this is not relevant for this study. The orbital

fits, as indicated by the weighted RMS, (the assigned range-rate standard

deviation was 2.0 centimeters per second) were about the same, overall, for

the Oh and 15h solutions. Similarly, the standard deviations of the solution

residuals were about one centimeter per second for each set of solutions.
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Orbital Analysis for GEOS-III - continued

The ephemeris overlap differences for both sets of solutions are also quite

similar. The maximum total differences average about 7 meters for both the

oh and 15h Solutions. Also the maximum cross-track differences average about

6 meters for both sets of solutions. On the other hand, the radial and along-

track differences for the two sets of solutions are distinct. For the 15h

solutions, the maximum radial differences and the maximum along-track differ-

ences average to 0.5 and 2.4 meters, respectively. For the Oh solutions, the

corresponding averages are 1.0 and 4.9 meters. Thus, the placement of the

intense tracking at the end of the solution intervals, rather than the middles,

reduced the along-track and radial differences by about a factor of two.

This reduction in along-track and radial differences, and presumably, a

corresponding reduction in along-track and radial orbit error may be explained

as follows. It is well known that radial and along-track orbit displacements

are coupled together in the equations of motion; thus it is natural that

changes in along-track and radial orbit error should be correlated. Placement

of the intense tracking at the ends of a solution interval causes the orbit

solution to better average out along-track and radial force modeling errors,

leading to smaller peak radial and along-track orbit errors than if the

tracking data was concentrated in the middle of each solution, leaving both

ends of a solution "floating".
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COMPARISONS OF VARIOUS SETS OF TRACKING STATION COORDINATES

The GEOS-III solutions described in the previous section were calculated

using tracking station coordinates derived by J. Marsh of GSFC. Corres-

ponding GEOS-III orbital solutions were calculated using three other sets

of tracking station coordinates. These three sets are NASA Spacecraft

Tracking and Data Network coordinates (STDN), GEM9 coordinates, and World

Geodetic System (Geoceiver) WGS(G) coordinates.

The STDN coordinates are those used for GSFC operational orbit determination

(Reference A). The GEM9 coordinates were derived as a part of the GEM9

and GEM10 gravity models (Reference B). The WGS(G) coordinates for the NASA

S-band tracking stations were specially derived for this study. These

station coordinates were based upon coordinates of nearby geoceivers.

GEOS-III orbital solutions using the STDN, GEM9, and WGS(G) station coordin-

ates are summarized in Tables 13, 14, and 15 respectively. These solutions

were calculated using the same GTDS input parameters, except for station

coordinates as the solutions in Table B (15h epochs). Thus, comparisons

among the results in these four tables are a direct comparison of the effect

of various sets of tracking station coordinates. (The value of the semi-

major axis of the earth, used for evaluation of the gravity force was

slightly different for the solutions calculated using Marsh coordinates.

Subsequently, tests showed the effect of this change negligible for these

comparisons.)
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Comparisons of Various Sets of Tracking Station Coordinates (continued)

None of the three additional sets of station coordinates performed as well in

these solutions as the Marsh coordinates. In the order of increasing weighted

RMS residuals and increasing overlap differences, these three sets of coor-

dinates are ordered as follows: WGS(G), GEM9, and STDN. In the case of the

STDN coordinates, the maximum radial differences average to 4.2 meters, while

the total differences average to 21 meters. These results are consistent

with the position differences of the GEOS-III tracking stations in the Marsh

and STDN coordinates, which are typically 15 to 25 meters.
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CONCLUSIONS

The results of this study have shown that orbital consistency at the five-

meter level can be obtained for Seasat and GEOS-III using the operational

Goddard Trajectory Determination System. The attainment of this orbital

consistency level requires the use of the most precise gravity models and

tracking station coordinates that are currently available. For Seasat,

the use of Laser range tracking data was found to increase the level of

orbital consistency when used alone or in combination with the unified S-

band range-rate tracking data. For GEOS-III, the use of the unified S-band

tracking data alone produced orbital consistency of the order of five

meters.
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Table 1 Physical, Geophysical, and Astronomical
Parameters Used

QUANTITY VALUE

UNIVERSAL CONSTANT OF GRAVITATION (G) 6.673 x 10-23 KM3 S-2KG -1

ASTRONOMICAL UNIT 1.495978930 x 108 KM

SOLAR MOMENTUM FLUX DENSITY 4.6 N KM-2

EARTH GRAVITATIONAL CONSTANT (GM} 3.9860064 x 105 KM3 S-2 (GEM 9)

3.9860064 x 105 KM3 S-2 (GEM10B)

3.9860062 x 105 KM3S -2 (PGS 1040)

EARTH MEAN EQUATORIAL RADIUS (ae) 6378.140 KM (GEM 9)

6378.139 KM (GEM108)

6378.140 KM (PGS 1040)

EARTH INVERSE FLATTENING FACTOR (l/f) 298.250 (GEM 9)

298.257 (GEM10B)

298.257(PGSlO,,o, IIFSPEED OF LIGHT (c) 2.997925 x 105 KM S-1 _"
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TABLE 2. Orbital and Spacecraft Parameters for the Spacecraft Studied

I I
I ] NOMINAL ORBIT CHARACTERISTICS SPACECRAFT CHARACTERISTICS

I SPACECRAFT I I CROSS-SECTIONAL

I [ ALTITUDE (km) INCLINATION (deg) MASS (kg) I AREA (m_2)

GEOS-3 825 to 855 115.0 345.909 1.4365

SEASAT-1 770 to 800 108.0 2220.8 25.31
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Table 3. Marsh II TrackingStationCoordinates

STATION GEODETIC GEODETIC • HEIGHT ABOVE
LATITUDE LONGITUDE SPHEROID CODE

(m)

ACN3 -7°57'17".289 345°40'22 ''.186 534.33 A

AGO3 -33009'03".946 289°20'00".558 717.59 B

BDA3 32021 '04".533 295°20'31 ".325 -30.10 C

ETCA 38o59'54 ''. 171 283°09'28". 749 12.35 D

GDS3 35°20'31 ".789 243°07'35".311 919.69 G

GDS8 35°20'29".495 243°07'34".792 925.69 H

GWM3 13°18'38". 243 144o44 ' 12".465 133.05 I

HAW3 22°07'34".681 "200°20'05".231 1148.56 J

MAD8 40o27' 19". 553 355049'53".216 819.66 K

MI L3 28o30'29".250 279°18"Z3".625 --38.24 L

ORR3 --35°37'40".410 148°57'25 ''. 169 934.39 N

QUIS .-0o37 ' 18".967 281°25'10".404 3578.86 O

ULA3 54°58'19".233 212°29'13".235 333.90 Q

MAD3 40°27'22".248 355°49"49 ''. 163 816.80 R

MILA 28°30'29".318 279°18'25".474 --42.40 8

AREL --16o27"56".708 288°30'24".533 2475.99 -a

BDAL -32021 '13''.767 295°20'37".890 -36.87 b

GTKL 21°27'37".770 288°52'04".972 --32.36 c

HOPL 31°41 '03".201 249°07"18"'.798 2334.76 d

KOOL 52°10'42",215 5° 48'35".055 75.0 e

NATL -5o55'40 ''. 145 324o50'07 ''. 165 22.70 f

ORRL -35°37'29".741 148°57"17". 133 932.45 g

RAM L 28° 13'40".630 279°23'39".244 .37.24 h

SNDL 32°36'02".628 243°09"32 ''. 737 975.00 i

STAL 39°01'13".359 283°10'!9".751 47.00 j =_

aREFERENCE SPHEROID: SEMIMAJOR AXIS, 6378.155 km. iNVERSE FLATTENING FACTOR, 298.255.

4-23



TABLE 4

SATELLITE AND TIME PERIOD SEASAT - September1975
MAJORRUNCHARACTERISTICSApproximately30 SecondData Rate for Both Laser and USB Doppler

GeopotentlalModelPGS-1040** DragParametersCD=2.1 EditingParameters3 Sigma
Lunar/SolarGravitationYES AtmosphericDensityMode_{.P-_ F#150 OtherUSB-Doppler,Earth Tides
SolarRadiationParameterCR=I'5 Solve-ForParametersState and Rho one Polar Motion,Marsh II

Geodetics***

Observations Residual Maximum COMPARE Solve-ForParameters
PositionDifferences

Range Range-Rate Statistics and Other Information
Arc Arc No. (In)

Start Length of Standard Run
Time (hrs) Sta- No. No. No. No. Wtd. Deviations ID

tions Avail- Avail- Used RMS Range Range- Radial Cross- Along- Totalable Used able Rate Track Track RH0:
(m) (cm/sec) 0NEi PASSE

780919 30 7* 403 345 .83 1.68 -.65 20*
0.94 11.76 4.66 12.28

, 780920 30 9 371 325 .99 1.98 -.67 17
_- 1.01 11.59 2.15 11.67

780921 30 9 366 310 .96 1.93 -.53 20
2.20 5.04 7.60 8.37

780922 30 i0 513 426 .82 1.64 -.22 25
i.54 3.21 7.62 7.70

780923 30 9 444 392 .82 1.65 • -.21 21

AVER I0.00

*Number )f St_Itions and Passe - L_ser/[ 3B Do )pler

**ComputaLion rased on PGS-104 : Gr_vitat£onal Const_mt
GM = 39_600.q 2 kmZ/_e 2 En,litOr_;1 Rs_,,_ R =_7_ lh(]1,-.

and Inv_.rse ?lattening Coeff cient = 2_18.257

:**EllipsoLd Pa:'ameters for Mar _h II Geode :ics:

mquatorLai K;LaiUS _e=bJ/_.Ib km _nd l_erse ilatt_ning
coef fic Lent= _-98.2_5



TABLE 5

SATELLITE AND TIME PERIOD SEASAT - September1978

MAJORRUNCHARACTERISTICSApproximately30 SecondData Rate for Both Laser and USB Doppler

GeopotentialModelPGS-1040** DragParameters CD=2.i EditingParameters3 Sigma
Lunar/SolarGravitationYES AtmosphericDensityMode_{-P., F#150 OtherLaser Range, Earth
SolarRadiationParametercR--I'5 Solve-ForParametersState and Rho one Tides, Polar Motion, Marsh II

Geodetics***

[ [ [ Observations ' [Residual Maximum COMPARE Parameters
I

iand Other Information

Arc A'c No. Range Range-Rate Statistics Position (In)Differences Solve-For
Start Le ffth of Standard Run

Time (h s) Sta- No, No. No. No. Wtd. Deviations ID

tions Avail- Used Avail- Used RMS Range Range- Radial Cross _ Along- Totalable able Rate Track Track RH0
(m) (cm/sec) ONE PASSE

780919 30 6* 69 66 0.16 1.48 -.56 15"

_" 0.81 0.83 3.41 3.45!
_o 780920 30 8 79 77 0.17 1.67 -.63 12%n

0.28 2.16 i.28 2.39
780921 30 6 89 85 0.17 1.60 -.49 14

i.98 i.52 7.39 7.43

780922 30 8 79 77 0.12 I.03 -. 55 17
0._0 3.73 3.09 4.50

780923 30 5 64 64 0.12 1.15 -.ii I0

AVER 4.44

*Number _f St _tion_ and Passe3 - L ser/[SB Do?pler

**Computa :ion _ased on P(S'I043: Gr_vitational Constmt
GM = 3q _60(3. ,2 km P/_o _ Eo._-nr_: ] R_i.,_ R =_q7_ IAO I_

and In_ _.rse 'latt_ning Coeff [cien = 2_8.257

_**EllipscLd Parameters for Mar3h II Geodetics:

Equator [al R Ldius Re=6_ 78.155 km nd l_verse flatt ning

coeffic lent=i!98.2:_5



TABLE 6

SEASAT - September 1978SATELLITE AND TIME PERIOD.

MAJOR RUN CHARACTERISTIcs Approximately 30 Second Data Rate for Both Laser and USB Doppler

Geopotential Model PGS- 1040** Drag Parameters CD=2" 1 Editing Parameters 3 Sigma

Lunar/Solar Gravitation YES Atmospheric Density Mode_ "P" ' F#150 Other Laser Range and USB-Doppler, Earth
CR=I.5 State and Rho one Tides, Polar Motion, Marsh II

Solar Radiation Parameter Solve_For Parameters • Geodetics***

Observations Residual Maximum COMPARE Solve-For ParametersPosition DifferencesStatistics and Other Information
Range Range-Rate (m)

Are Arc No.
Start Length of Standard Run
Time (hrs) Sta- No. No. No. No. Wtd. Deviations ID

tions Avail- Used Avail-I Range- Radial Cross- Along- Total
able able i Used RMS Range Rate Track Track RHO

(m) (cm/sec) ONE ?ASSE',

780919 30 6/7 _ 69 66 403 345 i.i0 1.52 1.92 -0.6z 15/20:
0.67 0.40 2.22 2.25

t 780920 30 8/9 79 75 371 325 1.15 1.50 2.06 -0.7] 12/17
_o
o_ 0.93 2.02 3.25 3.80

780921 30 6/9 89 83 366 310 1.16 1.34 2.08 -0.4_ 14/20
1.69 0.91 3.95 4.00

780922 30 8/i( 79 77 513 427 0.99 i.i0 1.84 -0. It 17/25
0.66 2.72 4.18 4.69

780923 30 5/9 64 63 444 392 0.96 i.ii 1.84 -0.2( I0/21

kVER 3.68

*Number }f St_ tions and ?asses - L_ser/U ;B Do ,pier

**Computation lased _n PG_-I04(: Gravitat onal Constant
GM = $91_600. 2 km31.q_c2 Ea._tnr_ml R_ai._ R =AR7_ 1An 1_(

and Inw:rse ]lattening ]oeffJcient = 291.257

**Ellipso:_d Pal ameters fo _ Mar_h II Geode:ics

Equator: al P_dius Re=63 78.15__ km and In Terse flatt_ ning
eo_ffic" _-nt-='.qR. 9_



TABLE 7

SATELLITE AND TIME PERIOD SEASAT - September 1978

MAJOR RUN CHARACTERISTICSAppr°xima_ely Equal Laser and USB Doppler Observations Per Pass

3 Sigma
Geopotential ModelPGS-1040** Drag Parameters CD=2" i Editing Parameters

Lunar/SolarGravitationYES AtmosphericDensityModelH.P., F#150 A- Laser Range and USB-Doppler, Earthne IState and Rho one _es, Polar Motion, Marsh i
Solar Radiation Parameter CR=1.5 Solve-For Parameters Geode tics _*

Observations Residual I[ Maximum COMPARE Solve-For Parameters
Statistics I Position Differences and Other Information

Range Range-Rate I (m)
Arc Arc No.
Start length of Standard Run
Time (hrs) Sta- No. No. No. No. Wtd. Deviations ID

tions Avail- Avail- Used RMS Range Range- Radial Cross- Along- Total RH0able Used able Rate Track Track
(In) (cm/sec) ONE PASSE:

780919 30 6/7" 318 305 403 344 1.02 0.94 2.01 -.61 15/20_
0.43 0.95 1.54 1.59

_" 71 12/17
780920 30 8/9 230 224 371 324 1.15 1.26 2.05 --

_o 0.64 2.59 2.57 3.15"-4

780921 30 6/9 305 280 366 310 1.19 1.25 2.10 -.54 14/20

780922 30 8/10 360 338 513 427 1.01 0.90 1.90 1.70 0.93 7.10 7.11 -.12 17/25
0.55 3. Ii 2.70 3.87

780923 30 5/9 200 198 444 392 1.00 1.02 1.91 -.17 10/21

AVER 4.05

*Number )f St_Ltion, and Passer - L_ser/lSB Do?pier

**Computation )ased on PGS-104 : Gr_vitat ional Const nt
_M --_a_.nn .9 1..../_..2 l?,_.,_-...-4I R=F_,,= R =_27R ILN k_

and Inv_-rse _latt_ning Coeff cien_ = 2_8.257 _

_**Ellipsoid Pa:amet_rs for Marl;h II Geodctics:
Eauatoris] R d_us Ra=6_78.15_ km md Irverse flattE:nin_
coeffic Lent= _98.2__5



TABLE 8

SATELLITE AND TIME PERIOD SEASAT - August 1978
MAJORRUNCHARACTERiSTIcsAppr°ximately30 SecondData Rate for USB Doppler

GeopotentialModelPGS-1040** DragParametersCD=2.i EditingParameters3 Sigma

Lunar/SolarGravitationYES AtmosphericDensityMode]H.P., F#150 OtherUSB-Doppler,Earth Tides
SolarRadiationParameterCR=I'5 Solve-ForParameters State and Rho one Polar Motion, Marsh II

Geodetics_

Observations Maximum COMPAREResidual Solve-For Parameters

Arc Arc No. Range Range-Rate Statistics Position (In)Differences and Other Information
Start Length of Standard Run

Time (hrs) Sta- No. No. No. No. Wtd. Deviations ID
tions Avail- Avail- Range-i Radial Cross- Along- Totalable Used able Used RMS Range Rate Track Track RH0(m)

(cm/sec) ONE PAS SE

780808 30 10" 470 400 .88 1.76 -.89 22*

_. 0.93 4.89 9.78 I0.90
l 780809 30 i0 538 429 82 1 65 - 90 26[_ • • •

oo 2.88 3.16 9.92 i0.20
780810 30 8 366 317 .55 i. ii -.Ii 17

1.41 6.64 10.20 11.90

780811 30 8 335 276 .80 1.61 -.10 16

780812 30 7 317 269 .83 1.66 4,13 Ih.20 20.20 21.A0 -.74 14

%VER [3.60
*Number )f St_Ltion,and Passe - L_ser/[SBDo _pler

**Computa:ion,asedon PGS-1049:GravitationalConstant
C_M= _q_OO. b2 kin-/_r 2 _q-_tor_ ! R=_ius R_=6378_140 km
and Inw_.rse 'latt_ning ]oeff::cienl = 298.257

**Ellipso:.d Paramet_ cs fo[_ Mar_;h II !Geodctics:
Eauatorl:a] R;_.._ R_=6q79_.1_ km nrl Tn_T_r_ fl=_,n_ne
coeffictLent= 198.2.=!5

I I I



TABLE 9

SATELLITE AND TIME PERIOD SEASAT - August 1978

MAJOR RUN CHARACTERISTIcsApproximately 30 Second Data Rate for Laser

Geopotential ModelPGS-!040** Drag Parameters CD=2" I Editing Parameters 3 Sigma

Lunar/Solar Gravitation YES Atmospheric Density Model H'P" _ F#150 b r Laser Range, Earth
CR=I-5 State and Rho one _es, Polar Motion, Marsh II

Solar Radiation Parameter Solve-For Parameters Geodetics _ _

[ Maximum COMPAREObservations
i Residual , Solve-For Parameters

Range Range-Rate Statistics I PositiOn(m}Differences and Other InformationNo.

StartArc LengthArc of Standard J Run

Time _hrs) Sta- No. No. No. Deviations ID
tions Avail- Used Avail- No. Wtd.able able Used RMS Range Range- Radial Cross- Along, Total RH0Rate Track Track

(m) (cm/sec) ONE PASSE

780808 30 6* 135 87 2.05 1.85 -.81 Ii*
i.33 2.92 6.78 7.19

_" 780809 30 6 152 130 2.03 2.03 •64 15I

_o 0.57 3.34 6.58 7.13

780810 30 5 108 105 i.56 I.56 " -. 77 9

1.43 3.74 10.20 10.80

780811 30 5 142 105 2.42 2.40 -.75 9•

780812 30 4 105 61 1.99 1.95 2.13 3.82 10.30 10.30 -.72 7

I kVER 8.85•Number ,f Stations and ?asse.,- Laser/U ;B Do pier

•*Computat:ion [ased )n PG;;-104 _: Gravitat onal Constant

GM = 3qI_600._2 kr._l_e 2 Eau;tnr_] R_d ..q R =697R lh0 k.m

and Inv_:rse _latteling _oeffJcient = 29_.257 _

•*Ellipsoid Pazamete:s fo: Mar, h II _eode_,ics:
Equatorial Radius _=63_8.15_ km and InVerse flattening
coefficJ ent=_ 98.25



TABLE i0

SATELLITE AND TIME PERIOD SEASAT - Aogust 1978
MAJOR RUN CHARACTERISTICS Approximately 30 Second Data for Both Laser and USB Doppler

GeopotentlalModelPGS-1040** DragParametersCD=2. i EditingParameters3 Sigma

Lunar/Solar Gravitation YES Atmospheric Density Model H.P., F#150 Laser Range and USB-Doppler, Earth
CR=I.5 State and Rho one _e_es, Polar Motion, Marsh II

Solar Radiation Parameter Solve-For Parameters _,eoQe........ LJ-_=_'_

Observations Residual Maximum COMPARE Solve-For Parameters
Statistics Position Differences and Other Information

Range Range-Rate (In)
Arc Arc No.
Start Length of Standard Run
Time (hrs) Sta- No. No. No. No. Wtd. Deviations ID

tions Avail: Avail- Used RMS Range Range- Radial Cross- Along- Total RH0able Used able Rate Track Track
(m) cm/sec) ONE PASSE )

780808 30 6/10_ 135 83 470 400 1.07 1.40 1.87 -.82 11/22_
1.53 0.91 8.78 8.85

_" 780809 30 6/10 152 122 538 429 1.02 1.37 1.78 -.83 15/26I
co 0.66 1.70 2.90 3.36
o 780810 30 5/8 108 102 366 317 1.01 1.48 1.61 -.89 9/17

1.36 4.67 3.87 5.93

780811 30 5/8 142 103 335 276 1.45 2.25 1.99 m -.82 9/16
2.30 2.91 11.25 11.26

780812 30 4/7 105 60 317 269 1.15 1.79 1.87 -.74 7/14

AVER 7.35

*Number )f Sti_tion, and Passe_ - Lser/ESB Do)pler

**Computation rased on PGS-104 : Gravitational Constlmt
GM = 39B600.I_2 km:/sec 2. Eouttor_1 Radius R =637R lhO kv

and Inv__rse ?fattening Coeff cient = 258.257 '_"

=**Ellipsoid Pa::amet_rs for Mar_;h II Geodetics:
EquatorL_l_ dius Rc=6378.15!km ;nd Ivver._of]_t,m_ng
coeffic[ent=_.98.2.=5



TABLE 11

SATELLITEANDTIMEPERIODGEOS-III Februaryand March 1976

MAJOR RUN CHARACTERISTICSApproximately 30 Second Data Rate for USB Doppler

Geopotential Model GEM 10B ** Drag Parameters CD=3.09 Editing Parameters 3 Sigma

Lunar/Solar Gravitation YES Atmospheric Density Model H.P., F#75 USB-Doppler, Earth TidesOther
CR=1.45 State Vector Polar Motion, Marsh II Geodetics***Solar Radiation Parameter Solve-For Parameters

I Observations Residual Maximum COMPARE Solve-For Parameters J

Are Arc No. Range Range-Rate, Statistics Position (m)Differences and Other Information
Start Length of Standard Run

Time (hrs) Sta- No. No. No. No. Wtd. Deviations ID
tions Avail- Avail- Used RMS Range Range- Radial Cross- Along-able Used able Rate Track Track Total PASSE(m)

(cm/sec)

760223 30 5* 53r147 i0/95 .67 .)/1.5 15"

•- 1.0 1.4 4.7 4.8
l 760224 30 5 41 79 ;4/59 .47 ..;/1.0 9

1.0 8.0 4.5 4.1

7.60225 30 5 65 181 ;4/125 .50 i. )/i.0 19

760226 30 4 34 172 _8/123 .63 I. ;/.2 0.7 2.4 2.2 2.8 15
0.6 1.9 2'9 3'2

760227 30 4 51 167 _4/132 .169 i. )/.5 16

0.5 8.5 3.7 8.9

760228 30 5 53'I15 _4/92 .53 i._/.9 13

760229 30 5 39'i09 ;0/81 ,61 i. _/1.2 1__ IO_R q R 4.6 12
1.0 6.2 4.4 7.4

760301 30 4 i16 85 .45 9 i0

760302 30 5 20 88 8/72 .52 .6_i.i ].5 8.5 6.9 10.4 I0

_VER 7.6

*Number )f StlLtion_ and Passe for USB £)pple:-

**C0mputa_ion _ased on GE_ 10B GM = 398630.64 km3/s_ c2,
R^=637_ 13q :m _nc I/f = 112_R-25"

**E[lipso:LdPalametcrs fol.-Mar:ihII Geode:ics:Re=63 8.155 u_and i/f ='i/ :98.2_=5 "_



TABLE 12

SATELLITEANDTIMEPERIODCEOS-III Fpbruary_nd Mnrnh 1976
MAJORRUN CHARACTERISTICSApprOXimately 30 SecondData Rate for USB Doppler

Geopotential Model GEM 10B ** Drag Parameters CD=3" 09 Editin£warame_ers-_ 3 Sigma
YES H.P., F#75 _USB-Doppler, Earth Tides

Lunar!SolarGravitation CR=I.4 5 AtmosphericDensityMode_taL e Vector _rar Motion, Marsh ii Geodesics***
Solar Radiation Parameter Solve-For Parameters

Observations Residual Maximum COMPARE Solve-For Parameters

Statistics Position Differences and Other Information
Range Range-Rate (m)

Arc Arc No.
Start length of Standard Run

Time (hrs) Sta- No. No. No. No. Wtd. Deviations ID

Epoch at tions Avail-ableUsed Avail-ableUsed RMS Range Range-RateRadial CrosS-TrackAlong-TrackTotal

15 hrs. (m) (cm/sec) PASSE',

760223 30 5* 69 159 __5/121.55 0,8/1.2 17"
i.I 10.8 3.5 11.2

760224 30 5 94 187 ._8/13_.51 1,0/i.0 21
LO

0.4 5.2 1.2 5.4
760225 30 5 67 263 L6/19-_ .60 1.2/1.2 25

0.3 2.3 1.2 2.5

760226 30 4 65 251 f1/200 .65 i.1/1,4 23
0.i 6.0 1.1 6.0

760227 30 4 79193 (7/163 .63 1,1/1.3 21
0.3 7.7 3.1 8.2

760228 30 5 69 203 f0/158 .65 i,7/1.2 21
1.5 9.9 6.1 1.4

760229 30 5 13154 i/ii0 .61 0,9/1.2 14
0.3 2.9 2.2 3.5

760301 30 4 34 114 .57 i.i 12
0.2 5.2 0.9 5.3

760302 30 5 32 134 8/105 .72 0.8/1.5 15

_VER 6.7

*Number _f Stations and ?asse: for USB D)pple,

**Computa_:ion Ipased _n GE]_ 10B GM = 398630.64 km3/s_c 2,
R_=6q7_ ]qq _m _na !!f = !/2!8257

**E_lipso:dPa,amete_sfo: Mar_h II Geode-ics:Re=63_8.155 <m
and I/f = i/_98.255



TABLE 13

SATELLITEAND TIMEPERIODGEOS-III February and March 1976
MAJORRUNCHARACTERISTIcsApproximately30 SecondData Rate for USB Doppler

GeopotentialModelGEM 10B **
YES Drag Parameters CD=3.09 Editing Parameters 3 Sigma

Lunar/Solar GravitationCR=I. 4_ Atmospheric Density ModeLH"P'' F#75 USB-Doppler, Earth Tides
Solar Radiation Parameter Solve-ForParameters state Vector _ho_ar Motion, _fDN Geodetics***

Observations Maximum COMPARE
Residual Solve-For Parameters

Arc Arc No. Range Range-Rate Statistics Position(re)Differences and Other InformationI

Start Length of Standard Run
Time (hrs) Sta- No. No. No. Deviations

tions Avail- Avail- No. Wtd. ID
Epoch at able Used Used RMS Range Range- Radial Cross- Along-
15 hr s. able (m) Rate Track Track Total

(cm/sec) PASSE

760223 30 5* 69 159 i5/123 1.88 3. i/4.0 17"

760224 30 5 94 '187 ;8/123 1.08 2.0/2.2 5.3 31.9 11.4 33.4 21
10.4 21.1 $1.9 $2.0

7.60225 30 5 67 263 6/186 1.64 3J2/3.1 25
1.6 15.0 3.7 5.3

760226 30 4 65 251 _i/196 1.90 3 4/3.5 23]

! 760227 30 4 79 193 _2/1571 1.48 3 2/3.6 3.0 3.7 7.3 7.5 21

760228 30 5 69 203 Z8/153 1.59 3 7/2.9 3.2 3.6 10.9 1.2 21
3_5 14.5 14.0 [7.2

760229 30 5 13 154 11/108 1.50 0,5/3.0 14

760301 30 4 [34 115 1.21 2.4 5.2 29.9 16.2 33.2 12
1.5 9.2 3.2 9.5

760302 30 5 32 '134 8/98 1.08 i08/2.1 15

WER _-1.2

*Number _f Stations and Passe, for IUSB D_pplel

**Computa ion lased on GE_ 10B: GM = 398630.64 km3/s_c 2,
R_=637_ ]3g _m _nd 1/-F : I/?(_.9_-

_*EZIipso:d Pazametecsfo STD_ Geodetics Re={378.1_9km
and i/fi= 1/298.255



TABLE 14

SATELLITE AND TIME PERIOD GEOS-III February #nd March 197_

MAjOR RUNCHARACTERISTIcsApproximately 30 Second Data Rate for USB Doppler

C-eopotentlalModel GEM 10B ** CD=3.09Drag Parameters Editing Parameters 3 Sigma

Lunar/SolarGravitationYES AtmosphericDensityModelH.P., F#75 OtherUSB-Doppler, Earth Tides
CR=1.45 State Vector Polar Motion, GEM 9 Geodetics***Solar Radiation Parameter Solve-For Parameters .

Observations Residual Maximum COMPARE Solve-For Parameters
Position Differences

.I No. Range Range-Rate Statistics (m) and Other InformationArc Arc
Start Length i of Standard Run
Time (hrs) Sta- No. No. No. No. Wtd. Deviations ID

Epoch at tions Avail- Used Avail- Used RMS Range Range- Radial Cross- Along- Total
15 hr s. able able Rate Track Track

(m) (cm/sec) ?ASSE_

760223 30 5* 69 159 .=5/122 .75 1.2/1.4 17"

_. 2.4 17.0 9.4 [9.0
I 760224 30 5 94 187 =8/138 71 1.5/1.4 21

760225 30 5 67 263 42/194 .78 1.4/1.5 0.6 7.3 2.3 7.6 25
0.5 0.5 1.5 1,5

760226 30 4 65_ 251 .=1/202 ,94 2.2/1.7 23

760227 30 4 79) 193 63/163 .77 2.0/1.3 0.9 3.4 2.8 4.4 21
1.2 1.2 5.1 5.2

760228 30 5 69) 203 47/151 .94 2.6/1.6 21
2.7 18.8 [0.5 _.I.0

760229 30 5 13}154 11/103 .74 0.9/1.3 14
2,6 12.8 [0.3 L6.0

760301 30 4 34 105 .84 1.7 12

i.I 5.2 4'5 6.4
760302 30 5 32?134 8/i04i .89 1 I/1.8 15

kVER 1.8

*Number _f St_ tions and ?asse_ for USB D!)pple_

**Computalion [ased on GE]4 10B GM = 3986 )0.64 km3/sclc2,

R =_7_ I_Q _ =_ II_ = !/2_.257

**E_lipso_'.d-Par'a_me{e'_s'fo:_ GEM 9 Geodetici: Re::6378.]i39km
and i/f = 1/298.255

I I I , J _



TABLE 15

SATELLITEANDTIMEPERIODGEOS-III Februaryand March 1976

MAJORRUNCHARACTERISTICSAppr°xima_ely30 Second Data Rate for USB Doppler

Geopotential Model GEM 10B ** Drag l_arameters CD=3" 09 Editing Parameters 3 Sigma

Lunar/Solar Gravitation YES Atmospheric Density Model_H" P" ' F#75 USB-Doppler, Earth Tides

CR=1.45 State Vector _h_ar Motion, WGS Geodetics***
Solar Radiation Parameter Solve-For Parameters

Observations Residual Maximum COMPARE Solve-For ParametersPosition Differences

Are Arc No. Range Range-Rate Statistics (m) and Other Information
of Standard Run iStart Length

Time (hrs) Sta- No. No. No. No. Wtd. Deviations ID
I

Epoch at _ons Avail- Used Avail- Range- Radial Cross- Along-
15 hrs. able able Used RMS Range Rate Track Track Total PASSE:_

(m) cm/sec)

!760223 30 5* 69 159 15/117 .43 • ;/0.9 17"
1.2 20.8 6.5 _.i.4

760224 30 5 94'187 'i8/13_ .75 i 2/1.5 21
_ 0.4 4.7 1.8 5,0

Z60225 30 5 67 '263 z6/19Z .85 1.7/1.6 25
1.2 8.0 3.6 8.2

760226 30 4 65'251 ._ii/19£.77 1,5/1.5-- 23
0.7 9.2 2.8 9.5

i760227 30 4 79'193 _7/162 .78 1.6/1.4 21
0.5 6.0 3.3 6.7

760228 30 5 69 '203 =i/15_ .76 1.9/1.2 21

1760229 30 5 !3'154 I/Ii( .84 0.4/1.5 1.7 13.4 7.4 [4.8 14
1.7 6.1 5.6 7.7

760301 30 4 L34 114 .55 i.i 12

0.6 12.6 2.0 2.6
760302 30 5 32'134 8/10.= .68 0.6/1.4 15

kVER L0.7

*Number ,f St_tions and Passe for USB £ )pple
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TECHNIQUES FOR INCREASING THE EFFICIENCY OF EARTH GPAVITY

CALCULATIONS FOR PRECISION ORBIT DETERMINATION*

Richard L. Smith

Anatoly S. Lyubomirsky

Computer Sciences Corporation

ABSTRACT

Two techniques for increasing the efficiency of Earth grav-

ity calculations are analyzed. The first is a representa-

tion uslng Chebyshev expansions in three-dimensional cells.

Mathematical formulas are given for converting the standard

spherical harmonic representation (e.g., GEMIOB 36 x 36) to

the Chebyshev representation. The error in the truncated

Chebyshev representation was measured as a function of cel!

size and degree of truncation. For example, with a sixth

degree Chebyshev expansion, the maximum gravity error is

about 10-10g for a 36 x 36 parent representation in a cell

extending 5 degrees in both latitude and longitude and hav-

ing a thickness of 600 kilometers. Computer storage re-

quirements and relative CPU time requirements are presented.

The Chebyshev gravity representation can provide a signif-

icant reduction in CPU time in precision orbit calculations,

but at the cost of a large amount of direct-access storage

space, which is required for a global model.

The second technique employs a temporary file for storing

the components of the nonspherical gravity force. In

*This work was supported by the Operations Analysis Section,
Operational Orbit Support Branch, Goddard Space Flight
Center, National Aeronautics and Space Administration, under
Contract NAS 5-24300.
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differential correction orbit solutions it is often unneces-

sary to repeat computations for most of the gravity terms

during subsequent iterations for which the satellite's posi-

tlon changes only slightly. By saving a direct-access file

of gravitational forces and partial derivatives it is pos-

sible to reduce CPU time without slgnificantly affecting

orbit accuracy. The gravity file is updated whenever the

position tolerance is exceeded. The Goddard Trajectory De-

termination System was temporarily modified to test this

technique, and the results of the test are presented.

i. INTRODUCTION

As the orbit determination accuracy for Earth-orbiting

spacecraft is improved through the use of increasingly more

accurate Earth gravity models, the computer time require-

ments increase rapidly, using the customary global spheri-

cal harmonic expansion, the amount of computation time

increases approximately as the square of the maximum degree

and order of the expanslon. For currently available gravity

models, for example, the Goddard Earth Model 10B (GEMIOB),

most of the computation for an orbit solution is devoted to

evaluations of the gravity force. Clearly, less time-

consuming methods of gravity evaluation are required, par-

ticularly if precise gravity models are needed for future

operational orbit determination. The need for faster meth-

ods is enhanced by the fact that the utilization of more

precise gravity models requires the use of correspondingly

smaller step sizes for numerical integration of the space-

craft equations of motion.

Table 1 shows the amounts of computer time IGSFC IBM

S-360/75) currently required for orbit solutions calculated

using the Goddard Trajectory Determination System CGTDS).

In order to isolate the dependence of the computer time on

the specified value of the maxlmum degree and order In the
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Table 1. GTDS Computer Time Usage for Various Sizes of
the Smherical Harmonic Gravity Expansion

SPACECRAFT: SEASAT-1

NUMERICAL INTEGRATOR: COWELL FIXED STEP. 12THORDER

FORCE MODEL:

• GRAVITY: SOLAR, LUNAR, GEM9

• DRAG,WITH HARRIS-PRIESTER ATMOSPHERE

• SOLAR RADIATION FORCE

• MEAN OF 1950.0 SYSTEM FOR INTEGRATTQN

EPOCH: 18nON JULY 10, 1978 ARC LENGTH: 30 HOURS

EPOCH - ARC LENGTH: 18n ON JULY 10, 1978 - 30 HOURS

OBSERVATIONS: 391 DOPPLER USB, 100LASER RANGE

IBM S-360/75 COMPUTER TIME USAGE (MIN)

SIZE OF EARTH 90-SECOND STEP SLZE 45-SECOND STEP SIZEGRAVITY MODEL

CPU Ii0 CPU I/0

EPHEM PROGRAM

4 x 4 0.888 0.241 1.544 0.239

8 x 8 1.007 0.241 1.613 0.239

21 x 21 1.280 0.252 2.306 0.249

36 x 36 (GEM10B) 3.210 0.329 5,058 0.330

DC PROGRAM 1

4 x 4 7.448 1.804 I 11.015 1.725

8 x 8 8.322 1,805 12.051 1.727

21 x 21 10.419 1.817 15.482 1,739 _

36 x 36 (GEMIOB) 20.577 I 1.938 35.952 1.855
I :o

1SIX ITERATIONS AND CONVERGENCE
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spherical harmonic expansion, all other input oarameters for

these Solutions were identical. Computer times for both GTDS

Ephemeris Generation (EPHEM) and GTDS Differential Correction

(DC) Program runs are shown in this table.

Two methods for efflciency improvement are examined in this

paper• Section 2 outlines a gravity representation using

Chebyshev polynomials rather than spherical harmonics. Sec-

tion 3 considers a procedure for making use of previously

computed values of the gravity force during the later itera-

tions of differential correction orbit solutions. This

procedure, unlike the Chebyshev representation, is not gen-

erally applicable to orbit prediction. Section 4 assesses

the merit of these two methods and indicates directions for

future work.

2. REPRESENTATION OF THE EARTH'S GRAVITY FIELD
USING CHEBYSHEV POLYNOMIALS

2.1 OUTLINE OF THE METHOD

In order to accurately represent the Earth's gravity using

Chebyshev polynomials, the region of interest is partitioned

into cells, and for each cell the gravity force components

are expressed as a series of Chebyshev polynomials• The

numerical values of the expansion coefficients for a given

cell are, in general, different from those of any other

cell. With a suitable selection of the cell dimensions, the

convergence of the Chebyshev series is sufficiently fast

that the computational effort for its evaluation is signifi-

Cantly less than the effort required to evaluate the stand-

ard spherical harmonic expansion• In exchange for the

reduction in computational effort, however, the Chebyshev

representation requires a large data set containing the ex-

pansion coefficients for all of the cells.



The evaluation of the gravity force in GTDS is accomplished

with the followlng standard spherical harmonic expansion:

D
max n

F r = -g (n * 1) n
n=0 m=0 (i)

•(Cm cos ml _ Sm 1n sin ml

n
max n

(l}n _ [pm+l (sin _)- m tan _ Pmn (sin _)IF_ = g
n=O m=O (2)

"(Cmncos ml + Smnsin mX)

n
max n

FX = cos _ m pmn (sin _)
n=O m=O (3)

(smncos mX - Cmnsin ml)

where r = radial distance in Earth radii _a)

= geocentric latitude

I = geocentric longitude

m

Pn = Legendre function of degree n and order m

nma x = maximum degree of the spherical harmonic expan-
sion for the Earth's gravity field

g = GM/(ar) 2, where G is the universal constant of
gravitatlon, M is the Earth's mass, a Is the
Earth's radius, and r is defined above

m m

C n Sn = nonnormalized spherical harmonic expansion co-
efficients for the geopotential field model con-
sidered
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The Chebyshev expanslons used in this paper also yield the

radial, latitudinal, and longitudinal gravity components, F ,r

F¢, F I. The Chebyshev expansions are applied only to that part
of the gravity force described by spherical harmonic terms

of degree greater than 4. Terms of degree less than or equal

to 4 are still evaluated uslng spherical harmonics.

In each cell, independent position variables, x, y, and z,

are designated. These variables are related to r, _, and 1

by means of the followlng equations:

1 1
-- = -- + Ax (ixi < i) (4r r

o

sin <_= sin _o . Cv (1%l _<45°, Ivt _<I) 5)

O

cos (_= cos @o + Cy (l<bl> 45 , [yl < i) 6)

cos I = cos I + Dz (II - 90°I < 45°, izl < i) C7)
O _

The cell origin is (rO, ¢o' lo) and the physical size of a
cell is controlled by the three parameters A, C, and D. The

position variables x, y, and z describe displacements, rela-

tive to the cell orlgin, in the radial, latitudinal, and

longitudinal directions, respectively. The locus of points

such that x = +i or x = -I describes spherical surfaces

bounding the top and bottom of a cel l•. The locus of points

such that y = +i defines cones of constant latitude bounding

the north and south sides, and the locus of points such that

x = +i describes longitudinal planes bounding the cell on

the east and west sides. This choice of independent vari-

ables leads to cell crowding near the poles, but allows a
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fast and efficient orocedure for calculation of the Chebvshev

expansion coefficients.

AS indicated bv Equations _5) and _6), the latitude-like

variable, y, is defined differently for the polar and equa-

torial regions. This difference is necessary to avoid slow

convergence of the Chebyshev expansions close to the poles

and close to the equator. This slow converaence problem also

exists for I :=0 or I = _ using the definition given for z

by Equation (7). However, it is only necessary to apply a

longitude shift when the problem occurs Cby suitably adjust-

ing the C_'s and S_'s) and thus avoid a double definition.

The expansion of each factor of a typlcal spherical harmonic

1 m cos
n+l Pn (sin _) sin ml

r

into a series of Chebyshev polynomials follows the equations

(for each cell)

oo

2 1o= X T (X) _8)
rn _ ni i

oo

pm j_0 12 - _jo ym. T (y) _91

n (sin %) = _ n] j

[2 - @ko] Z (i) Tk[Z ) CI0)cos ml = _ mk
k=0
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_'_°[2 - 5ko] Z(2sin ml = _ ,_ mk Tklz)
(II)

k=0

The Chebyshev polynomials, T i, are functlons of x, y, or z and

satisfy the recurrence relation

Ti+l(x) = 2x TI(x) - Ti_1 Cx) C12)

where the subscript indicates the degree of the polynomial.

In several cases, the Chebyshev expansions indicated by Equa-

tions (8) through (II) are finite, not infinite, as a result

of the definitions of x, y, and z. The X's, Y's and Z's are

the Chebyshev expansion coefficients and their values depend

on the cell parameters r o, #o' lo' A, C, and D, in addition

to the order and degree of the spherical harmonic.

The X's, Y's, and Z's are combined in the following way,

according to Equations (i) through _3), to form the three
_i)

subscrlpted Chebyshev expansion coefficients, e.g., Cij k,
used for the calculation of the force components:

n
max n

ijk = Q (n + i) Xni j _ n mK
n=4 m=0

n
max n

(2) E E -m+l ((i) + smz(2)) (14)Cijk = Q Xni Ynj CruZ k mk
n=4 m=0

nmax n

E E / m Ii) mz(2)) (15)C_ ) = Q Xni mymj _CnZmk + Sn mk
n=4 m=0
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nmax n

(4 E E m (Smz{l)- cmz(2)) _16Cij) = Q Xni mYnj mk mk
n=4 m=0

[2- @0i) [2- 60j) (2- _0k)
Q -- 3 (17)

The three gravity force components are then calculated in

the following way:

I J K

Fr =-g E E E C_ T i(x)Tj[y)Tk(Z) (18
i=0 j=0 k=0

I J K

j) - tan % Cij:) T i(x)Tj (y)T k [z) [19)
i=O j:0 k--O

I J K

EEEF1 = _cos % • Ciji Ti(x)Tj(V)_Tk(z) [20
i=O j:0 k=O

These three equations represent the calculation of gravity

as it might be performed in an orbit determination program,

using precalculated coefficients.

The formulation used in this paper required four types of

three-subscripted Chebyshev expansion coefficients. With

additional work, it should be possible to also expand the

function

tan _ pm (sin @)n
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in a Chebyshev series, leadino to a formulatlon usina only

three _ypes of coefficients. This additional complication

was omitted for the present for simplicity.

As indicated by Equations (8) through C16) the three-

subscripted coefficients depend on the gravity model coeffi-

cients, Cm and Sm the cell location, and the cell dimensions.n n'
The combined set of three-subscripted coefficients for all

cells constitutes a Chebyshev representation for the given

gravity model.

The calculation of the Chebyshev coefficients for the spher-

ical harmonic factors, that is, the calculatlon of the X's,

Y's, and Z's, can be easily accomplished using recurrence

relations. These recurrence relations are as follows:

Recurrence relations for the radial Chebyshev coefficients:

A 1

Xn+l,i = [ (Xn,i+1 + Xn,i_l) + r0 Xn,i In > OF all i) 21

[
_ 1 |(2n + i) _ Xn,0Xn+l,0 n + 1 _0

22

2 Xn-l,0 _n > 0)
r01

Recurrence relations for the longitudinal Chebyshev coeff -

cients :

, )(i) = D IZ(I) .(I) . 2 cos 10 Z (I)Zm+i,k \ m,k-i _ _m,k+l m,k
{23

- Z (I) (all m all k)m-l,k
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(all m ,  all k )  

Recurrence relations for the latitudinal Cbebyshev coeffi- 

c i e n t s  ( I 4 1  - < 45') : 

- n + m  Ym 
n - m + l  n-lfj (all j, n > m  > 0 )  - - 

( a l l  j, n 2 2 )  



Recurrence relations for the lati'tudinal Chebvshev coeffi-

cients (l_l > 45°) :

n+2,1 = Cn + 1 - m)(n + 2 - m) I (2n - i) n-2,i

[ ] (m m )+ - (2n + 1)(C cos _o ) Yn,i+l + Yn,i-1

I-+ (2n + 1) n,i+2 + n,i-2 (27)

[_ (n+ 1 - m)_n + 1 + m)+ [ (2n + 3)

_ C2
+ (2n _ i) sin°2_0 (2n • I) 2

_ (n +(2nm)_(ni)-m)jYmn,_I (all l, n _>m _>0)

%

J

Yn+l,i = (2n + i) os _0 ynn,i + _ Y ,i+l
_28)

>]n,i-i fall i, n > 0)

The derivation of these recurrence relations is omitted

here; some detail is given in Reference i. It should be

noted that, although the same symbol is used in each case,

the Y's of Equations (25) and (26) are defined differently

than the Y's of Equations (27) and (28). There should be no

confusion since Equations (25) and (26) are intended only

for the equatorial region, while Equations {27) and {28)

apply to the polar regions.

2.2 ERROR MEASUREMENTS FOR THE CHEBYSHEV REPRESENTATION

This section addresses the question of how closely a

Chebyshev gravity representation matches the gravity field

defined by the parent spherlcal harmonlc representation. In

order to study the Chebyshev expansion error, a computer
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program was written to numerically evaluate the error for

any selected cell. The program first constructs the

Chebyshev expansion coefficients for the given spherical

harmonic expansion, using the recurrence relations given in

Section 2.1. These Chebyshev expansion coefficients are

functions of the cm'sn and sm's.n , the cell parameters ro, Go'

and io; and A, C, and D. Then, for a selected maximum

degree, the three gravity force components, Fr, F_ and F 1
generated by the Chebyshev expansions IEquations (18)

through (20)) are numerically compared with the corresponding

force components calculated from the spherical harmonic ex-

pansion (Equations (i) through C3)), using a minimum degree

of 4. This comparison is made at many points uniformly

distributed throughout the given cell, and the maximum dif-

ference between the two representations provides a measure

of the Chebyshev expansion error. All of the error measure-

ments in this paper apply to Chebyshev representations based

upon the GEMIOB 36 x 36 gravity model.

Figures 1 and 2 show the numerically computed error as a

function of the cell size parameter A. For simplicity, the

latitude size parameter C, and the longitude size param-

eter D, remained equal to A as A was varied° Figures 1 and

2 show the error for cells at reference heights of 967 kilo-

meters and 255 kilometers, respectively. On each figure, a

reference error level at 10-10g is indicated. Order of

magnitude estimates place the resultant orbit error at less

than 0.I meters for a 5-day orbit propogation subiect to a

high-frequency gravity error having this amplitude. The

maximum degrees for each of the Chebyshev components were

equal to one another and are indicated for each group of

curves in the figure. For example, in Fiaure i, the upper

group of curves represents the error in the three-force com-

ponents as a function of A for a 3 x 3 x 3 Chebyshev expan-

sion.
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Figure I. Numerical Measurement of Chebyshev Gravity
Representation Error as a Function of Cell
Size and Expansion Degrees (Heightof Cell
Center = 967 Kilometers)
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Figure 2. Numerical Measurement of Chebyshev Gravity
Representation Error as a Function of Cell
Size and Expansion Degrees (Height of Cell
Center = 255 Kilometers)
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Each of the error curves in Figures 1 and 2 has a ranae, for

intermediate values of A, where the curve is nearly a

straight line. In this range, the slope of this straight

line, on a log-log scaler is one greater than the maximum

degree of the Chebyshev expansion; i.e., the error varies as

the cell size to the K +i power, where K is themax max

maximum Chebyshev degree. (This rule does not seem to be

accurate for the larger values of Kmax.) For larger

values of A, the curves bend away from the straight line.

For very small values of A, a numerical noise level is
-18

reached and the error reaches a lower limit--about i0 g

for Figure 1 and 3 x 1017g for Figure 2.

Figures 3 and 4 show the numerical error as a function of

latitude for a 5° x 5° cell, using a 6 x 6 x 6 poly-

nomial degree expanslon. The cell thickness was chosen to

be small, at a value of 12.8 kilometers, to eliminate the

effects of radial variation on the error. The results in

Figure 3 were obtained using the equatorial zone formulation

(Equations (5), (25), and (26)) and those in Figure 4 were

obtained using the polar zone formulation (Equations (6),

(27), and (28)). The former diverges near the poles and the

latter diverges near the equator, so that a global Chebvshev

gravity model must be based upon a combination of these two

formulations. In Figures 3 and 4, the maximum error in each

cell is plotted at the cell center, so that cells centered

at 2.5 degrees latitude extend to the equator and cells cen-

tered at 87.5 degrees extend to within 0.001 degrees of the

pole.

The slight rise in error near the pole in Figure 4 occurs at

error sampling polnts that are 0.75 degrees from the pole.

This slight rise Is presumably due to factors of cos-l_ and

an associated loss of precision in the calculation of F_

and F 1 (Equations (2) and (3)).
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Function of Latitude (Equatorial Zone Expansion Used)
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Outside of the latitude regions in which diveraence of the

Chebyshev expansions is approached, it is clear from Fig-

ures 3 and 4 that a uniform level of error is obtained using

cells of constant latitudinal and longitudinal dimensions.

The solid angle of these cells is much smaller near the

poles than near the equator; leading to an unpleasant crowd-

ing of cells near the poles in a global Chebyshev model.

2.3 ESTIMATED CHARACTERISTICS OF A GLOBAL CHEBYSHEV GRAVITY
REPRESENTATION

The use of the Chebyshev representation for precise satel-

lite orbit determination requires a large, direct-access

data set that contains the three-subscripted Chebyshev coef-

ficients for a distribution of cells covering the entire

spatial region of interest. The orbit determination program

would retaln in main memory the coefficients for a small

number of cells and would update this working storage as

necessary, drawing from the large, direct-access data set.

In this section the general characteristics of a sample

global Chebyshev representation are estimated.

Table 2 provides data for estimating the speed of the

Chebyshev representation, relative to the spherical harmonic

representation. For each representation, the table shows

the number of machine multiplication or division operations

required to evaluate the three force components at a single

spatial point. The numbers given assume efficient coding.

The maximum degree used in the Chebyshev re{oresentation,

Kma x, is assumed to be chosen to be the same for all three

indices in the expansions. Comparing the 36 x 36 spherical

harmonic representation with the 6 x 6 x 6 Chebyshev repre-

sentation, the latter requires about 75 percent less time

for force evaluation CI,736 operations versus 6,933 opera-

nions).
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Table 2. Number of Computer Multiplicatlon or Divislon
Operations Needed for Gravity Force Evalua-
tion in the Chebyshev and Spherical Harmonic
Gravity Force Representations

CHEBYSHEV REPRESENTATION

NUM8ER {N1)
MAXIMUM DEGREE OF MULTIPLICATIONS

(Kmax) OR DIVISIONS*

3 332

4 640

5 1,098 i
I6 1,736

8 3,669

10 6,685

*N 1 = 5(Kma x _ 1)3 + 3Kma x

SPHERICAL HARMONIC REPRESENTATION

NUMBER {N2)
MAXIMUM DEGREE OF MULTIPLICATIONS

(nmax) OR DIVISIONS**

[ 4. 116

8 409

16 1 473

21 2,463

30 4,875

36 6,933 _!

48 12,129 J

**N 2 = 5n2ax _ 13nma x - 15
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Since the number of operations in the Chebvshev representa-

tion increases as the third power of K , while the num-max
ber of operat±ons in the spherical harmonic representation

increases as only the square of the maximum degree, it is

desirable to choose as small a value as possible for Kmax
in order to achieve a computation time advantage. In order

to simultaneously meet accuracy requlrements, it is then

necessary to properly adjust the cell dimensions.

The characteristics of the Chebyshev model presented in Fig-
ure 5 were based upon Table 2 and the results of Sec-

tion 2.2. This sample model covers the range of many NASA

low-altitude spacecraft; an additional layer could be added

to extend the model to higher altitudes. The estimate of

the total number of three-subscripted Chebyshev coefficients

assumes that only three types were necessary. Although the

formulation presented in Section 2.1 employed four types of

these coefficients, it is expected that there would be no

difficulty in modifying the formulation to require only
three types.

From Figure 5, it is clear that the computation time advan-

tage of the Chebyshev representation is accompanied by the

need for a large, but not unreasonable, amount of direct-

access storage.

3. FILE RETRIEVAL FOR GRAVITY FORCE EVALUATION

3.1 FILE RETRIEVAL METHOD

In standard GTDS Differential Correction orbit solutions,

the full force model is reevaluated during every iteration.

Except for the first and second iterations, corrections to

the orbital position are generally so small that the change

in position has a negligible effect on the numerical values

of most of the spherical harmonic terms in the gravity model.
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• ACCURACY: 10-10g FOR GEM10B 36 x 36

• VIAXIMUM DEGREE OF EXPANSION: 6 x 6 x 6

• NUMBER OF CHEBYSHEV

COEFFICIENTS FOR EACHCELL: 3x(7 x7x 7] = 1029

• CELLS ZE: _h = 607 KILOMETERS (A =0.04)

._ = 5 DEGREES

•,_;_ 5 DEGREES

• CELL DISTRIBUTION: SINGLE LAYER (ro =6954KILOMETERS)

hMi N =284KILOMETERS

hMA x = 891 KILOMETERS

• NUMBER OF CELLS: 36 x 72 = 2592

• NUMBER OF CHEBYSHEV

COEFFICIENTS IN STORAGE: 2592 x 1029 = 2.7 MILLION

• CPU TIME FOR GRAVITY EVALUATION
(RELATIVE TO SPHERICAL HARMONICS): 0.25

Figure 5. Characteristics of a Sample Chebyshev
Gravity Model
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Rough estimates have indicated that, for a !-day orbit, a

10-meter error in the argument of the portion of the gravity

force that does not include the monopole and quadrupole

terms leads to orbital position errors that are well below

0.01 meter. These estimates suggest that considerable compu-

tation time could be saved, particularly for a 36 x 36 grav-

ity model, if a file of gravity values was saved for use

during the later iteratlons.

The method of gravity evaluation tested is shown in Figure 6.

This figure is a flowchart representing the GTDS subroutine

that evaluates the gravity force, F(N x N) , for a given in-

put position. A test is first made to determine whether a

gravity file value exists for the given integration point.

(This method is valid only for fixed-step numerical integra-

tion.) If the file value exists, then the position associ-

ated with the file is compared with the input position. If

the difference is less than a prescribed tolerance, s,

then the file value is accepted. The file value describes

that part of the gravity force represented by spherical har-

monic terms of degree greater than four. This value is ad-

ded to the 4 x 4 force calculated for the input position,

F(4 x 4), to produce the total gravity force F(N x N).

If the file gravity value does not exist, or if the position

deviation IA-_I is greater than the specified tolerance, s,

then the file is not used. Instead FIN x N), F(4 x 4), and

F(FILE) are calculated, F(FILE) is stored for later use, and

F(N x N) is returned by the subroutine. The resultant orbit

precision of this method is controlled by the specified

value of _.

Not shown in Figure 6 is the treatment for partial deriva-

tives of thegravity force with respect to position. These

are stored, retrieved, and calculated in a manner parallel

to that of the force components themselves.
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F(4x4) F(F I LE)

F(FILE) =
F(NxN) - F(4x4)

COMPUTE:
F(4x4)

STORE F[FILE) F(NxN) =
F(FILE) + F(4x4)

I I
,L
ENO )

J

Figure 6. Method for Gravity Force Evaluation Using
File Retrieval
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3.2 FILE RETRIEVAL RESULTS

In order to test the file retrieval method, two GTDS differ-

ential correction orbit solutions, 12 hours in length, were

calculated using a 36 x 36 Earth gravity model and using

Unified S-Band and laser tracking data. One solution was

calculated in the standard way, and the other used the file

retrieval method. For the latter solution, the position

tolerance, _, was specified to be 500 meters. Each solu-

tion requlred four iterations to converge, and each differ-

ential correction solution was followed by 12-hour ephemeris

generation, using the converged orbital elements. The a

priori elements for the two solutions were identical, dif-

fering from the converged elements by about 80 meters.

A direct comparison between the ephemerides of the two solu-

tions is shown in Figure 7. The position difference between

the two solutions is plotted over the solution time inter-

val. Examination of the intermediate results showed that

for the first hour, the gravity file was built, but never

subsequently updated since the 500-meter tolerance was never

exceeded. On the other hand, for the following ii hours,

the gravity file was built during the first iteration, and

since the 50G-meter tolerance was exceeded during the second

iteration (because the first-iteration orbit error progres-

sively worsened with time, and this first-iteration orbit

was the basis for the first-iteration file) the file was

automatically updated, using positions generally accurate to

5 meters. The last two iterations were calculated with no

further updates to the file. This file update history ex-

plains the sharp drop in orbit error over the first half

hour in Figure 12--from 42 millimeters to the 5-millimeter

level.

It is clear from this file update history that the file re-

trieval method reduces the number of standard gravity force
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Figure 7. Orbit Error Resulting From Use of Gravity File With Position
Tolerance Specified at 500 Meters



evaluations by more than a factor of two without substantial

orbit precislon loss. The CPU times for the two solutions

were 1.23 minutes and 0.69 minutes (IBM S-360/95) for the

standard and file retrieval solutions, respectively. These

CPU times do not accurately show the full potential computa-

tion tlme reduction of the file retrieval method because,

for simplicity, these test calculations did not incorporate

file usage into the numerical integration startlng algo-

rithms.

4. CONCLUSIONS

The results presented in this paper show that the Chebyshev

representation should provide substantial computation time

savlngs for orbit determination uslng precise Earth gravity

models, although its disadvantage is the requirement for a

large file of pre-calculated Chebyshev coefficients. Tests

of this representation in actual orbit calculations need yet

to be performed.

Two areas for possible improvement for the Chebvshev repre-

sentation are evident. First, truncation of terms in the

three-dimensional expansion should be explored. Rather than

summing over terms such that ir j, and k range from 0 to

Kma x, it may be possible to sum over terms such that

i + j + k ranges from 0 to Kma x. This type of summation

reduction could save a factor of approximately three in both

execution time and in direct-access storage. The second

improvement would be to extend the formulation so that

Cartesian components of the gravity force are directly cal-

culated, rather than spherical components. This would re-

quire the derivation of additional recurrence relations for

evaluation of the Chebyshev coefficients.

The file retrieval method for gravity evaluation has been

shown to be an effective method for reducing computation
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Lime without sacrificing orbit accuracy. Combined with the

Chebvshev reDresentation, it could almost eliminate computa-

tion time problems in orbit determination using currently

available, precise gravity models.
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_N ANALYSIS OF SIMULTANEOUS SATELLITE VISIBILITY

TIME SPANS FOR TWO EARTH OBSERVATION STATIONS

F. K. Chan

Phoenix Corporation

17OO Old Meadow Road, McLean, Va. 22102

ABSTRACT

Analysis was performed to estimate the statistical

visibility time spans of earth orbiting satellites as seen

simultaneously by a ground station and a ship. The analysis

covers topics such as time average population, average population

times and also the percentage visibility times for a given

number of satellites. These results are useful for specific

communications satellite applications. Numerical results are

obtained for various configurations of ground station and ship.
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SECTION I - INTRODUCTION

This report is concerned with the analysis of the number and also

the time of satellites mutually observed by both a ground station and a

ship. Unlike the relatively simple case of a single observation sta-

tion for which the region of observation is the volume bounded by a

cone, the present more'complicated case has a region of observation de-

termined by the intersection of two cones. This region has a volume

determined only by the separation distance between the ground station

and the ship; but it also has a directional property determined by the

relative position of the ship with respect to the ground station.

Because the analysis becomes extremely complex, it is necessary to make

certain simplifying assumptions.

The first assumption is that the satellites presently orbiting the

earth may be broadly classified into a few categories. This simplifica-
(i)

tion is supported by the fact that since 1977 approximately 635 sat-

ellites have been launched and these may be characterized as in Table i.I.

Table i.I

Average Average Average
Class Period Inclination Altitude Number

I i00 min. 80° 800 km 440

II 12 hr. 60 ° 20,000 km 106

Ill 24 hr. 0° 36,000 km 57

IV Others 32

Thus, instead of having to deal with the volume of the region of observa-

tion, the analysis deals with the areas at the various altitudes. In

this analysis, only Class I and II satellites are considered. Class III

satellites are considered separately because they are geosynchronous.

Class IV satellites are irregular and will not be considered at all.

(i) NASA, Satellite Situation Report, Volume 21, Number i,

February 28, 1981.
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The second assumption is that within each of the two categories con-

sidered, the satellites have circular'orbits which are uniformly distrib-

uted in terms of equatorial crossing and, moreover, the satellites are

also uniformly distributed along the orbital arcs.

Section 2 deals with the derivation of the number density of sate-

llites in this statistical distribution. Section 3 deals with the deter-

mination of the common region of observation of both the ground station

and the ship. Section 4 is concerned with the computation of the time

average population of satellites within the mutual region of observation.

Section 5 briefly discusses the computation of the average population

times of these satellites in the same region. Section 6 summarizes the

results of this study for Class I and II satellites.

Readers who are strictly interested in the numerical results may

go directly to Section 6 and omit the intervenin_ sections which deal

with the mathematical analysis.
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SECTION 2 STATISTICAL DESCRIPTION OF ORBITING SATELLITES

2.1 Distribution Function

Consider a statistical description of a system of N satellites as

previously described in which the circular orbits are uniformly distributed

in terms of equatorial crossing and the satellites are uniformly dis-

tributed along the orbital arc. Consider Figure 2ol which illustrates

a given orbit with inclination i. Let @ be the latitude, _ be the right

ascension measured from the equatorial crossing, and o be the orbital arc

measured also from the equatorial crossing.

Figure 2.1

Consider Figure 2.2 which illustrates the area element dA at the equatoro

/

/
/

quator
d*o

Figure 2.2
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It is obvious that dA is given by
o

B

2
dA = r de (2.1)

o d_o o

where r is the radius of the orbit. Let f denote the density of the satel-
o

lites at the equator. Then, the number dN of satellites contained in dA o

isgiven by

dN = f dA (2.2)
o o

As these satellites move to latitude e and right ascension ¢, the corre-

sponding area dA is then given by

2
dA = r cos0 dlde (2.3)

and the density f is then obtained from

dN = f dA (2.4)

Substitution of Equations (2.1) - (2.3) into (2.4) yields

fod_o de o

f = (2.5)

cose dCde

However, from Figure 2.1, we obtain the following spherical trigonometric

formula

sine = sin i sin o (2.6)

so that at latitude G we have

cose de = sin i coso do (2.7)
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and at the equator we have

dO = sin i doo (2.8)o

Moreover, it is easily verified that we also have

d_ = dlo (2.9)

d o = do (2.10)
O

Substitution of Equations (2.7) - (2.10) into (2.5) yields

f
o

f - (2.ii)

COS 0

which states that the density is inversely proportional to the cosine of

the arc length.

Next, we obtain the equatorial density f as follows:o

8 max _ 2_

N = f r cos0 d_ do

0 min o

0max

= 2_r 2 I f cosOdOOmin

_/2
f

= 2_r2 _ f sin i cos o d o
J
-_]2

_/2

= 2_r2 I fo sin i do-_/2

2
= 2_2 r f sin i (2.12)

o

in which Equations (2.7) and (2.11) have been used.
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Substitution of Equation (2.12) into (2.11) yields

N

f = (2.13)

2_2r2 sin i cos

which expresses the density in terms of the total number, the radius, the

inclination and the orbital arc. However, it is more convenient to obtain

an expression in terms of latitude than orbital arc. This is accomplished

as follows: Using the identity

2 2
cos U = i- sin o (2.14)

and also Equation (2.6), we obtain

sin i cos o _sin 2 20= i sin ) (2.15)

so that Equation (2.13) becomes

N

f = (2.16)

2_2 r2 /_sin2i - sin2_)

2.2 Angular Separation

The system of N satellites under discussion is considered to be uni-

formly distributed in terms of equatorial crossing and also along the or_

bital arc. It is easily verified that the angular separations between the

satellites are given by

27

AS = _-_ (2.17)

27

Ao = -_-- (2.18)
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SECTION 3 - REGION OF OBSERVATION

3.1 Geocentric Conical Angle

Consider a ground station G on the earth's surface. Let B denote

the conical observation angle at the earth's surface, _ the conical

angle subtended at the earth's center, r the mean radius of the earth,e

h the satellite'S altitude, and a the conical distance as illustrated

in Figure 3.1.

a

re \\

Figure 3.1
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The geocentric conical angle _ may be obtained as follows: For the triangle

OGH, we have the sine formula

(re + h) sin
a = (3.1)

sin (_- B)

and the cosine formula

a2 = re2 + (re + ho2] - 2re (re + h) cos e (3.2)

Substitution of Equation (3.1) into (3.2) and use of the identity

2 2
sin _ = I- cos e (3.3)

yield the following quadratic equation for cos

2 {re hl [_ hl 2 c°s21 0 (3"4)

cos e - 2 sin28 cose+ e sin28 - =

<re+ e+
whose solution is given by

cose = sin B + cosB _ (3.5)

+ -- _re+n /

It may be verified that the physically acceptable solution is the one which

yields the smaller angle e, i.e., the one with the positive sign in Equation

(3.5). The other solution yields the larger angle _ which results in a cone

going into the earth, which is thus rejected.

3.2 Boundaries of Intersection Region

Consider Figure 3.2 which illustrates a ground station G and a ship

S, and also the region of observation _ common to both of them. Let C be

the central point of the great circular arc GS, and y the angle GOC.
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G

0

Figure 3.2

For simplicity, let G be on the equator and let S be at latitude 0s

and longitude _ with respect to G, as illustrated in Figure 3.3.
s

S

Figure 3.3
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Then, from spherical trignometry, the arc length 2y between G and S is

given by

cos 2 y = cos 0 cos _s (3 6)S

and the inclination K of S with respect to G is given by

sin 0 = sin K sin 2y (3 7)s

Next, consider Figure 3.4 which illustrates the boundaries R and L

of the intersection region _. It is to be noted that these boundaries

are not arcs of great circles, but are arcs of small circles.

s
G _ _ -----_------

k R\ /
\ /

mJn

Figure 3.4

In order to obtain expressions for the boundaries R and L, it is conven-

ient to consider the arc GS as the equator in an oblique coordinate

system. First, consider the curve R.
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Let e' be the latitude and _" be the longitude of a point with respect

to G. Then, from spherical trigonometry, the equation of the curve R is

given by

cosa = cose' cos_" (3.8)

However, if ¢' denotes the longitude measured from C, then we have

_" = _' + Y (3.9)

and Equation (3.8) becomes

cosa = cos 0' cos (_' + y) (3.10)

which is the equation for the boundary R in the oblique geographical system

having C as the origin of latitude and longitude. Similarly, the equation

for the boundary L is given by

cos0_ = cos O' cos (i' - ,) (3.11)

The points of intersection of the curves R and L are given by

PI (i' = 0, e' = e'max ) and P2 (_' = O, 0' = e'min ) where

, -i / \

= cos I cos _) (3 12)
0 max

% COS "{
\

min max (3.13)
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3.3 Regular to Oblique Geographic Transformation

Let _ = (x,y,z) denote the coordinates of a point in the regular

geographic system, and r-_= (x', y', z') denote the corresponding coordinates

of the same point in the oblique geographic system. Figure 3.5 illustrates

the angular rotations to accomplish the necessary coordinate transformation.

/

Z Z

l zy,
t //

×"

Y

X

Figure 3.5

Let A denote the transformation matrix from _ to _', i.e.,

7' = A_ (3.i4)

Then, it is well-known that A is given by

C C S S S

y K y y _<

A = - s c c c c (3.15)

0 - s e
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where the symbols s and c respectively denote the sine and cosine func-

tions of the argument which appears as the subscript. Next, it is also

noted that r and r' may be respectively expressed in terms of their

latitude and longitude as follows:

x = r cOc_

y = r cos _ (3.16)

Z = r s
O

x' = rc@_c#i 1

y' = rce_s_ (3.17)

z' = rs@,

Thus, Equations (3.14) (3.17) may now be used to express the oblique

latitude and longitude in terms of the regular ones. The final results are

given by

!

s@ = - s c@s_ + cKs @ (3.18)

cKc@s _ + s so (3 19)tan (i'+ y) =

c@c

3.4 Oblique to Regular Geographic Transformation

Next, to obtain the regular latitude and longitude in terms of the

oblique ones, we proceed as follows: We note that

T _
= A r' (3.20)

where AT denotes the transpose matrix of A.
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Then, proceeding as before but now using Equations, (3.20) and (3.15) -

(3.17), we obtain

s8 = s s + c s + c (3.21)Y < c8_ c_l y < ce' s_r < soJ

C S - S

tan _ = < c8' (_' + Y) < so' (3.22)

cO, c(_, + y)
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SECTION 4 TIME AVERAGE POPULATION

4.1 Exact Folmulation

Let N_ denote the number of satellites (time average population)
within the common domain of observation _. It is obviously given by

Nf2= _ f d_ (4.1)

where the density f is given by Equation (2.16) and the element of area

d_ is given by

2
d_ = r cos6 d_ de (4.2)

It appears that the above integral may be trivially expressed in terms of

the regular latitude 6 and longitude @ as follows:

8 max _R(6)f.

N = I / N cose d_ d6 (4.3)2_2 /--(sin2i- sin28)
e min _L(6)

where _R(@) denotes the expression obtained by solving for _ in terms of @

using the equation for the R curve given by Equations (3.10), (3.18), and

(3.19), and similarly for _L(@) in terms of the L curve. Not only is this

process difficult, but it is noted that the integral on the RHS of Equa-

tion (4.3) may not even be valid or, worse yet, amenable to numerical eval-

uation even in principle. This point becomes evident by combining Figures

3.3 and 3.4. It is possible that the location of the ship S with respect

to the ground station G can give rise to the case where, in performing the
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integration with respect to _, the process does not take place from the L

curve to the R curve and, furthermore, in performing the integration with

respect to e, the process also does not take place fromemin to emax .

This difficulty can be circumvented by writing the element of area dfl

as follows

2
dfl= r cos0' d_' dO' (4.4)

so that the integral becomes

e'max _'R(O')

Nfl= f / N cos0' d_' dO' 2

8'min _'L(8') 2_2/--(sin2 i - sin O)

_'max f_' '.)

r R (O

/ _ (SySKc0C°S0' d_' d0' 21(4.5)

_ N
9. _ 2

2_- e'min _'L(8' _ i ,c , + CyS co, s#, + cEso, )

in which Equation (3.21) has been used. It is to be noted the _' integra-

tion will always proceed from the L curve to the R curve, and the e'

integration will always proceed from e' min to 0' max.

A.2 Approximate Formulation

An approximate formulation may be obtained by going back to the original

Equation (4.1) which may be used to yield the following

Nf_ = fave_ (4.6)
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where

2
= r cosO' d_' d0'

= 4r2 'max ' (0') ' dO'cos0' d_. • : -
0 0 .... • ...... .

!e'max f _1 lcosc_,) _ l ,
= 4r2 cos0' cos Y d0 (4.7)

0

in which Equations (3.10) and (3.12) have been used. This integral may be

evaluated numerically once the relative position of the ship S is speci-

fied. The average value of f to be used may be obtained by averaging the

4 values at the mid-points on the axes of symmetry of _. These, in turn,

may be obtained by averaging the values at the center C and those at the

extremities P. illustrated in Figure 3.4. Thus, we may write
I

fave = i [ f(Pl) + f(P2) + f(P3) + f(P4) +4f(C)]8 (4.8)
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SECTION 5 - AVERAGE POPULATION TIMES

5.1 Exact Formulation

First consider Figure 2.1, for which we may write the following spher-

ical trigonometric formulas

sin 6 = sin i sin o (5.1)

cos o = cos 6 cos _ (5.2)

where the relevant quantities have already been previously defined in

Section 2. Next, consider Figure 5.1 which illustrates the ground station

at G, when the satellite crosses the equator at NI. Subsequently, when

the satellite has moved to latitude 8, the rotation of the earth has taken

the ground station to the point G.

@
G o-

G

Figure 5.1

Then, it is obvious that the following relation holds for both direct

(i < _/2) and retrogade (i > _/2) orbits

. • = :_+ wo (5.3)

where

P
w (5.4)

P
e
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= longitude of satellite crossing measured from ground station

= right ascension of satellite measured from equatorial crossing

= longitude of satellite measured from ground station

o = orbital arc of satellite measured from equatorial crossing

= ratio of satellite orbital period P to earth rotational period Pe

Substitution of Equation (5.3) into (5.2) yields

coso = cos0 cos (¢ + _o - _) (5.5)

Equations (5.1) and (5.5) express the latitude and longitude in terms

of the orbital arc. Symbolically, we may write

6 = 6 (o; i) (5.6)

= _ ((_;i, H) (5.7)

In turn, these equations may be substituted into Equations (3.18) and

(3.19) to yield expressions for the oblique latitude e' and longitude

_' in terms of orbital arc o. Thus, we have

e' = 6' (O, _; <, Y) = 0' (o; i, H, _, y) (5.8)

_' = _' (6, ¢; <, Y) = _' (o; i, _, _, Y) (5.9)

which constitute 2 equations in the 3 unknowns e', _' and o. If we wish

to determine the point of intersection with the R curve bounding one side

of the common region of observation _, we also have Equation (3.10) which

is

cos _ = cos e' cos (¢'+ ¥) (5.10)

Substitution of Equations (5.8) and (5.9) into (5.10) yields a com-

plicated equation for d which may then be solved numerically to obtain
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the value _ = aR corresponding to the intersection point. Next, to

obtain the point of intersection with the L curve, we have Equation

(3.11) which is really Equation (5.10_ with Y replaced by -Y Thus,

the same process may be used to obtain the value _=_L corresponding

to the intersection point. Thus, the population time T of the satellite

within the region _ is exactly given by

P

T - (oR - OL) (5.11)
2_

Let _c denote the value of _ which corresponds to the orbit passing

through the central point C. The above process is first performed with

a value _ =_c +AGO where AGO is a random number in the range Oj AGO < A_

where A_ is given by Equation (2.17) which is

(5.12)

The process is then repeated with values (_+nAG) where n = ±i, ±2,...

until no more orbits intersect the region_ . After this, the entire

above process is then repeated with other random values of AG O The

average population times are then obtained by averaging the results of

all these processes.

5.2 Approximate Formulation

Consider Figure 5.2 which illustrates the spherical triangle formed

by the equator, the meridian and the arc length of the central point C

measured from the ground station G. This spherical triangle is fixed on

the rotating earth.

@

G

Figure 5.2
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Then, we have the following spherical trigonometric formulas

sin@ = sln< siny (5.13)

cosy = cos@ cos_ (5.14)

siny sinl = sin_ (5.15)

which may be used to compute the latitude and longitude of C and also

the angle _ the arc GC makes with the meridian through C.

Next, consider Figure 5.3 which illustrates the spherical triangle

formed by the equator, the meridian and the orbital arc of a satellite

just passing through the point C. This spherical triangle is fixed on the

celestial sphere, which is inertial.

C

N

Figure 5.3

Then, we have the following spherical trigonometric formulas

sin@ = sin i sino (5.16)

cos_ = cos@ cost (5.17)

sinc sin_ = sinc (5.18)

which may be used to compute the orbital arc, the right ascension and

also the angle _ the arc NC makes with the meridian through C.
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However, because of the earth's rotation, the sateliite's ground

track does not really make an angle _ with the meridian through C.

Rather, it is deflected through an angle _ which is, in general,

given by

tan _ = mcose cos_ (5.19)
1 - _cos i

where _ is defined by Equation (5.4). (It may be verified that this de-

flection causes direct orbits to be more inclined and retrograde orbits

to be less inclined as viewed by their ground tracks.) Thus, the angle

between the satellite ground track and the meridian at point C is given

by (_-_), as shown in Figure 5.3. Next, consider Figure 5.4 which illu-

strates the inclination N of the orbital arc with the oblique equator

Figure 5.4

Hence, it is seen that we have

n = % - _ + _ for ascending orbits
(5.2o)

n = % + _ - _ - _ for descending orbits

It may also be verified that these equations are algebraically valid for

both direct and retrograde orbits.
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Next, consider Figure 5.5 which illustrates the case of a satellite

just passing through the point D which is displaced by Ay from the central

point C. This corresponds to an orbit whose equator crossing is displaced

by A_ from the point N.

D

C

G

Figure 5.5

Then, using spherical trigonometric formulas, it may be shown that Ay

is related to A_ by the following equation

tan i sin (_ - i + Ai)
tan (y + Ay) = (5.21)

tan i cos _ cos (i - ¢+ A¢) - sin

Thus, by replacing y with (y+Ay), Equations (5.13) - (5.20) may be used

to compute the inclination N of the new orbital arc with the oblique equa-

tor. It may be verified that Equation (5.21) is also algebraically valid

for both the c_ses of i > _ and i < _. Moreover, it Is also valid for

both direct and retrograde orbits. Furthermore, it is valid for arbitrary

finite differences A_ and Ay , but considerable care must be exercised

when taking the inverse tangent to obtain (y + A_ in the correct quadrant

corresponding to the increment A_ •
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Up to this point, no approximations have been made. It is now assumed

that-the satellite's ground track is an arc of a great circle lying within

the region _ and making an angle q with the oblique equator GS. Figure

5.6 illustrates the cases of orbital arcs passing through the points C and D.

/ /
/ /

I iiI
G o- ,I S

D
L-'----"

----R
I

/
\ /
\ /

Figure 5.6

Now, it is possible to write the following two approximate relations for

the orbit passing through the central point C

sin e' = sinn sin a' (5.22)

cos e' = cos e' cos _' (5.23)

where o' is the arc length measured from the oblique equatorial crossing.

These two equations are the crude analogs Of Equations (5.8) and (5.9) of

the exact case. If we wish to determine the point of intersection with

the R curve, we also have Equation (3.10) which is

cose = cos e' cos (¢' + ¥). (5.24)
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However, instead of substituting Equations (5.22) and (5.23) into (5.24)

to yield a complicated equation for _', it turns out to be the case

that an algebraic equation can be obtained involving sin 0'. This is

accomplished as follows: From Equations (5.22) and (5.23), the following

auxiliary equation is obtained

tan 8'
sin _' - (5.25)

tan n

Equation (5.24) is then written as

cose = cos 8' (cos _' cosy - sin @' sin y)

= cos o' cosy cos 6' tan 8' siny

tan n

• tan n
/

or equivalently

cos y/?-(sin2n sin2 6') = sinn cose + cosn siny sin 6' (5.26)

By squaring both sides of this equation, it is obvious that a quadratic

equation is obtained involving sin 0'. After much simplification, it may

be shown that we have

/-(sin2 2 2
sin 8' _ - cosa siny cosn ± cosy a sin y sin n ) (5.27)

2 2
sin n (i - sin y sin 4 )

A little consideration will reveal that for the intersection point with

the R curve, it is necessary to retain only the positive sign in the above
!

equation. Thus, this expression corresponds to the value at @' = @ R"
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However, from Equation (5.22), it is seen that the Value oR' is

given by

' = sinn sin o'
sine R R (5.28)

Consequently, we have

sin oR' cosa siny cosn + cosy i_sin2a sin 2= - - ¥ sin2n) (5.29)
2 2

(i - sin ¥ sin _)

Next, to obtain the intersection point with the L curve, we have

Equation (3.11) which is really Equation (5.24) with ¥ replaced by -y.

Thus, the same process may be used to obtain oL' which can be shown to

be given by retaining the negative sign in Equation (5.27). Consequently,

we have the following result

in2 . 2 2
sin oL' = cosa siny cosn -cosy_s e - szn y sin n) (5.30)

2 2
(i - sin y sin n)

! !

which states that oL = - oR as expected (only for the case of the

orbit passing through the central point C). Thus, the population time

of the satellite within the region _ is approximately given by

!

p ' - OL )(OR (5.31)

2_

which is the crude analog of Equation (5.11).

Next, to obtain the intersection point between the R curve and

the orbit passing through the point D, a little consideration will re-

veal that it suffices to replace y by (y + A¥) and also use the
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corresponding value of N and then repeat the process above for computing

oR as given by Equation (5.29). However to obtain the intersection

point between the L curve and the orbit passing through D, a little more

caution is now necessary. It now suffices to replace y by (-y + Ay) and

also use the corresponding value of q and then repeat the process above

!

for computing OR but now retain the negative sign. This result yielding
!

the value of oL is no longer trivially the negative of _R' as for the

special case of C.

The above process is first performed with a random value _o in the

range 0 _ A!o < Ai where Ai is given by Equation (2.17) which is

2_ (5.32)
_i =

CN

The process is then repeated with values (A_o +nAi) where n = El, !2,...

until no more orbits intersect the region _. After this, the entire above

process is then repeated with other random values of A!o. The average

population times are then obtained by averaging the results of all these

processes.

Finally, it must be mentioned that in order to insure that the cor-

rect segment of the R circle (see Figure 5.6) is identified to yield the

desired intersection point as given by the general analog of Equation

(5.29), a little consideration will reveal that we must have n in the

range -_/2 < _ ! 7/2. Thus, if n is outside this range, we must accordingly

add to or subtract _ from n. Similarly, the same procedure applies to

insure the identification of the correct segment of the L circle to yield

the desired intersection point as given by the general analog of Equation

(5.30). Furthermore, considerable thought will reveal that this assign-

ment of the n range not only correctly gives the desired intersection

points for orbits crossing the oblique equator within the observation re-

gion _, but also for the case of equatorial crossings outside it for a

range of &'_ exceeding _/2 measured from the central point C. The rea-

sons for this are not apparent and, at first sight, it would seem that

this assignment of n values outside the region _ leads to incorrect an-

swers. But this is not so because of the manner in which the inverse
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trigonometric functions are assigned their principal values. Thus,

Equations (5.29) and (5.30) contain many subtle features in logic which

automatically combine to yield, in mutual accord, the correct intersection

points regardless of the equatorial crossing. In particular, additional

consideration will reveal that it is only necessary to consider equatorial

crossings such that the orbits intersect the oblique meridian through the

central point C at an oblique latitude g' not greater than e* given by

0 l \cosy/

This corresponds to a range &y* given by

AY* = sin-i \tan Inl(tan0,) (5.34)

so that

I I c°)lAy* min _/2, sin -I ! -i ( I]= tan cos Lc--o_sy/j (5.35)

tanlnI

or equivalently

6y* = min R/2, sin i 2 2 (5.36)cos y - cos
2 2 2 2

cos ¥ - cos _ + cos _ tan n

It is not difficult to see that if an orbit intersects the oblique

equator outside the range _¥* and also eventually intersects the observa-

tion region _, then this orbit would already have been counted as lying

within the acceptable range on the other side of the central point.
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SECTION 6 - RESULTS FOR ORBITING SATELLITES

6-1 Average Population Time Computations

Computations were performed, except for minor modifications, according

to the method discussed in Section 5.2 to obtain the average population

times for Class I and II satellites. The representative values of para-

meters used are shown in Table 6.1.

Table 6.1

Quantity Class I Class II

Period P (minutes) 100.9 717.9
9

Inclination i (degrees) 74.0 63.9

Altitude h (km) 800 20,178.5

Number N 400 i00

The value of B, the conical observation angle at the earth's surface, is

taken to be 80° for both the ground station and the ship. The ground sta-

tion is taken to be a_t the origin of longitude and latitude while the ship

is taken to be at various values of longitude _s and latitude es only in the

first quadrant. It may be verified that for locations of the ship in the

other quadrants, the corresponding results may be obtained by taking mirror

reflections about the primary axes.

After the average population times • have been obtained, the results

were divided by the characteristic time T defined by

P
T = -- (6.1)

to obtain the number of satellites visible to both the ground station and

the ship. (T is the time for a satellite to travel the intra-satellite

distance &o where &o is given by Equation (2.18).' The relevant results

for Class I and II satellites are respectively summarized in Figures 6.1

and 6.2, each of which was obtained by averaging the results using _ given

by Equation (5._9) and those using _ = O.
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Note: (i) Numbers in the boxes denote
the number of satellites vi-

sible for the percent of time
2 30% indicated.

4 17%

(2) Numbers below the boxes de-

note the relative longitude
and the absolute latitude of

the ship.
(o,3o)

2 84% i 43%
4 58% 2 26%

6 2% 3 21%

m

(0,20) (i0,20)

4 100% 1 97%

6 39% 2 75% 2 68%

i0 12% 3 65% 3 43%
4 46% 4 32%

(o,io) (io,io) (2o,io)

4 100%

6 90% 4 100% 2 100% 2 32%
8 56% 6 64% 4 63% 4 8%

i0 21% 8 17% 6 1%

(0,0) (i0,0) (20,0) (30,0)

Figure '6.1 - Results for i00 Minute Orbiting Satellites
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5 100% Note: (I) Numbers in the boxes denote

6 94% the number of satellites vi-

6 100% 7 88% sible for the percent of time

8 37% 9 57% indicated.
12 58% i0 32%

14 50% ii 25% (2) Numbers below the boxes denote

12 7% the relative longitude and the
absolute latitude of the ship.

(0,80) (40,80)

12 100% 2 100%

14 75% 3 85%

16 23% 4 78%

18 15% 5 74%

22 3% 6 60%

(0,60) (40,60)

3 100% 2 100%

14 100% 4 93% 3 90%

18 60% 5 76% 4 83%

20 51% 6 49% 5 68%
22 34% 7 23% 6 56%

24 12% 8 19% 7 24%

26 7% 9 5% 8 19%

(0,40) (40,40) (80,40)

16 100% 8 100% 5 100%

18 97% i0 93% 6 81%

20 75% 12 71% 7 20%

24 54% 13 24% i0 15%
26 16% 14 3%
28 5%

(0,20) (40,20) (80,20)

20 100%

22 88% 14 100% 6 100%

24 63% 16 66% 8 58%
2 41%

26 56% 18 56% i0 19%
4 10%

28 39 % 20 21% 12 11%

30 29% 24 8% 14 6%

32 14% 26 2%

(0,0) (40,0) (80,0) (120,0) 6-32
Figure 6.2 - Results for 1.2Hour Orbiting Satellites



6.2 Time Average Population Computations

For the special case of the ship at the origin of longitude and lati-

tude, the time average population N may be computed by Equation (4.3).

Numerical integration yields a value of about 28.48% for N /N for Class II

satellites. That is, on the average, 28.48 satellites are mutually visible

to the ground station and the ship when they are together.

As a comparison, it may be shown that the ratio of the area of common

visibility _ to the area of the zonal belt A covered by the satellite

orbits is given by

= [i- sin - (6.2)
A 2 sin i

when the ground station and ship are together. Hence, for Class II satel-

lites, we obtain a value of about 22.4% for _/A. As expected, this value

is smaller than that for N_/N because the density f increases with latitude

and hence contributes toward giving a higher value of N9 in the numerical
integration.

The other comparison is made with the results displayed in the (0,0)

box of Figure 6.2 which are seen to yield a smaller value than that for

N_/N. This is also to be expected because the approximation made in Sec-

tion 5.2 assumed that the satellite orbits are arcs of great circles within

the region _ and hence yields a smaller value of the average population

time r than that obtained by considering the actual satellite ground track.
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DISTORTION-FREE MAPPING OF VISSR IMAGERY

DATA FROM GEOSYNCHRONOUS SATELLITES

F. K. Chan

Scientific Analysts and Consultants, Inc.

4114 Heathfield Road, Rockville, Md. 20853

ABSTRACT

Analysis has been performed for mapping VISSR imagery
data so as to eliminate all geometrical distortions. The formula-
tion is rigorous and includes all misalignment angles of the VISSR,
the sun sensor and the instantaneous spin axis with the satellite's
body axis. It also includes the effects due to the motion of the
satellite's suborbital point. All the mapping equations for dis-
tortion removal are reduced to simplest forms, and all the algorithms
are optimized as much as possible.

An approach is then formulated for implementing these
algorithms for in-line operational use. It covers the computations
involved in determining benchmarks, the interpolation methodology
for filling in the points interspaced between benchmarks, and the
correction procedure for computing the radiometric values at the
center of the pixel in the distortion-free image. It is also concerned
with the time requirements, data storage, and output data accuracy.
With the present microprocessor technology, it is concluded that this
in-line distortion removal is possible in real-time processing of
infra-red but not visible VISSR imagery data.

This work was supported by NOAA Contract NoS: 0i-8-M01-1864
and NA-79KAC-OOO26
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SECTION I - INTRODUCTION
,t

In the Visible and Infra-red Spin Scan Radiometer (VISSR)

data obtained from the present geosynchronous satellites, distortions

are observed in the images of the earth. As illustrated in Figure 1.1

which is exaggerated for clarity, these image deformations appear

as vertical compression and expansion of the image, non-vertical

alignment of the North and South Poles, and multi-representation of

some points or omission of other points.

(

Figure 1.1 Exaggerated VISSR Image of Earth
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The_e distortions may well be explained by considering

Figure 1.2 which illustrates the same scan-lines on the projection

plane of the earth. Again, for clarity, these scan-lines are depicted

to be non-parallel and unevenly spaced to a degree more so than the

realistic cases.

M

Figure I.2 Projection Plane Image of Earth
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If one were to relate these two images,one would find,

for example,that a triangularfigure in the prsjectionplane

image becomesdistortedinto a curved figure in the VISSR image.

This is illustratedin Figure 1.3 which is obtainedby super-

imposinga triangleon Figure 1.2 and then mapping it onto Figure 1.1.

4

S

Projection Plane Image

4

VISSR Image

Figure 1.3 Distortion of Image
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The general causes for these image deformations may be

broadly classified as follows:

I. Orbit not circular and equatorial

2. Spin axis not perpendicular to orbital plane

3. Misalignment of the VISSR, the sun sensor, and the

instantaneous spin axis with the satellite's body axis

4. Biases due to varying sun size and varying sun elevation

effect on threshold of the sun sensor triggering.

To remove these distortions, it is necessary to include all the

above factors in the formulation of the mapping equations. However,

it is feasible to consider only the first three. The corresponding

equations have been derived in Reference I in which it was convenient

to introduce the following coordinate systems:

The Inertial System: This is well-known and is defined such that

the xi-axis is in the direction of the vernal equinox, the zl-axis

is perpendicular to the equatorial plane (in the direction of the

A A A

North Pole), and the Yl-axis is given by Yl = Zl x xI.

The Body System: This system is defined such that the zB-axis is

along the longitudinal axis of the satellite, the xB-axis is the

intersection line between the VISSR stepping plane and the plane

A A

perpendicular to the zB-axis, and the YB-axis is given by YB = zB x xB.

The VISSR S_stem: This system is defined such that the XV-axis is

in the direction of the mid-scan, the Zv-axis is perpendicular to the

Xv-aXis and lies in the VISSR stepping plane, and the Yv-aXis is
A _ A

given by YV = Zv x xV.

The Sun Sensor S_stem: This system is defined such that the Xu-aXis
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is in the direction of the bisector of the angle fanned out by the

sun sensor, the Zu-aXis is perpendicular to the Xu-aXis and lies in

the sun sensor fan plane, and the Yu-aXis is given by YU = Zu x xU.

The Spin System: Let Z_sdenote the unit spin axis vector around

which the satellite is instantaneously rotating. Let _' denote the

position vector of the satellite. Then, the Ys-aXis and the Xs-axis

are respectively defined by

^ ^ ,A 0._)

The Auxiliary System: In this system, illustrated in Figure 1.4,

the unit base vectors are defined by the following equations:

^

_A = XAx _A (i,s)

A

)
/

%r
Figure 1.4 - The Auxiliary System
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The Normalized S_stem: Consider a system, referred to as the normalized

system, as illustrated in Figure _.5. The origin R of this system is

defined at a point r on the earth's equatorial plane and fixed in the

earth's rotating system. The satellite P at point _', however, is not

necessarily on the earth's equatorial plane or fixed in the earth's

rotating system. In this normalized system, the unit base vectors

are defined by the following equations:

_= _
A A A

•_ = _. x xN Ct,_)

Figure 1.5 - The Normalized System
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In the present study, the results obtained in Reference I

are used to formulate algorithms for mapping the data coming out of

the Synchronous Data Buffer (SDB) so as to obtain a distortion-free

imagery. Moreover, this rectified imagery also has the desirable

feature that it is referred to a normalized satellite position which

is therefore the same for all imageries. Thus, if the distortion-free

mapping is performed in-line during data processing, the transmitted

VISSR data will provide a uniformly compatible data base for all

users in their scientific work. Furthermore, it will also facilitate

in the future development of a composite data base for different

kinds of data obtained from various satellites.

Mapping of the data may be further optimized the use of

interpolation with the aid of appropriately chosen benchmarks.

Section 2 deals with the computation of these benchmarks, while

Section 3 covers the interpolation methodology for filling in the

points interspaced between benchmarks. Section 4 is concerned with

the correction procedure for computing the radiometric values at the

center of the pixel in the distortion-free image. Section 5 discusses

the time requirements, data storage and output data accuracy.

Section 6 summarizes the results of this study.
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SECTION 2 - BENCH_tRK CO_UTATIONS

This section deals with the computation of benchmark

locations in the normalized distortion-free coordinate system. It

discusses the relevant input parameters, computational equations,

number of compuationil operations, and the requisite partial deriva-

tives.

2.1 Input Parameters

The relevant input parameters are listed below:

N_ = scan number

N% = sample number

M_ = mid-scannumber

M_s= mid-sample number

Z_ = scan angular width

_ = sample angular width

_s = scan angular bias (line bias)
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_' = orbital position of _atellite

= right ascension of spin axis

= declination of spin axis

r = normalized position of satellite

a = earth's semi-major axis

c = earth's semi-minor axis

For convenience, two parameters dependent on tne above are defined

as follows:

_7..,
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2.2 Computational Equations

The following equations for computing benchmark coordinates

have been extracted from Reference I. They have been simplified and

are listed below in 'the proper sequence for usage. The exact definltions

of cursory intermediate variables may be obtained from the original

report.

/
_= vr[/-(x: _",)"J c_,#)
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I* a,,_ J* are the coordinates in the no._nalizeddistortion-free

system. At this stage, for the sake of greater accuracy in sub-

sequent computations, it is preferable not to digitize them.
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2.3 Computational Operations

For each benchmark,it may be verifiedthat the comput-

ations in equations(2.1)- (2.28)may be achievedby performing:

51 additions

22 divisions

114 multiplications

4 divisions

11 trigonometric function evaluations

2 square root evaluations

Assuming that the following times are required:

Operation Time (micro-seconds_

Addition 1.5

Subtraction 1.5

Multiplication 6

Division 11

Trigonometric function evaluation 50

Square root evaluation 50

it is seen that about 1487 microseconds are reouired for each bench-

mark comoutation.
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2.h Partial Derivatives

For convenience, it is desirable to choose the set of

benchmarks so that they form a rectangular grid in the (N_ , N )
-space as illustrated in Figure 2.1.

N_I tQ - -S

p • e_

N_.s

Figure 2.1 - Benchmarks in (R_, N_) - Space

Then, it is obvious that the partial derivatives of I* and J*

with respect to N#s5and N may be approximated by
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For each benchnnark,the four associated partial derivatives

require 6 subtractions and _ divisions. These operations consume

about 53 microseconds.

These partial derivatives are used later in the method of

interpolation for mapping points interspaced betweeen the benchmarks.
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SECTION 3 - INTERPOLATION CO_UTATIONS

This section is concerned ?_th the mapping of points

which do not coincide with the chosen set of benchmarks. It

discusses the input data, interpolation methodology, and number of

computational operations.

3.1 Inout Datam

The input data consists of the coordinates (_, J_) and

their four associated partial derivatives for each benchmark. This

information has already been obtained in Section 2.

3.2 Interoolation Methodology

Suppose there are m interspaced points between the hori-

zontal benchmarks, and n interspaced points between the vertical

benchmarks. Figure ).I illustrates a basicunit comprising bench-

marks (denoted by solid circles) and interspaced points (denoted by

ooen circles), Thus, there are (m + 1)(n + I) points altogether

in a basic unit.
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r

N_

Figure 3.1 - Benchmarksfor Interpolation

It is noted that the coordinate of the point T directly

below P is given by
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Therefore, it follows that

= LLgA41 F'

A similar equation holds for any point and the point directly

below it. Hence, the n interspaced points between P and R may be

mapped by the following iterative algorithm:

Let I; = C_'lt)p {5"a'5")

Then, perform the following computations

Similarly, it is noted that the coordinate of the

ooint U directly to the right of P is given by
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Therefore, it follows that

Again, a similar equation holds for any point and the point directly

to the ==,ghtof it. Hence, the m(n + I) interspaced points between

the columns PR and QS may be mappea by the following iterative

algorithm:
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3.3 Comoutation Ooeratlons

For each interspaced point, it is seen that the comput-

ations in equations (3.7) and (3.8) or those in equations (3.15)

and (3.16) require 2_additions. Assuming a time of 1.5 microse-

conds for each operation_ therefore about 3 microseconds are required

to map each point by interpolation. Allowance is also to be make for

converting two real numbers to integer values for each point. This

will probably increase the time requirement by a factor of 2 so

that about 6 microseconds are required for each point.
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SECTIONh - RADIO._._TRICCOMPUTATIONS

This sections considers the methodology of cerrecting the

radiometric values so as to reflect a more realistic value at the

center of the pixel in the distortion-free image. It discusses the

input data, correctidn methodology, and number of computational

operations.

h.1 Inout Data

Foreach point, the input data consists of the following

and may be obtained either from the SDB output data stream or has

already been obtained in Section 3:

N_ = scan number

N_S --sample number

R(N_$, N _ ) = radiometricvalue of N_ th scan and N_sth_

sample

R(N£ - I, N%) = radiometric value of N_ th scan and

(N_s - 1)th sample

R(N _ , N -I) = raidometric value of (N_- 1)th scan

and N th smmole
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I* = interpolated horizontal coordinate "of (N_, N_ )

in distortion-free system

J* = interpolated _ertica_ coordinate of (N_ , N_ )

in dis%ortion-free system

I = rounded integer value of I*

J = rounded integer value o_ J*

4.2 Correction Methodology

The radiometric value R(I, J) may be obtained from the

value R(I*, J*) by using the Taylor's series expansion

The partial derivatives and [_j./ may be written as
y_ ix
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The partial derivatives L g_ s _and _BN_ may be approxi-

mated by

The four remaining partial derivatives on the RHS of equations (4.2)

and (4.3) may be obtained as follows: Let A and B be matrices defined

by

LgNa
B = (4,7)

k_5,,/q
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Then, from t h e  theo ry  of mathematicalL t ransformat ions ,  we have 

which e x p l i c i t l y  y i e l d s  

where 

The p a r t i a l  d e r i v a t i v e s  appearing on t h e  &S of equat ions  ( h . 9 )  - 
(b. 1 3 )  may be o b t a ~ n e d  from equat ions  ( 2 . 2 9 )  - ( 2 . 3 2 ) ,  v a l i d  f o r  a 

basic m i t  def ined  by benc-harks.  
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4.3 Computational Operations

_br each point, it is seen that the computations in

equations (4.,s - (4.5) require 4 additions, 6 subtractions and

6 multiplications. Assuming a time of 1.5 microseconds for each

addition or subtraction , and 6 microseconds for each multiplication,

therefore about 51 microseconds are required to correct the radio-

metric value for each point.
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SECTION 5 - DISCUSSION

This sectiondiscussesrelevant topics such as benchmark

spacing,time requirementsfor mapping IR data, real and non-realtime

computations,data storageand buffering,input and outputdata ac-

curacy,and computationalaccuracyrequirements.

5. I Eenchmark Spacing

The IR samples have angular widths of about O.O1° x O.O05°

at the satellite position. This corresponds to a resolution of about

4 x 2 miles at the sub-satellite position on the earth's surface. In

general, this resolution and the non-linearity of the mapping equations

determine the requisite spacing of the benc_hmarksto be used for inter-

polation. The analytical approach to obtain this spacing involves

comparatively complex mathematical analysis. Alternatively, it is

also possible to obtain this ?alue by actually performing the mapping

munerically. At this stage, it is felt that the interpolation require-

ments can be met by choosing the IR benchmarks to be spaced 50 samples

horizontally and 25 samples vertically. That is, it probably suffices

to choose m = 50 and n = 25 in Section 3. In the full IR imagery,

there are 1822 scans each containing 3822 samples. Consequently, about

5,600 benchmarks will be required.
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5.2 Time Requirements

In Section 2, the computation of each benchmark and its

associated partial derivatives requires about 1540 microseconds.

Hence, a set of 5600 benchmarks requires about 8,624,000 microseconds

8.6 seconds.

In Section 3, the mapping of each sample by interpolation

requires about 6 microseconds. Therefore, an IR imagery of about

7 x 106 smmoles requires about 42 seconds. However, if the entire

IR imagery is not to be mapped, then cropping out the edges will

probably reduce time by a factor of 2/3 to yield a requirement of about

28 seconds.

In Section 2, the correction of radiometric value at

the center of the pixel in the distortion-free image requires about

51 microseconds for each sample. Therefore, an IR imagery of about

7 x 106 samples requires about 357 seconds. Cropping will probably

reduce this to about 238 seconds.

Consequently, about 399 seconds or 6.7 minutes will be

needed to map the entire YR imagery c_mprising of coordinates and

radiometric values of the samples. This time requirement drops to

about k.4 minutes if cropping is introduced.
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If it is desired to map.the visible imagery containing

I/2 x I/2 mile samples, then the above times are increased by a

factor of 32. Therefore, about 214 minutes will be required to map

the entire imagery comprising of coordinates and radiometric values.

If the edges are cropped out, then about 143 minutes will be needed.

5.3 Real and Non-Real Time Computations

From the discussion above, it is seen that it is possible

to perform all the mapping Computations in real-time in the case of

IR imagery, and not possible in the case of visible imagery. However,

in the latter case, the crucial point is whether the radiometric

corrections are really necessary. If not, then the time requirements

drops to 22.4 minutes for the entire imagery, and 14.9 minutes for

the cropped imagery. Consequently, visible data-mapping becomes feas-

ible in real-time.

Because the benchmark computation time is so small, it

is desirable to perform the benchmark computations in real-time so

that the relevant parameters may be easily extracted in-line f_om

the data-stream coming out of the SDB.
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5.4 Bata Storase and Bufferin_

Because the imagery obtained from the SDB output data is

distorted, it is necessary to store this data in a buffer before the

distortion-free mappins can be performed. The buffer size may be

estimated by allot.ringfor a maximum 3° offset in the spin axis. Since

the satellite is about 6.6 earth radii away, it may be verified that

_oout 100 IR scan-lines (382,200 samples) to be buffered at a time.

This will be sufficient to output a horizontal distortion-free line

from end to end. In the case of visible data, the corresponding

buffer will contain about 800 visible scan-lines (12,230,400 samples).

If a realistic situation, the aboMe numbers will probably be reduced

by a factor of 3.

5.5 Input and Outout Data Accuracy

The data coming out of the SDB will be used as input

into the distortion-free mapping software systsm_ The accuracy of

this data may be roughly classified as perfect, normal or bad.

Perfect data corresponds to data having errors of less

than one oixel (i. e. * 2 km at the subsatellite point for IR data).

The error in the output data from the distortion-free mapping is

therefore determined by the pixel resolution of the benchmarks, the

interpolation accuracy of interspaced points, and the correction accur-
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acy of the radiometric values. Because the second and third factors

depend on the benchmark-spacing, which in turn de_ends on the pixel

resolution, therefore it is estimated that the error bound of the

output data is about one pixel (i.e., _ 4 km for IR data).

Normal da_a corresponds to data having errors of about

one or two pixels. The mapping error is determined by the benchmark

accuracy corresponding to normal input error, the interpolation

accuracy of interspaced points, and the correction accuracy of the

radiomatric values. In this case, the error bound of the output

data is about two pixels.

Bad data corresponds to data having errors of about 4 or

more pixels. The mapping error is determined mainly by the benchmark

accuracy corresponding to these bad input errors. In this case, the

error of the output data is probably about 5 or more pixels.

5.6 Comoutjational Accuracy Requirements

It is desirable to investigate into the use of 16-bit

words in the distortion-free computations.

Because of the complexity of the benchmark computations

in equations (2.1) - (2.28), it is quite evident that sufficient

accuracy will not be obtained by performin_ single-precision

computations using 16-bit words.
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However,for the partialderi'_tivescomoutationsin

equations (2.29)- (2.32),the interpolationof interspacedpoints

computaionsin equations (3.7)- (3,8)  3.15)- (3.16),and the

radiometriccorrectioncomputationsin equations(h.1) - Lb.5),

it is possibi_ _o achievethe desiredaccuracyusing single-precision

computationsinvolving16-bitwords. In this case, perhapsthe best

way to representreal numbersis as follows:

I bit for sign of number

11 bits for range of number ( 211 - I = 2047 )

I bit for sign of exponent

3 bits for range of exponent ( 23 - I = 7 )

An alternative choice is as follows:

I bit for sign of number

12 bits for range of number ( 212 - I = h095 )

I bit for sign of exponent

2 bits for range of exponent (22 - I = 3 )

This second choice may not be as desirable because of the small

range of the exponent.
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SECTION 6 - CONCLUSION

From the preceding discussion, it is seen that it is

possible to map in real-time the entire IR imagery comprising of

coordinates and radiometric values of the samples. However, it is

possible to map in real-time the entire visible imagery comprising of

only the coordinates of the samples. This conclusion is based heavily

on the assumption that it takes 1.5 microseconds for each addition or

subtraction, and 6 microseconds for each multiplication.

The follo,,_ingtable summarizes the time requirements for

IR and visible imagery mapping:

Entire IR CroppedIR Entire VIS CroppedVIS

Benchmarks 8.6 sec. 5.7 sec. 4.6 min. 3.1 min.

Sample
Coordinates 42 sec. 28 sec. 22.4 min. 14.9 min.

Radiometric
Values 357 sec. 238 sec. 190.h min. 126.9 min.

Total 6.8 min. 4.5 min. 217.4min. 144.9 min.
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The following table summarizes the expected accuracy of

the distortion-free mapping (DFM) algorithms:

Input Data Output Data
from SDB from D_N

Perfect I pixel

Normal 2 pixels

Bad 5 or more pixels

REFERENCES

(I) Chan, F. K., "Distortion-Free Mapping of VISSR Imagery Data
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Computational Aspects of Geometric

Correction Data Generation in the

Landsat-D Imagery Processing.*

I. Levine

General Electric, Space Division

4701 Forbes Blvd., Lanham, MD 20706

ABSTRACT

A method is presented for systematic and geodetic correction data calculation.
It is based on presentation of image distortions as a sum of nominal distortions

and linear effects caused by variation of the spacecraft position and attitude

variables from their nominals. The method may be used for both MSS and TM image

data and it is incorporated into the processing by means of mostly offline

calculations. Modeling shows that the maximal errors of the method are of the
order of 5m at the worst point in a frame; the standard deviations of the average
errors less than .8m.

INTRODUCTION

The geometric correction of the Landsat-type imagery typically proceeds in

two steps. The first, called the Systematic Correction, removes internal distortions

imported in the raw image data by the sensor mechanism, spacecraft motion, inaccurate

sensor pointing, earth's rotation, etc. These partly corrected images still contain

distortions due to uncertainties in spacecraft position and orientation. The second

step, Geodetic Correction, removes these residual distortions using refined values

of the attitude and ephemeris estimates° The refined attitude and ephemeris are

obtained by filtering of image dislocations at Control Points.

Application of the geometric correction requires the generation of the Correction

Data - Systematic (SCD) or Geodetic (GCD), depending upon the processing step.

This data is developed on a rectangular grid in input (pixel, scan line) coordinates

and express the relationship between the input and output map coordinates, within

a standard World Reference System (WRS) frame.

The central part of the SCD/GCD generation is the computation of the coordinates of

the intersection of the sensor's line'of-sight vector, with the Earth's surface
(lookpoint coordinates). The lookpoint coordinates must then be converted to

geodetic coordinates followed by mapping into user's map projection. There are two

user's map projections: Space Oblique Mercator (SOM) and either Universe Transverse
Mercator (UTM) or Polar Stereographic (PS).

* Work performed under National Aeronautics and Space Administration
Contract No. NAS 5-25300.
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Finally, the data, computed for integer values of pixels and lines, is inter-

polated to integer values of output map coordinates. The grid spacing is chosen
so that the data, together with properly defined interpolation techniques, represent

the output coordinates to the desired precision everywhere in the frame.

It should be noted that all the calculations are performed twice at each grid

point, once for each SCD and GCD. They consume a significant amount of the processing

time, which needs to be minimized. At the same time, there are no essential

differences between SCD and GCD. Both establish a pointwise transformation, which

may be written generically as

= F(pixel,line,p),m

where X = (Xml, Xm2) are map coordinates of a grid point and p is a vector ofm

variables characterizing the spacecraft motion, attitude pointing, sensor's

mechanism, etc.

-n
Letting p = p + _, the sum of nominal values of the variables and the deviation

from the nominals, in the first approximation

=_n +_ _, (i)
m m

where X n are the nominal map coordinates and _ is the matrix of the partialm

derivatives (PD)

p=F _-_m]
J

Thus, SCD and GCD may be represented as a sum of the nominal correction data and

pointwise adjustments.

This has significant advantages:

i) It provides.a uniform approach to the SCD and GCD computations, considering
each as one transformation, and

2) Because the nominal spacecraft motion is known for every WRS frame, the nominal

coordinates and the partial derivatives may be computed and stored in a Data Base.

The implementation of such an approach depends a great deal on both the choice

of an output map projection and 6. An analytic form of mapping not only has to

allow derivation of the coefficients _, but it should also afford rapid and precise

online inversion to geodetic coordinates, from which the final map projection can

be generated. In addition, it is desirable to have the nominal coordinates and the
partial derivatives, as far as possible, insensitive to global position of the

frame. Thus, although out technique may be applied to most standard map projections
(such as UTM or PS), a special intermediate projection, Local Space Oblique Mercator

(LSOM), has been employed. The LSOM is the Mercator projection for the sphere, wit_

local 'equator' along the nominal spacecraft inertial velocity at the frame center.
In that projection X n and p are longitude-undependent and thus, can be stored only

for one path. A nat_rai choice of variables 6 is the along-track, cross-track and

radial deviations in spacecraft position, together with deviations in the attitude

angles. The nominal spacecraft motion within a frame is assumed to be in a perfect

circular orbit passing through the frame center.
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NOTATIONS

ap = (apl,ap2,...,apK) - vector (Kxl matrix)

,," theEoclideanofaP
AT - transposed matrics A

- spacecraft position vector in earth-
centered earth-fixed coordinates

X - spacecraft position vector in nominal

s spacecraft coordinates

m = (Xml, Xm2) - output map coordinates

_n - pointing vector in body coordinates

g - pointing vector in local vertical

spacecraft coordinates

- pointing vector in earth-centered fixed
coordinates

- coordinates of a lookpoint on the earth
surface

h - distance from spacecraft to earth
lookpoint

v _ u. l]ulI -1 _ normalized lookpoint vector.

R - local earth radius at WRS frame center

- earth rotation rate

ae, be - earth equatorial and polar radii

-I

eI = e2 = 1, e3 = ae = aeb e
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61 - deviation in the pitch

- deviation in the roll
2

63 - deviation in the yaw

_4 - along track angular deviation

_5 - cross track angular deviation

_6 - relative departure in the radial direction

_7 - time deviation

_k - (2x!) matrix of the partial derivatives
of X with respect to 6k"m

= (BI,B2,...,_7)

A A
@ , @ - the 'equivalent' pitch and roll
p r

- spacecraft orbital rate
s

X - geodetic longitude

- geocentric latitude

- geodetic latitude

1 0 0

ROTI(_) = 0 cos_ -sin_
0 sin_ cos_

cos_ 0 s n_I

ROT2(_) = 0 i

-sin_ 0 cos_]

cos_ -sin_ 0

ROT3(_) = sin_ cos_ 0
0 0 i
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_I ROT. (_b).j = 0 = T.i I

0 0 0
TI = 0 0 -1

0 i 0

I 0 0 i
T2= 0 0 0

-i 0 0
I

0 --i 0

T3= i 0 0
0 0 0

I - the three dimensional identity matrix

The upper index _ indicates the nominal value of a vector.

T - active scan time
act

Troun d - mirror turnaround time

THE NOMINAL SCD

Coordinate Transformations

The local (instantaneous) spacecraft coordinates are described in terms of

the unit vectors (_i,_?,_), where _q points towards the Earth center, the 71

vector is along the orbital angular momentum, and _2= _3 x _I is roughly along
the velocity direction. The local spacecraft coordinates at the WRS center is
called the nominal aoacecraft coordinates. The matrix A transforms a vector X in

earth-centered inertial coordinates to the vector X in nominal spacecraft o
coordinates: s

= AX (2)s o

The inertial to earth-centered earth-fixed coordinate transformation is
defined as

= ETXo , (3)

where E = Eo ROT3(_t)"

The matrix E gives the time-independent component of the transformation,

ROTq(_t) describes the rotation about the earth axis at the rate _. We assume that
t =_0 at the frame center. The corresponding nominal spacecraft to earth fixed
coordinate transformation may be written as

= ETAT_ = pr_ (4)
s s

where P = AE.
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-n

The unit vector g , given in body (sensor) coordinates, is transformed to local

spacecraft coordinates as

_n

g = ROT3(-@ ) ROT2(-@r) • ROT(-0 ) g (5)Y P

where @y, @r' @ are the yaw, roll, and pitch.P

In the nominal spacecraft coordinates, gsmay be expressed as

gs = ROTI(Y)g

where ¥ is the angle in the orbit plane between the spacecraft and the frame center.

In the nominal spacecraft motion cos y =- Xs3/ llXsll , sinY = Xs2/ llXsll ,

and thus, the matrix ROT1(Y) is known completely.

A vector Xm = (Xml' Xm2) in LSOM coordinates is defined as

R in i + sin B (7)
Xml = 2 I - sin B

Xm2 = R_

where R is the earth local radius at the frame center. The local polar angles,

and B, are given by

W = sinB
i

W2 = cos_. sine (8)

W3 = -cosB •cos_

where -I

= _I_ [[ A_ (9)

and u = (Ul,U2,U 3) are earth fixed coordinates of the corresponding point on the
ground.
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Generation of the nominal SCD

The nominal coordinates, Xm, are computed on a grid, consisting of 2nl+l
fictitious scan lines, each line containing 2n2+i points. Because the TM scans in

two directions, it requires two sets of the nominal coordinates, for forward and

backward scans. The computations may be fulfilled in the following order.

i. Generate the time of (i,j) point

tij = Tscene2n I (i-nl-l) + Tact2n2(J-n2-1) + AT

Here

Tscen e = (Tac t + Troun d) (Nscan - KI)

where T is the active scan time, T A is the turnaround time, N is theact. _ roun scan
actua± number of scans, and K I = 1 _or MSS and 2 for TM.

The parameter T = T for backward scans of the TM and zero otherwise.scene

2. Generate 2n2+i unit line-of-sight vectors _n in body coordinates. An actual
mirror velocity profile, together with constant sensor's misalignments may be employed.

3. Compute the spacecraft position vector X and the matrix P at t...
s 13

4. Compute gs according to (6).

5. Transform X and gs in earth fixed coordinates obtaining the vectors X andS ' '

respectively.

6. Determine the lookpoint coordinates, ] = (Ul,U2,U3) , and h from the equations

u = x + hf (i0)

2
a-2

+ u_ b-2 1 (ii)(u_ + u2) e e =

7. Transform u into LSOM coordinates using (9), (8), and (7).

It is convenient to have all distances in units of the nominal orbit radius.

THE PARTIAL DERIVATIVES

Position and Pointing Vectors

Let xnbe a nominal spacecraft position vector at time t , 6 and 6 be the
s o 4 5

angular along-track and cross-track deviations in spacecraft position, and 66 be
a relative_ deviation in the radial direction. Then the actual spacecraft position

vector, X , may be obtained by rotating xn through 64 and 6 This is followed by• s 5"
stretchlng according to the ratio 1 - 66:s

__il

s = ROT2(65) ROTI(_4) Xs(l-_6)
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Similarly, if 61,62, and 63 are deviations in the pitch, roll, and yaw, the actual
(unit) pointing vector gs should be written as

gs = ROT2 (65 ) ROTI(66)g n ,

-n

where gs is defined by (5) and (6) as

-n

gs = ROTI(Y) ROTB(-63)ROT2(-62) " ROT1(-61) _n

Let t = t + 6 Remembering that P = P(t o) = AE ROT3(_to), we can writeo 7 " o

pT at time t as

pT(t) = ROT 3 (-_(to+67))Eo TAT = ROT3(-_67),

"ROT3(-_to )ETATo = ROT3(-_67 )PT

and the actual position and pointing vectors in earth fixed coordinates as

= ROT3(-_67)pTRoT2(_5)ROTI( 64)<(i-_ 6)

= ROT3(-_67)pTRoT2(65)ROTI(_4 )ROT (y),i

ROT3(-_ 3) ROT2(-62) ROrl(-61)g n

The linear terms of the Taylor series expansions of X and f in the vicinity of

6. = 0 (i = 1,2,...,7) give
i

__-Tn

= pT(l + TI64+T265-66-_T367)X s
3

= pr [I+TIROTI(Y)64+T2ROTI(Y)_5.ROTI(Y ) . _ r.6.-i=l I l

]-n- a " ROTl(Y)67 g

Here we used the fact that

ROT (_) = T
9_ i _=0 i
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Introducing _n = pTRoTi(y)_n and

= , we finally have
S

= _n+ pT(TI_4+T2_5 _ gT3_7)P_.n - _n_6

= _n + pT(TI64+T265__T367)P_n -
(12)

3

- pTRoTI(Y)(_ Ti_i)gn
i=l

The Partial Derivatives of Lookpoint Coordinates

Henceforth, we will use a prime to denote the matrix of PD with respect to
computed at the nominal point. From (i0) it follows that

M _ -i
_ = u = _i+ h_l + hl_ (13)

-I

Introducing eI = e2 = 1 and e3 = aebe , Eq.(ll) may be rewritten as

3
2

e2 (Xi+hfi) = ae

i=l

or,

h2(_ fiei ) + 2h(_fiXi e ) + X e. = ai e

Differentiating the last expression as a inplicit function of h gives

h I = _ _ (XI + hfl)(xi + hf_)e 2
2

fi(X. + hfi) e.i i

2 i i= _ u4ei (Xi+hf_)

1
and, after substitution h in (13), we have

i Col (X_ + hfI) _uifie_ - fk _ (X_ + hfi)uie i
Uk = i_k i_k

(i,k = 1,2,3)

%--ww 2

where Co = -L fiuiei

8-9



-i
Using the matrix notations, u may be expressed as

1
u = C(_I + h_l), (14)

where C is a 3x3 matrix with the elements

Ckk = i + Ukfke2Co 1

2 -i

Ckj = ujfkejC o (15)

Transformation to LSOM Coordinates

To transform the lookpoint coordinates, u, to the LSOM coordinates, they

must be represented in the normalized form V = _" l_u_ -I

Differentiation of V Yields

i = 1 _ and introducing the matrix B with

the elements

Bkk = l-U2 IIU_2 (16)

Bkj = - UkU j [IU[I-2,

_i may be written as

_i = i[_iI -i B_I = II_]_-1 BC(_I + h_l) (17)

The next step is transformation of V to W and then to Xm" From (9) and (17)
it follows that

-i

_i = #I_H ABC(-_I + h71). (18)

From (7) and (8) it follows that

i + W1
Xml : ½R. in

i - WI
(19)

Xm2 = R.arctan _ __(-W2/W3)

and therefore,

X1 = R(I_W_)-I iml WI

X1 = R(I-W21)(W2WI3 - W3W12)m2

_-I0



Introducing the matrix

o(000) 0-W3 W2

and using (18), we have

_im = R(I-W_)-I_I =

R IIUII-I(I-W21)-I DABC(X 1 + hf I) (21)

T obtain the final result, we must substitude an explicit expression for
X_ + hf-, which follows immediately from (12):

"- -n

-hpTRoTI(Y) Tk g k= 1,2,3

+ hfI = pTTk_BP(Xn + hfn) = pTTk_3P_n k = 4,5

__n k= 6

-_T3_n k = 7

Description of the Algorithm

Calculation of the partial derivatives is performed simultaneously with the
LSOM coordinate generation in the following order.

i. Compute matrices C,B, and D, given by (15), (16), and (20).

2. Compute matrices

R

J: null(1-w_)DABC
j = jpT
o

3. Compute vector Z = p_n

4. Form five vectors

h r n n n

J1 = r (0, Xs2g2-Xs3g3, Xs2g3+Xs3g2 )

n n

J2 = -h (g_r,glXs2,glXs3)
r

n n n

J3 = h (g2r,glXs3,-glXs2)
r

J4 = (O'-z3'z2)
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J5 = (Z3'0'-ZI)

J7 = (U2'-UI '0)

Here r = llXsll

5. Compute

= Jk_k Jo (k = 1,2,...,5)

= _j_n
6

7 = _JJ7

Here Hk is the 2xl matrix of the partial derivatives with respect to 6k and thus,

B= (Hi'_'_'_4'BD'B6'B7)"

Note, that SCD/GCD calculations require only the first six pair of the PD. The

partial derivatives with respect to time,H7, will be used only to generate the
backward scan grid for Thematic Mapper.

The nominal SCD and PD are computed in double precision and stored in single

precision. Because the PD are changing very slowly over a frame, they may be
computed on a sparse grid followed by linear interpolation onto a finer grid.

For instance, implementation of our technique for MSS requires calculation of PD

on a 3x5 grid.

THE NOMINAL COORDINATES AND THE PARTIAL DERIVATIVES

FOR BACKWARD SCANS OF TM

It should be remembered that application of the developed technique to

Thematic Mapper data requires two sets of the nominal SCD and PD - for forward and

backward scans. But actually only one set must be obtained by the direct iOokpoint

calculation: LSOM coordinates for, say, forward scans may be easily converted to

LSOM coordinates for backward scans. Our calculations show also that, for sensor's

misalignments less than .i°, the derivatives are practically same for both grids;

for bigger misalignment the second set of the derivatives can be obtained by the
linear interpolation of the first one.

Let Xm(t I) and X (t_) be LSOM coordinates for adjacent forward and backward

and _2,Zrespectively. Note,scans at time tI that for the TM

8t = t2 - tI _ 2 Tac t + Troun d = .132205 sec

So, we will neglect changes in the attitude angles during 6t.
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Considering_X m = X (t_)-X (tl)as a function of changes in the spacecraft position,
sensor pointing, an_ e_fec_s of the earth rotation, we may represent it as

X--m A (_m) r
- Xm) _ 8t + (-_l)t I @ + @ +_L = (--_4"tl s p 82 tI

+ ( )tl _t = (_4 as + _7)_t + _ _ + _2 @I p r

A

Here @ and @ are fictitious pitch and roll angles, reflecting a difference in

sens0rPs pointing at tI and t2, and as is the average orbital rate during _t.

-n

Here we will denote the nominal pointing vector g at moments of time tI and t2
as_ P_and q, respectively. The angle between their projections onto the

(_2,_3) plane, (O,P2,P 3) and (O,q2,q3), can be written as
_, P2q2 +

cos @ = P3q3

P (P22+ P + q23)½

or, choosing the appropriate sign,

A Pq2-Pq
-_sin @ = 3 2 3

p p (l_P21)½(l_ql)2½

A

Analogously, @ may be expressed as the angle between projections of P and q ontor

the (_i,_3) plane:

^ P -
@ _ sin _ = lq3 P3ql

r r (l_p_)½ (l_q22)½

For zero sensor's misalignments

2 P2 P3

P (l_P21)½

A
0 = 0
r

CONVERSION TO BASIC HAP PROJECTIONS

It should be remembered, that completely corrected imagery eventually must be

presented in two basic map projections, SOM and either UTM or PSo To generate

correction data in a basic map projection, it is required to invert LSOM coordinates

to geodetic latitude and longitude and then perform the standard mapping into
desirable projection.
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Noting, that the normalized look point vector, V, can be expressed through the

geocentric latitude, _, and the longitude, % as

V I = cos_ cos_

V2 = sin% cos_

V3 = sin_

A

and, employing well known formula for the geodetic latitude

2 b-2tantan i = a i,e e

one can obtain

= arctan (V2V_ I)

2 b-2 V3(I_V3)-aj= arctan e e

For a given Xm, V is computed by the inverted formulae (i0) and (9).

NUMERICAL RESULTS

The Accuracy of the Method

To evaluate the methods accuracy, differences between LSOM coordinates, computed

directly on points of a grid, and those, corrected according to Eq.(1), were
calculated for various spacecraft position and attitude deviations. It is convenient

to characterize the upper level of errors by the maximal along-track (AT) and

cross-track (CT) errors, which coorespond to the errors at the worst points of a

frame (possible different for AT and CT errors). It should be noticed, that the

maximal errors always appear near the corner points and similar for TM and MSS.
They are linearly dependent upon magnitude of deviations and practically independent

upon WRS latitude.

The actual position and attitude departures for Landsat-D are expected to be

01°(_) for the pitch, roll, and yaw and less than 5km in the along and cross track

directions. The radial departure is determined chiefly by the orbit fluctuations

and it will not exceed 9.5km. Modeling shows, that for 6] = 6 2 _T63 = .03°,
64 = _ = 5km, and 6 = 9.5km, the corresponding maximal CT and errors have the
order 6f 5m (CT = 4._7m, AT = 5.03m for MSS and CT = 4.97m, AT = 5.07m for TM).

The inversion from LSOM to geodetic coordinates produces insignificant additional

errors, therby preserving the same order of errors in UTM and PS projections.

For TM, the forward to backward scan conversion results in CT and AT errors

less than .03m for zero sensor's misalignments; for extremely large misalignments

of the order of .5° , the maximal CT errors increase up to .5m.
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Currently the SCD/GCD generation accuracy for LandSat-D are defined in terms

of the average mean-squared errors (im for TM and 1.5m for MSS). Table 1 represents
the 90% maximal errors and the standard deviations of the average errors for Thematic

Mapper, obtained by stochastic modeling 6 Here the attitude angles were normally
distributed with zero means and _ = .01 . Two cases of radial deviations were

considered: a constant equal to 9.5 km, and a more plausible value from a uniform

distribution (-9.5, 9.5) km. Because the errors do not depend significantly upon
distribution of the cross and along track deviations, the latter were kept constant
at 5 km. 400 samples were used to establish results for each case. The table

also represents a case when PD were computed on a 3x7 grid and then interpolated to

a finer grid. The nominal SCD and PD for backward scans were recomputed from the
data for forward scans. Note, that in all cases the standard deviations of the

average errors are less 1 m and thus, the nominal SCD and PD, precomputed for mean

orbit radius at the frame center, provide the geometric correction with the required
accuracy.

Timing

On the VAX, the direct lookpoint calculations take about ii msec per grid
point, interpolation of PD - i msec, the nominal SCD to SCD/GCD correction- less

than .5 msec, and inversion from LSOM to geodetic coordinates - i.i msec per point.

Application of our technique for MSS requires interpolation PD to a finer grid,

two corrections in LSOM coordinates, and inversion to geodetic coordinates;

altogether it takes about 3.1 msec per point. The direct on-line SCD and GCD

calculation takes about 22 msec per point.

It should be noted, that mapping to the SOM requires about 15 msec per point,

which is considered excessive for on-line processing. This time may be significantly

reduced if we take into consideration the fact that the LSOM closely approximates
true SOM distances between points within each frame. The errors of the approximation

are relatively small (less than 5m) and sufficiently regular to permit linear

interpolation LSOM to SOM coordinates. It may be done by using a 9x9 grid of

corrections, precomputed and stored in the Data Base (Ref. i).

CONCLUSIONS

The SCD!GCD calculation technique is based on presentation of image

distortions as a sum of nominal distortions and linear effects, caused by variation
of the spacecraft position and attitude variables from their nominals. The

implementation requires generation and storage of the nominal SCD and twelve (for

MSS), or fourteen (for TM) matrices of PD for each distinct latitude of WRS, along

one path. The maximal errors of the method do not exceed 5.1m at the worst point
of a frame. The standard deviations of the average errors are less than im.

The speed of the processing and the accuracy that is achieved by this technique
makes it an elegant solution in the production environment.

8-15



Table i.

The 90% maximal errors and the standard deviations of the average errors for

constant and uniformally distributed radial deviations.

Distribution Interpolation Forward scans Backward scans
of the radial of PD

90% max STD 90% max I STDdeviation

errors (m) (m) errors (m) I (m)

" [ AT IICT
CT I AT CT AT CT I AT

!

• !

no 2.76] 2.37 .61 ! .49 2.78

constant , ---------_--
yes 3.091 2.69 .63 .67 3.11

no 1.31! 1.78 .29 .32 1.33uniform .....

yes 2.19 1.41 .42 .35 2.19
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The MSS Control Point Location Error Filter

for Landsat-D.*

I. Levine

General Electric Company Space Division

4701 Forbes Blvd., Lanham, MD 20801

ABSTRACT

The theory and results of modeling for the MSS Control Point Location Error

Filter are presented. The filter produces the maximum-likelihood estimates for

average values of the spacecraft position and attitude errors during a single

scene. The quality of the filter performance is characterized by the maximal

cross and along-track residual errors for which probability distributions can

be calculated analytically for a given pattern of control points. The filter

with an automatic selection of the best set of estimates provides geodetic cor-

rection at 90% of pixels with residual errors less than 40m for four or more

control points and the mean-squared measurement errors of the order of 20-25m.

The same accuracy can be preserved for eight or more control points and measure-
ment errors of 30-35m.

INTRODUCTION

The ground control points (CP), whose locations are measured on systematically

corrected imagery and whose true coordinates are known from maps, give highly

precise information on image displacements at each of the CP's. The differences

between true and measured locations provide the input to a filter, which produces

refined estimates of the spacecraft ephemeris and attitude errors. Then these

estimates are used for geodetic correction.

The MSS filter theory, represented in Section I, is based on

i) presentation of image distortions, expressed in Local Space Oblique Mercator

coordinates, as a linear function of deviations in spacecraft attitudes and

position (Ref.l), and

2) recognition of the fact, that MSS processing is limited to a single scene with

no more than 20 CP's. It is unlikely that any filter can assess the true time

dependence in the deviations during a single scene. But we still believe that

in some cases the MSS filter will be able to produce an reliable estimate of
average rates, i.

* Work performed under National Aeronautics and Space Administration Contract
No. NAS5-25300.
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An accuracy of these estimates is discussed in Section 2. The covariance

analysis of the estimate errors shows that image distortions caused by the roll

and cross-track deviations are so similar that their origins can be determined

only by near perfect measurements. Thus, the filter is unable to produce an

reliable estimate of both deviations. At the same time, the filter can provide an

equivalent estimate for either variable, say, roll, which compensates distortions

due to both sources. Analogously, for the pitch and along'track deviations.

The analysis of covariances shows also, that initial uncertainties in rates may

be reduced only for the equivalent roll + cross-track and pitch + along-track

rates if there are more than 15 CP's and the mean-squared measurement errors are

of the order of 10-15m. So, in cases of few CP's, that is of interest to us,

only four estimates should be taken into consideration: for the yaw, radial and
equivalent pitch and roll deviations.

Section 3 introduces three global characteristics of filter performance: the

maximal cross and along-track residual errors, together with combined error in

distance. These characteristics can be obtained analytically and they establish

upper levels of errors for any given configuration of CP's. The final formulae

for probability distributions are presented$ more details may be found in Ref.2.

It is known that pattern, which CP's form on imagery, have a strong effect on

filter performance. Examples, given in Section 4, show that one of the most im-

portant simple characteristics of CP's distribution is the maximal cross-track

separation, which has been defined as the maximum of the cross-track distances

between every pair of CP's.

The examples demonstrate also, that for every pattern of CP's, measurement
errors, and initial uncertainties in deviations, there is an optimal set of

estimates, minimizing the residual errors. An approximate algorithm, providing

the automatic selection of such a set, is described in Section 5. Results of

modeling indicate that the MSS filter with the automatic selection provides the

90% average errors less than .5 pixel (40m) for 4 or more CP's and the mean-
squared measurement errors of the order of 20-25m, or for 8 or more CP's and
measurement errors of 30-35m.

I. THE MSS FILTER EQUATIONS

Ref. [i] shows that the local SOM coordinates of a frame point, X = (XI,X2) ,
may be represented as

= X + _, (i)
o

where Xo is true coordinates of the point, _ = (_i' _2''''' _) is a vector of the
spacecraft position and attitude deviations, and _ is a_(2x_) matrix of the partial

derivatives (PD), computed at the same point. Now let Z = (ZI,Z2) be the coordinates
of a CP obtained from a map. We will assume that

: X + _ , (2)
o

where _ =(_i' _2 ) is a vector of Gaussian measurement errors with zero expec-
tation values and the covariance matrix R.
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From (i) and (2), it follows that the measured at a CP displacement,

A-_= X - Z = _ - _ , (3)

is also normally distributed with

E(_) = E(_) - E(_) = _

cov(AX) = E(_ T) = R

Thus, the conditional probability density for AX can be written as

P = (AXi6) = const.exp [-½(A-X + _)TR-I(&x + _)]

Let us assume that _ is constant during a scene. Then a joint density of

displacements at N control point is
N

P(_I,_2,...,A-_/6) = const ._ exp(-½ (_k _
k=l

_ k_)r R-l(_k _ _$)) ,

where upper index k indicates AX and _ associated with the k-th CP.
A

It is known, that the maximum likelihood estimate of _ (we will denote it as _)

is a solution of equation

VL (_) = 0 , (4)

where N

L(_) = in P = -½ S (_k _ k_)r R-l(_k _ k_), (5)
k=l

and differential operator V is defined in Appendix.

It is known also that

A

E(_) = _ (6)

A

and in our case (Gaussian conditional density) the covariance matrix of _ is

T

cov(d) = E((_-_)(_-7) ) =- (VL(7)vT) -I (7)

Note from here the summation index k will be omitted. Eq. (4) and (5) yield

VL = -½ ZV(_ -_)T R-I (_ _ _) =

= ½ Z T R-l(__ _ ) = 0 (8)
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and thus, the solution _ can be written as

-1
= M Y , (9)

O O

where

M lu T R-I=
O

y = fBT R-I A-Xo

Noting that

VLV T fu T R-1=- _ =- M
o

we also have from (7) that

-i
cov(6) = M (i0)

o

Now let $1' $2 be independent with the dispersions cr21' 2o2 In that case

and (9) and (10) yield

= M-IY (ii)

2 M-I (12)cov(_)= oi

where M, Y are matrices with elements

2

mij = l(_li _lj + °1 _2i _2j ) (13)
_2
2
2

Yi = Z (_li AXI + _12 u2i AX2) (14)
2

- -i -I -I

Elements of the matrix M i will be denoted as mij , i.e. M = (mij).

A

Once _ is determined, it can be used for geodetic correction. With geodetically

corrected coordinates of a point being X + u6 , the residual error at the point,

= (_i' €2)' can be written as

=_+_-_ =_+ul- (_+_-) =
O

A __

= _(_-_) (15)
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Thus, "_ is normally distributed with zero mean and the covariance matrix

3 T 2 -i T (16)= H E {(_-_)(_-%)T _ = o I _ M

Eq (16) defines local two-dimensional distribution of the residual errors at a

given frame point. It can be used also for detection of 'outliers', i.e. bad
measurements at CP's. From (3) it follows, that after geodetic correction, the

measured displacement at the k-th CP's, Sk ' can be expressed as

- __ _ _ --
_k = AX -_ = _( ) +

As a sum of two independent Gaussian variables, S--kalso is Gaussian with zero
mean and the covariance matrix.

-- M-I T (17)
cov(_k ) = _21 _ _ + R = Q

The two-dimensional probability density for _k is represented by the countour

ellipses

2
--T Q-I -¢(e) = e e = eonst = X

It is well-known, that the probability that the 'point' Sk is inside the countour

ellipse is X2(X2), so the k-th CP should be treated as an outlier if

¢(_k ) > X2 ,

where %2 corresponds to a chosen confidence level. For instance, %2 = 9.21 for
the 99% confidence level.

All derived above formulae can be easily generalized to include the case when

is a slow-changing function of time. Introducing the average deviations and rates

during a scene,

=(_i,_2,... _)andB = (BI,B2,... B_),

we can approximate the deviation at time t as

- (18)
_ =_+Bt

Now the displacement at the k-th CP at time tk is

_k = k( _ + _tk) +
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and the maximum likelihood function of e, B can be written as
N

L(_,g) = -½ _-- (A_k _ k(g + gtk)) R-I
k=l

(Ax--k_ k(_ _ _t k))T

From the above, one can obtain that the estimates of _ and B (denoted as _ andS)
are given by

= y' , (19)

!

where Y is given by (14) and components of Y are
2

' = _ _2iYi (_li AXI + °I AX2)t (20)

The matrix M consists of four submatrices
1

!

M M

MI = M' M' '

f ! ! T!

where M is defined by (13) and elements of M' and M ' mi_d and mi_J , are
a 21

mij = (!alilaij +_ l_2i la2j)t (21)
a 2

2

'' X'- _i 2
mij = _ (_li_lj + o2 _2i _2j)t (22)

2

We have also that E(_) = _ , R(B) = B , and

A^ 2 -Icov(,B) = o
i MI (23)

A A A
Introducing the estimate of deviation at time t, 6 = _ + Bt, we have that

A A A
E(6) = E(_) + t E(B) = _ + 8t =

and the covariance matrix of 6 is
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cov(_) = E((_ -_ )(_- _ )T) + 2 t E((_ -_ )(_-6 )T) +

+ t2 E((_ -_ )(4-_ )T)=

= C + 2tC' + t2C '', (24)

where C, C' and C'' are the £x£ submatrices of MI I
!

C C
-i

M I = , _, (25)
C C

Further it will be considered that the filter can estimate, at the most, the

along-track (AT), cross-track (CT), and radial (RAD) position deviations and

rates, together with deviations and rates in the pitch (P), roll (R) and yaw (Y).

°I and °2 will correspond to the cross-track and along-track measurements.

II. COVARIANCE ANALYSIS

The covariance matrices, cov(_) and coy (_,_), completely characterize an

accuracy of estimates, which can be achieved by the filter for a given configuration

of CP's and the mean-squared measurement errors _I and _2" It is well-known,
that a pattern, which CP's form on imagery, has a strong effect on filter performance,
especially for a Small number of CP's. At the same time, our calculations show

that for N _ i0 elements of the covariance matrices insignificantly depend upon a

distribution of CPVs. For _._ _ _he standard deviation of the estimates are

approximately proportional to o.NI " At the present time, o_ and °2 arenot expected

to be less than i0 and 12m, respectively; the MSS filter will be processing up to
20 cP's per scene.

Table I shows the standard deviations of _ computed for _. = i0, __ = 12m and

50 (randomly located in a frame) CP's. Comparison of the standard 2deviations with

initial uncertainties in the spacecraft position and orientation, given in Table 2,

demonstrates complete inefficiency of the filter in that case. The reason is simple:
PD with respect to the R and CT deviations, as well as PD with respect to P and AT,

are almost linearly dependent. As a result, the matrix Mis nearly singular, and

thus Eq.(9) can not give a reliable value of _. In other words, distortions, caused
by the R and CT (or P and AT) deviations, are so similar that the difference would be

revealed only in near perfect imagery by near perfect measurements.

It prompts not to estimate CT and AP deviations at all, considering the cor-
responding image distoritons as a result of additional fictitious deviations in R

and P, respectively. Thus, the filter should be treated as a source of appropriate
geodetic corrections , rather than true estimates.

The covariance analysis for time-dependent deviations shows that the filter
is unable to produce reliable estimates of the Y and RAD rates even for N = 50:

the standard deviations of the estimates are 4-5 times as much as their initial
uncertainties.
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At the same time, the filter provides mediocre estimates for combined R + CT

and P + AT rates when _ = 15 - 20 and 01 , 02 are of the order of 10-15m. Table 3

shows such an example for N = 20, _i = I0, and _2 = 12m. Note, that initial
uncertainties in the R + CT and P + AT rates are .83 and .82 _rad/sec (these values

have been computed by data from Table 2).

Despite the fact, that in some favorable conditions the filter can cope with

these rates, such a case will not be considered below. Being interested chiefly
in the case of few CP's we will take into account only estimates of the P,R,Y and
RAD deviations.

III. THE MAXIMAL RESIDUAL ERRORS

The current requirements to geOmetric correction accuracy are specified in

terms of .5 pixel 90% of the time. Accordingly, we will evaluate the filter

performance by the 90% guantile of probability distribution, computed for the
residual errors which were observed at points of some, say 15x15, grid for randomly

distributed deviations, measurement errors, and possibly, CP's locations. Three

types of the 90% errors may be introduced on two-dimensional grids: for the CT and

AT components of the residuals errors and for the total residual displacements
= (_2 + s2)_ The last characteristic will be referred to as DIST.1 2 "

It should be noted, that actually all these characteristics can be obtained

only by stochastic modeling. At the same time there are two additional global
characteristics, which can be computed relatively simply: probability distributions
of the maximal CT and AT errors. These distributions describe errors at the

worst frame points and thus establish the upper level of possible errors for given
CP's.

A

Let us introduce the error in the j-th estimate, 4. = 6. - 6.. Now,

Eq_ (15) may be rewritten as 3 J 3

_i = _ BIj 4j

_2 = _-. _2j 4.3 (J = 1,2,3,4)

It is known that all PD increase towards the corner points of a frame, The CT and

AT errors also reach maximal magnitudes at a corner point lib , although it is
never known beforehand at what specific point. At the corner points only four PD_

namely, _21,_12,_q, and _lA' have significant values. Moreover,mwith an error

less than .1%, th_ may bg-replaced with their maximum values, _ij (retaining, of
course, correct sign). Thus, at the corner points

m m

Sl - _12 &2 + _14 44

_2 _ m 4 + m- Z21 1 P23 A3

Noting that _23 and _14' PD with respect to Y and RAD, have opposite signs at the
ends of every scan line, we always can find a corner point, where _I_ _ and _l& A&

have the same sign (analogously, for _21AI and _2q A_). Being indif[ergnt t0_igns

of Sl and e2' we finally have that the maximal (aNsolute) CT and AT errors, Y1 and

Y2' are
.I0-8



YI = I_12 A21 + I _14 A4 I
(26)

Y2 = IU21 AI _ + __23 A3 I

Here we have omitted the superscript m.

Fortunately, A2, A4 and AI, A3 are practically independent and thus these expressions
may be used separately to derive corresponding distribution and moments (Ref.2).

The following are the final formulae for mean value and variance of Y i:

E(Yi ) = _2 (S1 + $2) (27)

2 2 22Var(Yi) = (i - _) (SI + S ) +

+ 4 S1 S2 ( p °arccos(r) + r - i) , (28)

where

r = (i - p2)½ ]

2 2 -i

S1 = °i _i2 m22

2 = 02o -i for i = i$2 = u14 m44

° I
= m24I

_/ -1 -1m22 • m44

2 2 2 m-i
S1 = °1 _21 ii

2 _ _ m-i$2 = 3 33 for i = 2

1 " m33

The probability distribution of Yi can be written as

Pr(Yi_ A) = A 2_ 1 A2t ) x
S _½ S exp(- _--
I 0

f F(B(n + O" t - n • t) + F(B.(n - O t - n t)) - 1 _ dt,
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S
where n = 1 , B = A ,

_2 SI"r

u

F(u) = 1 exp(- t2/2) dt,
--OO

and SI, S2, p are given by (29).

For a given value of error, A, the corresponding probability can be easily
computed by means of standard subroutines. Modeling has shown an excellent coincidence

of theoretical and empirical values of E(y.) and Var(y ). Smirnov's Test alsoi i
demonstrates sufficient coincidence of the6retical and empirical distributions.

Eq. (26) may be used also for evaluation of the maximal residual error in
distance, which we define as

d = (y2 2,½
m i + Y2 )

We could not derive an exact distribution for d . But we have noticed that empiricalm
distribution of d2 are similar to Gamma-distribution with the same means and variances.

Because E ( d2} anmdVar ( d2)o can be obtained analytically, we have decided tom o

approximate dlstrlbution of dm by Gamma-distribution, which is written here as

A
i a-i

Pr(A) = bar(a) _ u exp(- b) du
0

where

E(dm2 )2a = (30)

Var (d2m )

Var( d2 ) (31)
b=

_E(d2m)

Because, T 1 and Y2 are practically independent,

E(H2) = E(y2 2i) + E(Y 2) (32)

2 2 2Var(d ) = Var(Yl) + Var(Y2) (33)

In Ref.2 it is shown that

E(y_) = s_ + s2 + 4SlS2 (0arccos (r) + r) (34)
Z[

i0-i0



and

21 _ 23Var(y2i) = 2(S + S )2 + 24SIS20 +

+ 32_ (S21+ S2)SIS2(rz + P arccos(r))

32 S2 S2 2
( r + p arccos(r)) (35)_2

2 2

Here SI, S? and P are given by (29). 9Eq. (30)-(35) yield a and b, which are used
to compute-a probability Pr(A) = Pr(A _) for any A by means of a standard subroutine
for Gamma-distribution. Smirnov's Test shows sufficient coincidence of the

approximations and empirical distributions for d ; differences between values of

errors for corresponding probabilities are less tmhan 5-7%._'

IV. EXAMPLES

Table 4 presents means, the standard deviations, and the 90% errors for the

maximal CT and AT errors, together with the 90% errors in distance (DIST). These

data have been obtained by modeling (M) and analytically (T) for _i = o = 10m
and initial uncertainties given in Table 2 (except example 9, where AT _ 185m,

CT = 35m, RAD = 65m, P = R = 120 _rad, and Y = 35 Brad).

From 300 to 600 samples have been used to establish results for each case. The

examples correspond to five selected configurations of CP's, depicted in Fig. l.

Table 5 describes the examples and shows the mean-squared errors of estimates.

Examples 1-3 and 7-8 illustrate the fact that for given configuration of CP's,

measurement errors, and initial uncertainties, there is an optimal set of estimates,

which provides minimum errors. For distribution A, that set includes P and R for
distribution C it includes P,R, and Y. Examples 8 and 9 demonstrate also that

such a set depends upon initial errors in deviations.

As we already know, the partial derivatives _12' _IA' _21' and _?q represent
the main effects of the position and attitude devig_ion§-on iNage disfSrtions.

At the same time, there is significant distinction between _12' H21 and B]&
when the former are almost constant in a frame, the second increase their --' _23:

magnitudes along every scan line. Thus, up to the second order effects, P and R

estimates do not depend upon position of CP's in a scene. Roughly speaking, they
depend upon average CT and AT displacements at all CP's. On the contrary, to

detect effects of the Y and RAD deviations, we should observe differences of these

displacements, so the bigger the CT distances between CP's, the bigger differences

in corresponding BIA and D2q' and the higher an accuracy of the Y and RAD estimates.
Thus, a simple but important characteristic of CP's distribution is the maximal

cross-track separation, H, which we define as the maximum of cross-track distances
between every pair of CP's.

Example I shows that for small cross-track separations (H=29.7 km) the Y and

RAD estimates are absolutely insufficient (457 Brad and 292 m) and, as a result,

the residual errors are large even for very modest measurement errors. On the

other hand, even smaller number of CP's may lead to better results if they are

'nicely' separated (example 4 for N = 2 and H = 169 km). Comparasion of examples

4 and 5 shows that an along-track shift of CP's does not affect significantly an

accuracy of results if cros-track positions are preserved. In addition, example 6
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suggests that a shift of CP's as a whole in the cross-track direction towards to

the frame bounds increases errors. It implies that it is always desirable to

have CP's placed symmetrically along the track.

Analyzing results of modeling, we have noted that the 90% CT and AT errors

can be approximated as

= E(Yi) + 1.5 _Var(Yi) (36)Yi

where E(Yi) and Var(y i) are given by (27) and (28). We have no explanation of
that fact, but it was verified on a large number of cases which have shown that

an error of such an approximation usually does not exceed 5%.

V. AUTOMATIC SELECTION OF ESTIMATES

As it has been shown, for every pattern of CP's, measurement errors and

initial uncertainties, there is an optimal set of estimates which reduces the

residual errors. Consequently, the filter's performance can be improved if it

will automatically select an appropriate set of estimates. Our approximate

algorithm of selection is based on the fact that Y1 and ¥2 are practically
independent, and, bigger maximal errors almost always lea_ to bigger average errors.

In our specific case, the a priori known uncertainties in P + AT and R + CT are

always bigger than errors of corresponding estimates (at least, for mean-squared
measurement errors less than 40m). Thus, these estimates always ought to be

included in an optimal set. Now, all we need is to compute YI twice, with and
without the use of the RAD estimate. In the second case, the standard deviation

of the RAD estimate must be replaced with the initial mean-squared error. Analogously

Y2 should be computed twice to determine when the Y estimates ought to be employed.

Table 6 presents the 90% CT, AT, and DIST errors, computed on a 15x15 grid
as a function of o. for various number of CP's.* Results for each case

have been established by 300-500 randomly generated sets of CP, measurement errors

and deviations. CP's were generated so that the distances between every pair of

them were not less than 75 km for N _ 4, 50 km for N = 5,6 and 25 km for N_- 7.

Additional restriction forbad generation of CP's on the frame borders. The 90%

DIST errors also depicted in Fig.2.

As one can see, the filter provides geodetic correction with the 90% errors
less than 40m if _. _-_20m and N _ 4. For _ = 30 m only 8 or more CP's can

I
guarantee that accuracy. Note these result_ do not include errors due to neglected
uncertainties in rates. These additional errors, accumulated during 15 sec (i.e.

with respect to the frame center) can be evaluated as 8.6 m (o ) in either direction.

Being relatively small, they do not affect significantly the total errors.

It should be pointed out, that the automatic selection only slightly reduces

the average residual errors. At the same time, it essentially moderates errors

in relatively rare cases of extremely bad distributions of CP's.

* Note, that the CT and AT errors are Gaussian and thus may be described also by

the corresponding standard deviations.
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APPENDIX

a - _ x i matrix (vector)

a-T = (al,a2,...,a_) - transposed vector

E(a) - mathematical expectation of

cov(a) = E((a - E(a))(a - E(a)) T) - covariance matrix of

Var(b) - variance of b.

_ _) symbolic differential
V = (_--_i' _2 .... _

operator defined for U = (Ul,U2,...,u _ as

_u I ... _u

VU T = 1 1

olao,e*e,oooI,Io

oooloooo,ooo°o,o

8u _u
1 ...

If A is a £ x _ matrix,

V(7 TA_)VT = 2A
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Table 1

Mean-squared errors in estimates

(N = 50, °l = i0, °2 = 12)

! m m

grad grad grad m !
i

2591 34 375 , 2059 i 299 20

Table 2

Initial uncertainties in deviations and rates (i_)

P,R,Y A_...................i.........._....................._D
i

deviations 350 grad 550m i ll0m 37m

rates .81 grad/sec .16m/sec _ .065m/sec .65m/sec
......................... J ......................._ L

Table 3

Mean-squared errors in estimates.

(N = 20, _i = 10m, _2 = 12m)

I

deviations rates

grad [ i m grad/see [ grad/see

...............3.3 _rad4.0.... --_-_'--_rad---_I!52.2 _......-3i:i ..... I ..................................................5 i " .6

i0-14



T a b l e  4 

T h e  90% m a x i m a l  CT, AT, a n d  DIST e r r o r s  ( i n  m e t e r s )  

90% 
188.0 1 8 5 . 9  5 9 . 0 .  22.0 21 .0  '124 .5  20.0, 19 .6  12 .0  1 
I 

T ' 8 4 . 3 1  84 .2  57 .9  21.2 2 1 . 1 ! 1 2 6 . 7  
-- 

1 

M 1110.0l 86 .4  60 .2  27 .3  27 .8  154.8 
dm 90% 

(DIST) 61 .2  26.5 28.9 ,156.7 
I -- -- -a-- 

- - - _ l - ~ p -  

I 
I Example 

-7 
1 

e r r o r  f 
I 1 + 

I 1 

3 ; 4  5 6  7  8  9  1 
1 

-- v 
1 138.3 - - - .  9 . 4  9 . 7  1 2 . 6 . 1 3 . 3  57 .1  , 11.0 ,  5 .5  . 1 0 . 9  i 

t I mean 
t , - -1 

T 38 .1  8 . 6  
' 

8 . 6  12 .2  12 .2  55 .6  ' 11.Q 523--LL.0 ' ------t-- - - -  -- 
. - -7 I 

! 2 6 . 0 ;  4 .6  4 . 8  6.6 6 . 7  4 0 . 3  1 6 , l  3 . 2  5 , 7  , 
4 - .  , - -  

I 

T 126.8 4 .6  4.6 6 .6  6.6 41.6 6 . 1  3 . 2  6 . 1  
(CT) I-- ---- 

1 90% 
I 
1 

-- ; I 
M : 72 .9  16 .0  1 5 . 7  21.5 22.4 113.8 , 19 .4  10.0 1 8 . 5  1 

.. - 4 - * . - .  
T 75.9 1 1 4 . 8  1 4 , 8  21.2 21.2 ,115.0 1 9 . 3  9 . 6  1 9 , 3  , 

1- 
-------+.---- - 7----- -- I 

M 145.8 ' 42.7  30.0 12 .9  12 .2  64 .5  11 .8  11 .2  7 .3  : 
I I 

i 
i T 4 2 . 1  ~ 4 2 . 0  30 .7  1 2 . 3  12 .2  61 .0  ' 10 .9  1 0 . 9  6 . 5  . 

*- I I 



Table 5

Description of Examples in Table 4.

I ......I mean-squared errors in estimatesdistribu-

tion

xampl N H P R Y .RAD

(See Figl (km) (_ra_ (_rad) (_rad) (m)

1 3 A 29.7 14 13 457 292

2 _ 3 A 29.7 14 8 457 -
I

I E

3 1 3 A i 29.7 8 8 - -

! l
_ 2

4 !. B 169.0 i0 I0 87 ............_3...........1t
5 I 2 C 1160.4 i0 i0 88 63 1

]

6 3 D 29.5 47 42 461 298

4 E }1t2.9 7 7 93 66
7 i
8 4 E 112.9 7 7 93 _ 1I

9 i 4 E _12.9 1 7 7 i - 66 i

CT

• • 4
• 4

• •
• 4 •

AT
A B C D E

Figure 1. Control Point Distributions
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Table 6

The 90% CT, AT, and DIST errors (in meters) as a function of N and o i

(°2 = 1.2 oI ).

oI = 10m °l = 20m _i = 30m _i =40m

I i ..........I......ICT AT DIST[ CT AT DIST CT i AT DIST CT AT DIST

i r ,' .....

1 19.0 51.5153.1 33.4 59.9 65.7 49,5 i 73.3! 81.6 68.1 87.4 I 104.

2 13.4 31.5133.0 24.2 47.0 49.7 I 34.9 _ 57.4 63.0 49.0 65.1! 74.4

3 10.8 20.6 22.1 I 19.8i 38.8, 40.8I, 28.4'_,47"5 52.0 38.2 i 58.5!_ 65.3

4 10.0 16.5 18.3 17.6 31.1 t 33.7i 25.0{ 45.9 49.4 33.9, "12 57.3

! I I i

5 9.5{ 14.4116.2 16.5 29.9 32.4 _ 23.41 43.4 46.4 32.51 49.8 55.1_

6 9.0 13.8 14.9 ! 14.7 26.6 28.6 20.8 i 39.6 42°5 28.3 49.2 53.3

i

f

t !8 9.0 i 12.9 14.4 13.6 23.5 25.3 18.51 35.1 37.4 24.7 43.0! 47.1

10 8.3 11.0 13.0 12. 22.5_, 24.1 17.8!._3o.6:33.31 22.1t 42
I t I
I "_1_5"_1i i15 7.8 8.8 9.9 9.9 16.3 18.1 14.2 24.4 26.51 16.9 33
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DIST

(m) N = i
80

2

70

3

4

50

40- i

3O

20

J
w _

i0 10 30 40 o 1 (m)

Figure 2.

90% errors in distance as a function of measurement errors _C_2 = 1.2_I).
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"ONBOARDUTILIZATIONOFGROUNDCONTROLPOINTSFORIMAGECORRECTION"

J. Lowrie (Martin Marietta Corporation)

ABSTRACT

Future remote sensing missions require real-time knowledge of the sensor

boresight in earth fixed coordinates for calculation of image distortion co-

efficients and control of a pointing mount for acquisition of off-nadir data.

An analysis of inertial navigation systems reveals an inability of these

systems to adequately solve for the sensor boresight position due to dynamic

misalignments between the sensor coordinate frame and the gyro coordinate frame.

A conceptual navigation system consisting of a GPS receiver, two NASAstandard

star trackers, a NASAstandard gyro package, and a landmark tracker is presented.

The landmark tracking algorithms have been developed and analyzed, and results

show that the position of the landmark can be determined to within two tenths

of the sensor resolution. The navigation system has been simulated, and a

thorough error analysis has been performed. Results indicate that this combin-

ation of sensors can continuously solve for sensor boresight position in earth

fixed coordinates to within 15 meters.
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"Effective Covariance Deweighting for Precision Estimation"

by C. E. Velez, V. L. Tate,

Computer Technology Associates

Abstract

The Air Force's Sunnyvale Satellite Test Center has had a

continuing need for near real-time high precision orbit estimates

derived from S-Band tracking in the presence of severe atmospheric

and geopotential modeling errors. Techniques based on sequential

estimation using dynamically derived time-correlated process

noise models have been developed and successfully shown to improve

state and state covariance predictability for these cases. This

paper will present the overall approach to sequential estimation

currently planned for the upcoming data system upgrade to the

current Sunnyvale system. In addition, test-bed results

utilizing actual data taken for a medium altitude (e.g. 300 nmi)

orbiter will be shown indicating the nature and magnitude of the

improved performance resulting from the proposed estimator.
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Spin-AxisAttitudeEstimationand Magnetometer

Bias Determination for the AMPTEMission

R.H. Thompsont

Naval Electronic Systems Command
Washington, D.C. 20360

G.F.Neal§

ComputerSciencesCorporation
Silver Spring,Maryland20910

M.D. Shuster

Businessand TechnologicalSystems,Inc.
Seabrook,Maryland 20706

Abstract

Algorithmsare developedfor the determinationof magnetometer

biases and spin-axisattitudefor the AMPTE mission. Numericalexamples

of the performanceof the algorithmare given.

Presentedat the FlightMechanics/EstimationTheory Symposium,NASA
Goddard Space FlightCenter,Greenbelt,Maryland,October27-28, 1981.

t
Physicist,ElectronicSpecialWarfareand Space Division

§ TechnicalStaff, System SciencesDivision

Staff Scientist,Researchand DevelopmentDivision
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I - Introduction

This paper describes methods for determining spin-axis attitude

(i.e., the direction in space of the spacecraft spin axis) and

magnetometer biases which are being investigated for ground support of

the Active Magnetospheric Particle Tracer Explorer (AMPTE)mission.

The AMPTEmission will consist of two s.oacecraft. I The first is the

lon Release Module (IRM), provided by the Federal Republic of Germany,

which will be placed in a highly elliptical orbit with apogee at

approximately 19 Earth radii in order to release lithium tracer ions

outside the magnetosphere. This spacecraft will be spin stabilized at a

rate of 30 rpm. The second spacecraft is the Charge Composition Explorer

(CCE), which will detect the tracer ions inside the magnetosphere at
altitudes of from 300 km to 7.5 Earth radii. The CCEwil] be spin

stabilized at 10 rpm.

Estimation of spin-axis attitude for both AMPTEspacecraft will be

based on the measurements of the geomagnetic field and the projection of

the Sun line on the spacecraft spin-axis, which we take nominally to be

the symmetry axis_A of the spacecraft bus.

For the purpose of this study, the attitude sensors are assumed to

consist of a three-axis magnetometer and a Sun sensor which measures the

angle between the Sun line and _A" For simplicity it is assumed

likewise that one axis of the magnetometer is along _A" The other

two axes of the magnetometer define _A and _A"

The measured quantities are taken to be

M = magnetic field vector in body coordinates

cos B : _'_A' where _is the unit vector directed from
the spacecraft to the Sun (B is the "Sun angle").
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Attitude determination activities fall into two areas:

• Determination of spin-axis attitude

• Determination of the magnetometer biases

Because the orbit-apogee distance for these two spacecraft is so

great, accurate geomagnetic field data for attitude estimation is

available only for the segment of the orbit near perigee. This is due to

the poor accuracy of the magnetic-field model at such high altitudes

resulting from both the small magnitude of the geomagnetic field as well

as from fluctuations in the field caused by extraterrestrial phenomena.

However, because of the large spacecraft angular momenta, it can be

assumed for both spacecraft that the spin-axis attitude at apogee will

not differ markedly from that at perigee of the same orbit.

Algorithms for spin-axis attitude and magnetometer bias

determination are now being investigated. These are:

• attitude-independent estimation of three-axis

magnetometer biases and

• estimation of spin-axis attitude from measurements

of the Sun and geomagnetic field angle.

Each of these algorithms are batch estimators utilizing a long segment of

magnetometer and Sun data. The algorithms are developed in succeeding

sections and then tested using simulated AMPTEdata.

II - Magnetometer Bias Determination

The attitude of the spacecraft is usually not known before the

magnetometer biases must be determined• Here an algorithm is developed

which determines the magnetometer bias vector by minimizing a loss

function which is independent of the attitude•
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The quantities used throughout this section are defined as follows:

Hj(i) = jth component of the model magnetic field in the
geocentric inertial (GCI) system at time i

Mj(i) = jth magnetometer reading at time i

B. = jth component of the magnetometer bias vector, which
J

is taken to be independent of the spacecraft

position

For the ith point, an error 6(i) is defined by the following equation:

a(i) = IH(i)2 IM(i) -B( 2 (I)

The objective of this equation is to minimize the quantity a(i) by

adjusting the bias vector B to its optimal value. Thus, the loss

function to be minimized is given by

N

: Z 2 (2)L(B) i:I

where m(i) is the weight associated with the ith data point. The weights

are assumed to be normalized to unity, that is,

N
Z re(i)= I (3)
i=1

Determining the minimum value of L(B) first requires that its

derivatives with respect to the components of the bias vector be set

equal to zero:

_L
: 0 m=1,2,3 (4)

m
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where

T_m : -4 Z re(i) H(i)12 _ JB- M(i)J (Bm - Mm(i)) (5)i=I

Combining Eqs. (3-5) leads to the following results:

3

Z GmkBk = b + Fm(B) {6a)
k=1 m

or in matrix form,

G B = b + F(B) (6b)

where

Gmk = 6mk(<IHl2>- <IM21>) - 2 <MmMk> (7a)

bm = <(IHI 2 - IMI2)Mm> (7b)

Fm(B) = IB 2 <Bm _ Mm> _ 2 B'<M>Bm (7c)

The bracket denotes the weighted average

N
<A> = Z m(i)A(i) (8)

i=1

_mk is the Kronecker delta defined as unity when m=k and zero
otherwise.

Eq. (6) can be solved directly to obtain the best value for the bias

vector B.

13-5



General Description of the Iterative Solution

Eq. (6) is nonlinear in B and must be solved iteratively. The

zero-th order (trial) solution to Eq. (6), is obtained by dropping the

nonlinear terms in comparison to the linear terms. This approximation is

valid only when the bias is small in comparison with the actual magnetic

field. This point is not critical, as the iteration scheme constructs an

accurate solution even when the trial solution is not close to the true

solution. This will be discussed in more detail in the treatment of the

numerical example.

The trial solution is given by

B(0) = G'ib (9)

where G-1 = inverse of the matrix G

B(0) = trial solution

This solution may be iterated as

_(J) = _BB(0) + G-IF(B (J-l)) j > 1 (10)

The iteration continues until

< _ (11)

• B_j )

where _ = some arbitrarily small value depending on the accuracy

desired.
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Numerical Examples

The AMPTEengineering data simulator 2 was used to generate biased

magnetometer data for the purpose of investigating the convergence

properties of the iterative solution. Two cases were considered:

B/H <<I

and

B/H >> I

The first case considered was B/H <<1; in this case, 200 data points

were used in the calculation. Data at the perigee point, at which the

magnetic field attains its maximumvalue, was included. The magnetic

field can be resolved into a component along the AMPTEspin axis, HII, and

a component perpendicular to the spin axis, HE. The maximumor perigee

components are U^HI_X= 240 milligauss (mG) andvalues for these
hMAX
II = 90 mG. The input biases were chosen to be 5 mG, 10 mG, and 15 mG

along the x, y, and z axes, respectively. The results of the bias

determination calculation are shown in Table I taken from Reference 3.

Rapid convergence and very high accuracy is obtained. The trial solution

B(0) (iteration O) initially was not accurate in the y component and

needed to be iterated to obtain satisfactory results. Investigation of

the case in which B >>H used a subset of the data used in the first

test. Here, I00 data points well outside the perigee region were used.

For this test, X = 5 mG and H AX : 2 mG. As before,the input biases

are 5 raG,10 mG, and 15 mG. These results3 are presentedin Table 2. In

this case, convergenceis very slow and incomplete. Improvedconvergence

cannot necessarilybe obtainedby using standardNewton-Raphson

techniques.
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ITERATION LOSS (raG) B (rnG} B (raG)
NUMBER FUNCTION Bx y z

0 54621.0 5.00288 12.0278 15.0213

1 5153.0 4.98344 9.38109 14.9473

2 370,0 5;00481 10.1647 15.0152

3 29.0 4.99870 9.95352 14.9959

4 2.0 5°00037 10.0128 15.0012

5 0.2 4.99990 9.99635 14.9997

6 0.01 5.00003 10.0009 15.0001

Table I

Bias Determination Calculation for B/H _ 1

ITERATION LOSS B (raG) By (raG) B (raG)NUMBER FUNCTION x z

0 24100.0 1.8 2.8 5.3

10 1460.0 3.7 5.5 11.0

20 501.0 4.1 6.1 12.4

30 240.0 4.4 6.3 13.1

40 133.0 4.5 6.5 13.6

50 81.0 4.6 6.6 13.9

Table 2

Bias Determination Calculation for B/H _ I
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III - Spin-Axis Attitude Determination

Once the magnetometer biases have been chosen properly, data from

the Sun sensor and the magnetometers may be used to determine the

spin-axis attitude. It is assumed that the spin axis is not varying over

the data interval examined.

The spin axis is denoted by _. The data are

B(i) = measured Sun angle at time i i=l,...,N s

M(i) = measured magnetic field at time i, i=1,...,N M

!(i) = (true) Sun vector in GCl at time i, i=l,...,N S
measured from the spacecraft to the sun

_(i) = (true) geomagnetic field at time i, i=1,...,N M

Note that there will be no requirement of simultaneous Sun-sensor and

magnetometer data.

The spin-axis (attitude) vector, _, is subject to the following
constraint:

a'a = I (12)

The spin-axis vector is chosen to minimize the following loss

function:

N
S

1 ^^L(a) = Z ms(i) _'S(i)-cos B(i)2 (13)i:i

NM

+ ½ Z raM(i) _'_(i) -cos n(i) 2 .-½ X a'_
i=I
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where

= Lagrange multiplier chosen to satisfy the constraint

equation

ms(i ) = weight assigned to the jth magnetic field
measurement

raM(j) = weight assigned to the jth magnetic field
measurement

The, quantity n is the angle between the geomagnetic field and the

spacecraft spin axis given by

n : cos-l(My/ MI ) (14)

The weights are normalized to unity

NS NM

i_l= ms(i) + i=l_ raM(i) = 1 (15)

The spin-axis vector a is chosen to minimize the loss function

_L(_)
a-T: 0 (16)m

The derivative of the loss function is given by

NS
aL ^ ^
T : Z ms(i) (a'S(i) -cos B(i)) Sm(i )m i=l

(17)

NM

+ _. mM(i) (a'_(i) -cos n(i)) Mm(i) -ha .i=l - m
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The solution to Eq. (16) may now be written as:

3

Z (Amk - E6mk)ak : b (18)k:l m

where

Amk = <SmSk>S + <MmMk>M (19a)

bm = <cos B Sm>S + <cos n Mm>M (19b)

and the brackets denote weighted averages over the magnetometer and Sun

data. That is,

Ns

<Cj>s - i!I mS(i) Cj(i) (20)

Eq. (18) may be written in matrix notation as

(A - LI) a = b (21)

where I is the unit matrix.

Attitude Solution

A general solution to Eqs. (18) and (19) is constructed in this

section. The solution to these equations leads to the spin axis attitude

in the Geocentric Inertial (GCl) coordinate system. Again an iterative

procedure is developed to construct a numerical solution to the

equations. An approximate solution to the problem is to take L = O,

i.e., to relax the constraint that a be normalized to unity. Given this
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approximation, Eq. (18) may be solved to obtain

a (0) = A-I b (22)

Note that this vector is not normalized. In practice this solution will

be very close to having unit norm since even with _, = O, a_ is overdeter-

mined in general by Eq. (18). Thus, normalizing a (0) will lead to a

very good approximation for a (see Ref. 4). An exact numerical solution

is generated by solving for _ iteratively starting with a trial solution

>, : 0 and a _0)"' given by Eq. (22).

Define the function f(_,) by

f(X) :a(_)-a(_) - I (23)

Given the numerical value of a(X), the Newton-Raphson method is used to

determine },. Differentiating Eq. (23) gives

@f @_ (24a)2a •

and

@_- (A _,I)-1 a (24b)

The Newton-Raphson scheme gives

_(j) : _(j-l) f{_.j-1,)._ ). (25a)

_._(_(j-l))

_(J) = (A - _,(J)I)"lb (25b)
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Numerical Example

The spacecraftorbit in this exampleis of the AMPTE type, and the

Sun and magnetometerdata used covered the perigeepoint. The data is

perfect (uncorruptedby random error) as generatedby the AMPTE

simulator. The "true" value of the right ascension,m, and declination,

6, were chosen to be

= 159.67 deg (26a)

= 0.0 deg (26b)

The zero-orderresultas given by Eq. (22) was

= 159.55 deg (27a)

a = 0.073 deg (27b)

in very good agreement. After ten iterations, the values changed only

slightly, as expected, namely

= 159.76deg (28a)

6 : 0.062 deg (28b)

IV - Conclusions

Efficientand reliablealgorithmshave been developedfor spin-axis

attitude and magnetometerbias determinationfor the AMPTE spacecraft.

Using simulatednumericaldata it was demonstratedthat the methods work

well for AMPTE mission parameters. The presentwork does not address

problemsassociatedwith noise,data rate, sensormisalignmentsand etc.

These problemswere investigatedin references(3) and (5).
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A MATHEMATICAL MODEL OF LANDSAT-D ATTITUDE DYNAMICS

WITH INTERNAL MOTION

S. D. Oh, G. W. Abshirep and J. M. Buckley

Computer Sciences Corporation, Silver Springr MD

ABSTRACT

An algorithm to model the effects of internal motion by the

solar array and the high-gain antenna on the attitude of the

Landsat-D spacecraft is presented here. The relative torque

and angular momenta arising from the internal motions are

assumed to be attitude-independent but are considered to be

a source of attitude perturbations. The equation of motion

for the three-body problem is derived and then compared with

the one-body case. The effect of the internal motion on the

control of the spacecraft is shown in a computer study of

the problem.

i. INTRODUCTION

The paper presents algorithms for modeling the effects of

internally moving parts on the attitude of the Landsat-D

(LSD) spacecraft. The internal motions considered here in-

clude the rotations of the solar array to follow the Sun and

the gimballed high-gain antenna to communicate with the

Tracking and Data Relay Satellite (TDRS) (Reference i) o The

LSD system is treated as a rigid three-body system for de-

scribing the equation of motion. Modeling the disturbance

torques produced by moving appendages is very important for

missions such as Landsat-D, which require accurate knowledge

of the attitude and precise control of the spacecraft.

The relative torques and angular momenta arising from the

internal motions are considered as attitude-independent

variables and as a source of attitude perturbations° The

14-1



external disturbance torques and the angular momenta caused

by the internal motions are generated in a profile program

(called PROFILE) on an IBM S/360-95 computer, where null

attltudes are assumed and are transmitted to a truth model

on a DEC PDP-II!70 computer that simulates the effects on

the attitude.

In this discussion, nonstandard rotations such as a 45-de-

gree slew of the solar array to avoid interference with the

antenna and the switching motion of the antenna from one

TDRS to another are neglected. In addition to the rota-

tional motions of the solar array and the antenna, the LSD

spacecraft contains moving parts such as the thematic mapper

and multispectral scanner (Reference 2). However, these

motions are disregarded here because the motions are oscil-

latory wlth a high frequency (=7 Hertz) and because they

generate zero average angular momenta.

Section 2 discusses the mathematical derivations of the

equation of motion and pertinent terms such as the moment of

inertia (MOI) tensor and the center of mass (CM) . When pos-

sible, these terms are compared with the form for the one-

body system used by the Multimission Modular Spacecraft

(MMS)/Solar Maximum Mission (SMM) spacecraft. Section 3

provides simulation results to compare the three-body and

one-body cases. Conclusions resulting from the study are

presented in Section 4.

2. ANALYTICAL CONSIDERATIONS

This section presents the mathematical modeling to describe

the dynamic effects of the moving parts on the motion of the

spacecraft. The equation of motion for the LSD mission is

referenced at the CM of the entire system but is represented

in a coordinate system that is fixed in the main vehicle.

The CM of the entire system is calculated as a function of

time. The MOI tensors for the moving parts are reevaluated
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with respect to a set of tlme-independent axes parallel to a

set in the main vehicle. Also calculated are the angular

velocity of the appendages and the perturbation in the ex-

ternal torques due to the changing positions of the append-

ages. A comparison with the one-body problem is made.

2.1 COORDINATE SYSTEMS AND TRANSFORMATIONS MATRICES

The system under consideration, shown in Figure i, consists

of the main carrier vehicle, designated as body Bo, and

n(=2) moving bodies Bj (j=l, n). Several coordinate sys-

tems are convenlent for discussing the relative motions.

These are as follows:

• Geocentric Inertial Coordinate System (GCI) (Refer-

ence 3)

• Orbit-Defined Coordinate System (OCS) where X

(roll.) is nearly along the spacecraft velocity vec-

tor, Y (pitch) is along the orbit normal vector,

and Z (yaw) is along the nadir vector

• Spacecraft-Fixed Coordinate System (BCS), which is

fixed in the main vehicle B
o

• Coordinate systems fixed in moving parts such as in

the solar array (SACS) or in the high-gain antenna

(ANTCS)

14-3

................................. [



A

Z
CM OF

J

POINT OF B.
J

Qj Bi

X.
J

CM THE SYSTEM ,_,
._,y

QO CM 30

,'4

80
/k
x

NOTE: __j = the CM of Bj
rCM = the CM of the entire system

_j = the CM of Bj from r--CM

Xj = the hinge point of Bj
9. = the angular velocity of B, in inertial spaceJ J
--". = the angular velocity of B. relative to the main

_3 body B0 (_j = _% + _j) 3

Figure 1, Partitioning of the Satellite Into Main Body
and Moving Parts

14-4



The transformation matrices (TRMA) to be used in this paper

are defined as follows:

i. TRMA from GCI to OCS : [O]

um

(RI X V̂I) x RI

[O1 = (2-1)

l_I x VII

I
m

h A

where RI and V I denote the spacecraft position relative to
the Earth and velocity unit vectors in the GCI frame, re-

spectively.

2. Attitude direction cosine matrix from the OCS to

the BCS : [A]. In the PROFILE Program [A] is given by the

identity matrix because null attitudes are assumed. In the

truth model, it is represented as

[A] = 1 (2-2)

-r

using the small angle approximation, which is sufficient and

valid, since only small perturbations are assumed; r, p, and

y denote roll, pitch, and yaw angles in radian units, re-

spectively.
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3. TRMA from BCS to SACS : [c_SA)]. The solar array
A

rotates around the y-axls and is driven to follow the Sun.

Thus, its orientation is determined from the Sunline angle

[C(SA)] = [e]y 1 0 (2 3)
ISin e 0 cos

^ T

Given the Sun unit vector, S = (Sx, S 7, Sz) , in the BCS,

the rotation angle e is given by

e = tan-I (S_z) (2-4)

A

because the Sun vector is perpendicular to the x-axls of the

SACS.

4. TRMA from BCS to ANTCS : [c(ANT)]. The antenna

has two gimbals with the inner gimbal angle, g2' repre-

senting the elevation angle and the outer gimbal angle,

gl' representing the azimuth angle. The orientation of

the antenna is determined from the gimbal angles

[c(ANT)] = [g2]y z

cos gl cos g2 sin gl cos g2 -sin g2| (2-5)

= i_ -sin gl cos gl 0 J
[COS gl sin g2 sin gl sin g2 cos g2

The unit vector pointing from the spacecraft to TDRS is re-

presented by P where P = (Px' Py' Pz )T in the BCS.
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The gimbal angles are thus given by

-i
gl = tan (Py/Px) (2-6a

and

-i
g2 = -sin Pz (2-6b)

A

should align the antenna boresight (the x-axisslnce gl' g2
in ANTCS) with the normalized pointing vector 9. (P can be

obtained from the spacecraft and TDRS ephemerides.)

2.2 ANGULAR VELOCITY OF MOVING PARTS

The angular velocity of the moving parts is used to calcu-

late the internal angular momentum of the spacecraft for use

in the equation of motion. It is easily seen from Equa-

tion (2-3) that the angular velocity of the solar array is

as follows:

-_, de A
_SA = d-_ y (2-7a)

The time derivative of the rotation angle e can be com-

puted numerically

d__ = e(t) e(t At) (2-7b)dt At
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Using Equation (2-5) the angular velocity of the high-gain

antenna is

sin g i dg2 _

dg dt

--, _ 1 ^ dg2 Ig I _ = cos gI dg2 (2-8a)• WANT d t z + dT 1 z
dt

dg 1
dt

where

dgi gi(t) - gi(t - At)
dt - At (2-8b)

For SMM, the angular velocity of the moving parts was not

calculated.

2.3 CENTER OF MASS

For LSD, the CM of appendage Bj in the BCS is given by

Qj (t) = (J)(t) ( - -_ ) + x% 2-9)

where Qj0 represents the CM of Bj at the initial time (see

Figure i). The rotation (or hinge) point is denoted by X-_

and _j0 - _j represents the CM of Bj from the hinge point J

at the initial time. Then, at any later time, the CM will

be represented by the first term of the right-hand side of

Equation (2-9). The CM of each appendage changes as a

function of time because the high-gain antenna rotates to

track the TDRS, and the solar array rotates to track the
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Sun. Consequently, the CM of the system, r_',M'changes in
time and is represented by

n /nrcM(t) = M r Qr(t) M r (2-10a) .

r=0 r=0

and the position of the CM of each appendage with respect to

the CM of the system is

_j (t) = _j (t) - _CM(t) (2-10b)

For SMM, the CM of the system was fixed in time in the BCS.

2.4 MOMENT OF INERTIA TENSOR OF THE SYSTEM

The MOI of the system, [IT], relative to axes parallel to

the BCS axes passing through rCM is expressed by

, n

liT(t) Jim _ I [q3(t) + _r ]2
= (Slm

r=O (2-11)

- [_r (t) + Pr]l [_r (t) 4- Pr]m I

where P-_ris the position vector of the mass dm r of body

B r relative to the CM of B r and the subscripts 1 and m

represent the 1 and m components of the vector or tensor.

Note that because q-_ris time-dependent, [IT]im is also de-

pendent on time; in the remainder of this paper, the ex-

plicit time-dependence will be dropped.
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The above equation can be written as

n

ITlmZ IMrIq2° l I rl12 2r Im (qr) 1 (qr)m im

r=0

since

_r = 0

[I (r)]_ is the MOI tensor of B represented in the BCS frame
r

but relative to the CM of B :
r

[_(r)] = [c(r)]T [i(r)] [c(r)] (2-13)

where [I (r)] is the MOI of B represented in the coordinater

system fixed in Br. EquatiOn 42-12) can be simply reexpressed

by

n

[IT] = _ [j(r)] (2-14)
r=0

with

[J(r)1 im = IY(r)lim + Mr q_61m - (qr)1 (qr)m _ (2-15)

For the one-body problem, as represented by SMM, I is de-

fined to be a constant in time.

2.5 EXTERNAL TORQUES

Two external torques are discussed: the gravity gradient

torque and the aerodynamic torque. The solar radiation
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torque is similar to the aerodynamic torque, and the other

external torques are not sensitive to the three-body problem.

The gravlty gradient torque, NGG , can be computed by

_G r_0 ..... 3 dmr (2-16)

where u is the Earth gravitational constant (=3.986005 x

1014 m3/sec2). _ is the spacecraft position vector from the

%Earth. Considering that IRl>> i + l, G is slmply,

n

/R3 _ dmr(_'r + _r)x R[R " (_r + _r )]
r=0

n

= 3__/ Mr qr x R(qr " _) + _ x [y(r)] R1R3
r=0 (2-17)

n

= 3__E^ (r) ^R3 R x [J ] R
r=0

= 3--__ x [IT]R3

The expression for the one-body system has the-same form

except for the replacement of [IT] by the constant [I] .

To simplify the calculation of the solar radiation and aero-

dynamic torques, the LSD spacecraft is modeled as an as-

sembly of a cylinder for the main vehicle, flat plates for

the solar array panels, and a sphere for the antenna. Only

the aerodynamic torque is discussed here because the modi-

fications to the center of pressure (CP) are common in solar

radiation and aerodynamic torques.
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The aerodynamic torque, NAero, is

8

1 2 • x dAi 2-181Naero = -_ CD p v __ _i cp,i
Ji=l

AA

Here, u denotes the spacecraft velocity unit vector, n i

denotes the normal unit vector for the ith surface, qcp,1

denotes the CP of the ith surface from r-_CM, p denotes

the atmospheric density, and C D denotes the drag coeffi-
A

cient. The normal vectors, ni, for the solar array and

antenna surfaces are dependent on time by

^ni= Ic(i)IT _io 2-19)

^ represents the initial normal vector for the ithwhere nio

surface• qcp,i for the solar array and antenna are com-
puted by

qcp,i = Qcp,i - rCM (2-20)

with

-Qcp, = (i) T ( io -Xi) + X. (2-21i , 1

More consideration is required to specify [C (i)] for the

solar array surfaces that are canted• The transformation

matrix from BCS to these surfaces, [c(i)] , is given by

[C(i)] = [C(SA)] [8c]x (2-22

with the canted angle 8
C
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For the one-body case of SMM, n i and _c p are constants,i

2.6 EQUATION OF MOTION

The equation of motion for the LSD spacecraft is written in

the form

dy ¸ ____
m = f (Y(t) , t) (2-23)dt

Twhere Y = (qu' ' ; (_ = i, 2, 3, 4) denotes the

Euler symmetric parameters representing a rotation from the

GCI to the spacecraft-fixed coordinate frame, __T is the

total angular momentum of the spacecraft, and LW is the
wheel momentum.

The body angular momentum of the main vehicle, L-_B, is

given by the total spacecraft angular momentum minus the sum

of the wheel momentum, payload momentum, -_R, and the angu-

lar momentum, _INT' caused by the internal motions

LB depends on the angular velocity of the main vehicle,

_-_0'and _INT depends on the angular velocity of moving

parts, _. To formulate these mathematically, the

angular momentum of the total system, L-_T, ignoring wheel

and payload momenta, is considered

n

= ( + ) x (qr x pr ) dm r
r=0 (2-25)

n

¸= Mr qr × qr + [y(r)] (_o + _r
r=0
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' can be shown asWith some computatlon, LT

n

r=0

where

[K(r)]im = Mr ll_r " (-t'CM- XL) _im - (-TCM- XL) qm 'I

Thus, the body rate of the main carrier is simply

e-"° = [IT] LB (2-27)

and L-_INT caused by the internal motion, is

n

ZllI  r l+ I= I (2-28)
r=l

The time derivatives of the Euler symmetrlc parameter,

q_, can be obtained as

dq_ 1
dt = _ [_(%)]_9 q9 (2-29)

with

0 e3 -e 2 eli

-e 3 0 eI e2

[_(_-_]= e2 -eI 0 e3 (2-30)

-eI -e2 -e3 e4
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The time derivative of the total angular momentum of the

spacecraft is given by the Euler equation as

d--_ = _ext + L-_Tx _-_o (2-31)

For SMM, the body angular momenta, L-_B, is given by

-_B = -_T - -_W -_R (2-32 )

wlth the payload momentum LR. The spacecraft body rate,

"_, is determined by

_= _2 = [I]-I L-_B (2-33)

_3

-i
where [I] is the inverse of the spacecraft MOI tensor.

The time derivatives of the Euler symmetric parameters,

q_, can be obtained as

dq]! 1 [_(-_] q9 (2-34)dt = _ _)

The time derivatives of the total angular momentum of the

spacecraft are given by the Euler equatlon as

--%xt. x 12-3S)

with the external torque, %xt"
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3. SIMULATION RESULTS

A computer study of the effect of the three-body problem on

the motion of the spacecraft has been made using the general

equations derived here. Since the spacecraft is subject to

noticeable external torques, a control law that provides

compensatory torques was necessary to keep the spacecraft

near null attitude. The one-body case, using the same con-

trol law, was also studied.

The roll, pitch, and yaw of the spacecraft main carrier for

both cases is shown in Figures 2 through 4. The results of

the three-body case are represented by the "X" points and

the results of the one-body case are shown as open circles.

Note that both cases are subject to the same control law.

This control law attempts to make the pitch, roll, and yaw

zero and to bring the spacecraft rate to null. This control

law is the same one (Reference 4) that Landsat-D will use

during its acquisitionphases. The torque applied to each

reaction wheel is as follows:

for the roll axis,

T = K (k Ar + _ ) (3-1a)r r r r

for the pitch axis,

Tp = Kp [kp(Ap + B) + Up] (3-1b)

and for the yaw axis,

- k k _r ] (3-ic)Ty = Ky [_y Y

where &r and _p are the roll and pitch attitude errors as

determined by an Earth sensor; Kr, Kp, Ky, k r, kp, ky, and k
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are constants; B is a bias to compensate for the or'bital ro-

tation; and wr, Wp, and Wy are the angular velocity along
the roll, pitch, and yaw data. Because of the values used for

k k and k , the control law is much more sensitive to
r' p' y

the spacecraft rate than to the attitude error.

Most of the structure seen in the plots is a result of the

control law. However, since the control law is the same,

the differences in the plots are a result of the three-body

problem. Note in Figure 2 that after 4.5 minutes the con-

trol law has the roll rate to zero for the one-body problem

but not the three-body problem. Likewise, after 2.5 min-

utes, the pitch rate of the one-body problem is under con-

trol.

4. CONCLUSIONS

The conversion of the rigid one-body problem to the three-

body problem has added another dimension to the study of

dynamics. Although the exact perturbations in motion are

obscured by the control law used, the effects are still im-

portant in control of the spacecraft.

The algorithms used in this paper can be applied to other

spacecraft such as the Space Telescope to study important

low-frequency effects, as in this paper, and also higher

frequency effects that will cause jitter.
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SPACECRAFT ATTITUDE POINTING PERFORMANCE DURING ORBIT
ADJUST AS A FUNCTION OF COMPENSATOR ORDER

For many communication satellite missions, it is required that the

control system performance during velocity adjust mode does not degrade

appreciably from the nominal pointing requirement. During velocity adjust,

many factors contribute to the development of •disturbance torques that exceed

the capacity of the reaction wheels. This necessitates the use of thrusters

to provide the control torques. The spacecraft•weight constraints force the

use of off-pulsing techniques. While off-pulsing the orbit adjust thrusters

may eliminate propellant penalties, it also introduces additional disturbances•

The thruster plume impingement torqueS increase dramatically when the'bal-

ancing effect of both thrusters firing is lost.

In order to meet the attitude pointing error requirements under a set of

constraints outlined above, a steady state compensator of specified order is

proposed to estimate the required duty cycle needed to balance the disturbance

torque. The compensator order has been increased gradually to demonstrate the

improvement in pointing accuracy. The basic mathematical model of the flexi-

ble spacecraft and sensor used to characterize the performance of the compen-

sator can be described as follows:

(@_ + @_)H - 2_ 2 _(t) - _2@ 2 _(t) (i)

H(t) = Td - T (2)C

01(t)= - ! 01(t) + ! 0(t) (3)

TI TI

02 (t)= - _202(t) + _ 01(t) (4)
T2

= (5)

_(t) = -2_(t) - m2,(t) + @2H(t) (6)

Td = 0 (7)

y(t) = O2(t ) + _(t) (8)
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where,

T1' T2 = sensor time constant

Td = disturbancetorque

T = controltorquec

8 = spacecraftattitude

81 = sensor output after first break

82 = sensor output after second break

H = the spacecraftmomentum

@i = spacecraftrigid body admittance= (Inertia)-I/2

_2 = structuraladmittance at first symmetric (pitch)or

asymmetric (roll/yaw)frequency

= structural damping

= structural frequency

= modal deflection

= integral of modal deflection

y = noise corruptedsensor measurement

= measurementnoise

G = sensor gain

The continuous model of the estimatorhas been represented as

= F_ + b Y (9)

T
u = -g (i0)

where matrices F, h define the compensatorstructureand g is the feedback

gain. The vectors_ and _ define the compensatorstate and the control

respectively.

]5-3

T_



The problem presented in this paper involves estimating the distur-

bance torque Td using a compensator of specified order as represented in

equatiorm(9) - (i0). As a baseline, the compensator is assumed to be a

third order to estimate the rigid body position, the momentum and the dis-

turbance torque. The compensator order is gradually increased to estimate

the sensor states and the flexible modes. Having specified the dimension

of the compensator, the matrices F, h and g have been chosen to minimize

the performance criterion involving quadratic function

2 Qzx Qz J + 2

The performance criterion for this problem has been chosen as

J = Lim E (L)

where E (o) denotes expection.

The attitude pointing performance has been documented as a function of

the dimension of the compensator. The analysis thus provides a trade-off

between increased pointing accuracy and increased complexity in on-board

software.
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Abstract

Computationally efficient algorithms are presented for determining

single-axis attitude from the measurement of arc lengths and dihedral

angles. The dependence of these algorithms on the solution of trigono-

metric equationshas been much reduced. Both single-timeand batch

estimatorsare presentedalong with the covarianceanalysisof each

algorithm.
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I. Introduction

Since nearly every spacecraftis spinningduring part of its

life--inparticular,at the time of orbit injection--spin-axisattitude*

estimationis an importantsegmentof almost every mission support

operation. Indeed,for spin-stabilizedspacecraftthere is often no need

(or desire)to determinethe completethree-axisattitudeat every

point and, in fact, when accuracyrequirementsfor the spin-axisattitude

dictatethat many measurementstaken at differenttimes be processed

simultaneously,the computationof a three-axisattitudemay not even be

possible.

Very often,three-axisattitudeinformationis definitivedata

requiredchieflyby mission scientistsand generallyprocessedanytime

from severaldays to severalmonths after the receiptof telemetry. The

need for efficientthree-axisattitudeestimationalgorithmsin those

cases is determinedby the definitivedata rate. When three-axis

attitudeinformationis requiredin real-timefor the purposeof attitude

control,this is usually providedon-boardby three-axisgyros (e.g. SMM)

or on the ground by the spin axis and a third angle,which can be

obtainedby monitoringsome other sensor readingsuch as IR scannerpitch

(e.g. AEM, Magsat).

Spin-axisattitudesby contrast are usuallyrequirednot only as

definitivedata but also by the ground supportsystem in near real-time

for the purposeof monitoringspacecraftperformanceand determining

large scale attitudemaneuvers. Thus, the efficiencyof a spin-axis

attitudeestimationalgorithmbecomesa factor in the safety and daily

operationof the spacecraft.

Since the single-axisattitudeof interestis invariablythe spin-axis

attitudethese terms will be used almost interchangeablythroughoutthis
work.

16-2



While a number of highly-efficientalgorithmsexist for three-axis

attitudeestimation,I the computationof spin-axisattitude2 is by

comparisonvery clumsy. This is largelybecausethe computationof

three-axisattitude uses complete vectormeasurementsin generaland can

take advantageof the linear propertiesof Euclideanthree-space. The

computationof spin-axisattitude,on the other hand, must rely on

incompletevector information(themeasurementof arc lengthsand

dihedralangles)to determinea quantity (the spin-axis)which is

restrictedto the surfaceof a sphere. Thus,while three-axisattitude

computationsneed only executesimplematrix operations,the computation

of spin-axisattitude is beset with the burden of solvingcomplex

relationsfrom sphericaltrigonometry.

Since spin-axisattitudeis usuallynot computed frequently,the

need for efficientalgorithmsis not immediate,at least not for ground

support systems. The determinationof the spin-axisattitudefrom batch

measurementsof arc lengthsand dihedralangles has become highly

standardizedand reliable3 and there is no obviousneed to replacethis

softwarein normal ground supportoperations.

The need for more efficientalgorithmslies in two areas: I) the

eventual implementationof spin-axisattitudecomputationin onboard

microprocessor-basedattitudedeterminationsystems;and 2) the computa-

tion of spin-axisattitudeaccuracies,which imposesa far greater

computationalburden than computingjust the attitudedue to the greater

number of terms and becausethe computationof the attitudecovariance

involvesimplicitlythe computationof derivativesof the attitude.

The large computationalburden imposedby the need to solve

sphericaltrigonometricequationsin the computationof spin-axis

attitudecovariancesis evident in the work of Wertz and Chen,2'_'6

the most completeand carefulwork to date. The difficultieswhich are

encounteredin this approachare of two kinds: I) the complexityof the

trigonometricrelations,themselves,and 2) the fact that for certain
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cases the representationof the quantitiesbeing calculatedbecomes

indeterminantwhile the quantitiesthemselvesare well defined. This

last difficultyis simply a manifestationof the fact that the

representationof rotationsby Euler angles is sometimesambiguousand is

overcomein the same way, namely,by changing the representation.

The need for computingspin-axisattitudecovariancematrices is

two-fold. Firstly,it is necessaryto be able to assess the accuracyof

a spin-axisattitudecomputationduring the spacecraftmission.

Secondly,it is importantto be able to predictspin-axisattitude

accuraciesfor mission planning,particularlyin the determinationof

launch windows. For an exampleof launch windowcomputationsusing the

geometricalapproach see Chen.?

The purposeof the presentwork is to developalgorithmsfor

computingspin-axisattitudeand the associatedcovariancematrix without

relyingas heavilyas do currentmethodson the solutionof trigonometric

equations. A completely vectorialapproach is, of course, not possible

owing to the nature of the measurementsthemselves. However, in large

degree many of the trigonometricequationscan be abandonedwith the

result that the spin-axisattitudeand, particularly,the covariance

matrix can be computedmore efficiently.

The types of measurementsstudiedhere are of two kinds:

measurementsof arc length,which will always be the angle

betweenthe observeddirectionand the spin axis.

measurementsof dihedralangles, i.e., the angle betweentwo

planes,where the line of intersectionis assumedto be the

spin axis.B

Dihedralangles, in general,are measuredby observingtwo crossing

times in the spacecraftand multiplyingby the angular velocity. Arc
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lengths may be measured in a variety of ways, for example, by direct

sighting (as of the Sun or a star) or by measuring the component of a

vector along the spin axis (e.g., the magnetic field vector). The

measurement of the nadir angle is hybrid in that an arc length (the nadir

angle) is determined from the measurement of a dihedral angle (the Earth

width). It is the measurement of the nadir angle which is the source of

most of the computational complexity.

Estimation algorithms may be classified either as deterministic

(usually single-frame, i.e., single-time) algorithms, in which a minimal

• subset of the availabledata is chosen to computethe spin-axisattitude,

or as optimal (batch)algorithms,in which a larger'quantityof data is

used from which one computes a "best"result. Three cases are treated in

this report

I) A deterministicestimatorusing two arc-lengthmeasurements,

2) A deterministicestimatorusing the measurementsof two arc

lengthsand the includeddihedralangle. (Sincein this

case the spin-axisattitudeis over-determinedthe question

of optimalityis also discussed.)

3) An optimalbatch estimatorutilizingany numberof

measurementsof dihedralangles and arc lengths.

In each case the covarianceanalysisis presentedin detail.

In the appendixthe measurementof the nadir angle is presented. It

is at this point that trigonometricrelationscannot be avoided,at least

in so far as measuringinstruments(horizonscanners)are presently

constructed. The treatmentis similarto that of Wertz and his

collaborators(Ref. 2) but a method is given for avoidingsign

ambiguities.
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The treatmentof single-axisattitudeestimationpresentedhere

complementsthat of Wertz. The advantageof Wertz'streatmentis that

the variancesalong two great circlesof the celestrialsphere

intersectingat the directionof the spin axis and the dihedralangle

between these two circles (thecorrelationangle) is given fairly

directly. Much less direct is determiningthe covarianceof the

spin-axisvector in inertialspace. This part of the calculationfalls

out simply in the presentformalism.

The resultspresentedhere are quite simplealthoughthey do not

seem to be generallyknown. An importantresult,which is demonstrated

here, is that littleaccuracy is lost by relaxingthe constraintin the

optimizationthat the spin-axisvector be a unit vectorand then

unitizingpost hoc. This is responsiblefor a great deal of

simplificationof the methods presentedhere, especiallyfor batch

estimation.

II. Single-FrameSpin-AxisEstimationfrom

the Measurementof Two Arc Lengths

Considerthe simplestcase in which the measuredquantitiesare B,

the Sun angle (the angle betweenthe spin axis and the Sun vector),and

n, the nadir angle (the directionbetweenthe spin axis and the nadir

vector). The case where one of these measurementsis replacedby the

magnetic field angle is analogous.

Let S denote the Sun unit vector,E the nadir vector,and _ the spin

axis. Then

A

S.n = cos B - cS (la)

^ ^

E*n = cos n - cE (lb)
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The directionof the spin-axiscan then be determinedsimplyby using a

method that has been publishedrecentlyby Grubin,9 though it has been in

use since the beginningof the space programand probablyhas been known

for severalhundredyears.

If S and E are not parallel,then it is always possibleto write

= as_+ aE_+ aN _x _ (2)

The problemis now to determinethe coefficientsas, aE, aN.

From Eqs. (I) and the normalizationconditionwe have

^ ^ ^ ^

cS : _'_: as + aE(_'_,] (3a)

^ ^

cE = _'J_= as(_'._J+ aE (3b)

1 =._n.n..=a + a + 2asaE(S.E) + a x 2 (3c)

which have the solution

I [c - CE(_._] (4a)
°s:l_x_f2s

1 [c ^ ^ (4b)
°E-i_X_1_ _-_(S._)_

± i 2 (_ 2_s_E(_._)._)j_/2_= i_x_l_El_-_-_1- - (_)
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^

Note that there are two possiblesolutionsfor n. These are shown

geometricallyin Figure 1.

It will be convenientto define the followingquantities

laslI ila : c = (s)
~ aE

m 1

1 -(S'E)
U : I (6)

- l xil2
1 1

where the tilde below the letter denotesa two-dimensional"vectoror a

2x2 matrix.

Eqs. (4) can now be written

a = U c (7a)

_+ I [1 - cTu c]1/2 (7b)

aN= I_x_l 2 --"

The covarianceanalysis is now straightforward.• Define the three-

vector

as Ia -- iaE (8)
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Then the covariancematrix of the measurementsis given by

Pc s <6c 6cT> (9)

where the bracketdenotesthe expectationvalue and 6c is the error in c.

The covariancematrix of the spin-axisdirectionin the non-orthogonal

coordinate system is

Pa s <a_ ajT> (10)

and in an orthogonalcoordinatesystem

p_<__T> (11)

Substitutionof Eqs. (7) in Eq. (10) gives readily

Pa = - ---L- (12)

with

M- <a.aaaT>:UPcUT (13a)

V = M b (13b)

S = bT M b (13c)
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1 I c (13d)

The orthogonal representation of the covariance matrix is then obtained

as

P = T PaTT (14)

with

T=Q !!"iX_ (IS)

where the right member of Eq. (13)denotesa matrix labeledby its column

vectors,

It is easy to verify that

PB=o (16)

^

as requiredby the conditionthat n be a unit vector.

A further representationcan be obtainedby writing

M i

~ I BT BTPa = B J_ = B M (17)I

0T j
- !
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where

E oI
I I
~ !

B= _ - (18)
bT I

• !

Equations(17) and (14)may now be combinedto give

2 2

P = Z Z Mi XT (19)i=Ij=l Jxi

where

xI-__,bs(_X_ (20a)

X2 = _+ bE(LX_ (20b)

Eq. (16) is again satisfiedsince

xi._--o i--1,2 (21)

III. Single-FrameSpin-AxisEstimationfrom the Measurement

of Two Arc Lengthsand the IncludedDihedralAngle

The ambiguityin determiningthe spin-axisobservedin the previous

sectionis removedif the includeddihedralangleis alsomeasured, The

dihedral angle _bis defined as the angle betweenthe (_,_) and (E,n)
planes and is easily shownto be given by

A

_.(_x_)
sin _ = " (22a)

/(1-(!"_)"z)(1-(_o_..)2>
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(_) ....
cos _ = • - (.S_)(_'l!) (22b)

^ Z_V'(1-(_-n))(1-(E-n)

tan _ = _"(_ x J_) (22c)
(_.__).(_._)(_)

The geometryis depicted in Figure 2.

To determinethe spin axis attitudeit will be convenientto define

cN =4(1-c2)(I-c_)sin ¢ (23)

and

Its1
£ = cE • (24)

cN

The vectora is now determinedby four equations

cS = as + aE(_-_.) (25a)

cE = aS(._-_)+ aE (25b)
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The three componentsof _ are now overdetermined. The most convenient

solution is obtainedby solvingthe first three equations,which are

linear, leadingto

a = U c (26)

where

i m
^ ^

1 -(S'E) 0

U = I -(_"E) I 0 (27)

I x_ l 0 0 1

The spin-axis_ given by this4, however,is not properlynormalized

since the measurementsare not exact. A properlynormalizedspin-axis

vectoris then obtainedby simply normalizingthe solution

The covariancematrix of a is given simply by

Pa = U Pc UT (29)

and the covariancematrix for the unnormalizedspin-axisis given by

Pn = T Pa TT (30)

similarlyto Eq. (14). The covariancematrix of the properlynormalized

spin-axisvector is recoveredsimplyas

P = _ Q Pn Q (31)
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where

Q = I - n _T (32)

It is well to ask how good is the approximationof ignoringthe

normalizationconditionand then normalizingthe solution post hoc.

Insteadof this seeminglybrutal approachone can find the best solution

to Eqs. (25abc)subjectto the constraintof Eq. (25d), i.e., one seeks

to minimizethe loss function

L(a) = (c-Aa)TpcI (c-Aa) (33)

subjectto the constaint

a3 A _= I (34)

where

n u

o
^ ^

A = U-I = (S'_) I 0 (35)

o o Isx_El2
1 m

The solutionis straightforwardand yields

_opt = (A - _Pc)'1_ (36)

where _ is the Lagrangemultiplierfor the constraintand from Eq. (34)

is the root of the equation

I 1

_T_c A_cC= 1 (37)

which yields the smallestvalue of the loss function.
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Equation (36)may be rewritten

aopt : (IJ,PcU)-la (38)

wherea is given by Eq. (26). Since.aopt is expectedto be close to a,

it followsthat LPcU must be small. An approximatesolutionfor a can-opt

be obtainedby expandingEqs. (37)and (38)in _Pcc and Solving. This
yields

aopt -a - ½ (I-aTA_) PcU a (39)
aTAPcA'la

Now

<l-aTAa>= Tr(PcU) (140a)

<(1-aTAa)2>= 4 aTPca (40b)

so that the additionalroot mean square (rms)error in _ when optimality

is not taken into accountis of the same order of magnitudeas the rms

error in the cosine measurements. However,the source of this additional

error, as shown by Eqs. (40) is the error in the normalization. Hence

this error will be greatlyreducedwhen the unit vector is normalized.

IV. Batch Estimation

The value of avoidingtrigonometricexpressionsbecomesmore obvious

in dealingwith batch estimation. The computationaladvantageof the

presentapproachover the geometricalapproach3 is substantial.

16,15





For batch estimationthe non-orthogonalbasis cannot be used since

only the Sun vectoris constant (and then only for relativelyshort•data

spans), The presenttreatmentfocuseson the case where the measurements

consist of two arc lengthsand the includeddihedralangle. The

extensionto other cases is straightforward.

Let Cs(i), cE(i), cN(i) be a series of measurementsof the Sun
projection,the nadir projection,and the Sun-nadirdihedralangle,

respectively. Then the best solutionfor the spin-axisis obtainedby

mlnlmlzlng

. _iI_ __-__I2

+-1 2
o_I_-_-'-_I

I ^ 1.2} (41)+ 1 cN.n.(_xE)i

subjectto the constraint

n.n = 1 (42)

In order to decrease the numberof subscriptsin the expressionsit has

been assumedthat each data type is availableat each time andthat each

measurementtype has a singlecharacteristicerror. Except for a

proliferationof subscriptsthe expressionswhich followare not changed

when this assumptionis removed.
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The minimizationof Eq. (41) subjectto the constraintis

straightforwardand leads to

: (M-_I)-1 V (43)

where

N
M: Z {I ^ I -i i i} (44a)

N
1 ^ 1 1

v: Z { (i)_i+ cE(i)!i+

and _ is the root of

VT 1 V = 1 (45)
" (M-_I)2

which leads to the smallestvalue of Eq. (41).

As in the previoussectionit can be expectedthat the constraint

can be ignored (},-0)and the solutionbe approximatedby

where

n = M-1 V (47)
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This approximationhas been tested for one spacecraftI0 and been observed

to be quite good. The covarianceof n is given by

Pn : M'I (48)

and the covarianceof the normalizedsolutionis given again by

P = _ Q Pn q (49)

V. MeasurementErrors

The computationof the spin,axiscovariancematrix requiresas

input a model for the covariancematrix of the cosinemeasurements.

Expressionsare derivedhere for computingthese for the case of Sun and

Nadir measurements. The treatmentwhen one of these measuredquantities

is the magnetic field is treatedin the same way.

Sun Measurements

The quantitymeasured is usuallythe Sun angle,B. Hence,

acS = -sinS6B (50)

Nadir Measurements

If the spacecrafthas angularvelocitym, then the Earth width is

gi ven by

_l: .(to-tI) (51)

where tI and tO are the in- and out-triggeringtimes, respectively,of
the Earth scan (fora momentum-wheelmounted scanner,m will be the
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angular velocityof the momentum wheel).

Then, using the resultsfrom the appendix

_C E : _COSn

_cosn sl

- _)co{l- acos-_

_ sinn _cos _
cotY - cotn "_

sinn (sin_ (at0 atl) (52)=)cotY - cotn )) -

where Y is the scan-conehalf angle.

Dihedral Angle Measurements

The dihedralangle _ is determinedfrom the time intervalfrom the

Sun crossing to the mid-pointof the horizonscan

= _[tS - ½(t0 + tl)] (53)

Thus, (B,sI,_)or (B,n,_)is a set of statistically•independent

variables, The "dihedralcosine"cN, however, is given by

cN = sinB sinn sin_ (54)

hence

acN = CN[COtB aB + cotn 6n + cot_ _] (55)

From Eqs. (50-55)the covariancematrix Pc can easily be calculated.
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To a large degree,much ofthe trigonometriccomplexitywhich has

been removedfrom the attitudesolutionhas simplybeen shiftedto the

computationof a derivedmeasurementcovariancematrix. There is,

however,a substantialgain becausethe covariancematrix need not be

computed to the same degree of accuracyas the spinuaxisattitude

itself. •Hence,a great deal of computationalapproximationis possible,

such as approximationof the trigonometricfunctionsby simple rational

functions.

Appendix - Measurementof the Nadir Angle

Becausethe Earth is an extendedbody the nadir vector is not

measured directlybut determinedfrom measurementsof the Earth width.

Earth widths are measuredby a horizonscanner,which effectivelyis a

sensor mounted on a rotatingcone (of half-coneangle y) about the

spacecraftspin axis, which detectsthe crossingsof the Earth horizonon

the scan cone. The Earth has an effectiveangular radiusof p, which is

a functionof altitudeand (fora non-sphericalEarth)latitude. The

Earth width is the dihedralangle betweenthe in- and out-crossings(HI

and HO) the horizonby the scannerand is denotedby _. These quantities
are relatedby the sphericallaw of cosines2

cosp : cosy cosn + siny sinn cos(_/2) (A-l)

The geometryis depictedin Figure3.

Eq. (A-l) may be solred to give

cosn = cosp cosy•-+sinp cos(_/2)/'_v_-cos2p (A-2)
• A
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where

A = cos2p + sin2y cos2(R/2) (A-3)

The sign ambiguitymay be eliminatedif anothermeasurementis

present, say that of the Sun angle,B, and the Sun-Earthdihedralangle,

Y. Let { be the arc length from the Sun directionto the mid scan point

cos{ = cosS cosy + sins siny cos€ (A-4)

Then it is possibleto show that the underdeterminedsign in Eq. (A-2)

must be the same as that of

(cosB- cosy) (_._ - cos_)

Alternatively,one may consider simultaneouslySun and horizon

measurements. This leads to three simultaneousequations

cosScosn+ sinssinncos€= J_._ (A-Sa)

cosycosn+ sinysinncos(_/2)= cosp (A-Sb)

cos2n + sin2n = I (A-Sc)

Equation (A-2)was obtainedby solvingEqs. (A-Sb)and (A-Sc)

simultaneously. One could just as easily solve Eqs. (A-Sa)and (A-Sb)

for cosn and sinn. The resultwill not necessarilysatisfyEq. (A-Sc)

but the two equationshave the advantageof being linear. The solutions

can then be renormalizedto satisfyEq. (A-5c)'

This approachof ignoringthe propernormalizationfor the

trigonometricfunctionshas anotheradvantagein that a •simultaneous

solutionto Eqs. (A-Sb)and (A-Sc)may not exist in certain extremecases

becausethe measurementsare not exact. By solvingEqs. (A-Sa)and

(A-Sb)a solutionwill always exist.
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There is, however, oneclear disadvantage. If Eq. (A-2) is usedthen

6, n, and$ will be statistically independent. If, however, the linear

equations are solved, n will be correlated with 6 and $. Thus, the

simplicity gained in computingcosn is counterbalancedby greater

complexity in computingthe measurementcovariance matrix Pc"

Figure 1

Single-Axis Attitude from Two
Arc-Length Measurements
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Figure 2
Single-Axis Attitude from Measurements

of Two Arc Lengths andOneDihedral Angle _//
E

S

rt

T

Hz Ho
Figure 3

Geometryfor Nadir-Angle Determination
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