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ABSTRACT

A general approach has been developed for computing

the force due to solar radiation on an object of arbitrary shape.

This method circumvents many of the existing difficulties in

computational logic presently encountered in the direct analytical

or numerical evaluation of the appropriate surface integral. It may

be applied to complex spacecraft structures for computing the total

force arising from either specular or diffuse reflection or even

from non-Lambertian reflection and re-radiation.

2-I



SECTION I - INTRODUCTION

The problem of computing the total force or total torque

on a spacecraft due to solar radiation is, in general, very difficult.

Mathematically, itrequires the evaluation of a surface integral

over only the illuminated region of the surface. Even if the illu-

minated region is known by some other means, the evaluation of

the surface integral can still be very difficult analytically

in the case of complexspacecraft structures. Moreover, if the

illuminated region is not known a priori, the difficulties are

compounded by having to determine self-shadowing. For non-convex

objects, it is not trivially governed by a condition such as

cos e_O where e is the angle between the sun vector and the out-

ward vector normal to the surface. In fact, the logic in the present

methods becomes extremely complicated and is also not fool-proof.

Additional difficulties are introduced by choosing a set of points

(vertices) on the surface to form a network in approximating it;

this inadvertently leads to book-keeping problems associated with

selecting appropriate sets of points for computing surface elements.

This paper presents a general method for performing the

computations without encountering the difficulties described above.

It does not attempt to evaluate the surface integral directly as

it presents itself as done in the usual methods, but considers

the same problem from a slightly different point of view which

leads to the same results.
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SECTION 2 - ANALYSIS

Consider an arbitrarily shaped object as illustrated in Figure 1.1.

f
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Figure 1.1 - Illustration of an Arbitrarily Shaped Object
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For convenience, let us use the following notation:

^
u = unit vector along a specified direction

^ A A A
v = any unit Vector orthogonal to u, i.e., u • v = 0

w = third unit vector forming orthogonal triad, i.e., w = u x v

0 = origin of coordinate system

P = any point On object's surface

r = vector from 0 to P

P'= projection of P onto (v,w)-plane

_'= projection of_onto (v,w)-plane

(x,y,z) = reference orthogonal system for describing object's

surface.

^
In the present analysis, it is advantageous to choose u to be opposite

in direction to the incident solar radiation. (Alternatively, it can

also be chosen to be in the same direction.)

A
The vectors u and r are known in the (x,y,z) system.

In general, if V is any vector, then it may be more explicitly

written in the (x,y,z)-space as V_x,y,z_J and has components Vx, _V' Vz.

That is, we implicitly mean

In view of the definition of the vector v, we may choose

v = O. Then, it may be shown that the other two components are given byg



From the definition of w, we obtain

Therefore, any vector V(x,y,z) can be transformed to V(u,v,w)

by the equation

Vc.,_,.._= T Vc_,_'_) 0"_)

where the transformation matrix T is given by

T = r= _ o (,,,€)

,.,&

Then, using equation (1.6), the vector r(x,y,z) is transformed

and we obtain

Consequently, the projection vectorS' is simply given by

The component r of the vector r is particularly important because,u

for a complex spacecraft structure, it can be used to yield the surface

element which is directly exposed to solar radiation. This can be seen
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as follows: For any given point on the (v,w)-plane (i.e., for any

given vector _' ), the point on the spacecraft which is not shadowed

is the one which has the maximum value of ru, independent of where

the origin of the (u,v,w) coordinate system is chosen. (It would be

the minimum value of r if the vector _ had been chosen to be in
u

the same direction as the incident solar radiation. ) To find the

illuminated surface of the spacecraft, we proceed by dividing

the (v,w)-plane into cells of area _v_w with cell centers (vi,wj).

At these cell centers, the illuminated surface element is the one

which has the maximum value of r . In this way, the logic of deter-
U

mining self-shadowing is extremely simple as compared to other methods

which encounter considerable difficulty conceptually and computationally.

Thus, given a vector _' = (0,vi,wj), the vector _ _ ([ru]max,Vi,Wj)

corresponding to the illuminated point is determined. It is then

transformed to the (x,y,z)-space by the equation

= "T"r (/,H)

n(x,y,z ) normal to the surfaceAt this point r(x,y,z), the unit vector A

is then obtained by

- (/,1.0

where _(x,y,z) = 0 denotes the equation of the surface in a region

"_ n is chosen such thatcontaining r. For convenience, the direction of ^

A A

>i0 (11 )

This choice of direction automatically makes _ the outward unit normal
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if the surface element belongs to a closed surface. Moreover,

.

it establishes a direction for n In the case of a surface for which

an outward unit normal is meaningless (such as a finite planar surface).
A

The vector n(x,y,z ) is then transformed to the (u,v,w)-space using

the equation

The cell (vi,wj) whose area is _v_w corresponds to

a surface element whose area is denoted by _A. It is evident that

we have

_A = = (/,_s)

Therefore, the force_F exerted on this surface element is given by

ziF = p AA (/,1_,)
°

where p xs the solar radiation pressure vector acting on the surface

element. Under very general conditions of surface reflection and

re-radiation, it can be shown that this pressure vector has the form

Lc, s. c,) o,,7)
where S is the solar radiation flux per unit area normal to the flux,

c is the velocity of light, and _is the angle between the sun vector

and the normal to the surface element, i.e.,

A
o_# -- n._ CI'/_')

The coefficients CI, C2 and C3 may change with time due to aging of
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of the surface material by some complex process.

For the case of specular reflection and diffuse (I_mbertian)

reflection, the Ck'S are given by (I)

where kI - the fraction of incident radiation reflected specularly

k2 = the fraction of incident radiation reflected diffusely

by a Lambertian surface.

It is to be noted that in equations (1.19) - (1.21), it is not

implicitly assumed that the surface is radiating the entire energy

incident on it, i.e., it is not necessary that we require the

condition kI + k2 - I in order to obtain these equations.

For the case of specular reflection and non-Lambertian

reflection and re-radiation (2), a little consideration will reveal

that the Ck'S are given by

c, = (/- I

= afr 0. 3)

where Y - the fraction of incident radiation reflected (specularly

and otherwise)

- the fraction of reflected radiation that is specular
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Bf, _ = non-Lambertian coefficients for front and back

surfaces respectively

ef, eb = emission values for front and back surfaces

respectively.

In passing, it may be noted that we have the relations

4_= _(/-77 Ct,2_)

Moreover, it may be remarked that the form of equation (1.17) is

valid for the more general non-Lambertien reflection and re-radiation

which have a period of 7fin the azimuthal variable. In other words,

Lambertian reflection means that the intensity I of the reflection

is given by

Then, the case of non-Lambertian reflection and re-radiation expressed

by equation (1.22) would correspond to an intensity which is indepen-

dent of the azimuthal variable _ and is of the form

where implicitly we exclude the case of Lambert's law, i.e.,

/(_) # _ _ C,',._q)

The even more general case means that we can have reflection and

re-radiation for which the intensity is of the form

I = Io j:(o_.) 0,3o)
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Finally, to compute the total force F due to solar radiation,

we obtain from equations (I.15) - (I.19) the following expressions

It is also trivial to compute the total torque M on the spacecraft

by using the equations

4/4 = ,n. x _ F CI'3s')

but this will not be done here.
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SECTION 3 - DISCUSSION

It is obvious that the method just discussed does not

encounter logic problems in determining self-shadowing. Moreover,

because the points _vi,wj_ are first chosen on the projection plane,

it circumvents the difficulties in book-keeping experienced in

the other method of choosing vertices on the surface of the object.

Furthermore, it does not require excessive core for storing the

vertex data such as coordinates, area of surface element, normal

vector, solar incidence angle, etc. This advantage becomes evident

by evaluating the expressions in equations (1.32) - (1.32) using

three accumulators (one for each force component), not having to

store the set of points {vi,wjl . Finally, if greater accuracy is

desired, it suffices only to choose smaller values _v*_w*, multiply

the previous result by the factor (_v*_w*)Av A w , and then perform

computations only for the additional points newly introduced into

the set Iv.,w I. This advantage cannot be realized in the other
] j

method of choosing vertices on the surface of the object. In that

case, in going to a refined model with additional vertices, it is

necessary to perform the entire computations starting from the

beginning each time.
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SECTION4 - CONCLUSION

From the foregoing discussion, it may be concluded that

the present method has the following advantages:

I. It does not experience logic problems in determining

self-shadowing.

2. It does not encounter the book-keeping problems arising

in the case of choosing vertices on the surface of the

object.

3. It does not require excessive core for storing vertex

data.

4. It can utilize previously0btained results in going to

progressively more refined models.
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