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ABSTRACT

The relative orbit determination accuracles resulting from

several TDRS models used for solar radiation force calcula-

tions are evaluated. These models include spherical, single-

plate, and restricted two-plate models. The plate models

can be adjusted in both area and reflectivity through dif-

ferential correction. The restricted two-plate model has an

Earth-pointing plate and a solar plate; the orientation of

the solar plate is restricted to rotation about an axis per-

pendicular to the satellite's orbital plane.

Simulated TDRS observations are generated from an ephemeris

obtained using a 69-component TDRS model. These observa-

tions are processed by least squares differential correction

in order to find optimized parameters for the spherical,

single-plate, and multi-plate models. The solutions for the

parameters and the state vector are then used to generate

ephemerides that are compared with the 69-component ephem-

eris to estimate the expected orbit determination accuracies

achievable with the various TDRS models.

*This work was supported by the Operations Analysis Section,
Operational Orbit Support Branch, Goddard Space Flight
Center, National Aeronautics and Space Administration, under
Contract NAS 5-24300.
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SECTION 1 - INTRODUCTION

A study of the solar radiation pressure (SRP) effect on

orbit determination for a Tracking and Data Relay Satellite

(TDRS) has been carried out using simulated data. The TDRS

System consists of three geosynchronous satellites--TDRS

East, TDRS West, and TDRS Spare--and one common ground

tracking facility. These satellites will be placed in

circular, nearly equatorial orbits at a height of 36,000 kil-

ometers above the surface of the Earth. The study is de-

signed to determine whether a complex SRP model for a TDRS

can be satisfactorily replaced by a simpler SRP model, such

as a constant-effectlve-area model or a two-plate model. In

addition, different tracking station configuratlons are used

to investigate the possible dependence of the results on the

tracking station geometry.

A similar study carried out by Chan et al. (Reference i)

used a 69-Component TDRS SRP model and a two-plate model

with four adjustable parameters. The adjustable parameters

were determined by using a least squares procedure to mini-

mize the position differences between two ephemerides, one

obtained using the 69-component model and one obtained using

the two-plate model.

Another investigation related to the present study was

carried out by Shanklin etal. (Reference 2) in which a

constant-effective-area SRP model and a two-plate model were

compared using real ATS-6 S-Band tracking data. This study,

however, was somewhat incomplete due to the limited avail-

ability of ATS-6 tracking data. The current study is an

extenslon of that work and follows the same approach as that

used in Reference 1 in constructing the TDRS SRP models.

The current study, however, uses simulated bilateration and

S-Band tracking data in the differential correction process
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instead of position differences between the two ephemerides
as used by Chan.

The study plan is as follows. First, a 69-component SRP

model of a TDRS, which is available in the Research and De-

velopment version of the Goddard Trajectory Determination

System (RDGTDS), is used to compute a truth ephemeris, which

is subsequently used to generate various types of simulated

observations uslng the Mission Data Generation System

(MDGS). The MDGS produces raw data in a 75-byte format, and

the Generalized Data Handler (GDH) converts these raw data

into the 60-byte format for the Goddard Trajectory Determi-

nation System (GTDS). Second, these simulated data are used

in regular GTDS Differential Correction (DC) Program runs to

find optimized SRP parameters for the constant-effective-

area model and for the two-plate model. The constant-

effective-area model contains one ad3ustable parameter, and

the two-plate model contains four adjustable parameters.

Any combination of the four parameters of the two-plate

model can be solved for In a given DC Program run. Third,

epnemerides are generated using the final elements and SRP

parameters obtained from the DC Program runs, and these eph-

emerides are then compared with the original truth ephemeris.

Brief descriptions of the TDRS solar radiation pressure

models are given in Section 2 and generation of the simu-

lated data is discussed in Section 3. The results of var-

ious DC Program runs and ephemeris comparisons are presented

in Section 4, and the conclusions are summarized in Sec-
tion 5.

3-3



SECTION 2 - DESCRIPTION OF MODELS

The 69-component model is composed of 69 distinctive parts.

The components with relatively large areas are the two solar

panels, whose normals make minimum angles with the satellite-

Sun line; the antennas; the antenna feeds; and the top, bot-

tom, and six sides of the main body (see Reference 1 for

details).

The slmplest SRP model used to approximate the 69-component

model is the constant-effective-area model. In thls model,

the area for the SRP calculation is assumed to be constant

and always normal to the satellite-Sun line. The force due

to the solar radiation pressure (Reference 3) is given by

fSRP = -_) a P (i + T]) Usu n 12-i)

where m = eclipse factor

a = constant area

p = solar radiation pressure on a perfectly absorb-
ing surface at the position of the satellite

= surface reflectivity

-_Sun = unit vector along the satellite-Sun line

The solar radiation pressure is inversely proportional to

the square of the distance from the Sun, and the eclipse

factor, 9, equals zero if the satellite is in the Earth's

shadow ana equals one if it is not. The right-hand side of

Equation (2-1) represents the sum of two parts: the part

due to the absorption of the solar radiation, which is pro-

portional to (i - _), and the part due to the reflected

radiation, which is proportional to 2n, This model is

currently available in GTDS.

The second model used to approximate the 69-component model

is a two-plate model, which has an Earth-pointing plate and

3-4



a solar plate. The solar plate Is hinged along an axis

normal to the satellite's orbital plane and is always ro-

tated about that axis so as to maximize the amount of sun-

light falling on the plate. The force due to the solar

radiation pressure for the two-plate model is given by the

sum of four terms:

[2 EnE.....• R I(u • R) RRP = -aP lUsu n Sun

+ eE(l - nE) lUsu n • RI Usu n

(2-2)

+ 2esn s • N s N s

+ _s(l - _s) (Usu n • Ns) Usu n]

where a = reference area

P = solar radiation pressure on a perfectly absorb-
ing surface at the position of the satellite

eE = scale factor for the area of the Earth-pointing
plate

as = scale factor for the area of the solar plate

_E = reflectivity of the Earth-pointing plate

ns = reflectivity of the solar plate

USu n = unit vector along the satellite-Sun line

R = unit position vector of the satellite

N s = unit vector normal to the sunny side of the
solar plate

In Equation (2-2), the first term is due to the reflection

by the Earth-pointing plate, the second term is due to the

absorption by the Earth-pointing plate, the third term is

due to the reflection by the solar plate, and the fourth

term is due to the absorption by the solar plate. The two

area scale factors, _E and as, and the two reflectivities,

nE and qs' are adjustable parameters. In a given DC Program
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run, any combination or all of these four parameters can be

solved for. Instead of eE' HE' as, and _s' an alternative

set of four parameters, _i' _2' _3' and _4' may also be de-

fined (and solwed for) :

_i = eE_E

_2 = C_E(I- r]E)

_3 = es_s

_4 = es(l - _s)
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SECTION 3 - GENERATION OF SIMULATED DATA

Tracking data for this study were generated using a satel-

lite ephemeris tape obtained from a special RDGTDS Program

load module that contains a 69-component TDRS model for SRP

evaluation. This ephemeris tape was used by the MDGS Pro-

gram to generate a second tape of raw range and Doppler sim-

ulated data. This simulated data tape was used by the GDH

Program to generate tracking data in a format appropriate

for use in the GTDS two-plate load module. Two types of

tracking data were generated in this manner: Applications

Technology Satellite Ranging (ATSR) bilateration data and

Unified S-Band (USB) two-way data.

3.1 ATSR BILATERATION DATA

ATSR bilateration data were generated using the ground

station at White sands, New Mexico, as the ATSR tracker and

the ground stations at Mo3ave, California; Rosman, North

Carolina; Madrid, Spain; Quito, Ecuador; and Santiago,

Chile, as the ATSR ground transponders. Figure 1 shows the

positions of these slx sites in relation to the expected sub-

satellite point for the relay satellite.

Using these five tracker/ground transponder pairs, tracking

data with the following characteristics were produced:

o Frequency: 5600 MHz (C-Band)

o Primary frequency offset: 5.8875 MHz

• Transponder delay: 0.0 km

• Tracking mode: satellite-to-ground phase-locked

transponder

• Major range tone/minor range tone: i00 kHz/8 Hz
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• Uplink pilot frequency/downlink pilot frequency:

6150 MHz/4150 MHz

• Doppler count mode: nondestruct

Data were produced at a rate of six observations per minute

for the first 25 minutes of each hour, starting at 0.0 hours

on October 2, 1980, and ending at 0.0 hours on October 3,

1980. Each tracker/ground transponder pair was enabled for

tracking over the discrete tlme interval shown in Table i.

No observation corrections were applied and no observation

noise was applied.

3.2 USB TWO-WAY DATA

USB two-way data (for which the receiving and transmitting

sites are the same) were generated using the ground stations

at Mojave, Rosman, Madrid, Quito, and Santiago. Tracking

data with the following characteristics were produced:

• Transmit frequency: 2106 MHz

• Transponder delay: 0.0 km

• Ranging equipment: Spaceflight Tracking and Data

Network (STDN) Ranging Equipment (SRE)

• Major range tone: 20 kHz

Data were produced for the first 25 minutes of each hour,

over the same time period, at the same rate, and with the

same corrections that were used for the ATSR bilateration

data. Each ground station was enabled for tracking over the

dlscrete time interval shown in Table 2.
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TABLE 1. TRACKING INTERVALS FOR ATSR TRACKER/
GROUND TRANSPONDER PAIRS

TRACKER/GROUND MINUTES OF THE HOUR DURING
TRANSPONDER PAIR WHICH THE PAIR tS ENABLED

WHITE SANDS/ROSMAN 00TO 05

WHITE SANDS/MOJAVE 05TO 10 .

WHITE SANDS/QUITO 10TO 15

WHITE SANDS/MADRID 15TO 20

• _

WHITE SANDS/SANTIAGO 20 TO 25 ,_
co

TABLE 2, TRACKING INTERVALS FOR USB GROUND STATIONS

GROUND MINUTES OF THE HOUR DURING
STATION WHICH GROUND STATION IS ENABLED

ROSMAN 00TO 05

MOJAVE 05TO 10

QUITO 10TO 15

MADRID 15TO 20

SANTIAGO 20 TO 25
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SECTION 4 - DIFFERENTIAL CORRECTION SOLUTIONS AND
EPHEMERIS COMPARISON RESULTS

Differential correction solutions were obtained using dif-

feren_ SRP models, different types of simulated observa-

tions, and different tracking station configurations.

4.1 RESULTS OBTAINED USING BILATERATION DATA AND TWO GROUND
TRANSPONDERS

The results of DC Program solutions obtained using bilatera-

tion range and Doppler data and five different combinations

of solve-for parameters in the two-plate mode! are presented

in Tables 3 and 4. The simulated bilateration data used

were obtained using the TDRSS ground station at White Sands

and two ground transponders at Rosman, North Carolina, and

Mo3ave, California. The five different SRP optlons used were

• Constant-effective-area model with C solved for
R

• Two-plate model with _E and _s solved for

• Two-plate model with _i and _2 solved for

• Two-plate model with E3 and _4 solved for

• Two-plate model with El, _2' and E3 solved for

The third option, in which E1 and _2 are solved for, is

equivalent to solving for eE and hE, the scale factor and

reflectivity of the Earth-pointing plate, respectively.

Similarly, the fourth option is equivalent to solving for es

and _s" In this particular set of DC Program runs, the

values of the SRP parameters in the two-plate model that

were not solved for were set equal to zero. Thus, the third

and fourth options discussed above actually represent single-

plate models rather than two-plate models.

An identical set of a priori elements, obtained from the

truth ephemeris of the 69-component SRP model, was used for

all of the options. It is seen from Tables 3 and 4 that the

option of using the Earth-pointing plate alone gives the
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TABLE 3. DIFFERENCES BETWEEN THE FINAL ANDAPRIORI ELEMENTS
(FINAL MINUS A PRIORI)

RUN CONFIGURATION
CHANGES

IN CONSTANT TWO-PLATE MODEL TWO-PLATE MODEL TWO-PLATE MODEL TWO-PLATE MODEL
ELEMENTS EFFECTIVE AREA _E AND a S _1 AND _2 _3 AND _4 _-1,_2, AND _3

SOLVED FOR SOLVED FOR SOLVED FOR SOLVED FOR SOLVED FOR

_X (meters) 5.81 3.42 --24.16 -- 1.62 --2.63

bY (meters) - 12.62 --9.57 -- 18.43 8.59 --7.61
I

I_ _. (meters) --24.80 16.07 -- 109.73 - 38.56 11.17
Fo

(cm/sec) 0.052 0.036 0.250 0.008 0.029

_' (cm/sec) 0.041 =-0.024 0.221 0.005 --0.025 _o
_D

z_. (cm/sec) 0.118 0.138 0.243 --0.141 - 0.084

NOTES: 1. THE SAME SET OF A PRIORI ELEMENTS WAS USED FOR ALL DC PROGRAM RUNS.

2. THE QUANTITIES _xE AND _S DENOTE SCALE FACTORS FOR THE AREAS OF THE EARTH-POINTING PLATE AND THE SOLAR

PLATE, RESPECTIVELY. THE PARAMETERS 41, _2, 43, AND _4 ARE DEFINED AS FOLLOWS: _;1 = _EllE' _2 = _E (1 -_IE), _3 = _$7/S'

_4 = (xS (1- itS), WHERE _E AND 7/S DENOTE THE REFLECTIVITY OF THE EARTH-POINTING PLATE AND THE SOLARPLATE,
RESPECTIVELY.



TABLE 4. DC PROGRAM STATISTICS AND SRP PARAMETERS SOLVED FOR

RUN CONFIGURATION

PARAMETERS CONSTANT TWO-PLATE TWO-PLATE TWO-PLATE TWO-PLATE
EFFECTIVE AREA MODEL MODEL MODEL MODEL

_E AND _S _1 AND _2 _3 AND__4_ _1, _2, AND _3
L_ SOLVED FOR SOLVED FOR SOLVED FOR SOLVED I-OH SOLVED FOR
I

L_ WEIGHTED RMS 0.0558 0,0346 0.3238 0.0546 0.0329

STANDARD DEVIATION

RANGE (meters) 0.5i4 0.584 2.206 0.481 0.593

DOPPLER (miUihertz) 0.914 0.473 5.416 0.898 0.431

SRP PARAMETERS CR = 1.38 _E = 0.281 _1 = 1.971 _3 = 19.482 _1 = 0.175

SOLVED FOR '_S = _219 _2 0.551 _4 = 37.588 _2 = 0.146
_o

_3 = 0.602
I I =3



poorest results, whereas the other options all give compar-

able resul%s. Similar conclusions are supported by Fig-

ures 2 and 3, which represent 24-hour ephemeris comparison

results between the original 69-component ephemeris and the

ephemerides obtained using the DC Program solutions for dif-

ferent SRP options. The results obtained using the second

option, in which eE and es were solved for, are not shown

because they are very similar to the results obtained using

the fourth option. Only the along-track and cross-track po-

sition differences are shown in Figures 2 and 3, because the

radial position differences were much smaller than the along-

track or cross-track position differences.

The single-plate option using the Earth-pointing plate alone

gives the worst position errors. The single-plate option

using the solar plate alone gives significantly better re-

sults. In fact, the option using the solar plate alone

glves the smallest along-track position differences of all

the different optlons used.

There are two features worth mentioning. First, there is no

significant difference between the constant,effective-area

model and the more complex two-plate model options. Second,

in all cases studied, there are quite sizable cross-track

posltion differences, equal to or larger than the along-

track differences.

In order to examine the influence of the tracking geometry

on the orbit determination results, a different pair of

ground transponders (Rosman and Santiago) was used for the

same series of DC Program solutions dlscussed above. Ephem-

eris comparison results obtained uslng these differential

correction solutions were then compared with the correspond-

ing results obtained using the pair of ground transponders

at Rosman and Mojave; the only significant difference between
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the two sets of results was in the cross-track position dif-

ferences. The maxlmum cross-track position differences ob-

tained using the Rosman and Santiago ground transponders

were found to be less than i0 meters, whereas the corre-

sponding differences obtained using the Rosman and Mojave

ground transponders were larger than 20 meters.

4.2 RESULTS OBTAINED USING S-BAND RANGE DATA AND TWO GROUND
TRACKING STATIONS

Differential correction solutions for a 24-hour TDRS arc

were obtained using S-Band range data and two different

tracking station configurations. In the first set of solu-

tions, the two ground stations at Rosman and Mojave were

used, and in the second set of solutions, the two stations

at Rosman and Santiago were used. The results of 24-hour

ephemeris comparisons are summarized in Figures 4 and 5. It

is seen from Figures 4 and 5 that the results obtained using

S-Band range data are generally worse than the corresponding

results obtained uslng bilateration data. The along-track

position differences shown in Figure 4 indicate that the

Rosman/Mo]ave configuration gives somewhat better results

than does the Rosman/Santiago configuration. In the case of

the cross-track position differences shown in Figure 5, the

situation is reversed; the Rosman/Santiago configuration

gives somewhat better results than does the Rosman/Mojave

configuration.

4.3 RESULTS OBTAINED USING MORE THAN TWO GROUND TRACKING
STATIONS

The same 24-hour TDRS arc studied in Sections 4.1 and 4.2

was used in a set of DC Program runs using more than two

ground tracking facilities. In the case of bilateration

data, three ground transponders, located at Mojave, Santiago,

and Madrid, and five ground transponders, located at Mojave,

Santiago, Madrid, Rosman, and Quito, were used. Ephemeris
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comparison results obtained using the three ground trans-

ponders were similar to the results obtained using the five

ground transponders. Typical along-track, cross-track, and

radial position differences were 6.0, 1.0, and 1.0 meters,

respectively. No significant difference was found among the

different models used for the solar radiation pressure com-

putation as long as the initial state vector and the solar

radiation pressure parameters were solved for.

Similar analyses were carried out using more than two S-Band

tracking stations. Two sets of differential correction so-

lutions were obtained using three tracking stations at

Mojave, Madrid, and Santiago and four tracking stations at

Mojave, Rosman, Madrid, and Santiago. Ephemeris comparison

results obtained using these differential correction solu-

tions are summarized in Tables 5 and 6. There is no essen-

tial difference between the results obtained using three

tracking stations and the results obtained using four track-

ing stations. These results show a significant improvement

over the corresponding results obtained using only two

S-Band tracking stations. Cross-track position differences

were reduced by almost a factor of i0 and along-track dif-

ferences were also substantially reduced. However, none of

the results obtained using S-Band tracking data were as good

as the corresponding results obtained using bilateration

data.
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TABLE 5. CROSS-TRACK AND ALONG-TRACK POSITION DIFFERENCES OBTAINED
USING THREE USB GROUND STATIONS (MAD, AVE, AGO)

EPHEMERIDES COMPARED MAXIMUM CROSS-TRACK ' MAXIMUM ALONG-TRACKDIFFERENCE (meters) DIFFERENCE (meters)
L_
I

r_ CONSTANT-EFFECTIVE-AREA vs 69-COMPONENT 3.1 24.6

TWO-PLATE (cuE AND _xS SOLVED FOR) vs 69-COMPONENT 2.8 23.5

SINGLE SOLAR PLATE ([3 AND 44 SOLVED FoR) vs 69-COMPONENT 7.1 22.2

TWO-PLATE 1_1' _2' _3' AND 44 SOLVED FOR) vs 69-COMPONENT 6.5 20.2



TABLE 6. CROSS-TRACK AND ALONG-TRACK POSITION DIFFERENCES OBTAINED
USING FOUR USB GROUND STATIONS (MAD, AVE, AGO, ROS)

MAXIMUM CROSS-TRACK MAXIMUM ALONG-TRACK
EPHEMERIDES COMPARED DIFFERENCE (meters) DIFFERENCE (meters)

L_
I CONSTANT-EFFECTIVE-AREA vs 69-COMPONENT 3,3 26:2['o

k3

TWO-PLATE (_XEAND _=SSOLVED FOR) vs 69-COMPONENT 3.2 25.9

SINGLE SOLAR PLATE (_3 AND _4 SOLVED FOR) vs 69-COMPONENT 4.4 26.7

TWO-PLATE ([1' _2' [3' AND _4 SOLVED FOR) vs 69-COMPONENT 4.2 25.0 ,_



SECTION 5 - CONCLUSIONS

A study of solar radiation pressure (SRP) as it affects TDRS

orbits was performed using simulated bilateration data, sim-

ulated direct two-way data, and varlous ground station con-

figurations. Orbit determination results obtained using

constant-effective-area and two-plate SRP modeling were com-

pared with each other and with an ephemeris obtained using a

69"component TDRS SRP model. The conclusion of this study

can be summarized as follows:

• The constant-effective-area solar radiation pres-

sure model and the two-plate model give essentially

the same quality results when both the state and

the SRP parameters are solved for. The maximum

position differences between the 69-component model

truth ephemeris and an ephemeris determined using

solved-for elements and SRP parameters can be re-

duced to less than i0 meters if proper bilateration

tracking configurations are used in solving for the

elements and the SRP parameters.

® When using only two ground tracking facilities, the

Rosman/Santiago combination gives smaller cross-

track position errors than does the Rosman/Mojave

combination.

• Results obtained using three ground trackina facil-

ities (located in a triangular configuration) are

significantly better than the corresponding results

obtained using two ground tracking facilities.

• Results obtained using more than three ground

tracking facilities are of essentially the same
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q u a l i t y  a s  t h e  r e s u l t s  o b t a i n e d  u s i n g  t h r e e  g r o u n d  

t r a c k i n g  f a c i l i t i e s .  

B i l a t e r a t i o n  d a t a  a p p e a r  t o  g i v e  b e t t e r  o r b i t  d e -  

t e r m i n a t i o n  r e s u l t s  t h a n  S-Band t r a c k i n g  d a t a .  
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