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ABSTRACT

Analysis was performed to estimate the statistical

visibility time spans of earth orbiting satellites as seen

simultaneously by a ground station and a ship. The analysis

covers topics such as time average population, average population

times and also the percentage visibility times for a given

number of satellites. These results are useful for specific

communications satellite applications. Numerical results are

obtained for various configurations of ground station and ship.
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SECTION I - INTRODUCTION

This report is concerned with the analysis of the number and also

the time of satellites mutually observed by both a ground station and a

ship. Unlike the relatively simple case of a single observation sta-

tion for which the region of observation is the volume bounded by a

cone, the present more'complicated case has a region of observation de-

termined by the intersection of two cones. This region has a volume

determined only by the separation distance between the ground station

and the ship; but it also has a directional property determined by the

relative position of the ship with respect to the ground station.

Because the analysis becomes extremely complex, it is necessary to make

certain simplifying assumptions.

The first assumption is that the satellites presently orbiting the

earth may be broadly classified into a few categories. This simplifica-
(i)

tion is supported by the fact that since 1977 approximately 635 sat-

ellites have been launched and these may be characterized as in Table i.I.

Table i.I

Average Average Average
Class Period Inclination Altitude Number

I i00 min. 80° 800 km 440

II 12 hr. 60 ° 20,000 km 106

Ill 24 hr. 0° 36,000 km 57

IV Others 32

Thus, instead of having to deal with the volume of the region of observa-

tion, the analysis deals with the areas at the various altitudes. In

this analysis, only Class I and II satellites are considered. Class III

satellites are considered separately because they are geosynchronous.

Class IV satellites are irregular and will not be considered at all.

(i) NASA, Satellite Situation Report, Volume 21, Number i,

February 28, 1981.

6-2



The second assumption is that within each of the two categories con-

sidered, the satellites have circular'orbits which are uniformly distrib-

uted in terms of equatorial crossing and, moreover, the satellites are

also uniformly distributed along the orbital arcs.

Section 2 deals with the derivation of the number density of sate-

llites in this statistical distribution. Section 3 deals with the deter-

mination of the common region of observation of both the ground station

and the ship. Section 4 is concerned with the computation of the time

average population of satellites within the mutual region of observation.

Section 5 briefly discusses the computation of the average population

times of these satellites in the same region. Section 6 summarizes the

results of this study for Class I and II satellites.

Readers who are strictly interested in the numerical results may

go directly to Section 6 and omit the intervenin_ sections which deal

with the mathematical analysis.
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SECTION 2 STATISTICAL DESCRIPTION OF ORBITING SATELLITES

2.1 Distribution Function

Consider a statistical description of a system of N satellites as

previously described in which the circular orbits are uniformly distributed

in terms of equatorial crossing and the satellites are uniformly dis-

tributed along the orbital arc. Consider Figure 2ol which illustrates

a given orbit with inclination i. Let @ be the latitude, _ be the right

ascension measured from the equatorial crossing, and o be the orbital arc

measured also from the equatorial crossing.

Figure 2.1

Consider Figure 2.2 which illustrates the area element dA at the equatoro

/

/
/

quator
d*o

Figure 2.2
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It is obvious that dA is given by
o

B

2
dA = r de (2.1)

o d_o o

where r is the radius of the orbit. Let f denote the density of the satel-
o

lites at the equator. Then, the number dN of satellites contained in dA o

isgiven by

dN = f dA (2.2)
o o

As these satellites move to latitude e and right ascension ¢, the corre-

sponding area dA is then given by

2
dA = r cos0 dlde (2.3)

and the density f is then obtained from

dN = f dA (2.4)

Substitution of Equations (2.1) - (2.3) into (2.4) yields

fod_o de o

f = (2.5)

cose dCde

However, from Figure 2.1, we obtain the following spherical trigonometric

formula

sine = sin i sin o (2.6)

so that at latitude G we have

cose de = sin i coso do (2.7)
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and at the equator we have

dO = sin i doo (2.8)o

Moreover, it is easily verified that we also have

d_ = dlo (2.9)

d o = do (2.10)
O

Substitution of Equations (2.7) - (2.10) into (2.5) yields

f
o

f - (2.ii)

COS 0

which states that the density is inversely proportional to the cosine of

the arc length.

Next, we obtain the equatorial density f as follows:o

8 max _ 2_

N = f r cos0 d_ do

0 min o

0max

= 2_r 2 I f cosOdOOmin

_/2
f

= 2_r2 _ f sin i cos o d o
J
-_]2

_/2

= 2_r2 I fo sin i do-_/2

2
= 2_2 r f sin i (2.12)

o

in which Equations (2.7) and (2.11) have been used.
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Substitution of Equation (2.12) into (2.11) yields

N

f = (2.13)

2_2r2 sin i cos

which expresses the density in terms of the total number, the radius, the

inclination and the orbital arc. However, it is more convenient to obtain

an expression in terms of latitude than orbital arc. This is accomplished

as follows: Using the identity

2 2
cos U = i- sin o (2.14)

and also Equation (2.6), we obtain

sin i cos o _sin 2 20= i sin ) (2.15)

so that Equation (2.13) becomes

N

f = (2.16)

2_2 r2 /_sin2i - sin2_)

2.2 Angular Separation

The system of N satellites under discussion is considered to be uni-

formly distributed in terms of equatorial crossing and also along the or_

bital arc. It is easily verified that the angular separations between the

satellites are given by

27

AS = _-_ (2.17)

27

Ao = -_-- (2.18)
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SECTION 3 - REGION OF OBSERVATION

3.1 Geocentric Conical Angle

Consider a ground station G on the earth's surface. Let B denote

the conical observation angle at the earth's surface, _ the conical

angle subtended at the earth's center, r the mean radius of the earth,e

h the satellite'S altitude, and a the conical distance as illustrated

in Figure 3.1.

a

re \\

Figure 3.1
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The geocentric conical angle _ may be obtained as follows: For the triangle

OGH, we have the sine formula

(re + h) sin
a = (3.1)

sin (_- B)

and the cosine formula

a2 = re2 + (re + ho2] - 2re (re + h) cos e (3.2)

Substitution of Equation (3.1) into (3.2) and use of the identity

2 2
sin _ = I- cos e (3.3)

yield the following quadratic equation for cos

2 {re hl [_ hl 2 c°s21 0 (3"4)

cos e - 2 sin28 cose+ e sin28 - =

<re+ e+
whose solution is given by

cose = sin B + cosB _ (3.5)

+ -- _re+n /

It may be verified that the physically acceptable solution is the one which

yields the smaller angle e, i.e., the one with the positive sign in Equation

(3.5). The other solution yields the larger angle _ which results in a cone

going into the earth, which is thus rejected.

3.2 Boundaries of Intersection Region

Consider Figure 3.2 which illustrates a ground station G and a ship

S, and also the region of observation _ common to both of them. Let C be

the central point of the great circular arc GS, and y the angle GOC.
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G

0

Figure 3.2

For simplicity, let G be on the equator and let S be at latitude 0s

and longitude _ with respect to G, as illustrated in Figure 3.3.
s

S

Figure 3.3
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Then, from spherical trignometry, the arc length 2y between G and S is

given by

cos 2 y = cos 0 cos _s (3 6)S

and the inclination K of S with respect to G is given by

sin 0 = sin K sin 2y (3 7)s

Next, consider Figure 3.4 which illustrates the boundaries R and L

of the intersection region _. It is to be noted that these boundaries

are not arcs of great circles, but are arcs of small circles.

s
G _ _ -----_------

k R\ /
\ /

mJn

Figure 3.4

In order to obtain expressions for the boundaries R and L, it is conven-

ient to consider the arc GS as the equator in an oblique coordinate

system. First, consider the curve R.
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Let e' be the latitude and _" be the longitude of a point with respect

to G. Then, from spherical trigonometry, the equation of the curve R is

given by

cosa = cose' cos_" (3.8)

However, if ¢' denotes the longitude measured from C, then we have

_" = _' + Y (3.9)

and Equation (3.8) becomes

cosa = cos 0' cos (_' + y) (3.10)

which is the equation for the boundary R in the oblique geographical system

having C as the origin of latitude and longitude. Similarly, the equation

for the boundary L is given by

cos0_ = cos O' cos (i' - ,) (3.11)

The points of intersection of the curves R and L are given by

PI (i' = 0, e' = e'max ) and P2 (_' = O, 0' = e'min ) where

, -i / \

= cos I cos _) (3 12)
0 max

% COS "{
\

min max (3.13)
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3.3 Regular to Oblique Geographic Transformation

Let _ = (x,y,z) denote the coordinates of a point in the regular

geographic system, and r-_= (x', y', z') denote the corresponding coordinates

of the same point in the oblique geographic system. Figure 3.5 illustrates

the angular rotations to accomplish the necessary coordinate transformation.

/

Z Z

l zy,
t //

×"

Y

X

Figure 3.5

Let A denote the transformation matrix from _ to _', i.e.,

7' = A_ (3.i4)

Then, it is well-known that A is given by

C C S S S

y K y y _<

A = - s c c c c (3.15)

0 - s e
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where the symbols s and c respectively denote the sine and cosine func-

tions of the argument which appears as the subscript. Next, it is also

noted that r and r' may be respectively expressed in terms of their

latitude and longitude as follows:

x = r cOc_

y = r cos _ (3.16)

Z = r s
O

x' = rc@_c#i 1

y' = rce_s_ (3.17)

z' = rs@,

Thus, Equations (3.14) (3.17) may now be used to express the oblique

latitude and longitude in terms of the regular ones. The final results are

given by

!

s@ = - s c@s_ + cKs @ (3.18)

cKc@s _ + s so (3 19)tan (i'+ y) =

c@c

3.4 Oblique to Regular Geographic Transformation

Next, to obtain the regular latitude and longitude in terms of the

oblique ones, we proceed as follows: We note that

T _
= A r' (3.20)

where AT denotes the transpose matrix of A.
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Then, proceeding as before but now using Equations, (3.20) and (3.15) -

(3.17), we obtain

s8 = s s + c s + c (3.21)Y < c8_ c_l y < ce' s_r < soJ

C S - S

tan _ = < c8' (_' + Y) < so' (3.22)

cO, c(_, + y)
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SECTION 4 TIME AVERAGE POPULATION

4.1 Exact Folmulation

Let N_ denote the number of satellites (time average population)
within the common domain of observation _. It is obviously given by

Nf2= _ f d_ (4.1)

where the density f is given by Equation (2.16) and the element of area

d_ is given by

2
d_ = r cos6 d_ de (4.2)

It appears that the above integral may be trivially expressed in terms of

the regular latitude 6 and longitude @ as follows:

8 max _R(6)f.

N = I / N cose d_ d6 (4.3)2_2 /--(sin2i- sin28)
e min _L(6)

where _R(@) denotes the expression obtained by solving for _ in terms of @

using the equation for the R curve given by Equations (3.10), (3.18), and

(3.19), and similarly for _L(@) in terms of the L curve. Not only is this

process difficult, but it is noted that the integral on the RHS of Equa-

tion (4.3) may not even be valid or, worse yet, amenable to numerical eval-

uation even in principle. This point becomes evident by combining Figures

3.3 and 3.4. It is possible that the location of the ship S with respect

to the ground station G can give rise to the case where, in performing the
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integration with respect to _, the process does not take place from the L

curve to the R curve and, furthermore, in performing the integration with

respect to e, the process also does not take place fromemin to emax .

This difficulty can be circumvented by writing the element of area dfl

as follows

2
dfl= r cos0' d_' dO' (4.4)

so that the integral becomes

e'max _'R(O')

Nfl= f / N cos0' d_' dO' 2

8'min _'L(8') 2_2/--(sin2 i - sin O)

_'max f_' '.)

r R (O

/ _ (SySKc0C°S0' d_' d0' 21(4.5)

_ N
9. _ 2

2_- e'min _'L(8' _ i ,c , + CyS co, s#, + cEso, )

in which Equation (3.21) has been used. It is to be noted the _' integra-

tion will always proceed from the L curve to the R curve, and the e'

integration will always proceed from e' min to 0' max.

A.2 Approximate Formulation

An approximate formulation may be obtained by going back to the original

Equation (4.1) which may be used to yield the following

Nf_ = fave_ (4.6)

6-17



where

2
= r cosO' d_' d0'

= 4r2 'max ' (0') ' dO'cos0' d_. • : -
0 0 .... • ...... .

!e'max f _1 lcosc_,) _ l ,
= 4r2 cos0' cos Y d0 (4.7)

0

in which Equations (3.10) and (3.12) have been used. This integral may be

evaluated numerically once the relative position of the ship S is speci-

fied. The average value of f to be used may be obtained by averaging the

4 values at the mid-points on the axes of symmetry of _. These, in turn,

may be obtained by averaging the values at the center C and those at the

extremities P. illustrated in Figure 3.4. Thus, we may write
I

fave = i [ f(Pl) + f(P2) + f(P3) + f(P4) +4f(C)]8 (4.8)
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SECTION 5 - AVERAGE POPULATION TIMES

5.1 Exact Formulation

First consider Figure 2.1, for which we may write the following spher-

ical trigonometric formulas

sin 6 = sin i sin o (5.1)

cos o = cos 6 cos _ (5.2)

where the relevant quantities have already been previously defined in

Section 2. Next, consider Figure 5.1 which illustrates the ground station

at G, when the satellite crosses the equator at NI. Subsequently, when

the satellite has moved to latitude 8, the rotation of the earth has taken

the ground station to the point G.

@
G o-

G

Figure 5.1

Then, it is obvious that the following relation holds for both direct

(i < _/2) and retrogade (i > _/2) orbits

. • = :_+ wo (5.3)

where

P
w (5.4)

P
e
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= longitude of satellite crossing measured from ground station

= right ascension of satellite measured from equatorial crossing

= longitude of satellite measured from ground station

o = orbital arc of satellite measured from equatorial crossing

= ratio of satellite orbital period P to earth rotational period Pe

Substitution of Equation (5.3) into (5.2) yields

coso = cos0 cos (¢ + _o - _) (5.5)

Equations (5.1) and (5.5) express the latitude and longitude in terms

of the orbital arc. Symbolically, we may write

6 = 6 (o; i) (5.6)

= _ ((_;i, H) (5.7)

In turn, these equations may be substituted into Equations (3.18) and

(3.19) to yield expressions for the oblique latitude e' and longitude

_' in terms of orbital arc o. Thus, we have

e' = 6' (O, _; <, Y) = 0' (o; i, H, _, y) (5.8)

_' = _' (6, ¢; <, Y) = _' (o; i, _, _, Y) (5.9)

which constitute 2 equations in the 3 unknowns e', _' and o. If we wish

to determine the point of intersection with the R curve bounding one side

of the common region of observation _, we also have Equation (3.10) which

is

cos _ = cos e' cos (¢'+ ¥) (5.10)

Substitution of Equations (5.8) and (5.9) into (5.10) yields a com-

plicated equation for d which may then be solved numerically to obtain
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the value _ = aR corresponding to the intersection point. Next, to

obtain the point of intersection with the L curve, we have Equation

(3.11) which is really Equation (5.10_ with Y replaced by -Y Thus,

the same process may be used to obtain the value _=_L corresponding

to the intersection point. Thus, the population time T of the satellite

within the region _ is exactly given by

P

T - (oR - OL) (5.11)
2_

Let _c denote the value of _ which corresponds to the orbit passing

through the central point C. The above process is first performed with

a value _ =_c +AGO where AGO is a random number in the range Oj AGO < A_

where A_ is given by Equation (2.17) which is

(5.12)

The process is then repeated with values (_+nAG) where n = ±i, ±2,...

until no more orbits intersect the region_ . After this, the entire

above process is then repeated with other random values of AG O The

average population times are then obtained by averaging the results of

all these processes.

5.2 Approximate Formulation

Consider Figure 5.2 which illustrates the spherical triangle formed

by the equator, the meridian and the arc length of the central point C

measured from the ground station G. This spherical triangle is fixed on

the rotating earth.

@

G

Figure 5.2
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Then, we have the following spherical trigonometric formulas

sin@ = sln< siny (5.13)

cosy = cos@ cos_ (5.14)

siny sinl = sin_ (5.15)

which may be used to compute the latitude and longitude of C and also

the angle _ the arc GC makes with the meridian through C.

Next, consider Figure 5.3 which illustrates the spherical triangle

formed by the equator, the meridian and the orbital arc of a satellite

just passing through the point C. This spherical triangle is fixed on the

celestial sphere, which is inertial.

C

N

Figure 5.3

Then, we have the following spherical trigonometric formulas

sin@ = sin i sino (5.16)

cos_ = cos@ cost (5.17)

sinc sin_ = sinc (5.18)

which may be used to compute the orbital arc, the right ascension and

also the angle _ the arc NC makes with the meridian through C.
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However, because of the earth's rotation, the sateliite's ground

track does not really make an angle _ with the meridian through C.

Rather, it is deflected through an angle _ which is, in general,

given by

tan _ = mcose cos_ (5.19)
1 - _cos i

where _ is defined by Equation (5.4). (It may be verified that this de-

flection causes direct orbits to be more inclined and retrograde orbits

to be less inclined as viewed by their ground tracks.) Thus, the angle

between the satellite ground track and the meridian at point C is given

by (_-_), as shown in Figure 5.3. Next, consider Figure 5.4 which illu-

strates the inclination N of the orbital arc with the oblique equator

Figure 5.4

Hence, it is seen that we have

n = % - _ + _ for ascending orbits
(5.2o)

n = % + _ - _ - _ for descending orbits

It may also be verified that these equations are algebraically valid for

both direct and retrograde orbits.
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Next, consider Figure 5.5 which illustrates the case of a satellite

just passing through the point D which is displaced by Ay from the central

point C. This corresponds to an orbit whose equator crossing is displaced

by A_ from the point N.

D

C

G

Figure 5.5

Then, using spherical trigonometric formulas, it may be shown that Ay

is related to A_ by the following equation

tan i sin (_ - i + Ai)
tan (y + Ay) = (5.21)

tan i cos _ cos (i - ¢+ A¢) - sin

Thus, by replacing y with (y+Ay), Equations (5.13) - (5.20) may be used

to compute the inclination N of the new orbital arc with the oblique equa-

tor. It may be verified that Equation (5.21) is also algebraically valid

for both the c_ses of i > _ and i < _. Moreover, it Is also valid for

both direct and retrograde orbits. Furthermore, it is valid for arbitrary

finite differences A_ and Ay , but considerable care must be exercised

when taking the inverse tangent to obtain (y + A_ in the correct quadrant

corresponding to the increment A_ •
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Up to this point, no approximations have been made. It is now assumed

that-the satellite's ground track is an arc of a great circle lying within

the region _ and making an angle q with the oblique equator GS. Figure

5.6 illustrates the cases of orbital arcs passing through the points C and D.

/ /
/ /

I iiI
G o- ,I S

D
L-'----"

----R
I

/
\ /
\ /

Figure 5.6

Now, it is possible to write the following two approximate relations for

the orbit passing through the central point C

sin e' = sinn sin a' (5.22)

cos e' = cos e' cos _' (5.23)

where o' is the arc length measured from the oblique equatorial crossing.

These two equations are the crude analogs Of Equations (5.8) and (5.9) of

the exact case. If we wish to determine the point of intersection with

the R curve, we also have Equation (3.10) which is

cose = cos e' cos (¢' + ¥). (5.24)

6-25

_ T
I



However, instead of substituting Equations (5.22) and (5.23) into (5.24)

to yield a complicated equation for _', it turns out to be the case

that an algebraic equation can be obtained involving sin 0'. This is

accomplished as follows: From Equations (5.22) and (5.23), the following

auxiliary equation is obtained

tan 8'
sin _' - (5.25)

tan n

Equation (5.24) is then written as

cose = cos 8' (cos _' cosy - sin @' sin y)

= cos o' cosy cos 6' tan 8' siny

tan n

• tan n
/

or equivalently

cos y/?-(sin2n sin2 6') = sinn cose + cosn siny sin 6' (5.26)

By squaring both sides of this equation, it is obvious that a quadratic

equation is obtained involving sin 0'. After much simplification, it may

be shown that we have

/-(sin2 2 2
sin 8' _ - cosa siny cosn ± cosy a sin y sin n ) (5.27)

2 2
sin n (i - sin y sin 4 )

A little consideration will reveal that for the intersection point with

the R curve, it is necessary to retain only the positive sign in the above
!

equation. Thus, this expression corresponds to the value at @' = @ R"

6-26



However, from Equation (5.22), it is seen that the Value oR' is

given by

' = sinn sin o'
sine R R (5.28)

Consequently, we have

sin oR' cosa siny cosn + cosy i_sin2a sin 2= - - ¥ sin2n) (5.29)
2 2

(i - sin ¥ sin _)

Next, to obtain the intersection point with the L curve, we have

Equation (3.11) which is really Equation (5.24) with ¥ replaced by -y.

Thus, the same process may be used to obtain oL' which can be shown to

be given by retaining the negative sign in Equation (5.27). Consequently,

we have the following result

in2 . 2 2
sin oL' = cosa siny cosn -cosy_s e - szn y sin n) (5.30)

2 2
(i - sin y sin n)

! !

which states that oL = - oR as expected (only for the case of the

orbit passing through the central point C). Thus, the population time

of the satellite within the region _ is approximately given by

!

p ' - OL )(OR (5.31)

2_

which is the crude analog of Equation (5.11).

Next, to obtain the intersection point between the R curve and

the orbit passing through the point D, a little consideration will re-

veal that it suffices to replace y by (y + A¥) and also use the
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corresponding value of N and then repeat the process above for computing

oR as given by Equation (5.29). However to obtain the intersection

point between the L curve and the orbit passing through D, a little more

caution is now necessary. It now suffices to replace y by (-y + Ay) and

also use the corresponding value of q and then repeat the process above

!

for computing OR but now retain the negative sign. This result yielding
!

the value of oL is no longer trivially the negative of _R' as for the

special case of C.

The above process is first performed with a random value _o in the

range 0 _ A!o < Ai where Ai is given by Equation (2.17) which is

2_ (5.32)
_i =

CN

The process is then repeated with values (A_o +nAi) where n = El, !2,...

until no more orbits intersect the region _. After this, the entire above

process is then repeated with other random values of A!o. The average

population times are then obtained by averaging the results of all these

processes.

Finally, it must be mentioned that in order to insure that the cor-

rect segment of the R circle (see Figure 5.6) is identified to yield the

desired intersection point as given by the general analog of Equation

(5.29), a little consideration will reveal that we must have n in the

range -_/2 < _ ! 7/2. Thus, if n is outside this range, we must accordingly

add to or subtract _ from n. Similarly, the same procedure applies to

insure the identification of the correct segment of the L circle to yield

the desired intersection point as given by the general analog of Equation

(5.30). Furthermore, considerable thought will reveal that this assign-

ment of the n range not only correctly gives the desired intersection

points for orbits crossing the oblique equator within the observation re-

gion _, but also for the case of equatorial crossings outside it for a

range of &'_ exceeding _/2 measured from the central point C. The rea-

sons for this are not apparent and, at first sight, it would seem that

this assignment of n values outside the region _ leads to incorrect an-

swers. But this is not so because of the manner in which the inverse
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trigonometric functions are assigned their principal values. Thus,

Equations (5.29) and (5.30) contain many subtle features in logic which

automatically combine to yield, in mutual accord, the correct intersection

points regardless of the equatorial crossing. In particular, additional

consideration will reveal that it is only necessary to consider equatorial

crossings such that the orbits intersect the oblique meridian through the

central point C at an oblique latitude g' not greater than e* given by

0 l \cosy/

This corresponds to a range &y* given by

AY* = sin-i \tan Inl(tan0,) (5.34)

so that

I I c°)lAy* min _/2, sin -I ! -i ( I]= tan cos Lc--o_sy/j (5.35)

tanlnI

or equivalently

6y* = min R/2, sin i 2 2 (5.36)cos y - cos
2 2 2 2

cos ¥ - cos _ + cos _ tan n

It is not difficult to see that if an orbit intersects the oblique

equator outside the range _¥* and also eventually intersects the observa-

tion region _, then this orbit would already have been counted as lying

within the acceptable range on the other side of the central point.
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SECTION 6 - RESULTS FOR ORBITING SATELLITES

6-1 Average Population Time Computations

Computations were performed, except for minor modifications, according

to the method discussed in Section 5.2 to obtain the average population

times for Class I and II satellites. The representative values of para-

meters used are shown in Table 6.1.

Table 6.1

Quantity Class I Class II

Period P (minutes) 100.9 717.9
9

Inclination i (degrees) 74.0 63.9

Altitude h (km) 800 20,178.5

Number N 400 i00

The value of B, the conical observation angle at the earth's surface, is

taken to be 80° for both the ground station and the ship. The ground sta-

tion is taken to be a_t the origin of longitude and latitude while the ship

is taken to be at various values of longitude _s and latitude es only in the

first quadrant. It may be verified that for locations of the ship in the

other quadrants, the corresponding results may be obtained by taking mirror

reflections about the primary axes.

After the average population times • have been obtained, the results

were divided by the characteristic time T defined by

P
T = -- (6.1)

to obtain the number of satellites visible to both the ground station and

the ship. (T is the time for a satellite to travel the intra-satellite

distance &o where &o is given by Equation (2.18).' The relevant results

for Class I and II satellites are respectively summarized in Figures 6.1

and 6.2, each of which was obtained by averaging the results using _ given

by Equation (5._9) and those using _ = O.
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Note: (i) Numbers in the boxes denote
the number of satellites vi-

sible for the percent of time
2 30% indicated.

4 17%

(2) Numbers below the boxes de-

note the relative longitude
and the absolute latitude of

the ship.
(o,3o)

2 84% i 43%
4 58% 2 26%

6 2% 3 21%

m

(0,20) (i0,20)

4 100% 1 97%

6 39% 2 75% 2 68%

i0 12% 3 65% 3 43%
4 46% 4 32%

(o,io) (io,io) (2o,io)

4 100%

6 90% 4 100% 2 100% 2 32%
8 56% 6 64% 4 63% 4 8%

i0 21% 8 17% 6 1%

(0,0) (i0,0) (20,0) (30,0)

Figure '6.1 - Results for i00 Minute Orbiting Satellites
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5 100% Note: (I) Numbers in the boxes denote

6 94% the number of satellites vi-

6 100% 7 88% sible for the percent of time

8 37% 9 57% indicated.
12 58% i0 32%

14 50% ii 25% (2) Numbers below the boxes denote

12 7% the relative longitude and the
absolute latitude of the ship.

(0,80) (40,80)

12 100% 2 100%

14 75% 3 85%

16 23% 4 78%

18 15% 5 74%

22 3% 6 60%

(0,60) (40,60)

3 100% 2 100%

14 100% 4 93% 3 90%

18 60% 5 76% 4 83%

20 51% 6 49% 5 68%
22 34% 7 23% 6 56%

24 12% 8 19% 7 24%

26 7% 9 5% 8 19%

(0,40) (40,40) (80,40)

16 100% 8 100% 5 100%

18 97% i0 93% 6 81%

20 75% 12 71% 7 20%

24 54% 13 24% i0 15%
26 16% 14 3%
28 5%

(0,20) (40,20) (80,20)

20 100%

22 88% 14 100% 6 100%

24 63% 16 66% 8 58%
2 41%

26 56% 18 56% i0 19%
4 10%

28 39 % 20 21% 12 11%

30 29% 24 8% 14 6%

32 14% 26 2%

(0,0) (40,0) (80,0) (120,0) 6-32
Figure 6.2 - Results for 1.2Hour Orbiting Satellites



6.2 Time Average Population Computations

For the special case of the ship at the origin of longitude and lati-

tude, the time average population N may be computed by Equation (4.3).

Numerical integration yields a value of about 28.48% for N /N for Class II

satellites. That is, on the average, 28.48 satellites are mutually visible

to the ground station and the ship when they are together.

As a comparison, it may be shown that the ratio of the area of common

visibility _ to the area of the zonal belt A covered by the satellite

orbits is given by

= [i- sin - (6.2)
A 2 sin i

when the ground station and ship are together. Hence, for Class II satel-

lites, we obtain a value of about 22.4% for _/A. As expected, this value

is smaller than that for N_/N because the density f increases with latitude

and hence contributes toward giving a higher value of N9 in the numerical
integration.

The other comparison is made with the results displayed in the (0,0)

box of Figure 6.2 which are seen to yield a smaller value than that for

N_/N. This is also to be expected because the approximation made in Sec-

tion 5.2 assumed that the satellite orbits are arcs of great circles within

the region _ and hence yields a smaller value of the average population

time r than that obtained by considering the actual satellite ground track.
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