
Computational Aspects of Geometric

Correction Data Generation in the

Landsat-D Imagery Processing.*

I. Levine

General Electric, Space Division

4701 Forbes Blvd., Lanham, MD 20706

ABSTRACT

A method is presented for systematic and geodetic correction data calculation.
It is based on presentation of image distortions as a sum of nominal distortions

and linear effects caused by variation of the spacecraft position and attitude

variables from their nominals. The method may be used for both MSS and TM image

data and it is incorporated into the processing by means of mostly offline

calculations. Modeling shows that the maximal errors of the method are of the
order of 5m at the worst point in a frame; the standard deviations of the average
errors less than .8m.

INTRODUCTION

The geometric correction of the Landsat-type imagery typically proceeds in

two steps. The first, called the Systematic Correction, removes internal distortions

imported in the raw image data by the sensor mechanism, spacecraft motion, inaccurate

sensor pointing, earth's rotation, etc. These partly corrected images still contain

distortions due to uncertainties in spacecraft position and orientation. The second

step, Geodetic Correction, removes these residual distortions using refined values

of the attitude and ephemeris estimates° The refined attitude and ephemeris are

obtained by filtering of image dislocations at Control Points.

Application of the geometric correction requires the generation of the Correction

Data - Systematic (SCD) or Geodetic (GCD), depending upon the processing step.

This data is developed on a rectangular grid in input (pixel, scan line) coordinates

and express the relationship between the input and output map coordinates, within

a standard World Reference System (WRS) frame.

The central part of the SCD/GCD generation is the computation of the coordinates of

the intersection of the sensor's line'of-sight vector, with the Earth's surface
(lookpoint coordinates). The lookpoint coordinates must then be converted to

geodetic coordinates followed by mapping into user's map projection. There are two

user's map projections: Space Oblique Mercator (SOM) and either Universe Transverse
Mercator (UTM) or Polar Stereographic (PS).

* Work performed under National Aeronautics and Space Administration
Contract No. NAS 5-25300.
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Finally, the data, computed for integer values of pixels and lines, is inter-

polated to integer values of output map coordinates. The grid spacing is chosen
so that the data, together with properly defined interpolation techniques, represent

the output coordinates to the desired precision everywhere in the frame.

It should be noted that all the calculations are performed twice at each grid

point, once for each SCD and GCD. They consume a significant amount of the processing

time, which needs to be minimized. At the same time, there are no essential

differences between SCD and GCD. Both establish a pointwise transformation, which

may be written generically as

= F(pixel,line,p),m

where X = (Xml, Xm2) are map coordinates of a grid point and p is a vector ofm

variables characterizing the spacecraft motion, attitude pointing, sensor's

mechanism, etc.

-n
Letting p = p + _, the sum of nominal values of the variables and the deviation

from the nominals, in the first approximation

=_n +_ _, (i)
m m

where X n are the nominal map coordinates and _ is the matrix of the partialm

derivatives (PD)

p=F _-_m]
J

Thus, SCD and GCD may be represented as a sum of the nominal correction data and

pointwise adjustments.

This has significant advantages:

i) It provides.a uniform approach to the SCD and GCD computations, considering
each as one transformation, and

2) Because the nominal spacecraft motion is known for every WRS frame, the nominal

coordinates and the partial derivatives may be computed and stored in a Data Base.

The implementation of such an approach depends a great deal on both the choice

of an output map projection and 6. An analytic form of mapping not only has to

allow derivation of the coefficients _, but it should also afford rapid and precise

online inversion to geodetic coordinates, from which the final map projection can

be generated. In addition, it is desirable to have the nominal coordinates and the
partial derivatives, as far as possible, insensitive to global position of the

frame. Thus, although out technique may be applied to most standard map projections
(such as UTM or PS), a special intermediate projection, Local Space Oblique Mercator

(LSOM), has been employed. The LSOM is the Mercator projection for the sphere, wit_

local 'equator' along the nominal spacecraft inertial velocity at the frame center.
In that projection X n and p are longitude-undependent and thus, can be stored only

for one path. A nat_rai choice of variables 6 is the along-track, cross-track and

radial deviations in spacecraft position, together with deviations in the attitude

angles. The nominal spacecraft motion within a frame is assumed to be in a perfect

circular orbit passing through the frame center.
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NOTATIONS

ap = (apl,ap2,...,apK) - vector (Kxl matrix)

,," theEoclideanofaP
AT - transposed matrics A

- spacecraft position vector in earth-
centered earth-fixed coordinates

X - spacecraft position vector in nominal

s spacecraft coordinates

m = (Xml, Xm2) - output map coordinates

_n - pointing vector in body coordinates

g - pointing vector in local vertical

spacecraft coordinates

- pointing vector in earth-centered fixed
coordinates

- coordinates of a lookpoint on the earth
surface

h - distance from spacecraft to earth
lookpoint

v _ u. l]ulI -1 _ normalized lookpoint vector.

R - local earth radius at WRS frame center

- earth rotation rate

ae, be - earth equatorial and polar radii

-I

eI = e2 = 1, e3 = ae = aeb e
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61 - deviation in the pitch

- deviation in the roll
2

63 - deviation in the yaw

_4 - along track angular deviation

_5 - cross track angular deviation

_6 - relative departure in the radial direction

_7 - time deviation

_k - (2x!) matrix of the partial derivatives
of X with respect to 6k"m

= (BI,B2,...,_7)

A A
@ , @ - the 'equivalent' pitch and roll
p r

- spacecraft orbital rate
s

X - geodetic longitude

- geocentric latitude

- geodetic latitude

1 0 0

ROTI(_) = 0 cos_ -sin_
0 sin_ cos_

cos_ 0 s n_I

ROT2(_) = 0 i

-sin_ 0 cos_]

cos_ -sin_ 0

ROT3(_) = sin_ cos_ 0
0 0 i
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_I ROT. (_b).j = 0 = T.i I

0 0 0
TI = 0 0 -1

0 i 0

I 0 0 i
T2= 0 0 0

-i 0 0
I

0 --i 0

T3= i 0 0
0 0 0

I - the three dimensional identity matrix

The upper index _ indicates the nominal value of a vector.

T - active scan time
act

Troun d - mirror turnaround time

THE NOMINAL SCD

Coordinate Transformations

The local (instantaneous) spacecraft coordinates are described in terms of

the unit vectors (_i,_?,_), where _q points towards the Earth center, the 71

vector is along the orbital angular momentum, and _2= _3 x _I is roughly along
the velocity direction. The local spacecraft coordinates at the WRS center is
called the nominal aoacecraft coordinates. The matrix A transforms a vector X in

earth-centered inertial coordinates to the vector X in nominal spacecraft o
coordinates: s

= AX (2)s o

The inertial to earth-centered earth-fixed coordinate transformation is
defined as

= ETXo , (3)

where E = Eo ROT3(_t)"

The matrix E gives the time-independent component of the transformation,

ROTq(_t) describes the rotation about the earth axis at the rate _. We assume that
t =_0 at the frame center. The corresponding nominal spacecraft to earth fixed
coordinate transformation may be written as

= ETAT_ = pr_ (4)
s s

where P = AE.
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-n

The unit vector g , given in body (sensor) coordinates, is transformed to local

spacecraft coordinates as

_n

g = ROT3(-@ ) ROT2(-@r) • ROT(-0 ) g (5)Y P

where @y, @r' @ are the yaw, roll, and pitch.P

In the nominal spacecraft coordinates, gsmay be expressed as

gs = ROTI(Y)g

where ¥ is the angle in the orbit plane between the spacecraft and the frame center.

In the nominal spacecraft motion cos y =- Xs3/ llXsll , sinY = Xs2/ llXsll ,

and thus, the matrix ROT1(Y) is known completely.

A vector Xm = (Xml' Xm2) in LSOM coordinates is defined as

R in i + sin B (7)
Xml = 2 I - sin B

Xm2 = R_

where R is the earth local radius at the frame center. The local polar angles,

and B, are given by

W = sinB
i

W2 = cos_. sine (8)

W3 = -cosB •cos_

where -I

= _I_ [[ A_ (9)

and u = (Ul,U2,U 3) are earth fixed coordinates of the corresponding point on the
ground.
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Generation of the nominal SCD

The nominal coordinates, Xm, are computed on a grid, consisting of 2nl+l
fictitious scan lines, each line containing 2n2+i points. Because the TM scans in

two directions, it requires two sets of the nominal coordinates, for forward and

backward scans. The computations may be fulfilled in the following order.

i. Generate the time of (i,j) point

tij = Tscene2n I (i-nl-l) + Tact2n2(J-n2-1) + AT

Here

Tscen e = (Tac t + Troun d) (Nscan - KI)

where T is the active scan time, T A is the turnaround time, N is theact. _ roun scan
actua± number of scans, and K I = 1 _or MSS and 2 for TM.

The parameter T = T for backward scans of the TM and zero otherwise.scene

2. Generate 2n2+i unit line-of-sight vectors _n in body coordinates. An actual
mirror velocity profile, together with constant sensor's misalignments may be employed.

3. Compute the spacecraft position vector X and the matrix P at t...
s 13

4. Compute gs according to (6).

5. Transform X and gs in earth fixed coordinates obtaining the vectors X andS ' '

respectively.

6. Determine the lookpoint coordinates, ] = (Ul,U2,U3) , and h from the equations

u = x + hf (i0)

2
a-2

+ u_ b-2 1 (ii)(u_ + u2) e e =

7. Transform u into LSOM coordinates using (9), (8), and (7).

It is convenient to have all distances in units of the nominal orbit radius.

THE PARTIAL DERIVATIVES

Position and Pointing Vectors

Let xnbe a nominal spacecraft position vector at time t , 6 and 6 be the
s o 4 5

angular along-track and cross-track deviations in spacecraft position, and 66 be
a relative_ deviation in the radial direction. Then the actual spacecraft position

vector, X , may be obtained by rotating xn through 64 and 6 This is followed by• s 5"
stretchlng according to the ratio 1 - 66:s

__il

s = ROT2(65) ROTI(_4) Xs(l-_6)
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Similarly, if 61,62, and 63 are deviations in the pitch, roll, and yaw, the actual
(unit) pointing vector gs should be written as

gs = ROT2 (65 ) ROTI(66)g n ,

-n

where gs is defined by (5) and (6) as

-n

gs = ROTI(Y) ROTB(-63)ROT2(-62) " ROT1(-61) _n

Let t = t + 6 Remembering that P = P(t o) = AE ROT3(_to), we can writeo 7 " o

pT at time t as

pT(t) = ROT 3 (-_(to+67))Eo TAT = ROT3(-_67),

"ROT3(-_to )ETATo = ROT3(-_67 )PT

and the actual position and pointing vectors in earth fixed coordinates as

= ROT3(-_67)pTRoT2(_5)ROTI( 64)<(i-_ 6)

= ROT3(-_67)pTRoT2(65)ROTI(_4 )ROT (y),i

ROT3(-_ 3) ROT2(-62) ROrl(-61)g n

The linear terms of the Taylor series expansions of X and f in the vicinity of

6. = 0 (i = 1,2,...,7) give
i

__-Tn

= pT(l + TI64+T265-66-_T367)X s
3

= pr [I+TIROTI(Y)64+T2ROTI(Y)_5.ROTI(Y ) . _ r.6.-i=l I l

]-n- a " ROTl(Y)67 g

Here we used the fact that

ROT (_) = T
9_ i _=0 i
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Introducing _n = pTRoTi(y)_n and

= , we finally have
S

= _n+ pT(TI_4+T2_5 _ gT3_7)P_.n - _n_6

= _n + pT(TI64+T265__T367)P_n -
(12)

3

- pTRoTI(Y)(_ Ti_i)gn
i=l

The Partial Derivatives of Lookpoint Coordinates

Henceforth, we will use a prime to denote the matrix of PD with respect to
computed at the nominal point. From (i0) it follows that

M _ -i
_ = u = _i+ h_l + hl_ (13)

-I

Introducing eI = e2 = 1 and e3 = aebe , Eq.(ll) may be rewritten as

3
2

e2 (Xi+hfi) = ae

i=l

or,

h2(_ fiei ) + 2h(_fiXi e ) + X e. = ai e

Differentiating the last expression as a inplicit function of h gives

h I = _ _ (XI + hfl)(xi + hf_)e 2
2

fi(X. + hfi) e.i i

2 i i= _ u4ei (Xi+hf_)

1
and, after substitution h in (13), we have

i Col (X_ + hfI) _uifie_ - fk _ (X_ + hfi)uie i
Uk = i_k i_k

(i,k = 1,2,3)

%--ww 2

where Co = -L fiuiei
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-i
Using the matrix notations, u may be expressed as

1
u = C(_I + h_l), (14)

where C is a 3x3 matrix with the elements

Ckk = i + Ukfke2Co 1

2 -i

Ckj = ujfkejC o (15)

Transformation to LSOM Coordinates

To transform the lookpoint coordinates, u, to the LSOM coordinates, they

must be represented in the normalized form V = _" l_u_ -I

Differentiation of V Yields

i = 1 _ and introducing the matrix B with

the elements

Bkk = l-U2 IIU_2 (16)

Bkj = - UkU j [IU[I-2,

_i may be written as

_i = i[_iI -i B_I = II_]_-1 BC(_I + h_l) (17)

The next step is transformation of V to W and then to Xm" From (9) and (17)
it follows that

-i

_i = #I_H ABC(-_I + h71). (18)

From (7) and (8) it follows that

i + W1
Xml : ½R. in

i - WI
(19)

Xm2 = R.arctan _ __(-W2/W3)

and therefore,

X1 = R(I_W_)-I iml WI

X1 = R(I-W21)(W2WI3 - W3W12)m2

_-I0



Introducing the matrix

o(000) 0-W3 W2

and using (18), we have

_im = R(I-W_)-I_I =

R IIUII-I(I-W21)-I DABC(X 1 + hf I) (21)

T obtain the final result, we must substitude an explicit expression for
X_ + hf-, which follows immediately from (12):

"- -n

-hpTRoTI(Y) Tk g k= 1,2,3

+ hfI = pTTk_BP(Xn + hfn) = pTTk_3P_n k = 4,5

__n k= 6

-_T3_n k = 7

Description of the Algorithm

Calculation of the partial derivatives is performed simultaneously with the
LSOM coordinate generation in the following order.

i. Compute matrices C,B, and D, given by (15), (16), and (20).

2. Compute matrices

R

J: null(1-w_)DABC
j = jpT
o

3. Compute vector Z = p_n

4. Form five vectors

h r n n n

J1 = r (0, Xs2g2-Xs3g3, Xs2g3+Xs3g2 )

n n

J2 = -h (g_r,glXs2,glXs3)
r

n n n

J3 = h (g2r,glXs3,-glXs2)
r

J4 = (O'-z3'z2)
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J5 = (Z3'0'-ZI)

J7 = (U2'-UI '0)

Here r = llXsll

5. Compute

= Jk_k Jo (k = 1,2,...,5)

= _j_n
6

7 = _JJ7

Here Hk is the 2xl matrix of the partial derivatives with respect to 6k and thus,

B= (Hi'_'_'_4'BD'B6'B7)"

Note, that SCD/GCD calculations require only the first six pair of the PD. The

partial derivatives with respect to time,H7, will be used only to generate the
backward scan grid for Thematic Mapper.

The nominal SCD and PD are computed in double precision and stored in single

precision. Because the PD are changing very slowly over a frame, they may be
computed on a sparse grid followed by linear interpolation onto a finer grid.

For instance, implementation of our technique for MSS requires calculation of PD

on a 3x5 grid.

THE NOMINAL COORDINATES AND THE PARTIAL DERIVATIVES

FOR BACKWARD SCANS OF TM

It should be remembered that application of the developed technique to

Thematic Mapper data requires two sets of the nominal SCD and PD - for forward and

backward scans. But actually only one set must be obtained by the direct iOokpoint

calculation: LSOM coordinates for, say, forward scans may be easily converted to

LSOM coordinates for backward scans. Our calculations show also that, for sensor's

misalignments less than .i°, the derivatives are practically same for both grids;

for bigger misalignment the second set of the derivatives can be obtained by the
linear interpolation of the first one.

Let Xm(t I) and X (t_) be LSOM coordinates for adjacent forward and backward

and _2,Zrespectively. Note,scans at time tI that for the TM

8t = t2 - tI _ 2 Tac t + Troun d = .132205 sec

So, we will neglect changes in the attitude angles during 6t.
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Considering_X m = X (t_)-X (tl)as a function of changes in the spacecraft position,
sensor pointing, an_ e_fec_s of the earth rotation, we may represent it as

X--m A (_m) r
- Xm) _ 8t + (-_l)t I @ + @ +_L = (--_4"tl s p 82 tI

+ ( )tl _t = (_4 as + _7)_t + _ _ + _2 @I p r

A

Here @ and @ are fictitious pitch and roll angles, reflecting a difference in

sens0rPs pointing at tI and t2, and as is the average orbital rate during _t.

-n

Here we will denote the nominal pointing vector g at moments of time tI and t2
as_ P_and q, respectively. The angle between their projections onto the

(_2,_3) plane, (O,P2,P 3) and (O,q2,q3), can be written as
_, P2q2 +

cos @ = P3q3

P (P22+ P + q23)½

or, choosing the appropriate sign,

A Pq2-Pq
-_sin @ = 3 2 3

p p (l_P21)½(l_ql)2½

A

Analogously, @ may be expressed as the angle between projections of P and q ontor

the (_i,_3) plane:

^ P -
@ _ sin _ = lq3 P3ql

r r (l_p_)½ (l_q22)½

For zero sensor's misalignments

2 P2 P3

P (l_P21)½

A
0 = 0
r

CONVERSION TO BASIC HAP PROJECTIONS

It should be remembered, that completely corrected imagery eventually must be

presented in two basic map projections, SOM and either UTM or PSo To generate

correction data in a basic map projection, it is required to invert LSOM coordinates

to geodetic latitude and longitude and then perform the standard mapping into
desirable projection.
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Noting, that the normalized look point vector, V, can be expressed through the

geocentric latitude, _, and the longitude, % as

V I = cos_ cos_

V2 = sin% cos_

V3 = sin_

A

and, employing well known formula for the geodetic latitude

2 b-2tantan i = a i,e e

one can obtain

= arctan (V2V_ I)

2 b-2 V3(I_V3)-aj= arctan e e

For a given Xm, V is computed by the inverted formulae (i0) and (9).

NUMERICAL RESULTS

The Accuracy of the Method

To evaluate the methods accuracy, differences between LSOM coordinates, computed

directly on points of a grid, and those, corrected according to Eq.(1), were
calculated for various spacecraft position and attitude deviations. It is convenient

to characterize the upper level of errors by the maximal along-track (AT) and

cross-track (CT) errors, which coorespond to the errors at the worst points of a

frame (possible different for AT and CT errors). It should be noticed, that the

maximal errors always appear near the corner points and similar for TM and MSS.
They are linearly dependent upon magnitude of deviations and practically independent

upon WRS latitude.

The actual position and attitude departures for Landsat-D are expected to be

01°(_) for the pitch, roll, and yaw and less than 5km in the along and cross track

directions. The radial departure is determined chiefly by the orbit fluctuations

and it will not exceed 9.5km. Modeling shows, that for 6] = 6 2 _T63 = .03°,
64 = _ = 5km, and 6 = 9.5km, the corresponding maximal CT and errors have the
order 6f 5m (CT = 4._7m, AT = 5.03m for MSS and CT = 4.97m, AT = 5.07m for TM).

The inversion from LSOM to geodetic coordinates produces insignificant additional

errors, therby preserving the same order of errors in UTM and PS projections.

For TM, the forward to backward scan conversion results in CT and AT errors

less than .03m for zero sensor's misalignments; for extremely large misalignments

of the order of .5° , the maximal CT errors increase up to .5m.
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Currently the SCD/GCD generation accuracy for LandSat-D are defined in terms

of the average mean-squared errors (im for TM and 1.5m for MSS). Table 1 represents
the 90% maximal errors and the standard deviations of the average errors for Thematic

Mapper, obtained by stochastic modeling 6 Here the attitude angles were normally
distributed with zero means and _ = .01 . Two cases of radial deviations were

considered: a constant equal to 9.5 km, and a more plausible value from a uniform

distribution (-9.5, 9.5) km. Because the errors do not depend significantly upon
distribution of the cross and along track deviations, the latter were kept constant
at 5 km. 400 samples were used to establish results for each case. The table

also represents a case when PD were computed on a 3x7 grid and then interpolated to

a finer grid. The nominal SCD and PD for backward scans were recomputed from the
data for forward scans. Note, that in all cases the standard deviations of the

average errors are less 1 m and thus, the nominal SCD and PD, precomputed for mean

orbit radius at the frame center, provide the geometric correction with the required
accuracy.

Timing

On the VAX, the direct lookpoint calculations take about ii msec per grid
point, interpolation of PD - i msec, the nominal SCD to SCD/GCD correction- less

than .5 msec, and inversion from LSOM to geodetic coordinates - i.i msec per point.

Application of our technique for MSS requires interpolation PD to a finer grid,

two corrections in LSOM coordinates, and inversion to geodetic coordinates;

altogether it takes about 3.1 msec per point. The direct on-line SCD and GCD

calculation takes about 22 msec per point.

It should be noted, that mapping to the SOM requires about 15 msec per point,

which is considered excessive for on-line processing. This time may be significantly

reduced if we take into consideration the fact that the LSOM closely approximates
true SOM distances between points within each frame. The errors of the approximation

are relatively small (less than 5m) and sufficiently regular to permit linear

interpolation LSOM to SOM coordinates. It may be done by using a 9x9 grid of

corrections, precomputed and stored in the Data Base (Ref. i).

CONCLUSIONS

The SCD!GCD calculation technique is based on presentation of image

distortions as a sum of nominal distortions and linear effects, caused by variation
of the spacecraft position and attitude variables from their nominals. The

implementation requires generation and storage of the nominal SCD and twelve (for

MSS), or fourteen (for TM) matrices of PD for each distinct latitude of WRS, along

one path. The maximal errors of the method do not exceed 5.1m at the worst point
of a frame. The standard deviations of the average errors are less than im.

The speed of the processing and the accuracy that is achieved by this technique
makes it an elegant solution in the production environment.
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Table i.

The 90% maximal errors and the standard deviations of the average errors for

constant and uniformally distributed radial deviations.

Distribution Interpolation Forward scans Backward scans
of the radial of PD

90% max STD 90% max I STDdeviation

errors (m) (m) errors (m) I (m)

" [ AT IICT
CT I AT CT AT CT I AT

!

• !

no 2.76] 2.37 .61 ! .49 2.78

constant , ---------_--
yes 3.091 2.69 .63 .67 3.11

no 1.31! 1.78 .29 .32 1.33uniform .....

yes 2.19 1.41 .42 .35 2.19
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