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ABSTRACT

The theory and results of modeling for the MSS Control Point Location Error

Filter are presented. The filter produces the maximum-likelihood estimates for

average values of the spacecraft position and attitude errors during a single

scene. The quality of the filter performance is characterized by the maximal

cross and along-track residual errors for which probability distributions can

be calculated analytically for a given pattern of control points. The filter

with an automatic selection of the best set of estimates provides geodetic cor-

rection at 90% of pixels with residual errors less than 40m for four or more

control points and the mean-squared measurement errors of the order of 20-25m.

The same accuracy can be preserved for eight or more control points and measure-
ment errors of 30-35m.

INTRODUCTION

The ground control points (CP), whose locations are measured on systematically

corrected imagery and whose true coordinates are known from maps, give highly

precise information on image displacements at each of the CP's. The differences

between true and measured locations provide the input to a filter, which produces

refined estimates of the spacecraft ephemeris and attitude errors. Then these

estimates are used for geodetic correction.

The MSS filter theory, represented in Section I, is based on

i) presentation of image distortions, expressed in Local Space Oblique Mercator

coordinates, as a linear function of deviations in spacecraft attitudes and

position (Ref.l), and

2) recognition of the fact, that MSS processing is limited to a single scene with

no more than 20 CP's. It is unlikely that any filter can assess the true time

dependence in the deviations during a single scene. But we still believe that

in some cases the MSS filter will be able to produce an reliable estimate of
average rates, i.

* Work performed under National Aeronautics and Space Administration Contract
No. NAS5-25300.
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An accuracy of these estimates is discussed in Section 2. The covariance

analysis of the estimate errors shows that image distortions caused by the roll

and cross-track deviations are so similar that their origins can be determined

only by near perfect measurements. Thus, the filter is unable to produce an

reliable estimate of both deviations. At the same time, the filter can provide an

equivalent estimate for either variable, say, roll, which compensates distortions

due to both sources. Analogously, for the pitch and along'track deviations.

The analysis of covariances shows also, that initial uncertainties in rates may

be reduced only for the equivalent roll + cross-track and pitch + along-track

rates if there are more than 15 CP's and the mean-squared measurement errors are

of the order of 10-15m. So, in cases of few CP's, that is of interest to us,

only four estimates should be taken into consideration: for the yaw, radial and
equivalent pitch and roll deviations.

Section 3 introduces three global characteristics of filter performance: the

maximal cross and along-track residual errors, together with combined error in

distance. These characteristics can be obtained analytically and they establish

upper levels of errors for any given configuration of CP's. The final formulae

for probability distributions are presented$ more details may be found in Ref.2.

It is known that pattern, which CP's form on imagery, have a strong effect on

filter performance. Examples, given in Section 4, show that one of the most im-

portant simple characteristics of CP's distribution is the maximal cross-track

separation, which has been defined as the maximum of the cross-track distances

between every pair of CP's.

The examples demonstrate also, that for every pattern of CP's, measurement
errors, and initial uncertainties in deviations, there is an optimal set of

estimates, minimizing the residual errors. An approximate algorithm, providing

the automatic selection of such a set, is described in Section 5. Results of

modeling indicate that the MSS filter with the automatic selection provides the

90% average errors less than .5 pixel (40m) for 4 or more CP's and the mean-
squared measurement errors of the order of 20-25m, or for 8 or more CP's and
measurement errors of 30-35m.

I. THE MSS FILTER EQUATIONS

Ref. [i] shows that the local SOM coordinates of a frame point, X = (XI,X2) ,
may be represented as

= X + _, (i)
o

where Xo is true coordinates of the point, _ = (_i' _2''''' _) is a vector of the
spacecraft position and attitude deviations, and _ is a_(2x_) matrix of the partial

derivatives (PD), computed at the same point. Now let Z = (ZI,Z2) be the coordinates
of a CP obtained from a map. We will assume that

: X + _ , (2)
o

where _ =(_i' _2 ) is a vector of Gaussian measurement errors with zero expec-
tation values and the covariance matrix R.
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From (i) and (2), it follows that the measured at a CP displacement,

A-_= X - Z = _ - _ , (3)

is also normally distributed with

E(_) = E(_) - E(_) = _

cov(AX) = E(_ T) = R

Thus, the conditional probability density for AX can be written as

P = (AXi6) = const.exp [-½(A-X + _)TR-I(&x + _)]

Let us assume that _ is constant during a scene. Then a joint density of

displacements at N control point is
N

P(_I,_2,...,A-_/6) = const ._ exp(-½ (_k _
k=l

_ k_)r R-l(_k _ _$)) ,

where upper index k indicates AX and _ associated with the k-th CP.
A

It is known, that the maximum likelihood estimate of _ (we will denote it as _)

is a solution of equation

VL (_) = 0 , (4)

where N

L(_) = in P = -½ S (_k _ k_)r R-l(_k _ k_), (5)
k=l

and differential operator V is defined in Appendix.

It is known also that

A

E(_) = _ (6)

A

and in our case (Gaussian conditional density) the covariance matrix of _ is

T

cov(d) = E((_-_)(_-7) ) =- (VL(7)vT) -I (7)

Note from here the summation index k will be omitted. Eq. (4) and (5) yield

VL = -½ ZV(_ -_)T R-I (_ _ _) =

= ½ Z T R-l(__ _ ) = 0 (8)
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and thus, the solution _ can be written as

-1
= M Y , (9)

O O

where

M lu T R-I=
O

y = fBT R-I A-Xo

Noting that

VLV T fu T R-1=- _ =- M
o

we also have from (7) that

-i
cov(6) = M (i0)

o

Now let $1' $2 be independent with the dispersions cr21' 2o2 In that case

and (9) and (10) yield

= M-IY (ii)

2 M-I (12)cov(_)= oi

where M, Y are matrices with elements

2

mij = l(_li _lj + °1 _2i _2j ) (13)
_2
2
2

Yi = Z (_li AXI + _12 u2i AX2) (14)
2

- -i -I -I

Elements of the matrix M i will be denoted as mij , i.e. M = (mij).

A

Once _ is determined, it can be used for geodetic correction. With geodetically

corrected coordinates of a point being X + u6 , the residual error at the point,

= (_i' €2)' can be written as

=_+_-_ =_+ul- (_+_-) =
O

A __

= _(_-_) (15)

10-4



Thus, "_ is normally distributed with zero mean and the covariance matrix

3 T 2 -i T (16)= H E {(_-_)(_-%)T _ = o I _ M

Eq (16) defines local two-dimensional distribution of the residual errors at a

given frame point. It can be used also for detection of 'outliers', i.e. bad
measurements at CP's. From (3) it follows, that after geodetic correction, the

measured displacement at the k-th CP's, Sk ' can be expressed as

- __ _ _ --
_k = AX -_ = _( ) +

As a sum of two independent Gaussian variables, S--kalso is Gaussian with zero
mean and the covariance matrix.

-- M-I T (17)
cov(_k ) = _21 _ _ + R = Q

The two-dimensional probability density for _k is represented by the countour

ellipses

2
--T Q-I -¢(e) = e e = eonst = X

It is well-known, that the probability that the 'point' Sk is inside the countour

ellipse is X2(X2), so the k-th CP should be treated as an outlier if

¢(_k ) > X2 ,

where %2 corresponds to a chosen confidence level. For instance, %2 = 9.21 for
the 99% confidence level.

All derived above formulae can be easily generalized to include the case when

is a slow-changing function of time. Introducing the average deviations and rates

during a scene,

=(_i,_2,... _)andB = (BI,B2,... B_),

we can approximate the deviation at time t as

- (18)
_ =_+Bt

Now the displacement at the k-th CP at time tk is

_k = k( _ + _tk) +
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and the maximum likelihood function of e, B can be written as
N

L(_,g) = -½ _-- (A_k _ k(g + gtk)) R-I
k=l

(Ax--k_ k(_ _ _t k))T

From the above, one can obtain that the estimates of _ and B (denoted as _ andS)
are given by

= y' , (19)

!

where Y is given by (14) and components of Y are
2

' = _ _2iYi (_li AXI + °I AX2)t (20)

The matrix M consists of four submatrices
1

!

M M

MI = M' M' '

f ! ! T!

where M is defined by (13) and elements of M' and M ' mi_d and mi_J , are
a 21

mij = (!alilaij +_ l_2i la2j)t (21)
a 2

2

'' X'- _i 2
mij = _ (_li_lj + o2 _2i _2j)t (22)

2

We have also that E(_) = _ , R(B) = B , and

A^ 2 -Icov(,B) = o
i MI (23)

A A A
Introducing the estimate of deviation at time t, 6 = _ + Bt, we have that

A A A
E(6) = E(_) + t E(B) = _ + 8t =

and the covariance matrix of 6 is

10-6



cov(_) = E((_ -_ )(_- _ )T) + 2 t E((_ -_ )(_-6 )T) +

+ t2 E((_ -_ )(4-_ )T)=

= C + 2tC' + t2C '', (24)

where C, C' and C'' are the £x£ submatrices of MI I
!

C C
-i

M I = , _, (25)
C C

Further it will be considered that the filter can estimate, at the most, the

along-track (AT), cross-track (CT), and radial (RAD) position deviations and

rates, together with deviations and rates in the pitch (P), roll (R) and yaw (Y).

°I and °2 will correspond to the cross-track and along-track measurements.

II. COVARIANCE ANALYSIS

The covariance matrices, cov(_) and coy (_,_), completely characterize an

accuracy of estimates, which can be achieved by the filter for a given configuration

of CP's and the mean-squared measurement errors _I and _2" It is well-known,
that a pattern, which CP's form on imagery, has a strong effect on filter performance,
especially for a Small number of CP's. At the same time, our calculations show

that for N _ i0 elements of the covariance matrices insignificantly depend upon a

distribution of CPVs. For _._ _ _he standard deviation of the estimates are

approximately proportional to o.NI " At the present time, o_ and °2 arenot expected

to be less than i0 and 12m, respectively; the MSS filter will be processing up to
20 cP's per scene.

Table I shows the standard deviations of _ computed for _. = i0, __ = 12m and

50 (randomly located in a frame) CP's. Comparison of the standard 2deviations with

initial uncertainties in the spacecraft position and orientation, given in Table 2,

demonstrates complete inefficiency of the filter in that case. The reason is simple:
PD with respect to the R and CT deviations, as well as PD with respect to P and AT,

are almost linearly dependent. As a result, the matrix Mis nearly singular, and

thus Eq.(9) can not give a reliable value of _. In other words, distortions, caused
by the R and CT (or P and AT) deviations, are so similar that the difference would be

revealed only in near perfect imagery by near perfect measurements.

It prompts not to estimate CT and AP deviations at all, considering the cor-
responding image distoritons as a result of additional fictitious deviations in R

and P, respectively. Thus, the filter should be treated as a source of appropriate
geodetic corrections , rather than true estimates.

The covariance analysis for time-dependent deviations shows that the filter
is unable to produce reliable estimates of the Y and RAD rates even for N = 50:

the standard deviations of the estimates are 4-5 times as much as their initial
uncertainties.
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At the same time, the filter provides mediocre estimates for combined R + CT

and P + AT rates when _ = 15 - 20 and 01 , 02 are of the order of 10-15m. Table 3

shows such an example for N = 20, _i = I0, and _2 = 12m. Note, that initial
uncertainties in the R + CT and P + AT rates are .83 and .82 _rad/sec (these values

have been computed by data from Table 2).

Despite the fact, that in some favorable conditions the filter can cope with

these rates, such a case will not be considered below. Being interested chiefly
in the case of few CP's we will take into account only estimates of the P,R,Y and
RAD deviations.

III. THE MAXIMAL RESIDUAL ERRORS

The current requirements to geOmetric correction accuracy are specified in

terms of .5 pixel 90% of the time. Accordingly, we will evaluate the filter

performance by the 90% guantile of probability distribution, computed for the
residual errors which were observed at points of some, say 15x15, grid for randomly

distributed deviations, measurement errors, and possibly, CP's locations. Three

types of the 90% errors may be introduced on two-dimensional grids: for the CT and

AT components of the residuals errors and for the total residual displacements
= (_2 + s2)_ The last characteristic will be referred to as DIST.1 2 "

It should be noted, that actually all these characteristics can be obtained

only by stochastic modeling. At the same time there are two additional global
characteristics, which can be computed relatively simply: probability distributions
of the maximal CT and AT errors. These distributions describe errors at the

worst frame points and thus establish the upper level of possible errors for given
CP's.

A

Let us introduce the error in the j-th estimate, 4. = 6. - 6.. Now,

Eq_ (15) may be rewritten as 3 J 3

_i = _ BIj 4j

_2 = _-. _2j 4.3 (J = 1,2,3,4)

It is known that all PD increase towards the corner points of a frame, The CT and

AT errors also reach maximal magnitudes at a corner point lib , although it is
never known beforehand at what specific point. At the corner points only four PD_

namely, _21,_12,_q, and _lA' have significant values. Moreover,mwith an error

less than .1%, th_ may bg-replaced with their maximum values, _ij (retaining, of
course, correct sign). Thus, at the corner points

m m

Sl - _12 &2 + _14 44

_2 _ m 4 + m- Z21 1 P23 A3

Noting that _23 and _14' PD with respect to Y and RAD, have opposite signs at the
ends of every scan line, we always can find a corner point, where _I_ _ and _l& A&

have the same sign (analogously, for _21AI and _2q A_). Being indif[ergnt t0_igns

of Sl and e2' we finally have that the maximal (aNsolute) CT and AT errors, Y1 and

Y2' are
.I0-8



YI = I_12 A21 + I _14 A4 I
(26)

Y2 = IU21 AI _ + __23 A3 I

Here we have omitted the superscript m.

Fortunately, A2, A4 and AI, A3 are practically independent and thus these expressions
may be used separately to derive corresponding distribution and moments (Ref.2).

The following are the final formulae for mean value and variance of Y i:

E(Yi ) = _2 (S1 + $2) (27)

2 2 22Var(Yi) = (i - _) (SI + S ) +

+ 4 S1 S2 ( p °arccos(r) + r - i) , (28)

where

r = (i - p2)½ ]

2 2 -i

S1 = °i _i2 m22

2 = 02o -i for i = i$2 = u14 m44

° I
= m24I

_/ -1 -1m22 • m44

2 2 2 m-i
S1 = °1 _21 ii

2 _ _ m-i$2 = 3 33 for i = 2

1 " m33

The probability distribution of Yi can be written as

Pr(Yi_ A) = A 2_ 1 A2t ) x
S _½ S exp(- _--
I 0

f F(B(n + O" t - n • t) + F(B.(n - O t - n t)) - 1 _ dt,
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S
where n = 1 , B = A ,

_2 SI"r

u

F(u) = 1 exp(- t2/2) dt,
--OO

and SI, S2, p are given by (29).

For a given value of error, A, the corresponding probability can be easily
computed by means of standard subroutines. Modeling has shown an excellent coincidence

of theoretical and empirical values of E(y.) and Var(y ). Smirnov's Test alsoi i
demonstrates sufficient coincidence of the6retical and empirical distributions.

Eq. (26) may be used also for evaluation of the maximal residual error in
distance, which we define as

d = (y2 2,½
m i + Y2 )

We could not derive an exact distribution for d . But we have noticed that empiricalm
distribution of d2 are similar to Gamma-distribution with the same means and variances.

Because E ( d2} anmdVar ( d2)o can be obtained analytically, we have decided tom o

approximate dlstrlbution of dm by Gamma-distribution, which is written here as

A
i a-i

Pr(A) = bar(a) _ u exp(- b) du
0

where

E(dm2 )2a = (30)

Var (d2m )

Var( d2 ) (31)
b=

_E(d2m)

Because, T 1 and Y2 are practically independent,

E(H2) = E(y2 2i) + E(Y 2) (32)

2 2 2Var(d ) = Var(Yl) + Var(Y2) (33)

In Ref.2 it is shown that

E(y_) = s_ + s2 + 4SlS2 (0arccos (r) + r) (34)
Z[

i0-i0



and

21 _ 23Var(y2i) = 2(S + S )2 + 24SIS20 +

+ 32_ (S21+ S2)SIS2(rz + P arccos(r))

32 S2 S2 2
( r + p arccos(r)) (35)_2

2 2

Here SI, S? and P are given by (29). 9Eq. (30)-(35) yield a and b, which are used
to compute-a probability Pr(A) = Pr(A _) for any A by means of a standard subroutine
for Gamma-distribution. Smirnov's Test shows sufficient coincidence of the

approximations and empirical distributions for d ; differences between values of

errors for corresponding probabilities are less tmhan 5-7%._'

IV. EXAMPLES

Table 4 presents means, the standard deviations, and the 90% errors for the

maximal CT and AT errors, together with the 90% errors in distance (DIST). These

data have been obtained by modeling (M) and analytically (T) for _i = o = 10m
and initial uncertainties given in Table 2 (except example 9, where AT _ 185m,

CT = 35m, RAD = 65m, P = R = 120 _rad, and Y = 35 Brad).

From 300 to 600 samples have been used to establish results for each case. The

examples correspond to five selected configurations of CP's, depicted in Fig. l.

Table 5 describes the examples and shows the mean-squared errors of estimates.

Examples 1-3 and 7-8 illustrate the fact that for given configuration of CP's,

measurement errors, and initial uncertainties, there is an optimal set of estimates,

which provides minimum errors. For distribution A, that set includes P and R for
distribution C it includes P,R, and Y. Examples 8 and 9 demonstrate also that

such a set depends upon initial errors in deviations.

As we already know, the partial derivatives _12' _IA' _21' and _?q represent
the main effects of the position and attitude devig_ion§-on iNage disfSrtions.

At the same time, there is significant distinction between _12' H21 and B]&
when the former are almost constant in a frame, the second increase their --' _23:

magnitudes along every scan line. Thus, up to the second order effects, P and R

estimates do not depend upon position of CP's in a scene. Roughly speaking, they
depend upon average CT and AT displacements at all CP's. On the contrary, to

detect effects of the Y and RAD deviations, we should observe differences of these

displacements, so the bigger the CT distances between CP's, the bigger differences

in corresponding BIA and D2q' and the higher an accuracy of the Y and RAD estimates.
Thus, a simple but important characteristic of CP's distribution is the maximal

cross-track separation, H, which we define as the maximum of cross-track distances
between every pair of CP's.

Example I shows that for small cross-track separations (H=29.7 km) the Y and

RAD estimates are absolutely insufficient (457 Brad and 292 m) and, as a result,

the residual errors are large even for very modest measurement errors. On the

other hand, even smaller number of CP's may lead to better results if they are

'nicely' separated (example 4 for N = 2 and H = 169 km). Comparasion of examples

4 and 5 shows that an along-track shift of CP's does not affect significantly an

accuracy of results if cros-track positions are preserved. In addition, example 6
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suggests that a shift of CP's as a whole in the cross-track direction towards to

the frame bounds increases errors. It implies that it is always desirable to

have CP's placed symmetrically along the track.

Analyzing results of modeling, we have noted that the 90% CT and AT errors

can be approximated as

= E(Yi) + 1.5 _Var(Yi) (36)Yi

where E(Yi) and Var(y i) are given by (27) and (28). We have no explanation of
that fact, but it was verified on a large number of cases which have shown that

an error of such an approximation usually does not exceed 5%.

V. AUTOMATIC SELECTION OF ESTIMATES

As it has been shown, for every pattern of CP's, measurement errors and

initial uncertainties, there is an optimal set of estimates which reduces the

residual errors. Consequently, the filter's performance can be improved if it

will automatically select an appropriate set of estimates. Our approximate

algorithm of selection is based on the fact that Y1 and ¥2 are practically
independent, and, bigger maximal errors almost always lea_ to bigger average errors.

In our specific case, the a priori known uncertainties in P + AT and R + CT are

always bigger than errors of corresponding estimates (at least, for mean-squared
measurement errors less than 40m). Thus, these estimates always ought to be

included in an optimal set. Now, all we need is to compute YI twice, with and
without the use of the RAD estimate. In the second case, the standard deviation

of the RAD estimate must be replaced with the initial mean-squared error. Analogously

Y2 should be computed twice to determine when the Y estimates ought to be employed.

Table 6 presents the 90% CT, AT, and DIST errors, computed on a 15x15 grid
as a function of o. for various number of CP's.* Results for each case

have been established by 300-500 randomly generated sets of CP, measurement errors

and deviations. CP's were generated so that the distances between every pair of

them were not less than 75 km for N _ 4, 50 km for N = 5,6 and 25 km for N_- 7.

Additional restriction forbad generation of CP's on the frame borders. The 90%

DIST errors also depicted in Fig.2.

As one can see, the filter provides geodetic correction with the 90% errors
less than 40m if _. _-_20m and N _ 4. For _ = 30 m only 8 or more CP's can

I
guarantee that accuracy. Note these result_ do not include errors due to neglected
uncertainties in rates. These additional errors, accumulated during 15 sec (i.e.

with respect to the frame center) can be evaluated as 8.6 m (o ) in either direction.

Being relatively small, they do not affect significantly the total errors.

It should be pointed out, that the automatic selection only slightly reduces

the average residual errors. At the same time, it essentially moderates errors

in relatively rare cases of extremely bad distributions of CP's.

* Note, that the CT and AT errors are Gaussian and thus may be described also by

the corresponding standard deviations.
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APPENDIX

a - _ x i matrix (vector)

a-T = (al,a2,...,a_) - transposed vector

E(a) - mathematical expectation of

cov(a) = E((a - E(a))(a - E(a)) T) - covariance matrix of

Var(b) - variance of b.

_ _) symbolic differential
V = (_--_i' _2 .... _

operator defined for U = (Ul,U2,...,u _ as

_u I ... _u

VU T = 1 1

olao,e*e,oooI,Io

oooloooo,ooo°o,o

8u _u
1 ...

If A is a £ x _ matrix,

V(7 TA_)VT = 2A
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Table 1

Mean-squared errors in estimates

(N = 50, °l = i0, °2 = 12)

! m m

grad grad grad m !
i

2591 34 375 , 2059 i 299 20

Table 2

Initial uncertainties in deviations and rates (i_)

P,R,Y A_...................i.........._....................._D
i

deviations 350 grad 550m i ll0m 37m

rates .81 grad/sec .16m/sec _ .065m/sec .65m/sec
......................... J ......................._ L

Table 3

Mean-squared errors in estimates.

(N = 20, _i = 10m, _2 = 12m)

I

deviations rates

grad [ i m grad/see [ grad/see

...............3.3 _rad4.0.... --_-_'--_rad---_I!52.2 _......-3i:i ..... I ..................................................5 i " .6
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T a b l e  4 

T h e  90% m a x i m a l  CT, AT, a n d  DIST e r r o r s  ( i n  m e t e r s )  

90% 
188.0 1 8 5 . 9  5 9 . 0 .  22.0 21 .0  '124 .5  20.0, 19 .6  12 .0  1 
I 

T ' 8 4 . 3 1  84 .2  57 .9  21.2 2 1 . 1 ! 1 2 6 . 7  
-- 

1 

M 1110.0l 86 .4  60 .2  27 .3  27 .8  154.8 
dm 90% 

(DIST) 61 .2  26.5 28.9 ,156.7 
I -- -- -a-- 

- - - _ l - ~ p -  

I 
I Example 

-7 
1 

e r r o r  f 
I 1 + 

I 1 

3 ; 4  5 6  7  8  9  1 
1 

-- v 
1 138.3 - - - .  9 . 4  9 . 7  1 2 . 6 . 1 3 . 3  57 .1  , 11.0 ,  5 .5  . 1 0 . 9  i 

t I mean 
t , - -1 

T 38 .1  8 . 6  
' 

8 . 6  12 .2  12 .2  55 .6  ' 11.Q 523--LL.0 ' ------t-- - - -  -- 
. - -7 I 

! 2 6 . 0 ;  4 .6  4 . 8  6.6 6 . 7  4 0 . 3  1 6 , l  3 . 2  5 , 7  , 
4 - .  , - -  

I 

T 126.8 4 .6  4.6 6 .6  6.6 41.6 6 . 1  3 . 2  6 . 1  
(CT) I-- ---- 

1 90% 
I 
1 

-- ; I 
M : 72 .9  16 .0  1 5 . 7  21.5 22.4 113.8 , 19 .4  10.0 1 8 . 5  1 

.. - 4 - * . - .  
T 75.9 1 1 4 . 8  1 4 , 8  21.2 21.2 ,115.0 1 9 . 3  9 . 6  1 9 , 3  , 

1- 
-------+.---- - 7----- -- I 

M 145.8 ' 42.7  30.0 12 .9  12 .2  64 .5  11 .8  11 .2  7 .3  : 
I I 

i 
i T 4 2 . 1  ~ 4 2 . 0  30 .7  1 2 . 3  12 .2  61 .0  ' 10 .9  1 0 . 9  6 . 5  . 

*- I I 



Table 5

Description of Examples in Table 4.

I ......I mean-squared errors in estimatesdistribu-

tion

xampl N H P R Y .RAD

(See Figl (km) (_ra_ (_rad) (_rad) (m)

1 3 A 29.7 14 13 457 292

2 _ 3 A 29.7 14 8 457 -
I

I E

3 1 3 A i 29.7 8 8 - -

! l
_ 2

4 !. B 169.0 i0 I0 87 ............_3...........1t
5 I 2 C 1160.4 i0 i0 88 63 1

]

6 3 D 29.5 47 42 461 298

4 E }1t2.9 7 7 93 66
7 i
8 4 E 112.9 7 7 93 _ 1I

9 i 4 E _12.9 1 7 7 i - 66 i

CT

• • 4
• 4

• •
• 4 •

AT
A B C D E

Figure 1. Control Point Distributions
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Table 6

The 90% CT, AT, and DIST errors (in meters) as a function of N and o i

(°2 = 1.2 oI ).

oI = 10m °l = 20m _i = 30m _i =40m

I i ..........I......ICT AT DIST[ CT AT DIST CT i AT DIST CT AT DIST

i r ,' .....

1 19.0 51.5153.1 33.4 59.9 65.7 49,5 i 73.3! 81.6 68.1 87.4 I 104.

2 13.4 31.5133.0 24.2 47.0 49.7 I 34.9 _ 57.4 63.0 49.0 65.1! 74.4

3 10.8 20.6 22.1 I 19.8i 38.8, 40.8I, 28.4'_,47"5 52.0 38.2 i 58.5!_ 65.3

4 10.0 16.5 18.3 17.6 31.1 t 33.7i 25.0{ 45.9 49.4 33.9, "12 57.3

! I I i

5 9.5{ 14.4116.2 16.5 29.9 32.4 _ 23.41 43.4 46.4 32.51 49.8 55.1_

6 9.0 13.8 14.9 ! 14.7 26.6 28.6 20.8 i 39.6 42°5 28.3 49.2 53.3

i

f

t !8 9.0 i 12.9 14.4 13.6 23.5 25.3 18.51 35.1 37.4 24.7 43.0! 47.1

10 8.3 11.0 13.0 12. 22.5_, 24.1 17.8!._3o.6:33.31 22.1t 42
I t I
I "_1_5"_1i i15 7.8 8.8 9.9 9.9 16.3 18.1 14.2 24.4 26.51 16.9 33
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(m) N = i
80

2

70

3

4

50

40- i

3O

20

J
w _

i0 10 30 40 o 1 (m)

Figure 2.

90% errors in distance as a function of measurement errors _C_2 = 1.2_I).
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