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ABSTRACT

An algorithm to model the effects of internal motion by the

solar array and the high-gain antenna on the attitude of the

Landsat-D spacecraft is presented here. The relative torque

and angular momenta arising from the internal motions are

assumed to be attitude-independent but are considered to be

a source of attitude perturbations. The equation of motion

for the three-body problem is derived and then compared with

the one-body case. The effect of the internal motion on the

control of the spacecraft is shown in a computer study of

the problem.

i. INTRODUCTION

The paper presents algorithms for modeling the effects of

internally moving parts on the attitude of the Landsat-D

(LSD) spacecraft. The internal motions considered here in-

clude the rotations of the solar array to follow the Sun and

the gimballed high-gain antenna to communicate with the

Tracking and Data Relay Satellite (TDRS) (Reference i) o The

LSD system is treated as a rigid three-body system for de-

scribing the equation of motion. Modeling the disturbance

torques produced by moving appendages is very important for

missions such as Landsat-D, which require accurate knowledge

of the attitude and precise control of the spacecraft.

The relative torques and angular momenta arising from the

internal motions are considered as attitude-independent

variables and as a source of attitude perturbations° The
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external disturbance torques and the angular momenta caused

by the internal motions are generated in a profile program

(called PROFILE) on an IBM S/360-95 computer, where null

attltudes are assumed and are transmitted to a truth model

on a DEC PDP-II!70 computer that simulates the effects on

the attitude.

In this discussion, nonstandard rotations such as a 45-de-

gree slew of the solar array to avoid interference with the

antenna and the switching motion of the antenna from one

TDRS to another are neglected. In addition to the rota-

tional motions of the solar array and the antenna, the LSD

spacecraft contains moving parts such as the thematic mapper

and multispectral scanner (Reference 2). However, these

motions are disregarded here because the motions are oscil-

latory wlth a high frequency (=7 Hertz) and because they

generate zero average angular momenta.

Section 2 discusses the mathematical derivations of the

equation of motion and pertinent terms such as the moment of

inertia (MOI) tensor and the center of mass (CM) . When pos-

sible, these terms are compared with the form for the one-

body system used by the Multimission Modular Spacecraft

(MMS)/Solar Maximum Mission (SMM) spacecraft. Section 3

provides simulation results to compare the three-body and

one-body cases. Conclusions resulting from the study are

presented in Section 4.

2. ANALYTICAL CONSIDERATIONS

This section presents the mathematical modeling to describe

the dynamic effects of the moving parts on the motion of the

spacecraft. The equation of motion for the LSD mission is

referenced at the CM of the entire system but is represented

in a coordinate system that is fixed in the main vehicle.

The CM of the entire system is calculated as a function of

time. The MOI tensors for the moving parts are reevaluated
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with respect to a set of tlme-independent axes parallel to a

set in the main vehicle. Also calculated are the angular

velocity of the appendages and the perturbation in the ex-

ternal torques due to the changing positions of the append-

ages. A comparison with the one-body problem is made.

2.1 COORDINATE SYSTEMS AND TRANSFORMATIONS MATRICES

The system under consideration, shown in Figure i, consists

of the main carrier vehicle, designated as body Bo, and

n(=2) moving bodies Bj (j=l, n). Several coordinate sys-

tems are convenlent for discussing the relative motions.

These are as follows:

• Geocentric Inertial Coordinate System (GCI) (Refer-

ence 3)

• Orbit-Defined Coordinate System (OCS) where X

(roll.) is nearly along the spacecraft velocity vec-

tor, Y (pitch) is along the orbit normal vector,

and Z (yaw) is along the nadir vector

• Spacecraft-Fixed Coordinate System (BCS), which is

fixed in the main vehicle B
o

• Coordinate systems fixed in moving parts such as in

the solar array (SACS) or in the high-gain antenna

(ANTCS)
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The transformation matrices (TRMA) to be used in this paper

are defined as follows:

i. TRMA from GCI to OCS : [O]

um

(RI X V̂I) x RI

[O1 = (2-1)

l_I x VII

I
m

h A

where RI and V I denote the spacecraft position relative to
the Earth and velocity unit vectors in the GCI frame, re-

spectively.

2. Attitude direction cosine matrix from the OCS to

the BCS : [A]. In the PROFILE Program [A] is given by the

identity matrix because null attitudes are assumed. In the

truth model, it is represented as

[A] = 1 (2-2)

-r

using the small angle approximation, which is sufficient and

valid, since only small perturbations are assumed; r, p, and

y denote roll, pitch, and yaw angles in radian units, re-

spectively.
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3. TRMA from BCS to SACS : [c_SA)]. The solar array
A

rotates around the y-axls and is driven to follow the Sun.

Thus, its orientation is determined from the Sunline angle

[C(SA)] = [e]y 1 0 (2 3)
ISin e 0 cos

^ T

Given the Sun unit vector, S = (Sx, S 7, Sz) , in the BCS,

the rotation angle e is given by

e = tan-I (S_z) (2-4)

A

because the Sun vector is perpendicular to the x-axls of the

SACS.

4. TRMA from BCS to ANTCS : [c(ANT)]. The antenna

has two gimbals with the inner gimbal angle, g2' repre-

senting the elevation angle and the outer gimbal angle,

gl' representing the azimuth angle. The orientation of

the antenna is determined from the gimbal angles

[c(ANT)] = [g2]y z

cos gl cos g2 sin gl cos g2 -sin g2| (2-5)

= i_ -sin gl cos gl 0 J
[COS gl sin g2 sin gl sin g2 cos g2

The unit vector pointing from the spacecraft to TDRS is re-

presented by P where P = (Px' Py' Pz )T in the BCS.
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The gimbal angles are thus given by

-i
gl = tan (Py/Px) (2-6a

and

-i
g2 = -sin Pz (2-6b)

A

should align the antenna boresight (the x-axisslnce gl' g2
in ANTCS) with the normalized pointing vector 9. (P can be

obtained from the spacecraft and TDRS ephemerides.)

2.2 ANGULAR VELOCITY OF MOVING PARTS

The angular velocity of the moving parts is used to calcu-

late the internal angular momentum of the spacecraft for use

in the equation of motion. It is easily seen from Equa-

tion (2-3) that the angular velocity of the solar array is

as follows:

-_, de A
_SA = d-_ y (2-7a)

The time derivative of the rotation angle e can be com-

puted numerically

d__ = e(t) e(t At) (2-7b)dt At
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Using Equation (2-5) the angular velocity of the high-gain

antenna is

sin g i dg2 _

dg dt

--, _ 1 ^ dg2 Ig I _ = cos gI dg2 (2-8a)• WANT d t z + dT 1 z
dt

dg 1
dt

where

dgi gi(t) - gi(t - At)
dt - At (2-8b)

For SMM, the angular velocity of the moving parts was not

calculated.

2.3 CENTER OF MASS

For LSD, the CM of appendage Bj in the BCS is given by

Qj (t) = (J)(t) ( - -_ ) + x% 2-9)

where Qj0 represents the CM of Bj at the initial time (see

Figure i). The rotation (or hinge) point is denoted by X-_

and _j0 - _j represents the CM of Bj from the hinge point J

at the initial time. Then, at any later time, the CM will

be represented by the first term of the right-hand side of

Equation (2-9). The CM of each appendage changes as a

function of time because the high-gain antenna rotates to

track the TDRS, and the solar array rotates to track the
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Sun. Consequently, the CM of the system, r_',M'changes in
time and is represented by

n /nrcM(t) = M r Qr(t) M r (2-10a) .

r=0 r=0

and the position of the CM of each appendage with respect to

the CM of the system is

_j (t) = _j (t) - _CM(t) (2-10b)

For SMM, the CM of the system was fixed in time in the BCS.

2.4 MOMENT OF INERTIA TENSOR OF THE SYSTEM

The MOI of the system, [IT], relative to axes parallel to

the BCS axes passing through rCM is expressed by

, n

liT(t) Jim _ I [q3(t) + _r ]2
= (Slm

r=O (2-11)

- [_r (t) + Pr]l [_r (t) 4- Pr]m I

where P-_ris the position vector of the mass dm r of body

B r relative to the CM of B r and the subscripts 1 and m

represent the 1 and m components of the vector or tensor.

Note that because q-_ris time-dependent, [IT]im is also de-

pendent on time; in the remainder of this paper, the ex-

plicit time-dependence will be dropped.
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The above equation can be written as

n

ITlmZ IMrIq2° l I rl12 2r Im (qr) 1 (qr)m im

r=0

since

_r = 0

[I (r)]_ is the MOI tensor of B represented in the BCS frame
r

but relative to the CM of B :
r

[_(r)] = [c(r)]T [i(r)] [c(r)] (2-13)

where [I (r)] is the MOI of B represented in the coordinater

system fixed in Br. EquatiOn 42-12) can be simply reexpressed

by

n

[IT] = _ [j(r)] (2-14)
r=0

with

[J(r)1 im = IY(r)lim + Mr q_61m - (qr)1 (qr)m _ (2-15)

For the one-body problem, as represented by SMM, I is de-

fined to be a constant in time.

2.5 EXTERNAL TORQUES

Two external torques are discussed: the gravity gradient

torque and the aerodynamic torque. The solar radiation
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torque is similar to the aerodynamic torque, and the other

external torques are not sensitive to the three-body problem.

The gravlty gradient torque, NGG , can be computed by

_G r_0 ..... 3 dmr (2-16)

where u is the Earth gravitational constant (=3.986005 x

1014 m3/sec2). _ is the spacecraft position vector from the

%Earth. Considering that IRl>> i + l, G is slmply,

n

/R3 _ dmr(_'r + _r)x R[R " (_r + _r )]
r=0

n

= 3__/ Mr qr x R(qr " _) + _ x [y(r)] R1R3
r=0 (2-17)

n

= 3__E^ (r) ^R3 R x [J ] R
r=0

= 3--__ x [IT]R3

The expression for the one-body system has the-same form

except for the replacement of [IT] by the constant [I] .

To simplify the calculation of the solar radiation and aero-

dynamic torques, the LSD spacecraft is modeled as an as-

sembly of a cylinder for the main vehicle, flat plates for

the solar array panels, and a sphere for the antenna. Only

the aerodynamic torque is discussed here because the modi-

fications to the center of pressure (CP) are common in solar

radiation and aerodynamic torques.
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The aerodynamic torque, NAero, is

8

1 2 • x dAi 2-181Naero = -_ CD p v __ _i cp,i
Ji=l

AA

Here, u denotes the spacecraft velocity unit vector, n i

denotes the normal unit vector for the ith surface, qcp,1

denotes the CP of the ith surface from r-_CM, p denotes

the atmospheric density, and C D denotes the drag coeffi-
A

cient. The normal vectors, ni, for the solar array and

antenna surfaces are dependent on time by

^ni= Ic(i)IT _io 2-19)

^ represents the initial normal vector for the ithwhere nio

surface• qcp,i for the solar array and antenna are com-
puted by

qcp,i = Qcp,i - rCM (2-20)

with

-Qcp, = (i) T ( io -Xi) + X. (2-21i , 1

More consideration is required to specify [C (i)] for the

solar array surfaces that are canted• The transformation

matrix from BCS to these surfaces, [c(i)] , is given by

[C(i)] = [C(SA)] [8c]x (2-22

with the canted angle 8
C
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For the one-body case of SMM, n i and _c p are constants,i

2.6 EQUATION OF MOTION

The equation of motion for the LSD spacecraft is written in

the form

dy ¸ ____
m = f (Y(t) , t) (2-23)dt

Twhere Y = (qu' ' ; (_ = i, 2, 3, 4) denotes the

Euler symmetric parameters representing a rotation from the

GCI to the spacecraft-fixed coordinate frame, __T is the

total angular momentum of the spacecraft, and LW is the
wheel momentum.

The body angular momentum of the main vehicle, L-_B, is

given by the total spacecraft angular momentum minus the sum

of the wheel momentum, payload momentum, -_R, and the angu-

lar momentum, _INT' caused by the internal motions

LB depends on the angular velocity of the main vehicle,

_-_0'and _INT depends on the angular velocity of moving

parts, _. To formulate these mathematically, the

angular momentum of the total system, L-_T, ignoring wheel

and payload momenta, is considered

n

= ( + ) x (qr x pr ) dm r
r=0 (2-25)

n

¸= Mr qr × qr + [y(r)] (_o + _r
r=0
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' can be shown asWith some computatlon, LT

n

r=0

where

[K(r)]im = Mr ll_r " (-t'CM- XL) _im - (-TCM- XL) qm 'I

Thus, the body rate of the main carrier is simply

e-"° = [IT] LB (2-27)

and L-_INT caused by the internal motion, is

n

ZllI  r l+ I= I (2-28)
r=l

The time derivatives of the Euler symmetrlc parameter,

q_, can be obtained as

dq_ 1
dt = _ [_(%)]_9 q9 (2-29)

with

0 e3 -e 2 eli

-e 3 0 eI e2

[_(_-_]= e2 -eI 0 e3 (2-30)

-eI -e2 -e3 e4
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The time derivative of the total angular momentum of the

spacecraft is given by the Euler equation as

d--_ = _ext + L-_Tx _-_o (2-31)

For SMM, the body angular momenta, L-_B, is given by

-_B = -_T - -_W -_R (2-32 )

wlth the payload momentum LR. The spacecraft body rate,

"_, is determined by

_= _2 = [I]-I L-_B (2-33)

_3

-i
where [I] is the inverse of the spacecraft MOI tensor.

The time derivatives of the Euler symmetric parameters,

q_, can be obtained as

dq]! 1 [_(-_] q9 (2-34)dt = _ _)

The time derivatives of the total angular momentum of the

spacecraft are given by the Euler equatlon as

--%xt. x 12-3S)

with the external torque, %xt"
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3. SIMULATION RESULTS

A computer study of the effect of the three-body problem on

the motion of the spacecraft has been made using the general

equations derived here. Since the spacecraft is subject to

noticeable external torques, a control law that provides

compensatory torques was necessary to keep the spacecraft

near null attitude. The one-body case, using the same con-

trol law, was also studied.

The roll, pitch, and yaw of the spacecraft main carrier for

both cases is shown in Figures 2 through 4. The results of

the three-body case are represented by the "X" points and

the results of the one-body case are shown as open circles.

Note that both cases are subject to the same control law.

This control law attempts to make the pitch, roll, and yaw

zero and to bring the spacecraft rate to null. This control

law is the same one (Reference 4) that Landsat-D will use

during its acquisitionphases. The torque applied to each

reaction wheel is as follows:

for the roll axis,

T = K (k Ar + _ ) (3-1a)r r r r

for the pitch axis,

Tp = Kp [kp(Ap + B) + Up] (3-1b)

and for the yaw axis,

- k k _r ] (3-ic)Ty = Ky [_y Y

where &r and _p are the roll and pitch attitude errors as

determined by an Earth sensor; Kr, Kp, Ky, k r, kp, ky, and k
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are constants; B is a bias to compensate for the or'bital ro-

tation; and wr, Wp, and Wy are the angular velocity along
the roll, pitch, and yaw data. Because of the values used for

k k and k , the control law is much more sensitive to
r' p' y

the spacecraft rate than to the attitude error.

Most of the structure seen in the plots is a result of the

control law. However, since the control law is the same,

the differences in the plots are a result of the three-body

problem. Note in Figure 2 that after 4.5 minutes the con-

trol law has the roll rate to zero for the one-body problem

but not the three-body problem. Likewise, after 2.5 min-

utes, the pitch rate of the one-body problem is under con-

trol.

4. CONCLUSIONS

The conversion of the rigid one-body problem to the three-

body problem has added another dimension to the study of

dynamics. Although the exact perturbations in motion are

obscured by the control law used, the effects are still im-

portant in control of the spacecraft.

The algorithms used in this paper can be applied to other

spacecraft such as the Space Telescope to study important

low-frequency effects, as in this paper, and also higher

frequency effects that will cause jitter.
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