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I. Introduction

Since nearly every spacecraftis spinningduring part of its

life--inparticular,at the time of orbit injection--spin-axisattitude*

estimationis an importantsegmentof almost every mission support

operation. Indeed,for spin-stabilizedspacecraftthere is often no need

(or desire)to determinethe completethree-axisattitudeat every

point and, in fact, when accuracyrequirementsfor the spin-axisattitude

dictatethat many measurementstaken at differenttimes be processed

simultaneously,the computationof a three-axisattitudemay not even be

possible.

Very often,three-axisattitudeinformationis definitivedata

requiredchieflyby mission scientistsand generallyprocessedanytime

from severaldays to severalmonths after the receiptof telemetry. The

need for efficientthree-axisattitudeestimationalgorithmsin those

cases is determinedby the definitivedata rate. When three-axis

attitudeinformationis requiredin real-timefor the purposeof attitude

control,this is usually providedon-boardby three-axisgyros (e.g. SMM)

or on the ground by the spin axis and a third angle,which can be

obtainedby monitoringsome other sensor readingsuch as IR scannerpitch

(e.g. AEM, Magsat).

Spin-axisattitudesby contrast are usuallyrequirednot only as

definitivedata but also by the ground supportsystem in near real-time

for the purposeof monitoringspacecraftperformanceand determining

large scale attitudemaneuvers. Thus, the efficiencyof a spin-axis

attitudeestimationalgorithmbecomesa factor in the safety and daily

operationof the spacecraft.

Since the single-axisattitudeof interestis invariablythe spin-axis

attitudethese terms will be used almost interchangeablythroughoutthis
work.
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While a number of highly-efficientalgorithmsexist for three-axis

attitudeestimation,I the computationof spin-axisattitude2 is by

comparisonvery clumsy. This is largelybecausethe computationof

three-axisattitude uses complete vectormeasurementsin generaland can

take advantageof the linear propertiesof Euclideanthree-space. The

computationof spin-axisattitude,on the other hand, must rely on

incompletevector information(themeasurementof arc lengthsand

dihedralangles)to determinea quantity (the spin-axis)which is

restrictedto the surfaceof a sphere. Thus,while three-axisattitude

computationsneed only executesimplematrix operations,the computation

of spin-axisattitude is beset with the burden of solvingcomplex

relationsfrom sphericaltrigonometry.

Since spin-axisattitudeis usuallynot computed frequently,the

need for efficientalgorithmsis not immediate,at least not for ground

support systems. The determinationof the spin-axisattitudefrom batch

measurementsof arc lengthsand dihedralangles has become highly

standardizedand reliable3 and there is no obviousneed to replacethis

softwarein normal ground supportoperations.

The need for more efficientalgorithmslies in two areas: I) the

eventual implementationof spin-axisattitudecomputationin onboard

microprocessor-basedattitudedeterminationsystems;and 2) the computa-

tion of spin-axisattitudeaccuracies,which imposesa far greater

computationalburden than computingjust the attitudedue to the greater

number of terms and becausethe computationof the attitudecovariance

involvesimplicitlythe computationof derivativesof the attitude.

The large computationalburden imposedby the need to solve

sphericaltrigonometricequationsin the computationof spin-axis

attitudecovariancesis evident in the work of Wertz and Chen,2'_'6

the most completeand carefulwork to date. The difficultieswhich are

encounteredin this approachare of two kinds: I) the complexityof the

trigonometricrelations,themselves,and 2) the fact that for certain
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cases the representationof the quantitiesbeing calculatedbecomes

indeterminantwhile the quantitiesthemselvesare well defined. This

last difficultyis simply a manifestationof the fact that the

representationof rotationsby Euler angles is sometimesambiguousand is

overcomein the same way, namely,by changing the representation.

The need for computingspin-axisattitudecovariancematrices is

two-fold. Firstly,it is necessaryto be able to assess the accuracyof

a spin-axisattitudecomputationduring the spacecraftmission.

Secondly,it is importantto be able to predictspin-axisattitude

accuraciesfor mission planning,particularlyin the determinationof

launch windows. For an exampleof launch windowcomputationsusing the

geometricalapproach see Chen.?

The purposeof the presentwork is to developalgorithmsfor

computingspin-axisattitudeand the associatedcovariancematrix without

relyingas heavilyas do currentmethodson the solutionof trigonometric

equations. A completely vectorialapproach is, of course, not possible

owing to the nature of the measurementsthemselves. However, in large

degree many of the trigonometricequationscan be abandonedwith the

result that the spin-axisattitudeand, particularly,the covariance

matrix can be computedmore efficiently.

The types of measurementsstudiedhere are of two kinds:

measurementsof arc length,which will always be the angle

betweenthe observeddirectionand the spin axis.

measurementsof dihedralangles, i.e., the angle betweentwo

planes,where the line of intersectionis assumedto be the

spin axis.B

Dihedralangles, in general,are measuredby observingtwo crossing

times in the spacecraftand multiplyingby the angular velocity. Arc
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lengths may be measured in a variety of ways, for example, by direct

sighting (as of the Sun or a star) or by measuring the component of a

vector along the spin axis (e.g., the magnetic field vector). The

measurement of the nadir angle is hybrid in that an arc length (the nadir

angle) is determined from the measurement of a dihedral angle (the Earth

width). It is the measurement of the nadir angle which is the source of

most of the computational complexity.

Estimation algorithms may be classified either as deterministic

(usually single-frame, i.e., single-time) algorithms, in which a minimal

• subset of the availabledata is chosen to computethe spin-axisattitude,

or as optimal (batch)algorithms,in which a larger'quantityof data is

used from which one computes a "best"result. Three cases are treated in

this report

I) A deterministicestimatorusing two arc-lengthmeasurements,

2) A deterministicestimatorusing the measurementsof two arc

lengthsand the includeddihedralangle. (Sincein this

case the spin-axisattitudeis over-determinedthe question

of optimalityis also discussed.)

3) An optimalbatch estimatorutilizingany numberof

measurementsof dihedralangles and arc lengths.

In each case the covarianceanalysisis presentedin detail.

In the appendixthe measurementof the nadir angle is presented. It

is at this point that trigonometricrelationscannot be avoided,at least

in so far as measuringinstruments(horizonscanners)are presently

constructed. The treatmentis similarto that of Wertz and his

collaborators(Ref. 2) but a method is given for avoidingsign

ambiguities.
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The treatmentof single-axisattitudeestimationpresentedhere

complementsthat of Wertz. The advantageof Wertz'streatmentis that

the variancesalong two great circlesof the celestrialsphere

intersectingat the directionof the spin axis and the dihedralangle

between these two circles (thecorrelationangle) is given fairly

directly. Much less direct is determiningthe covarianceof the

spin-axisvector in inertialspace. This part of the calculationfalls

out simply in the presentformalism.

The resultspresentedhere are quite simplealthoughthey do not

seem to be generallyknown. An importantresult,which is demonstrated

here, is that littleaccuracy is lost by relaxingthe constraintin the

optimizationthat the spin-axisvector be a unit vectorand then

unitizingpost hoc. This is responsiblefor a great deal of

simplificationof the methods presentedhere, especiallyfor batch

estimation.

II. Single-FrameSpin-AxisEstimationfrom

the Measurementof Two Arc Lengths

Considerthe simplestcase in which the measuredquantitiesare B,

the Sun angle (the angle betweenthe spin axis and the Sun vector),and

n, the nadir angle (the directionbetweenthe spin axis and the nadir

vector). The case where one of these measurementsis replacedby the

magnetic field angle is analogous.

Let S denote the Sun unit vector,E the nadir vector,and _ the spin

axis. Then

A

S.n = cos B - cS (la)

^ ^

E*n = cos n - cE (lb)
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The directionof the spin-axiscan then be determinedsimplyby using a

method that has been publishedrecentlyby Grubin,9 though it has been in

use since the beginningof the space programand probablyhas been known

for severalhundredyears.

If S and E are not parallel,then it is always possibleto write

= as_+ aE_+ aN _x _ (2)

The problemis now to determinethe coefficientsas, aE, aN.

From Eqs. (I) and the normalizationconditionwe have

^ ^ ^ ^

cS : _'_: as + aE(_'_,] (3a)

^ ^

cE = _'J_= as(_'._J+ aE (3b)

1 =._n.n..=a + a + 2asaE(S.E) + a x 2 (3c)

which have the solution

I [c - CE(_._] (4a)
°s:l_x_f2s

1 [c ^ ^ (4b)
°E-i_X_1_ _-_(S._)_

± i 2 (_ 2_s_E(_._)._)j_/2_= i_x_l_El_-_-_1- - (_)
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Note that there are two possiblesolutionsfor n. These are shown

geometricallyin Figure 1.

It will be convenientto define the followingquantities

laslI ila : c = (s)
~ aE

m 1

1 -(S'E)
U : I (6)

- l xil2
1 1

where the tilde below the letter denotesa two-dimensional"vectoror a

2x2 matrix.

Eqs. (4) can now be written

a = U c (7a)

_+ I [1 - cTu c]1/2 (7b)

aN= I_x_l 2 --"

The covarianceanalysis is now straightforward.• Define the three-

vector

as Ia -- iaE (8)
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Then the covariancematrix of the measurementsis given by

Pc s <6c 6cT> (9)

where the bracketdenotesthe expectationvalue and 6c is the error in c.

The covariancematrix of the spin-axisdirectionin the non-orthogonal

coordinate system is

Pa s <a_ ajT> (10)

and in an orthogonalcoordinatesystem

p_<__T> (11)

Substitutionof Eqs. (7) in Eq. (10) gives readily

Pa = - ---L- (12)

with

M- <a.aaaT>:UPcUT (13a)

V = M b (13b)

S = bT M b (13c)
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1 I c (13d)

The orthogonal representation of the covariance matrix is then obtained

as

P = T PaTT (14)

with

T=Q !!"iX_ (IS)

where the right member of Eq. (13)denotesa matrix labeledby its column

vectors,

It is easy to verify that

PB=o (16)

^

as requiredby the conditionthat n be a unit vector.

A further representationcan be obtainedby writing

M i

~ I BT BTPa = B J_ = B M (17)I

0T j
- !
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where

E oI
I I
~ !

B= _ - (18)
bT I

• !

Equations(17) and (14)may now be combinedto give

2 2

P = Z Z Mi XT (19)i=Ij=l Jxi

where

xI-__,bs(_X_ (20a)

X2 = _+ bE(LX_ (20b)

Eq. (16) is again satisfiedsince

xi._--o i--1,2 (21)

III. Single-FrameSpin-AxisEstimationfrom the Measurement

of Two Arc Lengthsand the IncludedDihedralAngle

The ambiguityin determiningthe spin-axisobservedin the previous

sectionis removedif the includeddihedralangleis alsomeasured, The

dihedral angle _bis defined as the angle betweenthe (_,_) and (E,n)
planes and is easily shownto be given by

A

_.(_x_)
sin _ = " (22a)

/(1-(!"_)"z)(1-(_o_..)2>
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(_) ....
cos _ = • - (.S_)(_'l!) (22b)

^ Z_V'(1-(_-n))(1-(E-n)

tan _ = _"(_ x J_) (22c)
(_.__).(_._)(_)

The geometryis depicted in Figure 2.

To determinethe spin axis attitudeit will be convenientto define

cN =4(1-c2)(I-c_)sin ¢ (23)

and

Its1
£ = cE • (24)

cN

The vectora is now determinedby four equations

cS = as + aE(_-_.) (25a)

cE = aS(._-_)+ aE (25b)
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The three componentsof _ are now overdetermined. The most convenient

solution is obtainedby solvingthe first three equations,which are

linear, leadingto

a = U c (26)

where

i m
^ ^

1 -(S'E) 0

U = I -(_"E) I 0 (27)

I x_ l 0 0 1

The spin-axis_ given by this4, however,is not properlynormalized

since the measurementsare not exact. A properlynormalizedspin-axis

vectoris then obtainedby simply normalizingthe solution

The covariancematrix of a is given simply by

Pa = U Pc UT (29)

and the covariancematrix for the unnormalizedspin-axisis given by

Pn = T Pa TT (30)

similarlyto Eq. (14). The covariancematrix of the properlynormalized

spin-axisvector is recoveredsimplyas

P = _ Q Pn Q (31)
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where

Q = I - n _T (32)

It is well to ask how good is the approximationof ignoringthe

normalizationconditionand then normalizingthe solution post hoc.

Insteadof this seeminglybrutal approachone can find the best solution

to Eqs. (25abc)subjectto the constraintof Eq. (25d), i.e., one seeks

to minimizethe loss function

L(a) = (c-Aa)TpcI (c-Aa) (33)

subjectto the constaint

a3 A _= I (34)

where

n u

o
^ ^

A = U-I = (S'_) I 0 (35)

o o Isx_El2
1 m

The solutionis straightforwardand yields

_opt = (A - _Pc)'1_ (36)

where _ is the Lagrangemultiplierfor the constraintand from Eq. (34)

is the root of the equation

I 1

_T_c A_cC= 1 (37)

which yields the smallestvalue of the loss function.
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Equation (36)may be rewritten

aopt : (IJ,PcU)-la (38)

wherea is given by Eq. (26). Since.aopt is expectedto be close to a,

it followsthat LPcU must be small. An approximatesolutionfor a can-opt

be obtainedby expandingEqs. (37)and (38)in _Pcc and Solving. This
yields

aopt -a - ½ (I-aTA_) PcU a (39)
aTAPcA'la

Now

<l-aTAa>= Tr(PcU) (140a)

<(1-aTAa)2>= 4 aTPca (40b)

so that the additionalroot mean square (rms)error in _ when optimality

is not taken into accountis of the same order of magnitudeas the rms

error in the cosine measurements. However,the source of this additional

error, as shown by Eqs. (40) is the error in the normalization. Hence

this error will be greatlyreducedwhen the unit vector is normalized.

IV. Batch Estimation

The value of avoidingtrigonometricexpressionsbecomesmore obvious

in dealingwith batch estimation. The computationaladvantageof the

presentapproachover the geometricalapproach3 is substantial.
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For batch estimationthe non-orthogonalbasis cannot be used since

only the Sun vectoris constant (and then only for relativelyshort•data

spans), The presenttreatmentfocuseson the case where the measurements

consist of two arc lengthsand the includeddihedralangle. The

extensionto other cases is straightforward.

Let Cs(i), cE(i), cN(i) be a series of measurementsof the Sun
projection,the nadir projection,and the Sun-nadirdihedralangle,

respectively. Then the best solutionfor the spin-axisis obtainedby

mlnlmlzlng

. _iI_ __-__I2

+-1 2
o_I_-_-'-_I

I ^ 1.2} (41)+ 1 cN.n.(_xE)i

subjectto the constraint

n.n = 1 (42)

In order to decrease the numberof subscriptsin the expressionsit has

been assumedthat each data type is availableat each time andthat each

measurementtype has a singlecharacteristicerror. Except for a

proliferationof subscriptsthe expressionswhich followare not changed

when this assumptionis removed.
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The minimizationof Eq. (41) subjectto the constraintis

straightforwardand leads to

: (M-_I)-1 V (43)

where

N
M: Z {I ^ I -i i i} (44a)

N
1 ^ 1 1

v: Z { (i)_i+ cE(i)!i+

and _ is the root of

VT 1 V = 1 (45)
" (M-_I)2

which leads to the smallestvalue of Eq. (41).

As in the previoussectionit can be expectedthat the constraint

can be ignored (},-0)and the solutionbe approximatedby

where

n = M-1 V (47)
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This approximationhas been tested for one spacecraftI0 and been observed

to be quite good. The covarianceof n is given by

Pn : M'I (48)

and the covarianceof the normalizedsolutionis given again by

P = _ Q Pn q (49)

V. MeasurementErrors

The computationof the spin,axiscovariancematrix requiresas

input a model for the covariancematrix of the cosinemeasurements.

Expressionsare derivedhere for computingthese for the case of Sun and

Nadir measurements. The treatmentwhen one of these measuredquantities

is the magnetic field is treatedin the same way.

Sun Measurements

The quantitymeasured is usuallythe Sun angle,B. Hence,

acS = -sinS6B (50)

Nadir Measurements

If the spacecrafthas angularvelocitym, then the Earth width is

gi ven by

_l: .(to-tI) (51)

where tI and tO are the in- and out-triggeringtimes, respectively,of
the Earth scan (fora momentum-wheelmounted scanner,m will be the
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angular velocityof the momentum wheel).

Then, using the resultsfrom the appendix

_C E : _COSn

_cosn sl

- _)co{l- acos-_

_ sinn _cos _
cotY - cotn "_

sinn (sin_ (at0 atl) (52)=)cotY - cotn )) -

where Y is the scan-conehalf angle.

Dihedral Angle Measurements

The dihedralangle _ is determinedfrom the time intervalfrom the

Sun crossing to the mid-pointof the horizonscan

= _[tS - ½(t0 + tl)] (53)

Thus, (B,sI,_)or (B,n,_)is a set of statistically•independent

variables, The "dihedralcosine"cN, however, is given by

cN = sinB sinn sin_ (54)

hence

acN = CN[COtB aB + cotn 6n + cot_ _] (55)

From Eqs. (50-55)the covariancematrix Pc can easily be calculated.
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To a large degree,much ofthe trigonometriccomplexitywhich has

been removedfrom the attitudesolutionhas simplybeen shiftedto the

computationof a derivedmeasurementcovariancematrix. There is,

however,a substantialgain becausethe covariancematrix need not be

computed to the same degree of accuracyas the spinuaxisattitude

itself. •Hence,a great deal of computationalapproximationis possible,

such as approximationof the trigonometricfunctionsby simple rational

functions.

Appendix - Measurementof the Nadir Angle

Becausethe Earth is an extendedbody the nadir vector is not

measured directlybut determinedfrom measurementsof the Earth width.

Earth widths are measuredby a horizonscanner,which effectivelyis a

sensor mounted on a rotatingcone (of half-coneangle y) about the

spacecraftspin axis, which detectsthe crossingsof the Earth horizonon

the scan cone. The Earth has an effectiveangular radiusof p, which is

a functionof altitudeand (fora non-sphericalEarth)latitude. The

Earth width is the dihedralangle betweenthe in- and out-crossings(HI

and HO) the horizonby the scannerand is denotedby _. These quantities
are relatedby the sphericallaw of cosines2

cosp : cosy cosn + siny sinn cos(_/2) (A-l)

The geometryis depictedin Figure3.

Eq. (A-l) may be solred to give

cosn = cosp cosy•-+sinp cos(_/2)/'_v_-cos2p (A-2)
• A
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where

A = cos2p + sin2y cos2(R/2) (A-3)

The sign ambiguitymay be eliminatedif anothermeasurementis

present, say that of the Sun angle,B, and the Sun-Earthdihedralangle,

Y. Let { be the arc length from the Sun directionto the mid scan point

cos{ = cosS cosy + sins siny cos€ (A-4)

Then it is possibleto show that the underdeterminedsign in Eq. (A-2)

must be the same as that of

(cosB- cosy) (_._ - cos_)

Alternatively,one may consider simultaneouslySun and horizon

measurements. This leads to three simultaneousequations

cosScosn+ sinssinncos€= J_._ (A-Sa)

cosycosn+ sinysinncos(_/2)= cosp (A-Sb)

cos2n + sin2n = I (A-Sc)

Equation (A-2)was obtainedby solvingEqs. (A-Sb)and (A-Sc)

simultaneously. One could just as easily solve Eqs. (A-Sa)and (A-Sb)

for cosn and sinn. The resultwill not necessarilysatisfyEq. (A-Sc)

but the two equationshave the advantageof being linear. The solutions

can then be renormalizedto satisfyEq. (A-5c)'

This approachof ignoringthe propernormalizationfor the

trigonometricfunctionshas anotheradvantagein that a •simultaneous

solutionto Eqs. (A-Sb)and (A-Sc)may not exist in certain extremecases

becausethe measurementsare not exact. By solvingEqs. (A-Sa)and

(A-Sb)a solutionwill always exist.
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There is, however, oneclear disadvantage. If Eq. (A-2) is usedthen

6, n, and$ will be statistically independent. If, however, the linear

equations are solved, n will be correlated with 6 and $. Thus, the

simplicity gained in computingcosn is counterbalancedby greater

complexity in computingthe measurementcovariance matrix Pc"

Figure 1

Single-Axis Attitude from Two
Arc-Length Measurements
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Figure 2
Single-Axis Attitude from Measurements

of Two Arc Lengths andOneDihedral Angle _//
E

S

rt

T

Hz Ho
Figure 3

Geometryfor Nadir-Angle Determination
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