SESSION II: ESTIMATION OF TRENDS

William Hi1l, a statistical scientist, began his presentation with
an illustration of ozone depletion curves predicted by the findings of
the NAS (Fig. 27). In curve A, CFMs are assumed to be released at 1973
rates until some point in time where it is assumed that the releases
are suddenly halted. The theory underlying curve A suggests that even
after the release of CFMs is ended, a reduction in ozone will continue
for approximately 10 additional years before the ozone gradually begins
to return to its previous level.
Curve B illustrates the predicted
depletion where it is assumed that 20
CFMs are released at 1973 rates
without interruption. By varying oo o
the rate constraints underlying 7
the chemical reactions involved o
in the ozone destruction mechanism,

a family of curves similar to A and
B is produced.
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Figure 27. 0zone Depletion Curves

The application of statistical methods to recorded ozone measure-
ments has an important role in the evaluation of the effect of human-
related activities on the environment. Since the effects of a long-
term depletion of ozone at magnitudes predicted by the NAS would
probably be harmful to most forms of 1ife, it is important to determine
whether the leading edge of the hypothesized decline has occurred.
Seeking to let the data speak for themselves, Hill created empirical
pre-whitening filters the derivation of which was independent of the
underlying physical mechanisms. When the data themselves are in
question, statistical analysis can perform a "checks and balances"
effort. Hi1l noted that time series modeling has some distinct ad-
vantages. It filters variations into systematic and random parts,
errors are uncorrelated, and significant phase lag dependencies are
identified. Hill discussed using time series modeling to enhance the
capability of detecting trends.

Hi1ll presented an analysis of ozone data using time series in-
tervention analysis to determine whether the predicted decline has
occurred in ozone. He first examined existing ozone data to determine
whether a significant global abnormal trend--any positive or negative
trend, man-made or natural, which cannot be explained by past ozone
data records--has occurred as predicted in the ozone level in the
1970s. The second objective of Hill's analysis was to quantify the
potential detectability that could be provided by future
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monitoring of ozone concentrations through a global network of
recording stations. Detectability refers to the smallest
abnormal trend that would have to occur in the ozone measurements
to be judged significantly different from zero trend. Early
warning of a trend followed by correction of the cause would lead
to the return to normal ozone levels (Fig. 28).

Hill presented plots of monthly
total ozone values recorded at three
sites: Tateno, Japan (36N, 140E),
Mauna Loa, Hawaii (20N, 156W), and
Aspendale, Australia (38S, 145E)
(Fig. 29). Many characteristics of
total ozone data are illustrated in
these plots. The mean ozone levels T T T 1T 1
increase as the distance from the ”’ e o0 2030
equator increases. The amplitude of
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the seasonal variation exhibits a ; ;
similar latitudinal dependency. e ion prezized.
Figure 29 also illustrates the phase Profile A: CFMs released at
difference in the ozone peaks between constant rate until some
North Temperate and South Temperate point in time at which all
Zone stations. One predominant emissions are assumed to be
characteristic of ozone data which curtailed. Profile B: CFMs
is not obvious from this illustration released at constant rate

is the strong seasonal and latitudinal : ; :
dependency of the month-to-month .z1thOUt interruption.
variance of ozone concentrations. @ Tatene. dapen (67
Since ozone recording stations 50
are not uniformly distributed around 0
the globe, the close proximity of
many of the stations casts doubt on
the independence of the data records.
Thus Hill selected a representative g 0
global sample of stations for analysis, ¢ ., /V\U\ANAV\f\F“\fJ\V\
a sample in which no particular region
has a Targer influence than any other
region, by dividing the globe into
nine equal areas (dark lines in

350 (b) Mauna Loa, Hawali (20° N}

uso r {c) Aspendale. Australla (38° §)

TOTAL OZONE (m atm-cm}
™
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a

Fig. 30) such that each area contains 550

at least one active recording site 0

with at Teast 10 years of continuous

data. One station with no more than 0 T s v v
two missing values was chosen for ]

analysis in each area. All data were F1QUY‘62%%é m:ggurgggglz Total
recorded using the same type of instru- Representative of the North
ment, and missing values were estimated T P te (a), Tropical (b)

by a graphical linear interpolation emperate {aj, iropic :
procedure. and South Temperate (c) Data



The stations chosen for
analysis using the above criteria
are listed in Table 1 and are
indicated by the large dots in
Figure 30. Since ozone measure-
ments were not made at Kodaikanal
in May and Jdune 1975, Hill truncated
the series at April 1975. Other
missing values occur prior to the
period of hypothesized trends, and
estimates of these missing values
would be expected to hawe a small
effect, if any, on the results.

Hill noted that while the
global sample of stations was not
truly a random sampie of ozone
recording sites, the restrictions
did not compromise the results of
the analysis.

N [] -’ kﬂ‘“\'
o & T zifw x%L ‘Ar;wr .
cf.._ ® o . dER 4
=\ ARb</IERRD
o 20° = \\- S '! (NN 2
__E_ 00 bi— | _FPJV \—+\| 17 -:!/un \)/1.6.
320l~_‘.' I o ') }ST T
’ 3 (] - ey
L e U
60* -— +— |- —1-
O L T
SLil | | 1 L/,F_L
150' 90w . 30 150°E
Longitude
Figure 30. Stations Selected

for Global Analysis of Total
Ozone Data

Table 1. Stations selected for global analysis of total ozone data.

# OF
MEAN MISSING
ZONE STATION LOCATION PERIOD LEVEL VALUES
North Edmonton 54N, 114W 7/57-12/75 357 0
Temp.
Arosa 47N, 10E 1/57-12/75 333 2
Tateno 36N, 140E 7/57-12/75 323 0
Tropics Mauna Loa 20N, 156W 1/64-12/75 277 0
Huancayo 12S, 75W 2/64-12/75 264 1
Kodaikanal 10N, 77E 1/61-4/75 261 0
South MacQuarie Isl1. 54S, 159E 3/63-12/75 340 0
Temp.
Buenos Aires 35S, 58W 10/65-12/75 288 0
Aspendale 38S, 145E 7/57-12/75 320 0
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The ozone change, or trend, analysis is an application of
the intervention analysis technique described by G.E.P. Box and
G. C. Tiao in the Journal of the American Statistical Association
in 1975. Intervention refers to the occurrence of a phenomenon
(man-related or natural) which could possibly affect the level
of a time series of data. :

Hill's intervention analysis of ozone data attempts to
determine whether a change exists in each of nine univariate
series that would support the theory of a hypothesized depletion
in ozone due to CFMs and other ozone depletion sources. Although
the analysis can be completed in one step, Hill broke it into two
steps so that the changing month-to-month variance of the ozone
data can be more easily incorporated into the analysis.

In this analysis, time series models are first identified.
One of the main reasons small trends can be detected is that there
is a variance reduction capability in time series modeling. Tukey
noted that Hill's "major output is standard errors because that will
be most useful in trend detection." This is graphically illustrated
(Fig. 31) using the monthly ozone data from Tateno, Japan.

RESULTING TATENO TIME SERIES MODEL

Y, = = [FILTER] x [ERROR]

2 12
b1 -y B -4, B)(1 - B
1 2
where
Yt = total ozone observed in month t
At = prandom uncorrelated noise (error) in month t
B = backshift operator such that B]zYt = Yio12
91> 99 = autoregressive parameters representing dependencies
between ozone values 1 and 2 months apart, respectively
010 = seasonal moving average parameter
rewritten

Vi = Yoo oy (Yoo - Yeog3) * ¢y (Vep - Yi1a)

=010 A2 T AL
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Figure 31. Removing the Systematic Varijation at Tateno
by Time Series Analysis
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Removing the seasonal or annual cycle by using 12-month
differences, the variance is reduced by 68% (Fig. 31b). By further
identifying and removing the significant dependencies that are
still remaining (Fig. 31c), the original variance is reduced by a
total of 87%. The eventual residual variation is characteristic
of random error and has been checked for randomness by tests of

significance.

To identify models for Tateno and the other stations such that

the data are reduced to random error the autocorrelation
function which represents the corre]at18ns between data (e.g.,
deseasonalized data) separated by 1, 2, ..., k months is constructed

and is examined for meaningful patterns. For Tateno, the auto-
correlation function for the deseasonalized data (Fig. 32) is

typical of a second order autoregressive model with a seasonal moving
average term. When such a model is

postulated and the corresponding

coefficients estimated (see model in 75
Table 2), Hill obtains the estimated 504
residuals or errors (a,) shown in
Figure 33. Each model“was arrived at  * h} """"""""""""" ﬂr'"
Z il e} Iconﬁ;nc:

independently. Discussion at this
point included a comment by John T
Tukey that "nobody can look at an ’

11 1
° T Liwirs

autocorrelation function and tell ~50]
what's happening." w75 5 4 4

Hi11 reiterated that he is oo {12 momne
letting the data decide what is
significant. Elmar Reiter countered Figure 32. Autocorrelation
that the "periodicity of the Function of "Deseasonalized"
atmosphere varies too much to do Tateno Data 7/57-12/69

this" and further proposed that eigen-
values be calculated for as many
stations as possible.

As a check of the independency of the residuals, the residual
autocorrelation function which shows no unusual correlations or
patterns is generated (Fig. 34). This supports the adequacy of the
model and reaffirms the result that the data have had their
systematic varijation removed, leaving,only the random part for
estimating the background variance (¢”) in trend detection
calculations.

Hi1l identified the pre-intervention time series models and
estimated parameters for each station using the Box-Jdenkins
Univariate Time Series computer package developed by D. J. Pack
at Ohio State University. This package uses an unweighted non-
Tinear least squares algorithm to estimate the ¢s and os.



Table 2. Fitted time series models.
Case 1: TIdentification and fit using data through 12/69
Case 2: Identification and fit using data through 12/71
Case 3: Identification and fit using data through end
of series

STATION CASE
(1-.20B1-.24B2-.088%) (1-B'2)yt
(1-.22B-.2182-.088%) (1-B'2)yy
(1-.198-.20B2-.068%) (1-B!2)y;

.66B) (1-.77B!2) (1+.17B2%)a
. (1-.798'2) (1+.24B2%)ay
.65B1) (1-.80B2) (1+.26B2%)ay

(1-.65B2)ay
(1-.66B12)ay
(1-.698'2)ay

Edmonton

QN =

Arosa (1-.82B%) (1-B2?)y4
(1-.82B1) (1-B'2)yy

(1-.81B1) (1-B!2)yy

(1-.50B'-.13B2) (1-B!2)yy = (1-.76B'%)ay

(1-.48B'-.14B2) (1-B!2)yy = (1-.77B'%)ay
1 2 12 12

(1-.45B'-.13B2) (1-B'2)yy = {1-.81B'?)ay

(1-.6581) (1-B12)y; .79812)ay
(1-.62B') (1-B12)y( .74B12)ay
(1-.6481) (1-B'?)yf = (1-.82B12)ay
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Tateno

W N =

Mauna Loa

n o
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WN =

(1-.73B!+.22 B2-,27B%+.17B"%-.34B°+.18 B®) (1-B'?)y,
(1-.57B%+,003B2-,04B%-.08B"-.16B°+.10 B®) (1-B!?)y,
(1-.498'-.02 B2-.09B%-.17B*-.03B°+.0003B%) (1-B'%)yy

(1-.73B'2}ay
(1-.71B12)a
(1-.85B'2)ay

Huancayo

W N =

(1-.72B'~.17B2) (1-B'2)y,
(1-.64B-.24B2) (1-B!2)y/
(1-.63B'~.258%) (1-B2)yy

(1-.62B'2)a,
(1-.678'2)ay
(1-.70B'2)ay

—
1

Kodaikanal

-
nwn

w

(1-.56B'+.16B2-.178%) (1-B!2)y,
.48B1+.1382-.24B%) (1-B12)yy
(1-.408+.0382-.198°) (1-B'?)y¢

(1-.66B'2)a
(1-.60B2)ay
(1-.65B'2)a,

Buenos Aires

W r =
—
—

]

(1-.55B!) (1-B'2)y,
(1-.538') (1-8'2)y{
(1-.46B') (1-B'2)yy

(1-.47B1-.1382) (1+.1781%) (1-B!2)yy
(1-.47B-.13B2) (1+.17B*) (1-B!?)y¢
(1-.45B1-.15B2) (1+.17B'%) (1-B!2)yy

(1-.73B'2)ay
(1-.68B'2)ay
(1-.75B2)ay

MacQuarie Isles

W N

(1-.7081%)ay
(1-.72B12)ay
(1-.74B'2)ay

Aspendale

G N =




Llet y,, t =1, . . ., N be a set of N observations collected
at equal t?me intervals. Using all data obtained prior to the
(hypothesized) intervention, the first step of the analysis is to
identify a time series model of the form

s(8) (1-B'%)

for each station, where

Ye = e(B)at t=1,2,...,T-1

A is the mean monthly total ozone measurements,

a, is independently distributed

k N(O,ciz) random errors, i=1,...,12 referring to the
12 months

B is the backshift operator (i.e., Bkyt=yt_k)

6(B) is the moving average transfer function,

$(B) is the autoregressive transfer function,

T is the time of hypothesized intervention, and

(1-B12) is used to remove the seasonal variation of the
monthly observations.

After obtaining estimates § (B) and ¢ (B) of 6(B) and ¢(B) which
account for the phase lag dependencies in the data, a linear ramp
function is introduced into the model at the point of intervention
as the second step in the analysis. The model is now expressed as

g, = w/(1-88)y g+ 8B 5 a1, N
¢(B)(1-877)
where £ = 0 t<T
t 1 t>T

and w represents the yearly rate of abnormal change in ozone
measured in (m atm cm) per year. Rewriting equation {7) as

b = + a t' = -T+1, -T+2,...,-1,0,1,...,n

tl xtl .tl ]
where t' = t-T
n =N-T
A 12\ ,4
zeo = [$(B) (1-B77)/8(B)] y,.,

xgr = [8(B)/B(B)] £,

w can be easily estimated by Tinear least squares.

(7)
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Figure 33. General Methodology




r(k)

In these series where the variance is not constant from month to
month, approximately unbiased but not necessarily minimum
variance estimators should be gotten for the ¢s and 6s. (The
transformation procedure of Box and Cox was applied to the
original data [yt] to see if some power or logarithm trans-
formation of y¢ Ted to constant variance in the transformed
variable. No variance stabilizing transformation was found.
However, this posed no real problem since the main objective
was to find nearly unbiased estimators for the ¢s and 6s which
could be fixed when estimating w in the next step.)

The results of the model identification and estimation are
summarized in Table 2 for Case 1, Case 2 and Case 3. The latter

50—
254
NP B A P BT 1 L n29%
o) L ; r——1~= CONFIDENCE
NI N LY L L I LIMITS
Y- 7=
=50~ | | |
2 24 36

lag (k) months

Figure 34 . Autocorrelation Function of the Residuals
(Tateno Data 7/57-12/69)
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is the fit for the complete series through 1975 which is needed
for later calculations. For each station the identification
program suggests the same model for both the shorter and longer
pre-intervention series (Case 1 vs. Case 2).

Once the time series models are thus identified and the para-
meters are estimated using nonlinear least squares and with data
first through 12/69 (Case 1) and then through 12/71 (Case 2), then
the ramp parameter o is estimated from data beginning 1/70 to the

end of the series or-from 1/72 to the end of the series. By proceeding

in this fashion the interval 1970-75 is examined for a possible
abnormal change due to intervention (as measured by w) since it is
a period often associated with the predicted onset of man-made
ozone depletion. Each model is verified by applying tests of
significance to the residual autocorrelations. With the exception
of Huancayo, parameter estimates for Case 1 and Case 2 exhibit
only slight differences. (Negligible terms are left in the model
for Case 2 at Huancayo for comparison purposes only.) The results,
in general, suggest that the pre-intervention series are long
enough to allow for consistent model identification and estimation.
With regard to Huancayo, the relatively large change in parameter
estimates may be due to the near nonstationarity of the data

series as suggested by the Targe number of autoregressive terms
required to reduce the series to white noise. An instrument

drift is one possible explanation of the near nonstationary
behavior of the Huancayo series. Inspection of the identified
models gives some support for a suspected quasi-biennial cycle.
(See, for example, Arosa's moving average term of order 25.)

The results of the first step are the input to the second
step which involves estimating the abnormal trend parameter (w)
for each series over the period of hypothesized change or inter-
vention. Estimates & of w are obtained as the weighted least
squares solution to equation (9). Here the emphasis is
on obtaining not only an accurate or unbiased estimate for each w
but also a precise estimate leading to improved sensitivity in trend
detection. Theoretically, weighted linear least squares will
give minimum variance unbiased estimators when there is non-
homogeneity of variance.

The weight assigned to each observation in the analysis is
the reciprocal of the standard deviation of all data for that
month prior to the hypothesized intervention. For example, in
Case 1, the weight for Tateno in May 1972 is the reciprocal of



the standard deviation for all May observations for Tateno prior
to 1970. By assigning weights in this manner, the weights are
not "contaminated" by observations which are potentially depleted.
Thus, defining

m=1+ (remainder t'/12), t' > 0

and Wy = January "weight"
W, = February "weight"
etc.,

the & is obtained for each series and case as the least square
solution of

WZir S0 WX tWwa,, th =0,1,...,n (10)

where Zt" xtl and t are as defined in equation (9). The standard
error of o is calculated for each station as

SE (4) = 6" ™ (11)
where the elements of the vector X,
Xeo = {8(B)/B(B)}E, t' = 0,1,...,n
(Note X' is the transpose of the vector 5.)
W is a diagonal matrix with W, on the diagonal

and 82 is an estimate of the weighted residual varijance.

The estimates of w and the standard errors are presented in
Table 3. For both cases, there are four positive estimates and
five negative values for w covering the nine stations. In only
one instance, Huancayo (Case 2), is the estimate of w different
from 0 at the 5% level of significance. The large difference
between & (Case 1) and @ (Case 2) for Huancayo suggests that the
increase in the ozone level is a recent phenomenon and may be due
to nonenvironmental factors such as an instrument drift. Overall,
the results summarized in Table 3 suggest that, in the nine
stations analyzed, there has been neither a significant change
in the ozone level during the 1970s nor a positive or negative
tendency.

A global estimate of change in the ozone, o., is obtained
by averaging the individual estimates of w. To 91mp1ify the
calculation of the standard error of dg, the nine station residuals
were assumed to be independent of one another.
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Table 3. Estimated values of w and standard errors measured in
(m atm~cm) per year.

CASE 1 CASE 2
STATION @ SE(&) i SE(&)
Edmonton +0.582 1.96 +0.727 2.56
Arosa ~0.407 1.10 -0.638 1.64
Tateno +0.471 1.10 +0.185 1.56
Mauna Loa -0.170 0.70 ~0.400 0.99
Huancayo +0.886 0.92 +2.330(1) 1.18
Kodaikanal ~2.220 2.10 -1.895 2.30
MacQuarie IsI. +1.610 1.84 +3.710 2.70
Buenos Aires -0.277 1.59 ~0.434 2.45
Aspendale -1.180 0.90 -1.167 1.25
Global Avg. -0.078 0.28(2) +0.269 0.65(2)
(1) Significantly different from 0 at 5% Tevel of significance

(2-sided).

(2) Pooled estimate.

Hill checked this assumption by studying the cross-correlation
coefficients between the residuals for all 36 pairings of the nine
series at different lead/lag values. If two stations are independent,
the cross-correlation coefficients should have zero mean and show no
pattern that clearly denotes a relationship. Hill detailed his tests

of the data for independency.

Since not all the series are variance stationary and hence not
likely jointly covariance stationary, the cross-correlation analysis
is applied to the weighted residuals. It can be expected that the
weighted residuals will be approximately white noise. For two



independent white noise series, the 95% confidence 1imits for the
estimated cross-correlation coefficient for a lag of k months are
approximately + 2 x (N-|k|)™2. Figure 35 illustrates a typical
cross-correlation function which was observed in the analysis.

.Sy Aroso — Tateno

A summary of the significant
cross-correlations for the weighted
residuals is given in Table 4 for up
to 1ead/lag 12 months, a period Hill
said is more Tikely to show a rela-
tionship between stations, if one
exists.

(A

There are 35 significant cross-
correlations out of a total of 900
values, 25 Tead/lag cross-correlation . .
coefficients calcutated for each of 0 20 oo o 2 %

36 pairings. The observed percentage Fiaure 35 Esti%ated Cross-
of significant cross-correlations is g . . s x
therefore 4% as compared with the g?raglaﬁ%gg ggggz&g}gngioalz(k)
theoretical 5%, if each series is g .

; : Arosa and Tateno Models (fit
white noise. Although there are no through 1975) A Positive Lag (k)
obvious patterns in Table 4, certain g : 9

g . Represents Tateno Lagging Arosa
of the significant cross-correlations by k Months. The Dashed Lines are

might indicate either a chemical or Y o .
physical transport phenomenon. For E?ﬁiﬁgprox1mate 95% Confidence
example, two pairings of tropical ‘ ’
stations--Huancayo-Mauna Loa and
Kodaikanal -Huancayo--show a positive cross-correlation between re-
siduals of the same month (or lag 0). One of these, the largest
cross-correlation coefficient to be estimated in this analysis, is
0.35 between Huancayo and Mauna Loa. Despite the fact that the
significant cross-correlations are small in magnitude, these two
pairings might be suggesting some relationship between tropical
stations where the chemical effects related to ozone production
dominate. There is a possibility that both chemical production

and physical transport factors may explain these and some of the
other significant lead/lag cross-correlations. Regardliess, neither
the pattern of the cross-correlations nor the proportion of
significant values seems to contradict the general assumption of
independency.

CINE R T - N

A further test of independency is obtained by applying the
asymptotic approximation formula of Haugh

* M - ~
Sy = N3 L (1D b f, (k)2 (12)

47



48

Table 4.

residuals.

Significant cross-correlation coefficients for weighted
(A > B* means B lags A by k months with a

significant positive (+) correlation.)

Lead/Lag (k)
0
1
2

0o N o

10
11
12

Significant Cross-Correlations

Kod + Hua™, Hua - Mau®, Asp > Mac”

Edm - Mau ,

-> Edm+ .
+ Kod~

Mac

Mau
Mac - Mau~
Mau » Tat™,
Bue - Hua™,
Hua > Aro ,
Tat - Kod ,

Tat > Mau~,

+
Bue -~ Mau ,

+
Bue - Mau ,

Tat - Asp ,

Tat - Asp+,

Mau - Mac ™,
Tat - Asp+,
Kod -~ Aro+,
Bue - Hua+,

Tat » Asp+

Hua > Mau ,

Kod -~ Asp ,

Bue -~ Kod~, Kod -~ Edm~

Kod -~ Asp™, Mac - Kod™,

Asp ~ Bue+
Mau -~ Asp’, Edm - Aro”
Kod - Tat~

Tat -~ Asp , Asp » Tat™

Aro - Asp”

Bue - Kod+

where ?12 is the estimated cross—corre]ation coefficient between

series 1 and series

2M+1 = 25 degrees o

as being independent if SM* is Tess than the y

significance level.
SM* > 37.7.

2 at lag(k

f freedom.

, and M

}s set equal to 12.
test statistic SM* is compared to the x¢ distribution with

The

We would not reject series 1 and 2

= 37.7 at the 5%

Only four of the 36 pairings have a significant

Huancayo-Mauna Loa, and Mauna Loa-Tateno.

a single cross-correlation dominates the estimate of SM*.

These are Aspendale-Tateno, Buenos Aires-Mauna Loa,

In the two latter pairings,
There is

the lag (0) positive cross-correlation between Huancayo and Mauna Loa,
and the negative cross-correlation for Tateno lagging Mauna Loa by

5 months.

The high SM* between Aspendale and Tateno is reflecting



the significant correlations at k = -9,

Figure 36 and Table 4.
Tateno.) This may be reflecting
some transport pattern of ozone
between two stations which have
nearly the same longitude and are
approximately equal distance but
opposite in direction from the
equator. The Buenos Aires-Mauna
Loa value for S,* is largely
affected by the cross-correlations

at lags 11 and 12 months (Table 4).

In summary, two types of
statistical tests have been per-
formed on the cross-correlations
of the residuals from all 36
pairings of stations. The propor-
tion of significant results does
not appear unusual, nor does there
appear to be a dominant pattern
that would lead one to reject the
net or general assumption of in-
dependency. There are, however,
certain significant cross-

Palk)

-8, -6, -3, -1, 8 in
(The negative k means Aspendale lags

S Aspendale — Tateno
't
3
2
{
o

2
-3
4
3

e . w o o % 3
log (k}
Figure 36, Estimated Cross-
correlation Coefficients of
Weighted Residuals from Aspendale
and Tateno Models (fit through
1975). A Positive Lag (k)
Represents Tateno Lagging
Aspendale by k Months. The
Dashed Lines are the Approximate
95% Confidence Limits.

correlation coefficients that

could be reflecting ozone production

characteristics in the tropics and

ozone transport between regions. These cross-correlation coefficients
are relatively small, and since they represent a reasonably balanced
mix of pos1t1ve and negative covariances, their additive effect on
SE(bg) is likely to be slight with SE(®g) either being slightly larger
or slightly smaller than already estimated.

Thus, an analysis of the cross-correlations of the residual series
does not Tead to a contradiction of the assumption that the nine station
residuals are independent of one another. The individual estimates of
the standard error of &, i = 1,...9, are therefore combined to provide
an estimate, SE(@G), of the standard deviation of &G. That is:

5
SE(5g) = [(1/9)2 1 se(@) 2] (13)
i

By dividing &g and SE(&G) by 307, the overall ozone average can be
obtained based on the sample of nine stations. To express this as a percent,
the estimated abnormal global rate of change per year for Case 1 is -0.03%

+ 0.31% (95% confidence 1imits). For Case 2, the estimate is 0.09%
+ 0.42%. Both results suggest there has been no statistically signifi-
cant change in global ozone persisting in the 1970's.
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Setting out to check his Tinear ramp function with a
simulation, Hill determined how well the methodology estimates
a predicted decline if the decline were moderately exponential
(Fig. 28) dinstead of linear. A1l ozone data are artificially
reduced according to the ozone depletion model proposed by Jesson
(Fig. 37). Using the pre-intervention models in Table 2, a new
trend estimate, &' is calculated for
each station after the data are Hypothesiaed Orone Depletion Frofile
artificially depleted and compared ' e
to the original. If the methodology
is to be appropriate for ozone trend
estimation, the differences

0Z0NE DEPLETION (%)
- Q
o n
3 ///////
3

&i—&i‘, i=1, ...9, when expressed

as a percentage of the mean level 1o Tis

for station i, should be close to h

0.11% for Case 1, where 0.11% is . . .

the average amount each data E;gaggeiié alhégr$22i11e
series is depleted per year in the -Esgimate of Depletion Where
intervention interval. For Case 2, the Effect of Ehe Chemistr
the percent difference should be of Chlorine Nitrate is to y
close to 0.13%. The results of Reduce the:Depletion Pre-
the simulation, summarized in dictions. The Predictions
Table 5, indicate close agreement of Fi uré 37 should not be
between the artificial exponential Com aged with Those in
depletion and the estimate of FigEre 28

depletion from the intervention

analysis. These results indicate that

the use of the linear ramp function of equation (11) will serve as a
good approximation to typical ozone depletion profiles in the 1970s.
As a further check on the analysis, each data series was artificially
depleted using a linear depletion model. The trend analysis esti-
mated the reduction exactly, as would be expected from the under-

lying theory.

Pursuing the issue of global detectability afforded by the
monitoring of ozone levels beyond 1975, Hill recalled that
detectability is defined as the smallest abnormal change that
would have to occur in the ozone data to be considered significantly
different from zero change. Quantitatively, at the 95% confidence
level, this is simply expressed as 1.96 x SE(w.). This is converted
to a percentage by dividing by 307, the global’average of the nine
stations and multiplying by 100%.

Since no abnormal trend is found in the period prior to 1975
(Figs. 38 and 39), the models are refitted over the complete data
set (Case 3, Table 2). These show no inadequacies such that the
identification step had to be redone. Special attention is paid
to the ratio: (mean residual)/(standard error) at Huancayo. Since
this is not significant, a trend term did not need to be included

in the model.



Table 5. Simulation results for artificial depletion shown in
Figure 37, where & 1is the estimated trend parameter for the
original data, and @' {is the estimated trend parameter for
the artificially depleted data.

A5(%)=100% x (&'-w)/(average ozone level for the station)

CASE 1 CASE 2
STATION & 5 2 (%)} 5 5 23 (%)°
Edmonton +0.582 +0.108 -.13% +0.727 +0.050 -.19%
Arosa -0.407 -0.870 -.14 -0.638 -1.200 -.17
Tateno +0.471 -0.054 -.16 +0.185 -0.400 -.18
Mauna Loa -0.170 -0.539 -.13 -0.400 -0.914 -.19
Huancayo +0.886  +0.578 -.18 +2.330 +1.950 -.14
Kodaikanal -2.220 -2.420 -.08 -1.895 -2.150 -.10
MacQuarie +1.610 +1.230 -.11 +3.710 +3.080 -.16
Isl

Buenos Aires | -0.277 -0.627 -.12 -0.434 -0.812 -.13
Aspendate -1.180 -1.510 -.10 -1.167 -1.660 -.15
Global Avg. -0.078 -0.456 -.12% +0.269 -0.228 -.16%

1 Compare with -.11%

2 Compare with -.13%
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EVALUATING FOR TREND 1970 - 1975 AT TATENO

PRE 1970, MODEL IS
12

Y =
b (1-9;B-9,8) (1-8'

IF TREND 1970 - 75, THEN
| 12)
v = & 12 t

-8t (1680, 8) (1-8

(1 -96,,B

12)

WHERE

0  BEFORE 1/70
B -
1 FROM 1/70
QUESTION: IS w SIGNIFICANTLY DIFFERENT FROM ZERO?

WHERE w = ABNORMAL YEARLY RATE OF CHANGE IN TOTAL OZONE

Figure 38. Evaluating Trend at Tateno

TREND DETECTABILITY THRESHOLDS FOUND BY
(1) REFITTING MODELS THRU 1975 (SINCE NO PRIOR TREND)

£>

(2) CALCULATE STANDARD ERROR (SE(w)) OF FUTURE

(3) CALCULATE STANDARD ERROR OF GLOBAL AVERAGE aG
9 5
SE(aG) = (1/9)2 ) SE(&i)Z
i=1

IF 9 STATIONS INDEPENDENT
(4) CALCULATE THRESHOLD AT 95% CONFIDENCE

1.96 x SE(d;)

CONVERT TO %

Figure 39. Finding Trend Detectability Threshoids




Prior to calculating SE(&i) and hence SE(&G) corresponding to

an intervention starting at 1/76 and going into the future, consider
each term of equation (11). The vector X 1is a function of the pre-1/76
data and the length of the intervention interval; W2, the diagonal
matr1§ of weights, is a function only of the preintervention data,

and G¢ is the only term which depends on the post-intervention data.
Assuming the residual variation,prior to 1/76 has the same variance
structure as after 1/76, then 6~ can be calculated as

T-1
% = (T-1-(pra)) L = W E (y 9" (14)
s=L+1

where T corresponds to 1/76, the point of intervention
p is the number of autoregressive terms in the model
g is the number of moving average terms in the model
L is the maximum back order

and ys is the one step ahead forecast made at time s-1 using
models of the form in equation (7)

Estimates of detectability for future monitoring periods
of 3 to 8 years are presented in Table 6. Column 2 of Table 6
presents detectability estimates based on the sample of the
nine stations. The results indicate that an abnormal change
of 0.26% per year, persisting for six years (1.56% total),
would represent a significant change in the ozone level, if
it were to occur. If the monitoring period extended for
eight years, a persistent yearly rate of change of 0.21% per
year (1.68% total) would be considered significant. Column 3
gives the detectability estimates based on a global network
of recording locations equivalent to 18 independent uniformly-
distributed sites with residual variation similar to the nine
stations analyzed. This "18-station network” can be con-
structed by including more of the existing ground-based sta-
tions in the analysis and/or using satellite data which should
be available shortly. Calculations indicate that an abnormal
change close to 1% is detectable from the total ground-based
network, if such a change were to occur. A combination of
data prior to and after January 1976 (e.g., January 1974 - 78)
should provide detectability close to the tabulated estimates.
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Table 6. Yearly global ozone changes that must persist for p
years to be judged statistically significant.

NUMBER 9-STATION 18-STATION
OF YEARS GLOBAL NETWORK GLOBAL NETWORK
3 .48% .34%

4 .37 .26
5 .31 .22
6 .26 .19
7 .23 .16
8 .21 .15

One apparent characteristic of the intervention analysis
is that the total detectability lessens as the monitoring interval
lengthens. For example, based on the nine stations analyzed, a
total change of 1.44% corresponding to 0.48%/year for three years
would be significant, while the total change in eight years at
0.21%/year would have to be 1.68% before it could be judged
significant (see Table 6). Hill noted that, "intuitively, this
is what one might expect. The faster the yearly rate of change,
the smaller the total effect needs to be to be judged significant.
Very gradual rates of change are more difficult to detect leading
to longer elapsed times and greater total changes. A rigorous
interpretation lies in the error progagation characteristics of
the estimated step function {&/(1-Bl )}gt with increasing time."

Assuming that the predicted ozone depletion effects for the
various compounds are additive, the predicted net global effect
is in the range of 1-2% and should by now be large enough to have



produced a detectable change in the ozone level. The fact that
the trend analysis shows no significant abnormal change in ozone
suggests that, although the depletion theories may be correct,

the depletion predictions when treated cumulatively yield a result
that appears to be too large.

Hi11 concluded that, "The detectability analysis indicates
that the ozone data provide an excellent basis for future monitor-
ing of ozone concentrations. The effect of the early warning
provided by the data is to minimize the impact on the environment
of a change in the ozone Tevel due to man-related activity, if
such a change were to occur. For example, if FC-11 and FC-12
were to cause a 1.56% depletion in the ozone in the next six
years, an estimated maximum depletion 1.5 times greater (factor
based on NAS calculations), or 2.3%, would occur and be followed
by a gradual reversal to normal, assuming that the cause is
identified and controlled. (See curve A, Fig. 28.) Thus,
attention could center upon climatic and biological impacts
resulting from potential maximum reversible changes of 2.3%.
Further calculations indicate that the detection capability can
be increased by incorporating additional ground station data
and/or satellite data into the monitoring scheme (Table 6,
column 3)."

Hi1l noted his assumptions that the cause or causes of an
ozone depletion can be identified and controlled. If future
monitoring should reveal a significant change in the ozone level,
careful investigation of all potential depletion sources, human-
related and natural, would be necessary before a cause could be

identified. For example, natural trends could be mistaken for man-

made effects if the periodicity of the natural trend is greater
than the ozone record. This would be true of some shorter data
series where cycles, such as a suspected 1l-year cycle, may not be

fully identified and accounted for in the time series modei. Trends
which might have been caused by instrument drift or local phenomena

can be verified by comparing the suspicious results with those of
neighboring stations for consistency. Thus, knowledge of both
chemical and physical processes associated with ozone activity
will be necessary to complete a cause-and-effect evaluation if
statistical analysis of ozone data reveals a significant change
in ozone concentration.

Next, Marcello Pagano, from the State University of New
York at Buffalo, presented his methodology for analyzing the
data by using the time series of ozone monthly means from the
same nine-station network (Table 7) that Hi1l used. Pagano re-
iterated that this network serves as a globalliy-balanced sample
of ozone monitoring stations whose time series had no missing
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Table 7. Time series of ozone monthly means.

Ratio of Before
and After Mean Square Proportion Negative
Prediction Errors Forecast Errors
PRER NEGER
Station and Model
Dates of Observations Method 24 mo. 48 mo. 72 mo. 24 mo. 48 mo. 72 mo.
AROSA 2 1.47 1.26 1.28 .67 .65 .61
Jan 58-Dec 75
ASPENDALE 2 .92 1.09 .80 .63 .69 .54
Jan 58-Dec 75
BUENOS AIRES 1 1.14 1.46 -- .54 .54
Jan 66-Dec 75
EDMONTON 2 .96 .89 .88 .38 .A8 .43
Jan 58-Dec 75
HUANCAYO 1 2.05 1.66 1.73 .29 .42 .36
Jan 65-Dec 75
KODATKANAL 3 1.23 1.08 1.19 .56 .57 .48
Jan 61-Apr 75
MACQUARIE ISLES 2 1.5 1.76 1.80 .58 .52 .54
Jan 64-Dec 75
MAUNA LOA 4 .84 1.23 1.47 .ba .56 .50
Jan 64-Dec 75
TATENO 2 .82 1.23 .88 .50 .56 .53
Jan 58-Dec 75
95% Significance Level .36 .38

R
PRER., 60 1.70 1.57 1.52

PRER., 120 1.60 1.47 1.42




values. The series is also Tong enough for statistically sig-
nificant data modeling and parameter estimation.

Analyzing the data consists of dividing each time series into
two parts, the earlier part to fit the model and the Tater part to
generate predictors which can be used to judge the difference between
the later observations and the earlier. Because of
the short Tength of the ozone series available, Pagano considered
three cases of dividing each ozone series into two parts:

(i) data through 1973 for modeling, 1974-75 data for predicting;
(ii) data through 1971 for modeling, 1972-75 data for predicting;
(iii1) data through 1969 for modeling, 1970-75 data for predicting.
These three cases are referred to as data sets 2, 4, and 6,
respectively. Data set 2 yields the longest record for fitting
the model, and data set 6 yields the longest record for judging
the predictors.

The following is taken directly from Pagano's paper , as sub-
mitted to the proceedings, with the exception of italicized comments.

Tests for detecting changes in probability distribution and downward
trends in time series

When the state of a system is describable by a time series Y(t)
of measurements over time, a natural question that arises is to test
a hypothesis Hp that there have been no changes in the probability
distribution of the state of that system starting at a specified
timé tO. One approach to testing HQ, whose rationale has been dis-
cussed by Box and Tiao (1976) is as follows: (1) form a data base
of values Y(t) at times denoted t = 1, ...,T; (2) fit a statistical
model to the time series Y(-), using its values only up to time t
where t, < T; (3) at each t = 1,2,...,T, form the one-step ahead
forecasgs Y (t) of the value Y(t) at time based on the values
Y(t-1), Y(t-2),... at immediately preceding times; (4) comparison
of forecasts YH(t) with actuality Y(t) for t > tn can be used to
determine (qualitatively and quantitatively) whether the model for
the time series Y(.) fitted to the values before time t, describes
the probability distribution of the values Y(t) at timeg after t;.

One important diagnostic tool is the prediction error ratio,
abbreviated PRER. The mean square prediction errors before and
after to are denoted

ty
T oov(t) - Y)Y
t

1]

PREDERRBEF (to)

L]
—
1

PREDERRAFT (t) {y(t) - Y“(t)}2
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in terms of which we define

PREDERRAFT (to)
PREDERRBEF (t

PRFR (to) = 0)

- Under the hypothesis that there has been no change in the model, the

probability distribution of the statistic PRER (t,) is approximately
the F distribution with (T—tO) and (t,-p) degrees of freedom, where p
is the number of parameters used in f?tting the time series model.

The statistic PRER is a test statistic for the hypothesis of no
model change at time tg which is an "omnibus" or "overall" criterion,
in the sense that the test does not specify the nature of the change
against which one is testing. One should also employ a "specific"
test statistic which specifically tests for the kind of change one
is concerned about detecting.

To test the hypothesis that there is a (downward) trend in the
measurements, one would use the sign-test statistic

NEGER (t.) = proportion of prediction errors

o)
Y(t) - YH(t), t > tys

which are negative

If the process generating the data is stable, then the proportion
of negative residuals (actual value Y(t) minus predicted value YH(t))
should be about 50%. That <s, Pagano commented, '"We are just as
likely to underpredict as to overpredict.'" If the process measure-
ments have a downward trend, then NEGER (the proportion of negative
residuals) should be significantly greater than 50%. (If there is
an upward trend, NEGER should be significantly less than 50%.)

The expected variability of about 50% NEGER (t,) when the hypothesis
of no model change is true is described by the binomial distribution
(with parameters t, and 0.5). Under the hypothesis of no model
change, a 95% two- 91ded conf1dence region for NEGER (48) is 36%

to 64%, and for NEGER (72) is 38% to 62% (see table 7).

Ninety-five percent significance levels for the value of PRER
are approximately 1.70, 1.57, or 1.52, depending on whether the time
span being predicted is the Tast two, four, or six years, and assuming
that the degrees of freedom used in estimating the mean square
prediction error over the fitted period is 60. For 120 degrees of
freedom these thresholds are approximately 1.6, 1.47 and 1.42.

A technical note: <inadvertently, instead of PREDERRBEF (t,)
we computed



2

PREDERRTOT (t Y(t) - YHM(t)}

o)
using the model fitted to the data up to time e One then
computes PRER (to) using the relation

PREDERRTOT (to)
PREDERRAFTAYtO)

g N P
1 - {PRER (t4)} " = t 1

Methods of time series model fitting

The first step in modeling a time series Y(t) is to consider
its Tevel, or means. Since each station clearly exhibits a seasonal
pattern (a 12-month periodicity), the monthly means (means of
January, February, ..., December, respectively) are first calculated
(Fig. 40, Fig. 41). A test is then performed to see if the monthly
means can be represented as the sum of a small number of fundamental
harmonics; this would achieve a reduction in the number of parameters
required to model the mean. Usually the first two harmonics of the
period 12 (frequency 2n/12) suffice to model the monthly means by
values called the fitted monthly means. The time series is then
demeaned by subtracting from each monthly value the fitted mean for
that month; the demeaned series is denoted Z(t).

TRTENG 1/58-12/75 g, TATEND 1/58-12/75
ORIGINAL DATA S| SEAS REAN AGJ SERIES (211

.00  310.00 380.00 400.00 440.00

YALUE

140.00 280

200.00

) 40.00 €000 120,00 |in.ﬁnzzw.w 240.00  180.00  310.00 ‘900 W00 8D.0  120.00 m'ﬁnzm'“ €40.00  280.00  320.00

Figure 40. Monthly Means, Original Figure 41. Monthly Means, Seasonal
Data Means Adjusted Series

59



60

The first step in modeling Z(t), representing the fluctuations
of a monthly time series Y(t) about its fitted monthly means, is to
examine the monthly variances; that is the variance of all January
values about the fitted mean of January values, ..., the variance
of all December values about the fitted mean of December values.
Having calculated the monthly variances one would like to test the
hypothesis that the variance is constant over the year. Tests of
this hypothesis are available onTy under the simplifying assumption
that time series is Gaussian white noise; it is felt that these
tests can be used to provide a vague indication, on the basis of
which most stations are regarded as having monthly variances which
are not constant but vary. "This correlation," Pagano added, 'is
exactly what we want--[we want to know] how dependent the future is
on the past.” The only stations which we considered whose variances
would be regarded as constant are Buenos Aires, Huancayo, and
Kodaikanal.

When the monthly variances are regarded as constant we denote
Z(t) by Z1(t). When the monthly variances are regarded as varying,
we form a de-varianced time series Z2(t) whose value for a given
time t is Z(t) divided by the monthly standard deviation for the
month corresponding to time t.

For each series Z1(+) and Z2(-), we have two cases: the series
is either stationary or periodic-stationary. To intuitively define
these concepts, denote the series for expository purposes as Z(t);
we will model it as an autoregressive scheme (stochastic difference
equation whose right-hand side e(t) is white noise or independent
random variables):

Z(t) + at(l) Z(t-1) + .. + at(m) Z(t-m) = e(t) .

Using a periodically varying filter rather than a static one,
it 18 necessary to determine the filter length. Pagano pointed
out that "statistical theory argues for a shorter filter to have
fewer parameters, while reality argues for a long filter length."”

Z(+) is stationary is equivalent to: the autoregressive co-
efficients at(j) do not depend on t and the variance of «(t) is
constant in “t. How many autoregressive coefficients to use is
determined by a statistical testing criterion; we consider two
criteria which we call CAT and SELECT. Z(t) is periodic-
stationary is equivalent to: the coefficients o, (Jj) depend only
on the month of t, and the variance of e(t) also depends only on
the month of t. In modeling period-stationary time series we
consider three criteria for determining how many coefficients to
use for a given month (described in methods 6, 7, 8 below).



The foregoing considerations yield eight possible models for
the fluctuations Z(+) of a time series Y(-) about its monthly means.

Method 1: Treat monthly variances as constant, model Z1 as
stationary time series, fit autoregressive scheme by CAT.

Method 2: Treat monthly variances as varying, model Z2 as
stationary time series, fit autoregressive scheme by CAT.

Method 3: Same as method 1, but fit autoregressive scheme by SELECT.
Method 4: Same as method 2, but fit autoregressive scheme by SELECT.

Method 5: Treat monthly variances as constant, model Z1 as periodic-
stationary, fit autoregressive schemes using order
determined in method 1.

Method 6: Treat monthly variances as varying, model 72 as periodic-
stationary, fit autoregressive schemes using order
determined in method 2.

Method 7: Same as method 6, but fit autoregressive schemes by
PCAT for each month.

Method 8: Same as method 6, but fit autoregressive schemes by
SELECT for each month.

The T1ength of ozone time series does not seem long enough to
use the model of periodic-stationary time series (methods 5, 6, 7
and 8) because of the number of parameters that need to be estimated.
In our detailed data summaries, we report the model fitting results
using these methods, but we explicitly consider interpretable only
the model fitting results using methods 1 through 4.

To choose the most representative model for an ozone time
series, the choice will be made from either methods 1, 3 or from
methods 2,4 depending on whether one accepts or rejects the
hypothesis that monthly variances are constant.

If one would like to select one of the models fitted as being
"best fitting," a principle for choosing a modeling method is the
following: choose the method which yields smallest overall mean
square prediction error using PREDERRTOT ondata set 2, and smallest
mean square prediction error over the data set not used to fit the
model using PREDERRAFT on data set 6. We believe that the conclusions
are essentially similar for all models fitted by methods 1-4, but it
seems worthwhile to choose one method as being most representative.
The test statistics for this method are reported in Table 7.
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Table 8. Autoregressive filter of model fitted to fluctuations Z(t)
Z(t) + ag Z(t-1) + ... + o Z(t-m) = e(t)
STATION DATA SET oy o, aq oy ag G oy
AROSA 2 -.061 -.130 -.048 -.102 -.048 -.153
4 -.126 -.135 -.041 -.135 -.057 -.158 .112
6 -.190 -.141
ASPENDALE 2 -.283 -.163 -.193
4 -.189 -.097 -.214 -.050 -.178 .035 -.025
-.001 .090 .209 (coefficients ags Ggs alo)
6 -.203 -.165 -.229
BUENOS AIRES 2 -.257
4 -.371
EDMONTON 2 -.097 -.118 -.028 -.067 -.146
4 -.148 -.048 -.073 -.073 -.159
6 -.140 ~.059 -.070 -.085 -.202
HUANCAYO L2 -.476 -.195
4 -.652
6 -.637
KODATKANAL 2 -.713 0 0 -.222
4 -.730 0 -0 -.200
6 -.875
MACQUARIE ISLES 2 -.323 -.068 -.091 .217
4 ~-.382
6 -.434 174
MAUNA LOA 2 -.576
4 -.470
6 -.457
TATENO 2 -.247 -.285
4 -.312 -.253
6 -.384

Table 8 summarizes the coefficients of the stationary auto-
the fluctuation series Z(t) at each

regressive models fitted to
station.




Since this methodology should work with any parameter that
varies seasonally, London proposed applying the same technique
to temperature data to see if the methodology successfully predicts
the world-wide cooling that has occurred since the 1940s. 1If the
technique does forecast the temperature change, it would clearly
strengthen the methodology and lend greater evidence to the con-
clusions about other seasonal variations such as ozone.

Conclusions
The values of the test statistics summarized in Table 7 do not

reject the hypothesis that there has been no downward trend in the
measurements of ozone levels in the period through 1975.

By the test statistic NEGER (proportion of negative forecast
errors) Arosa and Aspendale could be considered to have a sig-
nificantly high proportion in their forecasts over 1971-75, but
not over 1969-75. Their values of the test statistic PRER is not
significantly high.

The values of PRER for Huancayo are significantly high which
indicates a change in the probability distributions of ozone levels;
to interpret this one uses the values of NEGER which are just barely
significantly low for Huancayo. Therefore, if there is any statis-
tical evidence of trend in ozone measurements at Huancayo, it is an
upward trend.

On the other hand, the values of PRER for Macquarie Islands
are significantly high, but NEGER is non-significant. Therefore,
the ozone measurements at Macquarie Isles might provide statistical
evidence of a downward trend. It is the only station with this
property. It is also the station for which our time series model
fits the worst when one compares the mean square forecast error with
the overall variance of the time series (summarized in Table 9).
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Table 9. Comparison of mean square forecast errors with overall
variance of time series

. MEAN SQUARED FORECAST ERROR

STATION MEAN VARIANCE PREDERRAFT
Last 4 Years | Last 6 Years

AROSA 334.3 245.5 283.1 276.1
ASPENDALE 320.2 138.2 94.7 79.4
BUENOS AIRES 287.9 152.9 168.6
EDMONTON 358.0 324.0 250.1 252.8
HUANCAYO 263.5 22.8 21.4 22.0
KODAIKANAL 261.2 103.6 19.1 20.0
MACQUARIE ISLES 340.5 374.3 462.1 455.1
MAUNA LOA 277.1 78.4 59.7 66.2
TATENO 324.6 179.4 123.9 113.3

Janet Campbell of NASA Langley reviewed the "imperfect data
question." She defined the following terms:

3(t,x) = Dobson measurement

Actual total ozone

0,(t,x)

3
where both are associated with a time t and position x. The error
associated with this measurement is:

e(t,x) = 0.(t,x) - 04(t,x)

3
In order to determine data quality, one must know something about
the properties of e(t,x).

Campbell showed two data records which were made simultaneously
by side-by-side Dobson instruments at Arosa, Sw1tzer1and Since
both instruments are attempting to measure the same 0 x), then
differences in simultaneous measurements are, essent1gl1y, differences
in errors. Thus, one can gain some insight into the magnitude of
errors at this station by examining these differences.




—- unknown
03(t ,X) + E(t,X)

o~
3
[=}
£
=
t
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and noting that the left-hand side of the equation is the known
(observable) information and the right-hand side represents an
unknown partitioning, then the known average of a set of Dobson
measurements is an estimate of the average true ozone plus the
average error (bias). That is:

— unknown
E(05(t,x)) + E(e(t,x))

known <
E(04(t,x))

If e(t,x) is unbiased, then E(e(t,x)) tends to zero for a "long
enough" averaging period. The assumption of no bias may not be
reasonable, however.

Trend estimates are limited by the variance of the data,
that is, by:
known <

Var(63(t,x))

- unknown
Var(03(t,x)) + Var(e(t,x)) + 2 Cov(03,e)

It is desirable for the errors to be independent of the actual
total ozone (i.e., Cov(03,e) = 0). If this is the case, then

A

Var(03(t,x)) 3_Var(03(t,x))
and
Var(63(t,x)) > Var(e(t,x))

so that the known data variance provides an upper bound on the
variances of 03 and e.

To decide about the existence of a bias or whether or not
errors are correlated to O,, one should "pull the errors apart"
and look at potential errof sources. Three major causes of error
are:

1. dncorrect instrument calibration, poor maintenance, etc.

2. algorithms used to convert measured radiances to total
ozone estimates

3. meteorological/geophysical variables.
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A calibration error, for example, could produce either a constant
bias or a time-varying bias (drift) in the data. Correlations
between ¢ and 0, can result from the correlation of both with a
third variable guch as another atmospheric constituent.

There are some types of errors which can seriously affect trend
estimation techniques whereas others are not so serious. An unknown
but constant bias will not affect trend estimates, whereas a bias
which changes over time can either be mistaken for an ozone trend
or cancel a real ozone trend of opposite sign. The actual magnitude
of errors is not necessarily a problem because this is accounted
for in the trend estimation techniques, provided that the data
variance properly reflects these magnitudes. This condition will
be met, as discussed earlier, if Cov(0,,e) = 0. It is important
to examine error sources and attempt tg identify or remove the
serious errors.

There are two possible mistakes which can be made in our con-
clusions. The "Type I" mistake would occur if we were to detect
a trend which doesn't exist, and the "Type II" mistake would result
if we were to fail to detect a trend which does exist. As previously
mentioned, errors which contain a trend in themselves could result
in either of these mistakes. A Type I error could also result from
too short a data record when a natural low frequency oscillation is
mistaken for a monotonic trend. A Type II error can result from
an inadequate model in which residual variances are too high. The
models of Hill, Sheldon and Tiede, with their low trend detectability
thresholds, do not suffer from this problem. The major type of data
inadequacy which can invalidate their results would be trending errors.

(Campbell noted: "This discussion of errors applies only to
situations where one is analyzing time series at one or more
stations and making inferences about those stations. Where in-
ferences are 'extrapolated' beyond the stations for which data are
available, as for example, a global mean estimated using data from
9 stat;ons, other errors can occur and these are not addressed
here."

Komhyr emphasized the importance of Type I errors where the
"net effect could be no trend" and suggested that it might be useful
to look at variations in different levels of the atmosphere. He
added, "Statistical analysis can tell you if a trend is going on or
not, but physical and chemical analysis must explain the data."

Gille observed that the ozone concentration in the 40-km region
reflects the first effects of photochemistry. Since the natural
variance of ozone concentration is thought to be low at this altitude,
it is a good place to look for the first evidence of changes in ozone
photochemistry. In addition, the variance in 1imb scanning data is
low at this altitude, giving two reasons for an improved signal-to-
noise ratio.



