NRAsE 77- K5/ X3

| NASA Technical Memorandum 83173

NASA-TM-83173 19820002879

PERSONAL COPY

NASA LARC RATFOR DOCUMENTATION

VERSION 1.0

H. J. Dunn

September 1981

NASN

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

//Il///lll/ll////Il///ll//llllllllllll//lllll

033

NASA LaRC RATFOR DOCUMENTATION VERSION 1.0
H. J. Dunn
INTRODUCTION

The purpose of this paper is to describe the use of a preprocessor at the
LaRC computer center that converts RATFOR source into FORTRAN source code that
complies with the ANSI 1966 FORTRAN standard. A FORTRAN source of an existing
RATFOR preprocessor was converted to run on LaRC computers. In order for this
to be done, some minor changes were made to the syntax of the language. This
paper describes the RATFOR preprocessor that is implemented at LaRC. The phi-
losophy on which RATFOR is based and more details on the language can be found
in reference 1. The primary purpose of RATFOR is to make FORTRAN a better
programing language, for both writing and structuring programs. This is done by
providing the control structures that are unavailable in bare FORTRAN, and by
improving the "cosmetics' of the language. By writing programs in RATFOR, they
will be easier to understand and easy to change if the need arises.

The control flow structures of RATFOR are DO, FOR, IF, REPEAT, WHILE, BREAK,
NEXT and statement groupings with brackets. These structures permit programing
without the use of GOTO statements and result in code that is easier to read.
The cosmetic aspect of RATFOR has been designed to make it concise and reason-
ably pleasing to the eye. It is free-form in that statements may appear any-
where on an input line. The end of a line generally marks the end of a state-
ment, but lines that are obviously not finished, such as lines ending with a
comma, automatically continue onto the next line. Multiple statements may appear
on one line if separated by semicolons. The comment convention, a sharp #
anywhere in a line signals the beginning of a comment and helps to encourage
unobtrusive marginal remarks. Quoted strings are converted into H's. Notations
like ">" convey the meaning of ''greater than'" more rapidly than equivalent forms
like .GT. Simple string replacement macro's (DEFINE's) and conditional process-
ing (IFDEF / IFNOTDEF / ENDIFDEF) are incorporated so as to increase the
portahility of programs written in RATFOR.

With thesc two aspects, flow control and cosmetics, RATFOR can generate a
well-structured program with source code that is easy to follow. This will make
the program casier to develop and in turn will result in more reliable results.

THE RATFOR LANGUAGE

In the following description of the RATFOR language the term '"statement"
can either be a RATFOR single or compound statement. A description of the
compound statement is given in the RATFOR language features section. Since an
objective of this report is to provide a reference document for the language,
and not a tutorial, the language elements are listed in alphabetical order.

V[T /A75 Z

BREAK

The break statement causes an immediate exit from an enclosing DO, FOR,
REPEAT or WHILE loop and continues at the first statement following the
loop. Only one loop can be terminated by a BREAK, even if the BREAK is
contained inside several nested loops. Examples of the use of the
BREAK statement can be found in the examples for each of the looping
statements.

DEFINE (symbol=replacement string)

Each occurrence of a defined symbol in the program or INCLUDE file (see
part 6 of this section) is replaced by the "replacement string,' which
is then processed as input to the processor. The definition of a
symbol constant can be another defined symbol. Once a symbol is
defined, it cannot be redefined. Defined symbols must be unique
alphanumeric character strings beginning with a letter. There are no
special characters or blanks allowed. Replacement strings can be any
character string less than 70 characters long but must not contain
dollar signs and must fit on one source line.

The replacement string, either in whole or in part, can contain a
simple integer mathematical relationship between one or more defined
symbols and/or integers enclosed in less-than and greater-than symbols
(<,>). Addition, substraction, multiplication and division are allowed.
Evaluation of the expression is strictly left to right. There is no
hierarchy of the operators. If the expression contains previously
defined constants, they are replaced by their replacement string prior
to mathematical evaluation.

EXAMPLE:
DEFINE (LEXBREAK=-110)
DEFINE (LEXDIGITS=<LEXBREAK-1>)

in RATFOR becomes
B=LEXBREAK

A=LEXDIGITS

B=-110
in the FORTRAN code.

A=-111

The passing of a single argument to be included in the replacement
string is distinguished from a simple DEFINE by the presence of at
least one dollar sign in the definition. Any occurrence of a dollar
sign in the replacement text will be replaced by the argument of the
defined symbol when it is actually called.

EXAMPLE:

DEFINE (INCREMENT, $=§+1) : i
~in RATFOR becomes

INCREMENT(I)

I=1+1 } in the FORTRAN code.

DO index=limits statement

The DO statement sets up a standard FORTRAN DO loop. The '"limits" must

be a legal FORTRAN DO specification since it is copied into the FORTRAN
code directly. RATFOR supplies the appropriate statement number.

EXAMPLE:
DO I=1,10 [)
IF(I==9) BREAK
IF{I==2) NEXT r in RATFOR becomes
K=1-2
]

Do 20000 1=1,10
IF (.NOT.(I.EQ.9))} GOTO 20002
GOTO 20001

20002 CONTINUE
IF (.NOT.(I.EQ.2)) GOTO 20004
GOTO 20000

20004 CONTINUE
K=1-2

20000 CONTINUE

20001 CONTINUE

' in the FORTRAN code.

FOR (initialize; condition; reinitialize) statecment

The "initialize" statement is executed, then the "statement'" and
"reinitialize" are executed as long as ''condition" is true. The
"condition," "initialize'" and "reinitialize'" parts are single FORTRAN
statements. The '"condition'" is tested before each iteration. Any of
the three parts may be omitted, although the semicolons must remain.
A null "condition' is treated as always true, so that an infinite loop
results when the "condition'" is omitted.

EXAMPLE:
FOR (X=0.; X<=1.; X=X+.05) [
Y=EXP(X)
IF(Y==0) NEXT L in RATFOR becomes

IF(Y>=12.) BREAK
Z=EXP(Y)
]

N

' X=0. : :
20006 IF (.NOT.(X.LE.1.)) GOTO 20008
Y=EXP(X)
IF (.NOT.(Y.EQ.0)) GOTO 20009
~ GOTO 20007
20009 CONTINUE
IF (.NOT.(Y.GE.12.))} GOTO 20011
GOTO 20008
20011 CONTINUE
: Z=EXP(Y)
20007 X=X+.05
GOTO 20006
20008 CONTINUE

+ in the FORTRAN code.

IF (condition)
statement-1
ELSE
statement-2

The ELSE and statement-2 are optional. If the "condition" is true,
statement-1 is executed; if it is false and there is an ELSE clause,
statement-2 is executed. In the absence of brackets, each ELSE goes
with the previous un-ELSEd IF.

EXAMPLE:

IF(I==J) A=1. } in RATFOR becomes
ELSE A=2.

IF (.NOT.(I.EQ.J)) GOTO 20013
A=1.
GOTO 20014 .
20013 CONTINUE in the FORTRAN code.
A=2.
20014 CONTINUE

INCLUDE/NL filename

When the RATFOR program encounters an INCLUDE statement, the contents

of the local file with the name "filename" are read in as source and
processed. When the end of the file is reached, the input of the
preprocessor reverts to the next line of the original file. The

include file may be nested three deep. The /NL is an optional "no-list"
switch used to suppress the listing of the file in the output listing.
Any include statements within the file with the no-list switch

specified will not be listed, regardless of the switch settings on
their INCLUDE lines.

NEXT

The rest of the containing loop is skipped and program continues with
the next iteration of the lcop. For the DO, REPEAT...UNTIL and WHILE
statements the control is to the "condition" test; for the FOR state-
ment, the control is to the "reinitialize" statement; and for an
infinite REPEAT, the control is to the top of the loop. Examples of
the NEXT can be found in the examples for each looping element.

null statement
; (used by itself)

The semicolon may be used anywhere that another RATFOR statement may
be used.

REPEAT statement
UNTIL (condition)

The ''statement" is executed until the "condition'" is true. The
"condition'" is a single FORTRAN statement that is tested after each
iteration. The UNTIL statement is optional and if omitted the result
is an infinite loop.

EXAMPLE:

REPEAT [
A=A+1,
1F(A==7.) NEXT
Y=F(A) t in RATFOR becomes
IF(Y==0) BREAX
]

UNTIL (A==0. ++ Y==100.))

20015 CONTINUE]
A=A+1.
IF (.NOT.(A.EQ.7.)) GOTO 20018
GOTO 20016
20018 CONTINUE
Y=F(A) | in the FORTRAN code.
IF (.NOT.(Y.EQ.0)) GOTO 20020
GOTO 20017
20020 CONTINUE
20016 IF (.NOT.(A.EQ.0..0R.Y.EQ.100.)) GOTO 20015
20017 CONTINUE

10. WHILE (condition)
statement

The ''statement'" 1is executed as long as the "condition" is true. The
"condition'" is tested before each iteration.

EXAMPLE:

WHILE (B<=3) [)
X=XY7(B)
IF(X==2) BREAK
Y=X+3 f in RATFOR becomes
IF(Y==2.5) NEXT
7=Y-78.

]

20022 IF (.NOT.(B.LE.3)) GOTO 20023)
X=XYZ(B)
IF (.NOT.(X.EQ.2)) GOTO 20024
GOTO 20023
20024 CONTINUE
Y=X+3
IF (.NOT.(Y.EQ.2.5)) GOTO 20026% in the FORTRAN code.
GOTO 20022
20026 CONTINUE
Z=Y-78.
GOTO 20022
20023 CONTINUE

RATFOR LANGUAGE FEATURES

COMMENTS

A sharp sign # used anywhere on a line causes the rest of the line to be
treated as a comment. The sharp sign may occur in the first column, if
desired, replacing the FORTRAN "C'" in column one. In this case, the entire
line is converted to uppercase and copied into the FORTRAN code as a comment
(unless the /CO switch is in effect; see the Command Line Options section).

COMPOUND STATEMENT

Brackets [, can be used to enclose single or multiple RATFOR and/or FORTRAN
statements so that the enclosed block of statements may be used anywhere
that a single RATFOR statement may he used.

[
.

RATIONAL AND LOGICAL OPERATORS

Since symbols are clearer than the .EQ., .GT., etc. used by FORTRAN, RATFOR
allows the use of conventional mathematical symbols. These symbols are

converted into the equivalent FORTRAN according to the following:

> for .GT.
== for .EQ.
>= for .GE.
\= for .NE.
< for .LT.

<= for .LE.

\ for .NOT.
++ for .OR.
& for L.AND.

CONTINUATION LINES
RATFOR source code lines are automatically continued if:

1. The statement is obviously incomplete at the end of the line, as in the
middle of the conditional part of a FOR oxr IF statement.

2. The line ends with a comma.

3. The line ends with an underline character " ' ({the underline character
is not passed to the FORTRAN output).

QUOTED STRINGS
Quoted strings are converted into the equivalent Hollerith string.
IFDEF / IFNOTDEF / ENDIFDEF (Conditional Processing)

Sections of RATFOR code (one or more lines) can be selectively processed
into FORTRAN or ignored, depending upon the current define symbol status of
a specific constant. When "IFDEF(symbol)}'" is encountered in the RATFOR
source code, a check is made to see if "symbol' has previously appeared in a
DEFINE statement; if it has, the source code up to the balancing ENDIFDEF
statement is processed; if not, the source code is skipped until the
balancing ENDIFDEF is found. The "IFNOTDEF(symbol)'" is similar, except that
that the RATFOR source code up to the balancing ENDIFDEF is precessed if
"symbol" has not been previously defined. .

The symbolic constant can be given a null definition, if it is being defined
only for use with the INDEF/IFNOTDEF statements (e.g. DEFINE (foo=) is
sufficient). IFDEFs (and IFNOTDEFs) can be nested; if an outer conditional
is unsatisfied, all inner conditionals are skipped, just like all other code
within the unsatisfied conditional.

Undefined conditional code (that not processed into FORTRAN) is normally
printed in the RATFOR source listing, but will have no source code line
numbers on the left-hand side of the page. The /IF command line option can
be used to suppress the listing of the undefined conditional code.

LITERAL LINES (%)

If a percent sign (%) occurs in column one of a RATFOR source code line, the
entire line except for the percent sign will be passed to the FORTRAN code
without any modification whatsocver.

DEBUG LINES (?)

If a question mark (?) occurs in column one of a RATFOR source code line, it
is considered to he a debug line and will be processed into FORTRAN (minus
the question mark) only if the /DE (DEBUG) switch was specified in the
command line (sece next section). Multiple levels of debug statement can be
specified by a digit (1-92) in the second column (after the '"?"). Debug
lines whose level is equal to or greater than the level specified in the
/DE:n switch are processed, but lines with a lower level are not processed
into FORTRAN. Lines with no level specificd (blank in column fwo) are
always processed if the /DE switch is specified. A /DE switch with no value
causes all debug lines to be processed. For example, the line:

?3 PRINT X

would print the value of the variable X only if the command line contained a
/DE or /DE:n, with n less than or equal to 3.

STRINGs

Since character processing frequently requires the use of strings, the
preprocessor adds the STRING data type to FORTRAN. In FORTRAN, a STRING
becomes an integer array with one character per element, plus one element
for the terminator (end-of-string character). The number that is assigned
to each work is the value of the ASCII character code.

EXAMPLE:

STRING FOO "BLATZ"

becomes INTEGER FOO(6)

DATA F00/66,76,65,84,90, cos/

Note that the STRING function requires that the symbolic constant '"eos" be
defined when the STRING keywork is first encountered; otherwise "eos'" will
be passed to the FORTRAN code as is and upset the compiler.

Since ANSII standard FORTRAN requires that all DATA statements must be
grouped together and placed in the FORTRAN code after all other specifica-
tion statements, but before any executable statements, STRING statements
must be grouped together and appear in the RATFOR source code after all
other specification statements but before any DATA statements. The pre-
processor holds all the DATA statement parts until the "integer' statement
parts for all STRINGs have been transmitted to the outer file and then
outputs the DATA statements as a group. There is a limit of 12 string
specifications statements with a total of 150 characters in any one program
module.

COMMAND LINE OPTIONS

The command line switches are available to control the actions of the

preprocessor. The command switches must be contained in a comment line that is
first recorded in the file. This comment is printed as the second line in the
heading of the output listing. Wherc appropriate, a switch can be negated by
/NOsw or /-sw. The following are the command line switches:

/CO

/DE

/FO

/FT

/IF

/LC

/LI

/SY

compress Causes the FORTRAN code that is generated by the preprocessor
to be compressed for faster I/0 by eliminating all comments
and unnecessary blanks in the generated FORTRAN code.
Default: /NOCO.

n debug Causes all lines beginning with a question maxk in column one
to be processed into FORTRAN code; by default such lines are
ignored. If n is specified, only debug lines with an equal or
higher value in column two will be processed.

fortran Causes the generated FORTRAN code to be included at the end of
the listing. Default: /NOFO.

ftn Generate FORTRAN source code. Default: /FT.

ifdef Causes RATFOR source code within unsatisfied conditionals
(IFDEFs that are not defined or IFNOTDEFs that are defined)
not to be printed in the listing file, except for the IFDEF or
IFNOTDEF statement. Default: /NOIF.

lower case Cause the generated FORTRAN code to be in lower case charac-
ters. Default: /NOLC.

list Generate the RATFOR listing. Default: /LI.

symbols list List the defined symbols table. Default: /NOSY.

PREPROCESSOR USE UNDER NOS

The RATFOR processor is run by using the following NOS commands:
GET,RATFOR/UN=236939N.
RATFOR(INPUT,QUTPUT,COMP)

The three files that are used by RATFOR have the default names of INPUT, OUTPUT
and COMP. The RATFOR source code is read into the processor on the INPUT file,
and must not have a record length greater than 181 characters. If a different
command line is to be used for more than one program module, these modules must -
be separated by an EOF mark. This can be done by using the COPYBF command to
copy cach file into a temporary file and passing this file to the RATFOR
processor. The RATFOR listing is written to the OUTPUT file and the FORTRAN
source code is written to the COMP file.

After a program has been processed by RATFOR, the program control registers
Rl and/or EF may be examined to determine if there were any detected errors in
the RATFOR source code. If an error or errors have occurred in the source code,
but the preprocessor was able to process the entire file, R1 will be 1 and EF
will be 0. If the preprocessor has had to abort, Rl will be 1 and EF will be 4.
The distinction is made because in the first case the user may want te correct
the FORTRAN source and continue. Being able to do this in the second case is
very optimistic. If no errors werc detected, Rl and EF are 0.

PROGRAM EXAMPLE

The following program gives an cxample of RATFOR. It is not exhaustive but
should help in the understanding and usc of RATFOR. The program selected for
the example will copy the input file to the output until an end-of-file condi-
tion is raised. Since the internal ASCII character set is used, lower case and
terminal control characters may be transmitted to and from a TELEX terminal with

relative ease.

10

RATFIR 1.0 FTN 6.7+485 MAY 29, 1981 2:24 PH PAGE 1
PRUGRAM FOR RATFOR EXAMPLE /FO/SY

8 PROGRAM FIR RATFDOR EXAMPLE /FD/SY

1 INCLUDE SETUP
2 * DEFIMNE(MAXLINE=91) # MAX WIDTH OF OUTPUT LINE

3 % DEFINE(DECREMENT, $28=1)

4 @ DEFINE(INCREMENT,$0341)

5 * DEFINE(MAXoR0O) # MAX STRING LENGTH

6 % DEFINE(MAXDISPLAY=<MAX+l>) # MAX DISPLAY LENGTH

7 - DEFINE(BUFFERLEN=<3MAXDISPLAY+3>/<MAXNISPLAY+1>) & INPUT/OUTPUT BUFFER SIZE
8 * DEFINE(BADe=1)

9 & DEFINE(YES=1)

10 4 DEFINE(ENFe=3)

11 n DEFINE(EQNS=0)

12 % DEFINE (DUMMYSTZE=])

13 * DEFINE(TAPENTCTAPES)

14 & DEFINF(STDINSS) # STANDARD INPUT UNIT NUMBRER

15 o DEFINE(STDOUT=6) # STANDARD OUTPUT UNIT NUMBFR

16 * DEFINE(HUGE=32767)

i7 INCLUDE /NL CHAR

25 PRUGRAM EXRAT(INPUTo3UFFERLENs # INPUT FILE

26 QUTPUT=BUFFERLFN, # QUTPUT FILE

27 TAPENDO(STDIN) = INPUT» # INPUT TAPE NUMBRER

28 TAPENO(STNDOUT) » OQUTPUT) 4 QUTPUT TAPE NUMRER
29 INTEGER IQoBUFFER(MAXDISPLAY)

30 INTEGFR® STRPUT,STRGET

31 ST«ING START ®START OF INPUT"®

32 1Q=3TRPUT(STOOUT,»START)

33 PEPEAT [

34 10=STRGET(STOIN,BUFFER,MAX) # GET INPUT STRING

35 TE(IQ == EQF) BREAK # STOP IF DONE

36 10aS TRPUT(STDOUT,SUFFER) # WRITE STRING TO OUTPUT

37]

38 WRITE(STOOUT, 1)

39 1 FORMAT(L1OXp,"END OF INPUT™)

40 5TaP

41 END

RATFGR 1,05 FTN 4,74485 MAY 29, 1981 2124 PH PAGE 2

8 PRNGRAM FNP RATFNR EXAMPLE /FQO/SY

#
4 SLEN = COMPUTE LENGTH 0OF STRING
#
42 INTEGFR FUNCTION SLEN(STR)
43 INTEGER STR{DUMMYSIZE)
44 DO SLEN=1,HUGE
45 IF(STR(SLEN) == ENS) BREAK
46 OECRFMENT(SLEN) # WENT 1 'TOO FAR
47 RETURN
4¢ END

11

RATFOR 1409 FTN 4,74485 MAY 29, 1981 23246 PH PAGE
& PRLGRAM FOR RATFUR EXAMPLE /FO/SY

#

8 STRPUT = WRITE A STRING TO A SPECIFIED LUN
$HJ OUNN APRIL 14, 1981

4

&9 INTEGER FUNCTION STRPUT(LUN,STR)

€ INTEGER LUNp IoNpSLEN,MINO,CEQF

£1 INTEGER STR(DUMMYSIZE), DBUFF(MAXDISPLAY)
-]

52 I=MINOIMAXLINESSLFN(STR))

53 TE(STR(Y) =c FORMFEED) ([

56 DECREMENT(I)

55 IfF(I o2 Q) (

56 WRITE(LIN,2) # NEWPAGE ONLY

57 RETURN]

58 CALL JUTMAP(STR(2)5I,BUFF,N)

£9 WRITE(LUN,2) (RUFF(I)sl=1,N) % NEW PAGE WITH HEAUER

€0 2 FIRMAT(141, MAXDISPLAY R1)

61 1 .

62 ELSF (

€3 IF(I =a ¢) [

66 ARITE(LUNs 1) 6 BLANK LINE

65 RETURN 1]

&6 ELSE [

&7 CALL NUTMAP(STR»1sRUFF,N)

&8 WRITE(LUNS 1) (BUFF(I)pIm=l,yN) # PRINT SINGLE LINE

69 1 FIRMAT(1X, MAXDISPLAY 1)

7€]

71 .]

72 TF{ CENF(LUN) \= 0 ¢+ IOCHEC(LUN) \= 0)

72 STRPUT=BAD

T4 ELSFE

75 STRPUT=YES

76 RETURN

7 END

RATFUR 1499 FTN 4,7+4485 MAY 29, 1981 2324 PM PAGE

4% PRNGRAM FOP RATFOR FYAMPLE /FO/SY

#
¢ STRGET - READ 4 STRING FKOM A SPECIFIED LUN
#
78 INTEGER FUNCTINN STRGET(LUN, STR, MAXS)
79 INTEGER LUNySTR{MAXS),BUFF(MAXDISPLAY)
80 READ(LUNs1) BUFF
e1 1 FORMAT(MAXOI3PLAY R1)
£2 IF(CEIF(LUN) \= 0)} (
£3 STRGET=EOF
84 STR(1)=EDS
85 KETURN
es 1
87 ; TFCIOCHEC(LUN) \= 0)
8R STRGET=34D
89 STR(1)=EQS
90 RETURN
91 1
92 CALL INMAP(BUFF,MAXDISPLAY,STR,MAXS) # CONVERT DISPLAY TO
93 RETURN
94 END

12

4

ASCII

RATFGR 140s FTN 4.7¢485 MAY 27, 1981 23124 PM
PRCGRAM FOR RATFOR EXAMPLE /FJ/SY

]
CEOF - HIDDEN ENF FUNCTION
#HJY DUNNs APRIL 164, 1981

PAGE

#
95 INTEGER FUNCTINN CENF(LUN)
96 4 INMTEGER EQF, LUN
97 4 CEUFeENF(LUN)
98 RETURN
G9 END
RATFOR 140» FTN 474485 MAY 29, 1981 2324 Pn PAGE
PROGRAM FOR RATFOR EXAMPLE /FD/SY
-
INMAP = CINVERT DISPLAY CODE TO INTERNAL ASCII
#HJ DUNN, APRIL 10, 1081
#
100 SUBROUTINE INMAP(STRIoMAX1»STRD,MAXO)
101 INTEGER STRI(DUMMYSIZE) oMAXTs # INPUT STRING (LENaMAXI])
102 STRI(DUMPYSIZE)»MAXT» 8 OUTPUT STRING (LENoMAXO)
103 NSPLY(2p64)50SPLYL(B) & DISPLAY CODE INPUT CHAR
104 INTEGER J)
105 DATA DSPLYL /0,6649949375585320/
106 DATA DSPLY/ 535 965 655 97» 66s 98s 675 99, 68, 100s
107 69 101, 70, 102, 71» 103, 72, 104 73, 105,
108 740 106 755 107 76 108, 775, 109 78, 110»
109 79» 111s 80y 1125 8Ls 113y 325 1lér» 23p 115,
110 R4y)16p B85p 117, E6» 118, 87» 149, 86» 120s
111 39y 121p 9Us 1220 &8s 123 690 124» 50, 125»
112 51y 1265 525 127, 53s 0» 545 l» 3% 25
1132 S6s 39 S57T» 4p 435 55 450 65 425 7»
114 47y Bpr @0» 9p 4Ly 10 36» 11y 61s 12»
115 325 13, 46y 14s 4&» 155 35, 1€, 91, 17,
116 330 18p 379 195 34» 2Us 955 21s 33» 22
117 38, 235 39, 24, 63, 255 60, 26» t2» 27,
118 b4y 28, 929 29 945 30r 59, 31/
119 K=(
120 FOR(Jsl s J<=MAXI £ K<aMAXOD ; INCREMENT(J)) (
121 INCREMENT(K)
122 IF(STRI{J) »a DHAT) (
123 INCREMENT (J)
124 STRO(K)aDSPLY(2,STRI(J)*+1)
125]
126 ELSE
127 IF(5T?1(J) == DAT) (
128 TNCREMERNT(J)
129 S3TRO(K)=DSPLYL(STRI(J)+]1)
139]
131 ELSE
132 STRI(K) = DSPLY(L,5TRI(J)I+1) 1]
133 TNCREMENT (K)
134 STRN(K)=20S
135 RETURN
RATFGOR leds FTN 4474485 MAY 29, 1981 2124 PM PAGE

& PRGGRAM FOR RATFOR EXAMPLE /F0D/SY

136 END
13

RATFOR 1e0» FTN 4,74485 MAY 29, 1981 2:24 PM PAGE
* PRLGRAM FNR RATF(R EXAMPLE /FO/SY

#

GUTMAP -~ CONVERT ASCIT CHAR SET 10 DIS®LAY CNDE
gHJ DUNN, APRIL lé&s 1981

8

137 SURQQUTINE OUTMAP(STRI»IsSTR(»0)

139 INTEGFR STRI(DUMPYSTIZE),Xs # INPUT STRING (LENs])
139 STRO(JUMMYDIZE)»Os ¢ NUTPUT STKING (LEN=D)
140 DISPLY(128), # DISPLAY CuDE QUTPUT CHAR

161 3

142 Y. DATA DISPLY /1R551R6,1R751RR, 1R, 1R¢,1R=»1R*,1R/51R(>»
143 v $ 1R)}s1IR351R551R +1Ryo1Res LR¥¢, 1R, 1R1H1RY,
144 k4] 1R"pIR_SIRI01IRESIRPHIRZ2H LRCoIR>»T4BH1IR)
145 4) 7580 1R3»1R »1R851R",

146 Ed ¢ LIR#,IR3p1IRTHIRELIIRYH»1IR(91R)»1R*p1IR*,1R
147 % % 1R=s1Rep1R/51R0sLR191R29p1RI» 1R 45 IRS591IRG
148 4 $ 1875 AR3,1IRO,1R2 1R s IR<H AR, AR>HARY?» 74P,
149 4 < 1IRA»IR3,1RCH1IRDILIRESIRFHIRGo1IRHS IRIS1IR Y,
150 b4 3 IRKp1RLp LRMp 1RNp1RDp IRP» 1RQs LRRpIRSs1RT
151 14 $ 1RU» IRV 1IRWs LRX, 10V, 1RZp IR 1R\s 2RI 768>
152 y 3 1R_»1R:51RA,1RB»1IRCH» LRD» IREs IRF» 1RGo 1RH,
153 4 & 1T, IRI2IRKs IRL S LRMp 1RNp IROp LRP » ARA0 1RR»
154 4 % 10S, 1RT»1RUL» LR Vs RW» 1RX»1RY»1RZ»1RGL 1R,
155 ”, % 1R251R3,1R4G/

156 Ne0

157 DO J=1lrI1 [

158 CaSTRI(J)

159 IF(C »>» CNTLA & C <= DEL) [

1606 IF(C < BLANK ¢4 C > UNDERLINE) [

161 INCREMENT(O)

162 STRO(N)=DHAT

163]

164 INCREMENT(C)

165 INCREMENT(O)

166 STRO(U)=DISPLY(C)

167]

168 b

169 RETURN

170 END

RATFOR 1.0, FTN 4.7+4485 MAY 29, 1981 2124 PM PAGE

¢ PROGRAM FOn xATFUP EXAMPLE /FO/SY

SYMIJLIC CIONSTANT = DEFINITION

1 3AD 8 =1

2 BLANK = 32

3 RUYFFERLEN = 246/82
4 CHNTLA = O

5 DAT = 748

& DLCREMENT = $=$-]
7 neL = 127

1] DHAT = 763

S DUMMYSTZE = 1

10 ENF = -3

11 £0S = C

12 FIIRMFEFD = 12

13 HYRE e 32767
14 INCREMENT = $=2%+]
15 MAX = AN

16 MAXDISPLAY = 81

17 AAXLINE = 91

18 S5TOIN = 5

19 STDAUT = 6

20 TAPENT = TAPES
21 UNNDERLINE s G5

22 YES o 1}

14

8

9

RATFOR 1.0»

[

wmwawn

3¢

FTN 4,74485 MAY 29, 1981 2324 PH
PROGRAM FOR RATFOR EXAMPLE /FO/SY

C PROGRAM FOR RATFJR EXAMPLE /FOD/SY

PAGE 10

PROGRAM EXRAT (INPUT = 2646 / 82, DUTPUT o 246 / 82> TAPE § =

SINPUT, TAPE 6 o QUTPUT)
INTEGER IO0» BUFFER (81)
INTEGSR STRPUT, STRGET
INTEGER START (15)
DATA STARY /83, B4, 655 82, 84 325 79>
$84p 0 /
I0 = STRPUT (65 START)
20000 CONTINUE
IQ = STRGET (S5» BUFFER» 80)
TF (NOTo(12 .EQ, = 3)) GOTO 20003
GOTO 20002
20003 CUONTINUE
10 = STRPUT (65 3JUFFER)
20001 GOTO 20000
20002 CONTINUE
WRITE (65 1)

1 FIRMAT (10X» 12HEND DOF INPUT)
sTaP
END

C

C SLEN - COMPUTE LENGTH OF STRING

INTEGER FUNCTION SLEN (STR)
INTEGER STR (1)
DO 20005 SLEN = 1, 32767

700 320

IF (oNOTo(STR (SLEN) .EQs 0)) GOTO 20007

6aTN 20006
20007 CONTINUE
20005 CONTINUE
20006 CONTINUE
SLEN = SLEN =1
RETURN
END
C
C STRPUT = WRITE A STRING TO A SPECIFIED LUN
CHJ DUNN APRIL 14, 1931
~

-

INTEGER FUNCTION STRPUT (LUN, STR)

15

73,

780 80, 85

RATFIR 1,00 FTN 4,7¢48% MAY 29, 1981 2324 PHM PAGE 11
PRNGRAM FOR RATFOR EXAMPLE /FQ/5Y

31 INTEGER LUN» X» No SLENs MINO» CEDF
32 INTEGER STR (1)» BUFF (81)
I
33 I = MINO { 91, SLEN (ST?))
34 IF (oNJTel STR (1) oEQ. 12)) GOT2 20009
35]l sa1-1
36 1F («NJUTel I ,EQe O)) GITO 20011
37 WRITE (LUN, 2)
38 RETURN
39 20011 CNNTINUE
40 CALL 2UTMAP (STR (2) I, BUFFy N)
41 WRITE (LUN, 2) (RUFF (I) 1 = 1y N)
42 ? FNRMAT (141, 31 1)
43 GOT3 20020
44 20009 CANTINUE
&5 IF (o80Tl I oEQe O }) 6370 20013
46 WRITE (LUNp 1)
47 RETUAN
48 20013 CONTINUE
49 CALL QUTMAP (STRy TI» RUFF» N)
50 WRITE (LUN» 1) (BUFF (1 V), I = 1, N)
51 1 FORMAT (1%, B1 R1)
52 20014 CONTINUF
s 26010 CONTINUE
54 TF (.NOT.(CEOF (LUN) oNEe O o0Rs TOQCHEC (LUN) NF. 0)}
$GOTD 20015
55 STRPUT & - 1
56 G0OTD 2001¢
57 20015 CONTINUE
58 STRPUT = |}
59 20016 CONTINUE
60 RETURN
[END
C
C STRGET = READ A STRING FRGM A& SPECIFTED LUN
c
62 INTEGER FUNCIION STRGET (LUNs STP, MAXS)
€3 INTEGER LUN, STR (MAXS)y 8USF (Bl)}
64 READ (LUN, 1) BUFF
65 1 FORMAT (€1 Rl)

16

PATFOR 1605 FTN &o7¢485 MAY 29, 1981 2124 PH PAGE 12
% PROGRAM FOR RATFOR EXAMPLE /FO/SY

€6 IF (oNITel CEGF ¢ LUN) oNEos O)) GITO 20017
€7 STRGET = ~ 2
8 STR ¢ 1) = 0
€9 RETURN
70 2CG17 CONTINUE
71 IF {oN3Te(IICHEC (LUN) oNE. 0)) GITC 20019
72 STRGET = - 1
73 STR (1) = 0
74 RETURN
75 26019 CANTINUE
76 CALL INMAP (BUFF» 81y STR, MAXS)
77 RETURN
78 END
[+

C CEQF = HIJDDEN ECF FUNCTION
CHJ DUNN» APRIL 14, 1981

c
79 INTEGZR FUNCTION CEOF (LUN)
650 INTEGER EOF»LUN
81 CEJFeo IF(LUN)
€2 RETURN
€3 END
c

C INMAP —~ CONVERT DISPLAY CODF TO INTERNAL ASCII
CHJ DUNN, APRIL 10, 1luBi

c
86 SUBROUTINE INMAP (3TRI, MAXI, STRO» MAXO)
€5 INTEGER STRI (1)» MaXI, STRU (1)» MAXOs DSPLY (25 64)»
$0SPLYY (8)
86 INTEGER J
87 DATA DSPLYY /7 Qs 549 94 370 5% 3 % 0 /
88 DATA NDSPLY / 58y 960 655 97» 665 98y 675 39, 635 100, 69, 101, 70

$9 102s 71» 103p 725 104» 735 105, 74» 106, 7590 1GT7» 76p 108y 77
$109, 785 110 79, 1lll, 8J» 112, 81, 113, 82, 1ll4, 83, 115, B84,
$116, 85, 117, 86» 118, 87 119, 88s 120» B89, 121s 90» 122» 48»
$123p 495 124, 50, 1255 51s 126s 52, 1275 535 O 545 1s 555 25 550
$ 3p 5T7p 45 43» 5o 45, €y 425 7o 47» 8s 40s 9p 41lp 10s 36 11p 61
$ 12, 325 13, 445 l4» 46» 155 35, 16, 9Ly L17» 93, 18s 375 195 34y
$20s 955 21, 33, 22, 385 23, 3G, 24, 53y 255 60» 265 629 27s 64>
$28s 925 2G5 94, 3Jp 59, 3) / :

17

RATFUR 1.0y

a9 K e 0
90 4 =1 :
91 20021 IF (.NOT&l J oLE. MAXI AND. K o LE. MAXO)) GOTO 20023
92 K s K ¢+ 1
93 TF (en3Te(STRI (J) +EQe 764)) GOTI 20024
G4 Js Je 1
95 STRO (K) = DSPLY (2, STRI (J) + 1)
96 GOTD 20025
97 20024 CCNTINUE
98 IF (oNATo(STRI (J) +4EJ. 748)) GITI 20026
99 Jes g+l
100 STRI € K) = OSPLYl (STRI (J) + 1)
101 6012 20027
102 20026 CONTINUE
103 STRG (K)} = DSPLY (1, STRL { J) + 1)
104 20027 CONTINUE
105 20025 CNNTINUE
106 20022 J = J ¢+ }
107 6070 20021}
108 20023 CONTINUE
109 K s K+ 1
110 STRQ (K) = O
111 RETURN
112 END
C
C DUTMAP = CONVERT ASCII CHAR SET TO DISPLAY CODE
CHJ DUNN, APRIL L4, 1981
c
113 SUBRUUTINE OQUTMAP (STRI» I» STRO» 0)
114 INTEGER STRI (1)y I» S5TRO (1)» Os DISPLY (128)}, J»
115 DATA DISPLY /1RE,1R6,1R751RB51R9,)1R+y1R-»1R*, 1R/ 1R (>

RATFOR 1.0y

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

FTN 4.7+485
PROGPAM FOR RATFOR EXAMPLE /F3/SY

PP AP A DA A N

FTIN 4474485
PRUOGRAM FOR RATFOR EXAMPLE /FO/SY

20632

2C¢C30
20023
20029

L I I]

N =0
DO 20028

MAY 29, 1981 2324 PM PAGE

1R} s»1RS, IR=,1R ,1R,, 1P,y 1R¥,1R[,1R1,1RZ,
LR" 1R _,1R!»1IRESIRTH 1R, 1RCp1P>, 748, 1R\,
76351R551R »1R!,1R",

1R, LIRS, IR, 1RE) IR, 1R{H1R)»1R*5 1R+,1Ry,
LR=»1Res» 1R /5105 1R1»1R2»1R3I51R&, LR5,1R 0,
LR75LRBHLIRIH IR »AR;»1RC,1R=,1IR>,1R2, 748,
LRA)1IRB,IRCHIRN,1IRE, LRF»1RG»1IRH,IRIN 1R I,
L1EKp IRLs LRMp LANS1IRDH IRPHIRILLRRY IRSH1RT,
LKU» 1RV IRWy L X»1IRY, 1RZp1R[»1R\»1R]» 708,

MAY 29, 1961 2124 PM PAGE

IR_»1R1)1IRA»1IRBHLIRCH1IRD»1REPIRFI1RGs1FPHY
1RI»1RJI»1RK91RL#1RMs 1RN»1ROs1PP, 1RQs 1RR)
1R3» 1RT, 1RU»1RVyIRWs LRX»1RY»1RZ»1ROs1R 1>
1r2,1R3,1R4/

Jd = 1y [

C = STRI (J)

TF (nNOT.

(C «GEs C oAND. C LLE. 127)) GOTO 200630

IF (JNOT.(C oLTe 32 +0R. C .GTe 95)) GOTO 20032

0=0+1

STRO (O) = 768

CONTINUF
C=C+1
0=04+1
STRO (O
CONTINUE
CONTINUE
CONTINUE
RETURN
END

) = DISPLY (C)

18

c

14

1.

REFERENCE

Kernighan, Brian W.; and Plauger, P. J.:
Publishing Company, c. 1976,

19

Software Tools.

Addison-Wesley

[1.

Report No. 2. Government Accession No.

NASA TM-83173

[—— ey

l 3. Recipient’s Caialog No.l

. Title and Subtitle

NASA LaRC RATFOR DOCUMENTATION VERSION 1.0

5. Report Date
September 1981

6. Performing Organization Code
505-34-33~-05

. Author(s)

H. J. Dunn

8. Performing Organization Report No.

10. Work Unit No.

. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665

11. Contract or Grant No.

13. Type of Report and Period quered

. ing A N d Add . . :

12, Sponsoring Agency Name an ress Technical Memorandum
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, DC 20546

15. Supplementary Notes

16. Abstract
NASA LaRC implementation of the preprocessor RATFOR is described. RATFOR is a
preprocessor that can be used to generate a well-structured program with source
code that is easy to follow.

17. Key Words {Sugaested by Author{s}) 18. Distribution Statement
RATFOR
structured programing Unclassified - Unlimited
preprocessor
FORTRAN Subject Category 61

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price’
Unclassified Unclassified 20 AO2

N-305

For sale by the National Technica! Information Service, Springfield, Virginia 22161

End of Document

